ﬂ

Microsoft

Visual C# 2008 Microsoft® Visual C#®
fhe shap 2008 Step by Step

John Sharp (Content Master)

Step by Step‘

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/11298.aspx

Micresoft
9780735624306 Press

© 2008 John Sharp. All rights reserved.

Table of Contents

Acknowledgments. o i Xvii

INtrodUcCtiono e XiX

Part| Introducing Microsoft Visual C# and
Microsoft Visual Studio 2008

1 Welcometo C# ... oo e e e 3
Beginning Programming with the Visual Studio 2008 Environment.......... 3
Writing Your First Program. 8
Using Namespaces.o e 14
Creating a Graphical Application. 17
Chapter 1 Quick Reference. 28

2 Working with Variables, Operators, and Expressions 29
Understanding Statements. 29
Using ldentifiers 30
Identifying Keywords. 30
Using Variables. 31

Naming Variables. 32
Declaring Variables 32
Working with Primitive Data Types.t 33
Displaying Primitive Data Type Values............................. 34
Using Arithmetic Operators e 38
Operators and TYPeS. . ..ottt ittt 39
Examining Arithmetic Operators. 40
Controlling Precedence ... 43
Using Associativity to Evaluate Expressions 44
Associativity and the Assignment Operator 45

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey

vi Table of Contents

Incrementing and Decrementing Variables. 45
Prefix and Postfix........ ... 46
Declaring Implicitly Typed Local Variables. 47
Chapter 2 Quick Reference. 48
3 Writing Methods and Applying Scope 49
Declaring Methods 49
Specifying the Method Declaration Syntax......................... 50
Writing return Statements. 51
Calling Methods. 53
Specifying the Method Call Syntax................. 53
Applying SCOPE . ..o 56
Defining Local Scope.o 56
Defining Class SCope. o 56
Overloading Methods. 57
Writing Methods 58
Chapter 3 Quick Reference. i 66
4 Using Decision Statements oo 67
Declaring Boolean Variables. 67
Using Boolean Operators 68
Understanding Equality and Relational Operators 68
Understanding Conditional Logical Operators...................... 69
Summarizing Operator Precedence and Associativity 70
Using if Statements to Make Decisions ..., 71
Understanding if Statement Syntax............. 71
Using Blocks to Group Statements.......... i, 73
Cascading if Statements. 73
Using switch Statements i 78
Understanding switch Statement Syntax 79
Following the switch StatementRules. 80
Chapter 4 Quick Reference.o 84
5 Using Compound Assignment and Iteration Statements. 85
Using Compound Assignment Operators ...t .. 85
Writing while Statements. 87
Writing for Statements 91

Understanding for Statement Scope............... il 92

Table of Contents

Writing do Statements 93
Chapter 5 Quick Reference. o i 102
6 Managing Errors and Exceptions 103
Coping With Errors.o o 103
Trying Code and Catching Exceptions o i i, 104
Handling an Exception ... 105
Using Multiple catch Handlers o i i 106
Catching Multiple Exceptions ... 106
Using Checked and Unchecked Integer Arithmetic...................... 111
Writing Checked Statements.......... 112
Writing Checked Expressions. i 113
Throwing EXCeptions 114
Using a finally Block. 118
Chapter 6 Quick Reference. 120

Part I Understanding the C# Language

7 Creating and Managing Classes and Objects............... 123
Understanding Classification i, 123

The Purpose of Encapsulation 124
Definingand Usinga Class. ... 124
Controlling Accessibility 126

Working with Constructors. 127
Overloading Constructors 128

Understanding static Methodsand Data 136
CreatingaShared Field. 137

Creating a static Field by Using the const Keyword................ 137

Chapter 7 Quick Reference. ... 142

8 Understanding Values and References 145
Copying Value Type Variablesand Classes 145
Understanding Null Values and Nullable Types 150

Using Nullable Types. 151

Understanding the Properties of Nullable Types................... 152

Using ref and out Parameters. i 152

Creating ref Parameters.............. . o i 153

Creating out Parameters i 154

vii

viii

Table of Contents

How Computer Memory Is Organized. 156
Using the Stack and the Heap........ ... o i i i, 157

The System.Object Class, 158
BOXING .o 159
UNbOXING . .« oo 159
Casting Data Safely o 161
The is Operator 161

The @as Operator. 162
Chapter 8 Quick Reference. ... 164
9 Creating Value Types with Enumerations and Structures. 167
Working with Enumerations. 167
Declaring an Enumeration i i i 167
Using an Enumeration. i 168
Choosing Enumeration Literal Values. 169
Choosing an Enumeration’s Underlying Type...................... 170
Working with Structures. 172
Declaring a Structure. 174
Understanding Structure and Class Differences.................... 175
Declaring Structure Variables. 176
Understanding Structure Initialization.................. 177
Copying Structure Variables. o 179
Chapter 9 Quick Reference.o 183
10 Using Arrays and Collections. 185
What Is an Array?. 185
Declaring Array Variables. i i i i 185
Creatingan Array Instance. i 186
Initializing Array Variables 187
Creating an Implicitly Typed Array 188
Accessing an Individual Array Element, 189
Iterating Through an Array. 190
COPYING ArTaysS. . oot e e 191
What Are Collection Classes?. ... 192
The Arraylist Collection Class i .. 194

The Queue Collection Class. 196

The Stack Collection Class. ... 197

The Hashtable Collection Class 198

The SortedList Collection Class 199

Table of Contents

Using Collection Initializers 200
Comparing Arrays and Collections.o ... 200
Using Collection Classes to Play Cards. 201
Chapter 10 Quick Reference. ... 206
11 Understanding Parameter Arrays......................... 207
Using Array Arguments. 208
Declaring a params Array 209
Using params object[]ot 211
Using a params Array. o 212
Chapter 11 Quick Reference. 215
12 Working with Inheritance 217
What Is Inheritance? 217
Using Inheritance. 218
Base Classes and Derived Classesc..ooviiiiiineennnn.. 218
Calling Base Class Constructors.ooiiiiiiinnennnn.. 220
AssSigNiNg Classes 221
Declaring new Methods. 222
Declaring Virtual Methods. i i i i 224
Declaring override Methods 225
Understanding protected Access.....................ccoviii... 227
Understanding Extension Methods, 233
Chapter 12 Quick Reference. 237
13 Creating Interfaces and Defining Abstract Classes 239
Understanding Interfaces. 239
Interface Syntax 240
Interface Restrictions. i 241
Implementing an Interface. 241
Referencing a Class Through Its Interface......................... 243
Working with Multiple Interfaces 244
Abstract Classesttt 244
Abstract Methods 245
Sealed Classes. 246
Sealed Methods........ ... o i 246
Implementing an Extensible Framework, 247
Summarizing Keyword Combinations 255

Chapter 13 Quick Reference. 256

Table of Contents

14 Using Garbage Collection and Resource Management. 257
The Life and Timesof an Object i, 257
Writing Destructors. 258

Why Use the Garbage Collector? 260

How Does the Garbage Collector Work?. 261
Recommendations. 262
Resource Management. 262
Disposal Methods 263
Exception-Safe Disposal 263

The using Statement. 264
Calling the Dispose Method from a Destructor. 266
Making Code Exception-Safe.............. 267
Chapter 14 Quick Reference. 270

Part Il Creating Components

15 Implementing Properties to Access Fields 275
Implementing Encapsulation by Using Methods 276
What Are Properties?. 278

Using Properties. 279
Read-Only Properties 280
Write-Only Properties. 280
Property Accessibility 281
Understanding the Property Restrictions 282
Declaring Interface Properties., 284
Using Properties in a Windows Application 285
Generating Automatic Properties. ... i 287
Initializing Objects by Using Properties..................ooiiiii. ., 288
Chapter 15 Quick Reference. i 292
16 UsingIndexers..........c.ooiiiniiiiiiiiiiiiii i 295
What Isan Indexer? 295
An Example That Doesn't Use Indexers 295
The Same Example Using Indexers. 297
Understanding Indexer ACCESSOrS.t 299
Comparing Indexers and Arraysueeiiiiieeennnnnnnnnn 300
Indexers in Interfaces. 302
Using Indexers in a Windows Application.............................. 303

