ﬂ

Microsoft’

ASPNET 3.5 Microsoft” ASP.NET 3.5
Step by Step

George Shepherd

George Shepherd

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/11239.aspx.

Microsoft
9780735624269 Press

© 2008 George Shepherd. All rights reserved.

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2008 by George Shepherd

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Control Number: 2007942085

Printed and bound in the United States of America.

123456789 QWT 321098

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor-
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, ActiveX, BizTalk, Internet Explorer, MSN, Silverlight, SQL Server, Visual
Basic, Visual Studio, Win32, Windows, Windows NT, Windows Server, and Windows Vista are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
Other product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Ben Ryan

Developmental Editor: Devon Musgrave

Project Editor: Kathleen Atkins

Editorial Production: P.M. Gordon Associates

Technical Reviewer: Kenn Scribner; Technical Review services provided by Content Master, a member
of CM Group, Ltd.

Cover: Tom Draper Design

Body Part No. X14-40155

Table of Contents

INtrodUCtioN . ..ot e XiX

Acknowledgments. i e XXiX

Part| Fundamentals

1 Web ApplicationBasicsc.oiiiiiiininiiinnen... 3
HTTP Requestso e e e 4
HTTP Requests fromaBrowser........... 4
Making HTTP Requests without a Browser 6
HyperText Markup Language. e 8
Dynamic Content 9
HTML FOrms . .. e 10
Common Gateway Interface (Very Retro). 12

The Microsoft Platform asaWeb Server 12
Internet Information Services. i 12
Internet Services Application Programming Interface DLLs........... 13
Internet Information Services.o i, 14
Classic ASP (Putting ASP.NET into Perspective)..............c.ccooiviioo... 19
Web Development Conceptst 22
AP INET L 23
SUMIMAIY o e e e 24
Chapter 1 Quick Reference. 24
2 ASP.NET Application Fundamentals........................ 25
The Canonical Hello World Application 25
Building the HelloWorld Web Application.......................... 26
Mixing HTML with Executable Code........, 31
Server-Side Executable Blocks 34

The ASP.NET Compilation Model............. i 41

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vii

viii Table of Contents

Coding OPtioNS. . .ot 43
ASPINET Lx Style ..o 43
Modern ASP.INET Style. 44

The ASP.INET HTTP Pipeline 46
The lIS5.xand IS 6.x Pipeline. 46
The 1IS 7.0 Integrated Pipeline i, 47
Tapping the Pipeline 47

Visual Studio and ASP.INET 50
Local IISWeb Sites. 50
File System-Based Web Sites.............. .. i 50
FTPWeb Sites . ..o 51
Remote Web Sites 51
Hello World and Visual Studio. 52

SUMIMIATY oo 57

Chapter 2 Quick Reference. ... 58

3 The Page RenderingModel............................... 59

Rendering Controls @as Tagsoviiiiiiiii 59

Packaging Ulas Components.t 62
The Page Using ASP.INET o e 63
The Page’s Rendering Model 65
The Page's Control Tree. 66

Adding Controls Using Visual Studio 68
Building a Page with Visual Studio 68
Layout Considerations.uuuu i 76

SUMMIATIY ot e e 77

Chapter 3 Quick Reference. ... 78

4 CustomRenderedControls..................., 79

The Control Classt e 79

Visual Studio and Custom Controls. ... 81

A Palindrome Checker. 88

Controlsand Events. 92

HtmiTextWriter and Controls 95

Controls and ViewState. 98

SUMIMAIY ot e e e e e e 101

Chapter 4 Quick Reference. ... 101

Table of Contents

5 CompositeControls, 103
Composite Controls versus Rendered Controls. 103

Custom Composite Controls. i 104

User Controls. 112

When to Use Each Typeof Control i, 118
SUMMANY . oo e 119

Chapter 5 Quick Reference. ... 119

6 ControlPotpourri......t 121
Validation.o 121

How Page Validation Works.o, 127

Other Validators. i 129

Validator Properties. ... 130

Image-Based Controls.o 130

TreeView. . ..o 134
MUILIVIEW. . o 138
SUMIMAIY o e 140

Chapter 6 Quick Reference. 141

Part I Advanced Features

7 WebParts. ..ottt i i it i 145
A Brief History of Web Parts. 146

What Good Are Web Parts? 146
Developing Web Parts Controls. 147

Web Parts Page Development.................. 147

Web Parts Application Development............... 147

The Web Parts Architecture 147
WebPartManager and WebZones. 148

Built-in Zones 148

Built-in Web Parts 149
DevelopingaWeb Part....... ..o i i 158

SUMMANY oo e 168

Chapter 7 Quick Reference. 168

8 A Consistent LookandFeel............ 169
A Consistent Look and Feel 169

ASP.INET Master Pages. 170

TREMES. . .o 181

Table of Contents

SKINS 185
SUMIMIAIY oo e 186
Chapter 8 Quick Reference. ... 187
9 Configuration i i 189
Windows Configuration. 190
NET Configuration. 190
Machine.Config. i 191
Configuration Section Handlers.o iiiiiiiiin. 191
Web.Config . ..o 193
Managing Configuration in ASPNET 1.x ...t 194
Managing Configuration in Later Versions of ASPNET 195
Configuring ASP.NET from lIS. 200
SUMIMAIY o e 204
Chapter 9 Quick Reference. ... 205
10 Logging Int i e e 207
Web-Based Security. 207
Securing 1S .. oo 208

Basic Forms Authenticationt 209
ASP.NET Authentication Services. ... 214
The FormsAuthentication Classc. oo 214

An Optional LoginPage ..., 215
Managing UsSerso i 219
ASP.NET Login Controls.ttt e 225
Authorizing Users. 229
SUMMIAIY oot e 232
Chapter 10 Quick Reference. ... 232
11 DataBindingcooiuiiiniiiiiiniiiiniininennnnnn 233
Representing Collections without Data Binding......................... 233
Representing Collections with Data Binding 234
ListControl-Based Controls.o 234
TreeVIeW.o 235
Menu . .. 235
FormView. 235
GridVIEW . .. 235

Table of Contents

Datalist 236
Repeater. 236
Simple Data Binding. 236
Accessing Databases 240
The .NET Database Story. e 241
CoNNECIONS . .o 241
ComMmMaANGS ... 243
Managing Results. 244
ASPNET Data Sources . ..ot 246
Other Data-bound Controls. ... 251
LINQ - o 259
SUMIMAIY o e e e 261
Chapter 11 Quick Reference. ...t 262
12 Web Site Navigation.......... 263
ASP.NET's Navigation Support 263
The Navigation Controls. i 263

