
chapter no

Chapter Title

In this chapter, you’ll learn how to create, edit, and test Microsoft Visual Basic code in
your Microsoft Access 2010 applications. The chapter covers the following major topics:

●● The Microsoft Visual Basic Editor (VBE) and its debugging tools

●● Variables and constants and how to declare them

●● The primary object models defined in Access—the Access model, the Data Access
Objects (DAO) model, and the ActiveX Data Objects (ADO) model. You’ll need to
understand these models to be able to manipulate objects such as forms, form con-
trols, and recordsets in your code.

●● Visual Basic procedural statements:

●● Function and Sub statements

●● Property Get, Property Let, and Property Set (for use in class modules)
statements

●● Flow-control statements, including Call, Do, For, If, and Select Case

●● DoCmd and RunCommand statements

●● On Error statements

●● A walkthrough of some example code you’ll find in the sample databases

Chapter 24

Understanding Visual Basic
Fundamentals

The Visual Basic Development Environment. 1452

Variables and Constants . . 1474

Declaring Constants and Variables 1479

Collections, Objects, Properties, and Methods. 1494

Functions and Subroutines. . 1525

Understanding Class Modules. 1529

Controlling the Flow of Statements. 1538

Running Macro Actions and Menu Commands. 1549

Trapping Errors. . 1551

Some Complex Visual Basic Examples. 1553

Working with 64-Bit Access Visual Basic for
Applications. 1574

	 	 1451

C
h

ap
ter 24

1452	 Chapter 24  Understanding Visual Basic Fundamentals

If you’re new to Visual Basic, you might want to read through the chapter from beginning
to end, but keep in mind that the large section in the middle of the chapter on procedural
statements is designed to be used primarily as a reference. If you’re already familiar with
Visual Basic, you might want to review the sections on the VBE and the object models,
and then use the rest of the chapter as reference material.

Note
You can find many of the code examples from this chapter in the modExamples mod-

ule in the Contacts.accdb and Housing.accdb sample databases on the companion CD.

The Visual Basic Development Environment

In Access for Windows 95 (version 7.0), Visual Basic replaced the Access Basic program-
ming language included with versions 1 and 2 of Access. The two languages are very simi-
lar because both Visual Basic and Access Basic evolved from a common design created
before either product existed. (It’s called Visual Basic because it was the first version of
Basic designed specifically for the Windows graphical environment.) In recent years, Visual
Basic has become the common programming language for Microsoft Office applications,
including Access, Microsoft Excel, Microsoft Word, and Microsoft PowerPoint. Some of the
Office 2010 system products (including Word 2010 and Excel 2010) can work with an even
newer variant of Visual Basic—VB.NET—but Access 2010 does not.

Having a common programming language across applications provides several advan-
tages. You have to learn only one programming language, and you can easily share
objects across applications by using Visual Basic with object automation. Access 2010 uses
the VBE common to all Office applications and to the Visual Basic programming prod-
uct. The VBE provides color-coded syntax, an Object Browser, and other features. It also
provides excellent tools for testing and confirming the proper execution of the code you
write.

Modules

You save all Visual Basic code in your database in modules. Access 2010 provides two
ways to create a module: as a module object or as part of a client form or client report
object.

	 The Visual Basic Development Environment	 1453

C
h

ap
te

r
24

Note
You cannot create a module as part of a web form or web report object in a web data-

base. You can, however, create module objects and modules as part of client forms and

client reports in a web database. Web objects do not support using Visual Basic so for

the purposes of the discussions in this chapter, you can assume we are always referring

to client forms and client reports.

Module Objects

You can view the module objects in your database by clicking the top of the Navigation
pane and then clicking Object Type under Navigate To Category. Click the Navigation Pane
menu again, and click Modules under Filter By Group. Figure 24-1 shows the standard and
class modules in the Conrad Systems Contacts sample database—Contacts.accdb. (We
also right-clicked the top of the Navigation pane, clicked View By on the shortcut menu,
and then Details on the submenu so you can see the descriptions we’ve attached to all the
modules.) You should use module objects to define procedures that you need to call from
queries or from several forms or reports in your application. You can call a public procedure
defined in a module from anywhere in your application.

Figure 24-1  To see all the modules in your database, click Modules under Filter By Group on the
Navigation Pane menu when you have Navigate To Category set to Object Type. On the Create
tab, in the Macros & Code group, click the Module command to create a new standard module.

C
h

ap
ter 24

1454	 Chapter 24  Understanding Visual Basic Fundamentals

To create a new module, click the Module or Class Module command in the Macros & Code
group on the Create tab, also shown in Figure 24-1. When you click Module, Access creates
a new standard module. You use a standard module to define procedures that you can call
from anywhere in your application. It’s a good idea to name modules based on their pur-
pose. For example, you might name a module that contains procedures to perform custom
calculations for queries modQueryFunctions, and you might name a module containing
procedures to work directly with Windows functions modWindowsAPIFunctions.

Advanced developers might want to create a special type of module object called a class
module. A class module is a specification for a user-defined object in your application, and
the Visual Basic procedures you create in a class module define the properties and methods
that your object supports. You create a new class module by clicking Class Module. You’ll
learn more about objects, methods, properties, and class modules later in this chapter.

Form and Report Modules

To make it easy to create Visual Basic procedures that respond to events on client forms or
client reports, Access 2010 supports a class module associated with each form or report.
(You can design forms and reports that do not have a related class module.) A module
associated with a form or report is also a class module that allows you to respond to events
defined for the form or report as well as define extended properties and methods of the
form or report. Within a form or report class module, you can create specially named
event procedures to respond to Access-defined events, private procedures that you can
call only from within the scope of the class module, and public procedures that you can
call as methods of the class. See “Collections, Objects, Properties, and Methods,” on page 1494,
for more information about objects and methods. You can edit the module for a form or a
report by opening the form or report in Design view and then clicking the View Code but-
ton in the Tools group on the Design contextual tab (located under Form Design Tools). As
you’ll learn later, you can also open a form or a report by setting an object equal to a new
instance of the form or report’s class module.

Using form and report modules offers three main advantages over module objects:

●● All the code you need to automate a form or a report resides with that form or
report. You don’t have to remember the name of a separate form-related or report-
related module object.

	 The Visual Basic Development Environment	 1455

C
h

ap
te

r
24

●● Access loads module objects into memory when you first reference any procedure
or variable in the module and leaves them loaded so long as the database is open.
Access loads the code for a form or a report only when the form or the report is
opened. Access unloads a form or a report class module when the object is closed;
therefore, form and report modules consume memory only when you’re using the
form or the report to which they are attached.

●● If you export a form or report, all the code in the form or report module is exported
with it.

However, form and report modules have one disadvantage: Because the code must be
loaded each time you open the form or report, a form or report with a large supporting
module opens noticeably more slowly than one that has little or no code. In addition, sav-
ing a form or report design can take longer if you have also opened the associated module
and changed any of the code.

One enhancement that first appeared in Access 97 (version 8.0)—the addition of the Has-
Module property—helps Access load forms and reports that have no code more rapidly.
Access automatically sets this property to Yes if you try to view the code for a form or
report, even if you don’t define any event procedures. If HasModule is No, Access doesn’t
bother to look for an associated Visual Basic module, so the form or report loads more
quickly.

CAUTION!
If you set the HasModule property to No in the property window, Access deletes the

code module associated with the form or report. However, Access warns you and gives

you a chance to change your mind if you set the HasModule property to No in error.

The Visual Basic Editor Window

When you open a module in Design view, Access 2010 opens the VBE and asks the editor
to display your code. Open the Conrad Systems Contacts (Contacts.accdb) sample database
if you haven’t already, view the Modules list in the Navigation pane, and then either right-
click the modExamples object and click Design View on the shortcut menu or double-click
the modExamples object to see the code for this module opened in the VBE, as shown in
Figure 24-2. Notice that the VBE in Access 2010 uses the older menu and toolbar technol-
ogy from releases of Access before Access 2007, not the ribbon used in the main Access
window.

C
h

ap
ter 24

1456	 Chapter 24  Understanding Visual Basic Fundamentals

Return to Microsoft Access window
Insert a new module or procedure

Pause execution

Project Explorer window
Properties window Immediate

window
Code

window
Locals

window

Run
procedure

Halt execution and reset
Design mode

Open Project Explorer window
Open Properties window

Open Object Browser
Object list

Procedure list

Figure 24-2  Use the VBE to view and edit all Visual Basic code in your database.

What you see on your screen might differ from Figure 24-2, particularly if you have opened
the VBE previously and moved some windows around. In the upper-left corner of the fig-
ure, you can see the Visual Basic Project Explorer window docked in the workspace. (Click
Project Explorer on the View menu or press Ctrl+R to see this window if it’s not visible.) In
this window, you can discover all module objects and form and report class modules saved

	 The Visual Basic Development Environment	 1457

C
h

ap
te

r
24

in the database. You can double-click any module to open it in the Code window, which
you can see maximized in the upper-right corner.

Docked in the lower-left corner is the Properties window. (Click Properties Window on
the View menu or press F4 to see this window if it’s not visible.) When you have a form
or report that has a Visual Basic module open in Design view in Access, you can click that
object in the Project Explorer to see all its properties. If you modify a property in the Prop-
erties window, you’re changing it in Access. To open a form or report that is not open, you
can select it in the Project Explorer and then click Object on the View menu.

In the lower-right corner, you can see the Locals window docked. (Click Locals Window on
the View menu to see this window if it’s not visible.) As you will see later, this window allows
you to instantly see the values of any active variables or objects when you pause execu-
tion in a procedure. In the lower center, you can see the Immediate window docked. (Click
Immediate Window on the View menu or press Ctrl+G to see this window if it’s not visible.)
It’s called the Immediate window because you can type any valid Visual Basic statement
and press Enter to execute the statement immediately. You can also use a special “what is”
command character (?) to find out the value of an expression or variable. For example, you
can type ?5*20 and press Enter, and Visual Basic responds with the answer on the following
line: 100.

You can undock any window by grabbing its title bar and dragging it away from its docked
position on the edge toward the center of the screen. You can also undock a window by
right-clicking anywhere in the window and clearing the Dockable property. As you will see
later, you can set the Dockable property of any window by clicking Options on the Tools
menu. When a window is set as Dockable but not docked along an edge, it becomes a
pop-up window that floats on top of other windows—similar to the way an Access form
works when its Pop Up property is set to Yes, as you learned in Chapter 14, “Customizing
a Form.” When you make any window not Dockable, it shares the space occupied by the
Code window.

You cannot set the Code window as Dockable. The Code window always appears in the
part of the workspace that is not occupied by docked windows. You can maximize the Code
window to fill this remaining space, as shown in Figure 24-2. You can also click the Restore
button for this window and open multiple overlaid Code windows for different modules
within the Code window space.

C
h

ap
ter 24

1458	 Chapter 24  Understanding Visual Basic Fundamentals

At the top of the Code window, just below the toolbar, you can see two list boxes:

●● Object list box  When you’re editing a form or report class module, open this list
on the left to select the form or the report, a section on the form or the report, or
any control on the form or the report that can generate an event. The Procedure list
box then shows the available event procedures for the selected object. Select General
to view the Declarations section of the module, where you can set options or declare
variables shared by multiple procedures. In a form or a report class module, General is
also where you’ll see any procedures you have coded that do not respond to events.
When you’re editing a standard module object, this list displays only the General
option. In a class module object, you can choose General or Class.

●● Procedure list box  Open this list on the right to select a procedure in the mod-
ule and display that procedure in the Code window. When you’re editing a form or
report module, this list shows the available event procedures for the selected object
and displays in bold type the event procedures that you have coded and attached
to the form or the report. When you’re editing a module object, the list displays in
alphabetic order all the procedures you coded in the module. In a class module when
you have selected Class in the Object list box, you can choose the special Initialize or
Terminate procedures for the class.

In Figure 24-2, we dragged the divider bar at the top of the scroll bar on the right of the
Code window downward to open two edit windows. We clicked in the lower window and
then clicked ShowTables in the Procedure list box. You might find a split window very handy
when you’re tracing calls from one procedure to another. The Procedure list box always
shows you the name of the procedure that currently has the focus. In the Code window,
you can use the arrow keys to move horizontally and vertically. When you enter a new line
of code and press Enter, Visual Basic optionally verifies the syntax of the line and warns you
of any problems it finds.

If you want to create a new procedure in a module, you can type either a Function state-
ment, a Sub statement, or a Property statement on any blank line above or below an exist-
ing procedure and then press Enter; click anywhere in the module and click the arrow to
the right of the Insert button on the toolbar and then click Procedure; or click Procedure
on the Insert menu. (For details about the Function and Sub statements, see “Functions and
Subroutines,” on page 1525. For details about the Property statement, see “Understanding Class
Modules,” on page 1529.) Visual Basic creates a new procedure for you (it does not embed the
new procedure in the procedure you were editing) and inserts an End Function, End Sub, or

	 The Visual Basic Development Environment	 1459

C
h

ap
te

r
24

End Property statement. When you create a new procedure using the Insert button or the
Insert menu, Visual Basic opens a dialog box where you can enter the name of the new pro-
cedure, select the type of the procedure (Sub, Function, or Property), and select the scope
of the procedure (Public or Private). To help you organize your procedures, Visual Basic
inserts the new procedure in alphabetical order within the existing procedures.

CAUTION!
If you type a Function, Sub, or Property statement in the middle of an existing pro-

cedure, Visual Basic accepts the statement if it’s syntactically correct, but your project

won’t compile because you cannot place a Function, Sub, or Property procedure inside

another Function, Sub, or Property procedure.

If you’re working in a form or report module, you can select an object in the object list
box and then open the Procedure list box to see all the available events for that object. An
event name displayed in bold type means you have created a procedure to handle that
event. Select an event whose name isn’t displayed in bold type to create a procedure to
handle that event.

Visual Basic provides many options that you can set to customize how you work with mod-
ules. Click Options on the Tools menu, and then click the Editor tab to see the settings for
these options, as shown in Figure 24-3.

Figure 24-3  You can customize the VBE by using the settings on the Editor tab in the Options
dialog box.

C
h

ap
ter 24

1460	 Chapter 24  Understanding Visual Basic Fundamentals

On the Editor tab, some important options to consider are Auto Syntax Check, to check the
syntax of lines of code as you enter them; and Require Variable Declaration, which forces
you to declare all your variables. (Require Variable Declaration is not selected by default—
you’ll see later why it’s important to select it.) If you want to see required and optional
parameters as you type complex function calls, select the Auto List Members check box.
Auto Quick Info provides drop-down lists where appropriate built-in constants are available
to complete parameters in function or subroutine calls. When you’re debugging code, Auto
Data Tips lets you discover the current value of a variable by pausing your mouse pointer
on any usage of the variable in your code.

Drag-And-Drop Text Editing allows you to highlight code and drag it to a new location.
Default To Full Module View shows all your code for multiple procedures in a module in
a single scrollable view. If you clear that check box, you will see only one procedure at a
time and must page up or down or select a different procedure in the Procedure list box to
move to a different part of the module. When you’re in full module view, selecting the Pro-
cedure Separator check box asks Visual Basic to draw a line between procedures to make it
easy to see where one procedure ends and another begins.

Selecting the Auto Indent check box asks Visual Basic to leave you at the same indent as
the previous line of code when you press the Enter key to insert a new line. We wrote all of
the sample code you’ll see in this book and in the sample databases with indents to make it
easy to see related lines of code within a loop or an If…Then…Else construct. You can set the
Tab Width to any value from 1 through 32. This setting tells Visual Basic how many spaces
you want to indent when you press the Tab key while writing code.

On the Editor Format tab of the Options dialog box, you can set custom colors for various
types of code elements and also choose a display font. We recommend using a mono-
spaced font such as Courier New for all code editing.

On the General tab, shown in Figure 24-4, you can set some important options that dictate
how Visual Basic acts as you enter new code and as you debug your code. You can ignore
all the settings under Form Grid Settings because they apply to forms designed in Visual
Basic, not Access.

	 The Visual Basic Development Environment	 1461

C
h

ap
te

r
24

Figure 24-4  You can modify settings to help you debug your code on the General tab in the
Options dialog box.

If your code has halted, in many cases you can enter new code or correct problems in code
before continuing to test. Some changes you make, however, will force Visual Basic to reset
rather than let you continue to run from the halted point. If you select the Notify Before
State Loss check box, Visual Basic will warn you before allowing you to make code changes
that would cause it to reset.

In the Error Trapping section, you can select one of three ways to tell Visual Basic how to
deal with errors. As you’ll discover later in this chapter, you can write statements in your
code to attempt to catch errors. If you think you have a problem in your error-trapping
code, you can select Break On All Errors. With this setting, Visual Basic ignores all error trap-
ping and halts execution on any error. If you have written class modules that can be called
from other modules, to catch an untrapped error that occurs within a class module, choose
Break In Class Module to halt on the statement within the class module that failed. (We
recommend this setting for most testing.) If you choose Break On Unhandled Errors, and
an untrapped error occurs within a class module, Visual Basic halts at the statement that
invoked the class module.

The last two important options on this tab are Compile On Demand and Background Com-
pile. With the Compile On Demand check box selected, Visual Basic compiles any previously
uncompiled new code whenever you run that code directly or run a procedure that calls
that code. Background Compile lets Visual Basic use spare CPU cycles to compile new code
as you are working in other areas.

Finally, on the Docking tab, you can specify whether the Immediate window, Locals window,
Watch window, Project Explorer, Properties window, or Object Browser can be docked. We
will take a look at the Immediate window and Watch window in the next section. You can
use the Object Browser to discover all the supported properties and methods of any object
or function defined in Access, Visual Basic, or your database application.

C
h

ap
ter 24

1462	 Chapter 24  Understanding Visual Basic Fundamentals

INSIDE OUT  Understanding the Relationship Between Access and
				 Visual Basic

Access 2010 and Visual Basic work as two separate but interlinked products in your

Access application. Access handles the storage of the Visual Basic project (both the

source code and the compiled code) in your desktop database (.accdb or .mdb) or

project (.adp) file, and it calls Visual Basic to manage the editing and execution of your

code.

Because Access tightly links your forms and reports with class modules stored in the

Visual Basic project, some complex synchronization must happen between the two

products. For example, when you open a form module and enter a new event proce-

dure in the Visual Basic Code window, Access must set the appropriate event property

to [Event Procedure] so that both the form and the code are correctly linked. Likewise,

when you delete all the code in an event procedure, Access must clear the related form

or control property. Therefore, when you open a form or report module from the VBE

window, you’ll notice that Access also opens the related form or report object in the

Access window.

When Access first began using Visual Basic (instead of Access Basic) in version 7 (Access

for Windows 95), it was possible to end up with a corrupted Visual Basic project or cor-

rupted form or report object if you weren’t careful to always compile and save both

the code and the form or report definition at the same time when you made changes

to either. It was particularly easy to encounter corruption if multiple developers had

the database open at the same time. This corruption most often occurred when Access

failed to merge a changed module back into the Visual Basic project when the devel-

oper saved changes.

Microsoft greatly improved the reliability of this process when it switched in version

9 (Access 2000) to saving the entire Visual Basic project whenever you save a change.

However, this change means that two developers can no longer have the same data-

base open and be working in the code at the same time. This also means that your

Access file can grow rapidly if you’re making frequent changes to the code and saving

your changes.

When you’re making multiple changes in an Access application, we recommend that

you always compile your project when you have finished changing a section of code.

(Click Compile on the Debug menu in the VBE.) You should also save all at once mul-

tiple objects that you have changed by clicking the Save button in the VBE window and

always responding Yes to the Save dialog box message that Access shows you when

you have multiple changed objects open.

	 The Visual Basic Development Environment	 1463

C
h

ap
te

r
24

Working with Visual Basic Debugging Tools

You might have noticed that the debugging tools for data macros and user interface mac-
ros are limited. You can’t do much more than run user interface macros in Single Step mode
to try to find the source of an error. The debugging tools for Visual Basic are significantly
more extensive. The following sections describe many of the tools available in Visual Basic.
You might want to scan these sections first and then return after you have learned more
about the Visual Basic language and have begun writing procedures that you need to
debug.

Setting Breakpoints

If you still have the modExamples module open, scroll down until you can see the entire
ShowTables function, as shown in Figure 24-5. This sample function examines all the table
definitions in the current database and displays the table name, the names of any indexes
defined for the table, and the names of columns in each index by printing to a special
object called Debug (another name for the Immediate window).

Figure 24-5  You can set a breakpoint in a Visual Basic module to help you debug your code.

C
h

ap
ter 24

1464	 Chapter 24  Understanding Visual Basic Fundamentals

One of the most common ways to test particularly complex code is to open the module
you want to examine, set a stopping point in the code (called a breakpoint), and then run
the code. Visual Basic halts before executing the statement on the line where you set the
breakpoint. As you’ll soon see, when Visual Basic stops at a breakpoint, you can examine all
sorts of information to help you clean up potential problems. While a procedure is stopped,
you can look at the values in variables—including all object variables you might have
defined. In addition, you can also change the value of variables, single-step through the
code, reset the code, or restart at a different statement.

To set a breakpoint, click anywhere on the line of code where you want Visual Basic execu-
tion to halt and either click the Toggle Breakpoint button on the Debug toolbar (open
this toolbar by right-clicking any toolbar and clicking Debug on the shortcut menu), click
Toggle Breakpoint on the Debug menu, or press F9 to set or clear a breakpoint. When a
breakpoint is active, Access highlights the line of code (in red by default) where the break-
point is established and displays a dot on the selection bar to the left of the line of code.
Note that you can set as many breakpoints as you like, anywhere in any module. After you
set a breakpoint, the breakpoint stays active until you close the current database, specifi-
cally clear the breakpoint, or click Clear All Breakpoints on the Debug menu (or press
Ctrl+Shift+F9). In the example shown in Figure 24-5, we set a breakpoint to halt the pro-
cedure at the bottom of the loop that examines each table. When you run the procedure
later, you’ll see that Visual Basic will halt on this statement just before it executes the state-
ment. Note that you can right-click the toolbar at the top of the VBE window and then click
Debug to see the floating Debug toolbar shown in Figure 24-5.

Using the Immediate Window

“Action central” for all troubleshooting in Visual Basic is a special edit window called the
Immediate window. You can open the Immediate window while editing a module by click-
ing the Immediate Window button on the Debug toolbar or clicking Immediate Window on
the View menu. Even when you do not have a Visual Basic module open, you can open the
Immediate window from anywhere in Access by pressing Ctrl+G.

Executing Visual Basic Commands in the Immediate Window  In the Immediate win-
dow (shown in Figure 24-2), you can type any valid Visual Basic command and press Enter
to have it executed immediately. You can also execute a procedure by typing the procedure
name followed by any parameter values required by the procedure. You can ask Visual
Basic to evaluate any expression by typing a question mark character (sometimes called the
“what is” character) followed by the expression. Access displays the result of the evaluation
on the line below. You might want to experiment by typing ?(5 * 4) / 10. You will see the
answer 2 on the line below.

	 The Visual Basic Development Environment	 1465

C
h

ap
te

r
24

Because you can type any valid Visual Basic statement, you can enter an assignment state-
ment (the name of a variable, an equals sign, and the value you want to assign to the
variable) to set a variable that you might have forgotten to set correctly in your code. For
example, there’s a public variable (you’ll learn more about variables later in this chapter)
called gintDontShowCompanyList that the Conrad Systems Contacts sample application
uses to save whether the current user wants to see the Select Companies pop-up window
when clicking Companies on the main switchboard. Some users may prefer to go directly to
the Companies/Organizations form that edits all companies rather than select or filter the
list. If you have been running the Conrad Systems Contacts application, you can find out
the current value of the string by typing

?gintDontShowCompanyList

Visual Basic displays the value of this variable, which should be either 0 or –1. You can set
the value of this string to False (0) by typing

gintDontShowCompanyList = 0

You can verify the value of the variable you just set by typing

?gintDontShowCompanyList

If you assigned 0 to the variable, you should see that value echoed in the Immediate
window.

To have a sense of the power of what you’re doing, go to the Database window in Access
by clicking the View Microsoft Access button on the left end of the toolbar in the VBE win-
dow. Open the frmMain form in Form view. Click Companies to find out whether the Select
Companies form or the Companies/Organizations form opens. If you go directly to the
Select Companies form, then gintDontShowCompanyList must be False (0). Close the form
that opens.

Now, go back to the VBE window. (An easy way to do this is to use the Windows Alt+Tab
feature.) In the Visual Basic Immediate window, set the value to True by entering in the
Immediate window

gintDontShowCompanyList = True

Go back to the main switchboard and click Companies again. Because you set the public
variable to True, you should go directly to the Companies/Organizations form. Now that
you have the form open to edit companies, you can set a filter directly from the Immediate
window. Go back to that window and enter the expression

Forms!frmCompanies.Filter = "[StateOrProvince] = 'PA'"

C
h

ap
ter 24

1466	 Chapter 24  Understanding Visual Basic Fundamentals

If you want, you can ask what the filter property is to see if it is set correctly. Note that
nothing has happened yet to the form. Next, turn on the form’s FilterOn property by
entering

Forms!frmCompanies.FilterOn = True

Return to the form, and you should now see the form filtered down to two rows—all the
companies in the state of Pennsylvania. If you want to try another example, return to the
Immediate window and enter

Forms!frmCompanies.Section(0).Backcolor = 255

The background of Section(0), the detail area of the form, should now appear red. Note
that none of these changes affect the design of the form. You can close the form, and the
next time you open it, the form will have a normal background color, and the records won’t
be filtered. Close the forms you have open to continue with the next section.

Using Breakpoints  You saw earlier how to set a breakpoint within a module procedure.
To see how a breakpoint works, open the modExamples module in the VBE window, find
the ShowTables function, and be sure you have set a breakpoint on the Next tbl state-
ment, as shown in Figure 24-6.

Because the ShowTables procedure is a function that might return a value, you have to ask
Visual Basic to evaluate the function to run it. The function doesn’t require any parameters,
so you don’t need to supply any. To run the function, type ?ShowTables() in the Immediate
window, as shown in Figure 24-6, and press Enter.

Note
You can also ask Visual Basic to run any public procedure by clicking in the procedure

and clicking the Run button on either the Standard or Debug toolbar.

	 The Visual Basic Development Environment	 1467

C
h

ap
te

r
24

Figure 24-6  You can execute a module function from the Immediate window.

Visual Basic runs the function you requested. Because you set a breakpoint, the code stops
on the statement with the breakpoint, as shown in Figure 24-7. The first table in the data-
base is actually a linked table (an Excel spreadsheet), so you won’t see any output. Click the
Continue button on the toolbar to run through the loop a second time to display the first
table.

Note that we clicked Locals Window on the View menu to reveal the Locals window that
you can see across the bottom of Figure 24-7. (We undocked the Immediate window so
you can see more of the Locals window.) In the Locals window, Visual Basic shows you all
the active variables. You can, for example, click the plus sign (+) next to the word cat (a
variable set to the currently opened database catalog) to browse through all the property
settings for the database and all the objects within the database. You can click on the tbl
variable to explore the columns and properties in the table. See “Collections, Objects, Prop-
erties, and Methods,” on page 1494, for details about all the objects you see in the “tree” under
the database catalog.

C
h

ap
ter 24

1468	 Chapter 24  Understanding Visual Basic Fundamentals

The Immediate window displays the output of three Debug.Print statements within the
function you’re running, as also shown in Figure 24-7.

Figure 24-7  When your Visual Basic code stops at a breakpoint, you can use the Locals window
to examine variable and object values.

The first line shows the name of the first table (Errorlog) that the function found in the
database. The second (indented) line shows the name of the index for that table. The third
line shows the name of the one column in the index.

If you want to see the results of executing the next loop in the code (examining the next
table object in the catalog), click the Continue button on the toolbar. If you want to run the
code a single statement at a time, click Step Into or Step Over on the Debug menu or open
the Debug toolbar and click the Step Into or Step Over button. Step Into and Step Over
work the same unless you’re about to execute a statement that calls another procedure. If
the next statement calls another procedure, Step Into literally steps into the called proce-
dure so that you can step through the code in the called procedure one line at a time. Step
Over calls the procedure without halting and stops at the next statement in the current
procedure.

When you are finished studying the loop in the ShowTables function, be sure to click the
Reset button on the toolbar to halt code execution.

