ﬂ

Microsoft’

ASPNET 3.5 Microsoft” ASP.NET 3.5
Step by Step

George Shepherd

George Shepherd

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/11239.aspx.

Microsoft
9780735624269 Press

© 2008 George Shepherd. All rights reserved.

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2008 by George Shepherd

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Control Number: 2007942085

Printed and bound in the United States of America.

123456789 QWT 321098

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor-
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, ActiveX, BizTalk, Internet Explorer, MSN, Silverlight, SQL Server, Visual
Basic, Visual Studio, Win32, Windows, Windows NT, Windows Server, and Windows Vista are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
Other product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Ben Ryan

Developmental Editor: Devon Musgrave

Project Editor: Kathleen Atkins

Editorial Production: P.M. Gordon Associates

Technical Reviewer: Kenn Scribner; Technical Review services provided by Content Master, a member
of CM Group, Ltd.

Cover: Tom Draper Design

Body Part No. X14-40155

Table of Contents

INtrodUCtioN . ..ot e XiX

Acknowledgments. i e XXiX

Part| Fundamentals

1 Web ApplicationBasicsc.oiiiiiiininiiinnen... 3
HTTP Requestso e e e 4
HTTP Requests fromaBrowser........... 4
Making HTTP Requests without a Browser 6
HyperText Markup Language. e 8
Dynamic Content 9
HTML FOrms . .. e 10
Common Gateway Interface (Very Retro). 12

The Microsoft Platform asaWeb Server 12
Internet Information Services. i 12
Internet Services Application Programming Interface DLLs........... 13
Internet Information Services.o i, 14
Classic ASP (Putting ASP.NET into Perspective)..............c.ccooiviioo... 19
Web Development Conceptst 22
AP INET L 23
SUMIMAIY o e e e 24
Chapter 1 Quick Reference. 24
2 ASP.NET Application Fundamentals........................ 25
The Canonical Hello World Application 25
Building the HelloWorld Web Application.......................... 26
Mixing HTML with Executable Code........, 31
Server-Side Executable Blocks 34

The ASP.NET Compilation Model............. i 41

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vii

viii Table of Contents

Coding OPtioNS. . .ot 43
ASPINET Lx Style ..o 43
Modern ASP.INET Style. 44

The ASP.INET HTTP Pipeline 46
The lIS5.xand IS 6.x Pipeline. 46
The 1IS 7.0 Integrated Pipeline i, 47
Tapping the Pipeline 47

Visual Studio and ASP.INET 50
Local IISWeb Sites. 50
File System-Based Web Sites.............. .. i 50
FTPWeb Sites . ..o 51
Remote Web Sites 51
Hello World and Visual Studio. 52

SUMIMIATY oo 57

Chapter 2 Quick Reference. ... 58

3 The Page RenderingModel............................... 59

Rendering Controls @as Tagsoviiiiiiiii 59

Packaging Ulas Components.t 62
The Page Using ASP.INET o e 63
The Page’s Rendering Model 65
The Page's Control Tree. 66

Adding Controls Using Visual Studio 68
Building a Page with Visual Studio 68
Layout Considerations.uuuu i 76

SUMMIATIY ot e e 77

Chapter 3 Quick Reference. ... 78

4 CustomRenderedControls..................., 79

The Control Classt e 79

Visual Studio and Custom Controls. ... 81

A Palindrome Checker. 88

Controlsand Events. 92

HtmiTextWriter and Controls 95

Controls and ViewState. 98

SUMIMAIY ot e e e e e e 101

Chapter 4 Quick Reference. ... 101

Table of Contents

5 CompositeControls, 103
Composite Controls versus Rendered Controls. 103

Custom Composite Controls. i 104

User Controls. 112

When to Use Each Typeof Control i, 118
SUMMANY . oo e 119

Chapter 5 Quick Reference. ... 119

6 ControlPotpourri......t 121
Validation.o 121

How Page Validation Works.o, 127

Other Validators. i 129

Validator Properties. ... 130

Image-Based Controls.o 130

TreeView. . ..o 134
MUILIVIEW. . o 138
SUMIMAIY o e 140

Chapter 6 Quick Reference. 141

Part I Advanced Features

7 WebParts. ..ottt i i it i 145
A Brief History of Web Parts. 146

What Good Are Web Parts? 146
Developing Web Parts Controls. 147

Web Parts Page Development.................. 147

Web Parts Application Development............... 147

The Web Parts Architecture 147
WebPartManager and WebZones. 148

Built-in Zones 148

Built-in Web Parts 149
DevelopingaWeb Part....... ..o i i 158

SUMMANY oo e 168

Chapter 7 Quick Reference. 168

8 A Consistent LookandFeel............ 169
A Consistent Look and Feel 169

ASP.INET Master Pages. 170

TREMES. . .o 181

Table of Contents

SKINS 185
SUMIMIAIY oo e 186
Chapter 8 Quick Reference. ... 187
9 Configuration i i 189
Windows Configuration. 190
NET Configuration. 190
Machine.Config. i 191
Configuration Section Handlers.o iiiiiiiiin. 191
Web.Config . ..o 193
Managing Configuration in ASPNET 1.x ...t 194
Managing Configuration in Later Versions of ASPNET 195
Configuring ASP.NET from lIS. 200
SUMIMAIY o e 204
Chapter 9 Quick Reference. ... 205
10 Logging Int i e e 207
Web-Based Security. 207
Securing 1S .. oo 208

Basic Forms Authenticationt 209
ASP.NET Authentication Services. ... 214
The FormsAuthentication Classc. oo 214

An Optional LoginPage ..., 215
Managing UsSerso i 219
ASP.NET Login Controls.ttt e 225
Authorizing Users. 229
SUMMIAIY oot e 232
Chapter 10 Quick Reference. ... 232
11 DataBindingcooiuiiiniiiiiiniiiiniininennnnnn 233
Representing Collections without Data Binding......................... 233
Representing Collections with Data Binding 234
ListControl-Based Controls.o 234
TreeVIeW.o 235
Menu . .. 235
FormView. 235
GridVIEW . .. 235

Table of Contents

Datalist 236
Repeater. 236
Simple Data Binding. 236
Accessing Databases 240
The .NET Database Story. e 241
CoNNECIONS . .o 241
ComMmMaANGS ... 243
Managing Results. 244
ASPNET Data Sources . ..ot 246
Other Data-bound Controls. ... 251
LINQ - o 259
SUMIMAIY o e e e 261
Chapter 11 Quick Reference. ...t 262
12 Web Site Navigation.......... 263
ASP.NET's Navigation Support 263
The Navigation Controls. i 263

XML Site Maps .ot 265

The SiteMapProvider e 265

The SiteMap Class. 265

The SiteMapNode. 266

The Navigation Controls i 267
The Menu and TreeView Controls 267

The SiteMapPath Control 268

Site Map Configuration............. . 269
Building a Navigable Web Site. 270
Trapping the SiteMapResolve Event. 274
Custom Attributes for Each Node 275
Security TrmMMING . ..ottt 278
URL Mapping . .ot e e e e 278
SUMIMANY . o 282
Chapter 12 Quick Reference. ... 283
13 Personalization il 285
PersonalizingWeb Visits 285
Personalization in ASP.INET o 286
User Profiles 286

Personalization Providers 286

xii Table of Contents

Using Personalization i i i i i 287
Defining Profiles in Web.Config.t 287
Using Profile Information 287
Saving Profile Changes 288
Profiles and Users. 289

SUMIMIATY oo e e 294

Chapter 13 Quick Reference. 294

part Il Caching and State Management

14 SessionStatet e 297
Why Session State?. 297
ASP.NET and Session State i 298
Introduction to Session State........ ... i 299
Session State and More ComplexData. 304
Configuring Session State. 311