Chapter 16 Quick Reference.coo i 308

Table of Contents

17 Interrupting Program Flow and Handling Events 311
Declaring and Using Delegates. ..., 311
The Automated Factory Scenario, .. 312
Implementing the Factory Without Using Delegates 312
Implementing the Factory by Using a Delegate. 313
Using Delegates. 316
Lambda Expressions and Delegates, 319
Creating a Method Adapter.......... ... i, 319
Using a Lambda Expression as an Adapter........................ 320
The Form of Lambda Expressions.coovviiiiiinn. 321
Enabling Notifications with Events 323
DeclaringanBvent...... 323
SubscribingtoanBvent 324
Unsubscribing froman Event.............. 324
Raising an Event. 325
Understanding WPF User Interface Events 325
Using Bvents 327
Chapter 17 Quick Reference. 329
18 IntroducingGenerics ...ttt 333
The Problem with objects. i i, 333
The Generics Solution 335
Generics vs. Generalized Classes., 337
Generics and Constraintst 338
Creatinga Generic Class oottt 338
The Theory of Binary Trees.t 338
Building a Binary Tree Class by Using Generics 341
Creating a Generic Method i i 350
Defining a Generic Method to Build a Binary Tree 351
Chapter 18 Quick Reference. 354
19 Enumerating Collections 355
Enumerating the Elements in a Collection. 355
Manually Implementing an Enumerator 357
Implementing the IEnumerable Interface 361
Implementing an Enumerator by Using an Iterator...................... 363
ASimple lterator 364
Defining an Enumerator for the Tree<TItem> Class by
Usingan lterator 366

Chapter 19 Quick Reference, 368

Xi

xii Table of Contents

20 Querying In-Memory Data by Using Query Expressions 371
What Is Language Integrated Query (LINQ)? 371
Using LINQ ina C# Application. 372

SelectingData ... 374
Filtering Data o 377
Ordering, Grouping, and Aggregating Data....................... 377
Joining Datao oo 380
Using Query Operators.ttt 381
Querying Data in Tree<Tltem> Objects.......................... 383
LINQ and Deferred Evaluation. o i, 389
Chapter 20 Quick Reference. i 392

21 OperatorOverloadingc. ... 395

Understanding Operators.ooouiuiiiinii e 395
Operator Constraints. 396
Overloaded Operators 396
Creating Symmetric Operatorso it 398

Understanding Compound Assignment ..., 400

Declaring Increment and Decrement Operators 401

Defining Operator Pairsoo oo 403

Implementing an Operator. 404

Understanding Conversion Operatorsciiieeeeena .. 406
Providing Built-In Conversions ..o 406
Implementing User-Defined Conversion Operators 407
Creating Symmetric Operators, Revisited 408
Adding an Implicit Conversion Operator.......................... 409

Chapter 21 Quick Reference. 411

Part IV Working with Windows Applications

22 Introducing Windows Presentation Foundation 415
Creating a WPF Application 415

Creating a Windows Presentation Foundation Application.......... 416

Adding Controlstothe Form. ... 430

Using WPF Controls. 430

Changing Properties Dynamically.o o i, 439

Handling Eventsina WPF Form 443

Processing Events in Windows Forms. 443

Chapter 22 Quick Reference. 449

Table of Contents

23 Working with Menus and Dialog Boxes 451
Menu Guidelinesand Style. 451

Menus and Menu Events. oo i 452

Creatinga Menu 452

Handling Menu Events i 458

Shortcut Menus . ..o 464

Creating Shortcut Menus 464

Windows Common Dialog Boxes 468

Using the SaveFileDialog Class 468

Chapter 23 Quick Reference. i 471

24 Performing Validation, 473
Validating Data.t 473

Strategies for Validating User Input 473

An Example—Customer Information Maintenance...................... 474
Performing Validation by Using Data Binding 475

Changing the Point at Which Validation Occurs 491

Chapter 24 Quick Reference. ... 495

Part V. Managing Data

25 Querying Informationina Database...................... 499
Querying a Database by Using ADO.NET, 499
The Northwind Database........... ..o .. 500
Creatingthe Database i, 500
Using ADO.NET to Query Order Information...................... 503
Querying a Database by Using DLINQ.o i, 512
Defining an Entity Class 512
Creating and Running a DLINQ Query., 514
Deferred and Immediate Fetching 516
Joining Tables and Creating Relationships 517
Deferred and Immediate Fetching Revisited. 521
Defining a Custom DataContext Class........................... 522
Using DLINQ to Query Order Information 523

Chapter 25 Quick Reference. 527

xiii

Xiv Table of Contents

26 Displaying and Editing Data by Using Data Binding......... 529
Using Data Binding with DLINQ 529

Using DLINQ to Modify Data.t 544

Updating Existing Data. 544

Handling Conflicting Updates.o, 545

Adding and Deleting Data. ..., 548

Chapter 26 Quick Reference. 556

Part VI Building Web Applications

27 Introducing ASP.INET i 559
Understanding the Internet as an Infrastructure 560
Understanding Web Server Requests and Responses............... 560
Managing State 561
Understanding ASP.INET 561
Creating Web Applications with ASPNET, 563
Building an ASP.NET Application. 564
Understanding Server Controls. 575
Creatingand UsingaTheme.o, 582
Chapter 27 Quick Reference. 586
28 Understanding Web Forms Validation Controls............. 587
Comparing Server and Client Validations 587
Validating Data atthe Web Server......... 588
Validating Data in the Web Browser. 588
Implementing Client Validation. 589
Chapter 28 Quick Reference. i 596

29 Protecting a Web Site and Accessing Data with
Web Forms. e 597
Managing SeCUNtY. 597
Understanding Forms-Based Security 598
Implementing Forms-Based Security........... 598
Querying and Displaying Data. 605
Understanding the Web Forms GridView Control 605
Displaying Customer and Order History Information............... 606

Paging Data 611

Table of Contents

Editing Data.o 612
Updating Rows Through a GridView Control 612
Navigating Between Forms 614
Chapter 29 Quick Reference. ... 621

30 Creating and Using a Web Service........................ 623
What Isa Web Service?. ... 623

The Role of SOAP. . .. 624

What Is the Web Services Description Language?. 625
Nonfunctional Requirements of Web Services..................... 625

The Role of Windows Communication Foundation................. 627
BuildingaWeb Service. ... 627
Creating the ProductsService Web Service........................ 628

Web Services, Clients, and Proxieso ... 637
Talking SOAP: The Difficult Way 637

Talking SOAP: The Easy Way 637
Consuming the ProductsService Web Service 638

Chapter 30 Quick Reference. ... i 644
IndeX. . ..o e 645

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey

Xv

Chapter 1
Welcome to C#

After completing this chapter, you will be able to:
B Use the Microsoft Visual Studio 2008 programming environment.
B Create a C# console application.
B Explain the purpose of namespaces.

B (Create a simple graphical C# application.

Microsoft Visual C# is Microsoft's powerful component-oriented language. C# plays an
important role in the architecture of the Microsoft .NET Framework, and some people have
drawn comparisons to the role that C played in the development of UNIX. If you already
know a language such as C, C++, or Java, you'll find the syntax of C# reassuringly familiar. If
you are used to programming in other languages, you should soon be able to pick up the
syntax and feel of C#; you just need to learn to put the braces and semicolons in the right
place. Hopefully, this is just the book to help you!