	 The Visual Basic Development Environment	 1469

C
h

ap
te

r
24

Note
The Tables collection in the catalog includes tables, linked tables, system tables, and

queries. Because the ShowTables procedure only looks for tables, you will need to loop

through the code several times until the procedure finds the next object that defines

a table. You should quickly find the ErrorLog, ErrTable, and ErrTableSample tables, but

the code must then loop through all the queries and linked tables (more than 40 of

them) before finding the SwitchboardDriver table.

Working with the Watch Window

Sometimes setting a breakpoint isn’t enough to catch an error. You might have a variable
that you know is being changed somewhere by your code (perhaps incorrectly). By using
the Watch window, you can examine a variable as your code runs, ask Visual Basic to halt
when an expression that uses the variable becomes true, or ask Visual Basic to halt when
the variable changes.

An interesting set of variables in the Conrad Systems Contacts sample database are gint-
DontShowCompanyList, gintDontShowContactList, and gintDontShowInvoiceList (all
defined in the modGlobals module). When any of these variables are set to True, the main
switchboard bypasses the intermediate list/search form for companies, contacts, and
invoices, respectively. You played with one of these variables earlier, but it would be inter-
esting to trap when these are set or reset.

CAUTION!
There are a couple of known issues with setting breakpoints in Access 2010. First, code

will not halt if you have cleared the Use Access Special Keys check box in the Applica-

tion Options section of the Current Database category of the Access Options dialog

box (click the File tab on the Backstage view and then click Options). Second, the Break

When Value Is True and Break When Value Changes options in the Add Watch dialog

box will not work if the value or expression you’re watching is changed in a form or

report module that is not already open in the VBE. For this example to work, the form

modules for frmMain, frmSignon, and frmUsers must be open. You can verify that these

modules are open by opening the Windows menu in the VBE window. The Contacts.

accdb sample file should have modules open, but these modules might not be open in

your copy if you have closed them and compiled and saved the project. You can find

these modules in the Project Explorer window. Open the list of objects in the Microsoft

Class Objects category and then double-click the form modules that you need to open

them.

C
h

ap
ter 24

1470	 Chapter 24  Understanding Visual Basic Fundamentals

To set a watch for when the value changes, open the Watch window by clicking it on the
View menu, right-click in the Watch window, and click Add Watch on the shortcut menu.
You can also click Add Watch on the Debug menu. You should see the Add Watch dialog
box, as shown in Figure 24-8.

Figure 24-8  You can set a watch for when a variable’s value changes.

In the Expression box, enter the name of the variable you want the code to watch. In this
case, you want to watch when the gintDontShowContactList variable changes. You don’t
know where the variable is set, so set the Procedure and Module selections to (All Pro-
cedures) and (All Modules), respectively. Under Watch Type, select the Break When Value
Changes option, and click OK to set the watch. Go to the Immediate window and set gint-
DontShowContactList to True by entering gintDontShowContactList = True and press-
ing Enter. Now return to the Navigation pane and start the application by opening the
frmSplash form. (Code in the Load event of this form hides the Navigation pane and then
opens the Conrad Systems Contacts Sign On form.) Because you set a watch to halt when
gintDontShowContactList changes, the code execution should halt in the module for the
frmSignOn form, as shown in Figure 24-9.

	 The Visual Basic Development Environment	 1471

C
h

ap
te

r
24

Figure 24-9  Visual Basic code halts immediately after a watch variable has changed.

Note that the code halts at the statement immediately after the one that reset the watched
variable. If you didn’t set the variable to True before you started the application, Visual
Basic won’t halt because the value won’t be changing.

Click Continue (or press F5) to let the code continue executing. Return to the Access win-
dow, and in the Conrad Systems Contacts Sign On dialog box, select my name (Jeff Con-
rad), type password in the Password text box, and press Enter or click Sign On. The dialog
box will close, and the main switchboard form opens. In the main switchboard, click Users
to open the user edit form. The first record should be my record unless you’ve created
other users. Select the Don’t Show Contact List check box in my record and click Save. The
procedure halts again, as shown in Figure 24-10.

C
h

ap
ter 24

1472	 Chapter 24  Understanding Visual Basic Fundamentals

Figure 24-10  The gintDontShowContactList variable is set to the value of a form control.

It appears that this code is setting the gintDontShowContactList variable to some value on
the user edit form. (As you’ll learn later, Me is a shorthand way to reference the form object
where your code is running, so Me.DontShowContactList references a control on the form.)
Click Continue again to let the code finish execution. Return to the Access window and click
the Close button on the Users form to return to the main switchboard. (The Users form
might be showing behind the main switchboard form.)

If you open frmUsers in Design view (you can’t do this while the procedure is still halted)
and examine the names of the check box controls on the form, you’ll find that the check
box you selected is named DontShowContactList. When the code behind frmUsers detects
a change to the options for the currently signed-on user, it makes sure the option variables
in modGlobals get changed as well. Be sure to close the frmUsers form when you’re fin-
ished looking at it.

	 The Visual Basic Development Environment	 1473

C
h

ap
te

r
24

Examining the Procedure Call Sequence (Call Stack)

After stopping code that you’re trying to debug, it’s useful sometimes to find out what
started the current sequence of code execution and what procedures have been called by
Visual Basic. For this example, you can continue with the watch on the gintDontShowCon-
tactList variable.

You should now be at the main switchboard form (frmMain) in the application. Click Exit
to close the application and return to the Navigation pane. (You’ll see a prompt asking you
if you’re sure you want to exit—click Yes. You might also see a prompt offering to back up
the data file—click No.) The code should halt again at the Close event of the frmMain form.
Click the Call Stack button on the toolbar or click Call Stack on the View menu to see the
call sequence shown in Figure 24-11.

Figure 24-11  When your code is halted, you can see the chain of code executed to the point of
the halt in the Call Stack dialog box.

C
h

ap
ter 24

1474	 Chapter 24  Understanding Visual Basic Fundamentals

The Call Stack dialog box shows the procedures that have executed, with the most recent
procedure at the top of the list, and the first procedure at the bottom. You can see that
the code started executing in the cmdExit_Click procedure of the frmMain form. This hap-
pens to be the Visual Basic event procedure that runs when you click Exit. If you click that
line and then click Show, you should see the cmdExit_Click procedure in the module for
the frmMain form (the switchboard) with the cursor on the line that executes the DoCmd.
Close command to close the form. This line calls the Access built-in Close command (the
<Non-Basic Code> you see in the call stack list), which in turn triggered the Close event
procedure for the form. It’s the Close event procedure code that sets the gintDontShow-
ContactList variable back to False (0). Be sure that the Call Stack dialog box is closed and
click Continue on the toolbar to let the code finish running.

Note
Be sure to delete the watch after you are finished seeing how it works by right-clicking

it in the Watch window and clicking Delete on the shortcut menu.

Variables and Constants

In addition to using Visual Basic code to work with the controls on any open forms or
reports (as you can with user interface macros), you can declare and use named variables
in Visual Basic code for storing values temporarily, calculating a result, or manipulating any
of the objects in your database. To create a value available anywhere in your code, you can
define a global variable, as you can find in the modGlobals module in the Conrad Systems
Contacts sample database.

Another way to store data in Visual Basic is with a constant. A constant is a data object
with a fixed value that you cannot change while your application is running. You’ve already
encountered some of the built-in constants in Access 2010—Null, True, and False. Visual
Basic also has a large number of intrinsic constants—built-in constants that have meaning-
ful names—that you can use to test for data types and other attributes or that you can use
as fixed arguments in functions and expressions. You can view the list of intrinsic constants
by searching for the Visual Basic Constants topic in Help. You can also declare your own
constant values to use in code that you write.

In the following sections, you’ll learn about using variables to store and calculate data and
to work with database objects.

	 Variables and Constants	 1475

C
h

ap
te

r
24

Data Types

Visual Basic supports data types for variables and constants that are similar to the data
types you use to define fields in tables. It also allows you to define a variable that is a
pointer to an object (such as a form or a recordset). The data types are described in Table
24-1.

Table 24-1  Visual Basic Data Types

Data Type Size Data-Typing
Character

Can Contain

Boolean 2 bytes (none) True (–1) or False (0)

Byte 1 byte (none) Binary data ranging in value from 0 through
255

Integer 2 bytes % Integers from –32,768 through 32,767

Long 4 bytes & Integers from –2,147,483,648 through
2,147,483,647

LongLong 8 bytes ^ –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 (Valid on 64-bit
platforms only.)

LongPtr 4 bytes on
32-bit systems
and 8 bytes on
64-bit systems

(none) –2,147,483,648 to 2,147,483,647 on 32-bit
systems
–9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 on 64-bit systems

Single 4 bytes ! Floating-point (imprecise) numbers from
approximately –3.4 × 1038 through 3.4 × 1038

Double 8 bytes # Floating-point (imprecise) numbers from
approximately –1.79 × 10308 through 1.79 ×
10308

Currency 8 bytes @ A scaled integer with four decimal places
from –922,337,203,685,477.5808 through
922,337,203,685,477.5807

Decimal 14 bytes (none) A precise number with up to 29 digits and up
to 28 decimal places from –79.228 × 1027 to
79.228 × 1027 (Visual Basic in Access supports
the Decimal data type only as a type within
the Variant data type.)

String 10 bytes plus
2 bytes per
character

$ Any text or binary string up to approximately
2 billion bytes in length, including text,
hyperlinks, memo data, and “chunks” from an
ActiveX object; a fixed-length string can be
up to 65,400 characters long

C
h

ap
ter 24

1476	 Chapter 24  Understanding Visual Basic Fundamentals

Data Type Size Data-Typing
Character

Can Contain

Date 8 bytes (none) Date/time values ranging from January 1,
100, to December 31, 9999

Object 4 bytes (none) A pointer to an object—you can also define
a variable that contains a specific type of
object, such as the Database object

Variant 16 bytes
through
approximately 2
billion bytes

(none) Any data, including Empty, Null, and date/
time data (Use the VarType function to deter-
mine the current data type of the data in the
variable. A Variant can also contain an array
of Variants. Use the andto determine whether
a Variant is an array.)

User-
defined

Depends on
elements
defined

(none) Any number of variables of any of the above
data types

You can implicitly define the data type of a variable by appending a data-typing character,
as noted in Table 24-1, the first time you use the variable. For example, a variable named
MyInt% is an integer variable. If you do not explicitly declare a data variable that you refer-
ence in your code and do not supply a data-typing character, Visual Basic assigns the Vari-
ant data type to the variable. (See “Declaring Constants and Variables,” on page 1479, to learn
how to explicitly declare data variables.) Note that although the Variant data type is the
most flexible (and, in fact, is the data type for all controls on forms and reports), it is also
the least efficient because Visual Basic must do extra work to determine the current data
type of the data in the variable before working with it in your code. Variant is also the only
data type that can contain the Null value.

The Object data type lets you define variables that can contain a pointer to an object. See
“Collections, Objects, Properties, and Methods,” on page 1494, for details about objects that you
can work with in Visual Basic. You can declare a variable as the generic Object data type,
or you can specify that a variable contains a specific type of object. The major object types
are AccessObject, Application, Catalog, Column, Command, Connection, Container, Control,
Database, Document, Error, Field, Form, Group, Index, Key, Parameter, Procedure, Property,
QueryDef, Recordset, Relation, Report, Table, TableDef, User, View, and Workspace.

	 Variables and Constants	 1477

C
h

ap
te

r
24

INSIDE OUT  Using Option Explicit Is a Good Idea

You can request that Visual Basic generate all new modules with an Option Explicit

statement by selecting the Require Variable Declaration check box on the Editor tab

of the Options dialog box, as shown in Figure 24-3. If you set this option, Visual Basic

includes an Option Explicit statement in the Declarations section of every new module.

This helps you avoid errors that can occur when you use a variable in your code that

you haven’t properly declared in a Dim, Public, Static, or Type statement or as part of

the parameter list in a Function statement or a Sub statement. (See “Functions and Sub-

routines,” on page 1525.) When you specify this option in a module, Visual Basic flags any

undeclared variables it finds when you ask it to compile your code. Using an Option

Explicit statement helps you find variables that you might have misspelled when you

entered your code.

Variable and Constant Scope

The scope of a variable or a constant determines whether the variable or the constant is
known to only one procedure, all procedures in a module, or all procedures in your data-
base. You can create variables or constants that can be used by any procedure in your
database (public scope). You can also create variables or constants that apply only to the
procedures in a module or only to a single procedure (private scope). A variable declared
inside a procedure is always private to that procedure (available only within the procedure).
A variable declared in the Declarations section of a module can be private (available only
to the procedures in the module) or public. You can pass values from one procedure to
another using a parameter list, but the values might be held in variables having different
names in the two procedures. See the sections on the Function, Sub, and Call statements
later in this chapter.

To declare a public variable, use the Public statement in the Declarations section of a stan-
dard module or a class module. All modules attached to forms or reports are class modules.
To declare a public constant, use the Public keyword with a Const statement in the Declara-
tions section of a standard module. You cannot declare a public constant in a class module.
To declare a variable or a constant that all procedures in a module can reference, define
that variable or constant in the Declarations section of the module. (A variable defined in
a Declarations section is private to the module unless you use the Public statement.) To
declare a variable or a constant used only in a particular procedure, define that variable or
constant as part of the procedure.

C
h

ap
ter 24

1478	 Chapter 24  Understanding Visual Basic Fundamentals

Visual Basic in Access 2010 allows you to use the same name for variables or constants in
different module objects or at different levels of scope. In addition, you can declare con-
stants and public variables in form and report modules as well as public variables and con-
stants in standard modules. (You can declare a constant in a form or report module, but it
cannot be public.)

To use the same name for public variables and constants in different module objects or
form or report modules, specify the name of the module to which it belongs when you
refer to it. For example, you can declare a public variable named intX in a module object
with the name modMyModule and then declare another public variable named intX in a
second module object, named modMyOtherModule. If you want to reference the intX vari-
able in modMyModule from a procedure in modMyOtherModule (or any module other
than modMyModule), you must use the following code:

modMyModule.intX

You can also declare variables or constants with the same name at different levels of scope
within a module object or a form or report module. For example, you can declare a public
variable named intX and then declare a local variable named intX within a procedure. (You
can’t declare a public variable within a procedure.) References to intX within the procedure
refer to the local variable, while references to intX outside the procedure refer to the public
variable. To refer to the public variable from within the procedure, qualify it with the name
of the module, just as you would refer to a public variable from within a different module.

Declaring a public variable in a form or report module can be useful for variables that are
logically associated with a particular form or report but that you might also want to use
elsewhere. Like the looser naming restrictions, however, this feature can sometimes create
confusion. In general, it’s still a good idea to keep common public variables and constants
in standard modules and to give public variables and constants names that are unique
across all variable names in your application.

Note
For information on the syntax conventions used in the remainder of this chapter, refer

to “Syntax Conventions,” in the “Conventions Used in This Book” section at the begin-

ning of this book.

	 Declaring Constants and Variables	 1479

C
h

ap
te

r
24

Declaring Constants and Variables

The following sections show the syntax of the statements you can use to define constants
and variables in your modules and procedures.

Const Statement

Use a Const statement to define a constant.

Syntax

[Public | Private] Const {constantname [As datatype]

 = <const expression>},...

Notes

Include the Public keyword in the Declarations section of a standard module to define a
constant that is available to all procedures in all modules in your database. Include the
Private keyword to declare constants that are available only within the module where the
declaration is made. Constants are private by default, and a constant defined within a pro-
cedure is always private. You cannot define a Public constant in a class module. (All con-
stants in a class module are private.)

Valid datatype entries can be Byte, Boolean, Integer, Long, Currency, Single, Double, Date,
String, or Variant. You cannot declare a constant as an object. Use a separate As datatype
clause for each constant being declared. If you don’t declare a type, Visual Basic assigns the
data type that is most appropriate for the expression provided. (You should always explicitly
declare the data type of your constants.)

The <const expression> item cannot include variables, user-defined functions, or Visual
Basic built-in functions (such as Chr). You can include simple literals and other previously
defined constants.

Example

To define the constant PI to be available to all procedures in all modules, enter the follow-
ing in the Declarations section of any standard module:

Public Const PI As Double = 3.14159

C
h

ap
ter 24

1480	 Chapter 24  Understanding Visual Basic Fundamentals

INSIDE OUT  Use Variable Naming Conventions

It’s a good idea to give all variable names you create a prefix notation that indicates

the data type of the variable, particularly if you create complex procedures. This helps

ensure that you aren’t attempting to assign or calculate incompatible data types. (For

example, the names will make it obvious that you’re creating a potential error if you

try to assign the contents of a long integer variable to an integer variable.) It also helps

ensure that you pass variables of the correct data type to procedures. Finally, includ-

ing a prefix helps ensure that you do not create a variable name that is the same as an

Access or Visual Basic reserved word. The following table suggests data type prefixes

that you can use for many of the most common data types.

Data Type Prefix Data Type Prefix

Boolean bol Document doc

Byte byt Field fld

Currency cur Form frm

Double dbl Index idx

Integer int Key key

Long lng Parameter prm

Single sgl Procedure prc

String str Property prp

User-defined (using the Type statement) usr QueryDef qdf

Variant var Recordset rst

Catalog cat Report rpt

Column col Table tbl

Command cmd TableDef tbl

Connection cn View vew

Control ctl Workspace wks

Database db

Dim Statement

Use a Dim statement in the Declarations section of a module to declare a variable or a vari-
able array that can be used in all procedures in the module. Use a Dim statement within a
procedure to declare a variable used only in that procedure.

	 Declaring Constants and Variables	 1481

C
h

ap
te

r
24

Syntax

Dim {[WithEvents] variablename

 [([<array dimension>],...)] [As [New]

 datatype]},...

where <array dimension> is

[lowerbound To] upperbound

Notes

If you do not include an <array dimension> specification but you do include the parenthe-
ses, you must include a ReDim statement in eac procedure that uses the array to dynami-
cally allocate the array at run time. You can define an array with as many as 60 dimensions.
If you do not include a lowerbound value in an <array dimension> specification, the default
lower bound is 0. You can reset the default lower bound to 1 by including an Option Base 1
statement in the module Declarations section. The lowerbound and upperbound values must
be integers, and upperbound must be greater than or equal to lowerbound. The number of
members of an array is limited only by the amount of memory on your computer.

Valid datatype entries are Byte, Boolean, Integer, Long, Currency, Single, Double, Date,
String (for variable-length strings), String * length (for fixed-length strings), Object, Variant,
or one of the object types described earlier in this chapter. You can also declare a user-
defined variable structure using the Type statement and then use the user type name as a
data type. You should always explicitly declare the data type of your variables. If you do not
include the As datatype clause, Visual Basic assigns the Variant data type.

Use the New keyword to indicate that a declared object variable is a new instance of an
object that doesn’t have to be set before you use it. You can use the New keyword only
with object variables to create a new instance of that class of object without requiring a Set
statement. You can’t use New to declare dependent objects. If you do not use the New key-
word, you cannot reference the object or any of its properties or methods until you set the
variable to an object using a Set statement.

Use the WithEvents keyword to indicate an object variable within a class module that
responds to events triggered by an ActiveX object. Form and report modules that respond
to events on the related form and report objects are class modules. You can also define cus-
tom class modules to create custom objects. If you use the WithEvents keyword, you cannot
use the New keyword.

C
h

ap
ter 24

1482	 Chapter 24  Understanding Visual Basic Fundamentals

Visual Basic initializes declared variables at compile time. Numeric variables are initialized
to zero (0), variant variables are initialized to empty, variable-length string variables are
initialized as zero-length strings, and fixed-length string variables are filled with American
National Standards Institute (ANSI) zeros (Chr(0)). If you use a Dim statement within a pro-
cedure to declare variables, Visual Basic reinitializes the variables each time you run the
procedure.

Examples

To declare a variable named intMyInteger as an integer, enter the following:

Dim intMyInteger As Integer

To declare a variable named dbMyDatabase as a database object, enter the following:

Dim dbMyDatabase As Database

To declare an array named strMyString that contains fixed-length strings that are 20 charac-
ters long and contains 50 entries from 51 through 100, enter the following:

Dim strMyString(51 To 100) As String * 20

To declare a database variable, a new table variable, and two new field variables for the
table; set up the objects; and append the new table to the Tabledefs collection, enter the
following:

Public Sub NewTableExample()

 Dim db As DAO.Database

 Dim tdf As New DAO.TableDef, _

 fld1 As New DAO.Field, _

 fld2 As New DAO.Field

 ' Initialize the table name

 tdf.Name = "MyTable"

 ' Set the name of the first field

 fld1.Name = "MyField1"

 ' Set its data type

 fld1.Type = dbLong

 ' Append the first field to the Fields

 ' collection of the table

 tdf.Fields.Append fld1

 ' Set up the second field

 fld2.Name = "MyField2"

 fld2.Type = dbText

 fld2.Size = 20

 ' Append the second field to the table

	 Declaring Constants and Variables	 1483

C
h

ap
te

r
24

 tdf.Fields.Append fld2

 ' Establish an object on the current database

 Set db = CurrentDb

 ' Create a new table by appending tdf to

 ' the Tabledefs collection of the database

 db.TableDefs.Append tdf

End Sub

See “Collections, Objects, Properties, and Methods,” on page 1494, for details about working with
DAO objects. See “Functions and Subroutines,” on page 1525, for details about the Sub statement.

To declare an object variable to respond to events in another class module, enter the
following:

Option Explicit

Dim WithEvents objOtherClass As MyClass

Sub LoadClass ()

 Set objOtherClass = New MyClass

End Sub

Sub objOtherClass_Signal(ByVal strMsg As string)

 MsgBox "MyClass Signal event sent this " & _

 "message: " & strMsg

End Sub

In class module MyClass, enter the following:

Option Explicit

Public Event Signal(ByVal strMsg As String)

Public Sub RaiseSignal(ByVal strText As String)

 RaiseEvent Signal(strText)

End Sub

In any other module, execute the following statement:

 MyClass.RaiseSignal "Hello"

Enum Statement

Use an Enum statement in a module Declarations section to assign long integer values to
named members of an enumeration. You can use an enumeration name as a restricted
Long data type.

C
h

ap
ter 24

1484	 Chapter 24  Understanding Visual Basic Fundamentals

Syntax

[Public | Private] Enum enumerationname

 <member> [= <long integer expression>]

 ...

End Enum

Notes

Enumerations are constant values that you cannot change when your code is running.
Include the Public keyword to define an enumeration that is available to all procedures in
all modules in your database. Include the Private keyword to declare an enumeration that
is available only within the module where the declaration is made. Enumerations are public
by default.

You must declare at least one member within an enumeration. If you do not provide
a <long integer expression> assignment, Visual Basic adds 1 to the previous value or
assigns 0 if the member is the first member of the enumeration. The <long integer expres-
sion> cannot include variables, user-defined functions, or Visual Basic built-in functions
(such as CLng). You can include simple literals and other previously defined constants or
enumerations.

Enumerations are most useful as a replacement for the Long data type in a Function or
Sub statement. When you call the function or sub procedure in code, you can use one of
the enumeration names in place of a variable, constant, or literal. If you select the Auto List
Members option (see Figure 24-3), Visual Basic displays the available names in a drop-down
list as you type the sub or function call in your code.

Example

To declare a public enumeration for days of the week and use the enumeration in a proce-
dure, enter the following:

Option Explicit

Public Enum DaysOfWeek

 Sunday = 1

 Monday

 Tuesday

 Wednesday

 Thursday

 Friday

 Saturday

End Enum

	 Declaring Constants and Variables	 1485

C
h

ap
te

r
24

Public Function NextDate(lngDay As DaysOfWeek) As Date

' This function returns the next date

' that matches the day of week requested

Dim intThisDay As Integer, datDate As Date

 ' Get today

 datDate = Date

 ' Figure out today's day of week

 intThisDay = WeekDay(datDate)

 ' Calculate next day depending on

 ' whether date requested is higher or lower

 If intThisDay < lngDay Then

 NextDate = datDate + (lngDay – intThisDay)

 Else

 NextDate = datDate + (lngDay + 7) – intThisDay

 End If

End Function

You can test the function from the Immediate window by entering the following:

?NextDate(Monday)

Event Statement

Use the Event statement in the Declarations section of a class module to declare an event
that can be raised within the module. In another module, you can define an object vari-
able using the WithEvents keyword, set the variable to an instance of this class module, and
then code procedures that respond to the events declared and triggered within this class
module.

Syntax

[Public] Event eventname ([<arguments>])

where <arguments> is

{[ByVal | ByRef] argumentname [As datatype]},...

Notes

An Event must be public, which makes the event available to all other procedures in all
modules. If you want, you can include the Public keyword when coding this statement.

You should declare the data type of any arguments in the event’s argument list. Note that
the names of the variables passed by the triggering procedure can be different from the
names of the variables known by this event. If you use the ByVal keyword to declare an

C
h

ap
ter 24

1486	 Chapter 24  Understanding Visual Basic Fundamentals

argument, Visual Basic passes a copy of the argument to your event. Any change you make
to a ByVal argument does not change the original variable in the triggering procedure. If
you use the ByRef keyword, Visual Basic passes the actual memory address of the variable,
allowing the event to change the variable’s value in the triggering procedure. (If the argu-
ment passed by the triggering procedure is an expression, Visual Basic treats it as if you had
declared it by using ByVal.) Visual Basic always passes arrays by reference (ByRef).

Example

To declare an event that can be triggered from other modules, enter the following in the
class module MyClass:

Option Explicit

Public Event Signal(ByVal strMsg As String)

Public Sub RaiseSignal(ByVal strText As String)

 RaiseEvent Signal(strText)

End Sub

To respond to the event from another module, enter the following:

Option Explicit

Dim WithEvents objOtherClass As MyClass

Sub LoadClass ()

 Set objOtherClass = New MyClass

End Sub

Sub objOtherClass_Signal(ByVal strMsg As string)

 MsgBox "MyClass Signal event sent this " & _

 "message: " & strMsg

End Sub

To trigger the event in any other module, execute the following:

 MyClass.RaiseSignal "Hello"

Private Statement

Use a Private statement in the Declarations section of a standard module or a class module
to declare variables that you can use in any procedure within the module. Procedures in
other modules cannot reference these variables.

	 Declaring Constants and Variables	 1487

C
h

ap
te

r
24

Syntax

Private {[WithEvents] variablename

 [([<array dimension>],...)]

 [As [New] datatype]},...

where <array dimension> is

[lowerbound To] upperbound

Notes

If you do not include an <array dimension> specification but you do include the parenthe-
ses, you must include a ReDim statement in each procedure that uses the array to dynami-
cally allocate the array at run time. You can define an array with up to 60 dimensions. If you
do not include a lowerbound value in an <array dimension> specification, the default lower
bound is 0. You can reset the default lower bound to 1 by including an Option Base 1 state-
ment in the module Declarations section. The lowerbound and upperbound values must be
integers, and upperbound must be greater than or equal to lowerbound. The number of
members of an array is limited only by the amount of memory on your computer.

Valid datatype entries are Byte, Boolean, Integer, Long, Currency, Single, Double, Date,
String (for variable-length strings), String * length (for fixed-length strings), Object, Variant,
or one of the object types described earlier in this chapter. You can also declare a user-
defined variable structure using the Type statement and then use the user type name as a
data type. You should always explicitly declare the data type of your variables. If you do not
include the As datatype clause, Visual Basic assigns the Variant data type.

Use the New keyword to indicate that a declared object variable is a new instance of an
object that doesn’t have to be set before you use it. You can use the New keyword only
with object variables to create a new instance of that class of object without requiring a Set
statement. You can’t use New to declare dependent objects. If you do not use the New key-
word, you cannot reference the object or any of its properties or methods until you set the
variable to an object using a Set statement.

Use the WithEvents keyword to indicate an object variable within a class module that
responds to events triggered by an ActiveX object. Form and report modules that respond
to events on the related form and report objects are class modules. You can also define cus-
tom class modules to create custom objects. If you use the WithEvents keyword, you cannot
use the New keyword.

C
h

ap
ter 24

1488	 Chapter 24  Understanding Visual Basic Fundamentals

Visual Basic initializes declared variables at compile time. Numeric variables are initialized
to zero (0), variant variables are initialized to empty, variable-length string variables are
initialized as zero-length strings, and fixed-length string variables are filled with ANSI zeros
(Chr(0)).