Turning Off Session State 312
Storing Session State inProc.oo i i i, 313
Storing Session State ina State Server........l 313
Storing Session State ina Database 314
Tracking Session State 314
Tracking Session State with Cookies 314
Tracking Session State withthe URL.............................. 316
Using AutoDetect. 316
Applying Device Profiles. ... 316
Session State Timeouts 317
Other Session Configuration Settings.o .. 317
The Wizard Control: Alternative to Session State 317
SUMIMIATY o e 326
Chapter 14 Quick Reference. ... 327

15 ApplicationDataCaching o ... 329
Usingthe DataCache ..., 331
Impact of Caching 333
Managingthe Cache 335

DataSets in MEMOTYt 336
Cache Expirations. 338

Cache Dependencies.ouiiii i 341

Table of Contents Xiii

The SQL Server Dependency 344
Clearingthe Cache. 345
SUMIMAIY o 348
Chapter 15 Quick Reference. 349
16 CachingOutput......... ... i, 351
Caching Page Content. 351
Managing Cached Content.......... ... i, 354
Modifying the OutputCache Directive 354

The HTTPCachePolicy e 360
Caching Locations 361
Output Cache Dependencies.oovviiiiiiinne ... 362
Caching Profiles 362
Caching User Controls. e 363
When Output Caching Makes Sense. 366
SUMMANY . oo 367
Chapter 16 Quick Reference. 368

Part IV Diagnostics and Plumbing

17 Diagnosticsand Debugging 371
Page TraCing . ..o oo 371

TUrNiNG ON TraCing . . . o oottt e e 372

Trace Statementso 375

Application Tracing 379

Enabling Tracing Programmatically. 381

The TraceFinished Event 382

Piping Other Trace Messages.t 382

Debugging with Visual Studio 383

Error Pages. . ..o 386

Unhandled EXCeptions. 390

SUMIMANY ot 391

Chapter 17 Quick Reference. 392

18 The HttpApplication Class and HTTP Modules.............. 395
The Application: A Rendezvous Point., 395

Overriding HttpApplication. 397

Application State Caveats. ... 399

Xiv

Table of Contents

Handling Events 399
HttpApplication Events i 400
HttpModules 404
Existing Modules 404
ImplementingaModule. 406

See Active Modules 408
Storing Statein Modules. 410
Global.asax versus HttpModules, 414
SUMIMAIY o e e e 414
Chapter 18 Quick Reference. 415
19 CustomHandlers........ il 417
Handlers. 417
Built-in Handlers.o 419
IHttpHandler 422
Handlers and Session State. 427
Generic Handlers (ASHX Files)o 428
SUMMATIY oot e e e 430
Chapter 19 Quick Reference. ... 431

PartV Services, AJAX, Deployment, and Silverlight

20 ASP.NETWeb Services, 435
REMOtING 435
RemotingovertheWeb 437

SOA P 437

Transporting the Type System o i i, 437

Web Service Description Language 438
If You Couldn't Use ASP.INET... ... 438
A Web Service in ASPINET.o 439
Consuming Web Services 446
Asynchronous Execution. 451
Evolution of Web Services. 454
Other Featurest 455
SUMIMaAIY ot e e e e e e 455

Chapter 20 Quick Reference. 456

Table of Contents

21 Windows Communication Foundation 457
Distributed Computing Redux. i i i 457
A Fragmented Communications APl. 458
WCF for Connected Systems. 458
WCF Constituent Elements 459

WCF ENdpoints 459
Channels 460
Behaviors. 460
MESSAgES . . o ot 461
How WCF Plays with ASP.NET. e 462
Side-by-Side Mode 462
ASP.NET Compatibility Mode. 462
Writing a WCF Service.o o 463
Buildinga WCF Client e 469
SUMIMAANY o 475
Chapter 21 Quick Reference. ...t 476

22 AJAX . e e e 477
What s AJAX? L 478
AJAX OVEIVIEW . . .o 479

Reasonsto Use AJAX. ... i 480
Real-World AJAX . . 481
AJAX N Perspective. 481
ASP.NET Server-Side Support for AJAX ... 482
ScriptManager Control i i 482
ScriptManagerProxy Control 482
UpdatePanel Control i 483
UpdateProgress Control 483
Timer CONtrolo 483
AJAX Client SUPPOIt. . ..t 483
ASP.NET AJAX Control Toolkit 484
Other ASP.NET AJAX Community-Supported Stuff 485
AJAX Control Toolkit Potpourri............. 486
Getting Familiar with AJAX. 487
The Timer.o 493

Updating Progress 501

Xvi Table of Contents

Extender Controls. 505

The AutoComplete Extender. 505

A Modal Pop-up Dialog-Style Component........................ 512

SUMMATIY . oo 516
Chapter 22 Quick Reference. 517

23 ASP.NETand WPFContentcooiiiiiinn., 519
What IS WPE 2. L 519

How Does It Relate tothe Web? i, 521

Loose XAMLfileso o 522

XBAP Applications 523

WPF Content and Web Applications. 523
What about Silverlight?. 529
SUMIMaAIY ot e e e e e 529
Chapter 23 Quick Reference. 530

24 How Web Application Types Affect Deployment 531
Visual Studio Projects 531
HTTP Project. ..o e 532

FTP Project ... 532

File System Project. 532
Precompiling 533
Precompiling for Performance. L. 533
Precompiling for Deployment, 534
PublishingaWeb Site 542

SUMMIAIY oot e e e 543
Chapter 24 Quick Reference. ... 544
GlOSSarY . o ottt e et e 545
1 Vo =" G 547

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Chapter 22

AJAX

After completing this chapter, you will be able to
B Understand the problem AJAX solves
® Understand ASP.NET's support for AJAX
B Write AJAX-enabled Web sites

B Take advantage of AJAX as necessary to improve the user's experience

This chapter covers AJAX, possibly the most interesting feature added to ASP.NET recently.
AJAX stands for “Asynchronous JavaScript and XML,” and it promises to produce an entirely
new look and feel for Web sites throughout the world.

Software evolution always seems to happen in this typical fashion: Once a technology is
grounded firmly (meaning the connections between the parts work and the architecture is
fundamentally sound), upgrading the end user’s experience becomes a much higher prior-
ity. AJAX's primary reason for existence is to improve on the standard HTTP GET/POST idiom
with which Web users are so familiar. That is, the standard Web protocol in which entire
forms and pages are sent between the client and the server is getting a whole new addition.

Although standard HTTP is functional and well understood by Web developers, it does have
certain drawbacks—the primary one being that the user is forced to wait for relatively long
periods while pages refresh. AJAX introduces technology that shields end users from having
to wait for a whole page to post. This has been a common problem within all event-driven
interfaces (Microsoft Windows being one of the best examples).

Think back to the way HTTP normally works. When you make a request (using GET or POST,
for example), the Web browser sends the request to the server, but you can do nothing until
the request finishes. That is, you make the request and wait—watching the little thermom-
eter on the browser fill up. Once the request returns to the browser, you may begin using
the application again. The application is basically useless until the request returns. In some
cases, the browser’s window even goes completely blank. Web browsers have to wait for
Web sites to finish an HTTP request—in much the same way that Windows programs have to
wait for message handlers to complete their processing. (Actually, if the client browser uses
a multithreaded user interface such as Microsoft Internet Explorer, you can usually cancel
the request—but that’s all you can really do.) You can easily demonstrate this problem for
yourself by introducing a call to System.Threading.Thread.Sleep inside the Page_Load meth-
od. Putting the thread to sleep will force the end user to wait for the request to finish.