In Part I, you'll learn the fundamentals of C#. You'll discover how to declare variables and
how to use arithmetic operators such as the plus sign (+) and minus sign (-) to manipulate the
values in variables. You'll see how to write methods and pass arguments to methods. You'll
also learn how to use selection statements such as if and iteration statements such as while.
Finally, you'll understand how C# uses exceptions to handle errors in a graceful, easy-to-use
manner. These topics form the core of C#, and from this solid foundation, you'll progress to
more advanced features in Part Il through Part VI.

Beginning Programming with the Visual Studio 2008
Environment

Visual Studio 2008 is a tool-rich programming environment containing all the functionality
you need to create large or small C# projects. You can even create projects that seamlessly
combine modules compiled using different programming languages. In the first exercise, you
start the Visual Studio 2008 programming environment and learn how to create a console
application.

Note A console application is an application that runs in a command prompt window, rather
than providing a graphical user interface.

Part |

Create a console application in Visual Studio 2008

Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

B |f you are using Visual Studio 2008 Standard Edition or Visual Studio 2008 Professional
Edition, perform the following operations to start Visual Studio 2008:

1. On the Microsoft Windows task bar, click the Start button, point to All Programes,
and then point to the Microsoft Visual Studio 2008 program group.

2. In the Microsoft Visual Studio 2008 program group, click Microsoft Visual Studio

2008.

Visual Studio 2008 starts, like this:

*+ Visual Studio

Open:
Creyte:

Praject
Praject

What's new in Visual C#?
Create Your First Applhcaton

HowDeol 7

itinnal Content

Extend Visusl Sudso

Wisual Studin Headlines

Tech [d Mew Zesland is coming!
Register toduy!

[SrartPage - Microsaft Vsl Studia o e)
File Edit View Tool: Tet Window Help

R = A" N IR L R e k I -l = - RRERED-
BE| o Starl Page| - X[Selution Explorer -0 x
3 [

g

Diowndoad Visual Studio 2008 Deta 2
Fri, 27 Iul 3007 1621:16 GMT - See all of the impeowements that are
caming in isual Srudin 1003 with nest-qeneratian Web
desrlnpment, integrated development far the Micrsaft Office
system, and industy-leading designers for Windaws Virta,
Duwrduad NET Framework 3.5 Beta 2

Fri, 27 Jul 2007 16-23:31 GMT - See all of the inprovenents that are
caoming in Vizual Studic 2000 with net-gensration Web

develop integrated develop forthe M

systern, and industryleading desigriers for Windows Vista,

Downdoad the Sandeastle lune CTP - Dacumentation Compllers

The, 28 bars 2007 235408 GMT - Ducumertation Compilers for
Mariaged Class Library Sandcestie produces scoursts, MSDN stds,
comprehentive docurnentation by reflecting veer the source
assemblies and ogtinnally inteqeating XML Documentation
Carnments. Sandcastle enables Microsoft teams custamers ta
efficiently pradisce Help dacumentation for products. Sandcastie
ships a3 3 standalont downloed and a5 3 part of the Visual Studio
0K, The Sandeastle engine’s modular desian provides mary
mensibiity pairits that allow users 5 custornize it for different
product nesds,

Vichcasts on Yisual Studio Frtensdhiity

Fri, 20 Agr 2007 2253441 GMT - Live Webcast May 07, 2007 110D AN
Pacihic Time: Grow Your Busiriess and Reach More Developers by
Exterding Visual Stadho, Live Webcast May 03, 2007 900 AM Pacilic
Time: Grow Your Business and Reach Mare Developers by Bending
Visusl Studia

Downboad Visual Studio Code Name “Orcas” Deta 1

Thas, 19 Apr 2007 05:27:07 GMT - Microsoft® Wisual Studio® code

name "reas is the nest qeneration development taol for Windows

Note If this is the first time you have run Visual Studio 2008, you might see a dialog box
prompting you to choose your default development environment settings. Visual Studio

2008 can tailor itself according to your preferred development language. The various dia-
log boxes and tools in the integrated development environment (IDE) will have their de-
fault selections set for the language you choose. Select Visual C# Development Settings
from the list, and then click the Start Visual Studio button. After a short delay, the Visual
Studio 2008 IDE appears.

B |f you are using Visual C# 2008 Express Edition, on the Microsoft Windows task bar,
click the Start button, point to All Programs, and then click Microsoft Visual C# 2008

Express Edition.

Chapter 1 Welcome to C# 5

Visual C# 2008 Express Edition starts, like this:

File Edit Yiew Tooli Window Help
=" R IR R RN ea e N | -l e e R e o 2 R

Starl Fage -~ X |Selution Eplorer -0 M

]

Recent Projects MISDR: Visual C# Express Edition

ANA Gametest Conference to be Webcast
Fri, 10 &1 2007 18:44:13 BMT - Can't make it ta Gamefest this year? No
waries - watch the keynate and XNA Game Studia tmck sessions anfine!
Dream-Duild-Pay ¢
Fri, 10 &usq 2007 16:44:13 BMT - Amanq hundseds of qame submissians,
anky 2 made the final cut! Check out some of the mast innowative
aame idens from acrods the world!
Visuial Stuio Expriess 2008 Beta 2 Released
Fri, 27 Jul 2007 18-44:13 GMT - Micrasoft hes rebeased Beta 2 of the Yisual
Studic 109 Express Editians. Find cut what's new snd get started by

g this new relesse.

M ¥hat's In Yisual Studia Fepress 2008 Beta 27

Fri, 10 s 2007 L0:44:13 GMT - This S-part blog series will helg you to.

Open: Praject
Create: Praject

Create Your First Application what new Features will be directly supported inside of Visual
Video Feature Tou Fudio Express J003,
Learn Cif L) to anything!

Fri, 27 Jul 2007 18:44:13 GMT - You probably already know sbout LING to
FAL and LING to XML, but LING to Amazon, Google and Fhickel Find
et b watwrasible LING reslhy ool

What's New?
ez Leamin Center

onal Conterit Torque X game engine now live!

Mari, 8 Jul 2007 18:44:13 GMT - To asistyou in gettng the most ot of
Visusl G Developer Center ¥NA& Garne Sudia Fapress, independent qame maker and techaolagy
pravider Gargedames has created the Tarque X game engine making it
eaier ta design and bud a full Featured game in managed Cf and the

AN Framewark.
[———— Greal benelits Tor pegistered Express users]
Tust, 7 Now 2006 13:14:50 GMT - More gasdies snd freebies swailable for
Tech L Mew Zeshnd is coming! all registered Express users, inchuding MAKE magazine discounts,
Register today! Intermatic harne automation rebates, and ruch mare! Megister Today!
J
Ready

Note To avoid repetition, throughout this book, | simply state, “Start Visual Studio” when
you need to open Visual Studio 2008 Standard Edition, Visual Studio 2008 Professional
Edition, or Visual C# 2008 Express Edition. Additionally, unless explicitly stated, all refer-
ences to Visual Studio 2008 apply to Visual Studio 2008 Standard Edition, Visual Studio
2008 Professional Edition, and Visual C# 2008 Express Edition.

B [f you are using Visual Studio 2008 Standard Edition or Visual Studio 2008 Professional
Edition, perform the following tasks to create a new console application.

1. On the File menu, point to New, and then click Project.

The New Project dialog box opens. This dialog box lists the templates that you
can use as a starting point for building an application. The dialog box categorizes
templates according to the programming language you are using and the type of
application.

2. In the Project types pane, click Visual C#. In the Templates pane, click the Console
Application icon.

Part1 Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

3. In the Location field, if you are using the Windows Vista operating system, type
C:\Users\YourName\Documents\Microsoft Press\Visual CSharp Step By
Step\Chapter 1. If you are using Microsoft Windows XP or Windows Server 2003,
type C:\Documents and Settings\YourName\My Documents\Microsoft
Press\Visual CSharp Step by Step\Chapter 1.

Replace the text YourName in these paths with your Windows user name.