Example

To declare a long variable named lngMyNumber that can be used in any procedure within
this module, enter the following:

Private lngMyNumber As Long

Public Statement

Use a Public statement in the Declarations section of a standard module or a class module
to declare variables that you can use in any procedure anywhere in your database.

Syntax

Public {[WithEvents] variablename

 [([<array dimension>],...)]

 [As [New] datatype]},...

where <array dimension> is

[lowerbound To] upperbound

Notes

If you do not include an <array dimension> specification but you do include the parenthe-
ses, you must include a ReDim statement in each procedure that uses the array to dynami-
cally allocate the array at run time. You can define an array with up to 60 dimensions. If you
do not include a lowerbound value in an <array dimension> specification, the default lower
bound is 0. You can reset the default lower bound to 1 by including an Option Base 1 state-
ment in the module Declarations section. The lowerbound and upperbound values must be
integers, and upperbound must be greater than or equal to lowerbound. The number of
members of an array is limited only by the amount of memory on your computer.

Valid datatype entries are Byte, Boolean, Integer, Long, Currency, Single, Double, Date,
String (for variable-length strings), String * length (for fixed-length strings), Object, Variant,
or one of the object types described earlier in this chapter. Note, however, that you can-
not declare a Public fixed-length string within a class module. You can also declare a user-
defined variable structure using the Type statement and then use the user type name as a
data type. You should always explicitly declare the data type of your variables. If you do not
include the As datatype clause, Visual Basic assigns the Variant data type.

	 Declaring Constants and Variables	 1489

C
h

ap
te

r
24

Use the New keyword to indicate that a declared object variable is a new instance of an
object that doesn’t have to be set before you use it. You can use the New keyword only
with object variables to create a new instance of that class of object without requiring a Set
statement. You can’t use New to declare dependent objects. If you do not use the New key-
word, you cannot reference the object or any of its properties or methods until you set the
variable to an object using a Set statement.

Use the WithEvents keyword to indicate an object variable within a class module that
responds to events triggered by an ActiveX object. Form and report modules that respond
to events on the related form and report objects are class modules. You can also define cus-
tom class modules to create custom objects. If you use the WithEvents keyword, you cannot
use the New keyword.

Visual Basic initializes declared variables at compile time. Numeric variables are initialized
to zero (0), variant variables are initialized to empty, variable-length string variables are
initialized as zero-length strings, and fixed-length string variables are filled with ANSI zeros
(Chr(0)).

Example

To declare a long variable named lngMyNumber that can be used in any procedure in the
database, enter the following:

Public lngMyNumber As Long

ReDim Statement

Use a ReDim statement to dynamically declare an array within a procedure or to redimen-
sion a declared array within a procedure at run time.

Syntax

ReDim [Preserve] {variablename

 (<array dimension>,...) [As datatype]},...

where <array dimension> is

[lowerbound To] upperbound

Notes

If you’re dynamically allocating an array that you previously defined with no <array dimen-
sion> specification in a Dim, Public, or Private statement, your array can have up to 60
dimensions. You cannot dynamically reallocate an array that you previously defined with

C
h

ap
ter 24

1490	 Chapter 24  Understanding Visual Basic Fundamentals

an <array dimension> specification in a Dim, Public, or Private statement. If you declare
the array only within a procedure, your array can have up to 60 dimensions. If you do not
include a lowerbound value in an <array dimension> specification, the default lower bound
is 0. You can reset the default lower bound to 1 by including an Option Base 1 statement in
the module Declarations section. The lowerbound and upperbound values must be integers,
and upperbound must be greater than or equal to lowerbound. The number of members
of an array is limited only by the amount of memory on your computer. If you previously
specified dimensions in a Public, Private, or Dim statement or in another ReDim statement
within the same procedure, you cannot change the number of dimensions.

Include the Preserve keyword to ask Visual Basic not to reinitialize existing values in the
array. When you use Preserve, you can change the bounds of only the last dimension in the
array.

Valid datatype entries are Byte, Boolean, Integer, Long, Currency, Single, Double, Date,
String (for variable-length strings), String * length (for fixed-length strings), Object, Variant,
or one of the object types described earlier in this chapter. You can also declare a user-
defined variable structure using the Type statement and then use the user type name as
a data type. You should always explicitly declare the data type of your variables. If you do
not include the As datatype clause, Visual Basic assigns the Variant data type. You cannot
change the data type of an array that you previously declared with a Dim, Public, or Private
statement. After you establish the number of dimensions for an array that has module or
global scope, you cannot change the number of its dimensions using a ReDim statement.

Visual Basic initializes declared variables at compile time. Numeric variables are initial-
ized to zero (0), variant variables are initialized to empty, variable-length string variables
are initialized as zero-length strings, and fixed-length string variables are filled with ANSI
zeros (Chr(0)). When you use the Preserve keyword, Visual Basic initializes only additional
variables in the array. If you use a ReDim statement within a procedure to both declare and
allocate an array (and you have not previously defined the array with a Dim, Public, or Pri-
vate statement), Visual Basic reinitializes the array each time you run the procedure.

Example

To dynamically allocate an array named strProductNames that contains 20 strings, each
with a fixed length of 25, enter the following:

ReDim strProductNames(20) As String * 25

	 Declaring Constants and Variables	 1491

C
h

ap
te

r
24

Static Statement

Use a Static statement within a procedure to declare a variable used only in that procedure
and that Visual Basic does not reinitialize while the module containing the procedure is
open. Visual Basic opens all standard and class modules (objects you can see in the Mod-
ules list in the Navigation pane) when you open the database containing those objects.
Visual Basic keeps form or report class modules open only while the form or the report is
open.

Syntax

Static {variablename [({<array dimension>},...)]

 [As [New] datatype]},...

where <array dimension> is

[lowerbound To] upperbound

Notes

If you do not include an <array dimension> specification but you do include the parenthe-
ses, you must include a ReDim statement in each procedure that uses the array to dynami-
cally allocate the array at run time. You can define an array with up to 60 dimensions. If you
do not include a lowerbound value in an <array dimension> specification, the default lower
bound is 0. You can reset the default lower bound to 1 by including an Option Base 1 state-
ment in the module Declarations section. The lowerbound and upperbound values must be
integers, and upperbound must be greater than or equal to lowerbound. The number of
members of an array is limited only by the amount of memory on your computer.

Valid datatype entries are Byte, Boolean, Integer, Long, Currency, Single, Double, Date,
String (for variable-length strings), String * length (for fixed-length strings), Object, Variant,
or one of the object types described in this chapter. You can also declare a user-defined
variable structure using the Type statement and then use the user type name as a data type.
You should always explicitly declare the data type of your variables. If you do not include
the As datatype clause, Visual Basic assigns the Variant data type.

Use the New keyword to indicate that a declared object variable is a new instance of an
object that doesn’t have to be set before you use it. You can use the New keyword only
with object variables to create a new instance of that class of object without requiring a Set
statement. You can’t use New to declare dependent objects. If you do not use the New key-
word, you cannot reference the object or any of its properties or methods until you set the
variable to an object using a Set statement.

C
h

ap
ter 24

1492	 Chapter 24  Understanding Visual Basic Fundamentals

Visual Basic initializes declared variables at compile time. Numeric variables are initialized
to zero (0), variant variables are initialized to empty, variable-length string variables are
initialized as zero-length strings, and fixed-length string variables are filled with ANSI zeros
(Chr(0)).

Examples

To declare a static variable named intMyInteger as an integer, enter the following:

Static intMyInteger As Integer

To declare a static array named strMyString that contains fixed-length strings that are 20
characters long and contains 50 entries from 51 through 100, enter the following:

Static strMyString(51 To 100) As String * 20

Type Statement

Use a Type statement in a Declarations section to create a user-defined data structure con-
taining one or more variables.

Syntax

[Public | Private] Type typename

 {variablename [({<array dimension>},...)]

 As datatype}

 ...

End Type

where <array dimension> is

[lowerbound To] upperbound

Notes

A Type statement is most useful for declaring sets of variables that can be passed to pro-
cedures, including Windows application programming interface (API) functions, as a single
variable. You can also use the Type statement to declare a record structure. After you
declare a user-defined data structure, you can use typename in any subsequent Dim, Public,
Private, or Static statement to create a variable of that type. You can reference variables in a
user-defined data structure variable by entering the variable name, a period, and the name
of the variable within the structure. (See the second part of the example that follows.)

	 Declaring Constants and Variables	 1493

C
h

ap
te

r
24

Include the Public keyword to declare a user-defined type that is available to all procedures
in all modules in your database. Include the Private keyword to declare a user-defined type
that is available only within the module in which the declaration is made. You must enter
each variablename entry on a new line. You must indicate the end of your user-defined
data structure using an End Type statement.

Valid datatype entries are Byte, Boolean, Integer, Long, Currency, Single, Double, Date,
String (for variable-length strings), String * length (for fixed-length strings), Object, Variant,
or one of the object types described earlier in this chapter. You can also declare a user-
defined variable structure using the Type statement and then use the user type name as a
data type. You should always explicitly declare the data type of your variables. If you do not
include the As datatype clause, Visual Basic assigns the Variant data type.

If you do not include an <array dimension> specification but you do include the parenthe-
ses, you must include a ReDim statement in each procedure that uses the array to dynami-
cally allocate the array at run time in any variable that you declare as this Type. You can
define an array with as many as 60 dimensions. If you do not include a lowerbound value in
an <array dimension> specification, the default lower bound is 0. You can reset the default
lower bound to 1 by including an Option Base 1 statement in the module Declarations sec-
tion. The lowerbound and upperbound values must be integers, and upperbound must be
greater than or equal to lowerbound. The number of members of an array is limited only by
the amount of memory on your computer.

Note that a Type declaration does not reserve any memory. Visual Basic allocates the mem-
ory required by the Type statement when you use typename as a data type in a Dim, Public,
Private, or Static statement.

Example

To define a user type structure named MyRecord containing a long integer and three string
fields, declare a variable named usrContacts using that user type, and then set the first
string to “Jones”, first enter the following:

Type MyRecord

 lngID As Long

 strLast As String

 strFirst As String

 strMid As String

End Type

Then, within a procedure, enter the following:

Dim usrContacts As MyRecord

usrContacts.strLast = "Jones"

C
h

ap
ter 24

1494	 Chapter 24  Understanding Visual Basic Fundamentals

Collections, Objects, Properties, and Methods

You’ve already dealt with two of the main collections supported by Access 2010—Forms
and Reports. The Forms collection contains all the form objects that are open in your appli-
cation, and the Reports collection contains all the open report objects.

As you’ll learn in more detail later in this section, collections, objects, properties, and
methods are organized in several object model hierarchies. An object has properties, which
describe the object, and methods, which are actions that you can ask the object to execute.
For example, a Form object has a Name property (the name of the form) and a Requery
method (to ask the form to requery its record source). Many objects also have collections
that define sets of other objects within the object. For example, a Form object has a Con-
trols collection, which is the set of all control objects (text boxes, labels, and so on) defined
on the form.

You don’t need a thorough understanding of collections, objects, properties, and methods
to perform most application tasks. It’s useful, however, for you to know how Access and
Visual Basic organize these items so that you can better understand how Access works. If
you want to study advanced code examples available in the many sample databases that
you can download from public forums, you’ll need to understand collections, objects, prop-
erties, and methods and how to correctly reference them.

The Access Application Architecture

An Access 2010 desktop application (.accdb or .mdb) has two major components—the
application engine, which controls the programming and the user interface, and the Access
Database Engine (DBEngine), which controls the storage of data and the definition of all the
objects in your database. An Access project (.adp) also uses the application engine, but it
depends on its Connection object to define a link to the Microsoft SQL Server database that
contains the tables, views, functions, and stored procedures used by the application.

As you’ll see in the next section, Visual Basic supports two distinct object models (Data
Access Objects–DAO, and ActiveX Data Objects–ADO) for manipulating objects stored by
the database engine. Figure 24-12 shows the application architecture of Access.

	 Collections, Objects, Properties, and Methods	 1495

C
h

ap
te

r
24

Figure 24-12  You can explore objects in the Access application architecture from the Application object.

C
h

ap
ter 24

1496	 Chapter 24  Understanding Visual Basic Fundamentals

When you open a database, the application engine loads the appropriate object collec-
tions from the database and application files to enable it to list the names of all the tables,
queries, views, database diagrams, stored procedures, forms, reports, macros, and modules
to display in the Navigation pane. The application engine establishes the top-level Applica-
tion object, which contains a Forms collection (all the open forms), a Reports collection
(all the open reports), a Modules collection (all the open modules, including form and
report modules), and a References collection (all Visual Basic library references). Each
form and report, in turn, contains a Controls collection (all of the controls on the form or
report). Among some of the more interesting properties of the Application object is the
ADOConnectString property that contains the information you can use to connect to this
database from another database.

Note
For backward compatibility with earlier versions and database files in the .mdb format,

the Access object architecture continues to support obsolete collections, objects, and

properties. For example, the Application object continues to support a CommandBars

collection to allow you to manipulate any custom menus or toolbars that might have

been defined using Access 2003 or earlier.

The Application object also contains two special objects, the Screen object and the DoCmd
object. The Screen object has six very useful properties: ActiveForm, ActiveReport, Active-
Datasheet, ActiveControl, PreviousControl, and MousePointer. Without knowing the actual
names, you can reference the control (if any) that currently has the focus, the datasheet
(if any) that has the focus, the form (if any) that has the focus, the report (if any) that
has the focus, or the name of the control that previously had the focus. You can use the
MousePointer property to examine the current status of the mouse pointer (arrow, I-beam,
hourglass, and so on) and set the pointer. (Additional details about referencing properties
of objects appear later in this chapter.) The DoCmd object lets you execute most macro
actions within Visual Basic. For more information, see “Running Macro Actions and Menu
Commands,” on page 1549. If your application is an Access desktop database (.accdb), the
DBEngine object under the Application object connects you to the Access Database Engine
(ACE) to manipulate its objects using the DAO model.

	 Collections, Objects, Properties, and Methods	 1497

C
h

ap
te

r
24

Two properties allow you to directly find out the names of all objects stored in your data-
base without having to call the database engine. In an Access desktop database (.accdb),
you can find out the names of all your tables and queries via the CurrentData property. In
an Access project file (.adp) that is connected to SQL Server, you also can learn the names
of database diagrams, stored procedures, functions, and views via this same property. In
either type of Access file, you can discover the names of all your forms, reports, macros, and
modules via the CurrentProject property. Finally, the FullName property of the CurrentPro-
ject object tells you the full path and file name of your application file, and the Name prop-
erty tells you the file name only.

The DAO Architecture

The first (and older) of the two models you can use to fetch data and examine or create
new data objects is the DAO model. This model is best suited for use within Access desktop
applications (.accdb and .mdb) because it provides objects, methods, and properties specifi-
cally tailored to the way Access and the ACE work together. To use this model, you must ask
Visual Basic to load a reference to the Microsoft Office 14.0 Access Database Engine Object
Library. To verify that your project includes this reference, open any module in Design
view and click References on the Tools menu. If you don’t see the check box for this library
selected at the top of the References dialog box, scroll down the alphabetical list until you
find the library, select its check box, and click OK to add the reference. Access 2010 creates
this reference for you in any new database that you create.

INSIDE OUT  Is the Rumor That “DAO Is Dead” Really True?

Absolutely not! First, you need to know a bit of history. Beginning with version 9

(Access 2000), the Access development team introduced ADO to make it easier to

work with SQL Server or other server databases as the data store for Access applica-

tions. ADO was touted as the “new direction” for data engine object models because

it was designed to be more generic to work with different databases. Access 2000 also

introduced the project file format (.adp) that lets you create an Access application

linked directly to a database in SQL Server. Both Access 2000 and Access XP (2002)

provided a default reference to the ADO library in new database, and you had to add

the DAO library if you wanted to use it. Microsoft also declared DAO “stable” (read: no

new enhancements) and began distributing the Access JET database engine as part of

Microsoft Data Access Components (MDAC) that you install with your operating sys-

tem—Microsoft Windows 98, Windows 2000, Windows XP, Windows Vista, or Windows

7. And so, the developer community began to think that DAO was “dead.”

C
h

ap
ter 24

1498	 Chapter 24  Understanding Visual Basic Fundamentals

But DAO in many cases really works better if you’re building a desktop application.

DAO gives you direct access not only to all your table and query definitions but also

forms, reports, macros, and modules. Also, the record source for all forms and reports

creates a DAO recordset, so it doesn’t make sense to try to use the entirely differ-

ent ADO recordset object in your code. As of Access 2002, you can assign a recordset

object you open in code directly to the Recordset property of a form. But if you’re

using an ADO recordset, features that you expect to work—such as updating across a

join or autolookup when you set a foreign key—don’t work correctly. In short, DAO

was designed to work best with Access desktop applications.

When Microsoft stopped providing DAO as a default reference in new databases, many

in the developer community pointed out to Microsoft that this really wasn’t a good

idea for desktop applications. Microsoft listened to its users and changed the default

library back to DAO in Access 2003. However, the Access development team couldn’t

plan any major enhancements because the JET engine had become part of Windows.

For Access 2007, the development team created its own new version of the JET

engine—now called the ACE. ACE includes the new features to support the Attachment

and the Calculated data types, as well as multi-value fields, and it also supports all the

features of the old JET engine, but uses an enhanced version of DAO. So no, DAO is not

dead—it in a sense has been reborn in the new database engine for Access 2007 and

Access 2010.

The Application object’s DBEngine property serves as a bridge between the application
engine and the Access Database Engine. The DBEngine property represents the DBEngine
object, which is the top-level object in the DAO hierarchy. Figure 24-13 shows you a dia-
gram of the hierarchy of collections defined in the DAO model.

	 Collections, Objects, Properties, and Methods	 1499

C
h

ap
te

r
24

Figure 24-13  The DAO model is specifically designed to manipulate data objects in an Access
desktop database.

The DBEngine object controls all the database objects in your database through a hierarchy
of collections, objects, and properties. When you open an Access database, the DBEngine
object first establishes a Workspaces collection and a default Workspace object (the first
object in the Workspaces collection). If you are opening a secured database created in the
prior version format (.mdb, .mde) and your workgroup is secured, Access prompts you for
a password and a user ID so that the DBEngine can create a User object in the Users col-
lection and a Group object in the Groups collection within the default workspace. If your
workgroup is not secured, the DBEngine signs you in as a default user called Admin.

C
h

ap
ter 24

1500	 Chapter 24  Understanding Visual Basic Fundamentals

Finally, the DBEngine creates a Database object within the Databases collection of the
default Workspace object. If your prior version format file is secured, the DBEngine uses the
current User and/or Group object information to determine whether you’re authorized to
access any of the objects within the database.

After the DBEngine creates a Database object, the application engine determines whether
the database contains any potentially untrustworthy objects. Any database containing
tables, queries, macros, or Visual Basic code is deemed potentially untrustworthy. If the
database is signed with a certificate that you have accepted as trustworthy or the database
resides in a trusted location, the application engine enables all code. If the database is
not trusted, the application engine displays a security warning message and provides the
option to enable the content in the database.

Next, the application engine checks the database’s application options to find out whether
to open a display form, load an application icon, and display a title or to use one or more
of the other application options. You can set these options when you have your database
open by clicking the File tab on the Backstage view, clicking Options, and clicking the Cur-
rent Database category in the Access Options dialog box. After checking the application
options, the application engine checks to see whether a macro group named Autoexec
exists in the database. If it finds Autoexec, the application engine runs this macro. In ver-
sions 1 and 2 of Access, you’d often use the Autoexec macro to open a startup form and
run startup routines. In Access 2010, however, you should use the application options to
specify a display form, and then use the event procedures or embedded macros of the
startup form to run your startup routines.

See Chapter 26, “The Finishing Touches,” on the companion CD, for details on creating startup
properties and custom ribbons.

You can code Visual Basic procedures that can create additional Database objects in the
Databases collection by opening additional .accdb files. Each open Database object has a
Containers collection that the DBEngine uses to store the definition (using the Documents
collection) of all your tables, queries, forms, reports, macros, and modules.

	 Collections, Objects, Properties, and Methods	 1501

C
h

ap
te

r
24

You can use the TableDefs collection to examine and modify existing tables. You can
also create new TableDef objects within this collection. Each TableDef object within the
TableDefs collection has a Fields collection that describes all the fields in the table, and an
Indexes collection (with a Fields collection for each Index object) that describes any indexes
that you created on the table. Likewise, the Relations collection contains Relation objects
that describe how tables are related and what integrity rules apply between tables, and
each Relation object has a Fields collection that describes the fields that participate in the
relation.

The QueryDefs collection contains QueryDef objects that describe all the queries in your
database. You can modify existing queries or create new ones. Each QueryDef object has a
Parameters collection for any parameters required to run the query and a Fields collection
that describes the Fields returned by the query. Finally, the Recordsets collection contains a
Recordset object for each open recordset in your database, and the Fields collection of each
Recordset object tells you the Fields in the recordset.

To reference any object within the DAO model, you can always start with the DBEngine
object. If you want to work in the current database, that Database object is always the first
database in the Databases collection of the first Workspace object. For example:

Dim dbMyDB As DAO.Database

Set dbMyDB = DBEngine.Workspaces(0).Databases(0)

Access also provides a handy shortcut object to the current database called CurrentDb.
Therefore, you can also establish a pointer to the current database as follows:

Set dbMyDB = CurrentDb

Note
In one of the examples at the end of this chapter, you’ll learn how to create a new

TableDef object and then open a Recordset object on the new table to insert rows. You

can find code examples in the Conrad Systems Contacts application that manipulate

objects using both DAO and ADO.

C
h

ap
ter 24

1502	 Chapter 24  Understanding Visual Basic Fundamentals

The ADO Architecture

With Access 2000, Microsoft introduced a more generic set of data engine object models to
provide references not only to objects stored by the ACE but also to data objects stored in
other database products such as SQL Server. These models are called the ADO architecture.
With Access 97 (version 8.0), you could download the Microsoft Data Access Components
from the Microsoft website to be able to use the ADO model. Access 2000 and Access XP
(2002) provided direct support for ADO with built-in libraries and direct references to key
objects in the model from the Access Application object. As noted earlier, Access 2003,
Access 2007, and Access 2010 provide a default reference to the DAO library, not ADO.

Because these models are designed to provide a common set of objects across any data
engine that supports the ADO, they do not necessarily support all the features you can find
in the DAO architecture that was specifically designed for the ACE. For this reason, if you
are designing an application that will always run with the ACE, you are better off using the
DAO model. If, however, you expect that your application might one day “upsize” to an
ActiveX data engine such as SQL Server, you should consider using the ADO architecture as
much as possible. If you create your Access application as an Access project (.adp) linked to
SQL Server, you should use only the ADO models.

Figure 24-14 shows you the two major models available in the ADO architecture. The
basic ActiveX Data Objects (ADODB) model lets you open and manipulate recordsets via
the Recordset object and execute action or parameter queries via the Command object.
The ADO Extensions for DDL and Security (ADOX) model allows you to create, open, and
manipulate tables, views (non-parameter unordered queries), and procedures (action que-
ries, parameter queries, ordered queries, functions, triggers, or procedures) within the data
engine Catalog object (the object that describes the definition of objects in your database).
You can also examine and define Users and Groups collections defined in the Catalog
object with ADOX.

	 Collections, Objects, Properties, and Methods	 1503

C
h

ap
te

r
24

Figure 24-14  The ADODB and ADOX models provide another way to work with the data and objects in your
database.

C
h

ap
ter 24

1504	 Chapter 24  Understanding Visual Basic Fundamentals

To use the ADODB model, you must instruct Visual Basic to load a reference to the Micro-
soft ActiveX Data Objects Library. For objects in the ADOX model, you need the Microsoft
ADO Extensions for DDL and Security Library. (You should normally find only one version
on your computer. If you find multiple versions in the list, select the latest one.) To verify
that your project includes these references, open any module in Design view and click
References on the Tools menu. If you don’t see the check boxes for these libraries selected
at the top of the References dialog box, scroll down the alphabetical list until you find the
library you need, select its check box, and click OK to add the reference. Access 2010 does
not automatically create a reference to the ADODB library for you in any new database that
you create.

Note that there are some objects in common between DAO, ADODB, and ADOX. If you use
multiple models in an application, you must be careful to qualify object declarations. For
example, a Recordset object type in the DAO model is DAO.Recordset, whereas a Recordset
in the ADODB model is ADODB.Recordset. You cannot freely interchange a DAO recordset
with an ADODB recordset—they are completely different objects.

The link to ADODB and ADOX is via the CurrentProject.Connection property. After you
open an ADODB.Connection object, you can work with other collections, objects, and
properties within the ADODB model. Likewise, by establishing an ADOX.Catalog object and
setting its Connection property, you can work with any collection, object, or property within
the ADOX model.

For all objects within either ADODB or ADOX, you must first establish a base object (con-
nection or catalog, respectively). For example:

Dim cn As ADODB.Connection, rst As New ADODB.Recordset

Set cn = CurrentProject.Connection

rst.Open = "tblContacts", cn

or

Dim catThisDB As New ADOX.Catalog, tbl As ADOX.Table

Set catThisDB.ActiveConnection = CurrentProject.Connection

Set tbl = catThisDB.Tables("tblContacts")

Note
One of the extensive examples at the end of this chapter uses ADO exclusively to

manipulate recordsets in the Conrad Systems Contacts sample database.

	 Collections, Objects, Properties, and Methods	 1505

C
h

ap
te

r
24

Referencing Collections, Objects, and Properties

In Chapter 23, “Using Business Connectivity Services,” you were introduced to the most
common way to reference objects in the Forms and Reports collections, controls on open
forms and reports, and properties of controls. There are two alternative ways to reference
an object within a collection. The three ways to reference an object within a collection are
as follows:

●● CollectionName![Object Name]  This is the method you used in Chapter 20,
“Automating a Client Application Using Macros,” and Chapter 21, “Automating a Web
Application Using Macros.” For example: Forms![frmContacts].

●● CollectionName("Object Name")  This method is similar to the first method but
uses a string constant (or a string variable) to supply the object name. For example:
Forms("frmContacts") and Forms(strFormName).

●● CollectionName(RelativeObjectNumber)  Visual Basic numbers objects within
most collections from zero (0) to CollectionName.Count minus 1. You can determine
the number of open forms by referring to the Count property of the Forms collection.
For example: Forms.Count. You can refer to the second open form in the Forms col-
lection as Forms(1).

Forms and Reports are relatively simple because they are top-level collections within the
application engine. As you saw in Figure 24-13, when you reference a collection or an
object maintained by the DBEngine, the hierarchy of collections and objects is quite com-
plex. If you want to find out the number of Workspace objects that exist in the Workspaces
collection, for example, you need to reference the Count property of the Workspaces col-
lection like this:

DBEngine.Workspaces.Count

(You can create additional workspaces from Visual Basic code.)

Using the third technique described earlier to reference an object, you can reference the
default (first) Workspace object by entering the following:

DBEngine.Workspaces(0)

Likewise, you can refer to the currently open database in a desktop application (.accdb) by
entering the following:

DBEngine.Workspaces(0).Databases(0)

C
h

ap
ter 24

1506	 Chapter 24  Understanding Visual Basic Fundamentals

When you want to refer to an object that exists in an object’s default (or only) collection
(see Figures 22-13 and 22-14), you do not need to include the collection name. Therefore,
because the Databases collection is the default collection for the Workspaces collection,
you can also refer to the currently open database by entering the following:

DBEngine.Workspaces(0)(0)

As you can see, even with this shorthand syntax, object names can become quite cumber-
some if you want to refer, for example, to a particular field within an index definition for a
table within the current database in the default Workspace object—or a column within an
index definition for a table within the current catalog. For example, using this full syntax,
you can reference the name of the first field in the tblContacts table in Contacts.accdb like
this:

DBEngine(0)(0).TableDefs("tblContacts").Fields(0).Name

(Whew!) If for no other reason, object variables are quite handy to help minimize name
complexity.

