Programming Programming Microsoft”

Microsoft

ASP.NET 3.5 ASP.NET 3.5

Dino Esposito

Dino Esposito

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/12001.aspx

Microsoft

9780735625273 Press

© 2008 Dino Esposito. All rights reserved.

Table of Contents

Acknowledgements. e Xix

INtrodUCtion i e XXi

part| Building an ASP.NET Page

1 The ASP.NET Programming Model.......................... 3
What's ASP.NET, Anyway?. 4
Programming in the Age of Web Forms 5
Event-Driven Programming over HTTP 6

The HTTP Protocol. e 8
Structure of an ASPNET Page i, 11

The ASP.NET Component Model. 15
A Model for Component Interaction 16

The runat Attribute 16
ASP.INET Server Controls. 20

The ASP.NET Development Stack ..., 21
The Presentation Layer.......... i, 21

The Page Framework. 22

The HTTP Runtime Environment................, 25

The ASP.NET Provider Model. ..., 28
The Rationale Behind the Provider Model....................... ... 28

A Quick Look at the ASP.NET Implementation...................... 32
CONCIUSION. . . oo 37
Justthe Facts. 37

2 Web Development in Microsoft Visual Studio 2008 39
Introducing Visual Studio 2008 40
Visual Studio Highlights i i 40
Visual Studio 2008-Specific New Features 45

New Language Features. i 50

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey

vii

viii Table of Contents

Create an ASP.NET Web Site Project.o i i, 55
Page Design Features 55
Adding Code tothe Project......... ..o 62
ASP.NET Protected Folders. oo i 66
Build the ASP.INET Project. 72

Application Deployment. ... 75
XCopy Deployment 75
Site Precompilationo 78

Administering an ASP.NET Application.................... .. o .. 81
The Web Site Administration Tool. 82
Editing ASP.NET Configuration Files. 85

CONCIUSION. . oo 87
Justthe Facts. 88

3 Anatomyofan ASPNETPage...............coviiunienn... 89

INVOKING @ Page . . . 89
The Runtime Machinery o i 90
Processing the Request. 97
The Processing DirectivesofaPage.............. ..., 102

The Page Class 112
Properties of the Page Class. 113
Methods of the Page Class., 117
Eventsof the Page Class i, 121
The Eventing Model i i 122
Asynchronous Pages.t 124

The Page Life Cycle o 132
Page Setup 132
Handling the Postback 135
Page Finalization 136

CONCIUSION. . oo e 138
Justthe Facts.o o 139

4 ASP.NET Core ServerControls. 141

Generalities of ASP.NET Server Controlso 142
Properties of the Control Class ia.. 143
Methods of the Contro/ Class.o .. 146
Events of the Control Class. ..., 146

Other Features 147

Table of Contents

HTML Controlso e 153
Generalities of HTML Controls. 153
HTML Container Controls, 156
HTML Input Controls 162
The Htmllmage Control i, 168

Web Controls 169
Generalities of Web Controls.ot 169
Core Web Controls 172
Miscellaneous Web Controls 179

Validation Controls. 184
Generalities of Validation Controls. 185
Gallery of Controls. 187
Special Capabilitieso 192

CONCIUSION. . . oo 198
Just The Factso o 199

5 WorkingwiththePage 201

Programming with Forms. 202
The HtmIForm Class.o e 202
Multiple Forms 205
Cross-Page Postings 209

Dealing with Page Errors. 214
Basics of Error Handling 215
Mapping Errorsto Pages 220

ASPINET TraCingottt e e e 225
Tracing the Execution Flow in ASPNET 225
Writing Trace MeSSagest 227
The Trace VIEWer 229

Page Personalization i 230
Creating the User Profile.o 231
Interacting withthePage.........., 234
Profile Providers.o 241

CONCIUSION. .« . oo 244
Just The Factso oo 245

6 Rich Page Compositioncoiiiiiiiiniinenn... 247

Working with Master Pages. 248

Authoring Rich Pages in ASPNET 1.x. ...t 248

Writing a Master Page. 250

Table of Contents

Writinga ContentPage ... 253
Processing Master and ContentPages. 258
Programming the MasterPage............o i i, 262
Working with Themes 265
Understanding ASPNET Themes. 266
Theming Pages and Controls. 270
Putting Themesto Work. 273
Working with Wizards. 277
An Overview of the Wizard Control 277
Adding StepstoaWizard. 282
Navigating Through the Wizard 285
CONCIUSION. . oo 290
Justthe Facts. . ..o 290

Part I Adding Data in an ASP.NET Site

7 ADO.NET DataProviders..............c.iiiiiiienn ... 295
.NET Data Access Infrastructure., 295

.NET Managed Data Providers. ..., 296

Data Sources You Access Through ADO.NET 300

The Provider Factory Model. o i i 303

Connecting to Data Sources. ... 307

The SglConnection Class 308

ConNnection StHNGSt 314

Connection Pooling. 321

Executing Commands 327

The SgICommand Class. 327

ADO.NET Data Readers.t 331

Asynchronous Commandsoouiiiinnn i 337

Working with Transactions., 342

SQL Server 2005-Specific Enhancements 347

CONCIUSION. . oo 352

Just The Factso o 353

8 ADO.NET Data Containers.............c.coiiiiienn ... 355
Data Adapters. ... 355

The SglDataAdapter Class., 356

The Table-Mapping Mechanism o .. 362

Table of Contents

How Batch Update Works 367
In-Memory Data Container Objects............., 369
The DataSet Objecto 370

The DataTable Object s 377

Data Relations. 383

The DataView Object s 386
CONCIUSION. . . oo 389
Just The Factso 390

9 The Data-BindingModel............ 391
Data Source-Based Data Binding 392
Feasible Data Sources 392
Data-Binding Properties. 395

List Controlso 401
Iterative Controls 407
Data-Binding EXpressions.ooiummeiiniiii i 413
SimpleData Binding 413

The DataBinder Class.oo it 416
Other Data-Binding Methods 418

Data Source COmpOoNeNtS.ttt 422
Overview of Data Source Componentsccoveeo.... 422
Internals of Data Source Controls.......... ..., 424

The Sg/DataSource Control. i 427

The AccessDataSource Class., 433

The ObjectDataSource Controlo i, 434

The LingDataSource Class., 445

The SiteMapDataSource Classccooiiiiiiiiiiiian... 456

The XmiDataSource Class. ...t 460
CoNCIUSION. . oo 464
Justthe Facts. o 465

10 The Ling-to-SQL Programming Model 467
LINQ In Brief . .o 468
Language-Integrated Tools for Data Operations................... 468

A Common Query Syntax. 473

The Mechanics of LINQ 482
Working with SQL Server ... 485

The Data Context.t 486

xii Table of Contents

Querying forData ...t 490
Updating Dataooiiii 498
Other Features 505
CONCIUSION. .« oot 507
Justthe Facts. 508

11 Creating Bindable Gridsof Data.......................... 509
The DataGrid Control 510
The DataGrid Object Model. i, 510
Binding Datatothe Grid.......... i 516
Working with the DataGrid 520

The GridView Control 524
The GridView Object Model. o i i i, 524
Binding Data to a GridView Control............... 530
Paging Datacoiiiiii i 541
Sorting Data 547
Editing Datat 554
Advanced Capabilities. ... 559
Conclusion. o 565
Just The Facts 566

12 Managing alistof Records..............., 567
The ListView Control e 567
The ListView Object Model 568
Defining the Layout of the List, 576
Building a Tabular Layout. i i i 577
Building a Flow Layout 582
BuildingaTiled Layout......... ... i 584
Stylingthe List 590
Working with the ListView Control i .. 593
In-Place EAiting oo 594
Conductingthe Update i, 597
Inserting New Data ltems i, 599
Selectingan ltem 603
Paging the Listof Items 606
CONCIUSION. . oo 610

Justthe Facts.o 610

Table of Contents

13 Managing ViewsofaRecord 613
The DetailsView Control 613
The DetailsView Object Model o i i, 614
Binding Data to a DetailsView Control................ 620
Creating Master/Detail Views 624
Working with Data. 627

The FormView Control. ... 637
The FormView Object Model....... o i i i i, 637
Binding Data to a FormView Control 639
Editing Data ... 642
CONCIUSION . .« . 645
Just The Factso 646

Part Il ASP.NET Infrastructure

14 The HTTP RequestContext................coiiiiiinn.y 649
Initialization of the Application....... 650
Properties of the HttpApplication Class 650
Application Modules. 651
Methods of the HttpApplication Class 652
Events of the HttpApplication Class.ccoiiiiiiiin.. 653

The global.asax File 656
Compiling global.asax......... 656
Syntax of global.asax......... 658
Tracking Errors and Anomalies L. 661

The HttpContext Class.t 662
Properties of the HttpContext Class, 663
Methods of the HttpContext Classccoouiiiiiiiiia, 665

The Server Object. 667
Properties of the HttpServerUtility Class 667
Methods of the HttpServerUtility Class 668

The HttpResponse Object i 674
Properties of the HttpResponse Class. 674
Methods of the HttpResponse Classo, 678

The HttpRequest Object 681
Properties of the HttpRequest Class 681
Methods of the HttpRequest Class, 685
CoNCIUSION. . oo 686

Justthe Facts. o 687

xiii

xiv Table of Contents

15 ASP.NET State Management............ 689
The Application's State 690
Properties of the HttpApplicationState Class. 691
Methods of the HttpApplicationState Class. 692

State Synchronization.......... 693
Tradeoffs of Application State....................., 694

The Session’s Statet 695
The Session-State HTTP Module. it 696
Properties of the HttpSessionState Class 700
Methods of the HttpSessionState Class 702
Working with a Session’'s State. ... 702
Identifying @ Session 703
Lifetime of a Session 709
Persist Session Data to Remote Servers........................... 711
Persist Session Datato SQL Server 715
Customizing Session State Management. 721
Building a Custom Session State Provider......................... 722
Generating a Custom Session ID. 725

The View Stateof aPage 728
The StateBag Class. 728
Common Issues with View State o ... 730
Programming Web Forms Without View State. 733
Changes in the ASP.NET View State, 736
Keeping the View State onthe Server 741
CONCIUSION. . o e 745
Justthe Facts. oo 746

16 ASPNETCaching........... ... i, 747
Caching Application Data. ... 747
The Cache Classt 748
Working with the ASPNET Cache 752
Practical ISSUES 760
Designing a Custom Dependency ..., 766

A Cache Dependency for XML Data........................... .. 768

SQL Server Cache Dependency. 773
Caching ASP.INET Pages. . ..ot 782
The @OutputCache Directive ...t .. 782

The HttpCachePolicy Class 788

Caching Multiple VersionsofaPage 791

Table of Contents

Caching Portions of ASPNETPagesccoviiiieinnnn... 794
Advanced Caching Features., 800
CoNCIUSION. . oo 803
Justthe Facts. o 804

17 ASP.INET Security....... ..ottt 805
Where the Threats Come From 806
The ASP.NET Security Context. 807
Who Really Runs My ASP.NET Application?. 807
Changing the Identity of the ASP.NET Process. 810

The Trust Level of ASP.NET Applications 813
ASP.NET Authentication Methods. 817
Using Forms Authentication. 819
Forms Authentication Control Flow 820

The FormsAuthentication Class, 825
Configuration of Forms Authentication........................... 827
Advanced Forms Authentication Features. 831

The Membership and Role Management API........................... 836
The Membership Class. e 836

The Membership Provider, 842
Managing Roles 847
Security-Related Controls. 853
The Login Control. 853

The LoginName Control 856

The LoginStatus Control 856

The LoginView Control 858

The PasswordRecovery Control 860

The ChangePassword Control oo, 862

The CreateUserWizard Controlo 863
CONCIUSION . .« o e 865
Justthe Facts.o 866

18 HTTP Handlersand Modules 867
Quick Overview of the IIS Extensibility APl 868
The ISAPI Model. 868
Changesin IS 7.0. 872
Writing HTTP Handlers 873
The IHttpHandler Interface. i, 873

An HTTP handler for Quick Data Reports 876

Xvi Table of Contents

The Picture Viewer Handler........ ... oo i i 882
Serving Images More Effectively. 886
Advanced HTTP Handler Programming.ooo... 894
Writing HTTP Modules 901
The IHttpModule Interface. 901
ACustom HTTP Module. i 903
The Page Refresh Feature.......... 906
CONCIUSION. . oo 913
Justthe Facts. 913

Part IV ASP.NET AJAX Extensions

19 Partial Rendering: The Easy Way to AJAX.................. 917
The ASP.NET AJAX Infrastructure ... 918
The Hidden Engine of AJAX. 919

The Microsoft AJAX JavaScript Library. 926

The Script Manager Control......... 939
Selective Page Updates with Partial Rendering 950
The UpdatePanel Control i, 951
Optimizing the Usage of the UpdatePanel Control 957
Giving Feedbacktothe User..... 962

Light and Shade of Partial Rendering. 969

The AJAX Control Toolkit e 973
Enhancing Controls with Extenders 973
Improving the User Interface with Input Extenders................. 981
Adding Safe Popup Capabilities to Web Pages 994
CONCIUSION. L oot 1002
Justthe Facts. o 1003

20 AJAX-Enabled Web Services............ 1005
Implementing the AJAX Paradigm 1006
Moving Away from Partial Rendering 1006
Designing the —Client Layer of an ASP.NET AJAX Application 1008
Designing the —Server Layer of ASP.NET AJAX Applications 1010

Web Services for ASP.NET AJAX Applications 1013
Web Services as Application-Specific Services 1013
Remote Calls via Web Services 1016
Consuming AJAX Web Services. 1020

Considerations for AJAX-Enabled Web Services 1026

Table of Contents

WCF Services for ASP.NET AJAX Applications 1028
Building a Simple WCF Service ... 1028
Building a Less Simple Service. i i 1033

Remote Calls via Page Methods 1036
Introducing Page Methods 1036
Consuming Page Methods 1038

CONCIUSION. . . oo 1041
Justthe Facts. o 1042

21 Silverlight and Rich Internet Applications................. 1043

Silverlight Fast Facts. 1044
Versions of Silverlight 1044
Silverlightand Flash. 1047

Hosting Silverlight in Web Pages. L. 1048
The Silverlight Engine 1049
Defining XAML Content 1057
The XAML Syntax in Silverlight 1062

The Silverlight Object Model, 1074
Silverlight Programming Fundamentals.......................... 1074
Introducing Silverlight 2.0 1082

CONCIUSION. .« . oo 1087

Index. ... e 1089

What do you think of this book? We want to hear from youl!

