

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/12202.aspx

9780735625372

© 2008 Michael Halvorson. All rights reserved.

Microsoft
®
 Visual Basic

®

2008 Step by Step

Michael Halvorson

Table of Contents

Introduction . xvii

What Is Visual Basic 2008? . xvii

Visual Basic .NET Versions .xviii

Upgrading from Microsoft Visual Basic 6.0 .xviii

Finding Your Best Starting Point in This Book. xix

Visual Studio 2008 System Requirements .xxi

Prerelease Software .xxi

Installing and Using the Practice Files . xxii

Installing the Practice Files . xxii

Using the Practice Files .xxiii

Uninstalling the Practice Files . xxvii

Conventions and Features in This Book .xxviii

Conventions .xxviii

Other Features .xxviii

Helpful Support Links .xxix

Visual Studio 2008 Software Support. .xxix

Microsoft Press Web Site .xxix

Support for This Book .xxix

Part I Getting Started with Microsoft Visual Basic 2008

 1 Exploring the Visual Studio Integrated Development
Environment . 3

The Visual Studio Development Environment. 4

Sidebar: Projects and Solutions . 7

The Visual Studio Tools . 8

The Designer. 10

Running a Visual Basic Program . 12

Sidebar: Thinking About Properties . 13
 vii

Microsoft is interested in hearing your feedback so we can continually improve our books and learning

resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

viii Table of Contents
The Properties Window. 14

Moving and Resizing the Programming Tools . 17

Moving and Resizing Tool Windows. 19

Docking Tool Windows . 20

Hiding Tool Windows . 21

Switching Among Open Files and Tools by Using the IDE Navigator 22

Opening a Web Browser Within Visual Studio . 23

Getting Help . 24

Two Sources for Help: Local Help Files and Online Content. 24

Summary of Help Commands . 29

Customizing IDE Settings to Match Step-by-Step Exercises 29

Setting the IDE for Visual Basic Development . 30

Checking Project and Compiler Settings . 31

One Step Further: Exiting Visual Studio . 34

Chapter 1 Quick Reference. 35

 2 Writing Your First Program . 37

Lucky Seven: Your First Visual Basic Program . 37

Programming Steps . 38

Creating the User Interface . 38

Setting the Properties . 45

Sidebar: Reading Properties in Tables . 50

The Picture Box Properties . 51

Writing the Code . 53

A Look at the Button1_Click Procedure . 58

Running Visual Basic Applications. 60

Sample Projects on Disk . 62

Building an Executable File. 62

Deploying Your Application . 64

One Step Further: Adding to a Program . 65

Chapter 2 Quick Reference. 67

 3 Working with Toolbox Controls . 69

The Basic Use of Controls: The Hello World Program . 69

Using the DateTimePicker Control. 75

The Birthday Program. 75

A Word About Terminology. 80

 Table of Contents ix
Controls for Gathering Input . 82

The Input Controls Demo. 85

Looking at the Input Controls Program Code . 88

One Step Further: Using the LinkLabel Control. 91

Chapter 3 Quick Reference. 95

 4 Working with Menus, Toolbars, and Dialog Boxes 97

Adding Menus by Using the MenuStrip Control . 98

Adding Access Keys to Menu Commands . 100

Sidebar: Menu Conventions . 100

Processing Menu Choices . 103

Sidebar: System Clock Properties and Functions 107

Adding Toolbars with the ToolStrip Control. 108

Using Dialog Box Controls . 111

Event Procedures That Manage Common Dialog Boxes 112

Sidebar: Controlling Color Choices

by Setting Color Dialog Box Properties . 115

Sidebar: Adding Nonstandard Dialog Boxes to Programs 118

One Step Further: Assigning Shortcut Keys to Menus. 118

Chapter 4 Quick Reference. 121

Part II Programming Fundamentals

 5 Visual Basic Variables and Formulas, and
the .NET Framework . 125

The Anatomy of a Visual Basic Program Statement . 125

Using Variables to Store Information . 126

Setting Aside Space for Variables: The Dim Statement 126

Implicit Variable Declaration . 128

Using Variables in a Program . 129

Sidebar: Variable Naming Conventions . 132

Using a Variable to Store Input . 133

Sidebar: What Is a Function? . 135

Using a Variable for Output . 136

Working with Specifi c Data Types . 138

Sidebar: User-Defi ned Data Types . 144

Constants: Variables That Don’t Change . 144

x Table of Contents
Working with Visual Basic Operators . 146

Basic Math: The +, –, *, and / Operators . 147

Sidebar: Shortcut Operators . 150

Using Advanced Operators: \, Mod, ^, and & . 150

Working with Methods in the Microsoft .NET Framework 154

Sidebar: What’s New in Microsoft .NET Framework 3.5? 155

One Step Further: Establishing Order of Precedence . 157

Using Parentheses in a Formula . 158

Chapter 5 Quick Reference. 159

 6 Using Decision Structures . 161

Event-Driven Programming . 162

Sidebar: Events Supported by Visual Basic Objects 163

Using Conditional Expressions . 164

If...Then Decision Structures . 165

Testing Several Conditions in an If...Then Decision Structure 165

Using Logical Operators in Conditional Expressions 170

Short-Circuiting by Using AndAlso and OrElse . 173

Select Case Decision Structures . 175

Using Comparison Operators with a Select Case Structure 176

One Step Further: Detecting Mouse Events . 181

Chapter 6 Quick Reference. 183

 7 Using Loops and Timers. 185

Writing For...Next Loops . 186

Displaying a Counter Variable in a TextBox Control. 187

Creating Complex For...Next Loops. 190

Using a Counter That Has Greater Scope . 193

Sidebar: The Exit For Statement. 195

Writing Do Loops . 196

Avoiding an Endless Loop. 197

Sidebar: Using the Until Keyword in Do Loops . 200

The Timer Control . 200

Creating a Digital Clock by Using a Timer Control . 201

Using a Timer Object to Set a Time Limit . 204

One Step Further: Inserting Code Snippets . 207

Chapter 7 Quick Reference. 211

 Table of Contents xi

8 Debugging Visual Basic Programs . 213

Finding and Correcting Errors . 214

Three Types of Errors . 214

Identifying Logic Errors. 215

Debugging 101: Using Debugging Mode . 216

Tracking Variables by Using a Watch Window . 221

Visualizers: Debugging Tools That Display Data. 223

Using the Immediate and Command Windows . 225

Switching to the Command Window . 227

One Step Further: Removing Breakpoints . 228

Chapter 8 Quick Reference. 229

9 Trapping Errors by Using Structured Error Handling. 231

Processing Errors by Using the Try...Catch Statement . 232

When to Use Error Handlers . 232

Setting the Trap: The Try...Catch Code Block. 233

Path and Disc Drive Errors . 234

Writing a Disc Drive Error Handler . 237

Using the Finally Clause to Perform Cleanup Tasks . 239

More Complex Try...Catch Error Handlers . 241

The Err Object. 241

Sidebar: Raising Your Own Errors . 245

Specifying a Retry Period . 245

Using Nested Try...Catch Blocks. 248

Comparing Error Handlers with Defensive Programming Techniques 248

One Step Further: The Exit Try Statement . 249

Chapter 9 Quick Reference. 250

10 Creating Modules and Procedures . 253

Working with Modules . 254

Creating a Module . 254

Working with Public Variables . 258

Sidebar: Public Variables vs. Form Variables . 262

Creating Procedures . 262

Sidebar: Advantages of General-Purpose Procedures. 263

xii Table of Contents
Writing Function Procedures . 264

Function Syntax . 264

Calling a Function Procedure. 266

Using a Function to Perform a Calculation . 266

Writing Sub Procedures . 270

Sub Procedure Syntax . 270

Calling a Sub Procedure . 271

Using a Sub Procedure to Manage Input. 272

One Step Further: Passing Arguments by Value and by Reference. 277

Chapter 10 Quick Reference. 279

 11 Using Arrays to Manage Numeric and String Data 281

Working with Arrays of Variables . 281

Creating an Array . 282

Declaring a Fixed-Size Array . 283

Setting Aside Memory . 284

Working with Array Elements . 285

Creating a Fixed-Size Array to Hold Temperatures 286

Sidebar: The UBound and LBound Functions . 286

Creating a Dynamic Array . 290

Preserving Array Contents by Using ReDim Preserve . 293

Three-Dimensional Arrays . 294

One Step Further: Processing Large Arrays by Using Methods

in the Array Class . 295

The Array Class . 295

Chapter 11 Quick Reference. 302

 12 Working with Collections and the System.Collections
Namespace . 303

Working with Object Collections. 303

Referencing Objects in a Collection . 304

Writing For Each...Next Loops . 304

Experimenting with Objects in the Controls Collection 305

Using the Name Property in a For Each...Next Loop 308

Creating Your Own Collections . 310

Declaring New Collections . 310

 Table of Contents xiii
One Step Further: VBA Collections . 315

Entering the Word Macro. 316

Chapter 12 Quick Reference. 317

 13 Exploring Text Files and String Processing 319

Displaying Text Files by Using a Text Box Object . 319

Opening a Text File for Input . 320

The FileOpen Function . 320

Using the StreamReader Class and My.Computer.FileSystem

to Open Text Files . 325

The StreamReader Class . 325

The My Namespace . 326

Creating a New Text File on Disk. 328

Processing Text Strings with Program Code . 332

The String Class and Useful Methods and Keywords. 333

Sorting Text. 335

Working with ASCII Codes . 336

Sorting Strings in a Text Box . 337

One Step Further: Examining the Sort Text Program Code 340

Chapter 13 Quick Reference. 343

Part III Designing the User Interface

 14 Managing Windows Forms and Controls at Run Time 347

Adding New Forms to a Program . 347

How Forms Are Used. 348

Working with Multiple Forms . 348

Sidebar: Using the DialogResult Property in the Calling Form. 356

Positioning Forms on the Windows Desktop . 356

Minimizing, Maximizing, and Restoring Windows. 361

Adding Controls to a Form at Run Time . 362

Organizing Controls on a Form . 365

One Step Further: Specifying the Startup Object. 368

Sidebar: Console Applications . 370

Chapter 14 Quick Reference. 370

xiv Table of Contents
 15 Adding Graphics and Animation Effects 373

Adding Artwork by Using the System.Drawing Namespace. 374

Using a Form’s Coordinate System . 374

The System.Drawing.Graphics Class . 375

Using the Form’s Paint Event . 376

Adding Animation to Your Programs . 378

Moving Objects on the Form. 379

The Location Property . 380

Creating Animation by Using a Timer Object . 380

Expanding and Shrinking Objects While a Program Is Running 385

One Step Further: Changing Form Transparency . 387

Chapter 15 Quick Reference. 389

 16 Inheriting Forms and Creating Base Classes 391

Inheriting a Form by Using the Inheritance Picker . 392

Creating Your Own Base Classes . 397

Sidebar: Nerd Alert . 398

Adding a New Class to Your Project . 399

One Step Further: Inheriting a Base Class . 406

Sidebar: Further Experiments with Object-Oriented

Programming . 409

Chapter 16 Quick Reference. 409

 17 Working with Printers . 411

Using the PrintDocument Class . 411

Printing Text from a Text Box Object . 416

Printing Multipage Text Files . 420

One Step Further: Adding Print Preview and Page Setup Dialog Boxes. 427

Chapter 17 Quick Reference. 434

 Table of Contents xv

Part IV Database and Web Programming

18 Getting Started with ADO.NET . 437

Database Programming with ADO.NET . 437

Database Terminology . 438

Working with an Access Database .440

The Data Sources Window . 449

Using Bound Controls to Display Database Information. 455

One Step Further: SQL Statements, LINQ, and Filtering Data 459

Chapter 18 Quick Reference. .464

19 Data Presentation Using the DataGridView Control. 465

Using DataGridView to Display Database Records. 465

Formatting DataGridView Cells . 478

Datacentric Focus: Adding a Second Grid and Navigation Control 481

One Step Further: Updating the Original Database. .484

Sidebar: Data Access in a Web Forms Environment. 487

Chapter 19 Quick Reference. 487

20 Creating Web Sites and Web Pages by Using
Visual Web Developer and ASP.NET . 489

Inside ASP.NET . 490

Web Pages vs. Windows Forms . 491

Server Controls . 492

HTML Controls . 493

Building a Web Site by Using Visual Web Developer . 494

Considering Software Requirements

for ASP.NET Programming . 494

Using the Web Page Designer . 497

Adding Server Controls to a Web Site . 500

Writing Event Procedures for Web Page Controls 503

Sidebar: Validating Input Fields on a Web Page. 508

Adding Additional Web Pages and Resources to a Web Site 508

Displaying Database Records on a Web Page. 514

One Step Further: Setting the Web Site Title in Internet Explorer. 521

Chapter 20 Quick Reference. 523

xvi Table of Contents
Appendix

Where to Go for More Information. 525

Visual Basic Web Sites . 525

Books About Visual Basic and Visual Studio Programming 527

Visual Basic Programming . 527

Microsoft .NET Framework. 527

Database Programming with ADO.NET . 528

Web Programming with ASP.NET . 528

Visual Basic for Applications Programming. 528

General Books about Programming and Computer Science 529

Index . 531

About the Author. 545
Microsoft is interested in hearing your feedback so we can continually improve our books and learning

resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

Chapter 5

Visual Basic Variables and Formulas,
and the .NET Framework

After completing this chapter, you will be able to:

Q Use variables to store data in your programs.

Q Get input by using the InputBox function.

Q Display messages by using the MsgBox function.

Q Work with different data types.

Q Use variables and operators to manipulate data.

Q Use methods in the .NET Framework.

Q Use arithmetic operators and functions in formulas.

In this chapter, you’ll learn how to use variables and constants to store data temporarily in your

program, and how to use the InputBox and MsgBox functions to gather and present informa-

tion by using dialog boxes. You’ll also learn how to use functions and formulas to perform

calculations, and how to use arithmetic operators to perform tasks such as multiplication and

string concatenation. Finally, you’ll learn how to tap into the powerful classes and methods of

the Microsoft .NET Framework 3.5 to perform mathematical calculations and other useful work.

The Anatomy of a Visual Basic Program Statement

As you learned in Chapter 2, “Writing Your First Program,” a line of code in a Visual Basic

program is called a program statement. A program statement is any combination of Visual

Basic keywords, properties, object names, variables, numbers, special symbols, and other

values that collectively create a valid instruction recognized by the Visual Basic compiler.

A complete program statement can be a simple keyword, such as

End

which halts the execution of a Visual Basic program, or it can be a combination of elements,

such as the following statement, which uses the TimeString property to assign the current

system time to the Text property of the Label1 object:

Label1.Text = TimeString
 125

126 Part II Programming Fundamentals
The rules of construction that must be used when you build a programming statement are

called statement syntax. Visual Basic shares many of its syntax rules with earlier versions of

the BASIC programming language and with other language compilers. The trick to writing

good program statements is learning the syntax of the most useful language elements and

then using those elements correctly to process the data in your program. Fortunately, Visual

Basic does a lot of the toughest work for you, so the time you spend writing program code is

relatively short, and you can reuse the results in future programs. The Visual Studio IDE also

points out potential syntax errors and suggests corrections, much like the AutoCorrect fea-

ture of Microsoft Offi ce Word.

In this chapter and the following chapters, you’ll learn the most important Visual Basic key-

words and program statements, as well as many of the objects, properties, and methods

provided by Visual Studio controls and the .NET Framework. You’ll fi nd that these keywords

and objects complement nicely the programming skills you’ve already learned and will help

you write powerful programs in the future. The fi rst topics—variables and data types—are

critical features of nearly every program.

Using Variables to Store Information

A variable is a temporary storage location for data in your program. You can use one or

many variables in your code, and they can contain words, numbers, dates, properties,

or other values. By using variables, you can assign a short and easy-to-remember name

to each piece of data you plan to work with. Variables can hold information entered by

the user at run time, the result of a specifi c calculation, or a piece of data you want to

display on your form. In short, variables are handy containers that you can use to store

and track almost any type of information.

Using variables in a Visual Basic program requires some planning. Before you can use a

variable, you must set aside memory in the computer for the variable’s use. This process is

a little like reserving a seat at a theater or a baseball game. I’ll cover the process of making

reservations for, or declaring, a variable in the next section.

Setting Aside Space for Variables: The Dim Statement

Since the release of Microsoft Visual Basic .NET 2003, it has been necessary for Visual

Basic programmers to explicitly declare variables before using them. This was a change

from Visual Basic 6 and earlier versions of Visual Basic, where (under certain circumstances)

you could declare variables implicitly—in other words, simply by using them and without

a Dim statement. The earlier practice was fl exible but rather risky—it created the potential

for variable confusion and misspelled variable names, which introduced potential bugs into

the code that might or might not be discovered later.

