MCTS EXAM

70-502
Microsoft NET MCTS Self-Paced

Framework 3.5- Training Kit

Windows Presentation (Exam 70_502).

Foundation . ® :
Microsoft .NET

Framework 3.5—

Windows® Presentation

Foundation

Training Kit

Matthew A. Stoecker

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books12485.aspx

Microsoft
9780735625662 Press

© 2008 Matthew A. Stoecker. All rights reserved.

Table of Contents

Introduction e XXi
1 WPF Application Fundamentals. 1
Before You Begint 2
Lesson 1: Selecting an Application Type. 3
Application Type OVEIVIEW.ttt e e 3
Windows Applications. 4
Navigation Applications 9
XBAPS . 11
Security and WPF Applications 13
Choosing an Application Type. 14
Lab: Creating WPF Applications. i 15
Lesson SUMMaArY.t 19
LeSSON REVIEWottt 19
Lesson 2: Configuring Page-Based Navigation................................ 21
Using Pages. o 21
Hosting Pages in Frames. 21
Using Hyperlinks. o o 22
Using NavigationServiceuu i 23
Using the Journal 25
Handling Navigation Events. i 27
Using PageFunction ODJECES.ttt 30
Simple Navigation and Structured Navigation 32

Lab: The Pizza Kitchen. 32
LeSSON SUMMAIY. . . oot e e e e 38
LeSSON REVIEW oot 39

What do you think of this book? We want to hear from youl!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vii

viii Table of Contents

Lesson 3: Managing Application Responsivenessc.uuunnnnnn. 41
Running a Background Process 42
Providing Parameters to the Process. 43
Returning a Value from a Background Process 44
Cancelling a Background Process.t 45
Reporting the Progress of a Background Process with
BackgroundWOorker 46
Using Dispatcher to Access Controls Safely on Another Thread............ 47
Freezable Objects 48
Lab: Practicing with BackgroundWorker 49
Lesson SUMMary 51
LeSSON REVIEW . . .\ 52

Chapter ReVIEW . . . 53

Chapter SUMMarY. 53

Ky oM. o 53

CaSE SCONAIIO . ..t 54
Case Scenario: Designing a Demonstration Program..................... 54

Suggested Practices 55

Take @ Practice Test. 55

2 Events, Commands, and Settings, 57

Before You Begin 57

Lesson 1: Configuring Events and Event Handling 59
ROULEAEVENTAIGS oot 61
Attaching an Event Handler L 62
The EventManager Class 63
Defininga New Routed Event o i i 64
Creating a Class-Level Event Handler 66
Application-Level Events 66
Lab: Practice with Routed Events 68
LeSSON SUMMATYttt e e 69
LeSSON REVIEW 70

Lesson 2: Configuring Commands.ttt 72
A High-Level Procedure for Implementinga Command 73

Invoking Commandsoon 74

Table of Contents ix

Command Handlers and Command Bindings. 75
Creating Custom Commands.ooi i 78

Lab: Creating a Custom Command, 80
LesSsOn SUMMaArY. 83
LeSSON REVIEW oottt 84
Lesson 3: Configuring Application Settings., 86
Creating Settingsat Design Time i i, 87
Loading Settingsat RunTimeo ... 88
Saving User Settingsat RunTime 88

Lab: Practice with Settingso 89
LeSSON SUMMaArY. . ..o 91
LeSSON REVIEWo 91
Chapter ReVIEW. 94
Chapter SUMMary e e e 94
Ky ToImMS oo 95
CaSE SCONAIIOS . . . vttt 95
Case Scenario 1: Validating User Input........ ... oo, 95

Case Scenario 2: Humongous Insurance User Interface.................... 96
Suggested Practices. 96
Take @ Practice Testo 97
3 Building the User Interface. i, 99
Before You Begin 99
Lesson 1: Using Content Controlst 101
WPF Controls OVerview.ooui e 101
Content Controls 101
Other Controls o 105
Using Attached Propertiesuuii i 110
Setting the Tab Order for Controls 111

Lab: Building a User Interface 111
Lesson SUMMaArY. 113
LeSSON REVIEWo 113
Lesson 2: Item Controls.ot 116
ListBox Control 116

ComboBox Control. e 117

X Table of Contents

TreeView CONtrol. 118
MENUS . . 119
ToolBar Controlo i 121
StatusBar Control 123
Virtualization in ltem Controls i 123

Lab: Practice with Item Controls. 124
LeSSON SUMMAIYttt e e e e e e e e 127
LeSSON REVIEW . . ottt 127
Lesson 3: Using Layout Controls. s 130
Control Layout Properties. ... 130
Layout Panels. oo 132
Accessing Child Elements Programmatically 143
Aligning Content. 144

Lab: Practice with Layout Controls., 146
LeSSON SUMMAIYottt e e e e e e e e e 148
LeSSON REVIEW . . o et 149
Chapter REVIEW.ttt e 150
Chapter SUMMarY. . ..o 150
Key Terms . o o 150
CaSE SCENAIIOS. . o\ttt et e e et et e e 151
Case Scenario 1: Streaming Stock Quotes. i, 151

Case Scenario 2: The Stock Watcher 151
Suggested PractiCes 152
Take a Practice Test. 152
4 Adding and ManagingContent, 153
Before YoU Begino o 153
Lesson 1: Creating and Displaying Graphics. 155
Brushes 155
SNAPES. oo 163
Transformations. 168
ClPPINg oo 171

Hit Testingo 171

Lab: Practice with Graphicso i 172

Table of Contents xi

Lesson SUMMaAryY. 173
LeSSON REVIEW ottt 174
Lesson 2: Adding Multimedia Content............ 176
Using SoundPlayer 176
MediaPlayer and MediaElement, 179
Handling Media-Specific Events, 182
Lab: Creating a Basic Media Player, 183
Lesson Summary. 185
LeSSON REVIEW 185
Lesson 3: Managing Binary Resources i i 187
Embedding Resources. ... 187
Loading RESOUICES\ e e e e et 188
Retrieving Resources Manually i 189
Content Files. o 190
Retrieving Loose Files with siteOfOrigin Pack URIs. 190
Lab: Using Embedded Resources., 191
Lesson Summary.o 192
LeSSON REVIEWt 192
Lesson 4: Managing Images.ottt 194
Thelmage Element 194
Stretching and Sizing Images. L. 194
Transforming Graphicsinto Images.o ... 196
Accessing Bitmap Metadata. 198
Lab: Practice with Images 200
Lesson SUMMary. 201
LeSSON REVIEW vt 202
Chapter REVIEW.ot 204
Chapter SUMMaArY e e 204
Ky TermMS o 204
CaSE SCONAMIOS . .« vttt ettt 205
Case Scenario 1: The Company with Questionable Taste 205
Case Scenario 2: The Image Reception Desk. 205
Suggested Practices.t 206

Take a Practice Testo 206

xii Table of Contents

5 Configuring Databinding 207
Before You Begin 208
Lesson 1: Configuring Databinding........... i, 209
The Binding Class 209

Bindingtoa WPF Element. 211
Bindingtoan Object i 212
Setting the BindingMode. 215
Setting the UpdateSourceTrigger Property 216
Lab: Practice with Bindingso i 217
LeSSON SUMMAIYottt e e e e e e 218
LeSSON ReVIEW . . o o 219
Lesson 2: Binding to Data SoUrces.t 221
Binding toa List 221
Binding an Item ControltoaList........o i, 221
Binding a Single PropertytoalList........... 223
Navigating a Collectionor List............... 223
Binding to ADO.NET Objectst 226
Setting the DataContext to an ADO.NET DataTable 226
Setting the DataContext to an ADO.NET DataSet 227
Binding to Hierarchical Data. i 228
Binding to Related ADO.NET Tables. 228
Binding to an Object with ObjectDataProviderccccoviuiunn. 230
Binding to XML Using the XmIDataProvider 231
Using XPath with XmIDataProvider 232
Lab: Accessing a Database. 232
Lesson SUMMary 235
LeSSON REVIEW 236
Lesson 3: Manipulating and DisplayingData...................ccoiiiiiiin. 238
Data Templateso 238
Setting the Data Template. 240
Sorting Dataoo 241
Applying Custom Sortingttt 242
GrOUPING -t 243

Creating Custom GroUpINgottt e 245

Table of Contents xiii

Filtering Data 246
Filtering ADO.NET Objectst 247

Lab: Practice with Data Templates and Groups......................... 248
LeSSON SUMMANY. . .« oottt e e e 252
LesSON ReVIEW. it 252
Chapter ReVIEW.o 255
Chapter SumMmary 255
Key Terms. . . 256

CaS€ SCENATIOS . . vttt ettt e e e e e 256
Case Scenario 1: Getting Information from the Field 256

Case Scenario 2: Viewing CustomerData.o.... 257
Suggested Practices. 257
Take @ Practice Test 258
6 Converting and ValidatingData.o ou.... 259
Before You Begint 259
Lesson 1: Converting Data 261
Implementing IValueConverter 0 i 261
Using Converters to Format Strings, 264
Using Converters to Return Objects i 268
Using Converters to Apply Conditional Formatting in Data Templates 269
Localizing Data with Converters o .. 271
Using Multi-value Converters 273
Lab: Applying String Formatting and Conditional Formatting............ 276
LeSSON SUMMATY. . . oot 279
LessON ReVIEW. it 279
Lesson 2: Validating Data and Configuring Change Notification 282
Validating Data. . ..o 282
Binding Validation Rules 282
Setting ExceptionValidationRule. 283
Implementing Custom ValidationRules............................... 283
Handling Validation Errors 284
Configuring Data Change Notification 287

Implementing INotifyPropertyChangedccccccviiunn. 287

xiv Table of Contents

Using ObservableCollection. i 288

Lab: Configuring Change Notification and Data Validation 289
LeSSON SUMMAIYottt e e e e e e e e e 294
LeSSON REVIEW . . .o 295
Chapter REVIEW.ttt e 300
Chapter SUMMary. . ..o 300
Key Terms . o o 300
CaSE SCONAIIOS. . . .ttt e 301
Case Scenario 1: The Currency Trading Review Console 301