477

478

PartV Services, AJAX, Deployment, and Silverlight

The solution to this problem is to introduce some way to handle the request asynchronously.
What if there were a way to introduce asynchronous background processing into a Web site
so that the browser would appear much more responsive to the user? What if (for certain
applications) making an HTTP request didn't stall the entire browser for the duration of the
request, but instead seemed to run the request in the background, leaving the foreground
unhindered and changing only the necessary portion of the rendered page? The site would
present a much more continuous and smooth look and feel to the user. As another example,
what if ASP.NET included some controls that injected script into the rendered pages that
modified the HTML Document Object Model, providing more interaction from the client’s
point of view? Well, that's exactly what ASP.NET's AJAX support was designed to do.

What Is AJAX?

AJAX formalizes a style of programming meant to improve the user interface (Ul) responsive-
ness and visual appeal of Web sites. Many of AJAX's capabilities have been available for a
while now. AJAX consolidates several good ideas and uses them to define a style of program-
ming and extends the standard HTTP mechanism that is the backbone of the Internet. Like
most Web application development environments, ASP.NET has leveraged HTTP in a very
standard way. The browser usually initiates contact with the server using an HTTP GET re-
quest, followed by any number of POSTs. The high-level application flow is predicated upon
sending a whole request and then waiting for an entire reply from the server. Although ASP
.NET's server-side control architecture greatly improves back-end programming, users still get
their information a whole page at a time. It's almost like the mainframe/terminal model pop-
ular during the 1970s and early 1980s. However, this time the terminal is one of many mod-
ern sophisticated browsers and the mainframe is replaced by a Web server (or Web Farm).

The standard HTTP round-trip has been a useful application strategy, and the Web grew up
using it. While the Web was growing up in the late 1990s, browsers had widely varying de-
grees of functionality. For example, browsers ranged all the way from the very rudimentary
America Online Browser (which had very limited capabilities) to cell phones and PDAs, to
more sophisticated browsers such as Microsoft Internet Explorer and Netscape Navigator
that were very rich in capability. For instance, Internet Explorer supports higher level features
such as JavaScript and Dynamic HTML. This made striking a balance between usability of
your site and the reach of your site very difficult prior to the advent of ASP.NET.

However, being able to run a decent browser that understands how to process client-side
scripting is almost a given for the majority of modern computing platforms. These days, most
computing platforms run a modern operating system (such as Microsoft Windows XP or
Microsoft Vista, or even MAC OS X). These platforms run browsers fully capable of support-
ing XML and JavaScript. With so many Web client platforms supporting this functionality, it
makes sense to take advantage of the capabilities. As we'll see in this chapter, AJAX makes
good use of these modern browser features to improve the user's experience.

Chapter 22 AJAX 479

In addition to extending standard HTTP, AJAX is also a very clever way to use the Web ser-
vice idiom. Web services are traditionally geared toward enterprise-to-enterprise business
communications. However, Web services are also useful on a smaller scale for handling Web
requests out of band. (“Out of band” simply means making HTTP requests using means other
than the standard page posting mechanism.) AJAX uses Web services behind the scenes to
make the client Ul more responsive than when using traditional HTTP GETs and POSTs. We'll
see how that works in this chapter—especially when we look at the ASP.NET AJAX Control
Toolkit Extender controls.

AJAX Overview

One of the primary changes AJAX brings to Web programming is that it depends on the
browser taking an even more active role in the process. Instead of the browser simply ren-
dering streams of HTML and executing small custom-written script blocks, AJAX includes
some new client-script libraries to facilitate the asynchronous calls back to the server. AJAX
also includes some basic server-side components to support these new asynchronous calls
coming from the client. There's even a community-supported AJAX Control Toolkit avail-
able for ASP.NET’s AJAX implementation. Figure 22-1 shows the organization of ASP.NET’s
AJAX support.

Client Side Server Side

The AJAX Library ASP.NET Extensions for AJAX
Components Scripting
Nonvisual components Localization, Globalization,
Behaviors, Controls Debugging, Tracing
Browser Compatibility Web Services
Support for browsers: Proxy Generation,
Microsoft Internet Explorer, Page Methods,
Mozilla Firefox, Apple Safari XML and JSON Serialization
Networking Application Services
Asynchronous requests, Authentication and
XML and JSON Serialization, profile support
Web and Application Services
Core Services Server Controls
JavaScript, Base Client ScriptManager, Update Panel.
Extensions, Type System, Update Progress, Timer
Events, Serialization

FIGURE 22-1 The conceptual organization of ASP.NET's AJAX support layers

480

PartV Services, AJAX, Deployment, and Silverlight

Reasons to Use AJAX

If traditional ASP.NET development is so entrenched and well established, then why would
you want to introduce AJAX? At first glance, AJAX seems to introduce some new complexi-
ties into the ASP.NET programming picture. In fact, it seems to re-introduce some program-
ming idioms that ASP.NET was designed to deprecate (such as overuse of client-side script).
However, AJAX promises to produce a richer experience for the user. Because ASP.NET's sup-
port for AJAX is nearly seamless, the added complexities are well mitigated. When building a
Web site, there are a few reasons you might choose to AJAX-enable the site.

AJAX improves the overall efficiency of your site by performing parts of a Web page's
processing in the browser when appropriate. Instead of waiting for the entire HTTP
protocol to get a response from the browser, pushing certain parts of the page pro-
cessing to the client helps the client to react much more quickly. Of course, this type of
functionality has always been available—as long as you're willing to write the code to
make it happen. ASP.NET's AJAX support includes a number of scripts so that you can
get a lot of browser-based efficiency by simply using a few server-side controls.

AJAX introduces Ul elements usually found in desktop applications to a Web site. These
Ul elements include such items as rectangle rounding, callouts, progress indicators, and
pop-up windows that work for a wide range of browsers (more browser-side scripting—
but most of it's been written for you).

AJAX introduces partial-page updates. By refreshing only the parts of the Web page
that have been updated, the user’s wait time is reduced significantly. This brings Web-
based applications much closer to desktop applications with regard to perceived Ul
performance.

AJAX is supported by most popular browsers—not just Microsoft Internet Explorer. It
works for Mozilla Firefox and Apple Safari, too. Although it still requires some effort to
strike a balance between Ul richness and the ability to reach a wider audience, the fact
that AJAX depends on features available in most modern browsers makes this balance
much easier to achieve.

AJAX introduces a huge number of new capabilities. Whereas standard ASP.NET's con-
trol and page-rendering model provides great flexibility and extensibility for program-
ming Web sites, AJAX brings in a new concept—the extender control. Extender controls
attach to existing server-side controls (such as the TextBox, ListBox, and DropDownlList)
at run time and add new client-side appearances and behaviors to the controls.
Sometimes extender controls can even call a predefined Web service to get data to
populate list boxes and such (for example, the AutoComplete extender).

AJAX improves on ASP.NET's forms authentication and profiles and personalization ser-
vices. ASP.NET's support for authentication and personalization provided a great boon
to Web developers—and AJAX just sweetens the pot.

Chapter 22 AJAX 481

Today when you browse different Web sites, you'll run into lots of examples of AJAX-style
programming. Here are some examples:

B Colorado Geographic: http.//www.coloradogeographic.com/

B Cyber Homes: http.//www.cyberhomes.com/default
.aspx?AspxAutoDetectCookieSupport=1&bhcp=1

B Component Art: http.//www.componentart.com/

Real-World AJAX

Throughout the 1990s and into the mid-2000s, Web applications were nearly a throwback to
1970s mainframe and minicomputer architectures. However, instead of finding a single large
computer serving dumb terminals, Web applications consist of a Web server (or a Web Farm)
connected to smart browsers capable of fairly sophisticated rendering capabilities. Until
recently, Web applications took their input via HTTP forms and presented output via HTML
pages. The real trick in understanding standard Web applications is to see the disconnected
and stateless nature of HTTP. Classic Web applications can only show a snapshot of the state
of the application.