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 127
In Visual Basic 2008, a bit of the past has returned in the area of variable declaration. It is

possible once again to declare a variable implicitly. I don’t recommend this, however, so I

won’t discuss this new feature until you learn the recommended programming practice,

which experienced programmers far and wide will praise you for adopting.

To declare a variable in Visual Basic 2008, type the variable name after the Dim statement.

(Dim stands for dimension.) This declaration reserves room in memory for the variable when

the program runs and lets Visual Basic know what type of data it should expect to see later.

Although this declaration can be done at any place in the program code (as long as the

declaration happens before the variable is used), most programmers declare variables in

one place at the top of their event procedures or code modules.

For example, the following statement creates space for a variable named LastName that will

hold a textual, or string, value:

Dim LastName As String

Note that in addition to identifying the variable by name, I’ve used the As keyword to give the

variable a particular type, and I’ve identifi ed the type by using the keyword String. (You’ll learn

about other data types later in this chapter.) A string variable contains textual information:

words, letters, symbols—even numbers. I fi nd myself using string variables a lot; they hold

names, places, lines from a poem, the contents of a fi le, and many other “wordy” data.

Why do you need to declare variables? Visual Basic wants you to identify the name and the

type of your variables in advance so that the compiler can set aside the memory the program

will need to store and process the information held in the variables. Memory management

might not seem like a big deal to you (after all, modern personal computers have lots of

RAM and gigabytes of free hard disk space), but in some programs, memory can be con-

sumed quickly, and it’s a good practice to take memory allocation seriously even as you

take your fi rst steps as a programmer. As you’ll soon see, different types of variables have

different space requirements and size limitations.

Note In some earlier versions of Visual Basic, specifi c variable types (such as String or Integer)

aren’t required—information is simply held by using a generic (and memory hungry) data type

called Variant, which can hold data of any size or format. Variants are not supported in Visual

Basic 2008. Although they are handy for beginning programmers, their design makes them slow

and ineffi cient, and they allow variables to be converted from one type to another too easily—

often causing unexpected results. As you’ll learn later, however, you can still store information

in generic containers called Object, which are likewise general-purpose in function but rather

ineffi cient in size.

128 Part II Programming Fundamentals
After you declare a variable, you’re free to assign information to it in your code by using

the assignment operator (=). For example, the following program statement assigns the last

name “Jefferson” to the LastName variable:

LastName = "Jefferson"

Note that I was careful to assign a textual value to the LastName variable because its data

type is String. I can also assign values with spaces, symbols, or numbers to the variable,

such as

LastName = "1313 Mockingbird Lane"

but the variable is still considered a string value. The number portion could be used in a

mathematical formula only if it were fi rst converted to an integer or a fl oating-point value

by using one of a handful of conversion functions I’ll discuss later in this book.

After the LastName variable is assigned a value, it can be used in place of the name

“Jefferson” in your code. For example, the assignment statement

Label1.Text = LastName

displays “Jefferson” in the label named Label1 on your form.

Implicit Variable Declaration

If you really want to declare variables “the old way” in Visual Basic 2008—that is, without

explicitly declaring them by using the Dim statement—you can place the Option Explicit Off

statement at the very top of your form’s or module’s program code (before any event proce-

dures), and it will turn off the Visual Basic default requirement that variables be declared before

they’re used. As I mentioned earlier, I don’t recommend this statement as a permanent addi-

tion to your code, but you might fi nd it useful temporarily as you convert older Visual Basic

programs to Visual Studio 2008.

Another possibility is to use the new Option Infer statement, which has been added to Visual

Basic 2008. If Option Infer is set to “On”, Visual Basic will deduce or infer the type of a variable

by examining the initial assignment you make. This allows you to declare variables without

specifi cally identifying the type used, and allowing Visual Basic to make the determination.

For example, the expression

Dim attendance = 100

will declare the variable named attendance as an Integer, because 100 is an integer expression.

In other words, with Option Infer set to “On”, it is the same as typing

Dim attendance As Integer = 100

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 129

U

Likewise, the expression

Dim address = "1012 Daisy Lane"

will declare the variable address as type String, because its initial assignment was of type

String. If you set Option Infer to “Off”, however, Visual Basic will declare the variable as type

Object—a general (though somewhat bulky and ineffi cient) container for any type of data.

If you plan to use Option Infer to allow this type of inferred variable declaration (a fl exible

approach, but one that could potentially lead to unexpected results), place the following

two statements at the top of your code module (above the Class Form statement):

Option Explicit Off

Option Infer On

Option Explicit Off allows variables to be declared as they are used, and Option Infer On

allows Visual Basic to determine the type automatically. You can also set these options

using the Options command on the Tools menu as discussed in Chapter 1, “Exploring

the Visual Studio Integrated Development Environment.”

sing Variables in a Program

Variables can maintain the same value throughout a program, or they can change values

several times, depending on your needs. The following exercise demonstrates how a variable

named LastName can contain different text values and how the variable can be assigned to

object properties.

Change the value of a variable

1. Start Visual Studio.

2. On the File menu, click Open Project.

The Open Project dialog box opens.

3. Open the Variable Test project in the c:\vb08sbs\chap05\variable test folder.

4. If the project’s form isn’t visible, click Form1.vb in Solution Explorer, and then click the

View Designer button.

The Variable Test form opens in the Designer. Variable Test is a skeleton program—it

contains a form with labels and buttons for displaying output, but little program code.

(I create these skeleton programs now and then to save you time, although you can

also create the project from scratch.) You’ll add code in this exercise.

130 Part II Programming Fundamentals

The Variable Test form looks like this:

The form contains two labels and two buttons. You’ll use variables to display information

in each of the labels.

Note The label objects look like boxes because I set their BorderStyle properties to

Fixed3D.

5. Double-click the Show button.

The Button1_Click event procedure appears in the Code Editor.

6. Type the following program statements to declare and use the LastName variable:

Dim LastName As String

LastName = "Luther"

Label1.Text = LastName

LastName = "Bodenstein von Karlstadt"

Label2.Text = LastName

The program statements are arranged in three groups. The fi rst statement declares

the LastName variable by using the Dim statement and the String type. After you

type this line, Visual Studio places a green jagged line under the LastName variable,

because it has been declared but not used in the program. There is nothing wrong

here—Visual Studio is just reminding you that a new variable has been created and

is waiting to be used.

Tip If the variable name still has a jagged underline when you fi nish writing your program,

it could be a sign that you misspelled a variable name somewhere within your code.

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 131

The second and third lines assign the name “Luther” to the LastName variable and

then display this name in the fi rst label on the form. This example demonstrates one

of the most common uses of variables in a program—transferring information to

a property. As you have seen before, all string values assigned to variables are dis-

played in red type.

The fourth line assigns the name “Bodenstein von Karlstadt” to the LastName variable

(in other words, it changes the contents of the variable). Notice that the second string

is longer than the fi rst and contains a few blank spaces. When you assign text strings

to variables, or use them in other places, you need to enclose the text within quotation

marks. (You don’t need to do this with numbers.)

Finally, keep in mind another important characteristic of the variables being declared

in this event procedure—they maintain their scope, or hold their value, only within the

event procedure you’re using them in. Later in this chapter, you’ll learn how to declare

variables so that they can be used in any of your form’s event procedures.

7. Click the Form1.vb [Design] tab to display the form again.

8. Double-click the Quit button.

The Button2_Click event procedure appears in the Code Editor.

9. Type the following program statement to stop the program:

End

Your screen looks like this:

10. Click the Save All button on the Standard toolbar to save your changes.

132 Part II Programming Fundamentals

11. Click the Start Debugging button on the Standard toolbar to run the program.

The program runs in the IDE.

12. Click the Show button.

The program declares the variable, assigns two values to it, and copies each value

to the appropriate label on the form. The program produces the output shown in

the following fi gure.

13. Click the Quit button to stop the program.

The program stops, and the development environment returns.

Variable Naming Conventions

Naming variables can be a little tricky because you need to use names that are short

but intuitive and easy to remember. To avoid confusion, use the following conventions

when naming variables:

Q Begin each variable name with a letter or underscore. This is a Visual Basic re-

quirement. Variable names can contain only letters, underscores, and numbers.

Q Although variable names can be virtually any length, try to keep them under 33

characters to make them easier to read. (Variable names are limited to 255 char-

acters in Visual Basic 6, but that’s no longer a constraint.)