In particular, you can reduce name complexity by using an object variable to represent the
current database. When you set the variable to the current database, you can call the Cur-
rentDb function rather than use the database’s full qualifier. For example, you can declare
a Database object variable, set it to the current database by using the CurrentDb func-
tion, and then use the Database object variable name as a starting point to reference the
TableDefs, QueryDefs, and Recordsets collections that it contains. (See “Assigning an Object
Variable—Set Statement,” on page 1509, for the syntax of the Set statement.) Likewise, if you are
going to work extensively with fields in a TableDef object or columns in a Table object, you
are better off establishing an object variable that points directly to the TableDef or Table
object. For example, you can simplify the complex expression to reference the name of the
first field in the tblContacts table in Contacts.accdb like this:

Dim db As DAO.Database, tdf As DAO.TableDef

Set db = CurrentDb

Set tdf = db.Tabledefs![tblContacts]

Debug.Print tdf.Fields(0).Name

	 Collections, Objects, Properties, and Methods	 1507

C
h

ap
te

r
24INSIDE OUT  Should I Use CurrentDb or DBEngine.Workspaces(0).

				 Databases(0)?

When you use DBEngine.Workspaces(0).Databases(0) (or DBEngine(0)(0)) to set a data-

base object, Visual Basic establishes a pointer to the current database. You can have

only one object variable set to the actual copy of the current database, and you must

never close this copy. A safer technique is to set your database variable using the Cur-

rentDb function. Using this technique opens a new database object that is based on the

same database as the current one. You can have as many copies of the current database

as you like, and you can close them when you finish using them. When you use Cur-

rentDb to establish a pointer to your database, Visual Basic refreshes all the collections

and keeps them current. If you want to ensure that the collections are current (for

example, to be aware of any added or deleted tables or queries), you must refresh the

collections yourself when you use DBEngine(0)(0). The one small advantage to DBEn-

gine(0)(0) is that it is more efficient because it does not refresh all collections when you

establish a pointer to it.

When to Use “!” and “.”

You’ve probably noticed that a complex, fully qualified name of an object or a property in
Access 2010 or Visual Basic contains exclamation points (!) and periods (.) that separate the
parts of the name.

Use an exclamation point preceding a name when the name refers to an object that is in
the preceding object or collection of objects. A name following an exclamation point is
generally the name of an object you created (such as a form or a table). Names following
an exclamation point must be enclosed in brackets ([]) if they contain embedded blank
spaces or a special character, such as an underscore (_). You must also enclose the name of
an object you created in brackets if the name is also an Access or SQL reserved word. For
example, most objects have a Name property—if you name a control or field “Name,” you
must use brackets when you reference your object.

To make this distinction clear, you might want to get into the habit of always enclosing in
brackets names that follow an exclamation point, even though brackets are not required for
names that don’t use blank spaces or special characters. Access automatically inserts brack-
ets around names in property sheets, design grids, and action arguments.

C
h

ap
ter 24

1508	 Chapter 24  Understanding Visual Basic Fundamentals

Use a period preceding a name that refers to a collection name, a property name, or the
name of a method that you can perform against the preceding object. (Names following
a period should never contain blank spaces.) In other words, use a period when the fol-
lowing name is of the preceding name (as in the TableDefs collection of the Databases(0)
object, the Count property of the TableDefs collection, or the MoveLast method of the DAO
Recordset object). This distinction is particularly important when referencing something
that has the same name as the name of a property. For example, the reference

DBEngine.Workspaces(0).Databases(0).TableDefs(18).Name

refers to the name of the 19th TableDef object in the current database. In the Contacts.
accdb database, if you use Debug.Print or the Immediate window to display this reference,
Visual Basic returns the value tblCompanies. However, the reference

DBEngine.Workspaces(0).Databases(0).TableDefs(18)![Name]

refers to the contents of a field called Name (if one exists) in the 19th TableDef object in the
current database. In the Conrad Systems Contacts database, this reference returns an error
because there is no Name field in the tblCompanies table.

INSIDE OUT  What About Me?

If you spend some time looking at any of the code behind forms and reports in the

sample databases, you’ll notice many references such as Me.Name or Me.ProductName.

Whenever you write code in a form or report module, you’ll likely need to reference

some of the controls on the form or report or some of the properties of the form or

report. You already know that you can reference an open form by using, for example,

Forms![frmProducts]

and to reference a control on the open frmProducts form, you could use

Forms![frmProducts]![ProductName]

Rather than type the collection name (Forms) and the form name (frmProducts) each

time, you can use a shortcut—Me. This special keyword is a reference to the object

where your code is running. Also, when Access opens a form, it loads the names of all

controls you defined on the form as properties of the form—which are also proper-

ties of the Me object. (It also does the same for controls on open reports.) Therefore,

you can reference the ProductName control in code behind the frmProducts form by

entering

Me.ProductName

This can certainly make entering code faster. Also, because Me is an object, your code

executes more quickly.

	 Collections, Objects, Properties, and Methods	 1509

C
h

ap
te

r
24INSIDE OUT  Is It Possible to Reference in Visual Basic Variables Created

				 by Macros?

You bet! As you learned in Chapter 20, you can use SetTempVar, RemoveTempVar,

and RemoveAllTempVars actions to create, modify, and inspect values that you can

pass from one macro to another. If you create an application that uses both macros

and Visual Basic, you can also create, modify, and inspect these variables by using the

TempVars collection. Unlike most collections in Access where you must first create an

object before you can reference it, you can both create and set a macro temporary vari-

able by simply assigning a value to a name in the TempVars collection. For example, to

create and set a temporary variable called MyTempVar, use the following:

TempVars!MyTempVar = "Value to pass to a macro"

Temporary variables are the Variant data type, so you assign a string, a number, or a

date/time value to a member of the TempVars collection. To delete a temporary vari-

able, use the Removemethod as follows:

TempVars.Remove MyTempVar

To remove all temporary variables, use the RemoveAll method as follows:

TempVars.RemoveAll

However, be careful. If you reference a temporary variable that does not exist yet, you

won’t get any error. If you misspell a temporary variable name, Access temporarily cre-

ates the variable and returns the value Null.

Assigning an Object Variable—Set Statement

Use the Set statement to assign an object or object reference to an object variable.

Syntax

Set objectvariablename = [New] objectreference

Notes

As noted earlier, you can use object variables to simplify name references. Also, using
an object variable is less time-consuming than using a fully qualified name. At run time,
Visual Basic must always parse a qualified name to first determine the type of object and
then determine which object or property you want. If you use an object variable, you have
already defined the type of object and established a direct pointer to it, so Visual Basic can
quickly go to that object. This is especially important if you plan to reference, for example,

C
h

ap
ter 24

1510	 Chapter 24  Understanding Visual Basic Fundamentals

many controls on a form. If you create a form variable first and then assign the variable to
point to the form, referencing controls on the form via the form variable is much simpler
and faster than using a fully qualified name for each control.

You must first declare objectvariablename using a Dim, Private, Public, or Static state-
ment. The object types you can declare include AccessObject, Application, ADOX.Catalog,
ADOX.Column, ADODB.Command, ADOX.Command, ADODB.Connection, DAO.Container,
Control, DAO.Database, DAO.Document, ADODB.Error, DAO.Error, ADODB.Field, DAO.
Field, DAO.Field2, Form, ADOX.Group, DAO.Group, ADOX.Index, DAO.Index, ADOX.Key,
ADODB.Parameter, DAO.Parameter, ADOX.Procedure, ADODB.Property, ADOX.Property,
DAO.Property, DAO.QueryDef, ADODB.Recordset, DAO.Recordset, DAO.Recordset2, DAO.
Relation, Report, ADOX.Table, DAO.TableDef, ADOX.User, DAO.User, ADOX.View, and DAO.
Workspace object. You can also declare a variable as the generic Object data type and set it
to any object (similar to the Variant data type). In addition, you can declare a variable as an
instance of the class defined by a class module. The object type must be compatible with
the object type of objectreference. You can use another object variable in an objectreference
statement to qualify an object at a lower level. (See the examples that follow.) You can also
use an object method to create a new object in a collection and assign that object to an
object variable. For example, it’s common to use the OpenRecordset method of a QueryDef
or TableDef object to create a new Recordset object. See the example in the next section,
“Object Methods.”

An object variable is a reference to an object, not a copy of the object. You can assign more
than one object variable to point to the same object and change a property of the object.
When you do that, all variables referencing the object will reflect the change as well. The
one exception is that several Recordset variables can refer to the same recordset, but each
can have its own Bookmark property pointing to different rows in the recordset. If you want
to create a new instance of an object, include the New keyword.

Examples

To create a variable reference to the current database, enter the following:

Dim dbMyDB As DAO.Database

Set dbMyDB = CurrentDb

To create a variable reference to the tblContacts table in the current database using the
dbMyDB variable defined earlier, enter the following:

Dim tblMyTable As DAO.TableDef

Set tblMyTable = dbMyDB![tblContacts]

	 Collections, Objects, Properties, and Methods	 1511

C
h

ap
te

r
24

Notice that you do not need to explicitly reference the TableDefs collection of the data-
base, as in dbMyDB.TableDefs![tblContacts] or dbMyDB.TableDefs("tblContacts"), because
TableDefs is the default collection of the database. Visual Basic assumes that [tblContacts]
refers to the name of an object in the default collection of the database.

To create a variable reference to the Notes field in the tblContacts table using the tblMy-
Table variable defined earlier, enter the following:

Dim fldMyField As DAO.Field

Set fldMyField = tblMyTable![Notes]

Again, you do not need to include a specific reference to the Fields collection of the
TableDef object, as in tblMyTable.Fields![Notes], because Fields is the default collection.

To create a variable reference to the catalog for the current database, enter the following:

Dim catThisDB As New ADOX.Catalog

catThisDB.ActiveConnection = CurrentProject.Connection

Note that you must use the New keyword because there’s no way to open an existing cata-
log without first establishing a connection to it. You open a catalog by declaring it as a new
object and assigning a Connection object to its ActiveConnection property. The example
earlier takes advantage of the existence of the Application.CurrentProject.Connection
property rather than first setting a Connection object. If you already have another Catalog
object open, you can create a copy of it by using

Dim catCopy As ADOX.Catalog

Set catCopy = catThisDB

To create a variable reference to the tblContacts table in the current database using the cat-
ThisDB variable defined earlier, enter the following:

Dim tblMyTable As ADOX.Table

Set tblMyTable = catThisDB![tblContacts]

Notice that you do not need to explicitly reference the Tables collection of the database, as
in catThisDB.Tables![tblContacts] or catThisDB.Tables("tblContacts"), because Tables is the
default collection of the catalog. Visual Basic assumes that [tblContacts] refers to the name
of an object in the default collection of the catalog.

To create a variable reference to the Notes column in the tblContacts table using the tblMy-
Table variable defined earlier, enter the following:

Dim colMyColumn As ADOX.Column

Set colMyColumn = tblMyTable![Notes]

C
h

ap
ter 24

1512	 Chapter 24  Understanding Visual Basic Fundamentals

Again, you do not need to explicitly reference the Columns collection of the Table object, as
in tblMyTable.Columns![Notes], because the Columns collection is the default collection of
a Table object.

Object Methods

When you want to apply an action to an object in your database (such as open a query as a
recordset or go to the next row in a recordset), you apply a method of either the object or
an object variable that you have assigned to point to the object. In some cases, you’ll use
a method to create a new object. Many methods accept parameters that you can use to
further refine how the method acts on the object. For example, you can tell the DAO Open-
Recordset method whether you’re opening a recordset on a local table, a dynaset (a query-
based recordset), or a read-only snapshot.

Visual Basic supports many different object methods—far more than there’s room to prop-
erly document in this book. Perhaps one of the most useful groups of methods is the group
you can use to create a recordset and then read, update, insert, and delete rows in the
recordset.

Working with DAO Recordsets

To create a recordset, you must first declare a Recordset object variable. Then open the
recordset using the DAO OpenRecordset method of the current database (specifying a table
name, a query name, or an SQL statement to create the recordset) or the OpenRecordset
method of a DAO.QueryDef, DAO.TableDef, or other DAO.Recordset object. (As you’ll learn
in “Working with ADO Recordsets,” on page 1520, if you’re working in ADO, you use the Open
method of a New ADODB.Recordset object.)

In DAO, you can specify options to indicate whether you’re opening the recordset as a local
table (which means you can use the Seek method to quickly locate rows based on a match
with an available index), as a dynaset, or as a read-only snapshot. For updateable record-
sets, you can also specify that you want to deny other updates, deny other reads, open a
read-only recordset, open the recordset for append only, or open a read-only forward scroll
recordset (which allows you to move only forward through the records and only once).

The syntax to use the OpenRecordset method of a Database object is as follows:

Set RecordSetObject = DatabaseObject.OpenRecordset(source,

 [type], [options], [lockoptions])

RecordSetObject is a variable you have declared as DAO.Recordset, and DatabaseObject is a
variable you have declared as DAO.Database. Source is a string variable or literal containing
the name of a table, the name of a query, or a valid SQL statement. Table 24-2 describes
the settings you can supply for type, options, and lockoptions.

	 Collections, Objects, Properties, and Methods	 1513

C
h

ap
te

r
24

Table 24-2  OpenRecordset Parameter Settings

Setting Description

Type (Select one)

dbOpenTable Returns a table recordset. You can use this option only when source
is a table local to the database described by the Database object.
Source cannot be a linked table. You can establish a current index in
a table recordset and use the Seek method to find rows using the
index. If you do not specify a type, OpenRecordset returns a table if
source is a local table name.

dbOpenDynaset Returns a dynaset recordset. Source can be a local table, a linked
table, a query, or an SQL statement. You can use the Find methods
to search for rows in a dynaset recordset. If you do not specify a
type, OpenRecordset returns a dynaset if source is a linked table, a
query, or an SQL statement.

dbOpenSnapshot Returns a read-only snapshot recordset. You won’t see any changes
made by other users after you open the recordset. You can use the
Find methods to search for rows in a snapshot recordset.

dbOpenForwardOnly Returns a read-only snapshot recordset that you can move forward
through only once. You can use the MoveNext method to access
successive rows.

Options (You can select multiple options, placing a plus sign between option names
to add them together)

dbAppendOnly Returns a table or dynaset recordset that allows inserting new rows
only. You can use this option only with the dbOpenTable and dbOp-
enDynaset types.

dbSeeChanges Asks Access to generate a run-time error in your code if another
user changes data while you are editing it in the recordset.

dbDenyWrite Prevents other users from modifying or inserting records while your
recordset is open.

dbDenyRead Prevents other users from reading records in your open recordset.

dbInconsistent Allows you to make changes to all fields in a multiple table record-
set (based on a query or an SQL statement), including changes that
would be inconsistent with any join defined in the query. For exam-
ple, you could change the customer identifier field (foreign key) of
an orders table so that it no longer matches the primary key in an
included customers table–unless referential integrity constraints
otherwise prevent you from doing so. You cannot include both
dbInconsistent and dbConsistent.

dbConsistent Allows you to only make changes in a multiple table recordset
(based on a query or an SQL statement) that are consistent with the
join definitions in the query. For example, you cannot change the
customer identifier field (foreign key) of an orders table so that its
value does not match the value of any customer row in the query.
You cannot include both dbInconsistent and dbConsistent.

C
h

ap
ter 24

1514	 Chapter 24  Understanding Visual Basic Fundamentals

Setting Description

Lockoptions (Select one)

dbPessimistic Asks Access to lock a row as soon as you place the row in an edit-
able state by executing an Edit method. This is the default if you do
not specify a lock option.

dbOptimistic Asks Access to not attempt to lock a row until you try to write it to
the database with an Update method. This generates a run-time
error if another user has changed the row after you executed the
Edit method.

For example, to declare a recordset for the tblFacilities table in the Housing Reservations
(Housing.accdb) database and open the recordset as a table so that you can use its indexes,
enter the following:

Dim dbHousing As DAO.Database

Dim rcdFacilities As DAO.RecordSet

Set dbHousing = CurrentDb

Set rcdFacilities = dbHousing.OpenRecordSet("tblFacilities", _

 dbOpenTable)

To open the qryContactProducts query in the Conrad Systems Contacts database (Contacts.
accdb) as a dynaset, enter the following:

Dim dbContacts As DAO.Database

Dim rcdContactProducts As DAO.RecordSet

Set dbContacts = CurrentDb

Set rcdContactProducts = _

 dbContacts.OpenRecordSet("qryContactProducts")

(Note that opening a recordset as a dynaset is the default when the source is a query.)

Note
Any table recordset or dynaset recordset based on a table is updateable. When you

ask Access to open a dynaset on a table, Access internally builds a query that selects all

columns from the table. A dynaset recordset based on a query will be updateable if the

query is updateable. See “Limitations on Using Select Queries to Update Data,” on page

680, for details.

After you open a recordset, you can use one of the Move methods to move to a specific
record. Use recordset.MoveFirst to move to the first row in the recordset. Other Move meth-
ods include MoveLast, MoveNext, and MovePrevious. If you want to move to a specific row
in a dynaset recordset, use one of the Find methods. You must supply a string variable

	 Collections, Objects, Properties, and Methods	 1515

C
h

ap
te

r
24

containing the criteria for finding the records you want. The criteria string looks exactly like
a WHERE clause in SQL, but without the WHERE keyword. (See Article 2, “Understanding
SQL,” on the companion CD, for more details.) For example, to find the first row in the qry-
ContactProducts query’s recordset whose SoldPrice field is greater than $200, enter the
following:

rcdContactProducts.FindFirst "SoldPrice > 200"

To delete a row in an updateable recordset, move to the row you want to delete and then
use the Delete method. For example, to delete the first row in the qryContactProducts que-
ry’s recordset that hasn’t been invoiced yet (the Invoiced field is false), enter the following:

Dim dbContacts As DAO.Database

Dim rcdContactProducts As DAO.RecordSet

Set dbContacts = CurrentDb

Set rcdContactProducts = _

 dbContacts.OpenRecordSet("qryContactProducts")

rcdContactProducts.FindFirst "Invoiced = 0"

' Test the recordset NoMatch property for "not found"

If Not rcdContactProducts.NoMatch Then

 rcdContactProducts.Delete

End If

If you want to update rows in a recordset, move to the first row you want to update and
then use the Edit method to lock the row and make it updateable. You can then refer to
any of the fields in the row by name to change their values. Use the Update method on the
recordset to save your changes before moving to another row. If you do not use the Update
method before you move to a new row or close the recordset, the database discards your
changes.

For example, to increase by 10 percent the SoldPrice entry of the first row in the rcd-
ContactProducts query’s recordset whose SoldPrice value is greater than $200, enter the
following:

Dim dbContacts As DAO.Database

Dim rcdContactProducts As DAO.RecordSet

Set dbContacts = CurrentDb

Set rcdContactProducts = _

 dbContacts.OpenRecordSet("qryContactProducts")

rcdContactProducts.FindFirst "SoldPrice > 200"

 ' Test the recordset NoMatch property for "not found"

If Not rcdContactProducts.NoMatch Then

 rcdContactProducts.Edit

 rcdContactProducts![SoldPrice] = _

 rcdContactProducts![SoldPrice] * 1.1

 rcdContactProducts.Update

End If

C
h

ap
ter 24

1516	 Chapter 24  Understanding Visual Basic Fundamentals

To insert a new row in a recordset, use the AddNew method to start a new row. Set the val-
ues of all required fields in the row, and then use the Update method to save the new row.
For example, to insert a new company in the Conrad Systems Contacts tblCompanies table,
enter the following:

Dim dbContacts As DAO.Database

Dim rcdCompanies As DAO.RecordSet

Set dbContacts = CurrentDb

Set rcdCompanies = _

 dbContacts.OpenRecordSet("tblCompanies")

rcdCompanies.AddNew

rcdCompanies![CompanyName] = "Winthrop Brewing Co."

rcdCompanies![Address] = "155 Riverside Ave."

rcdCompanies![City] = "Winthrop"

rcdCompanies![StateOrProvince] = "WA"

rcdCompanies![PostalCode] = "98862"

rcdCompanies![PhoneNumber] = "(509) 555-8100"

rcdCompanies.Update

Note that because all the main data tables in Contacts.accdb are linked tables, rcdCompa-
nies is a dynaset recordset, not a table recordset. If you want to position the recordset on
the newly created record, you could add an rcdCompanies.Bookmark=rcdCompanies.Last-
Modified line at the end of the preceding code example.

Manipulating Complex Data Types Using DAO

Access 2010 supports complex data types—the Attachment data type or any field defined
as multi-value. A complex data type lets you store multiple values or objects in a field
within a single record. Access 20107 accomplishes this by building hidden tables that con-
tain one row per multiple value stored. You can manipulate these rows in a recordset in
code, but only using DAO.

To work with data in a complex data type field, you must first open a recordset on the table
containing the field. You can either open the table directly or open a query that includes
the table and its complex field(s). The secret to dealing with complex fields is the Value
property of the field in the recordset returns a DAO.Recordset2 object. Therefore, you can
set a declared DAO.Recordset2 variable to the Value property to open a recordset on the
hidden table. You can manipulate this recordset exactly as you can any other DAO record-
set, including using the Find, Move, Edit, AddNew, Update, and Delete methods.

When the complex field is a multi-value field, the recordset returned from the Value prop-
erty of the parent field contains a single field called Value. You’ll find one row per multiple
value stored in the complex field. When the complex field is an Attachment data type,

	 Collections, Objects, Properties, and Methods	 1517

C
h

ap
te

r
24

the recordset returned from the Value property of the parent field contains three fields—
FileData, FileName, and FileType. The FileData field in an attachment complex recordset
supports one method, LoadFromFile, that lets you insert the complex Object Linking and
Embedding (OLE) data into the record by supplying a file location and name.

The tblContacts table in the Contacts sample database contains both a multi-value field
(ContactType) and an attachment field (Photo). In the modExamples module in the Con-
tacts.accdb database, you can find the following code, which displays in the Immediate
window the values from both fields for all contact records:

Public Sub ListContactComplex()

' An example of listing all the complex values in the Contacts table

Dim db As DAO.Database, rst As DAO.Recordset, rstComplex As DAO.Recordset2

Dim fld As DAO.Field2

 ' Point to this database

 Set db = CurrentDb

 ' Open a recordset on tblContacts

 Set rst = db.OpenRecordset("SELECT * FROM tblContacts")

 ' Loop through all the records

 Do Until rst.EOF

 ' Dump out the ID and name

 Debug.Print rst!ContactID, rst!LastName, rst!FirstName

 ' Get the contact type complex field

 Set rstComplex = rst!ContactType.Value

 ' Loop through them all

 Do Until rstComplex.EOF

 ' Dump out each value

 Debug.Print " ", "Contact Type: ", rstComplex!Value

 ' Get the next

 rstComplex.MoveNext

 Loop

 ' Get the Photo Attachment recordset

 Set rstComplex = rst!Photo.Value

 ' Loop though them all

 Do Until rstComplex.EOF

 ' Dump out the data

 Debug.Print " ", "Photo FileName: ", rstComplex!FileName, _

 " File Type: ", rstComplex!FileType

 ' Get the next

 rstComplex.MoveNext

 Loop

 ' Get the next contact

 rst.MoveNext

 Loop

 ' Close out

 rst.Close

 Set rst = Nothing

 Set rstComplex = Nothing

 Set db = Nothing

End Sub

C
h

ap
ter 24

1518	 Chapter 24  Understanding Visual Basic Fundamentals

If you want to find the record for John Viescas and add the Trainer value to the Contact-
Type field, use the following code:

Public Sub AddContactTypeViescas()

Dim db As DAO.Database, rst As DAO.Recordset, rstComplex As DAO.Recordset2

 ' Set a pointer to the current database

 Set db = CurrentDb

 ' Open the contacts table

 Set rst = db.OpenRecordset("tblContacts", dbOpenDynaset)

 ' Find the record for Viescas

 rst.FindFirst "LastName = 'Viescas'"

 ' Make sure we found it

 If Not rst.NoMatch Then

 ' Put parent record in Edit

 rst.Edit

 ' Get the ContactType recordset

 Set rstComplex = rst!ContactType.Value

 ' Add a new row

 rstComplex.AddNew

 ' Insert the new value

 rstComplex.Value = "Trainer"

 ' Save the new value

 rstComplex.Update

 ' Now save the parent

 rst.Update

 End If

 ' Close out

 rst.Close

 Set rst = Nothing

 Set rstComplex = Nothing

 Set db = Nothing

To find the contact record for John Viescas, check for the Trainer value in the ContactType
field, and delete it if it exists, use the following code:

Public Sub DeleteTrainerFromViescas()

Dim db As DAO.Database, rst As DAO.Recordset, rstComplex As DAO.Recordset2

 ' Set a pointer to the current database

 Set db = CurrentDb

 ' Open the contacts table

 Set rst = db.OpenRecordset("tblContacts", dbOpenDynaset)

 ' Find the record for Viescas

 rst.FindFirst "LastName = 'Viescas'"

 ' Make sure we found it

 If Not rst.NoMatch Then

 ' Get the ContactType recordset

 Set rstComplex = rst!ContactType.Value

 ' See if Trainer exists

 rstComplex.FindFirst "Value = 'Trainer '"

 ' If it exists,

	 Collections, Objects, Properties, and Methods	 1519

C
h

ap
te

r
24

 If Not rstComplex.NoMatch Then

 ' Delete it

 rstComplex.Delete

 End If

 End If

 ' Close out

 rst.Close

 Set rst = Nothing

 Set rstComplex = Nothing

 Set db = Nothing

To check whether the Photo field for contact Jeff Conrad contains a file named JeffConrad.
docx and add it if it does not, use the following code:

Public Sub AddDocumentToConradPhotoField()

Dim db As DAO.Database, rst As DAO.Recordset, rstComplex As DAO.Recordset2

 ' Set a pointer to the current database

 Set db = CurrentDb

 ' Open the contacts table

 Set rst = db.OpenRecordset("tblContacts", dbOpenDynaset)

 ' Find the record for Conrad

 rst.FindFirst "LastName = 'Conrad'"

 ' Make sure we found it

 If Not rst.NoMatch Then

 ' Get the Photo recordset

 Set rstComplex = rst!Photo.Value

 ' See if the JeffConrad.docx file exists

 rstComplex.FindFirst "FileName = 'JeffConrad.docx'"

 ' If it does not exist,

 If rstComplex.NoMatch Then

 ' Put parent record in Edit

 rst.Edit

 ' Start a new attachment record

 rstComplex.Addnew

 ' Load the file

 rstComplex!FileData.LoadFromFile _

 "C:\Microsoft Press\Access 2010 Inside Out\Documents\Jeff Conrad.docx"

 ' Save the new row

 rstComplex.Update

 ' Save the parent row

 rst.Update

 End If

 End If

 ' Close out

 rst.Close

 Set rst = Nothing

 Set rstComplex = Nothing

 Set db = Nothing

C
h

ap
ter 24

1520	 Chapter 24  Understanding Visual Basic Fundamentals

Working with ADO Recordsets

Recordsets in ADO offer many of the same capabilities and options as recordsets in DAO,
but the terminology is somewhat different. Because you will most often use ADO with data
stored in a server database such as SQL Server, the options for an ADO recordset are geared
toward server-based data. For example, ADO uses the term cursor to refer to the set of rows
returned by the server. Fundamentally, a cursor is a pointer to each row you need to work
with in code. Depending on the options you choose (and the options supported by the
particular database server), a cursor might also be read-only, updateable, or forward-only.
A cursor might also be able to reflect changes made by other users of the database (a key-
set or dynamic cursor), or it might present only a snapshot of the data (a static cursor).

To open an ADO recordset, you must use the Open method of a new ADO Recordset
object. The syntax to use the Open method of a Recordset object is as follows:

RecordSetObject.Open [source], [connection],

 [cursortype], [locktype], [options]

RecordSetObject is a variable you have declared as a New ADO.Recordset. Source is a Com-
mand object, a string variable, or string literal containing the name of a table, the name
of a view (the SQL Server term for a query), the name of a stored procedure, the name of
a function that returns a table, or a valid SQL statement. A stored procedure might be a
parameter query or a query that specifies the sorting of rows from a table or view. A func-
tion might also accept parameters. If you supply a Command object as the source, you
do not need to supply a connection (you define the connection in the Command object).
Otherwise, connection must be the name of a Connection object that points to the target
database.

Table 24-3 describes the settings you can supply for cursortype, lockoptions, and options.

Table 24-3  RecordSetObject.Open Parameter Settings

Setting Description

CursorType (Select one)

adOpenForwardOnly Returns a read-only snapshot cursor (recordset) that you can
move forward through only once. You can use the MoveNext
method to access successive rows. If you do not supply a Cur-
sorType setting, adOpenForwardOnly is the default.

adOpenKeyset Returns a Keyset cursor. This is roughly analogous to a DAO
dynaset. If you are using ADO to open a recordset against a
source in an Access .accdb file, you should use this option to
obtain a recordset that behaves most like a DAO recordset.
In this type of cursor, you will see changes to rows made by
other users, but you will not see new rows added by other
users after you have opened the cursor.