As we'll see in this chapter, Microsoft supports standard AJAX idioms and patterns within its
ASP.NET framework. However, AJAX is more a style of Web programming involving out-of-
band HTTP requests than any specific technology.

You've no doubt seen sites engaging the new interface features and stylings available
through AJAX programming. Examples include Microsoft.com, Google.com, and Yahoo.com.
Very often while browsing these sites, you'll see modern features such as automatic page up-
dates without you having to generate a postback explicitly. Modal-type dialog boxes requir-
ing your attention will pop up until you dismiss them. These are all features available through
AJAX-style programming patterns, and ASP.NET has lots of new support for it.

If you're a long-time Microsoft-platform Web developer, you may be asking yourself whether
AJAX is something really worthwhile or whether you might be able to get much of the same
type of functionality using a tried and true technology like DHTML.

AJAX in Perspective

Any seasoned Web developer targeting Microsoft Internet Explorer as the browser is un-
doubtedly familiar with Dynamic HTML (DHTML). DHTML is a technology running at the
browser for enabling Windows desktop-style Ul elements into the Web client environment.
DHTML was a good start, and AJAX brings the promise of more desktop-like capabilities to
Web applications.

482

PartV Services, AJAX, Deployment, and Silverlight

AJAX makes available wider capabilities than simply using DHTML. DHTML is primarily

about being able to change the style declarations of an HTML element through JavaScript.
However, that's about as far as it goes. DHTML is very useful for implementing such Ul fea-
tures as having a menu drop down when the mouse is rolled over it. AJAX expands on this
idea of client-based Ul using JavaScript as well as out-of-band calls to the server. Because
AJAX is based on out-of-band server requests (rather than relying only on a lot of client script
code), AJAX has the potential for much more growth in terms of future capabilities than
DHTML.

AJAX represents another level in client-side performance for Web application. Through AJAX,
Web sites can now support features such as partial page updates, ToolTips and pop-up win-
dows, and data-driven Ul elements (that get their data from Web services).

ASP.NET Server-Side Support for AJAX

Much of ASP.NET's support for AJAX resides in a collection of server-side controls responsible
for rendering AJAX-style output to the browser. Recall from Chapter 3 on the page rendering
model that the entire page-rendering process of an ASP.NET application is broken down into
little bite-sized chunks. Each individual bit of rendering is handled by a class derived from
System.Web.Ul.Control. The entire job of a server-side control is to render output that places
HTML elements in the output stream so they appear correctly in the browser. For example,
ListBox controls render a <select/> tag. TextBox controls render an <input type="text” /> tag.
ASP.NET's AJAX server-side controls render AJAX-style script along with HTML to the browser.

ASP.NET's AJAX support consists of these server-side controls along with client code scripts
that integrate to produce AJAX-like behavior. Here’s a description of the most frequently
used official ASP.NET AJAX server controls: ScriptManager, ScriptManagerProxy, UpdatePanel,
UpdateProgress, and Timer.

ScriptManager Control

The ScriptManager control manages script resources for the page. The ScriptManager con-
trol's primary action is to register the AJAX Library script with the page so the client script
may use type system extensions. The ScriptManager also makes possible partial-page render-
ing and supports localization as well as custom user scripts. The ScriptManager assists with
out-of-band calls back to the server. Any ASP.NET site wishing to use AJAX must include an
instance of the ScriptManager control on any page using AJAX functionality.

ScriptManagerProxy Control

Scripts on a Web page often require a bit of special handling in terms of how the server
renders them. Normally, the page uses a ScriptManager control to organize the scripts at

Chapter 22 AJAX 483

the page level. Nested components such as content pages and User controls require the
ScriptManagerProxy to manage script and service references to pages that already have a
ScriptManager control.

This is most notable in the case of Master Pages. The Master Page typically houses the
ScriptManager control. However, ASP.NET will throw an exception if a second instance

of ScriptManager is found within a given page. So what would content pages do if they
needed to access the ScriptManager control that the Master Page contains? The answer is
that the content page should house the ScriptManagerProxy control and work with the true
ScriptManager control via the proxy. Of course, as mentioned, this also applies to User con-
trols as well.

UpdatePanel Control

The UpdatePanel control supports partial page updates by tying together specific server-side
controls and events that cause them to render. The UpdatePanel control causes only selected
parts of the page to be refreshed instead of refreshing the whole page (as happens during a
normal HTTP postback).

UpdateProgress Control

The UpdateProgress control coordinates status information about partial-page updates as
they occur within UpdatePanel controls. The UpdateProgress control supports intermediate
feedback for long-running operations.

Timer Control

The Timer control will issue postbacks at defined intervals. Although the Timer control will
perform a normal postback (posting the whole page), it is especially useful when coordinated
with the UpdatePanel control to perform periodic partial-page updates.

AJAX Client Support

ASP.NET's AJAX client-side support is centered around a set of JavaScript libraries. The follow-
ing layers are included in the ASP.NET AJAX script libraries:

B The browser compatibility layer for assisting in managing compatibility across the most
frequently used browsers. Whereas ASP.NET by itself implements browser capabilities
on the server end, this layer handles compatibility on the client end (the browsers sup-
ported include Internet Explorer, Mozilla Firefox, and Apple Safari).

484

PartV Services, AJAX, Deployment, and Silverlight

B The ASP.NET AJAX core services layer extends the normal JavaScript environment by
introducing classes, namespaces, event handling, data types, and object serialization
that are useful in AJAX programming.

B The ASP.NET AJAX base class library for clients includes various components, such as
components for string management and for extended error handling.

B The networking layer of the AJAX client-side support manages communication with
Web-based services and applications. The networking layer also handles asynchronous
remote method calls.

The piece de resistance of ASP.NET's AJAX support is the community-supported Control
Toolkit. Although everything mentioned previously provides solid infrastructure for ASP.NET
AJAX, AJAX isn't really compelling until you add a rich tool set.

ASP.NET AJAX Control Toolkit

The ASP.NET AJAX Control Toolkit is a collection of components (and samples showing how
to use them) encapsulating AJAX's capabilities. When you browse through the samples, you
can get an idea of the kind of user experiences available through the controls and extenders.
The Control Toolkit also provides a powerful software development kit for creating custom
controls and extenders. You can download the ASP.NET AJAX Control Toolkit from the ASP.
NET AJAX Web site.

The AJAX Control Toolkit is a separate download and not automatically included with Visual
Studio 2008. To use the controls in the toolkit, follow these steps:

1. Download the tool. There are two versions—2.0 and 3.5. Version 3.5 is the most up to
date and requires .NET 3.5 on your development machine. (See http://asp.net/ajax/
ajaxcontroltoolkit/ for details.)

2. After unzipping the Toolkit file, open the AjaxControlToolkit solution file in Visual
Studio.

3. Build the AjaxControlKit project.

4. The compilation process will produce a file named AjaxControlToolkit.dll in the
AjaxControlToolkit\bin directory.

5. Click the right mouse button on the Toolbox in Visual Studio, select Choose Items...
from the menu. Browse to the AjaxControlToolkit.dll file in the AjaxControlToolkit\bin
directory and include the DLL. This will bring all the new AJAX Controls from the toolkit
into Visual Studio so you may drag and drop them onto forms in your applications.

Chapter 22 AJAX 485
Other ASP.NET AJAX Community-Supported Stuff

Although not quite officially part of AJAX, you'll find a wealth of AJAX-enabled server-side
controls and client-side scripts available through a community-supported effort. The support
includes ASP.NET AJAX community-supported controls (mentioned previously) as well as sup-
port for client declarative syntax (XML-script) and more.