Case Scenario 2: Currency TradingConsole i 301
Suggested PractiCes 302
Take @ Practice Test.ttt e 302
7 Stylesand Animation........ i 303
Before You Begin 303
Lesson L: Styles oo 305
USING Styles . . oo 305
Properties of Styles. ... 305

St erS. L 306
Creating a Style. 308
Implementing Style Inheritance 311
Lo o 1= £ 312
Property TrgQerso 313
MUR-ENIQQErS oo 314

Data Triggers and Multi-data-triggers. 315
EVent THgQers 315
Understanding Property Value Precedence 316
Lab: Creating High-Contrast Styles 318
LeSSON SUMMAIYottt et e e e e e 320
LeSSON REVIEW . . .ot 320
Lesson 2: ANImMationsottt 323
USINg ANIMatioNs 323
Important Properties of Animations 324

Storyboard ObjJects 326

Table of Contents Xv

Using Animations with Triggers i, 327
Managing the Playback Timeline 330
Animating Non-Double Types.o 332
Creating and Starting AnimationsinCode 335

Lab: Improving Readability with Animations........................... 336
Lesson SUMMary. 337
LessSON ReVIEW oo 338
Chapter REVIEW.o 339
Chapter SUMMarYo 339
Key TeImMS 340
Case SCENAMIOS . ..ottt 340
Case Scenario L:Cup Fever............... i i il 340

Case Scenario 2: A Far-Out User Interface 341
Suggested PractiCes.oo 341
Take @ Practice Test 342
8 Customizing the User Interface......... i it 343
Before YOU BEgin ... 343
Lesson 1: Integrating Windows Forms Controls 345
Using Windows Forms Controls. 345
Using Dialog Boxes in WPF Applications 345
WindowsFormsHOSt 349
Using MaskedTextBox in WPF Applications 351
Using the PropertyGrid in WPF Applications. 353

Lab: Practice with Windows Forms Elements. 354
LeSSON SUMMANY. . . oottt e e e e 356
LessON ReVIEW. ot 357
Lesson 2: Using Control Templatescoo i, 359
Using Control Templates. 359
Creating Control Templatest 359
Inserting a TriggerinaTemplate i 362
Respecting the Templated Parent's Properties 363
Applying Templateswitha Style 365

Viewing the Source Code for an Existing Template 365

xvi

9

Table of Contents

Using Predefined Part Namesina Template 366

Lab: Creating a Control Template. 367
Lesson SUMMaArY 369
LeSSON REVIEW 369
Lesson 3: Creating Custom and User Controls. oiin.... 372
Control Creation in WPF 372
Choosing Among User Controls, Custom Controls, and Templates.. 373
Implementing and Registering Dependency Properties 373
Creating User Controls. e 376
Creating Custom Controls. e 376
Consuming User Controls and Custom Controls........................ 377
Rendering a Theme-Based Appearance ..., 378

Lab: Creating a Custom Control. 380
LesSSON SUMMAIYottt e e e 383
LeSSON ReVIEW . . o oo 383
Chapter REVIEWottt e 385
Chapter SUMMaArY. . ..o e e 385
Key Terms. .. 385
CaSE SCENAIIOS. . . . ettt 386
Case Scenario 1: Full Supportfor Styles ... 386

Case Scenario 2: The Pizza Progress Bar ..., 386
Suggested PractiCes 387
Take a Practice Test.o 387
Resources, Documents, and Localization......................... 389
Before You Begin 389
Lesson 1: Logical RESOUICESttt 391
Using Logical Resourcesot 391
Logical ReSOUICESo 392
Creating a Resource Dictionaryt 395
Retrieving Resources in Code 396

Lab: Practice with Resources. i 397
LesSSON SUMMAIYot e e e 399

LESSON ReVIEW . . .ot 399

Table of Contents xvii

Lesson 2: Using Documents in WPF i 401
Flow DocUmMEeNtS. . ..o oot 401
Creating Flow Documents. 402

XPS DOCUMENTS . . oottt e e e e e 418
Viewing XPS DOCUMENTS. . ..ottt e 418
PrNtiNG ..o o 418
Printing DOCUMENtS.\t 419

The PrintDialog Class.o o 419

Lab: Creating a Simple Flow Document, .. 421
Lesson Summary. 422
LeSSON REVIEW ottt 423
Lesson 3: Localizing a WPF Application.............., 426
Localization. 426
Localizing an Application 427
Using Culture Settings in Validators and Converters 432

Lab: Localizing an Application 433
Lesson Summary.o 436
LeSSON REVIEWt 436
Chapter ReVIEW. 438
Chapter SUMMary e 438
Ky TermMS oo 438
CaSE SCONAIIO . . o ottt 439
Case Scenario: HelpfortheBeta............. iiiiiiiiin. 439
Suggested Practices.t 440
Take a Practice Test 440
10 Deploymentt e e e 441
Before You Begino 441
Lesson 1: Creating a Setup Project with Windows Installer. 443
Deploying a WPF Application ... 443
Choosing Between Windows Installer and ClickOnce 443
Deploying with Windows Installer. 444
Deploying a Stand-alone Application................. 445

Creating the Setup Project 445

xviii Table of Contents

Adding Files to the Setup Project with the File System Editor 445

Other Setup Project Editors. 448

Lab: Creating a Setup Project 448

LeSSON SUMMAIYttt e e e e e e e 450

LeSSON REVIEW . . .ot 450

Lesson 2: Deploying Your Application with ClickOnce........................ 451
Deploying with ClickOnce. 451
Deploying an Application Using ClickOnce 452
Configuring ClickOnce Update Options., 455

Deploying an XBAP with ClickOnce............ 458
Configuring the Application Manifest., 461
Associating a Certificate with the Application............... 463

Lab: Publishing Your Application with ClickOnce 464

LesSSON SUMMAIYot e e e e 465

LeSSON ReVIEW . . o oo 465

Chapter REVIEWottt e 469
Chapter SUMMaArY. ... ot e e e 469

Key Terms. .. 469

CaSE SCENAIIO . . v e e 470

Case Scenario: Buggy Beta 470
Suggested PractiCeso 470

Take a Practice Test.o i 471
AT . oottt e e 473
GlOSSaNY . . .ottt 499
X ..ttt 503

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Chapter 7
Styles and Animation

One of the major advances with the advent of the Windows Presentation Foundation
(WPF) programming model is the uniquely agile use of the system’s visual capabili-
ties. In this chapter, you learn to use two aspects of WPF programming that take full
advantage of these capabilities: styles and animation. Styles allow you to quickly apply
changes to the visual interface and change the look and feel of your application in
response to different conditions. Animations allow you to change property values over
timelines that can be useful for a variety of visual effects. Together, these features allow
you to harness the full power of the WPF presentation layer.

Exam objectives in this chapter:
m Create a consistent user interface appearance by using styles.

m Change the appearance of a Ul element by using triggers.

m Add interactivity by using animations.

Lessons in this chapter:
B Lesson LiStyles. ... 305

B Lesson 2: AnimMationso ottt e 323

Before You Begin

To complete the lessons in this chapter, you must have

m Acomputer that meets or exceeds the minimum hardware requirements listed in
the “About This Book” section at the beginning of the book

m Microsoft Visual Studio 2008 Professional Edition installed on your computer

m An understanding of Microsoft Visual Basic or C# syntax and familiarity with
Microsoft NET Framework version 3.5

m An understanding of Extensible Application Markup Language (XAML)

303

304 Chapter 7 Styles and Animation

Real World
Matthew Stoecker

At every turn, it seems that WPF provides more and more support for the cre-
ation of rich visual interfaces. The support for styles and triggers enables the
rapid creation of interactive visual interfaces that used to take hours of coding
event handlers. Likewise, animations now open up the possibilities for
stunning user interfaces with minimal effort. I'm glad that now I can create
attractive applications with the same amount of effort that the boxy old
Windows Forms apps took!

Lesson 1: Styles 305

Lesson 1: Styles

Styles allow you to create a cohesive look and feel for your application. You can use
styles to define a standard color and sizing scheme for your application and use trig-
gers to provide dynamic interaction with your Ul elements. In this lesson, you learn to
create and implement styles. You learn to apply a style to all instances of a single type
and to implement style inheritance. You learn to use setters to set properties and event
handlers, and you learn to use triggers to change property values dynamically. Finally,
you learn about the order of property precedence.

After this lesson, you will be able to:
B Create and implement a style
Apply a style to all instances of a type
Implement style inheritance
Use property and event setters
Explain the order of property value precedence

Use and implement triggers, including property triggers, data triggers, event
triggers, and multiple triggers

Estimated lesson time: 30 minutes

Using Styles

Styles can be thought of as analogous to cascading style sheets as used in Hypertext
Markup Language (HTML) pages. Styles basically tell the presentation layer to substi-
tute a new visual appearance for the standard one. They allow you to make changes to
the user interface as a whole easily and to provide a consistent look and feel for your
application in a variety of situations. Styles enable you to set properties and hook up
events on Ul elements through the application of those styles. Further, you can create
visual elements that respond dynamically to property changes through the applica-
tion of triggers, which listen for a property change and then apply style changes in
response.

Properties of Styles

The primary class in the application of styles is, unsurprisingly, the Style class. The Style
class contains information about styling a group of properties. A Style can be created to

306 Chapter 7 Styles and Animation

apply to a single instance of an element, to all instances of an element type, or across
multiple types. The important properties of the Style class are shown in Table 7-1.

Table 7-1 Important Properties of the Style Class

Property Description

BasedOn Indicates another style that this style is based on. This
property is useful for creating inherited styles.

Resources Contains a collection of local resources used by the style.
The Resources property is discussed in detail in Chapter 9,
“Resources, Documents, and Localization.”