XML Site Maps .ot 265

The SiteMapProvider e 265

The SiteMap Class. 265

The SiteMapNode. 266

The Navigation Controls i 267
The Menu and TreeView Controls 267

The SiteMapPath Control 268

Site Map Configuration............. . 269
Building a Navigable Web Site. 270
Trapping the SiteMapResolve Event. 274
Custom Attributes for Each Node 275
Security TrmMMING . ..ottt 278
URL Mapping . .ot e e e e 278
SUMIMANY . o 282
Chapter 12 Quick Reference. ... 283
13 Personalization il 285
PersonalizingWeb Visits 285
Personalization in ASP.INET o 286
User Profiles 286

Personalization Providers 286

xii Table of Contents

Using Personalization i i i i i 287
Defining Profiles in Web.Config.t 287
Using Profile Information 287
Saving Profile Changes 288
Profiles and Users. 289

SUMIMIATY oo e e 294

Chapter 13 Quick Reference. 294

part Il Caching and State Management

14 SessionStatet e 297
Why Session State?. 297
ASP.NET and Session State i 298
Introduction to Session State........ ... i 299
Session State and More ComplexData. 304
Configuring Session State. 311

Turning Off Session State 312
Storing Session State inProc.oo i i i, 313
Storing Session State ina State Server........l 313
Storing Session State ina Database 314
Tracking Session State 314
Tracking Session State with Cookies 314
Tracking Session State withthe URL.............................. 316
Using AutoDetect. 316
Applying Device Profiles. ... 316
Session State Timeouts 317
Other Session Configuration Settings.o .. 317
The Wizard Control: Alternative to Session State 317
SUMIMIATY o e 326
Chapter 14 Quick Reference. ... 327

15 ApplicationDataCaching o ... 329
Usingthe DataCache ..., 331
Impact of Caching 333
Managingthe Cache 335

DataSets in MEMOTYt 336
Cache Expirations. 338

Cache Dependencies.ouiiii i 341

Table of Contents Xiii

The SQL Server Dependency 344
Clearingthe Cache. 345
SUMIMAIY o 348
Chapter 15 Quick Reference. 349
16 CachingOutput......... ... i, 351
Caching Page Content. 351
Managing Cached Content.......... ... i, 354
Modifying the OutputCache Directive 354

The HTTPCachePolicy e 360
Caching Locations 361
Output Cache Dependencies.oovviiiiiiinne ... 362
Caching Profiles 362
Caching User Controls. e 363
When Output Caching Makes Sense. 366
SUMMANY . oo 367
Chapter 16 Quick Reference. 368

Part IV Diagnostics and Plumbing

17 Diagnosticsand Debugging 371
Page TraCing . ..o oo 371

TUrNiNG ON TraCing . . . o oottt e e 372

Trace Statementso 375

Application Tracing 379

Enabling Tracing Programmatically. 381

The TraceFinished Event 382

Piping Other Trace Messages.t 382

Debugging with Visual Studio 383

Error Pages. . ..o 386

Unhandled EXCeptions. 390

SUMIMANY ot 391

Chapter 17 Quick Reference. 392

18 The HttpApplication Class and HTTP Modules.............. 395
The Application: A Rendezvous Point., 395

Overriding HttpApplication. 397

Application State Caveats. ... 399

Xiv

Table of Contents

Handling Events 399
HttpApplication Events i 400
HttpModules 404
Existing Modules 404
ImplementingaModule. 406

See Active Modules 408
Storing Statein Modules. 410
Global.asax versus HttpModules, 414
SUMIMAIY o e e e 414
Chapter 18 Quick Reference. 415
19 CustomHandlers........ il 417
Handlers. 417
Built-in Handlers.o 419
IHttpHandler 422
Handlers and Session State. 427
Generic Handlers (ASHX Files)o 428
SUMMATIY oot e e e 430
Chapter 19 Quick Reference. ... 431

PartV Services, AJAX, Deployment, and Silverlight

20 ASP.NETWeb Services, 435
REMOtING 435
RemotingovertheWeb 437

SOA P 437

Transporting the Type System o i i, 437

Web Service Description Language 438
If You Couldn't Use ASP.INET... ... 438
A Web Service in ASPINET.o 439
Consuming Web Services 446
Asynchronous Execution. 451
Evolution of Web Services. 454
Other Featurest 455
SUMIMaAIY ot e e e e e e 455

Chapter 20 Quick Reference. 456

Table of Contents

21 Windows Communication Foundation 457
Distributed Computing Redux. i i i 457
A Fragmented Communications APl. 458
WCF for Connected Systems. 458
WCF Constituent Elements 459

WCF ENdpoints 459
Channels 460
Behaviors. 460
MESSAgES . . o ot 461
How WCF Plays with ASP.NET. e 462
Side-by-Side Mode 462
ASP.NET Compatibility Mode. 462
Writing a WCF Service.o o 463
Buildinga WCF Client e 469
SUMIMAANY o 475
Chapter 21 Quick Reference. ...t 476

22 AJAX . e e e 477
What s AJAX? L 478
AJAX OVEIVIEW . . .o 479

Reasonsto Use AJAX. ... i 480
Real-World AJAX . . 481
AJAX N Perspective. 481
ASP.NET Server-Side Support for AJAX ... 482
ScriptManager Control i i 482
ScriptManagerProxy Control 482
UpdatePanel Control i 483
UpdateProgress Control 483
Timer CONtrolo 483
AJAX Client SUPPOIt. . ..t 483
ASP.NET AJAX Control Toolkit 484
Other ASP.NET AJAX Community-Supported Stuff 485
AJAX Control Toolkit Potpourri............. 486
Getting Familiar with AJAX. 487
The Timer.o 493

Updating Progress 501

Xvi Table of Contents

Extender Controls. 505

The AutoComplete Extender. 505

A Modal Pop-up Dialog-Style Component........................ 512

SUMMATIY . oo 516
Chapter 22 Quick Reference. 517

23 ASP.NETand WPFContentcooiiiiiinn., 519
What IS WPE 2. L 519

How Does It Relate tothe Web? i, 521

Loose XAMLfileso o 522

XBAP Applications 523

WPF Content and Web Applications. 523
What about Silverlight?. 529
SUMIMaAIY ot e e e e e 529
Chapter 23 Quick Reference. 530