AJAX Control Toolkit Potpourri

There are a number of other extenders and controls available through a community-supported
effort. You can find a link to the AJAX Control Toolkit through http://asp.net/ajax/. We'll see
a few of the controls available from the toolkit throughout this chapter. Table 22-1 lists the
controls and extenders available through this toolkit.

TABLE 22-1 The ASP.NET Control Toolkit

Component Description

Accordion This extender is useful for displaying a group of panes one pane at a
time. It's similar to using several CollapsiblePanels constrained to allow
only one to be expanded at a time. The Accordion is composed of a
group of AccordionPane controls.

AlwaysVisibleControl This extender is useful for pinning a control to the page so its posi-
tion remains constant while content behind it moves and scrolls.

Animation This extender provides a clean interface for animating page content.

AutoComplete This extender is designed to communicate with a Web service to list

possible text entries based on what's already in the text box.

Calendar This extender is targeted for the TextBox control providing client-side
date-picking functionality in a customizable way.

CascadingDropDown This extender is targeted toward the DropDownList control. It functions
to populate a set of related DropDownlList controls automatically.

CollapsiblePanel This extender is targeted toward the Panel control for adding collaps-
ible sections to a Web page.

ConfirmButton This extender is targeted toward the Button control (and types derived
from the Button control) useful for displaying messages to the user.
The scenarios for which this extender is useful include those requir-
ing confirmation from the user (for example, where linking to another
page might cause your end user to lose state).

DragPanel This is an extender targeted toward Panel controls for adding the
capability for users to drag the Panel around the page.

DropDown This extender implements a SharePoint-style drop-down menu.

DropShadow This extender is targeted toward the Panel control that applies a drop
shadow to the Panel.

DynamicPopulate This extender uses an HTML string returned by a Web service or page
method call.

Continued

486

PartV Services, AJAX, Deployment, and Silverlight

TABLE 22-1 Continued

Component
FilteredTextBox

HoverMenu

ListSearch
MaskedEdit

ModalPopup

MutuallyExclusiveCheckBox

NoBot

NumericUpDown

PagingBulletedList

PasswordStrength

PopupControl
Rating
ReorderList

ResizableControl

Description

This extender is used to ensure that an end user enters only valid
characters into a text box.

This extender is targeted for any WebControl that associates that con-
trol with a pop-up panel for displaying additional content. It's activated
when the user hovers the mouse cursor over the targeted control.

This extender searches items in a designated ListBox or DropDownlList
based on keystrokes as they're typed by the user.

This extender is targeted toward TextBox controls to constrain the
kind of text that the TextBox will accept by applying a mask.

This extender mimics the standard Windows modal dialog box
behavior. Using the ModalPopup, a page may display content of a
pop-up window that focuses attention on itself until it is dismissed
explicitly by the end user.

This extender is targeted toward the CheckBox control. The extender
groups Checkbox controls using a key. When a number of CheckBox
controls all share the same key, the extender ensures that only a
single check box will appear checked at a time.

This control attempts to provide CAPTCHA (Completely Automated
Public Turing test to tell Computers and Humans Apart)-like bot/
spam detection and prevention without requiring any user interac-
tion. While using a noninteractive approach may be bypassed more
easily than one requiring actual human interaction, this implementa-
tion is invisible.

This extender is targeted toward the TextBox control to create a con-
trol very similar to the standard Windows Edit control with the Spin
button. The extender adds “up” and “"down” buttons for incrementing
and decrementing the value in the TextBox.

This extender is targeted toward the BulletedList control. The extender
enables sorted paging on the client side.

This extender is targeted toward the TextBox control to help when
end users type passwords. While the normal TextBox only hides the
actual text, the PasswordStrength extender also displays the strength
of the password using visual cues.

This extender is targeted toward all controls. Its purpose is to open a
pop-up window for displaying additional relevant content.

This control renders a rating system from which end users rate some-
thing using images to represent a rating (stars are common).

This ASP.NET AJAX control implements a bulleted, data-bound list
with items that can be reordered interactively.

This extender works with any element on a Web page. Once associated
with an element, the ResizableControl gives the user the ability to
resize that control. The ResizableControl puts a handle on the lower
right corner of the control.

Continued

TABLE 22-1 Continued

Component

RoundedCorners
Slider

SlideShow

Tabs

TextBoxWatermark

ToggleButton
UpdatePanelAnimation

ValidatorCallout

Chapter 22 AJAX 487

Description

The RoundedCorners extender may be applied to any Web page ele-
ment to turn square corners into rounded corners.

This extender is targeted to the TextBox control. It adds a graphical slider
that the end user may use to change the numeric value in the TextBox.

This extender controls and adds buttons to move between images
individually and to play the slide show automatically.

This server-side control manages a set of tabbed panels for manag-
ing content on a page.

TextBoxWatermark extends the TextBox control to display a message
while the TextBox is empty. Once TextBox contains some text, the
TextBox appears as a normal TextBox.

This extender extends the CheckBox to show custom images reflect-
ing the state of the CheckBox.

This extender provides a clean interface for animating content associ-
ated with an UpdatePanel.

ValidatorCallout extends the validator controls (such as
RequiredFieldValidator and RangeValidator). The callouts are small
pop-up windows that appear near the Ul elements containing incor-
rect data to direct user focus toward them.

Getting Familiar with AJAX

Here's a short example to help get you familiar with AJAX. It's a very simple Web Forms appli-
cation that shows behind-the-scenes page content updates with the UpdatePanel server-side
control. In this exercise, you'll create a page with labels showing the date and time that the
page loads. One label will be outside the UpdatePanel, and the other label will be inside the
UpdatePanel. You'll be able to see how partial page updates work by comparing the date and

time shown in each label.

A simple partial page update

1. Create a new Web site project named AJAXORama. Make it a file system Web site.
Earlier versions of the AJAX toolkit (for Visual Studio 2005) required a special "AJAX
Enabled Web site” template. The template inserted specific entries into the configura-
tion file necessary for AJAX to work. Visual Studio 2008 creates "AJAX Enabled “ proj-
ects right off the bat. Make sure the default.aspx file is open.

2. Add a ScriptManager control to the page. Pick one up off the Toolbox and drop it on
the page (you'll find it under a different tab in the toolbox than the normal control
tab.). Using the AJAX controls requires a ScriptManager to appear prior to any other
AJAX controls on the page. By convention, the control is usually placed outside the DIV

488

PartV Services, AJAX, Deployment, and Silverlight

Visual Studio creates for you. After placing the script manager control on your page,
the <body> element in the Source view should look like so:

<body>
<form id="forml" runat="server">
<asp:ScriptManager ID="ScriptManagerl" runat="server">
</asp:ScriptManager>
<div>

</div>
</form>
</body>

. Drag a Label control into the Default.aspx form. From the Properties window, give the

Label control the name LabelDateTimeOfPageLoad.Then drop a Button on the form as
well. Give it the text Click Me. Open the code beside file (default.aspx.cs) and update
the Page_Load handler to have the label display the current date and time.

using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class _Default : System.Web.UI.Page

{
protected void Page_Load(object sender, EventArgs e)
{
this.LabelDateTimeOfPageLoad.Text = DateTime.Now.ToString();
}
}

. Run the page and generate some postbacks by clicking the button a few times. Notice

that the label on the page updates with the current date and time each time the button
is clicked.

. Add an UpdatePanel control to the page (you'll find this control alongside the

ScriptManager control in the AJAX Control Toolkit tab). Then pick up another Label
from the Toolbox and drop it into the content area of the UpdatePanel. Name the label
LabelDateTimeOfButtonClick.