	 Collections, Objects, Properties, and Methods	 1521

C
h

ap
te

r
24

Setting Description

adOpenDynamic Returns a dynamic cursor. This type of cursor lets you see not
only changes made by other users, but also added rows. Note,
however, that certain key properties you might depend on
in a DAO recordset such as RecordCount might not exist or
might always be zero.

adOpenStatic Returns a read-only snapshot cursor. You won’t be able to see
changes made by other users after you’ve opened the cursor.

LockType (Select one)

adLockReadOnly Provides no locks. The cursor is read-only. If you do not pro-
vide a lock setting, this is the default.

adLockPessimistic Asks the target database to lock a row as soon as you place
the row in an editable state by executing an Edit method.

adLockOptimistic Asks the target database not to attempt to lock a row until
you try to write it to the database with an Update method.
This generates a run-time error in your code if another user
has changed the row after you executed the Edit method.
You should use this option when accessing rows in an Access
.accdb file.

Options (You can combine one Cmd setting with one Async setting with a plus sign)

adCmdText Indicates that source is an SQL statement.

adCmdTable Indicates that source is a table name (or a query name in a
desktop database). In DAO, this is analogous to opening a
dynaset recordset on a table.

adCmdTableDirect Indicates that source is a table name. This is analogous to a
DAO dbOpenTable.

adCmdStoredProc Indicates that source is a stored procedure. In DAO, this is
analogous to opening a dynaset on a sorted query.

adAsyncFetch After fetching the initial rows to populate the cursor, addi-
tional fetching occurs in the background. If you try to access
a row that has not been fetched yet, your code will wait until
the row is fetched.

adAsyncFetchNonBlocking After fetching the initial rows to populate the cursor, addi-
tional fetching occurs in the background. If you try to access
a row that has not been fetched yet, your code will receive an
end-of-file indication.

C
h

ap
ter 24

1522	 Chapter 24  Understanding Visual Basic Fundamentals

For example, to declare a recordset for the tblFacilities table in the Housing Reservation
database (Housing.accdb) and open the recordset as a table so you can use its indexes,
enter the following:

Dim cnThisConnect As ADODB.Connection

Dim rcdFacilities As New ADODB.RecordSet

Dim rcdBooks As New ADODB.Recordset

Set cnThisConnect = CurrentProject.Connection

rcdFacilities.Index = "PrimaryKey"

rcdBooks.Open "tblFacilities", cnThisConnect, adOpenKeyset, _

 adLockOptimistic, adCmdTableDirect

Note that you must establish the index you want to use before you open the recordset. (If
you want to try this in the Housing Reservation database, Housing.accdb, you’ll need to
add a reference to the Microsoft ActiveX Data Objects Library.)

To open the qryContactProducts query in the Conrad Systems Contacts database as a key-
set, enter the following:

Dim cnThisConnect As ADODB.Connection

Dim rcdContactProducts As New ADODB.RecordSet

Set cnThisConnect = CurrentProject.Connection

rcdContactProducts.Open "qryContactProducts", _

 cnThisConnect, adOpenKeyset, adLockOptimistic, _

 adCmdTable

After you open a recordset, you can use one of the Move methods to move to a specific
record. Use recordset.MoveFirst to move to the first row in the recordset. Other Move
methods include MoveLast, MoveNext, and MovePrevious. If you want to search for a spe-
cific row in the recordset, use the Find method or set the recordset’s Filter property. Unlike
the Find methods in DAO, the Find method in ADO is limited to a single simple test on a
column in the form "<column-name> <comparison> <comparison-value>". Note that to
search for a Null value, you must say: "[SomeColumn] = Null", not "[SomeColumn] Is Null"
as you would in DAO. Also, <comparison> can be only <, >, <=, >=, <>, =, or LIKE. Note
that if you want to use the LIKE keyword, you can use either the ANSI wildcards "%" and "_"
or the Access ACE/JET wildcards "*" and "?", but the wildcard can appear only at the end of
the <comparison-value> string.

If you want to search for rows using a more complex filter, you must assign a string variable
or an expression containing the criteria for finding the records you want to the Filter prop-
erty of the recordset. This limits the rows in the recordset to only those that meet the filter
criteria. The criteria string must be made of the simple comparisons that you can use with
Find, but you can include multiple comparisons with the AND or OR Boolean operator.

	 Collections, Objects, Properties, and Methods	 1523

C
h

ap
te

r
24

For example, to find the first row in the qryContactProducts query’s recordset whose Sold-
Price field is greater than $200, enter the following:

rcdContactProducts.MoveFirst

rcdContactProducts.Find "SoldPrice > 200"

' EOF property will be true if nothing found

If Not rcdContactProducts.EOF Then

' Found a record!

To find all rows in qryContactProducts where the product was sold after November 1, 2010,
and SoldPrice is greater than $200, enter the following:

rcdContactProducts.Filter = &

 "DateSold > #11/1/2010# AND SoldPrice > 200"

' EOF property will be true if filter produces no rows

If Not rcdODetails.EOF Then

' Found some rows!

To delete a row in a keyset, simply move to the row you want to delete and then use the
Delete method. For example, to delete the first row in the qryContactProducts query’s
recordset that hasn’t been invoiced yet (the Invoiced field is false), enter the following:

Dim cnThisConnect As ADODB.Connection

Dim rcdContactProducts As New ADODB.RecordSet

Set cnThisConnect = CurrentProject.Connection

rcdContactProducts.Open "qryContactProducts", _

 cnThisConnect, adOpenKeyset, adLockOptimistic, _

 adCmdTable

rcdContactProducts.MoveFirst

rcdContactProducts.Find "Invoiced = 0"

' Test the recordset EOF property for "not found"

If Not rcdContactProducts.EOF Then

 rcdContactProducts.Delete

End If

Note that in this example, if tblContactRelatedProducts includes related records, Access
prevents the deletion. If you want to update rows in a recordset, move to the first row you
want to update. You can refer to any of the updateable fields in the row by name to change
their values. You can use the Update method on the recordset to explicitly save your
changes before moving to another row. ADO automatically saves your changed row when
you move to a new row. If you need to discard an update, you must use the CancelUpdate
method of the recordset object.

C
h

ap
ter 24

1524	 Chapter 24  Understanding Visual Basic Fundamentals

For example, to increase by 10 percent the SoldPrice entry of the first row in the rcd-
ContactProducts query’s recordset whose SoldPrice value is greater than $200, enter the
following:

Public Sub UpdateFirstSoldPrice10Percent()

Dim cnThisConnect As ADODB.Connection

Dim rcdContactProducts As New ADODB.RecordSet

Set cnThisConnect = CurrentProject.Connection

rcdContactProducts.Open "qryContactProducts", _

 cnThisConnect, adOpenKeyset, adLockOptimistic, _

 adCmdTable

rcdContactProducts.Filter = "SoldPrice > 200"

' Test the recordset EOF property for "not found"

If Not rcdContactProducts.EOF Then

 rcdContactProducts![SoldPrice] = _

 rcdContactProducts![SoldPrice] * 1.1

 rcdContactProducts.Update

 rcdContactProducts.MoveNext

End If

To insert a new row in a recordset, use the AddNew method to start a new row. Set the val-
ues of all required fields in the row and then use the Update method to save the new row.
For example, to insert a new company in the Conrad Systems Contacts tblCompanies table,
enter the following:

Dim cnThisConnect As ADODB.Connection

Dim rcdCompanies As New ADODB.RecordSet

Set cnThisConnect = CurrentProject.Connection

rcdCompanies.Open "tblCompanies", cnThisConnect, _

 adOpenKeyset, adLockOptimistic, adCmdTable

rcdCompanies.AddNew

rcdCompanies![CompanyName] = "Winthrop Brewing Co."

rcdCompanies![Address] = "155 Riverside Ave."

rcdCompanies![City] = "Winthrop"

rcdCompanies![StateOrProvince] = "WA"

rcdCompanies![PostalCode] = "98862"

rcdCompanies![PhoneNumber] = "(509) 555-8100"

rcdCompanies.Update

Other Uses for Object Methods

As you’ll learn later in this chapter in more detail, you must use a method of the DoCmd
object to execute the equivalent of most macro actions within Visual Basic. You must use
the RunCommand method of either the Application or DoCmd object to execute com-
mands you can find on any of the Access menus.

	 Functions and Subroutines	 1525

C
h

ap
te

r
24

You can also define a public function or subroutine (see the next section) within the mod-
ule associated with a Form or Report object and execute that procedure as a method of
the form or report. If your public procedure is a function, you must assign the result of the
execution of the method to a variable of the appropriate type. If the public procedure is a
subroutine, you can execute the form or report object method as a Visual Basic statement.
For more information about object methods, find the topic about the object of interest in
Help, and then click the Methods hyperlink.

Functions and Subroutines

You can create two types of procedures in Visual Basic—functions and subroutines—which
are also known as Function procedures and Sub procedures. (As you’ll learn in “Under-
standing Class Modules,” on page 1529, class modules also support a special type of function,
Property Get, and special subroutines, Property Let and Property Set, that let you manage
properties of the class.) Each type of procedure can accept parameters—data variables that
you pass to the procedure that can determine how the procedure operates. Functions can
return a single data value, but subroutines cannot. In addition, you can execute a public
function from anywhere in Access, including from expressions in queries and from macros.
You can execute a subroutine only from a function, from another subroutine, or as an event
procedure in a form or a report.

Function Statement

Use a Function statement to declare a new function, the parameters it accepts, the variable
type it returns, and the code that performs the function procedure.

Syntax

[Public | Private | Friend] [Static] Function functionname

 ([<arguments>]) [As datatype]

 [<function statements>]

 [functionname = <expression>]

 [Exit Function]

 [<function statements>]

 [functionname = <expression>]

End Function

where <arguments> is

{[Optional][ByVal | ByRef][ParamArray] argumentname[()]

 [As datatype][= default]},...

C
h

ap
ter 24

1526	 Chapter 24  Understanding Visual Basic Fundamentals

Notes

Use the Public keyword to make this function available to all other procedures in all mod-
ules. Use the Private keyword to make this function available only to other procedures in
the same module. When you declare a function as private in a module, you cannot call that
function from a query or a macro or from a function in another module. Use the Friend
keyword in a class module to declare a function that is public to all other code in your
application but is not visible to outside code that activates your project via automation.

Include the Static keyword to preserve the value of all variables declared within the pro-
cedure, whether explicitly or implicitly, so long as the module containing the procedure
is open. This is the same as using the Static statement (discussed earlier in this chapter) to
explicitly declare all variables created in this function.

You can use a type declaration character at the end of the functionname entry or use the
As datatype clause to declare the data type returned by this function. Valid datatype entries
are Byte, Boolean, Integer, Long, Currency, Single, Double, Date, String (for variable-length
strings), String * length (for fixed-length strings), Object, Variant, or one of the object types
described earlier in this chapter. If you do not declare a data type, Visual Basic assumes that
the function returns a variant result. You can set the return value in code by assigning an
expression of a compatible data type to the function name.

You should declare the data type of any arguments in the function’s parameter list. Note
that the names of the variables passed by the calling procedure can be different from the
names of the variables known by this procedure. If you use the ByVal keyword to declare
an argument, Visual Basic passes a copy of the argument to your function. Any change you
make to a ByVal argument does not change the original variable in the calling procedure. If
you use the ByRef keyword, Visual Basic passes the actual memory address of the variable,
allowing the procedure to change the variable’s value in the calling procedure. (If the argu-
ment passed by the calling procedure is an expression, Visual Basic treats it as if you had
declared it by using ByVal.) Visual Basic always passes arrays by reference (using ByRef).

Use the Optional keyword to declare an argument that isn’t required. All optional argu-
ments must be the Variant data type. If you declare an optional argument, all arguments
that follow in the argument list must also be declared as optional. You can specify a default
value only for optional parameters. Use the IsMissing built-in function to test for the
absence of optional parameters. You can also use the ParamArray argument to declare an
array of optional elements of the Variant data type. When you call the function, you can
then pass it an arbitrary number of arguments. The ParamArray argument must be the last
argument in the argument list.

Use the Exit Function statement anywhere in your function to clear any error conditions
and exit your function normally, returning to the calling procedure. If Visual Basic runs your

	 Functions and Subroutines	 1527

C
h

ap
te

r
24

code until it encounters the End Function statement, control is passed to the calling proce-
dure, but any errors are not cleared. If this function causes an error and terminates with the
End Function statement, Visual Basic passes the error to the calling procedure. See “Trap-
ping Errors,” on page 1551, for details.

Example

To create a function named MyFunction that accepts an integer argument and a string
argument and returns a double value, enter the following:

Function MyFunction (intArg1 As Integer, strArg2 As _

 String) As Double

 If strArg2 = "Square" Then

 MyFunction = intArg1 * intArg1

 Else

 MyFunction = Sqr(intArg1)

 End If

End Function

Sub Statement

Use a Sub statement to declare a new subroutine, the parameters it accepts, and the code
in the subroutine.

Syntax

[Public | Private | Friend] [Static] Sub subroutinename

 ([<arguments>])

 [<subroutine statements>]

 [Exit Sub]

 [<subroutine statements>]

End Sub

where <arguments> is

{[Optional][ByVal | ByRef][ParamArray]

 argumentname[()] [As datatype][= default]},...

Notes

Use the Public keyword to make this subroutine available to all other procedures in all
modules. Use the Private keyword to make this procedure available only to other proce-
dures in the same module. When you declare a sub as private in a module, you cannot call
that sub from a function or sub in another module. Use the Friend keyword in a class mod-
ule to declare a sub that is public to all other code in your application but is not visible to
outside code that activates your project via automation.

C
h

ap
ter 24

1528	 Chapter 24  Understanding Visual Basic Fundamentals

Include the Static keyword to preserve the value of all variables declared within the pro-
cedure, whether explicitly or implicitly, so long as the module containing the procedure
is open. This is the same as using the Static statement (discussed earlier in this chapter) to
explicitly declare all variables created in this subroutine.

You should declare the data type of all arguments that the subroutine accepts in its argu-
ment list. Valid datatype entries are Byte, Boolean, Integer, Long, Currency, Single, Double,
Date, String (for variable-length strings), String * length (for fixed-length strings), Object,
Variant, or one of the object types described earlier in this chapter. Note that the names
of the variables passed by the calling procedure can be different from the names of the
variables as known by this procedure. If you use the ByVal keyword to declare an argument,
Visual Basic passes a copy of the argument to your subroutine. Any change you make to a
ByVal argument does not change the original variable in the calling procedure. If you use
the ByRef keyword, Visual Basic passes the actual memory address of the variable, allow-
ing the procedure to change the variable’s value in the calling procedure. (If the argument
passed by the calling procedure is an expression, Visual Basic treats it as if you had declared
it by using ByVal.) Visual Basic always passes arrays by reference (using ByRef).

Use the Optional keyword to declare an argument that isn’t required. All optional argu-
ments must be the Variant data type. If you declare an optional argument, all arguments
that follow in the argument list must also be declared optional. You can specify a default
value only for optional parameters. Use the IsMissing built-in function to test for the
absence of optional parameters. You can also use the ParamArray argument to declare an
array of optional elements of the Variant data type. When you call the subroutine, you can
then pass it an arbitrary number of arguments. The ParamArray argument must be the last
argument in the argument list.

Use the Exit Sub statement anywhere in your subroutine to clear any error conditions and
exit your subroutine normally, returning to the calling procedure. If Visual Basic runs your
code until it encounters the End Sub statement, control is passed to the calling procedure
but any errors are not cleared. If this subroutine causes an error and terminates with the
End Sub statement, Visual Basic passes the error to the calling procedure. See “Trapping
Errors,” on page 1551, for details.

Example

To create a subroutine named MySub that accepts two string arguments but can modify
only the second argument, enter the following:

Sub MySub (ByVal strArg1 As String, ByRef strArg2 _

 As String)

 <subroutine statements>

End Sub

	 Understanding Class Modules	 1529

C
h

ap
te

r
24

Understanding Class Modules

Whenever you create event procedures behind a form or report, you’re creating a class
module. A class module is the specification for a user-defined object in your database, and
the code you write in the module defines the methods and properties of the object. Of
course, forms and reports already have dozens of methods and properties already defined
by Access, but you can create extended properties and methods when you write code in
the class module attached to a form or report.

You can also create a class module as an independent object by clicking the Class Module
button in the Macros & Code group on the Create tab or by clicking Class Module on the
Insert menu in the VBE. In the Conrad Systems Contacts sample database (Contacts.accdb),
you can find a class module called ComDlg that provides a simple way to call the Open File
dialog box in Windows from your Visual Basic code.

As previously discussed, you define a method in a class module by declaring a procedure
(either a function or a sub) public. When you create an active instance of the object defined
by the class module, either by opening it or by setting it to an object variable, you can
execute the public functions or subs you have defined by referencing the function or sub
name as a method of the object. For example, when the frmContacts form is open, you can
execute the cmdCancel_Click sub by referencing it as a method of the form’s class. (The
cmdCancel_Click sub is public in all forms in the sample database so that the Exit button on
the main switchboard can use it to command the form to clear edits and close itself.) The
name of any form’s class is in the form Form_formname, so you execute this method in your
code like this:

Form_frmContacts.cmdCancel_Click

When you create a class module that you see in the Modules list in the Navigation pane,
you can create a special sub that Visual Basic runs whenever code in your application cre-
ates a new instance of the object defined by your class. For example, you can create a pri-
vate Class_Initialize sub to run code that sets up your object whenever other code in your
application creates a new instance of your class object. You might use this event to open
recordsets or initialize variables required by the object. You can also create a private Class_
Terminate sub to run code that cleans up any variables or objects (perhaps closing open
recordsets) when your object goes out of scope or the code that created an instance of
your object sets it to Nothing. (Your object goes out of scope if a procedure activates your
class by setting it to a nonstatic local object variable and then the procedure exits.)

C
h

ap
ter 24

1530	 Chapter 24  Understanding Visual Basic Fundamentals

Although you can define properties of a class by declaring public variables in the Declara-
tions section of the class module, you can also define specific procedures to handle fetching
and setting properties. When you do this, you can write special processing code that runs
whenever a caller fetches or sets one of the properties defined by these procedures. To cre-
ate special property processing procedures in a class module, you need to write Property
Get, Property Let, and Property Set procedures as described in the following sections.

Property Get

Use a Property Get procedure to return a property value for the object defined by your
class module. When other code in your application attempts to fetch the value of this prop-
erty of your object, Visual Basic executes your Property Get procedure to return the value.
Your code can return a data value or an object.

Syntax

[Public | Private | Friend] [Static] Property Get propertyname

 ([<arguments>]) [As datatype]

 [<property statements>]

 [propertyname = <expression>]

 [Exit Property]

 [<property statements>]

 [propertyname = <expression>]

End Property

where <arguments> is

{[Optional][ByVal | ByRef][ParamArray] argumentname[()]

 [As datatype][= default]},...

Notes

Use the Public keyword to make this property available to all other procedures in all mod-
ules. Use the Private keyword to make this property available only to other procedures in
the same module. When you declare a property as private in a class module, you cannot
reference that property from another module. Use the Friend keyword to declare a prop-
erty that is public to all other code in your application but is not visible to outside code that
activates your project via automation.

Include the Static keyword to preserve the value of all variables declared within the prop-
erty procedure, whether explicitly or implicitly, so long as the module containing the proce-
dure is open. This is the same as using the Static statement (discussed earlier in this chapter)
to explicitly declare all variables created in this property procedure.

	 Understanding Class Modules	 1531

C
h

ap
te

r
24

You can use a type declaration character at the end of the propertyname entry or use the
As datatype clause to declare the data type returned by this property. Valid datatype entries
are Byte, Boolean, Integer, Long, Currency, Single, Double, Date, String (for variable-length
strings), String * length (for fixed-length strings), Object, Variant, or one of the object types
described earlier in this chapter. If you do not declare a data type, Visual Basic assumes that
the property returns a variant result. The data type of the returned value must match the
data type of the propvalue variable you declare in any companion Property Let or Property
Set procedure. You can set the return value in code by assigning an expression of a compat-
ible data type to the property name.

You should declare the data type of all arguments in the property procedure’s parameter
list. Note that the names of the variables passed by the calling procedure can be different
from the names of the variables known by this procedure. If you use the ByVal keyword to
declare an argument, Visual Basic passes a copy of the argument to your procedure. Any
change you make to a ByVal argument does not change the original variable in the calling
procedure. If you use the ByRef keyword, Visual Basic passes the actual memory address of
the variable, allowing the procedure to change the variable’s value in the calling procedure.
(If the argument passed by the calling procedure is an expression, Visual Basic treats it as
if you had declared it by using ByVal.) Visual Basic always passes arrays by reference (using
ByRef).

Use the Optional keyword to declare an argument that isn’t required. All optional argu-
ments must be the Variant data type. If you declare an optional argument, all arguments
that follow in the argument list must also be declared as optional. You can specify a default
value only for optional parameters. Use the IsMissing built-in function to test for the
absence of optional parameters. You can also use the ParamArray argument to declare an
array of optional elements of the Variant data type. When you attempt to access this prop-
erty in an object set to the class, you can then pass it an arbitrary number of arguments.
The ParamArray argument must be the last argument in the argument list.

Use the Exit Property statement anywhere in your property procedure to clear any error
conditions and exit your procedure normally, returning to the calling procedure. If Visual
Basic runs your code until it encounters the End Property statement, control is passed to
the calling procedure but any errors are not cleared. If this procedure causes an error and
terminates with the End Property statement, Visual Basic passes the error to the calling pro-
cedure. See “Trapping Errors,” on page 1551, for details.

C
h

ap
ter 24

1532	 Chapter 24  Understanding Visual Basic Fundamentals

Examples

To declare a Filename property as a string and return it from a variable defined in the Dec-
larations section of your class module, enter the following:

Option Explicit

Dim strFileName As String

Property Get Filename() As String

 ' Return the saved file name as a property

 Filename = strFilename

End Property

You can see an example of Property Get in the ComDlg class where we added similar code.

To establish a new instance of the object defined by the ComDlg class module and then
fetch its Filename property, enter the following in a function or sub:

Dim clsDialog As New ComDlg, strFile As String

 With clsDialog

 ' Set the title of the dialog box

 .DialogTitle = "Locate Conrad Systems Contacts Data File"

 ' Set the default file name

 .FileName = "ContactsData.accdb"

 ' .. and start directory

 .Directory = CurrentProject.Path

 ' .. and file extension

 .Extension = "accdb"

 ' .. but show all accdb files just in case

 .Filter = "Conrad Systems File (*.accdb)|*.accdb"

 ' Default directory is where this file is located

 .Directory = CurrentProject.Path

 ' Tell the common dialog that the file and path must exist

 .ExistFlags = FileMustExist + PathMustExist

 ' If the ShowOpen method returns True

 If .ShowOpen Then

 ' Then fetch the Filename property

 strFile = .FileName

 Else

 Err.Raise 3999

 End If

 End With

Property Let

Use a Property Let procedure to define code that executes when the calling code attempts
to assign a value to a data property of the object defined by your class module. You cannot
define both a Property Let and a Property Set procedure for the same property.

	 Understanding Class Modules	 1533

C
h

ap
te

r
24

Syntax

[Public | Private | Friend] [Static] Property Let propertyname

 ([<arguments>,] propvalue [As datatype])

 [<property statements>]

 [Exit Property]

 [<property statements>]

End Property

where <arguments> is

{[Optional][ByVal | ByRef][ParamArray]

 argumentname[()] [As datatype][= default]},...

Notes

Use the Public keyword to make this property available to all other procedures in all mod-
ules. Use the Private keyword to make this property available only to other procedures in
the same module. When you declare a property as private in a class module, you cannot
reference the property from another module. Use the Friend keyword to declare a property
that is public to all other code in your application but is not visible to outside code that
activates your project via automation.

Include the Static keyword to preserve the value of all variables declared within the prop-
erty procedure, whether explicitly or implicitly, so long as the module containing the proce-
dure is open. This is the same as using the Static statement (discussed earlier in this chapter)
to explicitly declare all variables created in this property procedure.

You should declare the data type of all arguments in the property procedure’s parameter
list. Valid datatype entries are Byte, Boolean, Integer, Long, Currency, Single, Double, Date,
String (for variable-length strings), String * length (for fixed-length strings), Object, Vari-
ant, or one of the object types described earlier in this chapter. Note that the names of the
variables passed by the calling procedure can be different from the names of the variables
as known by this procedure. Also, the names and data types of the arguments must exactly
match the arguments declared for the companion Property Get procedure. If you use the
ByVal keyword to declare an argument, Visual Basic passes a copy of the argument to your
property procedure. Any change you make to a ByVal argument does not change the
original variable in the calling procedure. If you use the ByRef keyword, Visual Basic passes
the actual memory address of the variable, allowing the procedure to change the vari-
able’s value in the calling procedure. (If the argument passed by the calling procedure is an
expression, Visual Basic treats it as if you had declared it by using ByVal.) Visual Basic always
passes arrays by reference (using ByRef).

C
h

ap
ter 24

1534	 Chapter 24  Understanding Visual Basic Fundamentals

Use the Optional keyword to declare an argument that isn’t required. All optional argu-
ments must be the Variant data type. If you declare an optional argument, all arguments
that follow in the argument list must also be declared as optional. You can specify a default
value only for optional parameters. Use the IsMissing built-in function to test for the
absence of optional parameters. You can also use the ParamArray argument to declare an
array of optional elements of the Variant data type. When you attempt to assign a value to
this property in an object set to the class, you can then pass it an arbitrary number of argu-
ments. The ParamArray argument must be the last argument in the argument list.

You must always declare at least one parameter, propvalue, to be the variable that contains
the value that the calling code wants to assign to your property. This is the value or expres-
sion that appears on the right side of the assignment statement executed in the calling
code. If you declare a data type, it must match the data type declared by the companion
Property Get procedure. Also, when you declare a data type, the caller receives a data type
mismatch error if the assignment statement attempts to pass an incorrect data type. You
cannot modify this value, but you can evaluate it and save it as a value to be returned later
by your Property Get procedure.

Use the Exit Property statement anywhere in your property procedure to clear any error
conditions and exit your procedure normally, returning to the calling procedure. If Visual
Basic runs your code until it encounters the End Property statement, control is passed to
the calling procedure, but errors are not cleared. If this procedure causes an error and ter-
minates with the End Property statement, Visual Basic passes the error to the calling proce-
dure. See “Trapping Errors,” on page 1551, for details.

Examples

To declare a FileName property, accept a value from a caller, and save the value in a vari-
able defined in the Declarations section of your class module, enter the following:

Option Explicit

Dim strFileName As String

Property Let FileName(strFile)

 If Len(strFile) <= 64 Then _

 strFileName = strFile

End Property

You can see an example of Property Let in the ComDlg class, where we added similar code.

	 Understanding Class Modules	 1535

C
h

ap
te

r
24

To establish a new instance of the object defined by the ComDlg class module and then set
its Filename property, enter the following:

Dim clsDialog As New ComDlg, strFile As String

 With clsDialog

 ' Set the title of the dialog

 .DialogTitle = "Locate Conrad Systems Contacts Data File"

 ' Set the default file name

 .FileName = "ContactsData.accdb"

 End With

Property Set

Use a Property Set procedure to define code that executes when the calling code attempts
to assign an object to an object property of the object defined by your class module. You
cannot define both a Property Let and a Property Set procedure for the same property.

Syntax

[Public | Private | Friend] [Static] Property Set propertyname

 ([<arguments>,] object [As objecttype])

 [<property statements>]

 [Exit Property]

 [<property statements>]

End Property

where <arguments> is

{[Optional][ByVal | ByRef][ParamArray]

 argumentname[()] [As datatype][= default]},...

Notes

Use the Public keyword to make this property available to all other procedures in all mod-
ules. Use the Private keyword to make this property available only to other procedures in
the same module. When you declare a property as private in a class module, you cannot
reference the property from another module. Use the Friend keyword to declare a property
that is public to all other code in your application but is not visible to outside code that
activates your project via automation.

Include the Static keyword to preserve the value of all variables declared within the prop-
erty procedure, whether explicitly or implicitly, so long as the module containing the proce-
dure is open. This is the same as using the Static statement (discussed earlier in this chapter)
to explicitly declare all variables created in this property procedure.