24 How Web Application Types Affect Deployment 531
Visual Studio Projects 531
HTTP Project. ..o e 532

FTP Project ... 532

File System Project. 532
Precompiling 533
Precompiling for Performance. L. 533
Precompiling for Deployment, 534
PublishingaWeb Site 542

SUMMIAIY oot e e e 543
Chapter 24 Quick Reference. ... 544
GlOSSarY . o ottt e et e 545
1 Vo =" G 547

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Chapter 21
Windows Communication
Foundation

After completing this chapter you will be able to
B Understand the motivation behind Windows Communication Foundation
B Understand the WCF architecture
B Implement a WCF-based server

® Build a client to use the WCF server

Distributed Computing Redux

The Windows Communication Foundation (WCF) represents one of three main pillars of

.NET 3.x. These three specific highly leverageable technologies include Windows Workflow
Foundation, Windows Presentation Foundation, and Windows Communication Foundation.
Each of these technologies redefines programming within a certain idiom. Windows Workflow
Foundation unifies the business work flow model. Windows Presentation Foundation rede-
fines writing user interfaces, whether for Windows desktop applications or for the Web (using
Silverlight). Finally, Windows Communication Foundation unifies the distributed programming
model for the Microsoft platform. Clearly unifying these fragmented programming models is
the main theme of .NET 3.5.

To get an idea of how fragmented the distributed computing solutions are, think back to

the earliest ways to connect two computers together. At one point, the only thing you could
program in any standard way was the old venerable R$232 serial connection or through a
modem. Over the years, distributed computing on the Microsoft platform has grown to en-
compass many different protocols. For example, Windows NT supported a Remote Procedure
Call mechanism that was eventually wrapped using the Distributed Component Object
Model (DCOM). In addition, Windows also supports sockets programming. Near the turn of
the century, Microsoft released Microsoft Message Queue (MSMQ) to support disconnected
queuing-style distributed application. When it became apparent that DCOM was running
into some dead ends, Microsoft introduced .NET remoting. (The “dead ends” that DCOM im-
plemented are mainly its requirement to periodically contact client objects to remain assured
of a connection, limiting scalability, its complex programming model, difficult configuration
needs, and Internet-vicious security architecture.) Finally, to help supplement a wider reach
available for distributed programming, Microsoft introduced an XML Web Service framework
within ASP.NET (the ASMX files you looked at earlier in Chapter 20).

457

458

PartV Services, AJAX, Deployment, and Silverlight

A Fragmented Communications API

WCF

Each of the older technologies mentioned previously has its own specific advantages—es-
pecially when you take into account the periods during computing history that they were
introduced. However, having so many different means of writing distributed computing
applications has led to a fragmented application programming interface (API). Making the
decision as to which technology to use has always been an early decision. Earlier distributed
technologies often tied your application to a specific transport protocol. If you made the
wrong architectural decision or simply wanted to later migrate to a newer technology, it was
often difficult if not nearly impossible to do so. Even if it could be done, it was usually an
expensive proposition in terms of application redevelopment and end-user acceptance and
deployment.

There are a number of programming and configuration issues involved when relying on
these older technologies. The previous connection technologies coupled multiple auxiliary
factors not required directly for communicating data with the communication process itself.
For example, earlier distributed computing systems forced decisions such as how to format
data into the early stages of design, as well as into the implementation of a distributed sys-
tem. Referring back to DCOM, making DCOM remote procedure calls required an application
to be tied to the DCOM connection protocol and wire format. This forced administrators

to open port 135, the DCOM object discovery port, leading to immense security risks. .NET
improved on things by allowing you the choice of transports and wire formats (out of the
box you get a choice of using HTTP or TCP as the connection protocol, and you may use ei-
ther SOAP or the .NET binary format as the wire format). However, even with those choices
provided by .NET remoting, applications using classic .NET remoting are often fated to use a
single connection protocol and wire format once the configuration is set. You can swap out
connection protocols and wire formats, but it's not very easy.

In addition to tying wire formats and connection protocols to the implementation of a
distributed system, there are many more issues cropping up when you try to connect two
computers together. The minute you try to do something useful, you have to begin think-
ing about issues such as transactions, security, reliability, and serialization—and these issues
inevitably become embedded in the application code (instead of being added later as neces-
sary). In addition, previous communication technologies don't lend themselves to the cur-
rently in vogue Service-Oriented Architectures (SOA) where interoperability is key, although
in practice interoperability is tricky to achieve.

for Connected Systems

WCF's main job is to replace the previously fragmented Windows communication APIs under
a single umbrella. At the same time, WCF aims to decouple the processing of communicat-
ing over a distributed system distinct from the applications themselves. When working with

WCF

Chapter 21 Windows Communication Foundation 459

WCEF, you'll see that the distinctions between contracts, transports, and implementation are
enforced, rather than just being a good idea. In addition, Microsoft has always been attuned
to the needs of existing applications and therefore has designed WCF to accommodate par-
tial or complete migrations from earlier communication technologies (NET remoting or XML
Web Services) to WCF-based computing.

SOA is becoming an important design influence within modern software. SOA is an archi-
tectural philosophy that encourages building large distributed systems from loosely coupled
endpoints that expose their capabilities through well-known interfaces. WCF adheres to
standard SOA principles, such as setting explicit boundaries between autonomous services,
having services be contract and policy based (rather than being class based), having business
processes be the focal point of the services (rather than services themselves), and accommo-
dating fluctuating business models easily. WCF is designed for both high performance and
maximum interoperability.

WCF represents a communication /ayer, and so introduces a level of indirection between a
distributable application and the means by which the application is distributed. As an inde-
pendent layer, WCF makes implementing and configuring a distributed application simpler
by providing a consistent interface for managing such aspects as security, reliability, concur-
rency, transactions, throttling (throughput limitations for some or all callers or methods), seri-
alization, error handling, and instance management.

While WCEF is very at home when communicating via XML Web Services using SOAP (a stan-
dard for many existing Web services), it may also be configured and extended to communi-
cate using messages based on non-SOAP formats, such as custom XML formats and RSS.

WCF is smart enough to know if both endpoints are WCF-based endpoints, in which case it
will use optimized wire encoding. The structures of the messages are the same—they're just
encoded in binary form. WCF includes other services often required by distributed systems.
For example, WCF includes built-in queued messaging.

Constituent Elements

WOCF is composed of a few separate elements: endpoints, channels, messages, and behaviors.
Whereas earlier communication technologies tended to couple these concepts together, WCF
distinguishes them as truly separate entities. Here's a rundown of the elements of WCF.