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey

xvii

Chapter 18

HTTP Handlers and Modules

Quick Overview of the IIS Extensability API............. 868
Writing HTTP Handlers i i i een 873
Writing HTTP Modules. e 901
CoNClUSION . . o e e e e 913

HTTP modules and HTTP handlers are fundamental pieces of the ASP.NET architecture. HTTP
handlers and modules are truly the building blocks of the .NET Web platform. Any requests
for an ASP.NET managed resource is always resolved by an HTTP handler and passes through
a pipeline of HTTP modules. After the handler has processed the request, the request flows
back through the pipeline of HTTP modules and is finally transformed into markup for the
caller.

An HTTP handler is the component that actually takes care of serving the request. It is an
instance of a class that implements the /HttpHandler interface. The ProcessRequest method of
the interface is the central console that governs the processing of the request. For example,
the Page class—the base class for all ASP.NET run-time pages—implements the IHttpHandler
interface, and its ProcessRequest method is responsible for loading and saving the view state
and for firing the well-known set of page events, including Init, Load, PreRender, and the like.

ASP.NET maps each incoming HTTP request to a particular HTTP handler. A special breed of
component—named the HTTP handler factory—provides the infrastructure for creating the
physical instance of the handler to service the request. For example, the PageHandlerFactory
class parses the source code of the requested .aspx resource and returns a compiled instance
of the class that represents the page. An HTTP handler is designed to process one or more
URL extensions. Handlers can be given an application or machine scope, which means they
can process the assigned extensions within the context of the current application or all ap-
plications installed on the machine. Of course, this is accomplished by making changes to
either the machine-wide web.config file or a local web.config file, depending on the scope
you desire.

HTTP modules are classes that implement the /HttpModule interface and handle runtime
events. There are two types of public events that a module can deal with. They are the events
raised by HttpApplication (including asynchronous events) and events raised by other HTTP
modules. For example, SessionStateModule is one of the built-in modules provided by

867

868

Part Il ASP.NET Infrastructure

ASP.NET to supply session-state services to an application. It fires the End and Start events
that other modules can handle through the familiar Session_End and Session_Start signatures.

HTTP handlers and HTTP modules have the same functionality as ISAPI extensions and ISAPI
filters, respectively, but with a much simpler programming model. ASP.NET allows you to cre-
ate custom handlers and custom modules. Before we get into this rather advanced aspect of
Web programming, a review of the Internet Information Services (IIS) extensibility model is
in order because this model determines what modules and handlers can do and what they
cannot do.

Note ISAPI stands for Internet Server Application Programming Interface and represents the
protocol by means of which IIS talks to external components. The ISAPI model is based on a
Microsoft Win32 unmanaged dynamic-link library (DLL) that exports a couple of functions. This
model is significantly expanded in IS 7.0 and largely matches the ASP.NET extensibility model,
which is based on HTTP handlers and modules. I'll return to this topic shortly.

Quick Overview of the IIS Extensibility API

A Web server is primarily a server application that can be contacted using a bunch of
Internet protocols, such as HTTP, File Transfer Protocol (FTP), Network News Transfer Protocol
(NNTP), and the Simple Mail Transfer Protocol (SMTP). IIS—the Web server included with the
Microsoft Windows operating system—is no exception.

A Web server generally also provides a documented application programming interface (API)
for enhancing and customizing the server’s capabilities. Historically speaking, the first of
these extension APIs was the Common Gateway Interface (CGl). A CGl module is a new ap-
plication that is spawned from the Web server to service a request. Nowadays, CGI applica-
tions are almost never used in modern Web applications because they require a new process
for each HTTP request. As you can easily understand, this approach is rather inadequate for
high-volume Web sites and poses severe scalability issues. IIS supports CGI applications, but
you will seldom use this feature unless you have serious backward-compatibility issues. More
recent versions of Web servers supply an alternate and more efficient model to extend the
capabilities of the module. In IIS, this alternative model takes the form of the ISAPI interface.

The ISAPI Model

When the ISAPI model is used, instead of starting a new process for each request, IIS loads
an ISAPI component—namely, a Win32 DLL—into its own process. Next, it calls a well-known
entry point on the DLL to serve the request. The ISAPI component stays loaded until IIS is
shut down and can service requests without any further impact on Web server activity. The

Chapter 18 HTTP Handlers and Modules 869

downside to such a model is that because components are loaded within the Web server
process, a single faulty component can tear down the whole server and all installed applica-
tions. Starting with IIS 4.0, though, some countermeasures have been taken to address this
problem. Before the advent of IIS 6.0, you were allowed to set the protection level of a newly
installed application choosing from three options: low, medium, and high.

If you choose a low protection, the application (and its extensions) will be run within the Web
server process (inetinfo.exe). If you choose medium protection, applications will be pooled
together and hosted by an instance of a different worker process (dllhost.exe). If you choose
high protection, each application set to High will be hosted in its own individual worker pro-
cess (dllhost.exe).

Web applications running under IIS 6.0 are grouped in pools, and the choice you can make is
whether you want to join an existing pool or create a new one. Figure 18-1 shows the dialog
box picking the application pool of choice in IS 6.0 and Microsoft Windows Server 2003.

Core35 Properties Iil@

HTTF Headers Custom Errors ASP.NET
Virtual Directory l Documents Directory Security

The content for this resource should come From:
() & dirackory locaked on this computer
() & share Iocated on another computer
O A redirection to a URL

Logal path: | D Core3s \ [Browse. .
[Script source access [“]Lag visits

Read [#] Index this resource

Wiite

Directory browsing
application settings

Application name: ‘CnreSS H Remave |

Starting point: <Expo-one>iCore3s

Execute permissions: Scripks and Executables v

DefalltAppPadl
|M35harePoint AppPool

FIGURE 18-1 Configuring the protection level of Web applications in IIS 6.0 under Windows Server 2003.

All applications in a pool share the same run-time settings and the same worker process—
w3wp.exe.

lllustrious Children of the ISAPI Model

The ISAPI model has another key drawback—the programming model. An ISAPI component
represents a compiled piece of code—a Win32 DLL—that retrieves data and writes HTML
code to an output console. It has to be developed using C or C++, it should generate multi-
threaded code, and it must be written with extreme care because of the impact that bugs or
runtime failures can have on the application.

870

Part Il ASP.NET Infrastructure

A while back, Microsoft attempted to encapsulate the ISAPI logic in the Microsoft Foundation
Classes (MFC), but even though the effort was creditable, it didn't pay off very well. MFC
tended to bring more code to the table than high-performance Web sites would perhaps
like, and worse, the resulting ISAPI extension DLL suffered from a well-documented memory
leak.

Active Server Pages (ASP), the predecessor of ASP.NET, is, on the other hand, an example of
a well-done ISAPI application. ASP is implemented as an ISAPI DLL (named asp.dll) registered
to handle HTTP requests with an .asp extension. The internal code of the ASP ISAPI exten-
sion DLL parses the code of the requested resource, executes any embedded script code, and
builds the page for the browser.

As of IIS 6.0, any functionality built on top of 1IS must be coded according to the guidelines
set by the ISAPI model. ASP and ASP.NET are no exceptions. Today, the whole ASP.NET plat-
form works closely with IS, but it is not part of it. The aspnet_isapi.dll core component is the
link between IIS and the ASP.NET runtime environment. When a request for .aspx resources
comes in, |IS passes the control to aspnet_isapi.dll, which in turn hands the request to the ASP.
NET pipeline inside an instance of the common language runtime (CLR).

As of this writing, to extend IIS you can write a Win32 DLL only with a well-known set of
entry points. This requirement ceases to exist with IIS 7.0, which is scheduled to ship with
Windows 2008 Server.

Note A good place to learn about IIS 7.0 and find good scripts and code snippets is
http://www.iis.net. IS 7.0 is also part of Windows Vista, but that is not particularly relevant here in
the context of an ASP.NET book. Although you can certainly develop part of your Web site on a
Windows Vista machine, it is simply out of question that you use Windows Vista as a Web server
to host a site. Although fully functional, the 1IS 7.0 that has shipped with Windows Vista can be
seen as a live tool to experiment and test. The “real” IIS 7.0 for Web developers and administra-
tors will ship in 2008 with Windows 2008 Server.

Structure of ISAPI Components

An ISAPI extension is invoked through a URL that ends with the name of the DLL that
implements the function, as shown in the following URL:

http://www.contoso.com/apps/hello.d11

The DLL must export a couple of functions—GetExtensionVersion and HttpExtensionProc.

The GetExtensionVersion function sets the version and the name of the ISAPI server exten-
sion. When the extension is loaded, the GetExtensionVersion function is the first function to
be called. GetExtensionVersion is invoked only once and can be used to initialize any needed
variables. The function is expected to return true if everything goes fine. In the case of errors,
the function should return false and the Web server will abort loading the DLL and put a
message in the system log.

Chapter 18 HTTP Handlers and Modules 871

The core of the ISAPI component is represented by the HttpExtensionProc function. The func-
tion receives basic HTTP information regarding the request (for example, the query string
and the headers), performs the expected action, and prepares the response to send back to
the browser.

Note Certain handy programming facilities, such as the session state, are abstractions the ISAPI
programming model lacks entirely. The ISAPI model is a lower level programming model than,
say, ASP or ASP.NET.

The ISAPI programming model is made of two types of components—ISAPI extensions and
ISAPI filters.

ISAPI Extensions

ISAPI extensions are the IIS in-process counterpart of CGl applications. As mentioned,

an ISAPI extension is a DLL that is loaded in the memory space occupied by IIS or another
host application. Because it is a DLL, only one instance of the ISAPI extension needs to be
loaded at a time. On the downside, the ISAPI extension must be thread-safe so that multiple
client requests can be served simultaneously. ISAPI extensions work in much the same way
as an ASP or ASP.NET page. It takes any information about the HTTP request and prepares a
valid HTTP response.

Because the ISAPI extension is made of compiled code, it must be recompiled and reloaded
at any change. If the DLL is loaded in the Web server's memory, the Web server must be
stopped. If the DLL is loaded in the context of a separate process, only that process must be
stopped. Of course, when an external process is used, the extension doesn’'t work as fast as it
could when hosted in-process, but at least it doesn’t jeopardize the stability of IIS.

ISAPI Filters

ISAPI filters are components that intercept specific server events before the server itself
handles them. Upon loading, the filter indicates what event notifications it will handle. If any
of these events occur, the filter can process them or pass them on to other filters.

You can use ISAPI filters to provide custom authentication techniques or to automatically
redirect requests based on HTTP headers sent by the client. Filters are a delicate gear in the
[IS machinery. They can facilitate applications and let them take control of customizable as-
pects of the engine. For this same reason, though, ISAPI filters can also degrade performance
if not written carefully. Filters, in fact, can run only in-process. Filters can be loaded for the
Web server as a whole or for specific Web sites.

ISAPI filters can accomplish tasks such as implementing custom authentication schemes,
compression, encryption, logging, and request analysis. The ability to examine, and if
necessary modify, both incoming and outgoing streams of data makes ISAPI filters very

872

Part Il ASP.NET Infrastructure

powerful and flexible. This last sentence shows the strength of ISAPI filters but also indicates
their potential weakness, which is that they will hinder performance if not written well.

Changes in 1IS 7.0

ASP.NET 1.0 was originally a self-contained, brand new runtime environment bolted onto
[IS 5.0. With the simultaneous release of ASP.NET 1.1 and IIS 6.0, the Web development and
server platforms have gotten closer and started sharing some services, such as process re-
cycling and output caching. The advent of ASP.NET 2.0 and newer versions hasn't changed
anything, but the release of IIS 7.0 will.

A Unified Runtime Environment

In a certain way, IS 7.0 represents the unification of the ASP.NET and IIS platforms. HTTP
handlers and modules, the runtime pipeline, and configuration files will become constituent
elements of a common environment. The whole IIS internal pipeline has been componen-
tized to originate a distinct and individually configurable component. A new section will be
added to the web.config schema of ASP.NET applications to configure the IIS environment.