C
h

ap
ter 24

1536	 Chapter 24  Understanding Visual Basic Fundamentals

You should declare the data type of all arguments in the property procedure’s parameter
list. Valid datatype entries are Byte, Boolean, Integer, Long, Currency, Single, Double, Date,
String (for variable-length strings), String * length (for fixed-length strings), Object, Vari-
ant, or one of the object types described earlier in this chapter. Note that the names of the
variables passed by the calling procedure can be different from the names of the variables
as known by this procedure. Also, the names and data types of the arguments must exactly
match the arguments declared for the companion Property Get procedure. If you use the
ByVal keyword to declare an argument, Visual Basic passes a copy of the argument to your
property procedure. Any change you make to a ByVal argument does not change the
original variable in the calling procedure. If you use the ByRef keyword, Visual Basic passes
the actual memory address of the variable, allowing the procedure to change the vari-
able’s value in the calling procedure. (If the argument passed by the calling procedure is an
expression, Visual Basic treats it as if you had declared it by using ByVal.) Visual Basic always
passes arrays by reference (using ByRef).

Use the Optional keyword to declare an argument that isn’t required. All optional argu-
ments must be the Variant data type. If you declare an optional argument, all arguments
that follow in the argument list must also be declared as optional. You can specify a default
value only for optional parameters. Use the IsMissing built-in function to test for the
absence of optional parameters. You can also use the ParamArray argument to declare an
array of optional elements of the Variant data type. When you attempt to assign a value to
this property in an object set to the class, you can then pass it an arbitrary number of argu-
ments. The ParamArray argument must be the last argument in the argument list.

You must always declare at least one parameter, object, to be the variable that contains the
object that the calling code wants to assign to your property. This is the object reference that
appears on the right side of the assignment statement executed in the calling code. If you
include an objecttype entry, it must match the object type declared by the companion Prop-
erty Get procedure. Also, when you declare an object type, the caller receives a data type
mismatch error if the assignment statement attempts to pass an incorrect object type. You
can evaluate the properties of this object, set its properties, execute its methods, and save
the object pointer in another variable that your Property Get procedure can later return.

Use the Exit Property statement anywhere in your property procedure to clear any error
conditions and exit your procedure normally, returning to the calling procedure. If Visual
Basic runs your code until it encounters the End Property statement, control is passed to
the calling procedure, but errors are not cleared. If this procedure causes an error and ter-
minates with the End Property statement, Visual Basic passes the error to the calling proce-
dure. See “Trapping Errors,” on page 1551, for details.

	 Understanding Class Modules	 1537

C
h

ap
te

r
24

Examples

To declare a ControlToUpdate property, accept a value from a caller, and save the value
in an object variable defined in the Declarations section of your class module, enter the
following:

Option Explicit

Dim ctlToUpdate As Control

Property Set ControlToUpdate(ctl As Control)

 ' Verify we have the right type of control

 Select Case ctl.ControlType

 ' Text box, combo box, and list box are OK

 Case acTextBox, acListBox, acComboBox

 ' Save the control object

 Set ctlToUpdate = ctl

 Case Else

 Err.Raise 3999

 End Select

End Property

Here is an example of how to establish a new instance of an object defined by a class mod-
ule and then set its FileName property:

Public Property Set ctlToUpdate(Optional intD As Integer = 0, ctl As control)

' This procedure is an example of Property Set

' GetDateOCX opens this form by creating a new instance of the class

' and then sets the required properties via a SET statement.

 ' First, validate the kind of control passed

 Select Case ctl.ControlType

 ' Text box, combo box, and list box are OK

 Case acTextBox, acListBox, acComboBox

 Case Else

 MsgBox "Invalid control passed to the Calendar."

 DoCmd.Close acForm, Me.Name

 End Select

 ' Save the pointer to the control to update

 Set ctlThisControl = ctl

 ' Save the date only value

 intDateOnly = intD

 ' If "date only"

 If (intDateOnly = -1) Then

 ' Resize my window

 DoCmd.MoveSize , , , 3935

 ' Hide some stuff just to be sure

 Me.txtHour.Visible = False

 Me.txtMinute.Visible = False

 Me.lblColon.Visible = False

 Me.lblTimeInstruct.Visible = False

 Me.SetFocus

 End If

 ' Set the flag to indicate we got the pointer

C
h

ap
ter 24

1538	 Chapter 24  Understanding Visual Basic Fundamentals

 intSet = True

 ' Save the "current" value of the control

 varDate = ctlThisControl.Value

 ' Make sure we got a valid date value

 If Not IsDate(varDate) Then

 ' If not, set the default to today

 varDate = Now

 Me.Calendar1.Value = Date

 Me.txtHour = Format(Hour(varDate), "00")

 Me.txtMinute = Format(Minute(varDate), "00")

 Else

 ' Otherwise, set the date/time to the one in the control

 ' Make sure we have a Date data type, not just text

 varDate = CDate(varDate)

 Me.Calendar1.Value = varDate

 Me.txtHour = Format(Hour(varDate), "00")

 Me.txtMinute = Format(Minute(varDate), "00")

 End If

End Property

Controlling the Flow of Statements

Visual Basic provides many ways for you to control the flow of statements in procedures.
You can call other procedures, loop through a set of statements either a calculated number
of times or based on a condition, or test values and conditionally execute sets of statements
based on the result of the condition test. You can also go directly to a set of statements or
exit a procedure at any time. The following sections demonstrate some of (but not all) the
ways that you can control flow in your procedures.

Call Statement

Use a Call statement to transfer control to a subroutine.

Syntax

Call subroutinename [(<arguments>)]

or

subroutinename [<arguments>]

where <arguments> is

{[ByVal | ByRef] <expression> },...

	 Controlling the Flow of Statements	 1539

C
h

ap
te

r
24

Notes

The Call keyword is optional, but if you omit it, you must also omit the parentheses sur-
rounding the parameter list. If the subroutine accepts arguments, the names of the vari-
ables passed by the calling procedure can be different from the names of the variables as
known by the subroutine. You can use the ByVal and ByRef keywords in a Call statement
only when you’re making a call to a dynamic link library (DLL) procedure. Use ByVal for
string arguments to indicate that you need to pass a pointer to the string rather than pass
the string directly. Use ByRef for nonstring arguments to pass the value directly. If you use
the ByVal keyword to declare an argument, Visual Basic passes a copy of the argument to
the subroutine. The subroutine cannot change the original variable in the calling procedure.
If you use the ByRef keyword, Visual Basic passes the actual memory address of the variable,
allowing the procedure to change the variable’s value in the calling procedure. (If the argu-
ment passed by the calling procedure is an expression, Visual Basic treats it as if you had
declared it by using ByVal.)

Examples

To call a subroutine named MySub and pass it an integer variable and an expression, enter
the following:

Call MySub (intMyInteger, curPrice * intQty)

An alternative syntax is

MySub intMyInteger, curPrice * intQty

Do…Loop Statement

Use a Do…Loop statement to define a block of statements that you want executed multiple
times. You can also define a condition that terminates the loop when the condition is false.

Syntax

Do [{While | Until} <condition>]

 [<procedure statements>]

 [Exit Do]

 [<procedure statements>]

Loop

or

Do

 [<procedure statements>]

 [Exit Do]

 [<procedure statements>]

Loop [{While | Until} <condition>]

C
h

ap
ter 24

1540	 Chapter 24  Understanding Visual Basic Fundamentals

Notes

The <condition> is a comparison predicate or expression that Visual Basic can evaluate to
True (nonzero) or False (zero or Null). The While clause is the opposite of the Until clause.
If you specify a While clause, execution continues so long as <condition> is true. If you
specify an Until clause, execution of the loop stops when <condition> becomes true. If
you place a While or an Until clause in the Do clause, the condition must be met for the
statements in the loop to execute at all. If you place a While or an Until clause in the Loop
clause, Visual Basic executes the statements within the loop before testing the condition.

You can place one or more Exit Do statements anywhere within the loop to exit the loop
before reaching the Loop statement. Generally you’ll use the Exit Do statement as part of
some other evaluation statement structure, such as an If…Then…Else statement.

Example

To read all the rows in the tblCompanies table until you reach the end of the recordset (that
is, the EOF property is true), enter the following:

Dim dbContacts As DAO.Database

Dim rcdCompanies As DAO.RecordSet

Set dbContacts = CurrentDb

Set rcdCompanies = dbContacts.OpenRecordSet("tblCompanies")

Do Until rcdCompanies.EOF

 <procedure statements>

 rcdCompanies.MoveNext

Loop

For…Next Statement

Use a For…Next statement to execute a series of statements a specific number of times.

Syntax

For counter = first To last [Step stepamount]

 [<procedure statements>]

 [Exit For]

 [<procedure statements>]

Next [counter]

	 Controlling the Flow of Statements	 1541

C
h

ap
te

r
24

Notes

The counter must be a numeric variable that is not an array or a record element. Visual
Basic initially sets the value of counter to first. If you do not specify a stepamount, the
default stepamount value is +1. If the stepamount value is positive or 0, Visual Basic exe-
cutes the loop so long as counter is less than or equal to last. If the stepamount value is
negative, Visual Basic executes the loop so long as counter is greater than or equal to last.
Visual Basic adds stepamount to counter when it encounters the corresponding Next state-
ment. You can change the value of counter within the For loop, but this might make your
procedure more difficult to test and debug. Changing the value of last within the loop does
not affect execution of the loop. You can place one or more Exit For statements anywhere
within the loop to exit the loop before reaching the Next statement. Generally you’ll use
the Exit For statement as part of some other evaluation statement structure, such as an If…
Then…Else statement.

You can nest one For loop inside another. When you do, you must choose a different coun-
ter name for each loop.

Example

To list in the Immediate window the names of the first five queries in the Conrad Systems
Contacts database, enter the following in a function or sub:

Dim dbContacts As DAO.Database

Dim intI As Integer

Set dbContacts = CurrentDb

For intI = 0 To 4

 Debug.Print dbContacts.QueryDefs(intI).Name

Next intI

For Each…Next Statement

Use a For Each…Next statement to execute a series of statements for each item in a collec-
tion or an array.

Syntax

For Each item In group

 [<procedure statements>]

 [Exit For]

 [<procedure statements>]

Next [item]

C
h

ap
ter 24

1542	 Chapter 24  Understanding Visual Basic Fundamentals

Notes

The item must be a variable that represents an object in a collection or an element of an
array. The group must be the name of a collection or an array. Visual Basic executes the
loop so long as at least one item remains in the collection or the array. All the statements
in the loop are executed for each item in the collection or the array. You can place one or
more Exit For statements anywhere within the loop to exit the loop before reaching the
Next statement. Generally you’ll use the Exit For statement as part of some other evaluation
statement structure, such as an If…Then…Else statement.

You can nest one For Each loop inside another. When you do, you must choose a different
item name for each loop.

Example

To list in the Immediate window the names of all the queries in the Conrad Systems Con-
tacts database, enter the following in a function or sub:

Dim dbContacts As DAO.Database

Dim qdf As DAO.QueryDef

Set dbContacts = CurrentDb

For Each qdf In dbContacts.QueryDefs

 Debug.Print qdf.Name

Next qdf

CAUTION!
If you execute code within the For Each loop that modifies the members of the group,

then you might not process all the members. For example, if you attempt to close all

open forms using the following code, you will skip some open forms because you are

eliminating members from the group (the Forms collection) inside the loop:

Dim frm As Form

For Each frm In Forms

 DoCmd.Close acForm, frm.Name

Next frm

The correct way to close all open forms is as follows:

Dim intI As Integer

For intI = Forms.Count – 1 To 0 Step – 1

 DoCmd.Close acForm, Forms(intI).Name

Next intI

	 Controlling the Flow of Statements	 1543

C
h

ap
te

r
24

GoTo Statement

Use a GoTo statement to jump unconditionally to another statement in your procedure.

Syntax

GoTo {label | linenumber}

Notes

You can label a statement line by starting the line with a string of no more than 40 char-
acters that starts with an alphabetic character and ends with a colon (:). A line label cannot
be a Visual Basic or Access reserved word. If you want, you can also number the statement
lines in your procedure. Each line number must contain only numbers, must be different
from all other line numbers in the procedure, must be the first nonblank characters in a
line, and must contain 40 characters or less. To jump to a line number or a labeled line, use
the GoTo statement and the appropriate label or linenumber.

Example

To jump to the statement line labeled SkipOver, enter the following:

GoTo SkipOver

If…Then…Else Statement

Use an If…Then…Else statement to conditionally execute statements based on the evalua-
tion of a condition.

Syntax

If <condition1> Then

 [<procedure statements 1>]

[ElseIf <condition2> Then

 [<procedure statements 2>]]...

[Else

 [<procedure statements n>]]

End If

or

If <condition> Then <thenstmt> [Else <elsestmt>]

C
h

ap
ter 24

1544	 Chapter 24  Understanding Visual Basic Fundamentals

Notes

Each condition is a numeric or string expression that Visual Basic can evaluate to True (non-
zero) or False (0 or Null). A condition can also consist of multiple comparison expressions
and Boolean operators. In addition, a condition can also be the special TypeOf…Is test to
evaluate a control variable. The syntax for this test is

TypeOf <Object> Is <ObjectType>

where <Object> is the name of an object variable and <ObjectType> is the name of any
valid object type recognized in Access. A common use of this syntax is to loop through all
the controls in a form or report Controls collection and take some action if the control is
of a specific type (for example, change the FontWeight property of all labels to bold). Valid
control types are Attachment, BoundObjectFrame, CheckBox, ComboBox, CommandBut-
ton, CustomControl, Image, Label, Line, ListBox, ObjectFrame, OptionButton, OptionGroup,
PageBreak, Rectangle, Subform, TabControl, TextBox, and ToggleButton.

If the condition is true, Visual Basic executes the statement or statements immediately fol-
lowing the Then keyword. If the condition is false, Visual Basic evaluates the next ElseIf con-
dition or executes the statements following the Else keyword, whichever occurs next.

The alternative syntax does not need an End If statement, but you must enter the entire If…
Then statement on a single line. Both <thenstmt> and <elsestmt> can be either a single
Visual Basic statement or multiple statements separated by colons (:).

Example

To set an integer value depending on whether a string begins with a letter from A through
F, from G through N, or from O through Z, enter the following:

Dim strMyString As String, strFirst As String, _

 intVal As Integer

' Grab the first letter and make it upper case

strFirst = UCase(Left(strMyString, 1))

If strFirst >= "A" And strFirst <= "F" Then

 intVal = 1

ElseIf strFirst >= "G" And strFirst <= "N" Then

 intVal = 2

ElseIf strFirst >= "O" And strFirst <= "Z" Then

 intVal = 3

Else

 intVal = 0

End If

	 Controlling the Flow of Statements	 1545

C
h

ap
te

r
24

RaiseEvent Statement

Use the RaiseEvent statement to signal a declared event in a class module.

Syntax

RaiseEvent eventname [(<arguments>)]

where <arguments> is

{ <expression> },...

Notes

You must always declare an event in the class module that raises the event. You cannot use
RaiseEvent to signal a built-in event (such as Current) of a form or report class module. If
an event passes no arguments, you must not include an empty pair of parentheses when
you code the RaiseEvent statement. An event can be received only by another module that
has declared an object variable using WithEvents that has been set to the class module or
object containing this class.

See the WeddingList.accdb sample database—described in Chapter 25, “Automating Your
Application with Visual Basic,” on the companion CD—for an example using RaiseEvent to
synchronize two forms.

Example

To define an event named Signal that returns a text string and then to signal that event in a
class module, enter the following:

Option Explicit

Public Event Signal(ByVal strMsg As String)

Public Sub RaiseSignal(ByVal strText As String)

 RaiseEvent Signal(strText)

End Sub

Select Case Statement

Use a Select Case statement to execute statements conditionally based on the evaluation of
an expression that is compared to a list or range of values.

C
h

ap
ter 24

1546	 Chapter 24  Understanding Visual Basic Fundamentals

Syntax

Select Case <test expression>

 [Case <comparison list 1>

 [<procedure statements 1>]]

 ...

 [Case Else

 [<procedure statements n>]]

End Select

where <test expression> is any numeric or string expression; where <comparison list> is

{<comparison element>,...}

where <comparison element> is

{expression | expression To expression |

 Is <comparison operator> expression}

and where <comparison operator> is

{= | <> | < | > | <= | >=}

Notes

If the <test expression> matches a <comparison element> in a Case clause, Visual Basic
executes the statements that follow that clause. If the <comparison element> is a single
expression, the <test expression> must equal the <comparison element> for the statements
following that clause to execute. If the <comparison element> contains a To keyword, the
first expression must be less than the second expression (either in numeric value if the
expressions are numbers or in collating sequence if the expressions are strings) and the
<test expression> must be between the first expression and the second expression. If the
<comparison element> contains the Is keyword, the evaluation of <comparison operator>
expression must be true.

If more than one Case clause matches the <test expression>, Visual Basic executes only the
set of statements following the first Case clause that matches. You can include a block of
statements following a Case Else clause that Visual Basic executes if none of the previous
Case clauses matches the <test expression>. You can nest another Select Case statement
within the statements following a Case clause.

	 Controlling the Flow of Statements	 1547

C
h

ap
te

r
24

Example

To assign an integer value to a variable, depending on whether a string begins with a letter
from A through F, from G through N, or from O through Z, enter the following:

Dim strMyString As String, intVal As Integer

Select Case UCase$(Mid$(strMyString, 1, 1))

 Case "A" To "F"

 intVal = 1

 Case "G" To "N"

 intVal = 2

 Case "O" To "Z"

 intVal = 3

 Case Else

 intVal = 0

End Select

Stop Statement

Use a Stop statement to suspend execution of your procedure.

Syntax

Stop

Notes

A Stop statement has the same effect as setting a breakpoint on a statement. You can use
the Visual Basic debugging tools, such as the Step Into and the Step Over buttons and the
Debug window, to evaluate the status of your procedure after Visual Basic halts on a Stop
statement. You should not use the Stop statement in a production application.

While…Wend Statement

Use a While…Wend statement to continuously execute a block of statements so long as a
condition is true.

Syntax

While <condition>

 [<procedure statements>]

Wend

C
h

ap
ter 24

1548	 Chapter 24  Understanding Visual Basic Fundamentals

Notes

A While…Wend statement is similar to a Do…Loop statement with a While clause, except
that you can use an Exit Do statement to exit from a Do loop. Visual Basic provides no simi-
lar Exit clause for a While loop. The <condition> is an expression that Visual Basic can evalu-
ate to True (nonzero) or False (0 or Null). Execution continues so long as the <condition> is
true.

Example

To read all the rows in the tblCompanies table until you reach the end of the recordset,
enter the following in a function or sub:

Dim dbContacts As DAO.Database

Dim rcdCompanies As DAO.RecordSet

Set dbContacts = CurrentDb

Set rcdCompanies = dbContacts.OpenRecordSet("tblCompanies")

While Not rcdCompanies.EOF

 <procedure statements>

 rcdCompanies.MoveNext

Wend

With…End Statement

Use a With statement to simplify references to complex objects in code. You can establish a
base object using a With statement and then use a shorthand notation to refer to objects,
collections, properties, or methods on that object until you terminate the With statement.
When you plan to reference an object many times within a block of code, using With also
improves execution speed.

Syntax

With <object reference>

 [<procedure statements>]

End With

Example

To use shorthand notation on a recordset object to add a new row to a table, enter the
following:

Dim rcd As DAO.Recordset, db As DAO.Database

Set db = CurrentDb

Set rcd = db.OpenRecordset("MyTable", _

 dbOpenDynaset, dbAppendOnly)

With rcd

	 Running Macro Actions and Menu Commands	 1549

C
h

ap
te

r
24

 ' Start a new record

 .Addnew

 ' Set the field values

 ![FieldOne] = "1"

 ![FieldTwo] = "John"

 ![FieldThree] = "Viescas"

 .Update

 .Close

End With

To write the same code without the With, you would have to say:

Dim rcd As DAO.Recordset, db As DAO.Database

Set db = CurrentDb

Set rcd = db.OpenRecordset("MyTable", _

 dbOpenDynaset, dbAppendOnly)

 ' Start a new record

 rcd.Addnew

 ' Set the field values

 rcd![FieldOne] = "1"

 rcd![FieldTwo] = "John"

 rcd![FieldThree] = "Viescas"

 rcd.Update

 rcd.Close

Running Macro Actions and Menu Commands

From within Visual Basic, you can execute most of the macro actions that Access provides
and any of the built-in menu commands. Only a few of the macro actions have direct Visual
Basic equivalents. To execute a macro action or menu command, use the methods of the
DoCmd object, described next.

DoCmd Object

Use the methods of the DoCmd object to execute a macro action or menu command from
within a Visual Basic procedure.

Syntax

DoCmd.actionmethod [actionargument],...

Notes

Some of the macro actions you’ll commonly execute from Visual Basic include ApplyFil-
ter, Close, FindNext and FindRecord (for searching the recordset of the current form and
immediately displaying the result), Hourglass, Maximize, Minimize, MoveSize, OpenForm,

C
h

ap
ter 24

1550	 Chapter 24  Understanding Visual Basic Fundamentals

OpenQuery (to run a query that you don’t need to modify), OpenReport, and RunCommand.
Although you can run the Echo, GoToControl, GoToPage, RepaintObject, and Requery actions
from Visual Basic using a method of the DoCmd object, it’s more efficient to use the Echo,
SetFocus, GoToPage, Repaint, and Requery methods of the object to which the method
applies.

Examples

To open a form named frmCompanies in Form view for data entry, enter the following:

DoCmd.OpenForm "frmCompanies", acNormal, , , acAdd

To close a form named frmContacts, enter the following:

DoCmd.Close acForm, "frmContacts"

Executing an Access Command

To execute an Access command (one of the commands you can find on the ribbon), use
the RunCommand method of either the DoCmd or Application object and supply a single
action argument that is the numeric code for the command.

Syntax

[DoCmd.]RunCommand [actionargument],...

Notes

You can also use one of many built-in constants for actionargument to reference the com-
mand you want. When you use RunCommand, you can leave out the DoCmd or Applica-
tion object if you want.

Examples

To execute the Save command from the Records group on the Home tab, enter the
following:

RunCommand acCmdSaveRecord

To switch an open form to PivotChart view (execute the PivotChart View command in the
Views group on the Home tab), enter the following:

RunCommand acCmdPivotChartView

	 Trapping Errors	 1551

C
h

ap
te

r
24

To open the Find window while the focus is on a form (execute the Find command in the
Find group on the Home tab), enter the following:

RunCommand acCmdFind

Note
Visual Basic provides built-in constants for many of the macro action and RunCom-

mand parameters. For more information, search for “Microsoft Access Constants” and

“RunCommand Method” in Help.

Actions with Visual Basic Equivalents

A few macro actions cannot be executed from a Visual Basic procedure. All but one of these
actions, however, have equivalent statements in Visual Basic, as shown in Table 24-4.

Table 24-4  Visual Basic Equivalents for Macro Actions

Macro Action Visual Basic Equivalent

AddMenu No equivalent

MessageBox MsgBox statement or function

RunApplication* Shell function

RunCode Call subroutine

SendKeys SendKeys statement

SetValue Variable assignment (=)

StopAllMacros Stop or End statement

StopMacro Exit Sub or Exit Function statement

* Database must be Trusted to execute this action.

Trapping Errors

One of the most powerful features of Visual Basic is its ability to trap all errors, analyze
them, and take corrective action. In a well-designed production application, the user should
never see any of the default error messages or encounter a code halt when an error occurs.
Also, setting an error trap is often the best way to test certain conditions. For example, to
find out if a query exists, your code can set an error trap and then attempt to reference the
query object. In an application with hundreds of queries, using an error trap can also be
faster than looping through all QueryDef objects. To enable error trapping, you use an On
Error statement.

C
h

ap
ter 24

1552	 Chapter 24  Understanding Visual Basic Fundamentals

On Error Statement

Use an On Error statement to enable error trapping, establish the procedure to handle error
trapping (the error handler), skip past any errors, or turn off error trapping.

Syntax

On Error {GoTo lineID | Resume Next | GoTo 0}

Notes

Use a GoTo lineID clause to establish a code block in your procedure that handles any error.
The lineID can be a line number or a label.

Use a Resume Next clause to trap errors but skip over any statement that causes an error.
You can call the Err function in a statement immediately following the statement that you
suspect might have caused an error to see whether an error occurred. Err returns 0 if no
error has occurred.

Use a GoTo 0 statement to turn off error trapping for the current procedure. If an error
occurs, Visual Basic passes the error to the error routine in the calling procedure or opens
an error dialog box if there is no previous error routine.

In your error handling statements, you can examine the built-in Err variable (the error num-
ber associated with the error) to determine the exact nature of the error. You can use the
Error function to examine the text of the message associated with the error. If you use line
numbers with your statements, you can use the built-in Erl function to determine the line
number of the statement that caused the error. After taking corrective action, use a Resume
statement to retry execution of the statement that caused the error. Use a Resume Next
statement to continue execution at the statement immediately following the statement that
caused the error. Use a Resume statement with a statement label to restart execution at the
indicated label name or number. You can also use an Exit Function or Exit Sub statement to
reset the error condition and return to the calling procedure.

Examples

To trap errors but continue execution with the next statement, enter the following:

On Error Resume Next

To trap errors and execute the statements that follow the MyError: label when an error
occurs, enter the following:

On Error GoTo MyError

	 Some Complex Visual Basic Examples	 1553

C
h

ap
te

r
24

To turn off error trapping in the current procedure, enter the following:

On Error GoTo 0

If you create and run the following function with zero as the second argument, such as
MyErrExample(3,0), the function will trigger an error by attempting to divide by zero, trap
the error, display the error in an error handling section, and then exit gracefully:

Public Function MyErrExample(intA As Integer, intB As Integer) As Integer

' Set an error trap

On Error GoTo Trap_Error

 ' The following causes an error if intB is zero

 MyErrExample = intA / intB

ExitNice:

 Exit Function

Trap_Error:

 MsgBox "Something bad happened: " & Err & ", " & Error

 Resume ExitNice

End Function

Some Complex Visual Basic Examples

A good way to learn Visual Basic techniques is to study complex code that has been devel-
oped and tested by someone else. In the Conrad Systems Contacts and Housing Reserva-
tions sample databases, you can find dozens of examples of complex Visual Basic code that
perform various tasks. The following sections describe two of the more interesting ones in
detail.

A Procedure to Randomly Load Data

You’ve probably noticed a lot of sample data in both the Conrad Systems Contacts and the
Housing Reservations databases. No, we didn’t sit at our keyboards for hours entering sam-
ple data! Instead, we built a Visual Basic procedure that accepts some parameters entered
on a form. In both databases, the form to load sample data is saved as zfrmLoadData. If
you open this form in Contacts.accdb from the Navigation pane, you’ll see that you use it
to enter a beginning date, a number of days (max 365), a number of companies to load
(max 25), a maximum number of contacts per company (max 10), and a maximum number
of events per contact (max 25). You can also select the check box to delete all existing data
before randomly loading new data. (The zfrmLoadData form in the Housing Reservations
database offers some slightly different options.) Figure 24-15 shows this form with the val-
ues we used to load the Conrad Systems Contacts database.

C
h

ap
ter 24

1554	 Chapter 24  Understanding Visual Basic Fundamentals

Figure 24-15  The zfrmLoadData form in the Conrad Systems Contacts sample database makes it
easy to load sample data.

As you might expect, when you click Load!, our procedure examines the values entered
and loads some sample data into tblCompanies, tblContacts, tblCompanyContacts,
tblContactEvents, and tblContactProducts. The code picks random company names from
ztblCompanies (a table containing a list of fictitious company names) and random person
names from ztblPeople (a table containing names of Microsoft employees who have agreed
to allow their names to be used in sample data). It also chooses random ZIP codes (and cit-
ies, counties, and states) from tlkpZips (a table containing U.S. ZIP codes, city names, state
names, county names, and telephone area codes as of December 2002 that we licensed
from CD Light, LLC—http://www.zipinfo.com). Figure 24-16 shows you the design of the
query used in the code to pick random person names.

Figure 24-16  This query returns person names in a random sequence.