WCF Endpoints

Endpoints define the originators and recipients of WCF communications. Microsoft has come
up with a clever acronym for defining endpoints: ABC. That is, WCF endpoints are defined by
an address, a binding, and a contract.

460

PartV Services, AJAX, Deployment, and Silverlight

Address

The address identifies the network location of the endpoint. WCF endpoints use the address-
ing style of the transport moving the message. WCF addressing supports using both fully
qualified addresses and relative addresses. For example, a fully qualified Internet protocol
address looks like the following: http.//someserver/someapp/mathservice.svc/calculator. WCF
supports relative addressing by using a base address and then a relative address. Base ad-
dresses are registered with the service, and WCF can find services relative to the base address
of the service. For example, an endpoint might comprise a whole address using a base ad-
dress such as http://someserver/someapp/mathservice.svc and a relative address of calc.

Binding
WCF bindings specify how messages are transmitted. Rather than being identified simply by a

transport and wire format coupled together (a la DCOM), WCF bindings are composed from a
stack of binding elements which at a minimum include a protocol, a transport, and an encoder.

Contract

The final element defining an endpoint is the contract. The contract specifies the primary
agreement between the client and the service as to what the service can do for the client.
The contract specifies the information to be exchanged during a service call.

WCF expresses a Service Contract as a .NET interface adorned with the [ServiceContract] attri-
bute. Methods within the WCF contract interface are annotated with the [OperationContract]
attribute. WCF interfaces may pass data structures as well. Data members within the struc-
tures are exposed as properties and adorned with the [DataMember] attribute.

Channels

WCF channels represent the message transmission system. WCF defines protocol channels
and transport channels. Protocol channels add services such as security and transactions
independently of transport. Transport channels manage the physical movement of bytes be-
tween endpoints (for example, WCF uses protocols such as MSMQ, HTTP, P2P, TCP, or Named
Pipes). WCF uses a factory pattern to make creating channels consistent.

Behaviors

In WFC, the service contract defines what the service will do. The service contract implemen-
tation specifies exactly how the service contract functionality works. However, one of the
hallmarks of a distributed system is that it usually requires some add-on functionality that
may not necessarily be tied to contract implementation. For example, when securing a Web
service, authenticating and authorizing the client may be necessary, but it's usually not part

Chapter 21 Windows Communication Foundation 461

of the service contract. WFC implements this kind of add-on functionality through behaviors.
Behaviors implement the SOA higher-order notion of policy and are used to customize local
execution.

Behaviors are governed by attributes—the main two of which are the ServiceBehaviorAttribute
and the OperationBehaviorAttribute. The ServiceBehaviorAttribute and OperationBehaviorAttribute
attributes control the following aspects of the service execution:

B |mpersonation

B Concurrency and synchronization support
B Transaction behavior

B Address filtering and header processing

B Serialization behavior

® Configuration behavior

m Session lifetime

B Metadata transformation

B [nstance lifetimes

Applying these attributes to modify the server execution is easy. Just adorn a service or opera-
tion implementation with the appropriate attribute and set the properties. For example, to
require that callers of an operation support impersonation, adorn a service operation with the
OperationBehavior attribute and set the Impersonation property to ImpersonationOption.Require.

Messages

The final element of WCF is the actual message. WCF messages are modeled on SOAP mes-
sages. They are composed of an envelope, a header, a body, and addressing information.

Of course, messages also include the information being exchanged. WCF supports three
Message Exchange Patterns: one-way, request-response, and duplex. One-way messages
are passed from the transmitter to the receiver only. Messages passed using the request
response pattern are sent from the transmitter to the receiver, and the receiver is expected
to send a reply back to the originator. Messages using the request response pattern block
until the receiver sends a response to the originator. When using the duplex messaging, ser-
vices can call back to the client while executing a service requested by the client. The default
Message Exchange Pattern is request-response.

462

PartV Services, AJAX, Deployment, and Silverlight

How WCF Plays with ASP.NET

Although WCF applications may be hosted by manually written servers, ASP.NET makes a
perfectly good host. You can either write your own Windows Service to act as a host, or you
can take advantage of a readily available Windows Service, 1IS, and consequently ASP.NET.
WCF and ASP.NET may co-exist on a single machine in two different modes—side-by-side
mode and ASP.NET compatibility mode. Here's a rundown of these two modes.

Side-by-Side Mode

When running in side-by-side mode, WCF services hosted by Internet Information Services
(11S) are co-located with ASP.NET applications composed of .ASPX files and ASMX files (and
ASCX and ASHX files when necessary). ASP.NET files and WCF services reside inside a single,
common Application Domain (AppDomain). When run this way, ASP.NET provides common
infrastructure services such as AppDomain management and dynamic compilation for both
WCF and the ASP.NET HTTP runtime. WCF runs in side-by-side mode with ASP.NET by default.

When running in side-by-side mode, the ASP.NET runtime manages only ASP.NET requests.
Requests meant for a WCF service go straight to the WCR-based service. Although the
ASP.NET runtime does not participate in processing the requests, there are some specific
ramifications of running in side-by-side mode.

First, ASP.NET and WCF services can share AppDomain state. This includes such items as
static variables and public events. Although it shares an AppDomain with ASP.NET, WCF runs
independently—meaning some features you may count on when working with ASP.NET
become unavailable. Probably the major restriction is that there's no such thing as a current
HttpContext from within a WCF service (despite WCF's architectural similarity to ASP.NET’s
runtime pipeline). Architecturally speaking, WCF can communicate over many different pro-
tocols, including but not limited to HTTP, so an HTTP-specific context may not even make
sense in many given scenarios. Second, authentication and authorization can get a bit tricky.

Even though WCF applications do not interfere with ASP.NET applications, WCF applications
may access various parts of the ASP.NET infrastructure such as the application data cache. In
fact, this chapter's example shows one approach to accessing the cache.

ASP.NET Compatibility Mode

WCF is designed primarily to unify the programming model over a number of transports and
hosting environments. However, there are times when a uniform programming model with
this much flexibility is not necessary and the application may desire or even require some of
the services provided by the ASP.NET runtime. For those cases, WCF introduces the ASP.NET

Chapter 21 Windows Communication Foundation 463

compatibility mode. WCF's ASP.NET compatibility mode lets you run your WCF application
as a full-fledged ASP.NET citizen, complete with all the functionality and services available
through ASP.NET.