. Add some code to the Page_Load method to have the label show the current date

and time.

using System;

using System.Data;

using System.Configuration;
using System.Web;

using System.Web.Security;

Chapter 22 AJAX 489

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;
using System.Web.UI.Htm1Controls;

public partial class _Default : System.Web.UI.Page

{
protected void Page_Load(object sender, EventArgs e)
{
this.LabelDateTimeOfPageLoad.Text = DateTime.Now.ToString(Q);
this.LabelDateTimeOfButtonClick.Text =
DateTime.Now.ToString(Q);
}
}

The following graphic shows the UpdatePanel, Button, and Labels as seen within the Visual
Studio designer (there are some line breaks in between so that the page is readable):

@0 AJAXORama - Microsoft Visual Studio (Administrator)

File Edit W¥iew Mdebgite Build Debug Format Teble Tools Window Help

CA-E-E P S RB9 ™ DB b Debug v NET - style vﬂﬁﬁ'é
;] [N | = = | = = | XHTML 1.0 Transi = @ = Style Application: Mar ~ Target Bule: (New Inline Sty + i (Mone) = "
DEfﬂu“—ﬂSPX*}/ GroupChat.espx.cs | Defaultaspros | GroupChat.aspx | Start Page | > X

-

ScriptManager - Scripthanager]

ik B

[LabelDateTimeOfPageload]
UpdatePanel - UpdatePane|1

[LabelDate TimeOfButtonPress]
Click Me |

|xoq|nnl .x|Jadex3 1aAIaS Ej‘

- o

o 2
H\mﬁ‘_ |

3 Design |2 Spiit | & Source | [4/|<htmi>|[<bogy> I
Error List > 4 X
o 0 Errors _ﬁ 0 WWarnings 1) 0 Messages ; -
| | Description | File | Line | Column | Project Eil
-
L
AL
C
A
Reachy Ln 25 Col1 Ch1 A

7. Run the page and generate some postbacks by clicking the button. Both labels should

be showing the date and time of the postback (that is, they should show the same
time). Although the second label is inside the UpdatePanel, the action causing the post-
back is happening outside the UpdatePanel.

490

PartV Services, AJAX, Deployment, and Silverlight

The following graphic shows the Web page running without the Button being associated
with the UpdatePanel:

f) Untitled Page - Windows Internet Explorer !Em
)+ [@ hip tocalhost 18374418 ORemaDefoult aspx Bl #2) x| web search Pl
n e >
5.7 dhf @ Unfitled Page | P~ [- im0 v opPage v 00 Tooks v
El
12/12/2007 2:15:36 AM
12/12/2007 2:15:36 AM
[
[[0 T | | | & inemet|Protected Mode: Off [#100% v

8. Now delete the current button from the form and drop a new button into the

UpdatePanell control. Add a Label to the UpdatePanell as well. Name the new label
LabelDateTimeOfButtonPress. Look at the Default.aspx file to see what was produced:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Default.aspx.cs" Inherits="_Default" %>

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0org/TR/xhtm111/DTD/xhtm111.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml1">
<head runat="server">
<title>Untitled Page</title>
</head>
<body>
<form id="forml" runat="server">
<asp:ScriptManager
ID="ScriptManagerl" runat="server" />

<asp:Label ID="LabelDateTimeOfPagelLoad"
runat="server'"></asp:Label>

<asp:UpdatePanel ID="UpdatePanell" runat="server">

Chapter 22 AJAX 491

<ContentTemplate>
<asp:Label ID="LabelDateTimeOfButtonPress"
runat="server">
</asp:Label>

<asp:Button ID="Buttonl"
runat="server" Text="Click Me" />
</ContentTemplate>
</asp:UpdatePanel>
</form>
</body>
</html>

The new Button should now appear nested inside the UpdatePanel along with the
new Label.

. Run the page and generate some postbacks by pressing the button. Notice that only
the label showing the date and time enclosed in the UpdatePanel is updated. This

is known as a partial page update, since only part of the page is actually updated in
response to a page action, such as clicking the button. Partial page updates are also
sometimes referred to as callbacks rather than postbacks. The following graphic shows
the Web page running with the Button being associated with the UpdatePanel.

f) Untitled Page - Windows Internet Explorer !Em
) @ rtpmocainost 18371808 ORamaDefaut aspx Bl 42 x| wen searcn Pl
T o =
S dAf @ Untitled Page | B - Q‘Bﬂge v . Tools v
=l
12/12/2007 2:18:34 AM
12/12/2007 2:18:50 AM
E
[0 T | | | & inemet|Protected Mode: Off [®100% v

10. Add an UpdatePanel trigger. Because the second label and the button are both as-

sociated with the single UpdatePanel, only the second Label is updated in response to
the postback generated by the button. If you could only set up partial page updates

492

PartV Services, AJAX, Deployment, and Silverlight

11.

based on elements tied to a single UpdatePanel, that would be fairly restrictive. As it
turns out, the UpdatePanel supports a collection of triggers that will generate partial
page updates. To see how this works, you need to first move the button outside the
UpdatePanel (so that the button generates a full normal postback). The easiest way is to
simply drag a button onto the form (making sure it lands outside the UpdatePanel).

Because the button is outside the UpdatePanel again, postbacks generated by the but-
ton are no longer tied solely to the second label, and the partial page update behavior
you saw in Step 9 is again non-functional.

Update the UpdatePanel's Triggers collection to include the Button's Click event. With
the designer open, select the UpdatePanel. Go to the properties Window and choose
Triggers. This presents a dialog box as shown in the following graphic.

UpdatePanelTrigger Collection Editor

Members AsyncPostBack: Buttonl. Click properties:

ck: Button 1. Click o= ;s

E Behavior
i ControllD Button'
EventName Click ;l

EventName
The event that the trigger will hook up to d

QK. | Cancel |

4

Al - Bemowe

Add a trigger and set the control ID to the button’s /D and the event to Click. (Note
that the handy drop-down lists for each property assist you with this selection.) Run the
page. Clicking the button should now generate a callback (causing a partial page up-
date) in which the first label continues to show the date and time of the original page
load and the second label shows the date and time of the button click. Pretty cool!

Async Callbacks

As you know by this point, standard Web pages require the browser to instigate post-
backs. Many times, postbacks are generated by clicking on a Button control (in ASP.NET
terms). However, most ASP.NET controls may be enabled to generate postbacks as well.
For example, if you'd like to receive a postback whenever a user selects an item in a
DropDownlist, just flip the AutoPostBack property to true, and the control will generate
the normal postback whenever the selected item changes.

In some cases, an entire postback is warranted for events such as when the selected
item changes. However, in most cases generating postbacks that often will be distracting

Chapter 22 AJAX 493

for the user and lead to very poor performance for your page. That's because standard
postbacks refresh the whole page.

ASP.NET's AJAX support introduces the notion of the “asynchronous” postback. This is
done using JavaScript running inside the client page. The XMLHttpRequest object posts
data to server—making an end run around the normal postback. The server returns
data as XML, JSON, or HTML and has to refresh only part of the page. The JavaScript
running in the page replaces old HTML within the Document Object Model with new
HTML based on the results of the asynchronous postback.

If you've done any amount of client-side script programming, you can imagine how
much work doing something like this can be. Performing asynchronous postbacks and
updating pages usually requires a lot of JavaScript.

The UpdatePanel control you just used in this exercise hides all of the client-side code
and also the server-side plumbing. Also, because of ASP.NET's well-architected server-
side control infrastructure, the UpdatePanel maintains the same server-side control
model you're used to seeing in ASP.NET.