Put another way, it will be as if the ASP.NET runtime expanded to incorporate and replace the
surrounding Web server environment. It's hard to say whether things really went this way or
whether it was the other way around. As a matter of fact, the same concepts and instruments
you know from ASP.NET are available in IIS 7.0 at the Web server level.

To illustrate, on Windows 2008 Server (and for testing purposes, also on a Windows Vista
machine) you can use Forms authentication to protect access to any resources available on
the server and not just ASP.NET-specific resources. You might already know that static re-
sources such as HTML pages and JPG images are not served by ASP.NET by default; as such,
they're not subject to the authentication rules you set for the application. Where IIS 7.0 is
supported, you can now define a handler for some specific and static resources and be sure
that IIS will use your code to serve those resources.

Managed ISAPI Extensions and Filters

Today if you want to take control of an incoming request in any version of IS older than
version 7.0, you have no choice other than writing a C or C++ DLL, using either MFC or per-
haps the ActiveX Template Library (ATL). More comfortable HTTP handlers and modules are
an ASP.NET-only feature, and they can be applied only to ASP.NET-specific resources and
only after the request has been authenticated by IIS and handed over to ASP.NET.

In 1IS 7.0, you can write HTTP handlers and modules to filter any requests and implement any
additional features using .NET code for whatever resources the Web server can serve. More
precisely, you'll continue writing HTTP handlers and modules as you do today for ASP.NET,

Chapter 18 HTTP Handlers and Modules 873

except that you will be given the opportunity to register them for any file type. Needless to
say, old-style ISAPI extensions will still be supported, but unmanaged extensions and filters
will likely become a thing of the past. I'll demonstrate IIS 7.0 handlers later in the chapter.

Writing HTTP Handlers

ASP.NET comes with a small set of built-in HTTP handlers. There is a handler to serve ASP.NET
pages, one for Web services, and yet another to accommodate .NET Remoting requests for
remote objects hosted by IIS. Other helper handlers are defined to view the tracing of indi-
vidual pages in a Web application (trace.axd) and to block requests for prohibited resources
such as .config or .asax files. Starting with ASP.NET 2.0, you also find a handler (webresource.
axd) to inject assembly resources and script code into pages. In ASP.NET 3.5, the scrip-
tresource.axd handler has been added as a more refined tool to inject script code and AJAX
capabilities into Web pages.

You can write custom HTTP handlers whenever you need ASP.NET to process certain requests
in a nonstandard way. The list of useful things you can do with HTTP handlers is limited only
by your imagination. Through a well-written handler, you can have your users invoke any
sort of functionality via the Web. For example, you could implement click counters and any
sort of image manipulation, including dynamic generation of images, server-side caching, or
obstructing undesired linking to your images.

Note An HTTP handler can either work synchronously or operate in an asynchronous way.
When working synchronously, a handler doesn’t return until it's done with the HTTP request. An
asynchronous handler, on the other hand, launches a potentially lengthy process and returns
immediately after. A typical implementation of asynchronous handlers are asynchronous pages.
Later in this chapter, though, we'll take a look at the mechanics of asynchronous handlers, of
which asynchronous pages are a special case.

Conventional ISAPI extensions and filters should be registered within the IIS metabase.

In contrast, HTTP handlers are registered in the web.config file if you want the handler to
participate in the HTTP pipeline processing of the Web request. In a manner similar to ISAPI
extensions, you can also invoke the handler directly via the URL.

The IHttpHandler Interface

Want to take the splash and dive into HTTP handler programming? Well, your first step is
getting the hang of the /HttpHandler interface. An HTTP handler is just a managed class that
implements that interface. More specifically, a synchronous HTTP handler implements the
IHttpHandler interface; an asynchronous HTTP handler, on the other hand, implements the
IHttpAsyncHandler interface. Let's tackle synchronous handlers first.

874

Part Il ASP.NET Infrastructure

The contract of the IHttpHandler interface defines the actions that a handler needs to take to
process an HTTP request synchronously.

Members of the IHttpHandler Interface

The IHttpHandler interface defines only two members—ProcessRequest and IsReusable, as
shown in Table 18-1. ProcessRequest is a method, whereas IsReusable is a Boolean property.

TABLE 18-1 Members of the IHttpHandler Interface
Member Description

IsReusable This property gets a Boolean value indicating whether the HTTP runtime can
reuse the current instance of the HTTP handler while serving another request.

ProcessRequest This method processes the HTTP request.

The IsReusable property on the System.Web.UI.Page class—the most common HTTP han-
dler in ASP.NET—returns false, meaning that a new instance of the HTTP request is needed
to serve each new page request. You typically make IsReusable return false in all situations
where some significant processing is required that depends on the request payload. Handlers
used as simple barriers to filter special requests can set IsReusable to true to save some CPU
cycles. I'll return to this subject with a concrete example in a moment.

The ProcessRequest method has the following signature:

void ProcessRequest(HttpContext context);

It takes the context of the request as the input and ensures that the request is serviced.
In the case of synchronous handlers, when ProcessRequest returns, the output is ready for
forwarding to the client.

A Very Simple HTTP Handler

Again, an HTTP handler is simply a class that implements the /HttpHandler interface. The out-
put for the request is built within the ProcessRequest method, as shown in the following code:

using System.Web;

namespace Core35.Components
{
public class SimpleHandler : IHttpHandler
{
// Override the ProcessRequest method
public void ProcessRequest(HttpContext context)
{
context.Response.Write(“<H1>Hello, I’'m an HTTP handler</H1>");

}

Chapter 18 HTTP Handlers and Modules 875

// Override the IsReusable property
public bool IsReusable

{

get { return true; }

}
}

You need an entry point to be able to call the handler. In this context, an entry point into the
handler’s code is nothing more than an HTTP endpoint—that is, a public URL. The URL must
be a unique name that IS and the ASP.NET runtime can map to this code. When registered,
the mapping between an HTTP handler and a Web server resource is established through the
web.config file:

<configuration>
<system.web>
<httpHandlers>
<add verb="*" path="hello.aspx”
type="Core35.Components.SimpleHandler” />
</httpHandlers>
</system.web>
</configuration>

The <httpHandlers> section lists the handlers available for the current application. These
settings indicate that SimpleHandler is in charge of handling any incoming requests for an
endpoint named hello.aspx. Note that the URL hello.aspx doesn’t have to be a physical re-
source on the server; it's simply a public resource identifier. The type attribute references
the class and assembly that contains the handler. It's canonical format is type[,assembly].
You omit the assembly information if the component is defined in the App_Code or other
reserved folders.

Note If you enter the settings shown earlier in the global web.config file, you will register the
SimpleHandler component as callable from within all Web applications hosted by the server machine.

If you invoke the hello.aspx URL, you obtain the results shown in Figure 18-2.

{2 htip:/flocalhost:1644/Core35/Samples/Chi8/Handlers/hell.... [T [B[X]

@.\-— 3y~ & | http:fflocalhost: 1644 v || X |

i’:? ﬁ'ﬁ? ['_r,éhttp:,l’,l’localhost:1644,|’C0r... l_l @ h D Eéa =

Hello, I'm an HTTP handler

Jpere & Internet F00% v

FIGURE 18-2 A sample HTTP handler that answers requests for hello.aspx.

876

®

Part Il ASP.NET Infrastructure

The technique discussed here is the quickest and simplest way of putting an HTTP handler
to work, but there is more to know about registration of HTTP handlers and there are many
more options to take advantage of. Now let’s consider a more complex example of an HTTP
handler.

An HTTP Handler for Quick Data Reports

With their relatively simple programming model, HTTP handlers give you a means of inter-
acting with the low-level request and response services of IIS. In the previous example, we
returned only constant text and made no use of the request information. In the next ex-
ample, we'll configure the handler to intercept and process only requests of a particular type
and generate the output based on the contents of the requested resource.

The idea is to build an HTTP handler for custom .sqlx resources. A SQLX file is an XML
document that expresses the statements for one or more SQL queries. The handler grabs the
information about the query, executes it, and finally returns the result set formatted as a grid.
Figure 18-3 shows the expected outcome.

Z QueryHandler Output - Windows Internet Explorer
@‘\:_/ [l hitpifflocanosti 1644y v || 4| x| | [[2]-

w & [@QueryHand\erOutput Iil - B - &=h v [hpage - -

firstname lastname city country
Mancy Davolio Seattle USA
Andrew Fuller Tacomna USA
Janet Lewerling Kirkland USA
Margaret Faacock Redmond USA
Steven Buchanan London UK
Michasl Suyama London UK
Robert King Londan UK

Laura Callahan Seattle USA
Anne Dodsworth London UK
Jim Foo
companyname contactname city country
Franchi 5.p.4. Paolo Accorti Torino Italy
Magazzini Alimentari Riuniti Giovanni Rovelli Bergamo Italy
Reggiani Caseifici Maurizio Moroni Reggio Emilia Italy
Done & Internat 100% v

FIGURE 18-3 A custom HTTP handler in action.

To start, let's examine the source code for the IHttpHandler class.

Warning Take this example for what it really is—merely a way to process a custom XML file
with a custom extension doing something more significant than outputting a “hello world”
message. Do not take this handler as a realistic prototype for exposing your Microsoft SQL Server
databases over the Web.

Chapter 18 HTTP Handlers and Modules 877

Building a Query Manager Tool

The HTTP handler should get into the game whenever the user requests an .sqlx resource.
Assume for now that the system knows how to deal with such a weird extension, and focus
on what's needed to execute the query and pack the results into a grid. To execute the query,
at a minimum, we need the connection string and the command text. The following text il-
lustrates the typical contents of an .sglx file:

<queries>
<query connString="DATABASE=northwind;SERVER=1ocalhost;UID...;”>
SELECT firstname, lastname, country FROM employees
</query>
<query connString="DATABASE=northwind;SERVER=Tocalhost;UID=...;”>
SELECT companyname FROM customers WHERE country="Italy’
</query>

</queries>

The XML document is formed by a collection of <query> nodes, each containing an attribute
for the connection string and the text of the query.

The ProcessRequest method extracts this information before it can proceed with executing
the query and generating the output:

class SqlxData

{
public string ConnectionString;
public string QueryText;

pubTlic class QueryHandler : IHttpHandler
{
pubTlic void ProcessRequest(HttpContext context)
{
// Parses the SQLX file
SqixData[] data = ParseFile(context);

// Create the output as HTML
StringCollection htmlColl = CreateOutput(data);

// Output the data
context.Response.Write(“<html><head><title>");
context.Response.Write(“QueryHandler Output”);
context.Response.Write(“</title></head><body>");
foreach (string html in html1Col11)
{
context.Response.Write(html);
context.Response.Write(“<hr />");
}
context.Response.Write(“</body></html>");

878 Part [l ASP.NET Infrastructure

// Override the IsReusable property
pubTlic bool IsReusable
{

get { return true; }

3

The ParseFile helper function parses the source code of the .sglx file and creates an instance
of the SqlxData class for each query found:

private SqlxData[] ParseFile(HttpContext context)
{
XmTDocument doc = new XmlDocument();
string filePath = context.Request.Path;
using (Stream fileStream = VirtualPathProvider.OpenFile(filePath)) {
doc.Load(fileStream);
}

// Visit the <mapping> nodes
XmINodeList mappings = doc.SelectNodes(“queries/query”);
SqixData[] descriptors = new SqlxData[mappings.Count];
for (int i=0; i < descriptors.Length; i++)
{

XmINode mapping = mappings[i];

SqlxData query = new SqlxData(Q);

descriptors[i] = query;

try {

query.ConnectionString =
mapping.Attributes[“connString”].Value;

query.QueryText = mapping.InnerText;

}

catch {
context.Response.Write(“Error parsing the input file.”);
descriptors = new SqlxData[0];
break;

}

return descriptors;

}

The SqixData internal class groups the connection string and the command text. The infor-
mation is passed to the CreateOutput function, which will actually execute the query and
generate the grid:

private StringCollection CreateOutput(SqixDatal[] descriptors)
{

StringCollection coll = new StringCollection();

foreach (SqixData data in descriptors)

{

Chapter 18 HTTP Handlers and Modules 879

// Run the query

DataTable dt = new DataTable();

SqlDataAdapter adapter = new SqlDataAdapter(data.QueryText,
data.ConnectionString);

adapter.Fi11(dt);

// Error handling

// Prepare the grid

DataGrid grid = new DataGrid(Q);
grid.DataSource = dt;
grid.DataBind(Q);

// Get the HTML
string html = Utils.RenderControlAsString(grid);
col1.AddChtm1);

}

return coll;

3

After executing the query, the method populates a dynamically created DataGrid control. In
ASP.NET pages, the DataGrid control, like any other control, is rendered to HTML. However,
this happens through the care of the special HTTP handler that manages .aspx resources. For
.sglx resources, we need to provide that functionality ourselves. Obtaining the HTML for a
Web control is as easy as calling the RenderControl method on an HTML text writer object.
This is just what the helper method RenderControlAsString does:

static class Utils

{
public static string RenderControlAsString(Control ct1)
{
StringWriter sw = new StringWriter();
HtmlTextWriter writer = new HtmlTextWriter(sw);
ctl.RenderControl(writer);
return sw.ToString(Q);
}
}

Note An HTTP handler that needs to access session-state values must implement the
IRequiresSessionState interface. Like INamingContainer, it's a marker interface and requires no
method implementation. Note that the /RequiresSessionState interface indicates that the HTTP
handler requires read and write access to the session state. If read-only access is needed, use the
IReadOnlySessionState interface instead.