WOCEF services that run using ASP.NET compatibility mode have complete access to the ASP.
NET pipeline and execute through the entire ASP.NET HTTP request life cycle. WCF includes
an implementation of /HttpHandler that wraps WCF services and fosters them through the
pipeline when run in ASP.NET compatibility mode. In effect, a WCF service running in ASP.
NET compatibility mode looks, tastes, and feels just like a standard ASP.NET Web service (that
is, an ASMX file).

WCF applications running under the ASP.NET compatibility mode get a current HttpContext
with all its contents—the session state, the Server object, the Response object, and the
Request object. WCF applications running as ASP.NET compatible applications may secure
themselves by associating Windows Access Control Lists (ACLs) to the service's .svc file. In this
manner, only specific Windows users could use the WCF service. ASP.NET URL authorization
also works for WCF applications running as ASP.NET compatible applications. The pipeline
remains arbitrarily extensible for WCF applications running as ASP.NET applications because
service requests are not intercepted as with the general purpose side-by-side mode—they're
managed by ASP.NET for the entire request life cycle.

You can turn on WCF's ASP.NET compatibility mode at the application level through the ap-
plication's web.config file. You can also apply ASP.NET compatibility to a specific WCF service
implementation.

Writing a WCF Service

Here's an example of WCF service to help illustrate how WCF works. Recall the XML Web
Service example application from Chapter 20, the QuoteService that doled out pithy quotes
to any client wishing to invoke the service. The example here represents the same service—
but using a WCF-based Web site instead of an ASMX-based Web service. This way, you'll
see what it takes to write a WCF-based service and client, and you'll see some of the differ-
ences between WCF-based services and ASMX-based services (there are a couple of distinct
differences).

QuotesService

1. Start by creating a WCF project. This example takes you through the nuts and bolts of
developing a working WCF application that may be accessed from any client anywhere.
Start Visual Studio 2008. Select File, New, Web Site and choose WCF Service from the

464

PartV Services, AJAX, Deployment, and Silverlight

available templates. Name the site WCFQuotesService. The following graphic shows the
New Web Site dialog box:

New Web Site 2] x|
Templates: MET Framework 3.5 +| & r

Visual Studio installed templates

B 5P NET Wb Site B, 5P MET wieb Service ¥ Ernpty web Site
[ASP.NET Reports web Site

My Templates

ﬁSear:h Cnline Templates. ..

A \Wweh site for creating WCF services (NET Framewark 3.5)
Location: IFHE System j I Chaspretsbsprojectsiyewcode\WCFQuotesService j Browse. ..
Language: Visual C# b

2. Examine the files created by Visual Studio. The App_Code directory includes two files:
IService.cs and Service.cs. These two files are placeholders representing the WCF con-
tract (as a .NET interface type) and a class implementing the contract.

3. Tweak the files produced by Visual Studio. Name the code files representing the
service. IService.cs should become /QuotesService.cs, and Service.cs should become
QuotesService.cs.

4. Change the service interface name from /Service to IQuotesService and change the
service class name from Service to QuotesService. Use Visual Studio’s refactoring facili-
ties to do this. That is, highlight the identifier you want to change, click the right mouse
button in the text editor and select Rename from the Refactoring menu. Visual Studio
will make sure the change is propagated through the entire project.

5. Borrow the QuotesCollection object from the Web Service chapter. Bring in the
QuotesCollection.cs file from the QuotesService Web site. To do this, select the
App_Code directory in the WCFQuotesService project. Click the right mouse
button and select Add Existing Item. Go to the Web services project and pick
up the QuotesCollection class by bringing in the file QuotesCollection.cs. The
QuotesCollection.cs file will be copied into your WCF solution and added to the project.

6. Borrow the QuotesCollection.xml and QuotesCollection.xsd from the Web service ex-
ample. Select the App_Data directory in the WCFQuotesService project. Click the right
mouse click and select Add Existing Item. Go to the Web services project and pick up
the XML and XSD files.

Chapter 21 Windows Communication Foundation 465

7. Develop a data contract. Now that the data and the data management code are in
place, the service needs a way to expose itself. It's time to develop a contract for
the service. First, create a structure for passing quotes back and forth. Open the file
IQuotesService.cs to add the data and operation contracts. To do so, first delete the
CompositeType class Visual Studio placed there for you as an example. In its place,
type in the following code for the Quote structure. The Quote structure should con-
tain three strings—one to represent the quote text and separate strings to represent
the originator’s first and last names. Expose the strings as properties adorned with the
[DataMember] attribute.

[DataContract]
public struct Quote
{
private String _strQuote;
[DataMember]
public String StrQuote
{

get { return _strQuote; }
set { _strQuote = value; }

private String _strOriginatorLastName;

[DataMember]

public String StrOriginatorLastName

{
get { return _strOriginatorLastName; }
set { _strOriginatorLastName = value; }

private String _strOriginatorFirstName;

[DataMember]

public String StrOriginatorFirstName

{
get { return _strOriginatorFirstName; }
set { _strOriginatorFirstName = value; }

public Quote(String strQuote,
String strOriginatorLastName,
String strOriginatorFirstName)

{
_strQuote = strQuote;
_strOriginatorLastName = strOriginatorLastName;
_strOriginatorFirstName = strOriginatorFirstName;
}

466

PartV Services, AJAX, Deployment, and Silverlight

8. Next, develop a service contract for the service. In the IQuotesService.cs file, update the

interface to include methods to get a single quote, add a quote, and get all the quotes.
using System.Data; // must be added to identify DataSet

[ServiceContract]
public interface IQuotesService
{

[OperationContract]

Quote GetAQuote();

[OperationContract]
void AddQuote(Quote quote);

[OperationContract]
DataSet GetAllQuotes();
}

. Next, implement the service contract. Much of the work for this step is already done

from the Web service chapter example. However, there are a couple of critical differ-
ences between the two implementations (those being the Web service implementation
and the WCF implementation). Open the file QuotesService.cs to add the implementa-
tion. Start by implementing a method that loads the quotes into memory and stores
the collection and the ASP.NET cache. Although this application is an ASP.NET applica-
tion, ASP.NET handles WCF method calls earlier in the pipeline than normal ASP.NET
requests, and because of that there's no such thing as a current HttpContext object.
You can still get to the cache through the HttpRuntime object, which is available within
the context of WCF. The HttpRuntime.AppDomainAppPath property includes the path
to the application that's useful for setting up a cache dependency for the XML file con-
taining the quotes.