The Timer

In addition to causing partial page updates via an event generated by a control (like a button
click), AJAX includes a timer to cause regularly scheduled events. You can find the Timer control
alongside the other standard AJAX controls in the Toolbox. By dropping a Timer on a page, you
can generate automatic postbacks to the server.

Some uses for the Timer include a “shout box"—like an open chat where a number of users
type in messages and they appear near the top like a conversation. Another reason you might
like an automatic postback is if you wanted to update a live Web camera picture or to refresh
some other frequently updated content.

The Timer is very easy to use—simply drop it on a page which hosts a ScriptManager. The
default settings for the timer cause the timer to generate postbacks every minute (every
60,000 milliseconds). The Timer is enabled by default and begins firing events as soon as the
page loads.

Here's an exercise using the Timer to write a simple chat page that displays messages from

a number of users who are logged in. The conversation is immediately updated for the user
typing in a message. However, users who have not refreshed since the last message don't get
to see it—unless they perform a refresh. The page uses a Timer to update the conversation
automatically. At first, the entire page is refreshed. Then the chat page uses an UpdatePanel
to update only the chat log (which is the element that has changed).

494

PartV Services, AJAX, Deployment, and Silverlight
Using the Timer: Creating a chat page

1. Open the AJAXORama application if it's not already open. The first step is to create

a list of chat messages that can be seen from a number of different sessions. Add a
global application class to the project by clicking the right mouse button in the Solution
Explorer and selecting Add New Item. Choose Global Application Class as the type of
file to add. This will add a file named Global.asax to your Web site.

. Update the Application_Start method in Global.asax to create a list for storing messages

and add the list to the application cache. Using an Import statement at the top makes it
more convenient to use the generic List collection.

<%@ Application Language="C#" %>
<%@ Import Namespace="System.Collections.Generic" %>

<script runat="server">

void Application_Start(object sender, EventArgs e)

{
// Code that runs on application startup
List<string> messages = new List<string>Q;
HttpContext.Current.Cache[""Messages'"] = messages;

}

void Application_End(object sender, EventArgs e)

{

}

void Application_Error(object sender, EventArgs e)

{

}

void Session_Start(object sender, EventArgs e)

{

}

void Session_End(object sender, EventArgs e)

{

}

</script>

. Create a chat page by adding a new page to the Web site and calling it

GroupChat.aspx. This will hold a text box with messages as they accumulate, and it also
gives users a means of adding messages.

. When the messages are coming in, it would be very useful to know who sent what

messages. This page will force users to identify themselves first—then they can start
adding messages. First, type in the text Group Chatting... following the ScriptManager.
Give it a large font style with block display so that it's on its own line. Following that,
type in the text First, give us your name:. Then, pick up a TextBox control from the
Toolbox and drop it on the page. Give the TextBox the ID TextBoxUserID. Drop a

8.

Chapter 22 AJAX 495

Button on the page so the user can submit his or her name. Give it the text Submit ID
and the ID ButtonSubmitID.

Drop another TextBox onto the page. This one will hold the messages, so make it large
(800 pixels wide by 150 pixels high should do the trick). Set the TextBox's TextMode
property to MultiLine, and set the ReadOnly property to True. Give the TextBox the ID
TextBoxConversation.

Drop one more TextBox onto the page. This one will hold the user’s current message.
Give the TextBox the ID TextBoxMessage.

Add one more Button to the page. This one will let the user submit the current message
and should have the text Add Your Message. Be sure to give the button the ID value
ButtonAddYourMessage. The following graphic shows a possible layout of these controls.

29 AJAXORama - Microsoft Visual Studio (Administrator)
File Edit ¥iew Mdebgite Build Debug Format Tools Mindow Help

S -EH-BEBHP X B9 - BB b Debug NET v | [® g_mess L5 B
- =
FINEIE Y —— o P
A Glohal.asax | Default.aspx | GroupChat.aspees |~ Defaul.asprcs GFDUPChﬂl-ESPX’rStaH Page | v X m
§ form#formi | . LQ z i
.
© " P—
s | Group Chatting... @ Sobtion 1
=
=
= p
ﬁx First, give us your name: I Sutar: [0
g =
=)
=4
2
=
Type your message here: e =
50l [FCla...
Add Your Message
form1 <FORM: >
=Ea
|| @ fons
e » Accept
3 Design |2 Split | @ Source | ‘4H<hlm\>"<bndy>||<fnrm#fnrm1>"<asp'Tex{Enx#TextEﬂannve > |E| M
(Id)
IEYET
%) Error List| 5} Find Results 1 e e
Ready Ln2 Cal 117 Ch 117 NS 2

Open the code beside file GroupChat.aspx.cs for editing. Add a method that retrieves
the user’s name from session state. Note you should also add the using clause for
System.Collections.Generic as later we'll need to access the generic list we placed in the
application cache (Step 2):

using System;
using System.Data;
using System.Configuration;

496

PartV Services, AJAX, Deployment, and Silverlight

using System.Collections;

using System.Ling;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmIControls;

using System.Xml.Ling;

using System.Collections.Generic;

public partial class GroupChat : System.Web.UI.Page

{
protected void Page_Load(object sender, EventArgs e)
{
}
protected string GetUserID()
{
string strUserID =
(string) Session["UserID"];
return strUserID;
}
}

Add a method to update the Ul so that users may only type messages after they've
identified themselves. If the user has not been identified (that is, the session variable is
not there), then disable the chat conversation Ul elements and enable the user identifi-
cation Ul elements. If the user has been identified, then enable the chat conversation Ul
elements and disable the user identification Ul elements.

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Ling;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.Htm1Controls;
using System.Xml.Ling;

using System.Collections.Generic;

public partial class GroupChat : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{
}
// other code goes here...
void ManageUIQ)
{
if (GetUserID() == null)

}

Chapter 22 AJAX

{
// if this is the first request, then get the user's ID
TextBoxMessage.Enabled = false;
TextBoxConversation.Enabled = false;
ButtonAddYourMessage.Enabled = false;
ButtonSubmitID.Enabled = true;
TextBoxUserID.Enabled = true;

}

else

{
// if this is the first request, then get the user's ID
TextBoxMessage.Enabled = true;
TextBoxConversation.Enabled = true;
ButtonAddYourMessage.Enabled = true;
ButtonSubmitID.Enabled = false;
TextBoxUserID.Enabled = false;

}

497

10. Add a Click event handler for the Button that stores the user ID (ButtonSubmitID). The

method should store the user’s identity in session state and then call ManageU! to

enable and disable the correct controls.

using
using
using
using
using
using
using
using
using
using
using
using
using

System
System

System.
System.
System.

System
System
System
System
System
System
System

System.

.Data;

Configuration;
Collections;

Ling;

.Web;

.Web.Security;
.Web.UI;
.Web.UI.WebControls;
.Web.UI.WebControls.WebParts;
.Web.UI.HtmTControls;
.Xm1.Ling;
Collections.Generic;

public partial class GroupChat : System.Web.UI.Page

{

protected void Page_Load(object sender, EventArgs e)

{
}

// other page code goes here...
protected void ButtonSubmitID_Click(object sender, EventArgs e)

{

Sess
Mana

jon["UserID"] = TextBoxUserID.Text;
geUIQ);

498 Part V Services, AJAX, Deployment, and Silverlight

11. Add a method to the page for refreshing the conversation. The code should look up
the message list in the application cache and build a string that shows the messages in
reverse order (so the most recent is on top). Then the method should set the conversa-
tion TextBox's Text property to the new string (that is, the text property of the TextBox
one showing the conversation).