880

Part Il ASP.NET Infrastructure

Registering the Handler

An HTTP handler is a class and must be compiled to an assembly before you can use it. The
assembly must be deployed to the Bin directory of the application. If you plan to make this
handler available to all applications, you can copy it to the global assembly cache (GAC). The
next step is registering the handler with an individual application or with all the applications
running on the Web server. You register the handler in the configuration file:

<system.web>
<httpHandlers>
<add verb="*"
path="*.sqlx”
type= “Core35.Components.QueryHandler,Core35Lib” />
</httpHandlers>
</system.web>

You add the new handler to the <httpHandlers> section of the local or global web.config file.
The section supports three actions: <add>, <remove>, and <clear>. You use <add> to add a
new HTTP handler to the scope of the .config file. You use <remove> to remove a particular
handler. Finally, you use <clear> to get rid of all the registered handlers. To add a new han-
dler, you need to set three attributes—uverb, path, and type—as shown in Table 18-2.

TABLE 18-2 Attributes Needed to Register an HTTP Handler
Attribute Description

Verb Indicates the list of the supported HTTP verbs—for example, GET, PUT, and POST.
The wildcard character (*) is an acceptable value and denotes all verbs.

Path A wildcard string, or a single URL, that indicates the resources the handler will work
on—for example, *.aspx.

Type Specifies a comma-separated class/assembly combination. ASP.NET searches for the
assembly DLL first in the application’s private Bin directory and then in the system
global assembly cache.

These attributes are mandatory. An optional attribute is also supported—validate. When
validate is set to false, ASP.NET delays as much as possible loading the assembly with the
HTTP handler. In other words, the assembly will be loaded only when a request for it arrives.
ASP.NET will not try to preload the assembly, thus catching any error or problem with it.

So far, you have correctly deployed and registered the HTTP handler, but if you try invoking
an .sqlx resource, the results you produce are not what you'd expect. The problem lies in the
fact that so far you configured ASP.NET to handle only .sglx resources, but IIS still doesn’t
know anything about them!

A request for an .sqlx resource is handled by IIS before it is handed to the ASP.NET ISAPI
extension. If you don't register some ISAPI extension to handle ..sqlx resource requests, IIS
will treat each request as a request for a static resource and serve the request by sending

Chapter 18 HTTP Handlers and Modules 881

back the source code of the .sqlx file. The extra step required is registering the .sqlx extension
with the IIS 6.0 metabase such that requests for .sqlx resources are handed off to ASP.NET, as
shown in Figure 18-4.

Application Configuration &\
Mappings | Options | Debugging
Application extensions
Exten... | Executable Path Verbs A
soap cihwindowstmicrosoft.netlframework,.. GET,HEA..
gl cijwindows\microsoft netiframework... All
stm CHWINDOWSksystem3zynetsrilssin,.. GET,POST
sve chwindowstmicrosoft netlframework,.. GET,HEA..
wh c:iwindowstmicrosoft. net\framework... GET HEA., ™
| >
Agd...kl [T,] [pemove |
Wildcard application maps {order of implementation):
Insert. .
[ok J[caneal [nep]

FIGURE 18-4 Registering the .sqlx extension with the IIS 6.0 metabase.

The dialog box in the figure is obtained by clicking on the properties of the application in the
[IS 6.0 manager and then the configuration of the site. To involve the HTTP handler, you must
choose aspnet_isapi.dll as the ISAPI extension. In this way, all .sq/x requests are handed out to
ASP.NET and processed through the specified handler. Make sure you select aspnet_isapi.dll
from the folder of the ASP.NET version you plan to use.

Caution In Microsoft Visual Studio, if you test a sample .sqlx resource using the local embedded
Web server, nothing happens that forces you to register the .sqlx resource with IIS. This is just the
point, though. You're not using IIS! In other words, if you use the local Web server, you have no
need to touch IIS; you do need to register any custom resource you plan to use with 1IS before
you get to production.

Registering the Handler with 1IS 7.0

If you run 1IS 7.0, you don't strictly need to change anything through the IIS Manager. You
can add a new section to the web.config file and specify the HTTP handler also for static
resources that would otherwise be served directly by IIS. Here's what you need to enter:

<system.webServer>
<add verb="%*"
path="*.sq1x”
type="Core35.Components.QueryHandler, Core35Lib” />
</system.webServer>

882 Part [l ASP.NET Infrastructure

The new section is a direct child of the root tag <configuration>. Without this setting, IIS can't
recognize the page and won't serve it up. The configuration script instructs IIS 7.0 to forward
any *sqlx requests to your application, which knows how to deal with it.

The Picture Viewer Handler

Let's examine another scenario that involves custom HTTP handlers. Thus far, we have
explored custom resources and realized how important it is to register any custom extensions
with IIS.

To speed up processing, IIS claims the right of personally serving some resources that typi-
cally form a Web application without going down to a particular ISAPI extension. The list
includes static files such as images and HTML files. What if you request a GIF or a JPG file
directly from the address bar of the browser? IIS retrieves the specified resource, sets the
proper content type on the response buffer, and writes out the bytes of the file. As a result,
you'll see the image in the browser’s page. So far so good.

What if you point your browser to a virtual folder that contains images? In this case,
[IS doesn't distinguish the contents of the folder and returns a list of files, as shown in

Figure 18-5.

/= Iocalhost - fCore35fimagesfalbum/ - Windows Internet Explorer, |Z”E‘E|
@:_/ |l hitpfflocaihast CoreaSfimagesfalbumy o [#2[x] [[[2]-
w g [@loca\hast-JCareasnmagesfalbumf Iil B v B @ v [hese - (FTosk - T

localhost - /Core35/images/album/

To Parent Directory
Tuesday, March 13, 2007 10:40 PM 228170 Dino.jpg

Sunday, October 23, 2006 3:23 PN 1418260 ING_D360.JPG
Sunday, October 23, 2006 3:25 BN 1133129 ING D363.JPG
Sunday, November 05, 2006 11:21 PI 1444045 ING 0D377.JPG
Sunday, dJuly 29, z007 2Z:56 PN 1033313 ING 1194.JPG
Sunday, September 24, 2006 10:44 AN 66549 ING 3887.JPG
Sunday, September 24, 2006 10:44 AN 87307 ING 3888.3pg
Sunday, September 24, 2006 10:45 AN 172998 ING_3917.JFG
€ Internet 100 -

FIGURE 18-5 The standard IIS-provided view of a folder.

Wouldn't it be nice if you could get a preview of the contained pictures, instead?

Designing the HTTP Handler

To start out, you need to decide how you would let IIS know about your wishes. You can use
a particular endpoint that, appended to a folder’s name, convinces IIS to yield to ASP.NET
and provide a preview of contained images. Put another way, the idea is binding our picture

Chapter 18 HTTP Handlers and Modules 883

viewer handler to a particular endpoint—say, folder.axd. As mentioned earlier in the chapter,
a fixed endpoint for handlers doesn’t have to be an existing, deployed resource. You make
the folder.axd endpoint follow the folder name, as shown here:

http://www.contoso.com/images/folder.axd

The handler will process the URL, extract the folder name, and select all the contained
pictures.

Note In ASP.NET, the .axd extension is commonly used for endpoints referencing a special
service. Trace.axd for tracing and WebResource.axd for script and resources injection are
examples of two popular uses of the extension. In particular, the Trace.axd handler implements
the same logic described here. If you append its name to the URL, it will trace all requests for
pages in that application.

Implementing the HTTP Handler

The picture viewer handler returns a page composed of a multirow table showing as many
images as there are in the folder. Here's the skeleton of the class:

class PictureViewerInfo
{
public PictureViewerInfo() {
DisplayWidth = 200;
ColumnCount = 3;
}
public int DisplayWidth;
pubTlic int ColumnCount;
public string FolderName;

public class PictureViewerHandler : IHttpHandler
{
// Override the ProcessRequest method
public void ProcessRequest(HttpContext context)
{
PictureViewerInfo info = GetFolderInfo(context);
string html = CreateOutput(info);

// Output the data
context.Response.Write(“<html><head><title>");
context.Response.Write(“Picture Web Viewer”);
context.Response.Write(“</title></head><body>");
context.Response.Write(html);
context.Response.Write(“</body></html>");

884 Part [l ASP.NET Infrastructure

// Override the IsReusable property
pubTlic bool IsReusable
{

get { return true; }

3
}

Retrieving the actual path of the folder is as easy as stripping off the folder.axd string from
the URL and trimming any trailing slashes or backslashes. Next, the URL of the folder is
mapped to a server path and processed using the .NET Framework API for files and folders:

private ArrayList GetAllImages(string path)
{
string[] fileTypes = { “*.bmp”, “*.gif”, “*.jpg”, “*.png” };
ArrayList images = new ArraylList(Q);
DirectoryInfo di = new DirectoryInfo(path);
foreach (string ext in fileTypes)
{
FileInfo[] files = di.GetFiles(ext);
if (files.Length > 0)
images.AddRange(files);
}
return images;

}

The Directorylinfo class provides some helper functions on the specified directory; for exam-
ple, the GetFiles method selects all the files that match the given pattern. Each file is wrapped
by a FileInfo object. The method GetFiles doesn't support multiple search patterns; to search
for various file types, you need to iterate for each type and accumulate results in an array list
or equivalent data structure.

After you get all the images in the folder, you move on to building the output for the
request. The output is a table with a fixed number of cells and a variable number of rows

to accommodate all selected images. The image is not downloaded as a thumbnail, but it

is more simply rendered in a smaller area. For each image file, a new tag is created
through the Image control. The width attribute of this file is set to a fixed value (say, 200
pixels), causing most modern browsers to automatically resize the image. Furthermore, the
image is wrapped by an anchor that links to the same image URL. As a result, when the user
clicks on an image, the page refreshes and shows the same image at its natural size.

string CreateOutputForFolder(PictureViewerInfo info)
{
ArrayList images = GetAllImages(info.FolderName);
Table t = new Table(Q);

int index = 0;
bool moreImages = true;

Chapter 18 HTTP Handlers and Modules 885

while (moreImages)

{

TableRow row = new TableRow();

t.Rows.Add(row) ;

for (int i = 0; i < info.ColumnCount; i++)

{
TableCell cell = new TableCell1();
row.Cells.Add(cell);
// Create the image
Image img = new Image();
FileInfo fi = (FileInfo)images[index];
img.ImageUr1 = fi.Name;
img.Width = Unit.Pixel(info.DisplayWidth);
// Wrap the image in an anchor so that a Tlarger image
// is shown when the user clicks
HtmTAnchor a = new HtmlAnchor();
a.HRef = fi.Name;
a.Controls.Add(img);
cell.Controls.Add(a);
// Check whether there are more images to show
index++;
moreImages = (index < images.Count);
if (!moreImages)

break;
}
}

}

You might want to make the handler accept some optional query string parameters, such
as width and column count. These values are packed in an instance of the helper class
PictureViewerInfo along with the name of the folder to view. Here's the code to process the
query string of the URL to extract parameters if any are present:

PictureViewerInfo info = new PictureViewerInfo();
object pl = context.Request.Params[“Width”];
object p2 = context.Request.Params[“Cols”];
if (pl != null)

Int32.TryParse((string)pl, out info.DisplayWidth);
if (p2 !'= null)

Int32.TryParse((string)p2, out info.ColumnCount);

Figure 18-6 shows the handler in action.

886

Part Il ASP.NET Infrastructure

{2 Picture Web Viewer - Windows Internet Explorer |ZHE‘E|
@._J.. ~ | hitpifiiacathosticoress/imagesiabumifalder.axc v | 42| X | | 2]
b I@Pmture wieh Viewer I_w B - B - [rPage v (FTeck v

€ Intemet 100 T

FIGURE 18-6 The picture viewer handler in action with a given number of columns and width.
Registering the handler is easy too. You just add the following script to the web.config file:

<add verb="*" path="folder.axd”
type="Core35.Components.PictureViewerHandler,Core35Lib” />

You place the assembly in the GAC and move the configuration script to the global
web.config to extend the settings to all applications on the machine.

Serving Images More Effectively

Any page we get from the Web today is topped with so many images and is so well con-
ceived and designed that often the overall page looks more like a magazine advertisement
than an HTML page. Looking at the current pages displayed by portals, it's rather hard to
imagine there ever was a time—and it was only seven or eight years ago—when one could
create a Web site by using only a text editor and some assistance from a friend who had a bit
of familiarity with Adobe PhotoShop.

In spite of the wide use of images on the Web, there is just one way in which a Web page can
reference an image—nby using the HTML tag. By design, this tag points to a URL. As

a result, to be displayable within a Web page, an image must be identifiable through a URL
and its bits should be contained in the output stream returned by the Web server for that
URL.

In many cases, the URL points to a static resource such as a GIF or JPEG file. In this case, the
Web server takes the request upon itself and serves it without invoking external components.
However, the fact that many tags on the Web are bound to a static file does not mean
there’s no other way to include images in Web pages.