Note To save space throughout the rest of this book, | will simply refer to the path “C:\
Users\YourName\Documents" or “C:\Documents and Settings\YourName\My Documents”
as your Documents folder.

@ Tip If the folder you specify does not exist, Visual Studio 2008 creates it for you.

4. In the Name field, type TextHello.

5. Ensure that the Create directory for solution check box is selected, and then click
OK.

B [f you are using Visual C# 2008 Express Edition, the New Project dialog box won't allow
you to specify the location of your project files; it defaults to the C:\Users\YourName\
AppData\Local\Temporary Projects folder. Change it by using the following procedure:

1. On the Tools menu, click Options.

2. In the Options dialog box, turn on the Show All Settings check box, and then click
Projects and Solutions in the tree view in the left pane.

3. In the right pane, in the Visual Studio projects location text box, specify the
Microsoft Press\Visual CSharp Step By Step\Chapter 1 folder under your
Documents folder.

4. Click OK.

B [f you are using Visual C# 2008 Express Edition, perform the following tasks to create a
new console application.

1. On the File menu, click New Project.

2. In the New Project dialog box, click the Console Application icon.
3. In the Name field, type TextHello.

4. Click OK.

Visual Studio creates the project using the Console Application template and displays the

starter code for the project, like this:

Chapter 1 Welcome to C#

 TetHello - Microsoft Visus Studio = e)
File Edit ‘View Project [uild [Debug Dyts Tools Test Window Help
ER=R=" - I Debug = Mary LPU - | SRS RO
By e IR RIS 2|00 A5
i - Program.cs| SarPage | - [Soliion Explorer - TedHells B
= =1 | &
2 ||| @ Teartelic Program | g% Mainiseringl| arg (Y Rea R
£ I~ 2using syscem: || = Sobution TestHella’ (L project)
using System,Collections.Gener ic: ol =
uEIng Gystem. Ling: i Gl Propertses
Lusing System. Text: s o References
&) Pragram.cs
o nameapace TexrHello
'
class Program
[
acarie void Main(aceing[] acgs)
(
)
I ' E
Y
al +
Ready

The menu bar at the top of the screen provides access to the features you'll use in the pro-
gramming environment. You can use the keyboard or the mouse to access the menus and
commands exactly as you can in all Windows-based programs. The toolbar is located beneath
the menu bar and provides button shortcuts to run the most frequently used commands.
The Code and Text Editor window occupying the main part of the IDE displays the contents of
source files. In a multi-file project, when you edit more than one file, each source file has its
own tab labeled with the name of the source file. You can click the tab to bring the named
source file to the foreground in the Code and Text Editor window. The Solution Explorer dis-
plays the names of the files associated with the project, among other items. You can also
double-click a file name in the Solution Explorer to bring that source file to the foreground in
the Code and Text Editor window.

Before writing the code, examine the files listed in the Solution Explorer, which Visual Studio
2008 has created as part of your project:

B Solution ‘TextHello’ This is the top-level solution file, of which there is one per appli-
cation. If you use Windows Explorer to look at your Documents\Microsoft Press\Visual
CSharp Step by Step\Chapter 1\TextHello folder, you'll see that the actual name of this
file is TextHello.sIn. Each solution file contains references to one or more project files.

8 Part | Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

B TextHello Thisis the C# project file. Each project file references one or more files con-
taining the source code and other items for the project. All the source code in a single
project must be written in the same programming language. In Windows Explorer, this
file is actually called TextHello.csproj, and it is stored in your \My Documents\Microsoft
Press\Visual CSharp Step by Step\Chapter 1\TextHello\TextHello folder.

B Properties This is a folder in the TextHello project. If you expand it, you will see that it
contains a file called AssemblyInfo.cs. AssemblylInfo.cs is a special file that you can use
to add attributes to a program, such as the name of the author, the date the program
was written, and so on. You can specify additional attributes to modify the way in which
the program runs. Learning how to use these attributes is outside the scope of this
book.

B References This is a folder that contains references to compiled code that your ap-
plication can use. When code is compiled, it is converted into an assembly and given
a unique name. Developers use assemblies to package useful bits of code they have
written so they can distribute it to other developers who might want to use the code in
their applications. Many of the features that you will be using when writing applications
using this book make use of assemblies provided by Microsoft with Visual Studio 2008.

B Program.cs This is a C# source file and is the one currently displayed in the Code and
Text Editor window when the project is first created. You will write your code for the
console application in this file. It also contains some code that Visual Studio 2008 pro-
vides automatically, which you will examine shortly.

Writing Your First Program

The Program.cs file defines a class called Program that contains a method called Main. All
methods must be defined inside a class. You will learn more about classes in Chapter 7,
“Creating and Managing Classes and Objects.” The Main method is special—it designates

the program’s entry point. It must be a static method. (You will look at methods in detail in
Chapter 3, “Writing Methods and Applying Scope,” and | discuss static methods in Chapter 7.)

W Important C# is a case-sensitive language. You must spell Main with a capital M.

In the following exercises, you'll write the code to display the message Hello World in the
console; you'll build and run your Hello World console application; and you'll learn how
namespaces are used to partition code elements.

Chapter 1 Welcome to C# 9

Write the code by using IntelliSense

1.

In the Code and Text Editor window displaying the Program.cs file, place the cursor in
the Main method immediately after the opening brace, {, and then press Enter to cre-
ate a new line. On the new line, type the word Console, which is the name of a built-
in class. As you type the letter C at the start of the word Console, an IntelliSense list
appears. This list contains all of the C# keywords and data types that are valid in this
context. You can either continue typing or scroll through the list and double-click the
Console item with the mouse. Alternatively, after you have typed Con, the IntelliSense
list will automatically home in on the Console item and you can press the Tab or Enter
key to select it.

Main should look like this:

static void Main(string[] args)

{

Console

}

Note Console is a built-in class that contains the methods for displaying messages on the
screen and getting input from the keyboard.

. Type a period immediately after Console. Another IntelliSense list appears, displaying

the methods, properties, and fields of the Console class.

Scroll down through the list, select WriteLine, and then press Enter. Alternatively, you
can continue typing the characters W, r, i, t, e, L until WriteLine is selected, and then
press Enter.

The IntelliSense list closes, and the word WriteLine is added to the source file. Main
should now look like this:

static void Main(string[] args)
{

Console.WriteLine

3

. Type an opening parenthesis, (. Another IntelliSense tip appears.

This tip displays the parameters that the WriteLine method can take. In fact, WriteLine is
an overloaded method, meaning that the Console class contains more than one method
named WriteLine—it actually provides 19 different versions of this method. Each ver-
sion of the WriteLine method can be used to output different types of data. (Chapter 3
describes overloaded methods in more detail.) Main should now look like this:

static void Main(string[] args)
{

Console.WriteLine(

}

10

Part1 Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

¥

Tip You can click the up and down arrows in the tip to scroll through the different
overloads of WriteLine.

5. Type a closing parenthesis,) followed by a semicolon, ;.

Main should now look like this:

static void Main(string[] args)

{

}

Console.WriteLine();

6. Move the cursor, and type the string “Hello World”, including the quotation marks,
between the left and right parentheses following the WriteLine method.

Main should now look like this:

static void Main(string[] args)

{

}

Console.WriteLine(“Hello World”);

Tip Get into the habit of typing matched character pairs, such as (and) and { and }, before filling
in their contents. It's easy to forget the closing character if you wait until after you've entered the

contents.

IntelliSense Icons

When you type a period after the name of a class, IntelliSense displays the name of
every member of that class. To the left of each member name is an icon that depicts
the type of member. Common icons and their types include the following:

Icon

=i

Meaning

method (discussed in Chapter 3)

Ty

property (discussed in Chapter 15)

|

class (discussed in Chapter 7)

$

struct (discussed in Chapter 9)

enum (discussed in Chapter 9)

Chapter 1 Welcome to C# 11

Icon Meaning
—e interface (discussed in Chapter 13)
@ delegate (discussed in Chapter 17)
extension method (discussed in Chapter 12)
i

You will also see other IntelliSense icons appear as you type code in different contexts.