Setters Contains a collection of Setter or EventSetter objects. These
are used to set properties or events on an element as part
of a style.

TargetType This property identifies the intended element type for
the style.

Triggers Contains a collection of Trigger objects and related objects

that allow you to designate a change in the user interface
in response to changes in properties.

The basic skeleton of a <Style> element in XAML markup looks like the following:

<Style>
<!-- A collection of setters is enumerated here -->
<Style.Triggers>
<!-- A collection of Trigger and related objects is enumerated here -->

</Style.Triggers>
<Style.Resources>

<!-- A collection of local resources for use in the style -->
</Style.Resources>
</Style>

Setters

The most common class you will use in the construction of Styles is the Setter. As their
name implies, Setters are responsible for setting some aspect of an element. Setters
come in two flavors: property setters (or just Setters, as they are called in markup),
which set values for properties; and event setters, which set handlers for events.

Lesson 1: Styles 307

Property Setters

Property setters, represented by the <Setter> tag in XAML, allow you to set properties
of elements to specific values. A property setter has two important properties: the
Property property, which designates the property that is to be set by the Setter, and the
Value property, which indicates the value to which the property is to be set. The fol-
lowing example demonstrates a Setter that sets the Background property of a Button
element to Red:

<Setter Property="Button.Background" Value="Red" />
The value for the Property property must take the form of the following:
ETement.PropertyName

If you want to create a style that sets a property on multiple different types of
elements, you could set the style on a common class that the elements inherit, as
shown here:
<Style>

<Setter Property="Control.Background" Value="Red" />
</Style>
This style sets the Background property of all elements that inherit from the Control to
which it is applied.

Event Setters

Event setters (represented by the <EventSetter>tag) are similar to property setters, but
they set event handlers rather than property values. The two important properties for
an EventSetter are the Event property, which specifies the event for which the handler
is being set; and the Handler property, which specifies the event handler to attach to
that event. An example is shown here:

<EventSetter Event="Button.MouseEnter" Handler="Button_MouseEnter" />

The value of the Handler property must specify an extant event handler with the
correct signature for the type of event with which it is connected. Similar to property
setters, the format for the Event property is

Element.EventName

where the element type is specified, followed by the event name.

308

Chapter 7 Styles and Animation

Creating a Style

You've seen the simplest possible implementation of a style: a single Setter between
two Style tags, but you haven’t yet seen how to apply a style to an element. There are
several ways to apply a style to an element or elements. This section examines the
various ways to apply a style to elements in your user interface.

Setting the Style Property Directly

The most straightforward way to apply a style to an element is to set the Style property
directly in XAML. The following example demonstrates directly setting the Style
property of a Button element:

<Button Height="25" Name="Buttonl" Width="100">
<Button.Style>
<Style>
<Setter Property="Button.Content" Value="Style set directly" />
<Setter Property="Button.Background" Value="Red" />
</Style>
</Button.Style>
</Button>

While setting the Style directly in an element might be the most straightforward, it is
seldom the best method. When setting the Style directly, you must set it for each
element that you want to be affected by the Style. In most cases, it is simpler to set the
properties of the element directly at design time.

One scenario where you might want to set the Style directly on an element is to pro-
vide a set of Triggers for that element. Because Triggers must be set in a Style (except for
EventTriggers, as you will see in the next section), you conceivably could set the Style
directly to set triggers for an element.

Setting a Style in a Resources Collection

The most common method for setting styles is to create the style as a member of
a Resources collection and then apply the style to elements in your user interface by
referencing the resource. The following example demonstrates creating a style as part
of the Windows.Resources collection:

<Window.Resources>
<Style x:Key="StyleOne">
<Setter Property="Button.Content" Value="Style defined in resources" />
<Setter Property="Button.Background" Value="Red" />
</Style>
</Window.Resources>

Lesson 1: Styles 309

Under most circumstances, you must supply a key value for a Style that you define in
the Resources collection. Then you can apply that style to an element by referencing
the resource, as shown in bold here:

<Button Name="Buttonl" Style="{StaticResource StyleOne}" Height="30"
Width="200" />

The advantage to defining a Style in the Resources section is that you can then apply
that Style to multiple elements by simply referencing the resource. Resources are dis-
cussed in detail in Chapter 9.

Applying Styles to All Controls of a Specific Type

You can use the TargetType property to specify a type of element to be associated with
the style. When you set the TargetType property on a Style, that Style is applied to all
elements of that type automatically. Further, you do not need to specify the qualifying
type name in the Property property of any Setters that you use—you can just refer to the
property name. When you specify the TargetType for a Style that you have defined in a
Resources collection, you do not need to provide a key value for that style. The follow-
ing example demonstrates the use of the TargetType property:

<Window.Resources>
<Style TargetType="Button">
<Setter Property=" Content" Value="Style set for all buttons" />
<Setter Property="Background" Value="Red" />
</Style>
</Window.Resources>

When you apply the TargetType property, you do not need to add any additional
markup to the elements of that type to apply the style.

If you want an individual element to opt out of the style, you can set the style on that
element explicitly, as seen here:

<Button Style="{x:Nul1}" Margin="10">No Style</Button>

This example explicitly sets the Style to Null, which causes the Button to revert to its
default look. You also can set the Style to another Style directly, as seen earlier in this
lesson.

Setting a Style Programmatically

You can create and define a style programmatically. While defining styles in XAML is
usually the best choice, creating a style programmatically might be useful when you
want to create and apply a new style dynamically, possibly based on user preferences.

310 Chapter 7 Styles and Animation

The typical method for creating a style programmatically is to create the Style object in
code; then create Setters (and Triggers, if appropriate); add them to the appropriate col-
lection on the Style object; and then when finished, set the Style property on the target
elements. The following example demonstrates creating and applying a simple style
in code:

' VB

Dim aStyle As New Style

Dim aSetter As New Setter

aSetter.Property = Button.BackgroundProperty
aSetter.Value = Brushes.Red
aStyle.Setters.Add(aSetter)

Dim bSetter As New Setter

bSetter.Property = Button.ContentProperty
bSetter.Value = "Style set programmatically"
aStyle.Setters.Add(bSetter)

Buttonl.Style = aStyle

// C#

Style aStyle = new Style(Q);

Setter aSetter = new Setter();
aSetter.Property = Button.BackgroundProperty;
aSetter.Value = Brushes.Red;
aStyle.Setters.Add(aSetter);

Setter bSetter = new Setter();
bSetter.Property = Button.ContentProperty;
bSetter.Value = "Style set programmatically”;
aStyle.Setters.Add(bSetter);

Buttonl.Style = aStyle;

You can also define a style in a Resources collection and apply that style in code, as
shown here:

<!-- XAML -->
<Window.Resources>
<Style x:Key="StyleOne">
<Setter Property="Button.Content" Value="Style applied in code" />
<Setter Property="Button.Background" Value="Red" />
</Style>
</Window.Resources>

' VB

Dim aStyle As Style

aStyle = CType(Me.Resources("StyleOne"), Style)
Buttonl.Style = aStyle

// C#

Style aStyle;

aStyle = (Style)this.Resources["StyleOne"];
Buttonl.Style = aStyle;

Lesson 1: Styles 311

Implementing Style Inheritance

You can use inheritance to create styles that conform to the basic look and feel of
the original style but provide differences that offset some controls from others. For
example, you might create one Style for all the Button elements in your user interface
and create an inherited style to provide emphasis for one of the buttons. You can use
the BasedOn property to create Style objects that inherit from other Style objects. The
BasedOn property references another style and automatically inherits all the members
of that Style and then allows you to build on that Style by adding additional members.
The following example demonstrates two Style objects—an original Style and a Style
that inherits it:

<Window.Resources>
<Style x:Key="StyleOne">
<Setter Property="Button.Content" Value="Style set in original Style" />
<Setter Property="Button.Background" Value="Red" />
<Setter Property="Button.FontSize" Value="15" />
<Setter Property="Button.FontFamily" Value="Arial" />
</Style>
<Style x:Key="StyleTwo" BasedOn="{StaticResource StyleOne}">
<Setter Property="Button.Content" Value="Style set by inherited style" />
<Setter Property="Button.Background" Value="AliceBlue" />
<Setter Property="Button.FontStyle" Value="Italic" />
</Style>
</Window.Resources>

The result of applying these two styles is seen in Figure 7-1.

5 Windowl = =]

[Style set by Inherited style |

Figure 7-1 Two buttons—the original and an inherited style

312 Chapter 7 Styles and Animation

When a property is set in both the original style and the inherited style, the property
value set by the inherited style always takes precedence. But when a property is set by
the original style and not set by the inherited style, the original property setting is
retained.

Quick Check

m Under what circumstances is a Style automatically applied to an element?
How else can a Style be applied to an element?

Quick Check Answer
m A Style is applied to an element automatically when it is declared as a
resource in the page and the TargetType property of the Style is set. If the
TargetType property is not set, you can apply a Style to an element by set-
ting that element’s Style property, either in XAML or in code.

Triggers

Along with Setters, Triggers make up the bulk of objects that you use in creating styles.
Triggers allow you to implement property changes declaratively in response to other
property changes that would have required event-handling code in Windows Forms
programming. There are five kinds of Trigger objects, as listed in Table 7-2.

Table 7-2 Types of Trigger Objects

Type Class Name Description

Property trigger Trigger Monitors a property and activates when
the value of that property matches the
Value property.

Multi-trigger MultiTrigger Monitors multiple properties and activates

only when all the monitored property
values match their corresponding Value
properties.

Data trigger DataTrigger Monitors a bound property and activates
when the value of the bound property
matches the Value property.

Lesson 1: Styles 313

Table 7-2 Types of Trigger Objects

Type Class Name Description

Multi-data-trigger ~ MultDataTrigger ~ Monitors multiple bound properties and
activates only when all the monitored
bound properties match their
corresponding Value properties.

Event trigger EventTrigger Initiates a series of Actions when a specified
event is raised.