Chapter 18 HTTP Handlers and Modules 887

Where else can you turn to get images aside from picking them up from the server file
system? For example, you can load images from a database or you can generate or modify
them on the fly just before serving the bits to the browser.

Loading Images from Databases

The use of a database as the storage medium for images is controversial. Some people have
good reasons to push it as a solution; others tell you bluntly they would never do it and that
you shouldn’t either. Some people can tell you wonderful stories of how storing images in a
properly equipped database was the best experience of their professional life. With no fear
that facts could perhaps prove them wrong, other people will confess that they would never
use a database again for such a task.

The facts say that all database management systems (DBMS) of a certain reputation and
volume have supported binary large objects (BLOB) for quite some time. Sure, a BLOB field
doesn't necessarily contain an image—it can contain a multimedia file or a long text file—
but overall there must be a good reason for having this BLOB support in SQL Server, Oracle,
and similar popular DBMS systems!

To read an image from a BLOB field with ADO.NET, you execute a SELECT statement on the
column and use the ExecuteScalar method to catch the result and save it in an array of bytes.
Next, you send this array down to the client through a binary write to the response stream.
Let's write an HTTP handler to serve a database-stored image:

public class DbImageHandler : IHttpHandler
{
pubTlic void ProcessRequest(HttpContext ctx)
{
// Ensure the URL contains an ID argument that is a number
int id = -1;
bool result = Int32.TryParse(ctx.Request.QueryString[“id”], out id);
if (lresult)
ctx.Response.End(Q);
string connString = “...”;
string cmdText = “SELECT photo FROM empTloyees WHERE employeeid=@id”;

// Get an array of bytes from the BLOB field

byte[] img = null;

Sq1Connection conn = new SqlConnection(connString);

using (conn)

{
Sql1Command cmd = new SglCommand(cmdText, conn);
cmd.Parameters.AddwithvValue(“@id”, id);
conn.Open();
img = (byte[])cmd.ExecuteScalar();
conn.Close();

888

Part Il ASP.NET Infrastructure

// Prepare the response for the browser
if (Cimg !'= null)

{
ctx.Response.ContentType = “image/jpeg”;
ctx.Response.BinaryWrite(img);
}
}
public bool IsReusable
{
get { return true; }
}

}

There are quite a few assumptions made in this code. First, we assume that the field named
photo contains image bits and that the format of the image is JPEG. Second, we assume that
images are to be retrieved from a fixed table of a given database through a predefined con-
nection string. Finally, we're assuming that the URL to invoke this handler includes a query
string parameter named id.

Notice the attempt to convert the value of the id query parameter to an integer before
proceeding. This simple check significantly reduces the surface attack for malicious users by
verifying that what is going to be used as a numeric ID is really a numeric ID. Especially when
you're inoculating user input into SQL query commands, filtering out extra characters and
wrong data types is a fundamental measure for preventing attacks.

The BinaryWrite method of the HttpResponse object writes an array of bytes to the output
stream.

Warning If the database you're using is Northwind (as in the preceding example), an extra
step might be required to ensure that the images are correctly managed. For some reason, the
SQL Server version of the Northwind database stores the images in the photo column of the
Employees table as OLE objects. This is probably because of the conversion that occurred when
the database was upgraded from the Microsoft Access version. As a matter fact, the array of
bytes you receive contains a 78-byte prefix that has nothing to do with the image. Those bytes
are just the header created when the image was added as an OLE object to the first version

of Access. Although the preceding code works like a champ with regular BLOB fields, it must
undergo the following modification to work with the photo field of the Northwind.Employees
database:

Response.OutputStream.Write(img, 78, img.Length);

Instead of using the BinaryWrite call, which doesn't let you specify the starting position, use the
code shown here.

A sample page to test BLOB field access is shown in Figure 18-7. The page lets users select an
employee ID and post back. When the page renders, the ID is used to complete the URL for
the ASP.NET /mage control.

Chapter 18 HTTP Handlers and Modules 889

string url = String.Format(“dbimage.axd?id={0}",
DropDownListl.SelectedvValue);

Imagel.ImageUrl = url;

7= Know Your, Employees! - Windows Internet Explorer

@L‘. B bttpyifocahustiteddy v |44 | | L 28

b ‘@Knuw\‘uurEmp\uyEEs‘ | ‘ -~ B - o - [hPage -

he page demonstrates how to use a made-to-measure
HTTP handler to load and serve an image stored in a
SQL Server database.

Select an employee

[Davolic %] wiew Picture |

€ mtermet F100% -

FIGURE 18-7 Downloading images stored within the BLOB field of a database.

An HTTP handler must be registered in the web.config file and bound to a public endpoint.
In this case, the endpoint is dbimage.axd and the script to enter in the configuration file is
shown next:

<httpHandlers>
<add verb="*" path="dbimage.axd”
type="Core35.Components.DbImageHandler,Core35Lib” />
</httpHandlers>

Note The preceding handler clearly has a weak point: it hard-codes a SQL command and the
related connection string. This means that you might need a different handler for each different
command or database to access. A more realistic handler would probably use an external and
configurable database-specific provider. Such a provider can be as simple as a class that imple-
ments an agreed interface. At a minimum, the interface will supply a method to retrieve and
return an array of bytes. Alternatively, if you want to keep the ADO.NET code in the handler itself,
the interface will just supply members that specify the command text and connection string. The
handler will figure out its default provider from a given entry in the web.config file.

Serving Dynamically Generated Images

Isn't it true that an image is worth thousands of words? Many financial Web sites offer charts
and, more often than not, these charts are dynamically generated on the server. Next, they
are served to the browser as a stream of bytes and travel over the classic response out-

890

Part Il ASP.NET Infrastructure

put stream. But can you create and manipulate server-side images? For these tasks, Web
applications normally rely on ad hoc libraries or the graphic engine of other applications (for
example, Microsoft Office applications).

ASP.NET applications are different and, to some extent, luckier. ASP.NET applications, in fact,
can rely on a powerful and integrated graphic engine capable of providing an object model
for image generation. This server-side system is GDI+, and contrary to what some people
might have you believe, GDI+ is fair game for generating images on the fly for ASP.NET
applications.

As its name suggests, GDI+ is the successor of GDI, the Graphics Device Interface included
with versions of the Windows operating system that shipped before Windows XP. The .NET
Framework encapsulates the key GDI+ functionalities in a handful of managed classes and
makes those functions available to Web, Windows Forms, and Web service applications.

Most of the GDI+ services belong to the following categories: 2D vector graphics and imag-
ing. 2D vector graphics involve drawing simple figures such as lines, curves, and polygons.
Under the umbrella of imaging are functions to display, manipulate, save, and convert bit-
map and vector images. Finally, a third category of functions can be identified—typography,
which includes the display of text in a variety of fonts, sizes, and styles. Having the goal

of creating images dynamically, we are most interested in drawing figures and text and in
saving the work as JPEGs or GIFs.

In ASP.NET, writing images to disk might require some security adjustments. Normally, the
ASP.NET runtime runs under the aegis of the NETWORK SERVICE user account. In the case of
anonymous access with impersonation disabled—which are the default settings in ASP.NET—
the worker process lends its own identity and security token to the thread that executes the
user request of creating the file. With regard to the default scenario, an access denied excep-
tion might be thrown if NETWORK SERVICE lacks writing permissions on virtual directories—
a pretty common situation.

ASP.NET and GDI+ provide an interesting alternative to writing files on disk without changing
security settings: in-memory generation of images. In other words, the dynamically generat-
ed image is saved directly to the output stream in the needed image format or in a memory
stream.

Writing Copyright Notes on Images

GDI+ supports quite a few image formats, including JPEG, GIF, BMP, and PNG. The whole
collection of image formats is in the ImageFormat structure from the System.Drawing
namespace. You can save a memory-resident Bitmap object to any of the supported formats
by using one of the overloads of the Save method:

Bitmap bmp = new Bitmap(file);

bmp.Save(outputStream, ImageFormat.Gif);

Chapter 18 HTTP Handlers and Modules 891

When you attempt to save an image to a stream or disk file, the system attempts to locate an
encoder for the requested format. The encoder is a GDI+ module that converts from the na-
tive format to the specified format. Note that the encoder is a piece of unmanaged code that
lives in the underlying Win32 platform. For each save format, the Save method looks up the
right encoder and proceeds.

The next example wraps up all the points we touched on. This example shows how to load

an existing image, add some copyright notes, and serve the modified version to the user. In
doing so, we'll load an image into a Bitmap object, obtain a Graphics for that bitmap, and use
graphics primitives to write. When finished, we'll save the result to the page’s output stream
and indicate a particular MIME type.

The sample page that triggers the example is easily created, as shown in the following listing:

<htm1>
<body>

</body>
</html>

The page contains no ASP.NET code and displays an image through a static HTML tag.
The source of the image, though, is an HTTP handler that loads the image passed through
the query string, and then manipulates and displays it. Here's the source code for the
ProcessRequest method of the HTTP handler:

public void ProcessRequest (HttpContext context)
{

object o = context.Request[“url”];

if (o == null)

{
context.Response.Write(“No image found.”);
context.Response.End();
return;

}

string file = context.Server.MapPath((string)o);
string msg = ConfigurationManager.AppSettings[“CopyrightNote”];
if (File.Exists(file))

{
Bitmap bmp = AddCopyright(file, msg);
context.Response.ContentType = “image/jpeg”;
bmp.Save(context.Response.OQutputStream, ImageFormat.Jpeg);
bmp.Dispose();

}

else

{
context.Response.Write(“No image found.”);
context.Response.End();

}

892

Part Il ASP.NET Infrastructure

Note that the server-side page performs two different tasks indeed. First, it writes copyright
text on the image canvas; next, it converts whatever the original format was to JPEG:

Bitmap AddCopyright(string file, string msg)
{
// Load the file and create the graphics
Bitmap bmp = new Bitmap(file);
Graphics g = Graphics.FromImage(bmp);

// Define text alignment
StringFormat strFmt = new StringFormat();
strFmt.Alignment = StringAlignment.Center;

// Create brushes for the bottom writing

// (green text on black background)

SolidBrush btmForeColor = new SolidBrush(Color.PaleGreen);
SolidBrush btmBackColor = new SolidBrush(Color.Black);

// To calculate writing coordinates, obtain the size of the
// text given the font typeface and size

Font btmFont = new Font(“Verdana”, 7);

SizeF textSize = new SizeF();

textSize = g.MeasureString(msg, btmFont);

// Calculate the output rectangle and fil1l

float x = ((float) bmp.Width-textSize.Width-3);
float y ((float) bmp.Height-textSize.Height-3);
float w = ((float) x + textSize.Width);

float h = ((float) y + textSize.Height);
RectangleF textArea = new RectangleF(x, y, w, h);
g.FiTlRectangle(btmBackColor, textArea);

// Draw the text and free resources
g.DrawString(msg, btmFont, btmForeColor, textArea);
btmForeColor.Dispose();

btmBackColor.Dispose();

btmFont.Dispose();

g.Dispose();

return bmp;

}

Figure 18-8 shows the results.

Note that the additional text is part of the image the user downloads on her client browser.
If the user saves the picture by using the Save Picture As menu from the browser, the text (in
this case, the copyright note) is saved along with the image.

Chapter 18 HTTP Handlers and Modules 893

{= Copyright - Windows Internet Explorer

5@1 ~ |2 hitpiffiocathost:L644{Cora3sSamplesiChigjHandiers/c ¥ | #2| X | [Live serch [[2]-
= I N
W l@tnpvriqht l } i - B - = - [k Page « G Took -

The page demonstrates how to use a wade-to-measure HTTP handler to serve a

disk-based image dynawically wodified to include a copyright note.

Courtesy of Dino Esposito's Personal Collection

Done

& mtermet 100 -

FIGURE 18-8 A server-resident image has been modified before being displayed.

Note What if the user requests the JPG file directly from the address bar? And what if the image
is linked by another Web site or referenced in a blog post? In these cases, the original image is
served without any further modification. Why is it so? As mentioned, for performance reasons IIS
serves static files, such as JPG images, directly without involving any external module, including
the ASP.NET runtime. The HTTP handler that does the trick of adding a copyright note is there-
fore blissfully ignored when the request is made via the address bar or a hyperlink. What can you
do about it?

In IIS 6.0, you must register the JPG extension as an ASP.NET extension for a particular applica-
tion using the IIS Manager as shown in Figure 18-4. In this case, each request for JPG resources is
forwarded to your application and resolved through the HTTP handler.

In [IS 7.0, things are even simpler for developers. All that you have to do is add the following lines
to the application’s web.config file:

<system.webServer>
<handlers>
<add verb="*"

path="%*.jpg”
type="Core35.Components.DynImageHandler,Core35Lib” />
</handlers>

</system.webServer>

The system.webServer section is a direct child of the root configuration node.

894

Part Il ASP.NET Infrastructure

Advanced HTTP Handler Programming

HTTP handlers are not a tool for everybody. They serve a very neat purpose: changing the
way a particular resource, or set of resources, is served to the user. You can use handlers to
filter out resources based on runtime conditions or to apply any form of additional logic to
the retrieval of traditional resources such as pages and images. Finally, you can use HTTP
handlers to serve certain pages or resources in an asynchronous manner.