Note You will frequently see lines of code containing two forward slashes followed by ordinary
text. These are comments. They are ignored by the compiler but are very useful for developers
because they help document what a program is actually doing. For example:

Console.ReadLine(); // Wait for the user to press the Enter key

The compiler will skip all text from the two slashes to the end of the line. You can also add
multiline comments that start with a forward slash followed by an asterisk (/*). The compiler will
skip everything until it finds an asterisk followed by a forward slash sequence (*/), which could
be many lines lower down. You are actively encouraged to document your code with as many
meaningful comments as necessary.

Build and run the console application

1. On the Build menu, click Build Solution.

This action compiles the C# code, resulting in a program that you can run. The Output
window appears below the Code and Text Editor window.

@ Tip If the Output window does not appear, on the View menu, click Output to display it.

In the Output window, you should see messages similar to the following indicating how
the program is being compiled.

—————— Build started: Project: TextHello, Configuration: Debug Any CPU ----
C:\Windows\Microsoft.NET\Framework\v3.5\Csc.exe /config /nowarn:1701;1702 ..
Compile complete -- 0 errors, 0 warnings

TextHello -> C:\Documents and Settings\John\My Documents\Microsoft Press\..
========== Build: 1 succeeded or up-to-date, 0 failed, 0 skipped ========

If you have made some mistakes, they will appear in the Error List window. The
following image shows what happens if you forget to type the closing quotation marks

12 Part1 Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

after the text Hello World in the WriteLine statement. Notice that a single mistake can
sometimes cause multiple compiler errors.

[TasaHiella - Microsaft visusl Studem e =]
File Edit View Project Duild Debug Dats Tools Test Window Help
@-E- Sl % @ LI F Debug = fary CPU - R - N
R LI =YY
5| Program.cs| SartPage | - % [Solution Explorer - TedHzlla SIx
E . s
2 ||| #sTeatatic program +| ¥ Maintringl| args) | [NR- R [=
2| S uning syacem: || A Sobution TeHelle' (1praject)
using System,Collections.,Generic: - T TextHello
using System.Ling: i Gl Propertses
Lusing System. Text: s o References
) Peogeamn.cs

[naweapace TexcHello
l

=} slass Progras E
i
B scatie void Main(aceing(] acga)

{

Console,Writeline ("Hello Worldis
'

[EmarList -3 x
@ 3Eevars | [0 Warnenugs || 62 1 Messnges
Deseription File Line Colurmn Project
@1 Mewline in constant Program.ci 1 n TeutHll
Do) epected Program.cs 1 a5 Texthialle
@5 egected Program.cs 1 5 TextHello

(34 Error List [Ourtpure

L Reniy
Tip You can double-click an item in the Error List window, and the cursor will be placed
on the line that caused the error. You should also notice that Visual Studio displays a wavy

red line under any lines of code that will not compile when you enter them.

If you have followed the previous instructions carefully, there should be no errors or
warnings, and the program should build successfully.

@ Tip There is no need to save the file explicitly before building because the Build Solution
command automatically saves the file. If you are using Visual Studio 2008 Standard Edition
or Visual Studio 2008 Professional Edition, the project is saved in the location specified
when you created it. If you are using Visual C# 2008 Express Edition, the project is saved in
a temporary location and is copied to the folder you specified in the Options dialog box

only when you explicitly save the project by using the Save All command on the File menu
or when you close Visual C# 2008 Express Edition.

An asterisk after the file name in the tab above the Code and Text Editor window indicates
that the file has been changed since it was last saved.

2.

3.

Chapter 1 Welcome to C# 13
On the Debug menu, click Start Without Debugging.

A command window opens, and the program runs. The message Hello World appears,
and then the program waits for you to press any key, as shown in the following graphic:

B Chindowshsystem3diemd,exe

Hello World
Press any key to continue . . .

Note The prompt “Press any key to continue . .." is generated by Visual Studio; you did
not write any code to do this. If you run the program by using the Start Debugging com-
mand on the Debug menu, the application runs, but the command window closes immedi-
ately without waiting for you to press a key.

Ensure that the command window displaying the program'’s output has the focus, and
then press Enter.

The command window closes, and you return to the Visual Studio 2008 programming
environment.

In Solution Explorer, click the TextHello project (not the solution), and then click the
Show All Files toolbar button on the Solution Explorer toolbar—this is the second
button from the left on the toolbar in the Solution Explorer window.

Entries named bin and obj appear above the Program.cs file. These entries correspond
directly to folders named bin and obj in the project folder (Microsoft Press\Visual
CSharp Step by Step\Chapter 1\TextHello\TextHello). Visual Studio creates these folders
when you build your application, and they contain the executable version of the pro-
gram together with some other files used to build and debug the application.

In Solution Explorer, click the plus sign (+) to the left of the bin entry.

Another folder named Debug appears.

Note You may also see a folder called Release.

14 Part1 Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
6. In Solution Explorer, click the plus sign (+) to the left of the Debug folder.

Four more items named TextHello.exe, TextHello.pdb, TextHello.vshost.exe, and
TextHello.vshost.exe.manifest appear, like this:

Show All Files

Solutiof Explorer - TextHello 3 X

=l ﬁ 5?4'.
_j Solution TextHello' (1 project)

w- [Properties
- [:9l References
B i bin
5 L Debug
3 TextHello.exe
wo 3 TetHellopdb
wo 3 TetHellowshostexe
- ¥ TestHellowshast.exe.manifest
e 7 ob
. t£] Prograrn.cs

= Note If you are using Visual C# 2008 Express Edition, you might not see all of these files.

The file TextHello.exe is the compiled program, and it is this file that runs when you
click Start Without Debugging on the Debug menu. The other files contain information
that is used by Visual Studio 2008 if you run your program in Debug mode (when you
click Start Debugging on the Debug menu).

Using Namespaces

The example you have seen so far is a very small program. However, small programs can soon
grow into much bigger programs. As a program grows, two issues arise. First, it is harder to
understand and maintain big programs than it is to understand and maintain smaller pro-
grams. Second, more code usually means more names, more methods, and more classes. As
the number of names increases, so does the likelihood of the project build failing because
two or more names clash (especially when a program also uses third-party libraries written by
developers who have also used a variety of names).

In the past, programmers tried to solve the name-clashing problem by prefixing names with
some sort of qualifier (or set of qualifiers). This solution is not a good one because it's not
scalable; names become longer, and you spend less time writing software and more time
typing (there is a difference) and reading and rereading incomprehensibly long names.

Chapter 1 Welcome to C# 15

Namespaces help solve this problem by creating a named container for other identifiers, such
as classes. Two classes with the same name will not be confused with each other if they live

in different namespaces. You can create a class named Greeting inside the namespace named
TextHello, like this:

namespace TextHello

{
class Greeting
{
}

}

You can then refer to the Greeting class as TextHello.Greeting in your programs. If another
developer also creates a Greeting class in a different namespace, such as NewNamespace, and
installs it on your computer, your programs will still work as expected because they are using
the TextHello.Greeting class. If you want to refer to the other developer’s Greeting class, you
must specify it as NewNamespace.Greeting.

It is good practice to define all your classes in namespaces, and the Visual Studio 2008 en-
vironment follows this recommendation by using the name of your project as the top-level
namespace. The .NET Framework software development kit (SDK) also adheres to this rec-
ommendation; every class in the .NET Framework lives inside a namespace. For example,
the Console class lives inside the System namespace. This means that its full name is actually
System.Console.