Q Make your variable names descriptive by combining one or more words when

it makes sense to do so. For example, the variable name SalesTaxRate is much

clearer than Tax or Rate.

Q Use a combination of uppercase and lowercase characters and numbers. An

accepted convention is to capitalize the fi rst letter of each word in a variable; for

example, DateOfBirth. However, some programmers prefer to use so-called camel

casing (making the fi rst letter of a variable name lowercase) to distinguish variable

names from functions and module names, which usually begin with uppercase

letters. Examples of camel casing include dateOfBirth, employeeName, and

counter.

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 133
Q Don’t use Visual Basic keywords, objects, or properties as variable names. If you

do, you’ll get an error when you try to run your program.

Q Optionally, you can begin each variable name with a two-character or three-

character abbreviation corresponding to the type of data that’s stored in the

variable. For example, use strName to show that the Name variable contains

string data. Although you don’t need to worry too much about this detail now,

you should make a note of this convention for later—you’ll see it in parts of the

Visual Studio documentation and in many of the advanced books about Visual

Basic programming. (This convention and abbreviation scheme was originally

created by Microsoft Distinguished Engineer Charles Simonyi and is sometimes

called the Hungarian Naming Convention.)

Using a Variable to Store Input

One practical use for a variable is to temporarily hold information that was entered by the

user. Although you can often use an object such as a list box or a text box to gather this infor-

mation, at times you might want to deal directly with the user and save the input in a variable

rather than in a property. One way to gather input is to use the InputBox function to display a

dialog box on the screen and then use a variable to store the text the user types. You’ll try this

approach in the following example.

Get input by using the InputBox function

 1. On the File menu, click Open Project.

The Open Project dialog box opens.

 2. Open the Input Box project in the c:\vb08sbs\chap05\input box folder.

The Input Box project opens in the IDE. Input Box is a skeleton program.

 3. If the project’s form isn’t visible, click Form1.vb in Solution Explorer, and then click the

View Designer button.

The form contains one label and two buttons. You’ll use the InputBox function to get

input from the user, and then you’ll display the input in the label on the form.

 4. Double-click the Input Box button.

The Button1_Click event procedure appears in the Code Editor.

134 Part II Programming Fundamentals

5. Type the following program statements to declare two variables and call the InputBox

function:

Dim Prompt, FullName As String

Prompt = "Please enter your name."

FullName = InputBox(Prompt)

Label1.Text = FullName

This time, you’re declaring two variables by using the Dim statement: Prompt and

FullName. Both variables are declared using the String type. (You can declare as many

variables as you want on the same line, as long as they are of the same type.) Note that

in Visual Basic 6, this same syntax would have produced different results. Dim would

create the Prompt variable using the Variant type (because no type was specifi ed) and

the FullName variable using the String type. But this logical inconsistency has been

fi xed in Visual Basic versions 2002 and later.

The second line in the event procedure assigns a text string to the Prompt variable.

This message is used as a text argument for the InputBox function. (An argument is

a value or an expression passed to a procedure or a function.) The next line calls the

InputBox function and assigns the result of the call (the text string the user enters) to

the FullName variable. InputBox is a special Visual Basic function that displays a dia-

log box on the screen and prompts the user for input. In addition to a prompt string,

the InputBox function supports other arguments you might want to use occasionally.

Consult the Visual Studio documentation for details.

After InputBox has returned a text string to the program, the fourth statement in the

procedure places the user’s name in the Text property of the Label1 object, which

displays it on the form.

Note In older versions of BASIC, the InputBox function included a $ character at the end

to help programmers remember that the function returned information in the string ($)

data type. String variables were also identifi ed with the $ symbol on occasion. These days

we don’t use character abbreviations for data types. String ($), Integer (%), and the other

type abbreviations are now relics.

6. Save your changes.

7. Click the Start Debugging button on the Standard toolbar to run the program.

The program runs in the IDE.

8. Click the Input Box button.

Visual Basic executes the Button1_Click event procedure, and the Input Box dialog box

opens on your screen, as shown here:

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 135

9. Type your full name, and then click OK.

The InputBox function returns your name to the program and places it in the FullName

variable. The program then uses the variable to display your name on the form, as

shown here:

Use the InputBox function in your programs anytime you want to prompt the user for

information. You can use this function in combination with the other input controls to

regulate the fl ow of data into and out of a program. In the next exercise, you’ll learn

how to use a similar function to display text in a dialog box.

10. Click the Quit button on the form to stop the program.

The program stops, and the development environment reappears.

What Is a Function?

InputBox is a special Visual Basic keyword known as a function. A function is a statement

that performs meaningful work (such as prompting the user for information or calculating

an equation) and then returns a result to the program. The value returned by a function

can be assigned to a variable, as it was in the Input Box program, or it can be assigned to

a property or another statement or function. Visual Basic functions often use one or more

arguments to defi ne their activities. For example, the InputBox function you just executed

used the Prompt variable to display dialog box instructions for the user. When a function

uses more than one argument, commas separate the arguments, and the whole group of

arguments is enclosed in parentheses. The following statement shows a function call that

has two arguments:

FullName = InputBox(Prompt, Title)

Notice that I’m using italic in this syntax description to indicate that certain items are

placeholders for information you specify. This is a style you’ll fi nd throughout the book

and in the Visual Studio documentation.

136 Part II Programming Fundamentals
Using a Variable for Output

You can display the contents of a variable by assigning the variable to a property (such as

the Text property of a label object) or by passing the variable as an argument to a dialog box

function. One useful dialog box function for displaying output is the MsgBox function. When

you call the MsgBox function, it displays a dialog box, sometimes called a message box, with

various options that you can specify. Like InputBox, it takes one or more arguments as input,

and the results of the function call can be assigned to a variable. The syntax for the MsgBox

function is

ButtonClicked = MsgBox(Prompt, Buttons, Title)

where Prompt is the text to be displayed in the message box; Buttons is a number that specifi es

the buttons, icons, and other options to display for the message box; and Title is the text dis-

played in the message box title bar. The variable ButtonClicked is assigned the result returned

by the function, which indicates which button the user clicked in the dialog box.

If you’re just displaying a message using the MsgBox function, the ButtonClicked variable, the

assignment operator (=), the Buttons argument, and the Title argument are optional. You’ll

be using the Title argument, but you won’t be using the others in the following exercise; for

more information about them (including the different buttons you can include in MsgBox

and a few more options), search for MsgBox Function in the Visual Studio documentation.

Note Visual Basic provides both the MsgBox function and the MessageBox class for displaying

text in a message box. The MessageBox class is part of the System.Windows.Forms namespace, it

takes arguments much like MsgBox, and it is displayed by using the Show method. I’ll use both

MsgBox and MessageBox in this book.

Now you’ll add a MsgBox function to the Input Box program to display the name the user

enters in the Input Box dialog box.

Display a message by using the MsgBox function

 1. If the Code Editor isn’t visible, double-click the Input Box button on the Input Box form.

The Button1_Click event procedure appears in the Code Editor. (This is the code you

entered in the last exercise.)

 2. Select the following statement in the event procedure (the last line):

Label1.Text = FullName

This is the statement that displays the contents of the FullName variable in the label.

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 137

3. Press the Delete key to delete the line.

The statement is removed from the Code Editor.

4. Type the following line into the event procedure as a replacement:

MsgBox(FullName, , "Input Results")

This new statement will call the MsgBox function, display the contents of the FullName

variable in the dialog box, and place the words Input Results in the title bar. (The op-

tional Buttons argument and the ButtonClicked variable are irrelevant here and have

been omitted.) Your event procedure looks like this:

5. Click the Start Debugging button on the Standard toolbar.

6. Click the Input Box button, type your name in the input box, and then click OK.

Visual Basic stores the input in the program in the FullName variable and then displays

it in a message box. Your screen looks similar to this:

7. Click OK to close the message box. Then click Quit to close the program.

The program closes, and the development environment returns.

138 Part II Programming Fundamentals
Working with Specifi c Data Types

The String data type is useful for managing text in your programs, but what about numbers,

dates, and other types of information? To allow for the effi cient memory management of all

types of data, Visual Basic provides several additional data types that you can use for your

variables. Many of these are familiar data types from earlier versions of BASIC or Visual Basic,

and some of the data types were introduced in Visual Studio 2005 to allow for the effi cient

processing of data in newer 64-bit computers.