using System.Web; // must be added to identify HttpRuntime

using System.Web.Caching; // must be added to identify Cache

using System.Data; // must be added to identify DataSet

public class QuotesService : IQuotesService

{
QuotesCollection LoadQuotes()
{
QuotesCollection quotesCollection;
quotesCollection =
(QuotesCollection)

HttpRuntime.Cache["quotesCollection"];
if (quotesCollection == null)

{

quotesCollection = new QuotesCollection();

String strAppPath;
strAppPath = HttpRuntime.AppDomainAppPath;

Chapter 21 Windows Communication Foundation 467

String strFilePathXml =
String.Format("{0}\\App_Data\\QuotesCollection.xm1", strAppPath);

String strFilePathSchema =
String.Format("{0}\\App_Data\\QuotesCollection.xsd", strAppPath);

quotesCollection.ReadXm1Schema(strFilePathSchema) ;
quotesCollection.ReadXml (strFilePathXml);

CacheDependency cacheDependency =
new CacheDependency(strFilePathXm1);

HttpRuntime.Cache.Insert('quotesCollection”,
quotesCollection,
cacheDependency,
Cache.NoAbsoluteExpiration,
Cache.NoSl1idingExpiration,
CacheItemPriority.Default,

null);
}
return quotesCollection;
}
// more code will go here...

}

10. Next, implement the GetAQuote operation. Call LoadQuotes to get the QuotesCollection
object. Generate a random number between 0 and the number of quotes in the collec-
tion and use it to select a quote within the collection. Create an instance of the Quote
structure and return it after populating it with the data from the stored quote.

public class QuotesService : IQuotesService

{
// LoadQuotes here...
public Quote GetAQuote()
{

QuotesCollection quotesCollection = this.LoadQuotes();

int nNumQuotes = quotesCollection.Rows.Count;

Random random = new Random();

int nQuote = random.Next(nNumQuotes) ;

DataRow dataRow = quotesCollection.Rows[nQuote];

Quote quote = new Quote((String)dataRow['"Quote"],
(String)dataRow["OriginatorLastName"],
(String)dataRow["OriginatorFirstName"]);

return quote;

}
// more code will go here...
}

11. Implement AddAQuote. Call LoadQuotes to get the QuotesCollection. Create a new row
in the QuotesCollection and populate it with information coming from the client (that is,
the Quote parameter). Use the HttpRuntime.AppDomainAppPath to construct the path

468

PartV Services, AJAX, Deployment, and Silverlight

to the QuotesCollection.XML file and use the QuotesCollection’'s WriteXml method to
re-serialize the XML file. WriteXml is available from the QuotesCollection class because
QuotesCollection derives from System.Data.DataTable. Because it was loaded in the
cache with a file dependency, the cache will be invalidated and the new quotes collec-
tion will be loaded the next time around.

public class QuotesService : IQuotesService
{

// LoadQuotes here...

// GetAQuote here

public void AddQuote(Quote quote)
{

QuotesCollection quotesCollection = this.LoadQuotes();

DataRow dr = quotesCollection.NewRow();
dr[0] quote.StrQuote;

dr[1] quote.StrOriginatorLastName;
dr[2] = quote.StrOriginatorFirstName;
quotesCollection.Rows.Add(dr);

string strAppPath;
strAppPath = HttpRuntime.AppDomainAppPath;

String strFilePathXml =
String.Format("{0}\\App_Data\\QuotesCollection.xml1", strAppPath);
String strFilePathSchema =

String.Format("{0}\\App_Data\\QuotesCollection.xsd", strAppPath);

quotesCollection.WriteXmlSchema(strFilePathSchema) ;
quotesCollection.WriteXml (strFilePathXml);

}

12. Finally, implement the GetAllQuotes operation. Create a new DataSet, load the quotes,
and add the QuotesCollection to the data set as the first table. Then return the DataSet.

public class QuotesService : IQuotesService
{

// LoadQuotes here

// GetAQuote here

// AddQuote here

public DataSet GetAllQuotes()

{
QuotesCollection quotesCollection = LoadQuotes();
DataSet dataSet = new DataSet();
dataSet.Tables.Add(quotesCollection);
return dataSet;

}

Chapter 21 Windows Communication Foundation 469

13. Tweak the web.config file. Now that the service is implemented, the web.config file
needs to be tweaked just slightly to expose the service. Visual Studio created this file
and so exposes the service that it generated—the one named Service. However, you
renamed the service to give it a more useful name in the code and the service needs
to be exposed as QuotesService now. Update the web.config file to reflect the change.
Change the name attribute in the service node to be QuotesService. Change the contract
attribute in the endpoint node to be /QuotesService to match the interface name.

<system.serviceModel>
<services>
<service
name="QuotesService"
behaviorConfiguration="ServiceBehavior">
<!-- Service Endpoints -->
<endpoint address=""
binding="wsHttpBinding"
contract="IQuotesService"/>
<endpoint address="mex"
binding="mexHttpBinding"
contract="IMetadataExchange" />
</service>
</services>
<behaviors>

</behaviors>

</system.serviceModel>
That does it for building a WCF service hosted through ASP.NET that may be called from
anywhere in the world (that has Internet service available, that is). In many ways, this is very
similar to writing a classic ASP.NET Web service. However, because this service runs in ASP.
NET side-by-side mode, there’s no such thing as a current HttpContext (as is available in normal
ASP.NET applications). In many cases, this may not be necessary. You can get to many of the
critical ASP.NET runtime services (for example, the Cache) via the HttpRuntime object. If you
need ASP.NET’s full support (such as for session state if the WCF service you write depends on
session data), WCF supports the ASP.NET Compatibility mode.

Building a WCF Client

A WCEF service is useless without any clients around to employ it. This section illustrates how
to build a client application that consumes the Quotes service. Here, you'll see how Visual
Studio makes it very easy to create a reference to a service. You'll see how to make WCF ser-
vice calls both synchronously and asynchronously.

470

PartV Services, AJAX, Deployment, and Silverlight

Building the QuotesService client

1. Start Visual Studio 2008. Open the QuotesService solution and add a new project to it.
Make it a console application named ConsumeQuotesService. The following graphic il-
lustrates adding the Console project to the solution:

2lx

Project types:

Templates:

MET Framework 3.5 w | BB |85

Wisual C#

Windows

Wieh

WWCF

Wiorkflow
Other Languages
Other Project Types

visual Studio installed templates

Ewmnws Farrms Application
&‘*ASF.NET Wweb Application

52 WPF application

ﬁcansola Application
E\Nmnws Forms Control Library

My Templates

ﬂSearch Cnline Terplates. ..