A Trigger is active only when it is part of a Style. Triggers collection—with one exception.
EventTrigger objects can be created within a Control. Triggers collection outside a Style.
The Control. Triggers collection can accommodate only EventTriggers, and any other
Trigger placed in this collection causes an error. EventTriggers are primarily used with
animation and are discussed further in Lesson 2 of this chapter, “Animations.”

Property Triggers

The most commonly used type of Trigger is the property trigger. The property trigger
monitors the value of a property specified by the Property property. When the value of
the specified property equals the Value property, the Trigger is activated. Important
properties of property triggers are shown in Table 7-3.

Table 7-3 Important Properties of Property Triggers

Property Description

EnterActions ~ Contains a collection of Action objects that are applied when the
Trigger becomes active. Actions are discussed in greater detail in
Lesson 2 of this chapter.

ExitActions Contains a collection of Action objects that are applied when the
Trigger becomes inactive. Actions are discussed in greater detail in
Lesson 2 of this chapter.

Property Indicates the property that is monitored for changes.

Setters Contains a collection of Setter objects that are applied when the
Trigger becomes active.

Value Indicates the value that is compared to the property referenced by
the Property property.

314

Chapter 7 Styles and Animation

Triggers listen to the property indicated by the Property property and compare that prop-
erty to the Value property. When the referenced property and the Value property are
equal, the Trigger is activated. Any Setter objects in the Setters collection of the Trigger are
applied to the style, and any Actions in the EnterActions collections are initiated. When
the referenced property no longer matches the Value property, the Trigger is inactivated.
All Setter objects in the Setters collection of the Trigger are inactivated, and any Actions in
the ExitActions collection are initiated.

NOTE Actions are used primarily in animations, and they are discussed in greater detail in Lesson 2
of this chapter.

The following example demonstrates a simple Trigger object that changes the FontWeight
of a Button element to Bold when the mouse enters the Button:

<Style.Triggers>
<Trigger Property="Button.IsMouseOver" Value="True">
<Setter Property="Button.FontWeight" Value="Bold" />
</Trigger>
</Style.Triggers>

In this example, the Trigger defines one Setter in its Setters collection. When the Trigger
is activated, that Setter is applied.

Multi-triggers

Multi-triggers are similar to property triggers in that they monitor the value of prop-
erties and activate when those properties meet a specified value. The difference is that
multi-triggers are capable of monitoring several properties at a single time and they
activate only when all monitored properties equal their corresponding Value proper-
ties. The properties that are monitored and their corresponding Value properties are
defined by a collection of Condition objects. The following example demonstrates a
MultiTrigger that sets the Button.FontWeight property to Bold only when the Button is
focused and the mouse has entered the control:

<Style.Triggers>
<MultiTrigger>
<MultiTrigger.Conditions>
<Condition Property="Button.IsMouseOver" Value="True" />
<Condition Property="Button.IsFocused" Value="True" />
</MultiTrigger.Conditions>
<MultiTrigger.Setters>
<Setter Property="Button.FontWeight" Value="Bold" />
</MultiTrigger.Setters>
</MultiTrigger>
</Style.Triggers>

Lesson 1: Styles 315

Data Triggers and Multi-data-triggers

Data triggers are similar to property triggers in that they monitor a property and acti-
vate when the property meets a specified value, but they differ in that the property
they monitor is a bound property. Instead of a Property property, data triggers expose
a Binding property that indicates the bound property to listen to. The following shows
a data trigger that changes the Background property of a Label to Red when the bound
property CustomerName equals “Fabrikam”:

<Style.Triggers>
<DataTrigger Binding="{Binding Path=CustomerName}" Value="Fabrikam">
<Setter Property="Label.Background" Value="Red" />
</DataTrigger>
</Style.Triggers>

Multi-data-triggers are to data triggers as multi-triggers are to property triggers. They
contain a collection of Condition objects, each of which specifies a bound property via
its Binding property and a value to compare to that bound property. When all the con-
ditions are satisfied, the MultiDataTrigger activates. The following example demon-
strates a MultiDataTrigger that sets the Label.Background property to Red when
CustomerName equals “Fabrikam” and OrderSize equals 500:

<Style.Triggers>
<MultiDataTrigger>
<MuTtiDataTrigger.Conditions>
<Condition Binding="{Binding Path=CustomerName}" Value="Fabrikam" />
<Condition Binding="{Binding Path=OrderSize}" Value="500" />
</MultiDataTrigger.Conditions>
<MuTltiDataTrigger.Setters>
<Setter Property="Label.Background" Value="Red" />
</MultiDataTrigger.Setters>
</MultiDataTrigger>
</Style.Triggers>

Event Triggers

Event triggers are different from the other Trigger types. While other Trigger types
monitor the value of a property and compare it to an indicated value, event triggers
specify an event and activate when that event is raised. In addition, event triggers do
not have a Setters collection—rather, they have an Actions collection. Although you
have been exposed briefly to the SoundPlayerAction in Chapter 4, “Adding and Man-
aging Content,” most actions deal with animations, which are discussed in detail in
Lesson 2 of this chapter. The following two examples demonstrate the EventTrigger

316

Chapter 7 Styles and Animation

class. The first example uses a SoundPlayerAction to play a sound when a Button is
clicked:

<EventTrigger RoutedEvent="Button.Click">
<SoundPlayerAction Source="C:\myFile.wav" />
</EventTrigger>

The second example demonstrates a simple animation that causes the Button to grow
in height by 200 units when clicked:

<EventTrigger RoutedEvent="Button.Click">
<EventTrigger.Actions>
<BeginStoryboard>
<Storyboard>
<DoubTleAnimation Duration="0:0:5"
Storyboard.TargetProperty="Height" To="200" />
</Storyboard>
</BeginStoryboard>
</EventTrigger.Actions>
</EventTrigger>

Understanding Property Value Precedence

By now, you have probably noticed that a property can be set in many different ways.
They can be set in code; they can be set by styles; they can have default values; and so
on. It might seem logical at first to believe that a property will have the value it was last
set to, but this is actually incorrect. There is a defined and strict order of precedence
that determines a property’s value based on how it was set, not when. The precedence
order is summarized here, with highest precedence listed first:

Set by coercion by the property system.
Set by active animations or held animations.

Set locally, either by code, by direct setting in XAML, or through data binding.

& W N

Set by the TemplatedParent. Within this category, there is a sub-order of prece-
dence, again listed in descending order:

a. Set by Triggers from the templated parent

b. Set by the templated parent through property sets
Implicit style—this applies only to the Style property.
Set by Style triggers.
Set by Template triggers.

Lesson 1: Styles 317

Set by Style setters.

9. Set by the default Style. There is a sub-order within this category, again listed in
descending order:

a. Set by Triggers in the default style
b. Setby Setters in the default style
10. Set by inheritance.
11. Set by metadata.

Exam Tip The order of property precedence seems complicated, but actually it is fairly logical.
Be sure that you understand the concept behind the property order in addition to knowing the
order itself.

This may seem like a complicated and arbitrary order of precedence, but upon closer
examination it is actually very logical and based upon the needs of the application
and the user. The highest precedence is property coercion. This takes place in some
elements if an attempt is made to set a property beyond its allowed values. For exam-
ple, if an attempt is made to set the Value property of a Slider control to a value higher
than the Maximum property, the Value is coerced to equal the Maximum property.
Next in precedence come animations. For animations to have any meaningful use,
they must be able to override preset property values. The next highest level of prece-
dence is properties that have been set explicitly through developer or user action.

Properties set by the TemplatedParent are next in the order of precedence. These are
properties set on objects that come into being through a template. Templates are
discussed further in Chapter 8, “Customizing the User Interface.” After this comes
a special precedence item that applies only to the Style property of an element: Pro-
vided that the Style property has not been set by any item with a higher-level prece-
dence, it is set to a Style whose TargetType property matches the type of the element in
question. Then come properties set by Triggers—first those set by a Style, then those set
by a Template. This is logical because for triggers to have any meaningful effect, they
must override properties set by styles.

Properties set by styles come next: first properties set by user-defined styles, and then
properties set by the default style (also called the Theme, which typically is set by the
operating system). Finally come properties that are set through inheritance and the
application of metadata.

318

Chapter 7 Styles and Animation

For developers, there are a few important implications that are not intuitively obvious.
The most important is that if you set a property explicitly—whether in XAML or in
code—the explicitly set property blocks any changes dictated by a Style or Trigger. WPF
assumes that you want that property value to be there for a reason and does not allow
it to be set by a Style or Trigger, although it still can be overridden by an active animation.

A second, less obvious implication is that when using the Visual Studio designer to
drag and drop items onto the design surface from the ToolBox, the designer explicitly
sets several properties, especially layout properties. These property settings have the
same precedence as they would if you had set them yourself. So if you are designing
a style-oriented user interface, you should either enter XAML code directly in XAML
view to create controls and set as few properties explicitly as possible, or you should
review the XAML that Visual Studio generates and delete settings as appropriate.

You can clear a property value that has been set in XAML or code manually by calling
the DependencyObject.ClearValue method. The following code example demonstrates
how to clear the value of the Width property on a button named Buttonl:

' VB
Buttonl.ClearValue(WidthProperty)

// C#
Buttonl.ClearValue(WidthProperty);

Once the value has been cleared, it can be reset automatically by the property system.

Lab: Creating High-Contrast Styles

In this lab, you create a rudimentary high-contrast Style for Button, TextBox, and Label
elements.

Exercise 1: Using Styles to Create High-Contrast Elements
1. Create a new WPF application in Visual Studio.