The following table lists the fundamental (or elementary) data types in Visual Basic. Four new

data types were added in Visual Basic 2005: SByte, UShort, UInteger, and ULong. SByte allows

for “signed” byte values—that is, for both positive and negative numbers. UShort, UInteger,

and ULong are “unsigned” data types—meaning that they cannot hold negative numbers.

(However, as unsigned data types they offer twice the positive-number range of their signed

counterparts, as shown in the table below.) If your program needs to perform a lot of calcu-

lations, you’ll gain a performance advantage in your programs if you choose the right data

type for your variables—a size that’s neither too big nor too small. In the next exercise, you’ll

see how several of these data types work.

Note Variable storage size is measured in bits. The amount of space required to store one

standard (ASCII) keyboard character in memory is 8 bits, which equals 1 byte.

Data type Size Range Sample usage

Short 16-bit -32,768 through 32,767 Dim Birds As Short

Birds = 12500

UShort 16-bit 0 through 65,535 Dim Days As UShort

Days = 55000

Integer 32-bit -2,147,483,648 through

2,147,483,647

Dim Insects As Integer

Insects = 37500000

UInteger 32-bit 0 through 4,294,967,295 Dim Joys As UInteger

Joys = 3000000000

Long 64-bit -9,223,372,036,854,775,808 to 9,223,

372,036,854,775,807

Dim WorldPop As Long

WorldPop = 4800000004

ULong 64-bit 0 through 18,446,744,073,709,551,

615

Dim Stars As ULong

Stars = _

1800000000000000000

Single 32-bit

fl oating point

-3.4028235E38 through

3.4028235E38

Dim Price As Single

Price = 899.99

Double 64-bit

fl oating point

-1.79769313486231E308 through

1.79769313486231E308

Dim Pi As Double

Pi = 3.1415926535

Data type Size Range Sample usage

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 139

Data type Size Range Sample usage

Decimal 128-bit 0 through +/-79,228,162,514,264,

337,593,543,950,335 (+/-7.9...E+28)

with no decimal point; 0 through

+/-7.922816251426433759354395

0335 with 28 places to the right of

the decimal. Append “D” if you want

to force Visual Basic to initialize a

Decimal.

Dim Debt As Decimal

Debt = 7600300.5D

Byte 8-bit 0 through 255 (no negative

numbers)

Dim RetKey As Byte

RetKey = 13

SByte 8-bit -128 through 127 Dim NegVal As SByte

NegVal = -20

Char 16-bit Any Unicode symbol in the range

0–65,535. Append “c” when initial-

izing a Char.

Dim UnicodeChar As Char

UnicodeChar = " "c

String Usually 16-bits

per character

0 to approximately 2 billion

16-bit Unicode characters

Dim Dog As String

Dog = "pointer"

Boolean 16-bit True or False. (During conversions,

0 is converted to False, other values

to True.)

Dim Flag as Boolean

Flag = True

Date 64-bit January 1, 0001, through

December 31, 9999

Dim Birthday as Date

Birthday = #3/1/1963#

Object 32-bit Any type can be stored in a variable

of type Object.

Dim MyApp As Object

MyApp = CreateObject _

("Word.Application")

Use fundamental data types in code

1. On the File menu, click Open Project.

The Open Project dialog box opens.

2. Open the Data Types project from the c:\vb08sbs\chap05\data types folder.

3. If the project’s form isn’t visible, click Form1.vb in Solution Explorer, and then click the

View Designer button.

Data Types is a complete Visual Basic program that I created to demonstrate how the

fundamental data types work. You’ll run the program to see what the data types look

like, and then you’ll look at how the variables are declared and used in the program

code. You’ll also learn where to place variable declarations so that they’re available to

all the event procedures in your program.

Data type Size Range Sample usage

140 Part II Programming Fundamentals

4. Click the Start Debugging button on the Standard toolbar.

The following application window opens:

The Data Types program lets you experiment with 11 data types, including integer,

single-precision fl oating point, and date. The program displays an example of each

type when you click its name in the list box.

5. Click the Integer type in the list box.

The number 37500000 appears in the Sample Data box. Note that with the Short,

Integer, and Long data types, you can’t insert or display commas. To display commas,

you’ll need to use the Format function.

6. Click the Date type in the list box.

The date 3/1/1963 appears in the Sample Data box.

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 141

7. Click each data type in the list box to see how Visual Basic displays it in the Sample

Data box.

8. Click the Quit button to stop the program.

Now you’ll examine how the fundamental data types are declared at the top of the

form and how they’re used in the ListBox1_SelectedIndexChanged event procedure.

9. Double-click the form itself (not any objects on the form), and enlarge the Code Editor

to see more of the program code.

The Code Editor looks like this:

Scroll to the top of the Code Editor to see the dozen or so program statements I added

to declare 11 variables in your program—one for each of the fundamental data types

in Visual Basic. (I didn’t create an example for the SByte, UShort, UInteger, and ULong

types, because they closely resemble their signed or unsigned counterparts.) By placing

each Dim statement here, at the top of the form’s code initialization area, I’m ensuring

that the variables will be valid, or will have scope, for all of the form’s event procedures.

That way, I can set the value of a variable in one event procedure and read it in another.

Normally, variables are valid only in the event procedure in which they’re declared.

To make them valid across the form, you need to declare variables at the top of your

form’s code.

Note I’ve given each variable the same name as I did in the data types table earlier in the

chapter so that you can see the examples I showed you in actual program code.

142 Part II Programming Fundamentals

10. Scroll down in the Code Editor, and examine the Form1_Load event procedure.

You’ll see the following statements, which add items to the list box object in the

program. (You might remember this syntax from Chapter 3, “Working with Toolbox

Controls”—I used some similar statements there.)

11. Scroll down and examine the ListBox1_SelectedIndexChanged event procedure.

The ListBox1_SelectedIndexChanged event procedure processes the selections you

make in the list box and looks like this:

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 143

The heart of the event procedure is a Select Case decision structure. In the next chapter,

we’ll discuss how this group of program statements selects one choice from many. For

now, notice how each section of the Select Case block assigns a sample value to one of

the fundamental data type variables and then assigns the variable to the Text property

of the Label4 object on the form. I used code like this in Chapter 3 to process list box

choices, and you can use these techniques to work with list boxes and data types in

your own programs.

Note If you have more than one form in your project, you need to declare variables in a

slightly different way (and place) to give them scope throughout your program (that is, in

each form that your project contains). The type of variable that you’ll declare is a public, or

global, variable, and it’s declared in a module, a special fi le that contains declarations and

procedures not associated with a particular form. For information about creating public

variables in modules, see Chapter 10, “Creating Modules and Procedures.”

12. Scroll through the ListBox1_SelectedIndexChanged event procedure, and examine each

of the variable assignments closely.

Try changing the data in a few of the variable assignment statements and running the

program again to see what the data looks like. In particular, you might try assigning

values to variables that are outside their accepted range, as shown in the data types

table presented earlier. If you make such an error, Visual Basic adds a jagged line below

the incorrect value in the Code Editor, and the program won’t run until you change it.

To learn more about your mistake, you can point to the jagged underlined value and

read a short tooltip error message about the problem.

Tip By default, a green jagged line indicates a warning, a red jagged line indicates a syntax

error, a blue jagged line indicates a compiler error, and a purple jagged line indicates some

other error.

13. If you made any changes you want to save to disk, click the Save All button on the

Standard toolbar.

144 Part II Programming Fundamentals
User-Defi ned Data Types

Visual Basic also lets you create your own data types. This feature is most useful when

you’re dealing with a group of data items that naturally fi t together but fall into different

data categories. You create a user-defi ned type (UDT) by using the Structure statement,

and you declare variables associated with the new type by using the Dim statement. Be

aware that the Structure statement cannot be located in an event procedure—it must

be located at the top of the form along with other variable declarations, or in a code

module.

For example, the following declaration creates a user-defi ned data type named Employee

that can store the name, date of birth, and hire date associated with a worker:

Structure Employee

 Dim Name As String

 Dim DateOfBirth As Date

 Dim HireDate As Date

End Structure

After you create a data type, you can use it in the program code for the form’s or module’s

event procedures. The following statements use the new Employee type. The fi rst state-

ment creates a variable named ProductManager, of the Employee type, and the second

statement assigns the name “Greg Baker” to the Name component of the variable:

Dim ProductManager As Employee

ProductManager.Name = "Greg Baker"

This looks a little similar to setting a property, doesn’t it? Visual Basic uses the same

notation for the relationship between objects and properties as it uses for the rela-

tionship between user-defi ned data types and component variables.