Of course, if you had to write the full name of a class every time you used it, the situation
would be no better than prefixing qualifiers or even just naming the class with some glob-
ally unique name such SystemConsole and not bothering with a namespace. Fortunately, you
can solve this problem with a using directive in your programs. If you return to the TextHello
program in Visual Studio 2008 and look at the file Program.cs in the Code and Text Editor
window, you will notice the following statements at the top of the file:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

A using statement brings a namespace into scope. In subsequent code in the same file,

you no longer have to explicitly qualify objects with the namespace to which they belong.
The four namespaces shown contain classes that are used so often that Visual Studio 2008
automatically adds these using statements every time you create a new project. You can add
further using directives to the top of a source file.

The following exercise demonstrates the concept of namespaces in more depth.

16

Part1 Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

Try longhand names

1. In the Code and Text Editor window displaying the Program.cs file, comment out the
first using directive at the top of the file, like this:
//using System;

2. On the Build menu, click Build Solution.

The build fails, and the Error List window displays the following error message:

The name ’Console’ does not exist in the current context.
3. In the Error List window, double-click the error message.
The identifier that caused the error is selected in the Program.cs source file.

4. In the Code and Text Editor window, edit the Main method to use the fully qualified
name System.Console.

Main should look like this:

static void Main(string[] args)
{

System.Console.WriteLine(“Hello World”);
}

Note When you type System. the names of all the items in the System namespace are
displayed by IntelliSense.

5. On the Build menu, click Build Solution.

The build should succeed this time. If it doesn’t, make sure that Main is exactly as it ap-
pears in the preceding code, and then try building again.

6. Run the application to make sure it still works by clicking Start Without Debugging on
the Debug menu.

Namespaces and Assemblies

A using statement simply brings the items in a namespace into scope and frees you
from having to fully qualify the names of classes in your code. Classes are compiled into
assemblies. An assembly is a file that usually has the .dll file name extension, although
strictly speaking, executable programs with the .exe file name extension are also
assemblies.

Chapter 1 Welcome to C# 17

An assembly can contain many classes. The classes that the .NET Framework class
library comprises, such as System.Console, are provided in assemblies that are installed
on your computer together with Visual Studio. You will find that the .NET Framework
class library contains many thousands of classes. If they were all held in the same
assembly, the assembly would be huge and difficult to maintain. (If Microsoft updated
a single method in a single class, it would have to distribute the entire class library to all
developers!)

For this reason, the .NET Framework class library is split into a number of assemblies,
partitioned by the functional area to which the classes they contain relate. For example,
there is a "core” assembly that contains all the common classes, such as System.Console,
and there are further assemblies that contain classes for manipulating databases, ac-
cessing Web services, building graphical user interfaces, and so on. If you want to make
use of a class in an assembly, you must add to your project a reference to that assem-
bly. You can then add using statements to your code that bring the items in namespac-
es in that assembly into scope.

You should note that there is not necessarily a 1:1 equivalence between an assembly
and a namespace; a single assembly can contain classes for multiple namespaces, and a
single namespace can span multiple assemblies. This all sounds very confusing at first,
but you will soon get used to it.

When you use Visual Studio to create an application, the template you select auto-
matically includes references to the appropriate assemblies. For example, in Solution
Explorer for the TextHello project, click the plus sign (+) to the left of the References
folder. You will see that a Console application automatically includes references to as-
semblies called System, System.Core, System.Data, and System.Xml. You can add refer-
ences for additional assemblies to a project by right-clicking the References folder and
clicking Add Reference—you will practice performing this task in later exercises.

Creating a Graphical Application

So far, you have used Visual Studio 2008 to create and run a basic Console application. The
Visual Studio 2008 programming environment also contains everything you need to create
graphical Windows-based applications. You can design the form-based user interface of a
Windows-based application interactively. Visual Studio 2008 then generates the program
statements to implement the user interface you've designed.

Visual Studio 2008 provides you with two views of a graphical application: the design view
and the code view. You use the Code and Text Editor window to modify and maintain the

18

Part1 Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

code and logic for a graphical application, and you use the Design View window to lay out
your user interface. You can switch between the two views whenever you want.

In the following set of exercises, you'll learn how to create a graphical application by using
Visual Studio 2008. This program will display a simple form containing a text box where you
can enter your name and a button that displays a personalized greeting in a message box
when you click the button.

Note Visual Studio 2008 provides two templates for building graphical applications—the
Windows Forms Application template and the WPF Application template. Windows Forms is a
technology that first appeared with the .NET Framework version 1.0. WPF, or Windows
Presentation Foundation, is an enhanced technology that first appeared with the .NET
Framework version 3.0. It provides many additional features and capabilities over Windows
Forms, and you should consider using it in preference to Windows Forms for all new
development.

Create a graphical application in Visual Studio 2008

B |f you are using Visual Studio 2008 Standard Edition or Visual Studio 2008 Professional
Edition, perform the following operations to create a new graphical application:

1.

7.

On the File menu, point to New, and then click Project.
The New Project dialog box opens.

In the Project Types pane, click Visual C#.

In the Templates pane, click the WPF Application icon.

Ensure that the Location field refers to your Documents\Microsoft Press\Visual
CSharp Step by Step\Chapter 1 folder.

In the Name field, type WPFHello.
In the Solution field, ensure that Create new solution is selected.

This action creates a new solution for holding the project. The alternative, Add to
Solution, adds the project to the TextHello solution.

Click OK.

B |f you are using Visual C# 2008 Express Edition, perform the following tasks to create a
new graphical application.

1.
2.

On the File menu, click New Project.

If the New Project message box appears, click Save to save your changes to
the TextHello project. In the Save Project dialog box, verify that the Location
field is set to Microsoft Press\Visual CSharp Step By Step\Chapter 1 under your
Documents folder, and then click Save.

¥

Chapter 1 Welcome to C# 19
3. In the New Project dialog box, click the WPF Application icon.
4. In the Name field, type WPFHello.
5. Click OK.

Visual Studio 2008 closes your current application and creates the new WPF application. It
displays an empty WPF form in the Design View window, together with another window con-
taining an XAML description of the form, as shown in the following graphic:

Tip Close the Output and Error List windows to provide more space for displaying the Design
View window.

[WRPHATS < Wierosare sl i [E=E=E]
File Edit ‘iew Project [uild [Debug Dot Formet Tools Tet Window |elp
ER=R A" - N b0 - - - b Debuy = fary CPU - | SRS RO
1 R, a=|IRER| S 2 = e = vl
5:| - WindowLxaml | Windowdoamics | FarPags | - % [Talution Explorer - WRFHelo I %
2 o | @ F| E E
z A Sebution "WFFHella' (1 project)
= (T WiFHHello
9 Properises
s References
s e Appaami
- = WindowLiaml
G Desingn ot EWAML mE®
b <Hindom ¥:Clasa="UPFHello. Windowl™
amlns="https// schemas mictosolt, com/ winfx/ 2006/ xaml/ presentat ion”
Emins:x="hLip://schemas.nicrosolt.com’ vinlx/ 2006/ xaml "
Titles"Windowl™ Meight="J00" Width="I00":>
<Grids
</ Gxide
</ Wandows
'
) Widaw Window /s
Ready

XAML stands for Extensible Application Markup Language and is an XML-like language used
by WPF applications to define the layout of a form and its contents. If you have knowledge of
XML, XAML should look familiar. You can actually define a WPF form completely by writing
an XAML description if you don't like using the Design View window of Visual Studio or if you
don't have access to Visual Studio; Microsoft provides an XAML editor called XMLPad that
you can download free of charge from the MSDN Web site.

In the following exercise, you'll use the Design View window to add three controls to the
Windows form and examine some of the C# code automatically generated by Visual Studio
2008 to implement these controls.

20 Part |

Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

Create the user interface

1.

Click the Toolbox tab that appears to the left of the form in the Design View window.

The Toolbox appears, partially obscuring the form, and displaying the various com-
ponents and controls that you can place on a Windows form. The Common section
displays a list of controls that are used by most WPF applications. The Controls section
displays a more extensive list of controls.