For HTTP handlers, the registration step is key. Registration enables ASP.NET to know about
your handler and its purpose. Registration is required for two practical reasons. First, it serves
to ensure that IS forwards the call to the correct ASP.NET application. Second, it serves to
instruct your ASP.NET application on the class to load to "handle” the request. As mentioned,
you can use handlers to override the processing of existing resources (for example, hello.
aspx) or to introduce new functionalities (for example, folder.axd). In both cases, you're invok-
ing a resource whose extension is already known to 1IS—the .axd extension is registered in
the IIS metabase when you install ASP.NET. In both cases, though, you need to modify the
web.config file of the application to let the application know about the handler.

By using the ASHX extension and programming model for handlers, you can also save
yourself the web.config update and deploy a new HTTP handler by simply copying a new file
in a new or existing application’s folder.

Deploying Handlers as ASHX Resources

An alternative way to define an HTTP handler is through an .ashx file. The file contains a
special directive, named @WebHandler, that expresses the association between the HTTP
handler endpoint and the class used to implement the functionality. All .ashx files must begin
with a directive like the following one:

<%@ WebHandler Language="C#” Class="Core35.Components.YourHandler” %>

When an .ashx endpoint is invoked, ASP.NET parses the source code of the file and figures
out the HTTP handler class to use from the @WebHandler directive. This automation removes
the need of updating the web.config file. Here's a sample .ashx file. As you can see, it is the
plain class file plus the special @WebHandler directive:

<%@ WebHandler Language="C#” Class="MyHandler” %>
using System.Web;
public class MyHandler : IHttpHandler {

public void ProcessRequest (HttpContext context) {

context.Response.ContentType = “text/plain”;
context.Response.Write(“Hello World”);

Chapter 18 HTTP Handlers and Modules 895

pubTlic bool IsReusable {
get {
return false;

3
3

Note that the source code of the class can either be specified inline or loaded from any of the
assemblies referenced by the application. When .ashx resources are used to implement an
HTTP handler, you just deploy the source file, and you're done. Just as for XML Web services,
the source file is loaded and compiled only on demand. Because ASP.NET adds a special en-
try to the IIS metabase for .ashx resources, you don’t even need to enter changes to the Web
server configuration.

Resources with an .ashx extension are handled by an HTTP handler class named
SimpleHandleFactory. Note that SimpleHandleFactory is actually an HTTP handler factory
class, not a simple HTTP handler class. We'll discuss handler factories in a moment.

The SimpleHandleFactory class looks for the @WebHandler directive at the beginning of the
file. The @WebHandler directive tells the handler factory the name of the HTTP handler class
to instantiate once the source code has been compiled.

Important You can build HTTP handlers both as regular class files compiled to an assembly and
via .ashx resources. There's no significant difference between the two approaches except that
.ashx resources, like ordinary ASP.NET pages, will be compiled on the fly upon the first request.

Prevent Access to Forbidden Resources

If your Web application manages resources of a type that you don't want to make publicly
available over the Web, you must instruct IIS not to display those files. A possible way to
accomplish this consists of forwarding the request to aspnet_isapi and then binding the
extension to one of the built-in handlers—the HttpForbiddenHandler class:

<add verb="*" path="*.xyz” type="System.Web.HttpForbiddenHandler” />

Any attempt to access an .xyz resource results in an error message being displayed. The same
trick can also be applied for individual resources served by your application. If you need to
deploy, say, a text file but do not want to take the risk that somebody can get to them, add
the following:

<add verb="*" path="yourFile.txt” type="System.Web.HttpForbiddenHandler” />

896

Part Il ASP.NET Infrastructure

Should It Be Reusable or Not?

In a conventional HTTP handler, the ProcessRequest method takes the lion's share of the over-
all set of functionality. The second member of the IHttpHandler interface—the IsReusable
property—is used only in particular circumstances. If you set the IsReusable property to
return true, the handler is not unloaded from memory after use and is repeatedly used. Put
another way, the Boolean value returned by IsReusable indicates whether the handler object
can be pooled.

Frankly, most of the time it doesn't really matter what you return—be it true or false. If you
set the property to return false, you require that a new object be allocated for each request.
The simple allocation of an object is not a particularly expensive operation. However, the
initialization of the handler might be costly. In this case, by making the handler reusable, you
save much of the overhead. If the handler doesn’t hold any state, there's no reason for not
making it reusable.

In summary, I'd say that IsReusable should be always set to true, except when you have
instance properties to deal with or properties that might cause trouble if used in a concur-
rent environment. If you have no initialization tasks, it doesn't really matter whether it re-
turns true or false. As a margin note, the System.Web.Ul.Page class—the most popular HTTP
handler ever—sets its IsReusable property to false.

The key point to make is the following. Who's really using IsReusable and, subsequently, who
really cares about its value?

Once the HTTP runtime knows the HTTP handler class to serve a given request, it simply
instantiates it—no matter what. So when is the IsReusable property of a given handler taken
into account? Only if you use an HTTP handler factory—that is, a piece of code that dynami-
cally decides which handler should be used for a given request. An HTTP handler factory can
query a handler to determine whether the same instance can be used to service multiple
requests and thus optionally create and maintain a pool of handlers.

ASP.NET pages and ASHX resources are served through factories. However, none of these
factories ever checks IsReusable. Of all the built-in handler factories in the whole ASP.NET
platform, very few check the IsReusable property of related handlers. So what's the bottom
line?

As long as you're creating HTTP handlers for AXD, ASHX, or perhaps ASPX resources, be
aware that the IsReusable property is blissfully ignored. Do not waste your time trying to
figure out the optimal configuration. Instead, if you're creating an HTTP handler factory to
serve a set of resources, whether or not to implement a pool of handlers is up to you and
IsReusable is the perfect tool for the job.

Chapter 18 HTTP Handlers and Modules 897

But when should you employ an HTTP handler factory? In all situations in which the HTTP
handler class for a request is not uniquely identified. For example, for ASPX pages, you don't
know in advance which HTTP handler type you have to use. The type might not even exist
(in which case, you compile it on the fly). The HTTP handler factory is used whenever you
need to apply some logic to decide which is the right handler to use. In other words, you
need an HTTP handler factory when declarative binding between endpoints and classes is
not enough.

HTTP Handler Factories

An HTTP request can be directly associated with an HTTP handler or with an HTTP handler
factory object. An HTTP handler factory is a class that implements the /HttpHandlerFactory
interface and is in charge of returning the actual HTTP handler to use to serve the request.
The SimpleHandlerFactory class provides a good example of how a factory works. The fac-
tory is mapped to requests directed at .ashx resources. When such a request comes in, the
factory determines the actual handler to use by looking at the @WebHandler directive in the
source file.

In the .NET Framework, HTTP handler factories are used to perform some preliminary tasks
on the requested resource prior to passing it on to the handler. Another good example of a
handler factory object is represented by an internal class named PageHandlerFactory, which
is in charge of serving .aspx pages. In this case, the factory handler figures out the name of
the handler to use and, if possible, loads it up from an existing assembly.

HTTP handler factories are classes that implement a couple of methods on the
IHttpHandlerFactory interface—GetHandler and ReleaseHandler, as shown in Table 18-3.

TABLE 18-3 Members of the /IHttpHandlerFactory Interface

Method Description
GetHandler Returns an instance of an HTTP handler to serve the request
ReleaseHandler Takes an existing HTTP handler instance and frees it up or pools it

The GetHandler method has the following signature:

public virtual IHttpHandler GetHandler(HttpContext context,
string requestType, string url, string pathTranslated);

The requestType argument is a string that evaluates to GET or POST—the HTTP verb of the
request. The last two arguments represent the raw URL of the request and the physical path
behind it. The ReleaseHandler method is a mandatory override for any class that implements
IHttpHandlerFactory; in most cases, it will just have an empty body.

898 Part [l ASP.NET Infrastructure

The following listing shows a sample HTTP handler factory that returns different handlers
based on the HTTP verb (GET or POST) used for the request:

class MyHandlerFactory : IHttpHandlerFactory

{
pubTlic IHttpHandler GetHandler(HttpContext context,
string requestType, String url, String pathTranslated)
{
// Feel free to create a pool of HTTP handlers here
if(context.Request.RequestType.ToLower() == “get”)
return (IHttpHandler) new MyGetHandler();
else if(context.Request.RequestType.ToLower() == “post”)
return (IHttpHandler) new MyPostHandler();
return null;
}
public void ReleaseHandler(IHttpHandler handler)
{
// Nothing to do
}
}

When you use an HTTP handler factory, it's the factory, not the handler, that needs to be
registered with the ASP.NET configuration file. If you register the handler, it will always be
used to serve requests. If you opt for a factory, you have a chance to decide dynamically
and based on runtime conditions which handler is more appropriate for a certain request. In
doing so, you can use the IsReusable property of handlers to implement a pool.

Asynchronous Handlers

An asynchronous HTTP handler is a class that implements the IHttpAsyncHandler interface.
The system initiates the call by invoking the BeginProcessRequest method. Next, when the
method ends, a callback function is automatically invoked to terminate the call. In the .NET
Framework, the sole HttpApplication class implements the asynchronous interface. The
members of IHttpAsyncHandler interface are shown in Table 18-4.

TABLE 18-4 Members of the IHttpAsyncHandler Interface

Method Description
BeginProcessRequest Initiates an asynchronous call to the specified HTTP handler
EndProcessRequest Terminates the asynchronous call

The signature of the BeginProcessRequest method is as follows:

IAsyncResult BeginProcessRequest(HttpContext context,
AsyncCallback cb, object extraData);

The context argument provides references to intrinsic server objects used to service HTTP
requests. The second parameter is the AsyncCallback object to invoke when the asynchro-
nous method call is complete. The third parameter is a generic cargo variable that contains
any data you might want to pass to the handler.

Chapter 18 HTTP Handlers and Modules 899

Note An AsyncCallback object is a delegate that defines the logic needed to finish process-
ing the asynchronous operation. A delegate is a class that holds a reference to a method. A
delegate class has a fixed signature, and it can hold references only to methods that match that
signature. A delegate is equivalent to a type-safe function pointer or a callback. As a result, an
AsyncCallback object is just the code that executes when the asynchronous handler has com-
pleted its job.

The AsyncCallback delegate has the following signature:

public delegate void AsyncCallback(IAsyncResult ar);

It uses the IAsyncResult interface to obtain the status of the asynchronous operation. To il-
lustrate the plumbing of asynchronous handlers, I'll show you the pseudocode that the HTTP
runtime employs when it deals with asynchronous handlers. The HTTP runtime invokes the
BeginProcessRequest method as illustrated by the following pseudocode:

// Sets an internal member of the HttpContext class with
// the current instance of the asynchronous handler
context.AsyncAppHandler = asyncHandler;

// Invokes the BeginProcessRequest method on the asynchronous HTTP handler
asyncHandler.BeginProcessRequest(context, OnCompletionCallback, context);

The context argument is the current instance of the HttpContext class and represents

the context of the request. A reference to the HTTP context is also passed as the cus-

tom data sent to the handler to process the request. The extraData parameter in the
BeginProcessRequest signature is used to represent the status of the asynchronous operation.
The BeginProcessRequest method returns an object of type HttpAsyncResult—a class that
implements the /AsyncResult interface. The IAsyncResult interface contains a property named
AsyncState that is set with the extraData value—in this case, the HTTP context.

The OnCompletionCallback method is an internal method. It gets automatically triggered
when the asynchronous processing of the request terminates. The following listing illustrates
the pseudocode of the HttpRuntime private method:

// The method must have the signature of an AsyncCallback delegate
private void OnHandlerCompletion(IAsyncResult ar)
{
// The ar parameter is an instance of HttpAsyncResult
HttpContext context = (HttpContext) ar.AsyncState;

// Retrieves the instance of the asynchronous HTTP handler
// and completes the request

IHttpAsyncHandler asyncHandler = context.AsyncAppHandler;
asyncHandler.EndProcessRequest(ar);

// Finalizes the request as usual

900

Part Il ASP.NET Infrastructure

The completion handler retrieves the HTTP context of the request through the AsyncState
property of the IAsyncResult object it gets from the system. As mentioned, the actual object
passed is an instance of the HttpAsyncResult class—in any case, it is the return value of the
BeginProcessRequest method. The completion routine extracts the reference to the asynchro-
nous handler from the context and issues a call to the EndProcessRequest method:

void EndProcessRequest(IAsyncResult result);

The EndProcessRequest method takes the IAsyncResult object returned by the call to
BeginProcessRequest. As implemented in the HttpApplication class, the EndProcessRequest
method does nothing special and is limited to throwing an exception if an error occurred.

Implementing Asynchronous Handlers

Asynchronous handlers essentially serve one particular scenario—when the generation

of the markup is subject to lengthy operations, such as time-consuming database stored
procedures or calls to Web services. In these situations, the ASP.NET thread in charge of

the request is stuck waiting for the operation to complete. Because the thread is a valuable
member of the ASP.NET thread pool, lengthy tasks are potentially the perfect scalability killer.
However, asynchronous handlers are here to help.