Constants: Variables That Don’t Change

If a variable in your program contains a value that never changes (such as π, a fi xed math-

ematical entity), you might consider storing the value as a constant instead of as a variable.

A constant is a meaningful name that takes the place of a number or a text string that

doesn’t change. Constants are useful because they increase the readability of program

code, they can reduce programming mistakes, and they make global changes easier to

accomplish later. Constants operate a lot like variables, but you can’t modify their values

at run time. They are declared with the Const keyword, as shown in the following example:

Const Pi As Double = 3.14159265

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 145

This statement creates a constant named Pi that can be used in place of the value of π in the

program code. To make a constant available to all the objects and event procedures in your

form, place the statement at the top of your form along with other variable and structure

declarations that will have scope in all of the form’s event procedures. To make the constant

available to all the forms and modules in a program (not just Form1), create the constant in a

code module, with the Public keyword in front of it. For example:

Public Const Pi As Double = 3.14159265

The following exercise demonstrates how you can use a constant in an event procedure.

Use a constant in an event procedure

1. On the File menu, click Open Project.

The Open Project dialog box opens.

2. Open the Constant Tester project in the c:\vb08sbs\chap05\constant tester folder.

3. If the project’s form isn’t visible, click Form1.vb in Solution Explorer, and then click the

View Designer button.

The Constant Tester form opens in the Designer. Constant Tester is a skeleton program.

The user interface is fi nished, but you need to type in the program code.

4. Double-click the Show Constant button on the form.

The Button1_Click event procedure appears in the Code Editor.

5. Type the following statements in the Button1_Click event procedure:

Const Pi As Double = 3.14159265

Label1.Text = Pi

Tip The location you choose for your declarations should be based on how you plan to

use the constants or the variables. Programmers typically keep the scope for declarations

as small as possible, while still making them available for code that needs to use them. For

example, if a constant is needed only in a single event procedure, you should put the con-

stant declaration within that event procedure. However, you could also place the declara-

tion at the top of the form’s code, which would give all the event procedures in your form

access to it.

6. Click the Start Debugging button on the Standard toolbar to run the program.

146 Part II Programming Fundamentals
 7. Click the Show Constant button.

The Pi constant appears in the label box, as shown here:

 8. Click the Quit button to stop the program.

Constants are useful in program code, especially in involved mathematical formulas,

such as Area = πr2. The next section describes how you can use operators and variables

to write similar formulas.

Working with Visual Basic Operators

A formula is a statement that combines numbers, variables, operators, and keywords to create

a new value. Visual Basic contains several language elements designed for use in formulas. In

this section, you’ll practice working with arithmetic (or mathematical) operators, the symbols

used to tie together the parts of a formula. With a few exceptions, the arithmetic symbols

you’ll use are the ones you use in everyday life, and their operations are fairly intuitive. You’ll

see each operator demonstrated in the following exercises.

Visual Basic includes the following arithmetic operators:

Operator Description

+ Addition

– Subtraction

* Multiplication

/ Division

\ Integer (whole number) division

Mod Remainder division

^ Exponentiation (raising to a power)

& String concatenation (combination)

Operator Description

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 147

Basic Math: The +, –, *, and / Operators

The operators for addition, subtraction, multiplication, and division are pretty straightforward

and can be used in any formula where numbers or numeric variables are used. The following

exercise demonstrates how you can use them in a program.

Work with basic operators

1. On the File menu, click Open Project.

2. Open the Basic Math project in the c:\vb08sbs\chap05\basic math folder.

3. If the project’s form isn’t visible, click Form1.vb in Solution Explorer, and then click the

View Designer button.

The Basic Math form opens in the Designer. The Basic Math program demonstrates how

the addition, subtraction, multiplication, and division operators work with numbers you

type. It also demonstrates how you can use text box, radio button, and button objects

to process user input in a program.

4. Click the Start Debugging button on the Standard toolbar.

The Basic Math program runs in the IDE. The program displays two text boxes in which

you enter numeric values, a group of operator radio buttons, a box that displays results,

and two button objects (Calculate and Quit).

5. Type 100 in the Variable 1 text box, and then press Tab.

The insertion point, or focus, moves to the second text box.

6. Type 17 in the Variable 2 text box.

You can now apply any of the mathematical operators to the values in the text boxes.

7. Click the Addition radio button, and then click the Calculate button.

The operator is applied to the two values, and the number 117 appears in the Result

box, as shown in the following illustration.

148 Part II Programming Fundamentals

8. Practice using the subtraction, multiplication, and division operators with the two

numbers in the variable boxes. (Click Calculate to calculate each formula.)

The results appear in the Result box. Feel free to experiment with different numbers in

the variable text boxes. (Try a few numbers with decimal points if you like.) I used the

Double data type to declare the variables, so you can use very large numbers.

Now try the following test to see what happens:

9. Type 100 in the Variable 1 text box, type 0 in the Variable 2 text box, click the Division

radio button, and then click Calculate.

Dividing by zero is not allowed in mathematical calculations, because it produces an

infi nite result. But Visual Basic is able to handle this calculation and displays a value of

Infi nity in the Result text box. Being able to handle some divide-by-zero conditions is a

feature that Visual Basic 2008 automatically provides.

10. When you’ve fi nished contemplating this and other tests, click the Quit button.

The program stops, and the development environment returns.

Now take a look at the program code to see how the results were calculated. Basic Math

uses a few of the standard input controls you experimented with in Chapter 3 and an event

procedure that uses variables and operators to process the simple mathematical formulas.

The program declares its variables at the top of the form so that they can be used in all of

the Form1 event procedures.

Examine the Basic Math program code

1. Double-click the Calculate button on the form.

The Code Editor displays the Button1_Click event procedure. At the top of the form’s

code, you’ll see the following statement, which declares two variables of type Double:

'Declare FirstNum and SecondNum variables

Dim FirstNum, SecondNum As Double

I used the Double type because I wanted a large, general purpose variable type that

could handle many different numbers—integers, numbers with decimal points, very

big numbers, small numbers, and so on. The variables are declared on the same line

by using the shortcut notation. Both FirstNum and SecondNum are of type Double,

and are used to hold the values input in the fi rst and second text boxes, respectively.

2. Scroll down in the Code Editor to see the contents of the Button1_Click event

procedure.

Your screen looks similar to this:

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 149
The fi rst two statements in the event procedure transfer data entered in the text box

objects into the FirstNum and SecondNum variables.

'Assign text box values to variables

FirstNum = TextBox1.Text

SecondNum = TextBox2.Text

The TextBox control handles the transfer with the Text property—a property that accepts

text entered by the user and makes it available for use in the program. I’ll make frequent

use of the TextBox control in this book. When it’s set to multiline and resized, it can dis-

play many lines of text—even a whole fi le!

After the text box values are assigned to the variables, the event procedure determines

which radio button has been selected, calculates the mathematical formula, and dis-

plays the result in a third text box. The fi rst radio button test looks like this:

'Determine checked button and calculate

If RadioButton1.Checked = True Then

 TextBox3.Text = FirstNum + SecondNum

End If

Remember from Chapter 3 that only one radio button object in a group box object can

be selected at any given time. You can tell whether a radio button has been selected by

evaluating the Checked property. If it’s True, the button has been selected. If the Checked

property is False, the button has not been selected. After this simple test, you’re ready to

compute the result and display it in the third text box object. That’s all there is to using

basic arithmetic operators. (You’ll learn more about the syntax of If...Then tests in

Chapter 6, “Using Decision Structures.”)

You’re done using the Basic Math program.

150 Part II Programming Fundamentals

Shortcut Operators

An interesting feature of Visual Basic is that you can use shortcut operators for math-

ematical and string operations that involve changing the value of an existing variable.

For example, if you combine the + symbol with the = symbol, you can add to a vari-

able without repeating the variable name twice in the formula. Thus, you can write the

formula X = X + 6 by using the syntax X += 6. The following table shows examples of

these shortcut operators.

Operation Long-form syntax Shortcut syntax

Addition (+) X = X + 6 X += 6

Subtraction (-) X = X – 6 X -= 6

Multiplication (*) X = X * 6 X *= 6

Division (/) X = X / 6 X /= 6

Integer division (\) X = X \ 6 X \= 6

Exponentiation (̂) X = X ^ 6 X ^= 6

String concatenation (&) X = X & “ABC” X &= “ABC”

Using Advanced Operators: \, Mod, ^, and &

In addition to the four basic arithmetic operators, Visual Basic includes four advanced opera-

tors, which perform integer division (\), remainder division (Mod), exponentiation (̂), and string

concatenation (&). These operators are useful in special-purpose mathematical formulas and

text processing applications. The following utility (a slight modifi cation of the Basic Math pro-

gram) shows how you can use each of these operators in a program.