2. In XAML view, just above the <Grid> declaration, create a Window.Resources section,
as shown here:

<Window.Resources>

</Window.Resources>

Lesson 1: Styles 319

In the Window.Resources section, create a high-contrast Style for TextBox controls
that sets the background color to Black and the foreground to White. The TextBox
controls also should be slightly larger by default. An example is shown here:

<Style TargetType="TextBox">
<Setter Property="Background" Value="Black" />
<Setter Property="Foreground" Value="White" />
<Setter Property="BorderBrush" Value="White" />
<Setter Property="Width" Value="135" />
<Setter Property="Height" Value="30" />
</Style>

Create similar styles for Button and Label, as shown here:

<Style TargetType="Label">
<Setter Property="Background" Value="Black" />
<Setter Property="Foreground" Value="White" />
<Setter Property="Width" Value="135" />
<Setter Property="Height" Value="33" />
</Style>
<Style TargetType="Button">
<Setter Property="Background" Value="Black" />
<Setter Property="Foreground" Value="White" />
<Setter Property="Width" Value="135" />
<Setter Property="Height" Value="30" />
</Style>

Type the following in XAML view. Note that you should not add controls from

the toolbox because that automatically sets some properties in the designer at a
higher property precedence than styles:

<Label Margin="26,62,126,0" VerticalAlignment="Top">
High-Contrast Label</Label>

<TextBox Margin="26,117,126,115">High-Contrast TextBox
</TextBox>

<Button Margin="26,0,126,62" VerticalAlignment="Bottom">
High-Contrast Button</Button>

Press F5 to build and run your application. Note that while the behavior of these
controls is unaltered, their appearance has changed.

Exercise 2: Using Triggers to Enhance Visibility

1.

In XAML view for the solution you completed in Exercise 1, add a Style. Triggers
section to the TextBox Style, as shown here:

<Style.Triggers>

</Style.Triggers>

320 Chapter 7 Styles and Animation

In the Style. Triggers section, add Triggers that detect when the mouse is over the
control and enlarge the FontSize of the control, as shown here:

<Trigger Property="IsMouseOver" Value="True">
<Setter Property="FontSize" Value="20" />
</Trigger>

Add similar Style. Triggers collections to your other two styles.

Press F5 to build and run your application. The FontSize of a control now
increases when you move the mouse over it.

Lesson Summary

Styles allow you to define consistent visual styles for your application. Styles use
a collection of Setters to apply style changes. The most commonly used Setter
type is the property setter, which allows you to set a property. Event setters allow
you to hook up event handlers as part of an applied style.

Styles can be set inline, but more frequently, they are defined in a Resources col-
lection and are set by referring to the resource. You can apply a style to all
instances of a control by setting the TargetType property to the appropriate type.

Styles are most commonly applied declaratively, but they can be applied in code
by creating a new style dynamically or obtaining a reference to a preexisting Style
resource.

You can create styles that inherit from other styles by using the BasedOn property.

Property triggers monitor the value of a dependency property and can apply
Setters from their Setters collection when the monitored property equals a prede-
termined value. Multi-triggers monitor multiple properties and apply their
Setters when all monitored properties match corresponding specified values.
Data triggers and multi-data-triggers are analogous but monitor bound values
instead of dependency properties.

Event triggers perform a set of Actions when a particular event is raised. They are
used most commonly to control Animations.

Property values follow a strict order of precedence depending on how they are set.

Lesson Review

You can use the following questions to test your knowledge of the information in
Lesson 1, “Styles.” The questions are also available on the companion CD if you prefer
to review them in electronic form.

Lesson 1: Styles 321

NOTE Answers

Answers to these questions and explanations of why each answer choice is correct or incorrect are
located in the "Answers” section at the end of the book.

1. Look at the following XAML snippet:

<Window.Resources>
<Style x:Key="Stylel">
<Setter Property="Label.Background" Value="Blue" />
<Setter Property="Button.Foreground" Value="Red" />
<Setter Property="Button.Background" Value="LimeGreen" />
</Style>
</Window.Resources>
<Grid>
<Button Height="23" Margin="81,0,122,58" Name="Buttonl"
VerticalAlignment="Bottom">Button</Button>
</Grid>

Assuming that the developer hasn’t set any properties any other way, what is the
Background color of Button1?

A. Blue
B. Red
C. LimeGreen
D. System Default
2. Look at the following XAML snippet:

<Window.Resources>
<Style x:Key="Stylel">
<Style.Triggers>
<MultiTrigger>
<MultiTrigger.Conditions>
<Condition Property="TextBox.IsMouseOver"
Value="True" />
<Condition Property="TextBox.IsFocused"
Value="True" />
</MultiTrigger.Conditions>
<Setter Property="TextBox.Background"
Value="Red" />
</MultiTrigger>
</Style.Triggers>
</Style>
</Window.Resources>
<Grid>
<TextBox Style="{StaticResource Stylel}" Height="21"
Margin="75,0,83,108" Name="TextBox1"
VerticalAlignment="Bottom" />
</Grid>

322 Chapter 7 Styles and Animation

When will TextBox1 appear with a red background?

A. When the mouse is over TextBox1

B. When TextBox1 is focused

C. When TextBox]1 is focused and the mouse is over TextBox]1
D. All of the above

E. Never

3. Look at the following XAML snippet:

<Window.Resources>
<Style TargetType="Button">
<Setter Property="Content" Value="Hello" />
<Style.Triggers>
<Trigger Property="IsMouseOver" Value="True">
<Setter Property="Content" Value="World" />
</Trigger>
<Trigger Property="IsMouseOver" Value="False">
<Setter Property="Content" Value="How are you?" />
</Trigger>
</Style.Triggers>
</Style>
</Window.Resources>
<Grid>
<Button Height="23" Margin="81,0,122,58" Name="Buttonl"
VerticalAlignment="Bottom">Button</Button>
</Grid>

What does Buttonl display when the mouse is NOT over the Button?

A. Hello

B. World

C. Button

D. How are you?

Lesson 2: Animations 323

Lesson 2: Animations

Animations are another new feature of WPF. Animations allow you to change the
value of a property over the course of a set period of time. Using this technique, you
can create a variety of visual effects, including causing controls to grow or move abut
the user interface, to change color gradually, or to change other properties over time.
In this lesson, you learn how to create animations that animate a variety of property
types and use Storyboard objects to control the playback of those animations.

After this lesson, you will be able to:

m Create and use animations
Control animations with the Storyboard class
Control timelines and playback of animations
Implement simultaneous animations

Use Actions to control animation playback

Implement animations that use key frames
m Create and start animations in code
Estimated lesson time: 30 minutes

Using Animations

The term animation brings to mind hand-drawn anthropomorphic animals perform-
ing amusing antics in video media, but in WPF, animation has a far simpler meaning.
Generally speaking, an animation in WPF refers to an automated property change
over a set period of time. You can animate an element’s size, location, color, or virtu-
ally any other property or properties associated with an element. You can use the
Animation classes to implement these changes.

The Animation classes are a large group of classes designed to implement these
automated property changes. There are 42 Animation classes in the System
.Windows.Media.Animation namespace, and each one has a specific data type that they
are designed to animate. Animation classes fall into three basic groups: Linear anima-
tions, key frame-based animations, and path-based animations.

Linear animations, which automate a property change in a linear way, are named in
the format <TypeName>Animation, where <TypeName> is the name of the type being
animated. DoubleAnimation is an example of a linear animation class, and that is the
animation class you are likely to use the most.

324

Chapter 7 Styles and Animation

Key frame-based animations perform their animation on the basis of several waypoints,
called key frames. The flow of a key-frame animation starts at the beginning, and then
progresses to each of the key frames before ending. The progression is usually linear.
Key-frame animations are named in the format <TypeName>AnimationUsingKeyFrames,
where <TypeName> is the name of the Type being animated. An example is StringAnima-
tionUsingKeyFrames.

Path-based animations use a Path object to guide the animation. They are used most
often to animate properties that relate to the movement of visual objects along a com-
plex course. Path-based animations are named in the format <TypeName>Animation-
UsingPath, where <TypeName> is the name of the type being animated. There are
currently only three path-based Animation classes—PointAnimationUsingPath, Double-
AnimationUsingPath, and MatrixAnimationUsingPath.

Important Properties of Animations

Although there are many different Animation classes, they all work in the same funda-
mental way—they change the value of a designated property over a period of time. As
such, they share common properties. Many of these properties also are shared with
the Storyboard class, which is used to organize Animation objects, as you will see later
in this lesson. Important common properties of the Animation and Storyboard classes
are shown in Table 7-4.

Table 7-4 Important Properties of the Animation and Storyboard Classes

Property Description

AccelerationRatio Gets or sets a value specifying the percentage of the Duration
property of the Animation that is spent accelerating the passage
of time from zero to its maximum rate.

AutoReverse Gets or sets a value that indicates whether the Animation plays
in reverse after it completes a forward iteration.

BeginTime Gets or sets the time at which the Animation should begin,
relative to the time that the Animation is executed. For
example, an Animation with a BeginTime set to 0:0:5 exhibits a
5-second delay before beginning.

DecelerationRatio ~ Gets or sets a value specifying the percentage of the duration of
the Animation spent decelerating the passage of time from its
maximum rate to zero.

Lesson 2: Animations 325

Table 7-4 Important Properties of the Animation and Storyboard Classes

Property Description
Duration Gets or sets the length of time for which the Animation plays.
FillBehavior Gets or sets a value that indicates how the Animation behaves

after it has completed.

RepeatBehavior Gets or sets a value that indicates how the Animation repeats.

SpeedRatio Gets or sets the rate at which the Animation progresses relative
to its parent.

In addition, the linear animation classes typically implement a few more important
properties, which are described in Table 7-5.

Table 7-5 Important Properties of Linear Animation Classes

Property = Description

From Gets or sets the starting value of the Animation. If omitted, the
Animation uses the current property value.

To Gets or sets the ending value of the Animation.

By Gets or sets the amount by which to increase the value of the target
property over the course of the Animation. If both the To and By
properties are set, the value of the By property is ignored.

The following example demonstrates a very simple animation. This animation changes
the value of a property that has a Double data type representation from 1 to 200
over the course of 10 seconds:

<DoubleAnimation Duration="0:0:10" From="1" To="200" />

In this example, the Duration property specifies a duration of 10 seconds for the ani-
mation, and the From and To properties indicate a starting value of 1 and an ending
value of 200.