The query creates a numeric value to pass to the Rnd (random) function by grabbing the
first character of the LastName field and then calculating the ASCII code value. The Rnd
function returns some floating-point random value less than 1 but greater than or equal
to zero. Asking the query to sort on this random number results in a random list of values
each time you run the query.

	 Some Complex Visual Basic Examples	 1555

C
h

ap
te

r
24

Note
If you open zqryRandomNames in Datasheet view, the RandNum column won’t appear

to be sorted correctly. In fact, the values change as you scroll through the data or resize

the datasheet window. The database engine actually calls the Rnd function on a first

pass through the data to perform the sort. Because the function depends on a value

of one of the columns (LastName), Access assumes that other users might be changing

this column—and therefore, the calculated result—as you view the data. Access calls

the Rnd function again each time it refreshes the data display, so the actual values you

see aren’t the ones that the query originally used to sort the data.

If you want to run this code, you should either pick a date starting after January 24, 2011,
or select the option to delete all existing records first.

You can find the code in the cmdLoad_Click event procedure that runs when you click the
Load button on the zfrmLoadData form. We’ve added line numbers to some of the lines in
this code listing in the book so that you can follow along with the line-by-line explanations
in Table 24-5, which follows the listing. Because the code loads data into both a multi-
value field and an attachment field in the tblContacts table, it uses the DAO object model
exclusively. (You cannot manipulate multi-value or attachment fields using the ADO object
model.)

 1 Private Sub cmdLoad_Click()

 2 ' Code to load a random set of companies,

 ' contacts, events, and products

 ' Database variable

 3 Dim db As DAO.Database

 ' Table delete list (if starting over)

 Dim rstDel As DAO.Recordset

 ' Company recordset; Contact recordset (insert only)

 Dim rstCo As DAO.Recordset, rstCn As DAO.Recordset

 ' Photo (attachment) and ContactType (multi-value) recordset

 Dim rstComplex As DAO.Recordset2

 ' CompanyContact recordset, ContactEvent recordset (insert only)

 Dim rstCoCn As DAO.Recordset, rstCnEv As DAO.Recordset

 ' A random selection of zips

 Dim rstZipRandom As DAO.Recordset

 ' ..and company names

 Dim rstCoRandom As DAO.Recordset

 ' .. and people names

 Dim rstPRandom As DAO.Recordset

 ' A recordset to pick "close" zip codes for contacts

 Dim rstZipClose As DAO.Recordset

 ' A recordset to pick contact events

 Dim rstEvents As DAO.Recordset

 ' Place to generate Picture Path

C
h

ap
ter 24

1556	 Chapter 24  Understanding Visual Basic Fundamentals

 4 Dim strPicPath As String

 ' Places for path to backend database and folder

 Dim strBackEndPath As String, strBackEndFolder As String

 ' Place to generate a safe "compact to" name

 Dim strNewDb As String

 ' Places to save values from the form controls

 Dim datBeginDate As Date, intNumDays As Integer

 Dim intNumCompanies As Integer, intNumContacts As Integer

 Dim intNumEvents As Integer

 ' Lists of street names and types

 5 Dim strStreetNames(1 To 9) As String, strStreetTypes(1 To 5) As String

 ' As string of digits for street addresses and area codes

 Const strDigits As String = "1234567890"

 ' List of Person Titles by gender

 Dim strMTitles(1 To 6) As String, strFTitles(1 To 7) As String

 ' Place to put male and female picture file names

 Dim strMPicture() As String, intMPicCount As Integer

 Dim strFPicture() As String, intFPicCount As Integer

 ' Some working variables

 Dim intI As Integer, intJ As Integer, intK As Integer

 Dim intL As Integer, intM As Integer, intR As Integer

 Dim varRtn As Variant, intDefault As Integer

 Dim datCurrentDate As Date, datCurrentTime As Date

 ' Variables to assemble Company and Contact records

 Dim strCompanyName As String, strCoAddress As String

 Dim strAreaCode As String, strPAddress As String

 Dim strThisPhone As String, strThisFax As String

 Dim strWebsite As String

 Dim lngThisCompany As Long

 Dim lngThisContact As Long, strProducts As String

 ' Set up to bail if something funny happens (it shouldn't)

 6 On Error GoTo BailOut

 ' Initialize Streets

 7 strStreetNames(1) = "Main"

 strStreetNames(2) = "Central"

 strStreetNames(3) = "Willow"

 strStreetNames(4) = "Church"

 strStreetNames(5) = "Lincoln"

 strStreetNames(6) = "1st"

 strStreetNames(7) = "2nd"

 strStreetNames(8) = "3rd"

 strStreetNames(9) = "4th"

 strStreetTypes(1) = "Street"

 strStreetTypes(2) = "Avenue"

 strStreetTypes(3) = "Drive"

 strStreetTypes(4) = "Parkway"

 strStreetTypes(5) = "Boulevard"

 ' Initialize person titles

 strMTitles(1) = "Mr."

 strMTitles(2) = "Dr."

 strMTitles(3) = "Mr."

 strMTitles(4) = "Mr."

	 Some Complex Visual Basic Examples	 1557

C
h

ap
te

r
24

 strMTitles(5) = "Mr."

 strMTitles(6) = "Mr."

 strFTitles(1) = "Mrs."

 strFTitles(2) = "Dr."

 strFTitles(3) = "Ms."

 strFTitles(4) = "Mrs."

 strFTitles(5) = "Ms."

 strFTitles(6) = "Mrs."

 strFTitles(7) = "Ms."

 ' Search for male picture names (should be in Current Path\Pictures)

 8 strPicPath = Dir(CurrentProject.Path & "\Pictures\PersonM*.bmp")

 ' Loop until Dir returns nothing (end of list or not found)

 9 Do Until (strPicPath = "")

 ' Add 1 to the count

 intMPicCount = intMPicCount + 1

 ' Extend the file name array

 10 ReDim Preserve strMPicture(1 To intMPicCount)

 ' Add the file name to the array

 strMPicture(intMPicCount) = strPicPath

 ' Get next one

 strPicPath = Dir

 11 Loop

 ' Search for female picture names (should be in Current Path\Pictures)

 strPicPath = Dir(CurrentProject.Path & "\Pictures\PersonF*.bmp")

 ' Loop until Dir returns nothing (end of list or not found)

 12 Do Until (strPicPath = "")

 ' Add 1 to the count

 intFPicCount = intFPicCount + 1

 ' Extend the file name array

 ReDim Preserve strFPicture(1 To intFPicCount)

 ' Add the file name to the array

 strFPicture(intFPicCount) = strPicPath

 ' Get next one

 strPicPath = Dir

 13 Loop

 ' Capture values from the form

 14 datBeginDate = CDate(Me.BeginDate)

 intNumDays = Me.NumDays

 intNumCompanies = Me.NumCompanies

 intNumContacts = Me.NumContacts

 intNumEvents = Me.NumEvents

 ' Open the current database

 15 Set db = CurrentDb

 ' Do they want to delete old rows?

 16 If (Me.chkDelete = -1) Then

 ' Verify it

 17 If vbYes = MsgBox("Are you SURE you want to delete " & _

 "all existing rows? " & vbCrLf & vbCrLf & _

 "(This will also compact the data file.)", _

 vbQuestion + vbYesNo + vbDefaultButton2, gstrAppTitle) Then

 ' Open the table that tells us the safe delete sequence

 18 Set rstDel = db.OpenRecordset("SELECT * FROM " & _

C
h

ap
ter 24

1558	 Chapter 24  Understanding Visual Basic Fundamentals

 "ztblDeleteSeq ORDER BY Sequence", _

 dbOpenSnapshot, dbForwardOnly)

 ' Loop through them all

 19 Do Until rstDel.EOF

 ' Check for tblContacts

 If rstDel!TableName = "tblContacts" Then

 ' Can't just delete all rows in the linked table - must do one at a time

 ' Open a recordset on tblContacts

 Set rstCn = db.OpenRecordset("tblContacts", dbOpenDynaset)

 ' Loop through them all

 Do Until rstCn.EOF

 ' Put it in edit mode

 rstCn.Edit

 ' Get the first complex field's recordset (ContactType)

 Set rstComplex = rstCn!ContactType.Value

 ' Loop and delete them all

 Do Until rstComplex.EOF

 ' Delete it

 rstComplex.Delete

 ' Get the next

 rstComplex.MoveNext

 Loop

 ' Get the second complex field's recordset (Photo)

 Set rstComplex = rstCn!Photo.Value

 ' Loop and delete them all

 Do Until rstComplex.EOF

 ' Delete it

 rstComplex.Delete

 ' Get the next

 rstComplex.MoveNext

 Loop

 ' Save the row with the deleted complex data

 rstCn.Update

 ' Now finally delete the contact

 rstCn.Delete

 ' Get the next one

 rstCn.MoveNext

 Loop

 ' Clear the objects

 Set rstComplex = Nothing

 rstCn.Close

 Set rstCn = Nothing

 Else

 ' Execute a delete

 20 db.Execute "DELETE * FROM " & rstDel!TableName, _

 dbFailOnError

 End If

 ' Go to the next row

 rstDel.MoveNext

 Loop

 ' Figure out the path to the backend data

 21 strBackEndPath = Mid(db.TableDefs("tblContacts").Connect, 11)

	 Some Complex Visual Basic Examples	 1559

C
h

ap
te

r
24

 ' Figure out the backend folder

 22 strBackEndFolder = Left(strBackEndPath, _

 InStrRev(strBackEndPath, "\"))

 ' Calculate a "compact to" database name

 strNewDb = "TempContact" & Format(Now, "hhnnss") & ".accdb"

 ' Compact the database into a new name

 23 DBEngine.CompactDatabase strBackEndPath, _

 strBackEndFolder & strNewDb

 ' Delete the old one

 24 Kill strBackEndPath

 ' Rename the new

 Name strBackEndFolder & strNewDb As strBackEndPath

 Else

 ' Turn off the delete flag – changed mind

 Me.chkDelete = 0

 25 End If

 26 End If

 ' Initialize the randomizer on system clock

 27 Randomize

 ' Open all output recordsets

 28 Set rstCo = db.OpenRecordset("tblCompanies", dbOpenDynaset)

 Set rstCn = db.OpenRecordset("tblContacts", dbOpenDynaset)

 Set rstCoCn = db.OpenRecordset("tblCompanyContacts", dbOpenDynaset)

 Set rstCnEv = db.OpenRecordset("tblContactEvents", dbOpenDynaset)

 ' Open the random recordsets

 Set rstZipRandom = db.OpenRecordset("zqryRandomZips", dbOpenDynaset)

 Set rstCoRandom = db.OpenRecordset("zqryRandomCompanies", dbOpenDynaset)

 Set rstPRandom = db.OpenRecordset("zqryRandomNames", dbOpenDynaset)

 ' Open the Events/products list

 Set rstEvents = db.OpenRecordset("zqryEventsProducts", dbOpenDynaset)

 ' Move to the end to get full recordcount

 rstEvents.MoveLast

 ' Turn on the hourglass

 29 DoCmd.Hourglass True

 ' Initialize the status bar

 30 varRtn = SysCmd(acSysCmdInitMeter, "Creating Companies...", _

 intNumCompanies)

 ' Outer loop to add Companies

 31 For intI = 1 To intNumCompanies

 ' Start a new company record

 rstCo.AddNew

 ' Clear the saved website

 strWebsite = ""

 ' Grab the next random "company" name

 32 strCompanyName = rstCoRandom!CompanyName

 ' .. and the website

 33 rstCo!Website = rstCoRandom!CompanyName & "#" & _

 rstCoRandom!Web & "##" & rstCoRandom!CompanyName & " Website"

 strWebsite = rstCo!Website

 34 rstCo!CompanyName = strCompanyName

 ' Generate a random street number

 35 intR = Int((7 * Rnd) + 1)

C
h

ap
ter 24

1560	 Chapter 24  Understanding Visual Basic Fundamentals

 strCoAddress = Mid(strDigits, intR, 4)

 ' Now pick a random street name

 intR = Int((9 * Rnd) + 1)

 strCoAddress = strCoAddress & " " & strStreetNames(intR)

 ' and street type

 intR = Int((5 * Rnd) + 1)

 strCoAddress = strCoAddress & " " & strStreetTypes(intR)

 rstCo!Address = strCoAddress

 ' Fill in random values from the zip code table

 36 rstCo!City = rstZipRandom!City

 rstCo!County = rstZipRandom!County

 rstCo!StateOrProvince = rstZipRandom!State

 rstCo!PostalCode = rstZipRandom!ZipCode

 ' Generate a random Area Code

 37 intR = Int((8 * Rnd) + 1)

 strAreaCode = Mid(strDigits, intR, 3)

 ' Generate a random phone number (0100 - 0148)

 intR = Int((48 * Rnd) + 1) + 100

 strThisPhone = strAreaCode & "555" & Format(intR, "0000")

 rstCo!PhoneNumber = strThisPhone

 ' Add 1 for the fax number

 strThisFax = strAreaCode & "555" & Format(intR + 1, "0000")

 rstCo!FaxNumber = strThisFax

 ' Save the new Company ID

 38 lngThisCompany = rstCo!CompanyID

 ' .. and save the new Company

 rstCo.Update

 ' Now, do some contacts for this company

 ' - calc a random number of contacts

 39 intJ = Int((intNumContacts * Rnd) + 1)

 ' Set up the recordset of Zips "close" to the Work Zip

 40 Set rstZipClose = db.OpenRecordset("SELECT * FROM tlkpZips " & _

 "WHERE ZipCode BETWEEN '" & _

 Format(CLng(rstZipRandom!ZipCode) - 5, "00000") & _

 "' AND '" & Format(CLng(rstZipRandom!ZipCode) + 5, "00000") & _

 "'", dbOpenDyanaset)

 ' Move to last row to get accurate count

 rstZipClose.MoveLast

 ' Make the first contact the company default

 intDefault = True

 ' Loop to add contacts

 41 For intK = 1 To intJ

 ' Start a new record

 rstCn.AddNew

 ' Put in the name info from the random people record

 42 rstCn!LastName = rstPRandom!LastName

 rstCn!FirstName = rstPRandom!FirstName

 rstCn!MiddleInit = rstPRandom!MiddleInit

 rstCn!Suffix = rstPRandom!Suffix

 ' Select title and picture based on gender of person

 43 If rstPRandom!Sex = "f" Then

 ' Pick a random female title and picture

	 Some Complex Visual Basic Examples	 1561

C
h

ap
te

r
24

 intR = Int((7 * Rnd) + 1)

 rstCn!Title = strFTitles(intR)

 ' Make sure we have some picture file names

 If intFPicCount <> 0 Then

 ' Pick a random file name

 intR = Int((intFPicCount * Rnd) + 1)

 strPicPath = strFPicture(intR)

 ' Don't reuse it

 For intL = intR To intFPicCount – 1

 strFPicture(intL) = strFPicture(intL + 1)

 Next intL

 intFPicCount = intFPicCount - 1

 Else

 ' Set empty picture name

 strPicPath = ""

 End If

 44 Else

 ' Pick a random male title and picture

 intR = Int((6 * Rnd) + 1)

 rstCn!Title = strMTitles(intR)

 ' Make sure we have some picture file names

 If intMPicCount <> 0 Then

 ' Pick a random file name

 intR = Int((intMPicCount * Rnd) + 1)

 strPicPath = strMPicture(intR)

 ' Don't reuse it

 For intL = intR To intMPicCount – 1

 strMPicture(intL) = strMPicture(intL + 1)

 Next intL

 intMPicCount = intMPicCount - 1

 Else

 ' Set empty picture name

 strPicPath = ""

 End If

 45 End If

 ' Set contact type to "Customer" – complex data type

 46 Set rstComplex = rstCn!ContactType.Value

 rstComplex.AddNew

 rstComplex!Value = "Customer"

 rstComplex.Update

 47 ' Copy the company website

 rstCn!Website = strWebsite

 ' Set up a dummy email

 rstCn!EmailName = rstPRandom!FirstName & " " & _

 rstPRandom!LastName & "#mailto:" & Left(rstPRandom!FirstName, 1) & _

 rstPRandom!LastName & "@" _

 & Mid(rstCoRandom!Web, Instr(rstCoRandom!Web, "http://www.") + 11)

 ' Strip off the trailing "/"

 rstCn!EmailName = Left(rstCn!EmailName, Len(rstCn!EmailName) – 1)

 ' Pick a random birth date between Jan 1, 1940 and Dec 31, 1979

 ' There are 14,610 days between these dates

 intR = Int((14610 * Rnd) + 1)

C
h

ap
ter 24

1562	 Chapter 24  Understanding Visual Basic Fundamentals

 rstCn!BirthDate = #12/31/1939# + Int((14610 * Rnd) + 1)

 ' Set Default Address to 'work'

 rstCn!DefaultAddress = 1

 ' Copy work address from Company

 rstCn!WorkAddress = strCoAddress

 rstCn!WorkCity = rstZipRandom!City

 rstCn!WorkStateOrProvince = rstZipRandom!State

 rstCn!WorkPostalCode = rstZipRandom!ZipCode

 rstCn!WorkPhone = strThisPhone

 rstCn!WorkFaxNumber = strThisFax

 ' Generate a random street number for home address

 intR = Int((7 * Rnd) + 1)

 strPAddress = Mid(strDigits, intR, 4)

 ' Now pick a random street name

 intR = Int((9 * Rnd) + 1)

 strPAddress = strPAddress & " " & strStreetNames(intR)

 ' and street type

 intR = Int((5 * Rnd) + 1)

 strPAddress = strPAddress & " " & strStreetTypes(intR)

 rstCn!HomeAddress = strPAddress

 ' Position to a "close" random zip

 48 intR = rstZipClose.RecordCount

 intR = Int(intR * Rnd)

 rstZipClose.MoveFirst

 If intR > 0 Then rstZipClose.Move intR

 rstCn!HomeCity = rstZipClose!City

 rstCn!HomeStateOrProvince = rstZipClose!State

 rstCn!HomePostalCode = rstZipClose!ZipCode

 ' Generate a random phone number (0150 - 0198)

 intR = Int((48 * Rnd) + 1) + 149

 rstCn!HomePhone = strAreaCode & "555" & Format(intR, "0000")

 ' Add 1 for the fax number

 rstCn!MobilePhone = strAreaCode & "555" & Format(intR + 1, "0000")

 ' Save the new contact ID

 49 lngThisContact = rstCn!ContactID

 ' If got a random photo name, load it

 50 If strPicPath <> "" Then

 ' Open the special photo editing recordset

 51 Set rstComplex = rstCn!Photo.Value

 rstComplex.Addnew

 rstComplex!FileData.LoadFromFile _

 (CurrentProject.Path & "\Pictures\" & strPicPath)

 rstComplex.Update

 End If

 ' Finally, save the row

 rstCn.Update

 ' Insert linking CompanyContact record

 52 rstCoCn.AddNew

 ' Set the Company ID

 rstCoCn!CompanyID = lngThisCompany

 ' Set the Contact ID

 rstCoCn!ContactID = lngThisContact

	 Some Complex Visual Basic Examples	 1563

C
h

ap
te

r
24

 ' Make this the default company for the contact

 rstCoCn!DefaultForContact = True

 ' Set default for company - 1st contact will be the default

 rstCoCn!DefaultForCompany = intDefault

 ' Reset intDefault after first time through

 intDefault = False

 ' Save the linking row

 rstCoCn.Update

 ' Now, do some contacts events for this contact

 ' - calc a random number of events

 53 intM = Int((intNumEvents * Rnd) + 1)

 ' Clear the Products sold string

 strProducts = ""

 ' Loop to add some events

 54 For intL = 1 To intM

 ' Start a new row

 rstCnEv.AddNew

 ' Set the Contact ID

 rstCnEv!ContactID = lngThisContact

 ' Calculate a random number of days

 intR = Int(intNumDays * Rnd)

 datCurrentDate = datBeginDate + intR

 ' Calculate a random time between 8am and 8pm (no seconds)

 datCurrentTime = CDate(Format(((0.5 * Rnd) + 0.3333), "hh:nn"))

 ' Set the contact date/time

 rstCnEv!ContactDateTime = datCurrentDate + datCurrentTime

 55 TryAgain:

 ' Position to a random event

 56 intR = rstEvents.RecordCount

 intR = Int(intR * Rnd)

 rstEvents.MoveFirst

 If intR > 0 Then rstEvents.Move intR

 ' If a product sale event,

 57 If (rstEvents!ContactEventProductSold = True) Then

 ' Can't sell the same product twice to the same contact

 If InStr(strProducts, _

 Format(rstEvents!ContactEventProductID, "00")) <> 0 Then

 ' ooops. Loop back to pick a different event

 58 GoTo TryAgain

 End If

 End If

 ' Set the Event Type

 59 rstCnEv!ContactEventTypeID = rstEvents!ContactEventTypeID

 ' Set the follow-up

 rstCnEv!ContactFollowUp = rstEvents!ContactEventRequiresFollowUp

 ' Set the follow-up date

 If (rstEvents!ContactEventRequiresFollowUp = True) Then

 rstCnEv!ContactFollowUpDate = datCurrentDate + _

 rstEvents!ContactEventFollowUpDays

 End If

 ' Save the record

 60 rstCnEv.Update

C
h

ap
ter 24

1564	 Chapter 24  Understanding Visual Basic Fundamentals

 ' If this event is a product sale,

 61 If (rstEvents!ContactEventProductSold = True) Then

 ' Call the routine to also add a product record!

 varRtn = Add_Product(lngThisCompany, lngThisContact, _

 rstEvents!ContactEventProductID, datCurrentDate)

 ' Add the product to the products sold string

 strProducts = strProducts & " " & _

 Format(rstEvents!ContactEventProductID, "00")

 End If

 ' Loop to do more events

 62 Next intL

 ' Move to the next random person record

 63 rstPRandom.MoveNext

 ' and loop to do more contacts

 64 Next intK

 65 rstZipClose.Close

 Set rstZipClose = Nothing

 ' Move to the next random zip record

 66 rstZipRandom.MoveNext

 ' Update the status bar

 67 varRtn = SysCmd(acSysCmdUpdateMeter, intI)

 ' Move to the next Company row

 rstCoRandom.MoveNext

 ' Loop until done

 68 Next intI

 ' Clear the status bar

 69 varRtn = SysCmd(acSysCmdClearStatus)

 ' Done with error trapping, too

 On Error GoTo 0

 ' Be nice and close everything up

 rstCo.Close

 rstCn.Close

 rstCoCn.Close

 rstCnEv.Close

 rstZipRandom.Close

 rstCoRandom.Close

 ' Finally, generate invoices for most records if all deleted

 If (Me.chkDelete = -1) Then

 intI = Do_Invoices()

 End If

 ' Turn off the hourglass

 70 DoCmd.Hourglass False

 MsgBox "Done!", vbExclamation, gstrAppTitle

 DoCmd.Close acForm, Me.Name

 71 Done:

 Set rstCo = Nothing

 Set rstCn = Nothing

 Set rstCoCn = Nothing

 Set rstCnEv = Nothing

 Set rstZipRandom = Nothing

 Set rstCoRandom = Nothing

 Set rstComplex = Nothing

	 Some Complex Visual Basic Examples	 1565

C
h

ap
te

r
24

 Set db = Nothing

 Exit Sub

 72 BailOut:

 MsgBox "Unexpected error: " & Err & ", " & Error

 ' Turn off the hourglass

 DoCmd.Hourglass False

 varRtn = SysCmd(acSysCmdClearStatus)

 Resume Done

 73 End Sub

Table 24-5 lists the statement line numbers and explains the code on key lines in the pre-
ceding Visual Basic code example.

Table 24-5  Explanation of Example Code to Load Random Data

Line Explanation

1 Declare the beginning of the subroutine. The subroutine has no arguments.

2 You can begin a comment anywhere on a statement line by preceding the com-
ment with a single quotation mark. You can also create a comment statement
using the Rem statement.

3 Declare local variables for a DAO Database object and all the DAO Recordset
objects used in this code.

4 Beginning of the declarations of all local variables. You should always explicitly
define variables in your code.

5 This procedure uses several arrays in which it stores street names, street types,
male person titles, female person titles, and the paths to male and female pictures.
Code later in the procedure randomly chooses values from these arrays.

6 Set an error trap; the BailOut label is at line 71.

7 Code to initialize the arrays begins here. Note that separate arrays handle male
and female titles.

8 Use the Dir function to find available male picture names in the Pictures subfolder
under the location of the current database. Note that if you move the sample
database, this code won’t find any pictures to load. When Dir finds a matching file,
it returns the file name as a string. The code subsequently calls Dir with no argu-
ments inside the following loop to ask for the next picture.

9 Begin a loop to load male pictures, and keep looping until the picture file name is
an empty string (Dir found no more files).

10 Note the use of ReDim Preserve to dynamically expand the existing file name
array for male pictures without losing any entries already stored.

11 End of the loop started at statement number 9.

12 This loop finds all the female pictures available and loads them into the array that
holds picture file names for females.

13 End of the loop started at statement number 12.

C
h

ap
ter 24

1566	 Chapter 24  Understanding Visual Basic Fundamentals

Line Explanation

14 The next several lines of code capture the values from the form. Validation rules in
the form controls make sure that the data is valid.

15 Initialize the Database object.

16 Check to see if you selected the option to delete all existing rows.

17 Use the MsgBox function to verify that you really want to delete existing data.

18 The ztblDeleteSeq table contains the table names in a correct sequence for deletes
from the bottom up so that this code doesn’t violate any referential integrity rules.
Note that the recordset is opened as a forward-only snapshot for efficiency.

19 Start a loop to process all the table names in ztblDeleteSeq. If tblContacts needs
to be deleted, loop through each contact record individually and delete all com-
plex data from the ContactType and Photo fields. Delete each contact record after
complex data finishes the deletions.

20 Use the Execute method of the Database object to run the DELETE SQL commands
on remaining tables.

21 Figure out the path to the linked data file by examining the Connect property of
one of the linked tables.

22 Extract the folder name of the data file using the Left and InStrRev functions.

23 Use the CompactDatabase method of the DBEngine object to compact the data
file into a new one—TempContacthhmmss.accdb—where hhmmss is the current
time to avoid conflicts.

24 Use the Kill command to delete the old file and the Name command to rename
the compacted temp copy.

25 Terminate the If statement on line 17.

26 Terminate the If statement on line 16.

27 Initialize the randomizer so that all random recordsets are always different.

28 Open all the recordsets needed in this code.

29 Turn the mouse pointer into an hourglass to let you know the transaction is under
way and might take a while. You could also set the Screen.MousePointer property
to 11 (busy).

30 The SysCmd utility function provides various useful options such as finding out
the current directory for msaccess.exe (the Access main program), and the current
version of Access. It also has options to display messages and a progress meter on
the status bar. This code calls SysCmd to initialize the progress meter you see as
the code loads the data.

31 Start the main loop to load company data.

32 Save the company name from the random recordset in a local variable.

33 Generate the website hyperlink from the company name and the Web field.

34 Set the company name in the new company record.

	 Some Complex Visual Basic Examples	 1567

C
h

ap
te

r
24

Line Explanation

35 The next several lines of code use the Rnd function to randomly generate a four-
digit street address and randomly choose a street name and street type from the
arrays loaded earlier.

36 Grab the city, county, state, and ZIP code from the current row in the random ZIP
Code query.

37 Use Rnd again to generate a fake phone area code and phone and fax numbers.

38 The primary key of tblCompanies is an AutoNumber field. Access automatically
generates the next number as soon as you update any field in a new record. This
code saves the new company ID to use in related records and writes the company
record with the Update method.

39 Calculate a random number of contacts to load for the new company based on
the maximum you specified in the form.

40 Open a recordset that chooses the ZIP codes that are five higher or lower than
the random ZIP code for the company. (It makes sense that the employees of the
company live nearby.)

41 Start the loop to add contacts for this company.

42 Update the new contacts record with a random name plucked from the random
person names query.

43 The records in the ztblPeople table have a gender field to help choose an appro-
priate title and picture for the contact. The statements following this If statement
load female data, and the statements following the Else statement on line 44 load
male data.

44 This Else statement matches the If on line 43. Statements following this choose
male data.

45 This End If closes the If on line 43.

46 The ContactType field is a multi-value field, so it must open a recordset on the
field’s Value property even though we’re specifying only one value.

47 Finish generating fields for the contacts record, including the website copied from
the company, a fake e-mail name, and a random birth date and addresses.

48 Choose a random ZIP code for the contact near the company ZIP code from the
recordset opened on line 40. Also generate phone and fax numbers.