Work with advanced operators

1. On the File menu, click Open Project.

The Open Project dialog box opens.

2. Open the Advanced Math project in the c:\vb08sbs\chap05\advanced math folder.

3. If the project’s form isn’t visible, click Form1.vb in Solution Explorer, and then click the

View Designer button.

The Advanced Math form opens in the Designer. The Advanced Math program is

identical to the Basic Math program, with the exception of the operators shown in

the radio buttons and in the program.

Operation Long-form syntax Shortcut syntax

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 151

4. Click the Start Debugging button on the Standard toolbar.

The program displays two text boxes in which you enter numeric values, a group of

operator radio buttons, a text box that displays results, and two buttons.

5. Type 9 in the Variable 1 text box, and then press Tab.

6. Type 2 in the Variable 2 text box.

You can now apply any of the advanced operators to the values in the text boxes.

7. Click the Integer Division radio button, and then click the Calculate button.

The operator is applied to the two values, and the number 4 appears in the Result box,

as shown here:

Integer division produces only the whole number result of the division operation.

Although 9 divided by 2 equals 4.5, the integer division operation returns only the fi rst

part, an integer (the whole number 4). You might fi nd this result useful if you’re work-

ing with quantities that can’t easily be divided into fractional components, such as the

number of adults who can fi t in a car.

8. Click the Remainder radio button, and then click the Calculate button.

The number 1 appears in the Result box. Remainder division (modulus arithmetic)

returns the remainder (the part left over) after two numbers are divided. Because 9

divided by 2 equals 4 with a remainder of 1 (2 * 4 + 1 = 9), the result produced by

the Mod operator is 1. In addition to adding an early-seventies vibe to your code, the

Mod operator can help you track “leftovers” in your calculations, such as the amount

of money left over after a fi nancial transaction.

9. Click the Exponentiation radio button, and then click the Calculate button.

The number 81 appears in the Result box. The exponentiation operator (̂) raises a

number to a specifi ed power. For example, 9 ^ 2 equals 92, or 81. In a Visual Basic

formula, 92 is written 9 ^ 2.

152 Part II Programming Fundamentals

10. Click the Concatenation radio button, and then click the Calculate button.

The number 92 appears in the Result box. The string concatenation operator (&) com-

bines two strings in a formula, but not through addition. The result is a combination

of the “9” character and the “2” character. String concatenation can be performed on

numeric variables—for example, if you’re displaying the inning-by-inning score of a

baseball game as they do in old-time score boxes—but concatenation is more com-

monly performed on string values or variables.

Because I declared the FirstNum and SecondNum variables as type Double, you can’t

combine words or letters by using the program code as written. As an example, try the

following test, which causes an error and ends the program.

11. Type birth in the Variable 1 text box, type day in the Variable 2 text box, verify that

Concatenation is selected, and then click Calculate.

Visual Basic is unable to process the text values you entered, so the program stops

running, and an error message appears on the screen.

This type of error is called a run-time error—an error that surfaces not during the design

and compilation of the program, but later, when the program is running and encounters

a condition that it doesn’t know how to process. If this seems odd, you might imagine

that Visual Basic is simply offering you a modern rendition of the robot plea “Does not

compute!” from the best science fi ction fi lms of the 1950s. The computer-speak message

“Conversion from string “birth” to type ‘Double’ is not valid” means that the words you

entered in the text boxes (“birth” and “day”) could not be converted, or cast, by Visual

Basic to variables of the type Double. Double types can only contain numbers. Period.

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 153

As we shall explore in more detail later, Visual Studio doesn’t leave you hanging with

such a problem, but provides a dialog box with different types of information to help

you resolve the run-time error. For now, you have learned another important lesson

about data types and when not to mix them.

12. Click the Stop Debugging button on the Standard toolbar to end the program.

Your program ends and returns you to the development environment.

Note In Chapter 8, “Debugging Visual Basic Programs,” you’ll learn about debugging

mode, which allows you to track down the defects, or bugs, in your program code.

Now take a look at the program code to see how variables were declared and how the

advanced operators were used.

13. Scroll to the code at the top of the Code Editor.

You see the following comment and program statement:

'Declare FirstNum and SecondNum variables

Dim FirstNum, SecondNum As Double

As you might recall from the previous exercise, FirstNum and SecondNum are the

variables that hold numbers coming in from the TextBox1 and TextBox2 objects.

14. Change the data type from Double to String so that you can properly test how the

string concatenation (&) operator works.

15. Scroll down in the Code Editor to see how the advanced operators are used in the

program code.

You see the following code:

'Assign text box values to variables

FirstNum = TextBox1.Text

SecondNum = TextBox2.Text

'Determine checked button and calculate

If RadioButton1.Checked = True Then

 TextBox3.Text = FirstNum \ SecondNum

End If

If RadioButton2.Checked = True Then

 TextBox3.Text = FirstNum Mod SecondNum

End If

If RadioButton3.Checked = True Then

 TextBox3.Text = FirstNum ^ SecondNum

End If

If RadioButton4.Checked = True Then

 TextBox3.Text = FirstNum & SecondNum

End If

154 Part II Programming Fundamentals
Like the Basic Math program, this program loads data from the text boxes and places it

in the FirstNum and SecondNum variables. The program then checks to see which radio

button the user checked and computes the requested formula. In this event procedure,

the integer division (\), remainder (Mod), exponentiation (̂), and string concatenation

(&) operators are used. Now that you’ve changed the data type of the variables to String,

run the program again to see how the & operator works on text.

 16. Click the Start Debugging button.

 17. Type birth in the Variable 1 text box, type day in the Variable 2 text box, click

Concatenation, and then click Calculate.

The program now concatenates the string values and doesn’t produce a run-time error,

as shown here:

 18. Click the Quit button to close the program.

You’re fi nished working with the Advanced Math program.

Tip Run-time errors are diffi cult to avoid completely—even the most sophisticated application

programs, such as Microsoft Word or Microsoft Excel, sometimes run into error conditions that

they can’t handle, producing run-time errors, or crashes. Designing your programs to handle many

different data types and operating conditions helps you produce solid, or robust, applications. In

Chapter 9, “Trapping Errors by Using Structured Error Handling,” you’ll learn about another helpful

tool for preventing run-time error crashes—the structured error handler.

Working with Methods in the Microsoft .NET Framework

Now and then you’ll want to do a little extra number crunching in your programs. You might

need to round a number, calculate a complex mathematical expression, or introduce random-

ness into your programs. The math methods shown in the following table can help you work

with numbers in your formulas. These methods are provided by the Microsoft .NET Framework,

a class library that lets you tap into the power of the Windows operating system and accom-

plish many of the common programming tasks that you need to create your projects. The

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 155
.NET Framework is a major feature of Visual Studio that is shared by Visual Basic, Microsoft

Visual C++, Microsoft Visual C#, and other tools in Visual Studio. It’s an underlying interface

that becomes part of the Windows operating system itself, and it is installed on each com-

puter that runs Visual Studio programs.

The .NET Framework is organized into classes that you can use in your programming

projects. The process is quite simple, and you’ll experiment with how it works now by

using a math method in the System.Math class of the .NET Framework.

What’s New in Microsoft .NET Framework 3.5?

Visual Studio 2008 includes a new version of the .NET Framework—Microsoft .NET

Framework 3.5. This is an update to the .NET Framework 3.0 software that provided

support for the Windows Vista operating system, and the .NET Framework 2.0 soft-

ware that shipped with Visual Studio 2005 and provided support for 64-bit processors.

Version 3.5 adds new classes that provide additional functionality for distributed mo-

bile applications, interprocess communication, time zone operations, ASP.NET, Visual

Web Developer, and much more. The .NET Framework 3.5 also includes support for

new advanced technologies, such as Language Integrated Query (LINQ) for querying

different types of data, Windows Presentation Foundation (WPF) for creating complex

graphics, Windows Communication Foundation (WCF) for creating applications that

work with Web services, and Windows Workfl ow Foundation (WF) for creating work-

fl ow-type applications. Many of the improvements in the .NET Framework will come

to you automatically as you use Visual Basic 2008, and some will become useful as you

explore advanced programming techniques.