@C\aas Library

d'sf ASP.NET Web Service Application
57 WPF Browser Application

gg WCF Service Application

A project for creating a command-line application (NET Framework 3.5)

Name: I ConsurmeQuotesService

Location: I Chaspretsbsprojectsinewcode\newprojects\WCFOUotesService LI Browse. ..

2. Create a reference to the QuotesService WCF application. Click the right mouse button
on the ConsumeQuotesService Project tree node within the solution explorer. Select
Add Service Reference. When the Add Service Reference dialog box shows, click the
Discover button. Select the Service.svc file from this project and expand its associated
tree node. After a minute, the dialog will display the service contracts that are available
through the service. Expand the Services tree in the left pane to make sure you see the
IQuotesService contract. Notice the namespace given by the dialog box—ServiceReferencel.
DON'T click OK yet. The following graphic shows adding the Service Reference:

Adld Service Reference

Te see a kst of avalable services on a specific server, enter a service LBL and cick Go. To browse
tor avalable cervices, cick Discover.

ﬂ M Chscover | =

2=

1 service(s) found at address hitp:/locahost: 2701 WCRQuatesSernce fSerce sve',

[Mamespace:

erviceReference]

Medyarced. ..

Chapter 21 Windows Communication Foundation 471

3. Click the Advanced... button. Click on the Generate Asynchronous Operations radio
button so that Visual Studio generates the asynchronous versions of the proxy methods.

4. Click the OK button to add the service reference. Visual Studio will produce a new di-
rectory within the ConsumeQuotesService project directory named ServiceReferences.
Visual Studio generates information about the service in the form of XML files, XSD files,
and a WSDL file (@mong others). You'll also get source code for a proxy class that will call
the service on your behalf (by default, the proxy lands in a file named Reference.cs.

5. Try calling the GetAQuote operation. Calling the proxy methods generated for the WCF
service calls can be a bit verbose from time to time, but they are effective and it's much
better than setting everything up manually by yourself. First, create an instance of the
QuotesServiceClient, available from the ServiceReference you just created. Create an in-
stance of the ServiceReferencel.Quote structure to receive the results of calling GetAQuote.
Call GetAQuote from the QuotesServiceClient, and print the result on the console.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ConsumeQuotesService

{
class Program
{
static void Main(string[] args)
{
// Get a single random quote
ServiceReferencel.QuotesServiceClient quotesServiceClient =
new ServiceReferencel.QuotesServiceClient();
ServiceReferencel.Quote quote = quotesServiceClient.GetAQuote();
Console.WriteLine("Getting a single quote: " + quote.StrQuote);
Console.WriteLine(Q);
}
}
}

6. Now try calling AddAQuote. This will be very much like calling GetAQuote. However, this
time the request requires some parameters. Create an instance of the Quote (available
from the ServiceReference). Find some pithy quote somewhere (or make one up) and
plug it into the Quote object along with the first and last names of the originator. You
can use the same instance of the QuotesServiceClient to call AddAQuote, passing the
Quote object in. The next call to GetAllQuotes will reveal that the quote was added to
the quotes collection (which we'll see in a minute).

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

472 Part V Services, AJAX, Deployment, and Silverlight

namespace ConsumeQuotesService

{
class Program
{
static void Main(string[] args)
{
// Get a single random quote
// Now add a quote
ServiceReferencel.Quote newQuote = new ServiceReferencel.Quote();
newQuote.StrQuote = "But to me nothing - the negative, the empty" +
"- is exceedingly powerful.";
newQuote.StrOriginatorFirstName = "Alan";
newQuote.StrOriginatorLastName = "Watts";
quotesServiceClient.AddQuote(newQuote);
Console.WriteLine("'Added a quote™);
Console.WriteLine(Q);
}
}
}

7. Now try calling GetAllQuotes. By now you should know the pattern pretty well. Use
the QuotesServiceClient to call GetAllQuotes. GetAllQuotes will return a DataSet ob-
ject that will contain a collection of all the quotes, so declare one of those, too. Use
the QuotesServiceClient object to call GetAllQuotes. When the call returns, use the
DataSet object to print the quotes to the console. Be sure to include the System.Data
namespace so the compiler understand the DataSet.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Data;

namespace ConsumeQuotesService

{

class Program

{
static void Main(string[] args)
{

// Get a single random quote
// Now add a quote
// Now get all the quotes

DataSet dataSet = quotesServiceClient.GetA11Quotes();
DataTable tableQuotes = dataSet.Tables[0];

Chapter 21 Windows Communication Foundation 473

foreach (DataRow dr in tableQuotes.Rows)

{

non

System.Console.WriteLine(dr[0] + +
dr[1] + " " + dr[2D);

}

8. Try calling GetAQuote asynchronously. The proxy created by Visual Studio sup-
ports asynchronous invocation if you ask it to generate the asynchronous methods.
To call GetAQuote asynchronously, you'll need to implement a callback method
that WCF will call when the method is done executing. Add a static method named
GetAQuoteCallback to your Program class. Have the method return void, and take
IAsyncResult as a parameter. When WCF calls back into this method, the IAsyncResult
parameter will be an instance of the class originating the call—an instance of
QuotesServiceClient. Declare an instance of the ServiceReferencel.QuotesServiceClient
class and assign it by casting the IAsyncResult parameter’s AsyncState property to the
ServiceReferencel.QuotesServiceClient type. Then declare an instance of the Quote
class and harvest the quote by calling QuotesServiceClient.EndGetAQuote, passing the
AsyncResult parameter. Finally, write the quote out to the console.

using System;

using System.Collections.Generic;
using System.Linqg;

using System.Text;

using System.Data;

namespace ConsumeQuotesService

{

class Program

{ static void Main(string[] args)
{ // Get a single random quote
// Now add a quote
// Now get all the quotes
3

static void GetAQuoteCallback(IAsyncResult asyncResult)
{
ServiceReferencel.QuotesServiceClient quotesServiceClient =
(ServiceReferencel.QuotesServiceClient)
asyncResult.AsyncState;

474 Part V Services, AJAX, Deployment, and Silverlight

ServiceReferencel.Quote quote =
quotesServiceClient.EndGetAQuote(asyncResult);

Console.WriteLine(quote.StrQuote);