The idea is that the request begins on a thread-pool thread, but that thread is released as
soon as the operation begins. In BeginProcessRequest, you typically create your own thread
and start the lengthy operation. BeginProcessRequest doesn't wait for the operation to com-
plete; therefore, the thread is returned to the pool immediately.

There are a lot of tricky details that this bird's-eye description just omitted. In the first place,
you should strive to avoid a proliferation of threads. Ideally, you should use a custom thread
pool. Furthermore, you must figure out a way to signal when the lengthy operation has
terminated. This typically entails creating a custom class that implements /AsyncResult and
returning it from BeginProcessRequest. This class embeds a synchronization object—typically
a ManualResetEvent object—that the custom thread carrying the work will signal upon
completion.

In the end, building asynchronous handlers is definitely tricky and not for novice developers.
Very likely, you are more interested in asynchronous pages than in asynchronous HTTP han-
dlers—that is, the same mechanism but applied to .aspx resources. In this case, the “lengthy
task” is merely the ProcessRequest method of the Page class. (Obviously, you configure the
page to execute asynchronously only if the page contains code that might start I/0O-bound
and potentially lengthy operations.)

Starting with ASP.NET 2.0, you find ad hoc support for building asynchronous pages more
easily and comfortably. An introductory but still practical chapter on asynchronous pages

can be found in my book Programming ASP.NET Applications—Advanced Topics (Microsoft
Press, 2006).

Chapter 18 HTTP Handlers and Modules 901

@ Warning I've seen several ASP.NET developers using an .aspx page to serve markup other than
HTML markup. This is not a good idea. An .aspx resource is served by quite a rich and sophis-
ticated HTTP handler—the System.Web.Ul.Page class. The ProcessRequest method of this class
entirely provides for the page life cycle as we know it—/nit, Load, and PreRender events, as well
as rendering stage, view state, and postback management. Nothing of the kind is really required
if you only need to retrieve and return, say, the bytes of an image.

Writing HTTP Modules

So we've learned that any incoming requests for ASP.NET resources are handed over to the

worker process for the actual processing within the context of the CLR. In IIS 6.0, the worker
process is a distinct process from IIS, so if one ASP.NET application crashes, it doesn't bring

down the whole server.

ASP.NET manages a pool of HttpApplication objects for each running application and picks
up one of the pooled instances to serve a particular request. These objects are based on

the class defined in your global.asax file, or on the base HttpApplication class if global.asax is
missing. The ultimate goal of the HttpApplication object in charge of the request is getting an
HTTP handler.

On the way to the final HTTP handler, the HttpApplication object makes the request pass
through a pipeline of HTTP modules. An HTTP module is a .NET Framework class that imple-
ments the /HttpModule interface. The HTTP modules that filter the raw data within the
request are configured on a per-application basis within the web.config file. All ASP.NET
applications, though, inherit a bunch of system HTTP modules configured in the global
web.config file.

Generally speaking, an HTTP module can pre-process and post-process a request, and it
intercepts and handles system events as well as events raised by other modules. The highly-
configurable nature of ASP.NET makes it possible for you to also write and register your
own HTTP modules and make them plug into the ASP.NET runtime pipeline, handle system
events, and fire their own events.

The IHttpModule Interface

The IHttpModule interface defines only two methods—/nit and Dispose. The Init method
initializes a module and prepares it to handle requests. At this time, you subscribe to receive
notifications for the events of interest. The Dispose method disposes of the resources (all but
memory!) used by the module. Typical tasks you perform within the Dispose method are
closing database connections or file handles.

902

Part Il ASP.NET Infrastructure

The IHttpModule methods have the following signatures:

void Init(HttpApplication app);
void Dispose();

The Init method receives a reference to the HttpApplication object that is serving the request.
You can use this reference to wire up to system events. The HttpApplication object also
features a property named Context that provides access to the intrinsic properties of the
ASP.NET application. In this way, you gain access to Response, Request, Session, and the like.

Table 18-5 lists the events that HTTP modules can listen to and handle.

TABLE 18-5 HttpApplication Events

Event

AcquireRequestState,
PostAcquireRequestState

Description

Occurs when the handler that will actually serve the request
acquires the state information associated with the request. The
post event is not available in ASP.NET 1.x.

AuthenticateRequest,
PostAuthenticateRequest

Occurs when a security module has established the identity of
the user. The post event is not available in ASP.NET 1.x.

AuthorizeRequest, Occurs when a security module has verified user authorization.

PostAuthorizeRequest The post event is not available in ASP.NET 1.x.

BeginRequest Occurs as soon as the HTTP pipeline begins to process the
request.

Disposed Occurs when the HttpApplication object is disposed of as a
result of a call to Dispose.

EndRequest Occurs as the last event in the HTTP pipeline chain of
execution.

Error Occurs when an unhandled exception is thrown.

PostMapRequestHandler

Occurs when the HTTP handler to serve the request has been
found. The event is not available in ASP.NET 1.x.

PostRequestHandlerExecute

Occurs when the HTTP handler of choice finishes execution.
The response text has been generated at this point.

PreRequestHandlerExecute

Occurs just before the HTTP handler of choice begins to work.

PreSendRequestContent

Occurs just before the ASP.NET runtime sends the response
text to the client.

PreSendRequestHeaders

Occurs just before the ASP.NET runtime sends HTTP headers
to the client.

ReleaseRequestState,
PostReleaseRequestState

Occurs when the handler releases the state information
associated with the current request. The post event is not
available in ASP.NET 1.x.

Chapter 18 HTTP Handlers and Modules 903

Event Description

ResolveRequestCache, Occurs when the ASP.NET runtime resolves the request

PostResolveRequestCache through the output cache. The post event is not available in
ASP.NET 1.x.

UpdateRequestCache, Occurs when the ASP.NET runtime stores the response of the

PostUpdateRequestCache current request in the output cache to be used to serve subse-

quent requests. The post event is not available in ASP.NET 1.x.

All these events are exposed by the HttpApplication object that an HTTP module receives as
an argument to the /Init method.

A Custom HTTP Module

Let's begin coming to grips with HTTP modules by writing a relatively simple custom module
named Marker that adds a signature at the beginning and end of each page served by the
application. The following code outlines the class we need to write:

using System;
using System.Web;

namespace Core35.Components

{
public class MarkerModule : IHttpModule
{
public void Init(HttpApplication app)
{
// Register for pipeline events
}
public void Dispose()
{
// Nothing to do here
}
}
}

The Init method is invoked by the HttpApplication class to load the module. In the Init meth-
od, you normally don't need to do more than simply register your own event handlers. The
Dispose method is, more often than not, empty. The heart of the HTTP module is really in the
event handlers you define.

Wiring Up Events
The sample Marker module registers a couple of pipeline events. They are BeginRequest
and EndRequest. BeginRequest is the first event that hits the HTTP application object when

the request begins processing. EndRequest is the event that signals the request is going to
be terminated, and it's your last chance to intervene. By handling these two events, you

9204

Part Il ASP.NET Infrastructure

can write custom text to the output stream before and after the regular HTTP handler—the
Page-derived class.

The following listing shows the implementation of the /nit and Dispose methods for the
sample module:

public void Init(HttpApplication app)

{
// Register for pipeline events
app.BeginRequest += new EventHandler(OnBeginRequest);
app.EndRequest += new EventHandler(OnEndRequest);

}

public void Dispose()

{

}

The BeginRequest and EndRequest event handlers have a similar structure. They obtain a
reference to the current HttpApplication object from the sender and get the HTTP context
from there. Next, they work with the Response object to append text or a custom header:

public void OnBeginRequest(object sender, EventArgs e)

{
HttpApplication app = (HttpApplication) sender;
HttpContext ctx = app.Context;
// More code here
// Add custom header to the HTTP response
ctx.Response.AppendHeader (“Author”, “DinoE”);
// PageHeaderText is a constant string defined elsewhere
ctx.Response.Write(PageHeaderText);

}

public void OnEndRequest(object sender, EventArgs e)

{
// Get access to the HTTP context
HttpApplication app = (HttpApplication) sender;
HttpContext ctx = app.Context;
// More code here
// Append some custom text
// PageFooterText is a constant string defined elsewhere
ctx.Response.Write(PageFooterText);

}

OnBeginRequest writes standard page header text and also adds a custom HTTP header.
OnEndRequest simply appends the page footer. The effect of this HTTP module is visible in
Figure 18-9.

Chapter 18 HTTP Handlers and Modules 905

{= Marker in action - Windows Internet Explorer, |Z||E|P5__<|

&y |§, http: fflocalhost: 1644/ Core35 San V| *2|| X | | L
— - s ¥

w o [@Markﬁr in action l l @8 i v |5k Page - 0 Took -

This is a test page

Courtesy of Programming Microsoft ASP.NET 3.5

Done € Inkernet 100w v

FIGURE 18-9 The Marker HTTP module adds a header and footer to each page within the application

Registering with the Configuration File

You register a new HTTP module by adding an entry to the <httpModules> section of the
configuration file. The overall syntax of the <httpModules> section closely resembles that of
HTTP handlers. To add a new module, you use the <add> node and specify the name and
type attributes. The name attribute contains the public name of the module. This name is
used to select the module within the HttpApplication's Modules collection. If the module fires
custom events, this name is also used as the prefix for building automatic event handlers in
the global.asax file:

<system.web>
<httpModules>
<add name="Marker”
type="Core35.Components.MarkerModule,Core35Lib” />
</httpModules>
</system.web>

The type attribute is the usual comma-separated string that contains the name of the class
and the related assembly. The configuration settings can be entered into the application’s
configuration file as well as into the global web.config file. In the former case, only pages
within the application are affected; in the latter case, all pages within all applications are
processed by the specified module.

The order in which modules are applied depends on the physical order of the modules in
the configuration list. You can remove a system module and replace it with your own that
provides a similar functionality. In this case, in the application’s web.config file you use the
<remove> node to drop the default module and then use <add> to insert your own. If you
want to completely redefine the order of HTTP modules for your application, you can clear
all the default modules by using the <clear> node and then re-register them all in the order
you prefer.

Part Il ASP.NET Infrastructure

Note HTTP modules are loaded and initialized only once, at the startup of the application.
Unlike HTTP handlers, they apply to just any requests. So when you plan to create a new HTTP
module, you should first wonder whether its functionality should span all possible requests in
the application. Is it possible to choose which requests an HTTP module should process? The /nit
method is called only once in the application’s lifetime; but the handlers you register are called
once for each request. So to operate only on certain pages, you can do as follows:

public void OnBeginRequest(object sender, EventArgs e)

{
HttpApplication app = (HttpApplication) sender;
HttpContext ctx = app.Context;
if (!ShouTldHook(ctx))
return;
}

OnBeginRequest is your handler for the BeginRequest event. The ShouldHook helper function
returns a Boolean value. It is passed the context of the request—that is, any information that is
available on the request. You can code it to check the URL as well as any HTTP content type and
headers.

Accessing Other HTTP Modules

The sample just discussed demonstrates how to wire up pipeline events—that is, events
fired by the HttpApplication object. But what about events fired by other modules? The
HttpApplication object provides a property named Modules that gets the collection of mod-
ules for the current application.

The Modules property is of type HttpModuleCollection and contains the names of

the modules for the application. The collection class inherits from the abstract class
NameObjectCollectionBase, which is a collection of pairs made of a string and an object. The
string indicates the public name of the module; the object is the actual instance of the mod-
ule. To access the module that handles the session state, you need code like this:

SessionStateModule sess = app.Modules[“Session”];
sess.Start += new EventHandler(OnSessionStart);

As mentioned, you can also handle events raised by HTTP modules within the global.asax file
and use the ModuleName_EventName convention to name the event handlers. The name of
the module is just one of the settings you need to define when registering an HTTP module.

The Page Refresh Feature

Let's examine a practical situation in which the ability to filter the request before it gets pro-
cessed by an HTTP handler helps to implement a feature that would otherwise be impossible.
The postback mechanism has a nasty drawback—if the user refreshes the currently displayed

Chapter 18 HTTP Handlers and Modules 907

page, the last action taken on the server is blindly repeated. If a new record was added as a
result of a previous posting, for example, the application would attempt to insert an identi-
cal record upon another postback. Of course, this results in the insertion of identical records
and should result in an exception. This snag has existed since the dawn of Web programming
and was certainly not introduced by ASP.NET. To implement nonrepeatable actions, some
countermeasures are required to essentially transform any critical server-side operation into
an idempotency. In algebra, an operation is said to be idempotent if the result doesn’t change
regardless of how many times you execute it. For example, take a look at the following SQL
command:

DELETE FROM employees WHERE employeeid=9

You can execute the command 1000 consecutive times, but only one record at most will ever
be deleted—the one that satisfies the criteria set in the WHERE clause. Consider this com-
mand, instead:

INSERT INTO employees VALUES (...)

Each time you execute the command, a new record might be added to the table. This is
especially true if you have auto-number key columns or nonunique columns. If the table
design requires that the key be unique and specified explicitly, the second time you run the
command a SQL exception would be thrown.

Although the particular scenario we considered is typically resolved in the data access layer
(DAL), the underlying pattern represents a common issue for most Web applications. So the
open question is, how can we detect whether the page is being posted as the result of an
explicit user action or because the user simply hit F5 or the page refresh (Iﬂ) toolbar button?