You might notice that something seems to be missing from this example. What prop-
erty is this animation animating? The answer is that it is not animating any property—
the Animation object carries no intrinsic information about the property that is being
animated, but instead it is applied to a property by means of a Storyboard.

326 Chapter 7 Styles and Animation

Storyboard Objects

The Storyboard is the object that controls and organizes animations in your user inter-
face. The Storyboard class contains a Children collection, which organizes a collection
of Timeline objects, which include Animation objects. When created declaratively in
XAML, all Animation objects must be enclosed within a Storyboard object, as shown
here:

<Storyboard>

<DoubleAnimation Duration="0:0:10" From="1" To="200" />
</Storyboard>

Using a Storyboard to Control Animations

In XAML, Storyboard objects organize your Animation objects. The most important
feature of the Storyboard object is that it contains properties that allow you to specify
the target element and target property of the child Animation objects, as shown in
bold in this example:

<Storyboard TargetName="Buttonl" TargetProperty="Height">

<DoubleAnimation Duration="0:0:10" From="1" To="200" />
</Storyboard>

This example is now usable. It defines a timeline where over the course of 10 seconds,
the Height property of Buttonl goes from a value of 1 to a value of 200.

The TargetName and TargetProperty properties are attached properties, so instead of
defining them in the Storyboard itself, you can define them in the child Animation
objects, as shown in bold here:

<Storyboard>
<DoubTleAnimation Duration="0:0:10" From="1" To="200"
Storyboard.TargetName="Buttonl"
Storyboard.TargetProperty="Height" />
</Storyboard>

Because a Storyboard can hold more than one Animation at a time, this configuration
allows you to set separate target elements and properties for each animation. Thus, it
is more common to use the attached properties.

Simultaneous Animations

The Storyboard can contain multiple child Animation objects. When the Storyboard is
activated, all child animations are started at the same time and run simultaneously.

Lesson 2: Animations 327

The following example demonstrates two simultaneous Animations that cause both
the Height and Width of a Button element to grow over 10 seconds:

<Storyboard>
<DoubTeAnimation Duration="0:0:10" From="1" To="200"
Storyboard.TargetName="Buttonl"
Storyboard.TargetProperty="Height" />
<DoubTeAnimation Duration="0:0:10" From="1" To="100"
Storyboard.TargetName="Buttonl"
Storyboard.TargetProperty="Widtht" />
</Storyboard>

Using Animations with Triggers

You now have learned most of the story about using Animation objects. The Animation
object defines a property change over time, and the Storyboard object contains Anima-
tion objects and determines what element and property the Animation objects affect.
But there is still one piece that is missing: How do you start and stop an Animation?

All declaratively created Animation objects must be housed within a Trigger object.
This can be either as a part of a Style, or in the Triggers collection of an Element, which
accepts only EventTrigger objects.

Trigger objects define collections of Action objects, which control when an Animation
is started and stopped. The following example demonstrates an EventTrigger object
with an inline Animation:

<EventTrigger RoutedEvent="Button.Click">
<EventTrigger.Actions>
<BeginStoryboard>
<Storyboard>
<DoubTleAnimation Duration="0:0:5"
Storyboard.TargetProperty="Height" To="200" />
</Storyboard>
</BeginStoryboard>
</EventTrigger.Actions>
</EventTrigger>

As you can see in the preceding example, the Storyboard object is enclosed in a Begin-
Storyboard tag, which itself is enclosed in the EventTrigger.Actions tag. BeginStoryboard is
an Action—it indicates that the contained Storyboard should be started. The EventTrigger
class defines a collection of Actions that should be initiated when the Trigger is activated,
and in this example, BeginStoryboard is the action that is initiated. Thus, when the
Button indicated in this trigger is clicked, the described Animation runs.

328

Chapter 7 Styles and Animation

Using Actions to Control Playback

There are several Action classes that can be used to manage animation playback. These
classes are summarized in Table 7-6.

Table 7-6 Animation-Related Action Classes

Action Description

BeginStoryboard Begins the child Storyboard object.

PauseStoryboard Pauses the playback of an indicated Storyboard at the
current playback position.

ResumeStoryboard Resumes playback of an indicated Storyboard.

SeekStoryboard Fast-forwards to a specified position in a target
Storyboard.

SetStoryboardSpeedRatio Sets the SpeedRatio of the specified Storyboard.

SkipStoryboardToFill Moves the specified Storyboard to the end of its timeline.

StopStoryboard Stops playback of the specified Storyboard and returns
the animation to the starting position.

PauseStoryboard, ResumeStoryboard, SkipStoryboardToFill, and StopStoryboard are all
fairly self-explanatory. They cause the indicated Storyboard to pause, resume, stop, or
skip to the end, as indicated by the Action name. The one property that all these
Action classes have in common is the BeginStoryboardName property. This property
indicates the name of the BeginStoryboard object that the action is to affect. The fol-
lowing example demonstrates a StopStoryboard action that stops the BeginStoryBoard
object named sth1:

<Style.Triggers>
<EventTrigger RoutedEvent="Button.MouseEnter">
<EventTrigger.Actions>
<BeginStoryboard Name="stb1l">
<Storyboard>
<DoubleAnimation Duration="0:0:5"
Storyboard.TargetProperty="Height" To="200" />
</Storyboard>
</BeginStoryboard>
</EventTrigger.Actions>
</EventTrigger>
<EventTrigger RoutedEvent="Button.MouselLeave'>

Lesson 2: Animations 329

<EventTrigger.Actions>
<StopStoryboard BeginStoryboardName="stb1l" />
</EventTrigger.Actions>
</EventTrigger>
</Style.Triggers>

All Actions that affect a particular Storyboard object must be defined in the same
Triggers collection. The previous example shows both of these triggers being defined
in the Button. Triggers collection. If you were to define these triggers in separate Triggers
collections, storyboard actions would not function.

The SetStoryboardSpeedRatio action sets the speed ratio for the entire Storyboard and
all Animation objects in that Storyboard. In addition to BeginStoryboardName, you must
set the SpeedRatio property of this Action as well. The following example demonstrates
a SetStoryboardSpeedRatio action that speeds the referenced Storyboard by a factor of 2:

<Style.Triggers>
<EventTrigger RoutedEvent="Button.MouseEnter">
<EventTrigger.Actions>
<BeginStoryboard Name="stbl">
<Storyboard>
<DoubleAnimation Duration="0:0:5"
Storyboard.TargetProperty="Height" To="200" />
</Storyboard>
</BeginStoryboard>
</EventTrigger.Actions>
</EventTrigger>
<EventTrigger RoutedEvent="Button.MouselLeave">
<EventTrigger.Actions>
<SetStoryboardSpeedRatio BeginStoryboardName="stb1l" SpeedRatio="2" />
</EventTrigger.Actions>
</EventTrigger>
</Style.Triggers>

The SeekStoryboard action requires two additional properties to be set. The Origin
property can be either a value of BeginTime or of Duration and specifies how the Offset
property is applied. An Origin value of BeginTime specifies that the Offset is relative to
the beginning of the Storyboard. An Origin value of Duration specifies that the Offset is
relative to the Duration property of the Storyboard. The Offset property determines the
amount of the offset to jump to in the animation. The following example shows a Seek-
Storyboard action that skips the referenced timeline to 5 seconds ahead from its cur-
rent point in the timeline.

<Style.Triggers>

<EventTrigger RoutedEvent="Button.MouseEnter">
<EventTrigger.Actions>

330

Chapter 7 Styles and Animation

<BeginStoryboard Name="stbl">
<Storyboard>
<DoubleAnimation Duration="0:0:10"
Storyboard.TargetProperty="Height" To="200" />
</Storyboard>
</BeginStoryboard>
</EventTrigger.Actions>
</EventTrigger>
<EventTrigger RoutedEvent="Button.MouselLeave">
<EventTrigger.Actions>
<SeekStoryboard BeginStoryboardName="stbl" Origin="BeginTime'
Offset="0:0:5" />
</EventTrigger.Actions>
</EventTrigger>
</Style.Triggers>

Using Property Triggers with Animations

In the examples shown in this section, you have seen Actions being hosted primarily in
EventTrigger objects. You can also host Action objects in other kinds of Triggers. Trigger,
MultiTrigger, DataTrigger, and MultiDataTrigger objects host two Action collections:
EnterActions and ExitActions collections.

The EnterActions collection hosts a set of Actions that are executed when the Trigger is
activated. Conversely, the ExitActions collection hosts a set of Actions that are executed
when the Trigger is deactivated. The following demonstrates a Trigger that begins a
Storyboard when activated and stops that Storyboard when deactivated:

<Trigger Property="IsMouseOver" Value="True">
<Trigger.EnterActions>
<BeginStoryboard Name="stbl">
<Storyboard>
<DoubTeAnimation Storyboard.TargetProperty="FontSize"
To="20" Duration="0:0:.5" />
</Storyboard>
</BeginStoryboard>
</Trigger.EnterActions>
<Trigger.ExitActions>
<StopStoryboard BeginStoryboardName="stb1l" />
</Trigger.ExitActions>
</Trigger>

Managing the Playback Timeline

Both the Animation class and the Storyboard class contain several properties that allow
you to manage the playback timeline with a fine level of control. Each of these properties
is discussed in this section. When a property is set on an Animation, the setting affects
only that animation. Setting a property on a Storyboard, however, affects all Animation
objects it contains.