. In the Common section, click Label, and then click the visible part of the form.

A label control is added to the form (you will move it to its correct location in a mo-
ment), and the Toolbox disappears from view.

Tip If you want the Toolbox to remain visible but not to hide any part of the form, click
the Auto Hide button to the right in the Toolbox title bar (it looks like a pin). The Toolbox
appears permanently on the left side of the Visual Studio 2008 window, and the Design
View window shrinks to accommodate it. (You may lose a lot of space if you have a low-
resolution screen.) Clicking the Auto Hide button once more causes the Toolbox to disap-
pear again.

. The label control on the form is probably not exactly where you want it. You can click

and drag the controls you have added to a form to reposition them. Using this tech-
nigue, move the label control so that it is positioned toward the upper-left corner of
the form. (The exact placement is not critical for this application.)

Note The XAML description of the form in the lower pane now includes the label control,
together with properties such as its location on the form, governed by the Margin prop-
erty. The Margin property consists of four numbers indicating the distance of each edge of
the label from the edges of the form. If you move the control around the form, the value
of the Margin property changes. If the form is resized, the controls anchored to the form'’s
edges that move are resized to preserve their margin values. You can prevent this by set-
ting the Margin values to zero. You learn more about the Margin and also the Height and
Width properties of WPF controls in Chapter 22, “Introducing Windows Presentation
Foundation.”

On the View menu, click Properties Window.

The Properties window appears on the lower-right side of the screen, under Solution
Explorer (if it was not already displayed). The Properties window provides another way
for you to modify the properties for items on a form, as well as other items in a project.
It is context sensitive in that it displays the properties for the currently selected item.

If you click the title bar of the form displayed in the Design View window, you can see
that the Properties window displays the properties for the form itself. If you click the
label control, the window displays the properties for the label instead. If you click any-
where else on the form, the Properties window displays the properties for a mysterious

Chapter 1 Welcome to C# 21

item called a grid. A grid acts as a container for items on a WPF form, and you can use

the grid, among other things, to indicate how items on the form should be aligned and
grouped together.

. Click the label control on the form. In the Properties window, locate the Text section.

By using the properties in this section, you can specify the font and font size for the
label but not the actual text that the label displays.

Change the FontSize property to 20, and then click the title bar of the form.

The size of the text in the label changes, although the label is no longer big enough to
display the text. Change the FontSize property back to 12.

Note The text displayed in the label might not resize itself immediately in the Design
View window. It will correct itself when you build and run the application, or if you close
and open the form in the Design View window.

Scroll the XAML description of the form in the lower pane to the right, and examine the
properties of the label control.

The label control consists of a <Label> tag containing property values, followed by the
text for the label itself (“Label”), followed by a closing </Label> tag.

Change the text Label (just before the closing tag) to Please enter your name, as
shown in the following image.

% WRFHell - Microsoft Visual Studio =]
File Edit View Project Build Debug Dats Tosls Tem Window Help
P-E- S | % 9 - -] b Debug - Aty CPU - |1 HE-E T o e
D% s RS S |03 RS
»i| WindawLaaml * | Windowdaml.cs | Start Page | - x [Talition Explover - WRFHe Lo %
. =R EIEmE
g 1 Sabution WETHel' (1 project)
- (T WiFHHelle
Wl Properises
s References
Blesse enter vour name s [Appaaml
5 = Windgwliaml
Froperties Tix
Systaen indws Window

Hame:

SystemWndors Contn -
QDesinn Ttk @AMl MES| | cuesar
] T‘ Dstalontest
6/xaml/presentat ion”
OO/ Kaaml fesn =
Istnatied v
T ResizeMode Carflesize
Eeighe="23% Yerricallligrmenc="Top" FoncSize="1193Please eacer your name</Labels P ¥
SizeTeCantent Manual
Titie Viirclerw]
Tl oo
= '
4 Window Window /s Toprmost .
Wik Manual 1

Ru&- Lnl Col 2 Chi N5

22

Part |

11.

13.
14.

15.

16.

WV

Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

Notice that the text displayed in the label on the form changes, although the label is
still too small to display it correctly.

Click the form in the Design View window, and then display the Toolbox again.

Note If you don't click the form in the Design View window, the Toolbox displays the
message “There are no usable controls in this group.”

. In the Toolbox, click TextBox, and then click the form. A text box control is added to the

form. Move the text box control so that it is directly underneath the label control.

Tip When you drag a control on a form, alignment indicators appear automatically when
the control becomes aligned vertically or horizontally with other controls. This gives you a
quick visual cue for making sure that controls are lined up neatly.

While the text box control is selected, in the Properties window, change the value of the
Name property displayed at the top of the window to userName.

Note You will learn more about naming conventions for controls and variables in
Chapter 2, "Working with Variables, Operators, and Expressions.”

Display the Toolbox again, click Button, and then click the form. Drag the button con-
trol to the right of the text box control on the form so that the bottom of the button is
aligned horizontally with the bottom of the text box.

Using the Properties window, change the Name property of the button control to ok.

In the XAML description of the form, scroll the text to the right to display the caption
displayed by the button, and change it from Button to OK. Verify that the caption of
the button control on the form changes.

Click the title bar of the Windowl.xaml form in the Design View window. In the
Properties window, change the Title property to Hello.

In the Design View window, notice that a resize handle (a small square) appears on the
lower right-hand corner of the form when it is selected. Move the mouse pointer over
the resize handle. When the pointer changes to a diagonal double-headed arrow, click
and drag the pointer to resize the form. Stop dragging and release the mouse button

when the spacing around the controls is roughly equal.

Important Click the title bar of the form and not the outline of the grid inside the form
before resizing it. If you select the grid, you will modify the layout of the controls on the
form but not the size of the form itself.

Chapter 1 Welcome to C# 23

Note If you make the form narrower, the OK button remains a fixed distance from the
right-hand edge of the form, determined by its Margin property. If you make the form too
narrow, the OK button will overwrite the text box control. The right-hand margin of the
label is also fixed, and the text for the label will start to disappear when the label shrinks as
the form becomes narrower.

The form should now look similar to this:

5 WRTIS < MiarosoR Vol S [E=r =
File Edit Yiew Project Duild Debug Dats Forose Took Tet Window Help
G- E- Sl s 59 - - 0L B Debug = fary CPU - | 1 - RNEFHEED .
G as | R EE] S 2 B0 L G o) R
| Windawlaaml * | Windowloamics | SartPage | - 3 [Tolition Bxglorer - WPFHella i
g o | @ F| E E
g = Sabution "WEFHella' (1 project)
= (T WiFHHello
9 Propertses
s 5 References
s [Appaaml

5 e WindowLaml

Piease enler vour name

K

Properties -0 x

Systern Windows Window

Hame:
|G Desinn T8 wAnL ME|| ResseMede CanResize

b <Hindom ¥:Clasa="UPFHello. Windowl™ = ShowlnTaskbar e
smlns="http://schemas .microsoft. com/ vindx/2006/ xaml/ presentat ion” ol SizeToCantent Marual
Amins:x="hLip://schemas .microsolt . com/ vinlx/ 2006/ xaml " | Hella E
Titlee~lello” Height="160™ Widthe=Jzs=s E

1] 16 ids Toollp

Tapemast

<TextBox Helg 1" Margin="20,54,138,0% Nere="userNase" Verticalll ViindawStartipl... Marual
“button Height="3l* Rargin="0,50,23,0 Hame=“ok" VersicalAligmuent=-Top" Uc WindawState Noemnal
<,
PYItE - Mare Properties 3]
* Focusable o
4 Windaw Window /> IshitTestvisble £
Ready nl Col2 Chi

17. On the Build menu, click Build Solution, and verify that the project builds successfully.
18. On the Debug menu, click Start Without Debugging.

The application should run and display your form. You can type your name in the text
box and click OK, but nothing happens yet. You need to add some code to process the
Click event for the OK button, which is what you will do next.