The Rationale Behind Page Refresh Operations

The page refresh action is a sort of internal browser operation for which the browser doesn’t
provide any external notification in terms of events or callbacks. Technically speaking, the
page refresh consists of the “simple” reiteration of the latest request. The browser caches the
latest request it served and reissues it when the user hits the page refresh key or button. No
browsers that I'm aware of provide any kind of notification for the page refresh event—and if
there are any that do, it's certainly not a recognized standard.

In light of this, there’'s no way the server-side code (for example, ASP.NET, classic ASP, or ISAPI
DLLs) can distinguish a refresh request from an ordinary submit or postback request. To help
ASP.NET detect and handle page refreshes, you need to build surrounding machinery that
makes two otherwise identical requests look different. All known browsers implement the
refresh by resending the last HTTP payload sent; to make the copy look different from the
original, any extra service we write must add more parameters and the ASP.NET page must
be capable of catching them.

908

Part Il ASP.NET Infrastructure

| considered some additional requirements. The solution should not rely on session state and
should not tax the server memory too much. It should be relatively easy to deploy and as
unobtrusive as possible.

Outline of the Solution

The solution is based on the idea that each request will be assigned a ticket number and the
HTTP module will track the last-served ticket for each distinct page it processes. If the num-
ber carried by the page is lower than the last-served ticket for the page, it can only mean
that the same request has been served already—namely, a page refresh. The solution con-
sists of a couple of building blocks: an HTTP module to make preliminary checks on the ticket
numbers, and a custom page class that automatically adds a progressive ticket number to
each served page. Making the feature work is a two-step procedure: first, register the HTTP
module; second, change the base code-behind class of each page in the relevant application
to detect browser refreshes.

The HTTP module sits in the middle of the HTTP runtime environment and checks in every
request for a resource in the application. The first time the page is requested (when not
posting back), there will be no ticket assigned. The HTTP module will generate a new ticket
number and store it in the /tems collection of the HttpContext object. In addition, the module
initializes the internal counter of the last-served ticket to 0. Each successive time the page is
requested, the module compares the last-served ticket with the page ticket. If the page ticket
is newer, the request is considered a regular postback; otherwise, it will be flagged as a page
refresh. Table 18-6 summarizes the scenarios and related actions.

TABLE 18-6 Scenarios and Actions

Scenario Action
Page has no ticket associated: Counter of the last ticket served is set to 0.
B No refresh The ticket to use for the next request of the
current page is generated and stored in /tems.
Page has a ticket associated: Counter of the last ticket served is set with the
B Page refresh occurs if the ticket ticket associated with the page.
associated with the page is lower The ticket to use for the next request of the
than the last served ticket current page is generated and stored in /tems.

Some help from the page class is required to ensure that each request—except the first—
comes with a proper ticket number. That's why you need to set the code-behind class of each
page that intends to support this feature to a particular class—a process that we'll discuss

in a moment. The page class will receive two distinct pieces of information from the HTTP
module—the next ticket to store in a hidden field that travels with the page, and whether or
not the request is a page refresh. As an added service to developers, the code-behind class

WV

Chapter 18 HTTP Handlers and Modules 9209

will expose an extra Boolean property—I/sRefreshed—to let developers know whether or not
the request is a page refresh or a regular postback.

Important The /tems collection on the HttpContext class is a cargo collection purposely created
to let HTTP modules pass information down to pages and HTTP handlers in charge of physically
serving the request. The HTTP module we employ here sets two entries in the /tems collection.
One is to let the page know whether the request is a page refresh; another is to let the page
know what the next ticket number is. Having the module pass the page the next ticket number
serves the purpose of keeping the page class behavior as simple and linear as possible, moving
most of the implementation and execution burden on to the HTTP module.

Implementation of the Solution

There are a few open points with the solution | just outlined. First, some state is required.
Where do you keep it? Second, an HTTP module will be called for each incoming request.
How do you distinguish requests for the same page? How do you pass information to the
page? How intelligent do you expect the page to be?

It's clear that each of these points might be designed and implemented in a different way
than shown here. All design choices made to reach a working solution here should be con-
sidered arbitrary, and they can possibly be replaced with equivalent strategies if you want to
rework the code to better suit your own purposes. Let me also add this disclaimer: I'm not
aware of commercial products and libraries that fix this reposting problem. In the past couple
of years, I've been writing articles on the subject of reposting and speaking at various user
groups. The version of the code presented in this next example incorporates the most valu-
able suggestions I've collected along the way. One of these suggestions is to move as much
code as possible into the HTTP module, as mentioned in the previous note.

The following code shows the implementation of the HTTP module:

public class RefreshModule : IHttpModule
{
pubTlic void Init(HttpApplication app) {
app.BeginRequest += new EventHandler(OnAcquireRequestState);
}
public void Dispose() {
}
void OnAcquireRequestState(object sender, EventArgs e) {
HttpApplication app = (HttpApplication) sender;
HttpContext ctx = app.Context;
RefreshAction.Check(ctx);
return;

910 Part [l ASP.NET Infrastructure

The module listens to the BeginRequest event and ends up calling the Check method on the
helper RefreshAction class:

public class RefreshAction

{

static Hashtable requestHistory = null;

// Other string constants defined here

public static void Check(HttpContext ctx) {
// Initialize the ticket slot
EnsureRefreshTicket(ctx);

// Read the Tast ticket served in the session (from Session)
int TastTicket = GetlLastRefreshTicket(ctx);

// Read the ticket of the current request (from a hidden field)
int thisTicket = GetCurrentRefreshTicket(ctx, lastTicket);

// Compare tickets

if (thisTicket > lastTicket ||

(thisTicket==TastTicket && thisTicket==0)) {
UpdatelLastRefreshTicket(ctx, thisTicket);
ctx.Items[PageRefreshEntry] = false;

}

else
ctx.Items[PageRefreshEntry] = true;

// Initialize the internal data store
static void EnsureRefreshTicket(HttpContext ctx)
{
if (requestHistory == null)
requestHistory = new Hashtable(Q);

// Return the last-served ticket for the URL
static int GetLastRefreshTicket(HttpContext ctx)

{
// Extract and return the Tlast ticket
if (!requestHistory.ContainsKey(ctx.Request.Path))
return 0;
else
return (int) requestHistory[ctx.Request.Path];
}

// Return the ticket associated with the page
static int GetCurrentRefreshTicket(HttpContext ctx, int lastTicket)
{
int ticket;
object o = ctx.Request[CurrentRefreshTicketEntry];
if (o == null)
ticket = lastTicket;
else
ticket = Convert.ToInt32(0);

Chapter 18 HTTP Handlers and Modules 911

ctx.Items[RefreshAction.NextPageTicketEntry] = ticket + 1;
return ticket;

}

// Store the last-served ticket for the URL
static void UpdatelLastRefreshTicket(HttpContext ctx, int ticket)

{

requestHistory[ctx.Request.Path] = ticket;
}
}

The Check method performs the following actions. It compares the last-served ticket with the
ticket (if any) provided by the page. The page stores the ticket number in a hidden field that
is read through the Request object interface. The HTTP module maintains a hashtable with an
entry for each distinct URL served. The value in the hashtable stores the last-served ticket for
that URL.

Note The /tem indexer property is used to set the last-served ticket instead of the Add method
because /tem overwrites existing items. The Add method just returns if the item already exists.

In addition to creating the HTTP module, you also need to arrange a page class to use as the
base for pages wanting to detect browser refreshes. Here's the code:

// Assume to be in a custom namespace
public class Page : System.Web.UI.Page

{
public bool IsRefreshed {
get {
HttpContext ctx = HttpContext.Current;
object o = ctx.Items[RefreshAction.PageRefreshEntry];
if (0o == null)
return false;
return (bool) o;
}
}

// Handle the PreRenderComplete event

protected override void OnPreRenderComplete(EventArgs e) {
base.OnPreRenderComplete(e);
SaveRefreshState();

}

// Create the hidden field to store the current request ticket
private void SaveRefreshState() {
HttpContext ctx = HttpContext.Current;
int ticket = (int) ctx.Items[RefreshAction.NextPageTicketEntry];
ClientScript.RegisterHiddenField(
RefreshAction.CurrentRefreshTicketEntry,
ticket.ToString();

912

Part [Il ASP.NET Infrastructure

The sample page defines a new public Boolean property IsRefreshed that you can use in code
in the same way you would use /sPostBack or IsCallback. It overrides OnPreRenderComplete
to add the hidden field with the page ticket. As mentioned, the page ticket is received from
the HTTP module through an ad hoc (and arbitrarily named) entry in the /tems collection.

Figure 18-10 shows a sample page in action. Let's take a look at the source code of the page.

{= Test Refresh - Windows Internet Explorer

@-\— 4~ |&] http:fflocalhost: 1644 ¥ || X @.\— i~ |g http:jflocalhost: 1644 V| *5|| % ‘

»

o e I@Tesmefresh]_ -8 -

ThE page demonstrates a possible way ThE page demonstrates = possible way
to jtry to) trap the browser's F5 to jtry to) trap the browser's F5
keystroke meant to repeat the last keystroke meant to repeat the last
browser's action. For ASP.NET, though, browser's action. For ASP.NET, though,
not all "last actions” should be not all "last actions” should be
repeated because this can alter the repeated because this can alter the
consistency of data. consistency of data.

W o I@Tesmefresh I_w G-8

Added Page refreshed
Dina Esposito Dina Esposito
Add Contact Clear Contacts Add Contact | Clear Contacts

ID FirsthName LastName

ID FirsthName LastName;
412 Dino Esposito

412 Dino Esposito

#100% -

& mtermet F o0 v & mtermet

FIGURE 18-10 The page doesn't repeat a sensitive action if the user refreshes the browser’s view.

public partial class TestRefresh : Core35.Components.Page

{
protected void AddContactButton_Click(object sender, EventArgs e)
{
Msg.InnerText = “Added”;
if (!this.IsRefreshed)
AddRecord(FName.Text, LName.Text);
else
Msg.InnerText = “Page refreshed”;
BindData();
3
}

The IsRefreshed property lets you decide what to do when a postback action is requested. In
the preceding code, the AddRecord method is not invoked if the page is refreshing. Needless
to say, IsRefreshed is available only with the custom page class presented here. The custom
page class doesn't just add the property, it also adds the hidden field, which is essential for

the machinery to work.

Chapter 18 HTTP Handlers and Modules 913

Conclusion

HTTP handlers and HTTP modules are the building blocks of the ASP.NET platform. ASP.NET
includes several predefined handlers and HTTP modules, but developers can write handlers
and modules of their own to perform a variety of tasks. HTTP handlers, in particular, are
faster than ordinary Web pages and can be used in all circumstances in which you don't need
state maintenance and postback events. To generate images dynamically on the server, for
example, an HTTP handler is more efficient than a page.

Everything that occurs under the hood of the ASP.NET runtime environment occurs because
of HTTP handlers. When you invoke a Web page or an ASP.NET Web service method, an ap-
propriate HTTP handler gets into the game and serves your request. At the highest level of
abstraction, the behavior of an HTTP handler closely resembles that of an ISAPI extension.
While the similarity makes sense, a key difference exists. HTTP handlers are managed and
CLR-resident components. The CLR, in turn, is hosted by the worker process. An ISAPI exten-
sion, on the other hand, is a Win32 library that can live within the IS process. In the ASP.NET
process model, the aspnet_isapi component is a true ISAPI extension that collects requests
and dispatches them to the worker process. ASP.NET internally implements an ISAPI-like ex-
tensibility model in which HTTP handlers play the role of ISAPI extensions in the IIS world.
This model changes in 1IS 7.0, at which point managed HTTP modules and extensions will also
be recognized within the IIS environment.

HTTP modules are to ISAPI filters what HTTP handlers are to ISAPI extensions. HTTP modules
are good at performing a number of low-level tasks for which tight interaction and integra-
tion with the request/response mechanism is a critical factor. Modules are sort of interceptors
that you can place along an HTTP packet’s path, from the Web server to the ASP.NET run-
time and back. Modules have read and write capabilities, and they can filter and modify the
contents of both inbound and outbound requests.

@ Just the Facts

B HTTP handlers and modules are like classic ISAPI extensions and filters except that they
are managed components and provide a much simpler, less error-prone programming
model.

B An HTTP handler is the ASP.NET component in charge of handling a request. In the
end, an ASP.NET page is just an instance of an HTTP handler.

B HTTP handlers are classes that implement the IHttpHandler interface and take care of
processing the payload of the request.

B HTTP modules are classes that implement the IHttpModule interface and listen to
application-level events.

B Custom HTTP handlers and modules must be registered with the application, or all
applications in the server machine, through special sections in the web.config file.

	Cover
	Table of Contents
	Chapter 18: HTTP Handlers and Modules
	Quick Overview of the IIS Extensibility API
	The ISAPI Model
	Changes in IIS 7.0

	Writing HTTP Handlers
	The IHttpHandler Interface
	An HTTP Handler for Quick Data Reports
	The Picture Viewer Handler
	Serving Images More Effectively
	Advanced HTTP Handler Programming

	Writing HTTP Modules
	The IHttpModule Interface
	A Custom HTTP Module
	The Page Refresh Feature

	Conclusion