The following table offers a partial list of the math methods in the System.Math class. The

argument n in the table represents the number, variable, or expression you want the

method to evaluate. If you use any of these methods, be sure that you put the statement

Imports System.Math

at the very top of your form’s code in the Code Editor.

Method Purpose

Abs(n) Returns the absolute value of n.

Atan(n) Returns the arctangent, in radians, of n.

Cos(n) Returns the cosine of the angle n. The angle n is expressed in radians.

Exp(n) Returns the constant e raised to the power n.

Sign(n) Returns -1 if n is less than 0, 0 if n is 0, and +1 if n is greater than 0.

Sin(n) Returns the sine of the angle n. The angle n is expressed in radians.

Sqrt(n) Returns the square root of n.

Tan(n) Returns the tangent of the angle n. The angle n is expressed in radians.

Method Purpose

156 Part II Programming Fundamentals

Use the System.Math class to compute square roots

1. On the File menu, click New Project.

The New Project dialog box opens.

2. Create a new Visual Basic Windows Forms Application project named My Framework

Math.

The new project is created, and a blank form opens in the Designer.

3. Click the Button control on the Windows Forms tab of the Toolbox, and create a button

object at the top of your form.

4. Click the TextBox control in the Toolbox, and draw a text box below the button object.

5. Set the Text property of the button object to Square Root.

6. Double-click the button object to display the Code Editor.

7. At the very top of the Code Editor, above the Public Class Form1 statement, type the

following program statement:

Imports System.Math

The System.Math class is a collection of methods provided by the .NET Framework for

arithmetic operations. The .NET Framework is organized in a hierarchical fashion and can

be very deep. The Imports statement makes it easier to reference classes, properties, and

methods in your project. For example, if you didn’t include the previous Imports state-

ment, to call the Sqrt method you would have to type System.Math.Sqrt instead of just

Sqrt. The Imports statement must be the fi rst statement in your program—it must come

even before the variables that you declare for the form and the Public Class Form1 state-

ment that Visual Basic automatically provides.

8. Move down in the Code Editor, and add the following code to the Button1_Click event

procedure between the Private Sub and End Sub statements:

Dim Result As Double

Result = Sqrt(625)

TextBox1.Text = Result

These three statements declare a variable of the double type named Result, use the

Sqrt method to compute the square root of 625, and assign the Result variable to the

Text property of the text box object so that the answer is displayed.

9. Click the Save All button on the Standard toolbar to save your changes. Specify the

c:\vb08sbs\chap05 folder as the location.

10. Click the Start Debugging button on the Standard toolbar.

The Framework Math program runs in the IDE.

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 157

 11. Click the Square Root button.

Visual Basic calculates the square root of 625 and displays the result (25) in the text box.

As you can see here, the Sqrt method works!

 12. Click the Close button on the form to end the program.

To make it easier to reference classes, properties, and methods in the .NET Framework, in-

clude the Imports statement, and specify the appropriate namespace or class. You can use

this technique to use any class in the .NET Framework, and you’ll see many more examples

of this technique as you work through Microsoft Visual Basic 2008 Step by Step.

One Step Further: Establishing Order of Precedence

In the previous few exercises, you experimented with several arithmetic operators and one

string operator. Visual Basic lets you mix as many arithmetic operators as you like in a formula,

as long as each numeric variable and expression is separated from another by one operator.

For example, this is an acceptable Visual Basic formula:

Total = 10 + 15 * 2 / 4 ^ 2

The formula processes several values and assigns the result to a variable named Total. But

how is such an expression evaluated by Visual Basic? In other words, what sequence does

Visual Basic follow when solving the formula? You might not have noticed, but the order of

evaluation matters a great deal in this example.

Visual Basic solves this dilemma by establishing a specifi c order of precedence for math-

ematical operations. This list of rules tells Visual Basic which operator to use fi rst, second,

and so on when evaluating an expression that contains more than one operator.

158 Part II Programming Fundamentals
The following table lists the operators from fi rst to last in the order in which they are evaluated.

(Operators on the same level in this table are evaluated from left to right as they appear in an

expression.)

Operator Order of precedence

() Values within parentheses are always evaluated fi rst.

^ Exponentiation (raising a number to a power) is second.

– Negation (creating a negative number) is third.

* / Multiplication and division are fourth.

\ Integer division is fi fth.

Mod Remainder division is sixth.

+ - Addition and subtraction are last.

Given the order of precedence in this table, the expression

Total = 10 + 15 * 2 / 4 ^ 2

is evaluated by Visual Basic in the following steps. (Shading is used to show each step in the

order of evaluation.)

Total = 10 + 15 * 2 / 4 ^ 2

Total = 10 + 15 * 2 / 16

Total = 10 + 30 / 16

Total = 10 + 1.875

Total = 11.875

Using Parentheses in a Formula

You can use one or more pairs of parentheses in a formula to clarify the order of precedence.

For example, Visual Basic calculates the formula

Number = (8 - 5 * 3) ^ 2

by determining the value within the parentheses (-7) before doing the exponentiation—even

though exponentiation is higher in order of precedence than subtraction and multiplication,

according to the preceding table. You can further refi ne the calculation by placing nested

parentheses in the formula. For example,

Number = ((8 - 5) * 3) ^ 2

directs Visual Basic to calculate the difference in the inner set of parentheses fi rst, perform

the operation in the outer parentheses next, and then determine the exponentiation. The

result produced by the two formulas is different: the fi rst formula evaluates to 49 and the

second to 81. Parentheses can change the result of a mathematical operation, as well as

make it easier to read.

Operator Order of precedence

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 159
Chapter 5 Quick Reference

To Do this

Declare a variable Type Dim followed by the variable name, the As keyword, and the variable

data type in the program code. To make the variable valid in all of a form’s

event procedures, place this statement at the top of the code for the form,

before any event procedures. For example:

Dim Country As String

Change the value of a

variable

Assign a new value with the assignment operator of (=). For example:

Country = "Japan"

Get input by using a

dialog box

Use the InputBox function, and assign the result to a variable. For example:

UserName = InputBox("What is your name?")

Display output in a

dialog box

Use the MsgBox function. (The string to be displayed in the dialog box can

be stored in a variable.) For example:

Forecast = "Rain, mainly on the plain."

MsgBox(Forecast, , "Spain Weather Report")

Create a constant Type the Const keyword followed by the constant name, the assignment

operator (=), the constant data type, and the fi xed value. For example:

Const JackBennysAge As Short = 39

Create a formula Link together numeric variables or values with one of the seven arithmetic

operators, and then assign the result to a variable or a property. For example:

Result = 1 ^ 2 * 3 \ 4 'this equals 0

Combine text strings Use the string concatenation operator (&). For example:

Msg = "Hello" & "," & " world!"

Make it easier to

reference a class

library from the

.NET Framework

Place an Imports statement at the very top of the form’s code that identifi es

the class library. For example:

Imports System.Math

Make a call to a

method from an

included class

library

Use the method name, and include any necessary arguments so that it can

be used in a formula or a program statement. For example, to make a call to

the Sqrt method in the System.Math class:

Hypotenuse = Sqrt(x ^ 2 + y ^ 2)

Control the evaluation

order in a formula

Use parentheses in the formula. For example:

Result = 1 + 2 ^ 3 \ 4 'this equals 3

Result = (1 + 2) ^ (3 \ 4) 'this equals 1

To Do this

	Cover
	Table of Contents
	Chapter 5: Visual Basic Variables and Formulas, and the .NET Framework
	The Anatomy of a Visual Basic Program Statement
	Using Variables to Store Information
	Setting Aside Space for Variables: The Dim Statement
	Implicit Variable Declaration

	Using Variables in a Program
	Sidebar: Variable Naming Conventions

	Using a Variable to Store Input
	Sidebar: What Is a Function?

	Using a Variable for Output
	Working with Specific Data Types
	Sidebar: User-Defined Data Types
	Constants: Variables That Don’t Change

	Working with Visual Basic Operators
	Basic Math: The +, –, *, and / Operators
	Sidebar: Shortcut Operators
	Using Advanced Operators: \, Mod, ^, and &

	Working with Methods in the Microsoft .NET Framework
	Sidebar: What’s New in Microsoft .NET Framework 3.5?

	One Step Further: Establishing Order of Precedence
	Using Parentheses in a Formula

	Chapter 5 Quick Reference