49 The primary key for tblContacts is also an AutoNumber field, so save the new
value to use to generate related records and save the new contact.

50 If the code found a good picture file name earlier (male or female), then the fol-
lowing code adds that picture to the record.

51 Photo is an attachment field that works similarly to multi-value fields in code. The
code opens a recordset and uses the LoadFromFile method to insert the picture
using its file path.

52 Create the linking record in tblCompanyContacts from the saved CompanyID and
ContactID. The first contact created is always the default contact for the company.

53 Calculate a random number of events to load for this contact.

C
h

ap
ter 24

1568	 Chapter 24  Understanding Visual Basic Fundamentals

Line Explanation

54 Start the loop to add contact events. The following several lines calculate a ran-
dom contact date and time within the range you specified on the form.

55 Code at line 58 goes here if the random product picked was already sold to this
contact.

56 Choose a random event.

57 If the random event is a product sale, verify that this product isn’t already sold to
this contact. A product can be sold to a contact only once.

58 The code loops back up to line 55 to choose another event if this is a duplicate
product.

59 Finish updating the fields in the new contact event record.

60 Save the new contact event.

61 If the event was a product sale, call the Add_Product function that’s also in this
form module to add a row to tblContactProducts. This code passes the company
ID, contact ID, product ID, and the date of the event to the function. It also saves
the product ID to be sure it isn’t sold again to this contact.

62 This Next statement closes the loop started on line 54.

63 Move to the next random person record.

64 Loop back up to line 41.

65 Close the recordset of ZIP codes close to the company ZIP code.

66 Get the next random ZIP code for the next company.

67 Update the status bar to indicate you’re done with another company.

68 Loop back up to line 31.

69 Clear the status bar and close all recordsets.

70 Clear the hourglass set on line 29. Also issue the final MsgBox confirming that all
data is now loaded. Finally, close this form and exit.

71 Set all recordsets to nothing and exit the subroutine.

72 Any trapped error comes here. This code simply displays the error, clears the
mouse pointer and the status bar, and exits. (If you don’t reset the mouse pointer
and clear the status bar, Access won’t do it for you.)

73 End of the subroutine.

A Procedure to Examine All Error Codes

In the Housing Reservations database (Housing.accdb), we created a function that dynami-
cally creates a new table and then inserts into the table (using DAO) a complete list of all
the error codes used by Access and the text of the error message associated with each error
code. You can find a partial list of the error codes in Help, but the table in the Housing
Reservations sample database provides the best way to see a list of all the error codes. You

	 Some Complex Visual Basic Examples	 1569

C
h

ap
te

r
24

might find this table useful as you begin to create your own Visual Basic procedures and set
error trapping in them.

Note
You can find the ADO equivalent of this example in the modExamples module in the

Conrad Systems Contacts sample database.

The name of the function is CreateErrTable, and you can find it in the modExamples mod-
ule. The function statements are listed next. You can execute this function by entering the
following in the Immediate window:

?CreateErrTable

The sample database contains the ErrTable table, so the code will ask you if you want to
delete and rebuild the table. You should click Yes to run the code. Again, we’ve added line
numbers to some of the lines in this code listing so that you can follow along with the line-
by-line explanations in Table 24-6, which follows the listing.

 1 Function CreateErrTable()

' This function creates a table containing a list of

' all the valid Access application error codes

' You can find the ADO version of this procedure in Contacts.accdb

 2 ' Declare variables used in this function

 3 Dim dbMyDatabase As DAO.Database, tblErrTable As DAO.TableDef, _

 fldMyField As DAO.Field, idxPKey As DAO.Index

 4 Dim rcdErrRecSet As DAO.Recordset, lngErrCode As Long, _

 intMsgRtn As Integer

 5 Dim varReturnVal As Variant, varErrString As Variant, _

 ws As DAO.Workspace

 ' Create Errors table with Error Code and Error String fields

 ' Initialize the MyDatabase database variable

 ' to the current database

 6 Set dbMyDatabase = CurrentDb

 7 Set ws = DBEngine.Workspaces(0)

 ' Trap error if table doesn't exist

 ' Skip to next statement if an error occurs

 8 On Error Resume Next

 9 Set rcdErrRecSet = dbMyDatabase.OpenRecordset("ErrTable")

10 Select Case Err ' See whether error was raised

11 Case 0 ' No error - table must already exist

12 On Error GoTo 0 ' Turn off error trapping

13 intMsgRtn = MsgBox("ErrTable already " & _

 "exists. Do you want to delete and " & _

 "rebuild all rows?", vbQuestion + vbYesNo, _

 "Access 2010 Inside Out")

14 If intMsgRtn = vbYes Then

C
h

ap
ter 24

1570	 Chapter 24  Understanding Visual Basic Fundamentals

 ' Reply was YES—delete rows and rebuild

 ' Run quick SQL to delete rows

15 dbMyDatabase.Execute_

 "DELETE * FROM ErrTable;", dbFailOnError

16 Else ' Reply was NO—done

17 rcdErrRecSet.Close ' Close the table

18 Exit Function ' And exit

19 End If

20 Case 3011, 3078 ' Couldn't find table,

 ' so build it

21 On Error GoTo 0 ' Turn off error trapping

 ' Create a new table to contain error rows

22 Set tblErrTable = _

 dbMyDatabase.CreateTableDef("ErrTable")

 ' Create a field in ErrTable to contain the

 ' error code

23 Set fldMyField = tblErrTable.CreateField(_

 "ErrorCode", DB_LONG)

 ' Append "ErrorCode" field to the fields

 ' collection in the new table definition

24 tblErrTable.Fields.Append fldMyField

 ' Create a field in ErrTable for the error

 ' description

25 Set fldMyField = _

 tblErrTable.CreateField("ErrorString", _

 DB_MEMO)

 ' Append the "ErrorString" field to the fields

 ' collection in the new table definition

26 tblErrTable.Fields.Append fldMyField

 ' Append the new table to the TableDefs

 ' collection in the current database

27 dbMyDatabase.TableDefs.Append tblErrTable

 ' Set text field width to 5" (7200 twips)

 ' (calls sub procedure)

28 SetFieldProperty _

 tblErrTable![ErrorString], _

 "ColumnWidth", DB_INTEGER, 7200

 ' Create a Primary Key

29 Set idxPKey = tblErrTable.CreateIndex("PrimaryKey")

 ' Create and append the field to the index fields collection

30 idxPKey.Fields.Append idxPKey.CreateField("ErrorCode")

 ' Make it the Primary Key

 idxPKey.Primary = True

 ' Create the index

31 tblErrTable.Indexes.Append idxPKey

 ' Set recordset to Errors Table recordset

32 Set rcdErrRecSet = _

 dbMyDatabase.OpenRecordset("ErrTable")

33 Case Else

 ' Can't identify the error—write message

 ' and bail

34 MsgBox "Unknown error in CreateErrTable " & _

	 Some Complex Visual Basic Examples	 1571

C
h

ap
te

r
24

 Err & ", " & Error$(Err), 16

35 Exit Function

36 End Select

 ' Initialize progress meter on the status bar

37 varReturnVal = SysCmd(acSysCmdInitMeter, _

 "Building Error Table", 32767)

 ' Turn on hourglass to show this might take

 ' a while

38 DoCmd.Hourglass True

 ' Start a transaction to make it go fast

39 ws.BeginTrans

 ' Loop through Microsoft Access error codes,

 ' skipping codes that generate

 ' "Application-defined or object-define error"

 ' message.

40 For lngErrCode = 1 To 32767

41 varErrString = AccessError(lngErrCode)

 If IsNothing(varErrString) Or _

 varErrString = "Application-defined or object-defined error" Then

 ' If AccessError returned nothing, then try Error

 varErrString = Error(lngErrCode)

 End If

42 If Not IsNothing(varErrString) Then

43 If varErrString <> "Application-" & _

 "defined or object-defined error" Then

 ' Add each error code and string to

 ' Errors table

44 rcdErrRecSet.AddNew

45 rcdErrRecSet("ErrorCode") = lngErrCode

 ' Put the message text in the record

46 rcdErrRecSet("ErrorString") = varErrString

47 rcdErrRecSet.Update

48 End If

49 End If

 ' Update the status meter

50 varReturnVal = SysCmd(acSysCmdUpdateMeter, _

 lngErrCode)

 ' Process next error code

51 Next lngErrCode

 ' Commit all added rows

52 ws.CommitTrans

 ' Close recordset.

53 rcdErrRecSet.Close

 ' Turn off the hourglass — we're done

54 DoCmd.Hourglass False

 ' And reset the status bar

55 varReturnVal = SysCmd(acSysCmdClearStatus)

 ' Select new table in the Navigation pane

 ' to refresh the list

56 DoCmd.SelectObject acTable, "ErrTable", True

 ' Open a confirmation dialog box

C
h

ap
ter 24

1572	 Chapter 24  Understanding Visual Basic Fundamentals

57 MsgBox "Errors table created."

58 End Function

Table 24-6 lists the statement line numbers and explains the code on each line in the pre-
ceding Visual Basic code example.

Table 24-6  Explanation of Example Code to Examine Error Codes

Line Explanation

1 Declare the beginning of the function. The function has no arguments.

2 You can begin a comment anywhere on a statement line by preceding the com-
ment with a single quotation mark. You can also create a comment statement
using the Rem statement.

3 Declare local variables for a Database object, a TableDef object, a Field object, and
an Index object.

4 Declare local variables for a Recordset object, a Long Integer, and an Integer.

5 Declare local variables for a Variant that is used to accept the return value from
the SysCmd function, a Variant that is used to accept the error string returned by
the AccessError function, and a Workspace object.

6 Initialize the Database object variable by setting it to the current database.

7 Initialize the Workspace object by setting it to the current workspace.

8 Enable error trapping but execute the next statement if an error occurs.

9 Initialize the Recordset object variable by attempting to open the ErrTable table. If
the table does not exist, this generates an error.

10 Call the Err function to see whether an error occurred. The following Case state-
ments check the particular error values that interest you.

11 The first Case statement tests for an Err value of 0, indicating that no error
occurred. If no error occurred, the table already existed and opened successfully.

12 Turn off error trapping because you don’t expect any more errors.

13 Use the MsgBox function to ask whether you want to clear and rebuild all rows in
the existing table. The vbQuestion intrinsic constant asks MsgBox to display the
question icon, and the vbYesNo intrinsic constant requests Yes and No buttons
(instead of the default OK button). The statement assigns the value returned by
MsgBox so that you can test it on the next line.

14 If you click Yes, MsgBox returns the value of the intrinsic constant vbYes. (vbYes
happens to be the integer value 6, but the constant name is easier to remember
than the number.)

15 Run a simple SQL statement to delete all the rows in the error table.

16 Else clause that goes with the If statement on line 14.

17 Close the table if the table exists and you clicked the No button on line 13.

18 Exit the function.

19 End If statement that goes with the If statement on line 14.

	 Some Complex Visual Basic Examples	 1573

C
h

ap
te

r
24

Line Explanation

20 Second Case statement. Error codes 3011 and 3078 are both “object not found.”

21 Turn off error trapping because you don’t expect any more errors.

22 Use the CreateTableDef method on the database to start a new table definition.
This is the same as clicking the Table Design button in the Tables group on the
Create tab on the ribbon.

23 Use the CreateField method on the new table to create the first field object—a
long integer (the intrinsic constant DB_LONG) named ErrorCode.

24 Append the first new field to the Fields collection of the new Table object.

25 Use the CreateField method to create the second field—a memo field named
ErrorString.

26 Append the second new field to the Fields collection of the new Table object.

27 Save the new table definition by appending it to the TableDefs collection of the
Database object. If you were to halt the code at this point and repaint the Naviga-
tion pane, you would find the new ErrTable listed.

28 Call the SetFieldProperty subroutine in this module to set the column width of the
ErrorString field to 7200 twips (5 inches). This ensures that you can see more of
the error text when you open the table in Datasheet view.

29 Use the CreateIndex method of the TableDef to begin building an index.

30 Create a single field and append it to the Fields collection of the index. The fol-
lowing statement sets the Primary property of the index to True to indicate that
this will be the primary key.

31 Save the new primary key index by appending it to the Indexes collection of the
TableDef.

32 Open a recordset by using the OpenRecordset method on the table.

33 This Case statement traps all other errors.

34 Show a message box with the error number and the error message.

35 Exit the function after an unknown error.

36 End Select statement that completes the Select Case statement on line 10.

37 Call the SysCmd function to place a “building table” message on the status bar
and initialize a progress meter. The CreateErrTable function will look at 32,767 dif-
ferent error codes.

38 Turn the mouse pointer into an hourglass to indicate that this procedure will take
a few seconds.

39 Use the BeginTrans method of the Workspace object to start a transaction. State-
ments within a transaction are treated as a single unit. Changes to data are saved
only if the transaction completes success fully with a CommitTrans method. Using
transactions when you’re updating records can speed performance by reducing
disk access.

40 Start a For loop to check each error code from 1 through 32,767.

C
h

ap
ter 24

1574	 Chapter 24  Understanding Visual Basic Fundamentals

Line Explanation

41 Assign the error text returned by the AccessError function to the variable
varErrString. If the string is empty or returned “Application-defined or object-
defined error,” try calling the Error function to get the text of the message.

42 Call the IsNothing function in the modUtility module of the sample database to
test whether the text returned is blank. You don’t want blank rows, so don’t add a
row if the AccessError function for the current error code returns a blank string.

43 Lots of error codes are defined as “Application-defined or object-defined error.”
You don’t want any of these, so this statement adds a row only if the AccessError
function for the current error code doesn’t return this string.

44 Use the AddNew method to start a new row in the table.

45 Set the ErrorCode field equal to the current error code.

46 Save the text of the message in the ErrorString field. Because we defined the field
as a memo, we don’t need to worry about the length of the text.

47 Use the Update method to save the new row.

48 End If statement that completes the If statement on line 43.

49 End If statement that completes the If statement on line 42.

50 After handling each error code, update the progress meter on the status bar to
show how far you’ve gotten.

51 Next statement that completes the For loop begun on line 40. Visual Basic incre-
ments lngErrCode by 1 and executes the For loop again until lngErrCode is
greater than 32,767.

52 CommitTrans method that completes the transaction begun on line 39.

53 After looping through all possible error codes, close the recordset.

54 Change the mouse pointer back to normal.

55 Clear the status bar.

56 Put the focus on the ErrTable table in the Navigation pane.

57 Display a message box confirming that the function has completed.

58 End of the function.

Working with 64-Bit Access Visual Basic for Applications

With the creation of 64-bit versions of the Office 2010 applications, Microsoft has intro-
duced a new 64-bit version of Visual Basic. In general, your Visual Basic code runs without
modification with 64-bit Visual Basic. However, there are a few issues and opportunities
when using 64-bit Visual Basic. For any programming language, the biggest source of
issues when moving between different-sized architectures is the size of pointers. As you
learned earlier in this chapter, pointers are variables that hold memory addresses. When
you are working on 32-bit systems, these pointers are 32-bit variables; and on 64-bit sys-
tems, they are 64-bit variables.

	 Working with 64-Bit Access Visual Basic for Applications	 1575

C
h

ap
te

r
24

One of the great things about Visual Basic is that pointers are managed on behalf of pro-
grammers, relieving them of the tedium of managing pointers themselves. Still, there are
situations in which a programmer needs to manage a pointer manually, in particular when
interacting with the Windows API. Prior to Office 2010, Visual Basic had no official pointer
data type. Moving to 64-bit with Access 2010 has both advantages and disadvantages. The
advantage is that since there are no pointers, most existing Visual Basic code in your appli-
cations works just fine with 64-bit Access without any modifications. None of the data types
in Visual Basic change their size when moving to 64-bit; in particular, a Long is still 32 bits.

The disadvantage is that although “officially” there was no pointer data type, some Visual
Basic code used Long variables to hold memory addresses as an “unofficial” pointer. Micro-
soft, in fact, promoted this behavior for making calls to the Windows operating system.
Since Long variables did not increase in size when moving to 64-bit, executing code that
stored pointers in Long variables will result in unexpected behavior for your applications—
even possibly crashing.

So what does this mean to you as an Access developer? This means that you need to iden-
tify all the places where a pointer could enter or exit Visual Basic and modify them. These
include:

●● Declare statements

●● VarPtr functions

●● StrPtr functions

●● ObjPtr functions

Thankfully, the 64-bit Visual Basic compiler helps identify these situations.

Using Declare Statements

The Visual Basic Declare statement is commonly used to access Windows APIs, although it
can also be used to call any DLL entry point. For example, the following Declare statement
sets up a call to the Windows RegOpenKeyA API for opening a Windows registry key:

Declare Function RegOpenKeyA Lib "advapi32.dll" _

 (ByVal Key As Long, ByVal SubKey As String, _

 NewKey As Long) As Long

The Key and NewKey parameters above are Windows handles—a handle is a pointer. When
you run the statement on 32-bit computers running Windows, Key and NewKey are 32-bit
values and fit nicely into a Long variable. This method of coding is precisely what was done
for years.

C
h

ap
ter 24

1576	 Chapter 24  Understanding Visual Basic Fundamentals

When you are using a 64-bit version of Office 2010, however, pointers and handles are
64-bit values. The big problem here is that the Long variable in Visual Basic is still 32 bits.
Using our example here, consider what happens with NewKey, which is filled in by the
API call. If Visual Basic allocates only 32 bits to hold NewKey and Windows thinks this is a
64-bit quantity, Windows overwrites the adjacent memory to NewKey, resulting in unde-
fined behavior, including possibly crashing Visual Basic. For this reason, Visual Basic blocks
this Declare statement from running on 64-bit Visual Basic until you properly update the
statement.

INSIDE OUT  Setting a Registry Key to Test Upper Memory

You can set a registry key on your computer to force Windows to use memory alloca-

tions into the upper 32 bits of memory to help find instances in your application code

where a Long was not properly upgraded to a LongPtr. You can find more information

about this registry setting at the following page on Microsoft’s website: http://www.

microsoft.com/whdc/system/platform/server/PAE/PAEdrv.mspx.

Using LongPtr Data Types

Before we update the Declare statement, let’s recall what got us into this situation: lack of
an official pointer data type and the subsequent overloading of Long to be the unofficial
pointer data type. If Visual Basic had a pointer data type from the beginning, we could have
written that Declare statement properly so that it runs correctly on both 32-bit and 64-bit
versions of Visual Basic.

In Office 2010, Microsoft introduces a new data type for Visual Basic to fill this role as the
official pointer data type—LongPtr. With 32-bit Visual Basic, LongPtr is a 32-bit quantity;
and with 64-bit Microsoft Visual Basic for Applications (VBA), LongPtr is a 64-bit quantity.

Now, we can rewrite the previous Declare statement, which will work with both 32-bit and
64-bit Visual Basic, as follows:

Declare Function RegOpenKeyA Lib "advapi32.dll" _

 (ByVal Key As LongPtr, ByVal SubKey As String, _

 NewKey As LongPtr) As Long

	 Working with 64-Bit Access Visual Basic for Applications	 1577

C
h

ap
te

r
24

You’ll also need to update any Long sized pointers in User Defined Types (UDTs) that are
passed to and from Declare procedures. Here’s an example with the Windows process infor-
mation structure:

Type PROCESS_INFORMATION

 hProcess As LongPtr

 hThread As LongPtr

 dwProcessId As Long

 dwThreadId As Long

End Type

You need to remember that all Windows handlers are pointers and therefore need to be
accordingly increased in size in your code. You can use LongPtr to hold and pass handles.

Using PtrSafe Attributes

As you’re following along, you might be noticing that we have another problem: How can
Visual Basic tell if a Declare statement’s parameters and return value have been properly
updated to handle pointers and are safe to use with both 32-bit and 64-bit Visual Basic?
The answer, of course, is that it cannot. There are many Declare statements that quite legiti-
mately pass or return Long values that are not pointers.

To address this issue, Microsoft introduced a new attribute for Declare statements called
PtrSafe. This attribute tells Visual Basic that the Declare statement you’re writing is safe
to run with both 32-bit and 64-bit Visual Basic and that all pointer-sized values are prop-
erly handled. Without the PtrSafe attribute, 64-bit Visual Basic does not compile Declare
statements. To maintain backward compatibility, 32-bit Visual Basic continues to compile
Declare statements without the PtrSafe attribute. So, using the example we’ve been work-
ing through previously, the Declare statement is as follows:

Declare PtrSafe Function RegOpenKeyA Lib "advapi32.dll" _

 (ByVal Key As LongPtr, ByVal SubKey As String, _

 NewKey As LongPtr) As Long

Microsoft recommends that all new Declare statements use LongPtr and PtrSafe.

Supporting Older Versions of Access

If you develop Access applications in Access 2010 for users with previous versions of Access,
you still need to address one more issue. Versions of Visual Basic before Access 2010 do not
understand the new data types and attributes and therefore generate errors. If the Visual
Basic code you write for Access 2010 needs to run in previous versions of Access, then you
must wrap the code in the new #If VBA7 construct and include the older format as well.

C
h

ap
ter 24

1578	 Chapter 24  Understanding Visual Basic Fundamentals

This new conditional compilation variable VBA7 is defined only for Visual Basic included
with Access 2010. Using the example Declare statement we’ve been working on previously,
you can write your code like the following:

#If VBA7 Then

 Declare PtrSafe Function RegOpenKeyA Lib "advapi32.dll" _

 (ByVal Key As LongPtr, ByVal SubKey As String, _

 NewKey As LongPtr) As Long

#Else

 Declare Function RegOpenKeyA Lib "advapi32.dll" _

 (ByVal Key As Long, ByVal SubKey As String, _

 NewKey As Long) As Long

#End If

Note that there is also a Win64 conditional compilation variable, which can be useful if the
Declare statement has other differences besides pointer size between 32-bit and 64-bit
platforms. You write your code, in this case, like the following:

#If WIN64 Then

 Declare PtrSafe Function WindowFromPoint Lib "user32" Alias _

 "WindowFromPoint"(ByVal Point As LongLong) As LongPtr

#Else

 Declare PtrSafe Function WindowFromPoint Lib "user32" Alias _

 "WindowFromPoint"(ByVal xPoint As Long, ByVal yPoint As Long) As LongPtr

#End If

Many Access developers create Visual Basic code in their applications using Declare state-
ments based on a text file called Windows API Declarations and Constants for Visual
Basic—Win32API.txt—supplied by Microsoft. The Win32API.txt file includes around 1,500
examples of the most common Windows API calls. For Office 2010, Microsoft updated this
reference file to include information about the new LongPtr data type and PtrSafe attribute,
as outlined earlier. You can download this new reference file, called Win32API_PtrSafe.txt,
from Microsoft’s website at the following location:

http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=035b
72a5-eef9-4baf-8dbc-63fbd2dd982b

Understanding Pointer Valued Functions and LongPtr Type
Coercion

VarPtr, StrPtr, and ObjPtr are functions that return pointers to Visual Basic variables. You can
use these functions to pass pointers to APIs, for example. In 32-bit Visual Basic, these func-
tions return Long values as they always have, but when you use 64-bit VBA, these functions
return LongPtr values. Although this seems correct on the surface, this can pose a problem
with an unexpected result. Consider, for example, the following code:

	 Working with 64-Bit Access Visual Basic for Applications	 1579

C
h

ap
te

r
24

Dim L as Long

Dim X as Long

L = VarPtr(X)

When you use 32-bit Visual Basic with the code sample here, your code should execute
properly because L is a Long (32-bit) and VarPtr returns a Long (32-bit). However, if you
use this code sample with 64-bit Visual Basic, L is a Long (32-bit), but VarPtr is a LongPtr
(64-bit). In this case, we are assigning a possibly large value into a smaller variable. In most
cases, Visual Basic handles this kind of conversion at run time. If the return value from
VarPtr fits in 32 bits, then Visual Basic silently does the downsizing and you won’t see a run-
time error. Because pointer values are unpredictable, however, you might never encounter a
run-time error while developing the application, and end users might only sporadically see
a run-time error. These types of errors are hard to reproduce and very difficult to debug. To
help alleviate this potential issue, 64-bit Visual Basic does not allow a LongPtr to be implic-
itly converted into a Long, even if the value being converted fits in the smaller variable. A
LongPtr value can be explicitly converted by using the CLong() function.

Using LongLong Data Types

Besides LongPtr, Access 2010 Visual Basic includes another new data type called LongLong.
The LongLong data type can hold an 8-byte signed integer value. The LongLong data type
is useful when you are interacting with APIs on a computer running 64-bit Windows that
consume or return 64-bit values. The LongLong data type is available only with the 64-bit
version of Visual Basic. If you to use the LongLong data type in a 32-bit version of Access
2010, you’ll receive a compile error. Table 24-7 shows a summary of the VBA7 language
updates.

Table 24-7  Summary of VBA7 Language Updates

Name Type Description

PtrSafe Keyword Asserts that a Declare statement is targeted for 64-bit sys-
tems. This is required on 64-bit systems.

LongPtr Data Type Type alias that maps to Long on 32-bit systems or
LongLong on 64-bit systems.

LongLong Data Type 8 byte data type that is available only on 64-bit sys-
tems. Supports integer numbers in the range of
–9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.
LongLong is a valid declared type only on 64-bit systems.
In addition, you cannot implicitly convert a LongLong to a
smaller type. For example, you cannot assign a LongLong
data type to a Long. Explicit coercions are allowed, so in
the previous example, you could apply CLng to a LongLong
and assign the result to a Long on 64-bit platforms.

C
h

ap
ter 24

1580	 Chapter 24  Understanding Visual Basic Fundamentals

Name Type Description

^ LongLong
type-declara-
tion character

Explicitly declares a literal value as a LongLong. This is
required to declare a LongLong literal that is larger than
the maximum Long value. If you don’t explicitly declare the
value, Access converts it to a Double.

CLngPtr Type conver-
sion function

Converts a simple expression to a LongPtr. This is valid on
64-bit platforms only.

CLngLng Type conver-
sion function

Converts a simple expression to a LongLong data type. This
is valid on 64-bit platforms only.

vbLongLong VarType
constant

Constant used with the VarType function. Note that there
is no vbLongPtr, since LongPtr is a mapping to Long and
LongLong and therefore is not really a separate type.

DefLngPtr DefType
statement

Sets the default data type for a range of variables as
LongPtr.

DefLngLng DefType
statement

Sets the default data type for a range of variables as
LongLong.

Working with .MDE and .ACCDE files in 64-Bit Environments

As you’ll learn in Chapter 27, “Distributing Your Application,” on the companion CD, .mde
and .accde files are execute-only Access databases in which the Visual Basic source code
(the text that the developer edits) is removed. The binary executable form of the Visual
Basic project remains, however, which allows Visual Basic to continue executing in these
databases. Without the source code, the Visual Basic project cannot be read or modified by
another developer. Many Access developers use this feature included in Access to help pro-
tect their intellectual property.

Unfortunately, the binary executable form of Visual Basic is not compatible between 32-bit
and 64-bit versions of Visual Basic. Normally, this is not a problem when you are using an
.mdb or .accdb database; Visual Basic is designed to recompile from source code if it finds
the binary executable form stored within the database is the wrong type. For .mde and
.accde databases, however, this presents a problem because .mde and .accde files have no
source code. As a result, .mde and .accde databases created with 32-bit Access 2010 can
only be used with 32-bit versions of Access, and .mde and .accde databases created with
64-bit Access 2010 can only be used with 64-bit versions of Access. If you are distributing
an application that needs to be run with both 32-bit and 64-bit versions of Access, you
must create and distribute separate 32-bit and 64-bit .mde and .accde databases.

	 Working with 64-Bit Access Visual Basic for Applications	 1581

C
h

ap
te

r
24

Note

The controls in the MSComCtl and MSComCtl2 libraries were not ported to 64-bit in

Office 2010. You cannot use any of the following controls in a 64-bit environment of

Office 2010:

●● MSComCtl Control Library: TabStrip, Toolbar, StatusBar, ProgressBar, TreeView,
ListView, ImageList, Slider, and ImageComboBox

●● MSComCt2 Control Library: Animation, UpDown, MonthView, DateTimePicker,

and FlatScrollBar

You should now have a basic understanding of how to create functions and subroutines
using Visual Basic. In Chapter 25, you’ll enhance what you’ve learned as you study major
parts of the Conrad Systems Contacts, Housing Reservations, and Wedding List applications.