Lesson 2: Animations 331

AccelerationRatio and DecelerationRatio

The AccelerationRatio and DecelerationRatio properties allow you to designate a part of
the timeline for acceleration and deceleration of the animation speed, rather than start-
ing and playing at a constant speed. This is used sometimes to give an animation a more
“natural” appearance. These properties are expressed in fractions of 1 and represent a
percentage value of the total timeline. Thus, an AccelerationRatio with a value of .2 indi-
cates that 20 percent of the timeline should be spent accelerating to the top speed. So
the AccelerationRatio and DecelerationRatio properties should be equal to or less than 1
when added together. This example shows an Animation with an AccelerationRatio of .2:

<DoubleAnimation Duration="0:0:5" AccelerationRatio="0.2"
Storyboard.TargetProperty="Height" To="200" />

AutoReverse

As the name implies, the AutoReverse property determines whether the animation
automatically plays out in reverse after the end is reached. A value of True indicates
that the Animation will play in reverse after the end is reached. False is the default
value. The following example demonstrates this property:

<DoubTeAnimation Duration="0:0:5" AutoReverse="True"
Storyboard.TargetProperty="Height" To="200" />

FillBehavior

The FillBehavior property determines how the Animation behaves after it has com-
pleted. A value of HoldEnd indicates that the Animation holds the final value after it
has completed, whereas a value of Stop indicates that the Animation stops and returns
to the beginning of the timeline when completed. An example is shown here:

<DoubTeAnimation Duration="0:0:5" FillBehavior="Stop"
Storyboard.TargetProperty="Height" To="200" />

The default value for FillBehavior is HoldEnd.

RepeatBehavior

The RepeatBehavior property determines if and how an animation repeats. The Repeat-
Behavior property can be set in three ways. First, it can be set to Forever, which indicates
that an Animation repeats for the duration of the application. Second, it can be set to a
number followed by the letter x (for example, 2x), which indicates the number of times
to repeat the animation. Third, it can be set to a Duration, which indicates the amount
of time that an Animation plays, irrespective of the number of iterations. The following
three examples demonstrate these settings. The first demonstrates an Animation that

332 Chapter 7 Styles and Animation

repeats forever, the second an Animation that repeats three times, and the third an
Animation that repeats for 1 minute:

<DoubleAnimation Duration="0:0:5" RepeatBehavior="Forever"
Storyboard.TargetProperty="Height" To="200" />

<DoubleAnimation Duration="0:0:5" RepeatBehavior="3x"
Storyboard.TargetProperty="Height" To="200" />

<DoubTleAnimation Duration="0:0:5" RepeatBehavior="0:1:0"
Storyboard.TargetProperty="Height" To="200" />

SpeedRatio

The SpeedRatio property allows you to speed up or slow down the base timeline. The
SpeedRatio value represents the coefficient for the speed of the Animation. Thus, an
Animation with a SpeedRatio value of 0.5 takes twice the standard time to complete,
whereas a value of 2 causes the Animation to complete twice as fast. An example is
shown here:

<DoubTeAnimation Duration="0:0:5" SpeedRatio="0.5"
Storyboard.TargetProperty="Height" To="200" />

Animating Non-Double Types

Most of the examples that you have seen in this lesson have dealt with the Double-
Animation class, but in fact a class exists for every animatable data type. For example,
the ColorAnimation class allows you to animate a color change, as shown here:

<Button Height="23" Width="100" Name="Buttonl">
<Button.Background>
<SolidColorBrush x:Name="myBrush" />
</Button.Background>
<Button.Triggers>
<EventTrigger RoutedEvent="Button.Click">
<BeginStoryboard>
<Storyboard>
<ColorAnimation Storyboard.TargetName="myBrush"
Storyboard.TargetProperty="Color" From="Red" To="LimeGreen"
Duration="0:0:5" />
</Storyboard>
</BeginStoryboard>
</EventTrigger>
</Button.Triggers>
</Button>

In this example, when the button is clicked, the background color of the button grad-
ually changes from red to lime green over the course of 5 seconds.

Lesson 2: Animations 333

NOTE In the standard Windows theme, this animation may conflict with other animations in the
button’'s default template, so you might need to mouse out of the button and defocus it to see the
full effect.

Animation with Key Frames

Up until now, all the animations you have seen have used linear interpolation—that is,
the animated property changes take place over a linear timeline at a linear rate. You
also can create nonlinear animations by using key frames.

Key frames are waypoints in an animation. Instead of allowing the Animation to
progress linearly from beginning to end, key frames divide the animation up into
short segments. The animation progresses from the beginning to the first key frame,
then the next, and through the KeyFrames collection until the end of the animation is
reached. Each key frame defines its own Value and KeyTime properties, which indicate
the value that the Animation will represent when it reaches the key frame and the time
in the Animation at which that frame will be reached.

Every data type that supports a linear Animation type also supports a key-frame
Animation type, and some types that do not have linear animation types have key-frame
Animation types. The key-frame Animation types are named <TargetType>Animation-
UsingKeyFrames, where <TargetType> represents the name of the Type animated by the
Animation. Key-frame Animation types do not support the From, To, and By properties;
rather, the course of the Animation is defined by the collection of key frames.

There are three different kinds of key frames. The first is linear key frames, which are
named Linear<TargetType>KeyFrame. These key frames provide points in an Animation
that are interpolated between in a linear fashion. The following example demon-
strates the use of linear key frames:

<DoubTleAnimationUsingKeyFrames Storyboard.TargetProperty="Height">
<LinearDoubleKeyFrame Value="10" KeyTime="0:0:1" />
<LinearDoubleKeyFrame Value="100" KeyTime="0:0:2" />
<LinearDoubleKeyFrame Value="30" KeyTime="0:0:4"/>
</DoubleAnimationUsingKeyFrames>

In the preceding example, the Height property goes from its starting value to a value of
10 in the first second, then to a value of 100 in the next second, and finally returns to a
value of 30 in the last 2 seconds. The progression between each segment is interpolated
linearly. In this example, it is similar to having several successive linear Animation
objects.

334

Chapter 7 Styles and Animation

Discrete Key Frames

Some animatable data types do not support gradual transitions under any circum-
stances. For example, the String type can only accept discrete changes. You can use
discrete key frame objects to make discrete changes in the value of an animated
property. Discrete key frame classes are named Discrete<Target Type>KeyFrame, where
<TargetType>is the Type being animated. Like linear key frames, discrete key frames
use a Value and a KeyTime property to set the parameters of the key frame. The
following example demonstrates an animation of a String using discrete key frames:

<StringAnimationUsingKeyFrames Storyboard.TargetProperty="Content">
<DiscreteStringKeyFrame Value="Soup" KeyTime="0:0:0" />
<DiscreteStringKeyFrame Value="Sous" KeyTime="0:0:1" />
<DiscreteStringKeyFrame Value="Sots" KeyTime="0:0:2" />
<DiscreteStringKeyFrame Value="Nots" KeyTime="0:0:3" />
<DiscreteStringKeyFrame Value="Nuts" KeyTime="0:0:4" />
</StringAnimationUsingKeyFrames>

Spline Key Frames

Spline key frames allow you to define a Bézier curve that expresses the relationship
between animation speed and animation time, thus allowing you to create animations
that accelerate and decelerate in complex ways. While the mathematics of Bézier
curves is beyond the scope of this lesson, a Bézier curve is simply a curve between two
points whose shape is influenced by two control points. Using spline key frames, the
start and end points of the curve are always (0,0) and (1,1) respectively, so you must
define the two control points. The KeySpline property accepts two points to define the
Bézier curve, as seen here:

<SpTlineDoubleKeyFrame Value="300" KeyTime="0:0:6" KeySpline="0.1,0.8 0.6,0.6" />

Spline key frames are difficult to create with the intended effect without complex
design tools, and are most commonly used when specialized animation design tools
are available.

Using Multiple Types of Key Frames in an Animation

You can use multiple types of key frames in a single animation—you can freely inter-
mix LinearKeyFrame, DiscreteKeyFrame, and SplineKeyFrame objects in the KeyFrames
collection. The only restriction is that all key frames you use must be appropriate
to the Type that is being animated. String animations, for example, can use only
DiscreteStringKeyFrame objects.

Lesson 2: Animations 335

Quick Check

m What are the different types of key frame objects? When would you use
each one?

Quick Check Answer

m There are LinearKeyFrame, DiscreteKeyFrame, and SplineKeyFrame objects.
LinearKeyFrame objects indicate a linear transition from the preceding prop-
erty value to the value represented in the key frame. DiscreteKeyFrame
objects represent a sudden transition from the preceding property value to
the value represented in the key frame. SplineKeyFrame objects represent a
transition whose rate is defined by the sum of an associated Bézier curve. You
would use each of these types when the kind of transition represented was
the kind of transition that you wanted to incorporate into your user interface.
In addition, some animation types can use only DiscreteKeyFrames.

Creating and Starting Animations in Code

All the Animation objects that you have seen so far in this lesson were created declar-
atively in XAML. However, you can create and execute Animation objects just as easily
in code as well.

The process of creating an Animation should seem familiar to you; as with other NET
objects, you create a new instance of your Animation and set the relevant properties,
as seen in this example:

' VB

Dim aAnimation As New System.Windows.Media.Animation.DoubleAnimation()
aAnimation.From = 20

aAnimation.To = 300

aAnimation.Duration = New Duration(New TimeSpan(0, 0, 5))
aAnimation.Fil1Behavior = Animation.Fil1Behavior.Stop

// C#

System.Windows.Media.Animation.DoubleAnimation aAnimation = new
System.Windows.Media.Animation.DoubleAnimation();

aAnimation.From = 20;

aAnimation.To = 300;

aAnimation.Duration = new Duration(new TimeSpan(0, 0, 5));

aAnimation.Fil1Behavior = Animation.FillBehavior.Stop;

After the Animation has been created, however, the obvious question is: How do you
start it? When creating Animation objects declaratively, you must use a Storyboard to

336

Chapter 7 Styles and Animation

organize your Animation and an Action to start it. In code, however, you can use a sim-
ple method call. All WPF controls expose a method called BeginAnimation, which
allows you to specify a dependency property on that control and an Animation object
to act on that dependency property. The following code shows an example:

' VB
Buttonl.BeginAnimation(Button.HeightProperty, aAnimation)

// C#
buttonl.BeginAnimation(Button.HeightProperty, aAnimation);

Lab: Improving Readability with Animations

In this lab, you improve upon your solution to the lab in Lesson 1 of this chapter. You
remove the triggers that cause the FontSize to expand and instead use an Animation to
make it look more natural. In addition, you create Animation objects to increase the
size of the control when the mouse is over it.