}

9. Now make the asynchronous call to GetAQuote. This is easy—just call the
QuotesServiceClient's BeginGetAQuote method from the Program class's Main method.
Pass in the GetAQuoteCallback method you just wrote as the first parameter, and the
QuotesServiceClient object as the second parameter. Add a call to System.Console
.ReadLine to pause the main thread so that the asynchronous call has time to execute.

using System;

using System.Collections.Generic;
using System.Linqg;

using System.Text;

using System.Data;

namespace ConsumeQuotesService

{
class Program
{
static void Main(string[] args)
{
// Get a single random quote
// Now add a quote
// Now get all the quotes
// Now call GetAQuote asynchronously
System.Console.WriteLine(

""Now fetching a quote asynchronously");
Console.WriteLine(Q);
quotesServiceClient.BeginGetAQuote(GetAQuoteCallback,

quotesServiceClient);
Console.WriteLine("Press enter to exit...");
Console.ReadLine();
}
static void GetAQuoteCallback(IAsyncResult asyncResult)
{
// implementation removed for clarity
}
}

Chapter 21 Windows Communication Foundation 475

10. Run the program to watch the console application call the WCFQuotesService. You
should see the following output:

\Windows\system32\cmd. exe
Added a quote

Imaginatien is more important than knowledge. Einstein Albert

Assume a virtue, if you have it not. Shakespeare William

A banker is a fellow who lends you his umbrella when the sun is shining, but wan)|
ts it back the minute it begins to rain. Twain Mark

A man cannot be comfortable without his own approuval. Twain Mark

Beware the young doctor and the old barber. Franklin Benjamin

Reality is merely an illusien, albeit a very persistent one. Einstein Albert
Beer has food value, but foed has no beer value. Sticker Bumper

Research is what I'm doing when I don't know what I'm doing. Uon Braun Wernher
Whatever is begun in anger ends in shame. Franklin Benjamin

We think in generalities, but we live in details. Whitehead Alfred North

Every really new idea looks crazy at first. Whitehead Alfred North

The illiterate of the 21st century will net be these who cannot read and write,
but those who cannot learn, unlearn, and relearn. Whitehead Alfred North

256K RAM should be enough for ANYONE. Gates Bill

But to me nothing - the negative, the empty - is exceedingly powerful. Watts Ala|
n

Press enter to fetch a quote using async

Now fetching a quote asynchronously

Press enter to exit...
Imaginatien is more important than knowledge.

Summary

Out of the box, The Windows Communication Foundation unifies the programming interface
for the two modern .NET remoting technologies: standard .NET remoting and .NET XML Web
Services (and will also accommodate MSMQ and sockets communication). Although effec-
tive at the time, the communication infrastructures of the late 1980s through the mid-2000s
narrowed the design and implementation possibilities for a distributed system. WCF offers

a single framework for creating a distributed system. WCF marks clear boundaries between
the elements of a distributed system, making it much easier to design a distributed system
independently of the communication mechanism it will use eventually. WCF doesn’t hem you
into specific communication infrastructure choices early on. In addition, WCF makes it very
straightforward to add features such as security and transaction management.

Distributed WCF applications are composed of several different elements: endpoints, chan-
nels, messages, and behaviors. An endpoint is defined by an address, a binding, and a con-
tract. Endpoints specify message originators and recipients. WCF channels represent the
means by which messages are transmitted. WCF defines protocol channels and transport
channels. Messages are the actual data sent between the endpoints, and behaviors specify
how a WCF service operates at run time, allowing you to configure the runtime characteris-
tics of the services, such as concurrency and security.

476

PartV Services, AJAX, Deployment, and Silverlight

WCF applications are easily hosted by ASP.NET. The Visual Studio ASP.NET wizard provides

a template for creating WCF applications. When hosting WCF applications via ASP.NET, you
have two options: running in ASP.NET side-by-side mode and running in ASP.NET compat-
ibility mode. When running in ASP.NET side-by-side mode, the WCF services may run in the
same AppDomain and share state and event handlers exposed by other assemblies loaded

in the AppDomain. However, normal ASP.NET features such as session state and the current
request context are unavailable. You may get to certain ASP.NET features such as the applica-
tion cache through the HttpRuntime class. When running under ASP.NET compatibility mode,
calls to the WCF service are full-fledged ASP.NET requests. The WCF requests that run within

an ASP.NET compatible service have full access to all of ASP.NET's features, including access
to the current HttpContext and the session state.

Chapter 21 Quick Reference

To
Create a WCF-enabled Web site

Create a service contract

Implement the service contract

Expose the WCF service as an ASP.NET
application

Create a client to consume the WCF
service

Customize the service's local execu-
tion, managing execution aspects
such as security, instance lifetime,
and threading

Access the ASP.NET application cache
from a standard WCF application (one
not configured to run in ASP.NET
compatibility mode)

Do This

In Visual Studio, choose File, New, Web Site and select WCF
Service from the available templates. This will produce a WCF-
enabled Web site for you and will stub out a default contract and
implementation that you may change to fit your needs.

Service contracts are defined as .NET interfaces. The entire interface
should be adorned with the [ServiceContract] attribute. Interface
members meant to be exposed as individual services are adorned
with the [OperationContract] attribute. Data structures may be
passed through the interface. Structure members meant to be
visible through the interface are adorned with the [DataContract]
attribute.

Create a class that derives from the interface defining the service
contract and implement the members.

Make sure that the web.config file mentions the service contract and
the implementation.

Use the Add Service Reference menu item found in the project’s
context menu (exposed from Visual Studio’s Solution Explorer) to
discover and locate the service metadata. Alternatively, use the
ServiceModel Metadata Utility Tool (packaged as an assembly
named Svcutil.exe).

Apply the ServiceBehaviorAttribute and OperationBehaviorAttribute
attributes as necessary to control the following aspects of the ser-
vice execution: instance lifetimes, concurrency and synchronization
support, configuration behavior, transaction behavior, serialization
behavior, metadata transformation, session lifetime, address filtering
and header processing, and impersonation.

Use the HttpRuntime.Cache property.

	Cover
	Copyright Page

	Table of Contents
	Chapter 21: Windows Communication Foundation
	Distributed Computing Redux
	A Fragmented Communications API
	WCF for Connected Systems
	WCF Constituent Elements
	WCF Endpoints
	Channels
	Behaviors
	Messages

	How WCF Plays with ASP.NET
	Side-by-Side Mode
	ASP.NET Compatibility Mode

	Writing a WCF Service
	Building a WCF Client
	Summary
	Chapter 21 Quick Reference