19. Click the Close button (the X in the upper-right corner of the form) to close the form
and return to Visual Studio.

You have managed to create a graphical application without writing a single line of C# code.
It does not do much yet (you will have to write some code soon), but Visual Studio actually
generates a lot of code for you that handles routine tasks that all graphical applications must
perform, such as starting up and displaying a form. Before adding your own code to the ap-
plication, it helps to have an understanding of what Visual Studio has generated for you.

24

Part1 Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

In Solution Explorer, click the plus sign (+) beside the file Window1.xaml. The file Window1.
xaml.cs appears. Double-click the file Window1.xaml.cs. The code for the form is displayed in
the Code and Text Editor window. It looks like this:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Windows;

using System.Windows.Controls;
using System.Windows.Data;

using System.Windows.Documents;
using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

namespace WPFHello

{
/// <summary>
/// Interaction logic for Windowl.xaml

/// </summary>

public partial class Windowl : Window

{

public Windowl(Q)
{

InitializeComponent();

}

}

Apart from a good number of using statements bringing into scope some namespaces that
most WPF applications use, the file contains the definition of a class called Window1 but not
much else. There is a little bit of code for the Window1 class known as a constructor that calls
a method called InitializeComponent, but that is all. (A constructor is a special method with
the same name as the class. It is executed when an instance of the class is created and can
contain code to initialize the instance. You will learn about constructors in Chapter 7.) In fact,
the application contains a lot more code, but most of it is generated automatically based

on the XAML description of the form, and it is hidden from you. This hidden code performs
operations such as creating and displaying the form, and creating and positioning the various
controls on the form.

The purpose of the code that you can see in this class is so that you can add your own
methods to handle the logic for your application, such as what happens when the user clicks
the OK button.

¥

Chapter 1 Welcome to C# 25

Tip You can also display the C# code file for a WPF form by right-clicking anywhere in the
Design View window and then clicking View Code.

At this point you might well be wondering where the Main method is and how the form gets
displayed when the application runs; remember that Main defines the point at which the pro-
gram starts. In Solution Explorer, you should notice another source file called App.xaml. If you
double-click this file, the Design View window displays the message “Intentionally Left Blank,”
but the file has an XAML description. One property in the XAML code is called StartupUri,
and it refers to the Window1.xaml file as shown here:

[T WRTHIAIG - iero orvinial Studio =T
File Edit Yiew Project [Puild [Debug Dats Tools Tet Window Help

[ERs RN~ = R 8|9 -0 - -0 b Oebug = fary CPU -1 - RNERBHRED-
i : - | iR GRS

Appaxaml | Windarerdaaml | Windswdaaml.cs | St Page - 3 [Talution Bxplorer - Sokution WRFHeRo' |+ 0 %
i | @ 5] 5 @
2 Solution "WRTHella' (1 project)

(T WiFHHelle

T Fropertes

s References

s e Appaami

S = Windawlan

%) WindowLsaml.cs

Yoqoe) | I

i intentionally Left Blank
The decument roat element i not supparted by the visual designer,

Properties -0 x

Systemn Windows Apphcation
Hame:

[Q0esian Tt maamL
El tApplication ¥:Clasa="WPFHello. App OinlastWindoatlose

Windowlxaml

zmlns=«®htip://schemas . microsolt.com/vinix/2006/ xaml/ presentation”

HmANS K= THELP:/ S EChemas . mIGEOSOLL . oM WANDAS SU0E, Kaml "
Startuplri=vindowl.xeml™s
<Applieation. Ressurcess

<fApplication, Resources>
“</application:

{1 Applation Agphcstion />
Ready

If you click the plus sign (+) adjacent to App.xaml in Solution Explorer, you will see that there
is also an Application.xaml.cs file. If you double-click this file, you will find it contains the
following code:

using System;

using System.Collections.Generic;
using System.Configuration;

using System.Data;

using System.Ling;

using System.Windows;

26

Part1 Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

namespace WPFHello

{
/// <summary>
/// Interaction Tlogic for App.xaml
/// </summary>

pubTlic partial class App : Application
{

3
}

Once again, there are a number of using statements, but not a lot else, not even a Main

method. In fact, Main is there, but it is also hidden. The code for Main is generated based on
the settings in the App.xaml file; in particular, Main will create and display the form specified
by the StartupUri property. If you want to display a different form, you edit the App.xaml file.

The time has come to write some code for yourself!

Write the code for the OK button

1. Click the Windowl.xaml tab above the Code and Text Editor window to display
Windowl in the Design View window.

2. Double-click the OK button on the form.

The Windowl.xaml.cs file appears in the Code and Text Editor window, but a new
method has been added called ok_Click. Visual Studio automatically generates code to
call this method whenever the user clicks the OK button. This is an example of an event,
and you will learn much more about how events work as you progress through this
book.

3. Add the code shown in bold type to the ok_Click method:

void ok_Click(object sender, RoutedEventArgs e)
{

MessageBox.Show(“Hello “ + userName.Text);

}

This is the code that will run when the user clicks the OK button. Do not worry too
much about the syntax of this code just yet (just make sure you copy it exactly as
shown) because you will learn all about methods in Chapter 3. The interesting part is
the MessageBox.Show statement. This statement displays a message box containing
the text "Hello” with whatever name the user typed into the username text box on the
appended form.

4. Click the Windowl.xaml tab above the Code and Text Editor window to display
Windowl in the Design View window again.

Chapter 1 Welcome to C# 27

. In the lower pane displaying the XAML description of the form, examine the Button
element, but be careful not to change anything. Notice that it contains an element
called Click that refers to the ok_Click method:

<Button Height="23" .. Click="0k_Click”>0K</Button>

. On the Debug menu, click Start Without Debugging.

. When the form appears, type your name in the text box, and then click OK. A message
box appears, welcoming you by name.

] Hello E=EEE]
Please enter your name Hella lahn
Jomn

. Click OK in the message box.

The message box closes.

. Close the form.

B |f you want to continue to the next chapter
Keep Visual Studio 2008 running, and turn to Chapter 2.
B |f you want to exit Visual Studio 2008 now

On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using
Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and
save the project.

28 Part |

Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

Chapter 1 Quick Reference

To

Create a new console application
using Visual Studio 2008
Standard or Professional Edition

Do this

On the File menu, point to New, and then click
Project to open the New Project dialog box.
For the project type, select Visual C#. For the
template, select Console Application. Select a
directory for the project files in the Location
box. Choose a name for the project. Click OK.

Key combination

Create a new console application
using Visual C# 2008 Express
Edition

On the Tools menu, click Options. In the Options
dialog box, click Projects and Solutions. In the
Visual Studio projects location box, specify a
directory for the project files.

On the File menu, click New Project to open the
New Project dialog box. For the template, select
Console Application. Choose a name for the
project. Click OK.

Create a new graphical application
using Visual Studio 2008 Standard
or Professional Edition

On the File menu, point to New, and then click
Project to open the New Project dialog box. For
the project type, select Visual C#. For the template,
select WPF Application. Select a directory for the
project files in the Location box. Choose a name for
the project. Click OK.

Create a new graphical application
using Visual C# 2008 Express
Edition

On the Tools menu, click Options. In the Options
dialog box, click Projects and Solutions. In the
Visual Studio projects location box, specify a
directory for the project files.

On the File menu, click New Project to open the
New Project dialog box. For the template, select
WPF Application. Choose a name for the project.
Click OK.

Build the application

On the Build menu, click Build Solution.

F6

Run the application

On the Debug menu, click Start Without
Debugging.

Ctrl+F5

	Cover
	Table of Contents
	Chapter 1: Welcome to C#
	Beginning Programming with the Visual Studio 2008 Environment
	Writing Your First Program
	Using Namespaces
	Creating a Graphical Application
	Chapter 1 Quick Reference