Exercise: Animating High-Contrast Styles
1. Open the completed solution from the lab from Lesson 1 of this chapter.
2. In each of the Styles, remove the FontSize Setter that is defined in the Trigger and

replace it with a Trigger.EnterActions and Trigger.ExitActions section, as shown
here:

<Trigger.EnterActions>

</Trigger.EnterActions>
<Trigger.ExitActions>

</Trigger.ExitActions>
3. Ineach Trigger. EnterActions section, add a BeginStoryboard action, as shown here:

<BeginStoryboard Name="Storyboardl">

</BeginStoryboard>

4. Add the following Storyboard and Animation objects to the BeginStoryboard object
in the style for the TextBox. Note that the values for the ThicknessAnimation object
are crafted specifically for the completed version of the Lesson 1 lab on the CD. If
you created your own solution, you need to recalculate these values:
<Storyboard Duration="0:0:1">

<DoubleAnimation Storyboard.TargetProperty="FontSize"
To="20" />

<ThicknessAnimation Storyboard.TargetProperty="Margin"
To="26,118,45,104" />

Lesson 2: Animations 337

<DoubleAnimation Storyboard.TargetProperty="Width" To="210"/>
<DoubTeAnimation Storyboard.TargetProperty="Height" To="40"/>
</Storyboard>

5. Add a similar Storyboard to the style for the Label, as shown here:

<Storyboard Duration="0:0:1">
<DoubTeAnimation Storyboard.TargetProperty="FontSize" To="20" />
<ThicknessAnimation Storyboard.TargetProperty="Margin"
To="26,62,46,-10" />
<DoubTeAnimation Storyboard.TargetProperty="Width" To="210"/>
<DoubTeAnimation Storyboard.TargetProperty="Height" To="40"/>
</Storyboard>

6. Add a similar Storyboard to the style for the Button, as shown here:

<Storyboard Duration="0:0:1">
<DoubTeAnimation Storyboard.TargetProperty="FontSize" To="20" />
<ThicknessAnimation Storyboard.TargetProperty="Margin"
To="26,0,46,52" />
<DoubTeAnimation Storyboard.TargetProperty="Width" To="210"/>
<DoubleAnimation Storyboard.TargetProperty="Height" To="40"/>
</Storyboard>

7. Add the following line to the Trigger. ExitActions section of each Style:
<StopStoryboard BeginStoryboardName="Storyboardl" />

8. Press F5 to build and run your application. Now the FontSize expansion is ani-
mated and the control expands as well.

Lesson Summary

m Animation objects drive automated property changes over time. There are three dif-
ferent types of Animation objects—linear animations, key frame—based animations,
and path-based animations. Every animatable type has at least one Animation type
associated with it, and some types have more than one type of Animation that can

be applied.

m Storyboard objects organize one or more Animation objects. Storyboard objects
determine what objects and properties their contained Animation objects are
applied to.

m Both Animation and Storyboard objects contain a variety of properties that con-
trol Animation playback behavior.

m Storyboard objects that are created declaratively are activated by a BeginStory-
board action in the Actions collection of a Trigger. Triggers also can define actions
that pause, stop, and resume Storyboard objects, as well as performing other
Storyboard-related functions.

338 Chapter 7 Styles and Animation

m Key frame animations define a series of waypoints through which the Animation
passes. There are three kinds of key frames: linear key frames, discrete key
frames, and spline key frames. Some animatable types, such as String, support
only discrete key frames.

m You can create and apply Animation objects in code. When doing this, you do not
need to define a Storyboard object; rather, you call the BeginAnimation method on
the element with which you want to associate the Animation.

Lesson Review

You can use the following questions to test your knowledge of the information in
Lesson 2, “Animations.” The questions are also available on the companion CD if you
prefer to review them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is correct or incorrect are
located in the "Answers” section at the end of the book.

1. How many times does the Animation shown here repeat (not counting the first
iteration)?

<DoubleAnimation Duration="0:0:15" RepeatBehavior="0:1:0"
Storyboard.TargetProperty="Height" To="200" />

0

O = >

1
2
D. 3
2. Look at this Animation:

<DoubTleAnimation Duration="0:0:5" From="30" By="80" To="200"
Storyboard.TargetProperty="Height" />

Assuming that the element whose Height property it animates begins with a
Height of 50, what is the value of the element after the animation has completed?

A. 50
B. 110
C. 130

D. 200

Chapter 7 Review 339

Chapter Review

To practice and reinforce the skills you learned in this chapter further, you can do any
or all of the following:

Review the chapter summary.
Review the list of key terms introduced in this chapter.

Complete the case scenarios. These scenarios set up real-world situations involv-
ing the topics of this chapter and ask you to create a solution.

Complete the suggested practices.

Take a practice test.

Chapter Summary

Styles allow you to define consistent visual styles for your application by using a
collection of Setters. They usually are defined as a Resource and referenced in
XAML, though they can be set inline or dynamically. Styles can be inherited from
other styles and applied to all instances of a particular type.

Triggers respond to changes in the application environment. Property triggers
and multi-triggers listen for changes in property values, and data triggers and
multi-data-triggers listen for changes in bound values. When one of these trig-
gers is activated, its Setters collection is applied. EventTriggers listen for a routed
event and execute Actions in response to that event.

Property values follow a strict order of precedence depending on how they are set.

Animation objects drive automated property changes over time. There are three
different types of Animation objects—linear animations, key frame-based anima-
tions, and path-based animations. Every animatable type has one or more Ani-
mation classes that can be used with it. Animations are organized by Storyboard
objects, which are themselves controlled by Action objects that are activated in
the Action collections of Trigger objects.

Animations that use key frames provide waypoints that the Animation visits as it
progresses. Key frames can be linear, spline-based, or discrete.

You can create and apply Animation objects in code. When doing this, you do not
need to define a Storyboard object, but rather you call the BeginAnimation method
on the element with which you want to associate the Animation.

340 Chapter 7 Review

Key Terms

Action
Animation
Key Frame
Setter
Storyboard
Style
Trigger

Case Scenarios

In the following case scenarios, you apply what you've learned about how to use con-
trols to design user interfaces. You can find answers to these questions in the
“Answers” section at the end of this book.

Case Scenario 1: Cup Fever

You've had a little free time around the office, and you decided to write a simple but
snazzy application to organize and display results from World Cup soccer matches.
The technical details are all complete: You've located a Web service that feeds up-to-
date scores, and you've created a database that automatically applies updates from
this service for match results and keeps track of upcoming matches. The database is
exposed through a custom data object built on ObservableCollection<> lists. All that
remains are the finishing touches. Specifically, when users choose an upcoming
match from a drop-down box at the top of the window, you want the window’s color
scheme to match the colors of the teams in the selected matchup.

Technical Requirements

The user interface is divided into two sections, each of which is built on a Grid
container. Each section represents a team in the current or upcoming match.
The user interface for each section must apply the appropriate team colors auto-
matically when a new match is chosen.

Chapter 7 Review 341

Question

Answer the following question for all your office mates, who are eagerly awaiting the
application’s completion.

m How can you implement these color changes to the user interface?

Case Scenario 2: A Far-Out User Interface

Our friends with the questionable taste are back. They were so impressed with the
work you did for them back in Chapter 4 that they’ve asked you to design a user inter-
face that further pushes the envelope of good design sensibilities. Rather than having
a static tie-dyed appearance, now they want the background to be a constantly chang-
ing multicolored experience. The idea of using a RadialGradientBrush to paint the
background of the window is still acceptable, but they want the center of the gradient
to change over time and they want the colors of the background to change.

Question

Answer the following question for your manager:

m How can we implement this appearance?

Suggested Practices

m Create an Animation that moves elements across the user interface. Alternatively,
use linear animations and key frame animations to explore a variety of different
animation styles. Animate other properties of Ul elements as well, such as the
color, size, and content.

m Use Animations to create a slideshow application that reads all the image files in a
given directory and displays each image for 10 seconds before automatically switch-
ing to the next one. Note that you have to create and apply the Animation in code.

m Modify the solution from Lesson 2 of Chapter 6, “Converting and Validating
Data,” to create styles for the application that includes DataTriggers that automat-
ically apply styles based on the CompanyName of the selected record.

m Modify the solution from the second lab in this chapter to reverse the Animation
instead of stopping it when the mouse exits the control.

342 Chapter 7 Review

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on all
the 70-502 certification exam content. You can set up the test so that it closely simulates
the experience of taking a certification exam, or you can set it up in study mode so that
you can look at the correct answers and explanations after you answer each question.

MORE INFO Practice tests

For details about all the practice test options available, see the section "How to Use the Practice
Tests,” in this book’s Introduction.

	Cover
	Table of Contents
	Chapter 7: Styles and Animation
	Before You Begin
	Lesson 1: Styles
	Using Styles
	Properties of Styles
	Setters
	Creating a Style
	Implementing Style Inheritance

	Triggers
	Property Triggers
	Multi-triggers
	Data Triggers and Multi-data-triggers
	Event Triggers

	Understanding Property Value Precedence
	Lab: Creating High-Contrast Styles
	Lesson Summary
	Lesson Review

	Lesson 2: Animations
	Using Animations
	Important Properties of Animations
	Storyboard Objects
	Using Animations with Triggers
	Managing the Playback Timeline
	Animating Non-Double Types
	Creating and Starting Animations in Code
	Lab: Improving Readability with Animations
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios
	Case Scenario 1: Cup Fever
	Case Scenario 2: A Far-Out User Interface

	Suggested Practices
	Take a Practice Test