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Ling;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmIControls;
using System.Xml.Ling;

using System.Collections.Generic;

public partial class GroupChat : System.Web.UI.Page
{
// other page code goes here...
void RefreshConversation()
{
List<string> messages = (List<string>)Cache["Messages"];
if (messages != null)

{

no,
’

string strConversation =
int nMessages = messages.Count;

for(int i = nMessages-1; i >=0; i--)
{

string s;

s = messages[i];
strConversation += s;
strConversation += "\r\n";

}

TextBoxConversation.Text =
strConversation;

}

12. Add a Click event handler. Double-click on the Button and add a Click event handler
to respond to the user submitting his or her message (ButtonAddYourMessage). The
method should grab the text from the user’'s message TextBox, prepend the user's ID
to it, and add it to the list of messages held in the application cache. Then the method
should call RefreshConversation to make sure the new message appears in the conver-
sation TextBox.

Chapter 22 AJAX

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Ling;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmIControls;
using System.Xml.Ling;

using System.Collections.Generic;

public partial class GroupChat : System.Web.UI.Page

{

}

// Other code goes here...
protected void ButtonAddYourMessage_Click(object sender,
EventArgs e)

{
// Add the message to the conversation...
if (this.TextBoxMessage.Text.Length > 0)
{
List<string> messages = (List<string>)Cache["Messages"];
if (messages != null)
{
TextBoxConversation.Text = "";
string strUserID = GetUserID(Q);
if (strUserID != null)
{
messages .Add(strUserID +
Lo+
TextBoxMessage.Text);
RefreshConversationQ);
TextBoxMessage.Text = "";
}
}
}
}

13. Update the Page_Load method to call ManageU! and RefreshConversation.

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Ling;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmIControls;

499

500

PartV Services, AJAX, Deployment, and Silverlight

14.

15.

16.

using System.Xml.Ling;
using System.Collections.Generic;

public partial class GroupChat : System.Web.UI.Page

{
// Other code goes here...
protected void Page_Load(object sender, EventArgs e)
{
ManageUIQ);
RefreshConversation();
}
}

Now run the page to see how it works. Once you've identified yourself, you can start
typing messages in—and you'll see them appear in the conversation TextBox. Try
browsing the page using two separate browsers. Do you see an issue? The user typing
a message gets to see the message appear in the conversation right away. However,
other users involved in the chat don't see any new messages until after they submit
messages of their own. Let’s solve this issue by dropping an AJAX Timer onto the page.

Pick up a ScriptManager from the AJAX controls and drop it on the page. Then pick up
a Timer from the AJAX controls and drop it on the page. Although the AJAX Timer will
start generating postbacks automatically, the default interval is 60,000 milliseconds,

or once per minute. Set the Timer's Interval property to something more reasonable,
such as 10,000 milliseconds (or 10 seconds). Now run both pages and see what hap-
pens. You should see the pages posting back automatically every 10 seconds. However,
there’s still one more issue with this scenario. If you watch carefully enough, you'll see
the whole page being refreshed—even though the user name is not changing. During
the conversation, you're really only interested in seeing the conversation TextBox being
updated. Let's fix that by putting in an UpdatePanel.

Pick up an UpdatePanel from the AJAX controls and drop it on the page. Position the
UpdatePanel so that it can hold the conversation text box. Move the conversation text
box so that it's positioned within the UpdatePanel. Modify the UpdatePanel's triggers
so that it includes the Timer's Tick event. Now run the chat pages, and you should see
only the conversation text box being updated on each timer tick. The following graphic
shows the new layout of the page employing the UpdatePanel.

Chapter 22 AJAX 501

,fj Untitled Page - Windows Internet Explorer

m v [@ hupocathos 7| | #3) K| [web Search
'{\? ‘ﬁ'}t? & Untitled Page

m v @ huptocahos 7] #5 | K [wen search

| |Q'E}'E§J'» '{Z{bﬁ' & Untitled Page | |Fﬂ'5}'£§3' ”
. .
Group Chatting... Group Chatting...
First, give us your name: First, give us your name:
lGeorge 1 lGeorge 2
Stbmi] SbmiiD
George 1: Great, George 2. Writing away.

George 2: Great, Georgel. How are you?

George 1: Hi George 2, how are you?

4

Type your message here:

George 1: Great, George 2. Writing away.
George 2: Great, Georgel. How are you?
George 1: Hi George 2, how are you?

Kl

Type your message here:

Add Your Message |

4

Add Your Message |

4

r‘q Internet | Protected Mode: Off

[w100% ~ /8 & Intemnst | Protected Mode: Off

The ASP.NET AJAX Timer is useful whenever you need regular, periodic posts back to the
server. You can see here how it's especially useful when combined with the UpdatePanel do-

ing periodic partial page updates.

Updating Progress

A recurring theme when programming any Ul environment is keeping the user updated as to
the progress of a long-running operation. If you're programming Windows Forms, you can
use the BackgroundWorker component and show progress updating using the Progress con-
trol. Programming for the Web requires a slightly different strategy. ASP.NET's AJAX support
includes a component for this—the ASP.NET AJAX UpdateProgress control.

UpdateProgress controls display during asynchronous postbacks. All UpdateProgress controls
on the page become visible when any UpdatePanel control triggers an asynchronous postback.

502 Part V Services, AJAX, Deployment, and Silverlight

Here's an exercise for using an UpdateProgress control on a page.

Using the UpdateProgress control

1. Add a new page. Add a new page to the AJAXORama site named
UseUpdateProgressControl.aspx.

2. Pick up a ScriptManager from the Toolbox and drop it on the page.

3. Pick up an UpdatePanel and drop it on the page. Give the panel the ID
UpdatePanelForProgress so you can identify it later. Add a Button to the update
panel that will begin a long-running operation. Give it the ID ButtonLongOperation
and the text Activate Long Operation.

4. Add a Click event handler for the button. The easiest way to create a long-running
operation is to put the thread to sleep for a few seconds, as shown here. By introduc-
ing a long-running operation here, you'll have a way to test the UpdateProgress con-
trol and see how it works when the request takes a long time to complete.

public partial class UseUpdateProgressControl : System.Web.UI.Page

{
protected void Page_Load(object sender, EventArgs e)
{
}
protected void
ButtonLongOperation_Click(object sender,
EventArgs e)
{
// Put thread to sleep for five seconds
System.Threading.Thread.S1eep(5000) ;
}
}

5. Now add an UpdateProgress control to the page. An UpdateProgress control must be
tied to a specific UpdatePanel. Set the UpdateProgress control's AssociatedUpdatePanellD
property to the UpdatePanelForProgress panel you just added.

6. Add a ProgressTemplate to the UpdateProgress control—this is where the content for
the update display will be declared. Add a Label to the ProgressTemplate so you will be
able see it when it appears on the page.

<asp:UpdateProgress ID="UpdateProgressl"
runat="server"
AssociatedUpdatePanelID="UpdatePanelForProgress"
DisplayAfter="100">
<ProgressTemplate>
<asp:Label ID="Labell" runat="server"
Text="What's happening? This takes a long time...">
</asp:Label>
</ProgressTemplate>
</asp:UpdateProgress>

Chapter 22 AJAX 503

7. Run the page to see what happens. When you press the button that executes the long-
running operation, you should see the UpdateProgress control show its content auto-
matically. This graphic shows the UpdateProgress control in action.

ﬂi Untitled Page - Windows Internet Explorer -1a 1]
T N\
@]~ Ie htp:flocahost: 1837 /AIAXOR.ama seUpdateProgressConirol.aspx j *y | K IGoogIe Pl
U5 G @uniedrage | i~ B - o - | ece v G Taok

‘What's happening? This seems to be taking a long time...

This is from the update panel | Activate Long Operation |

[~

UselpdateProgressControl.aspix \ | | \ ’_\ |Q Internet | Protected Mode: On | Rio%n ¥ g

8. Finally, no asynchronous progress updating Ul technology is complete without a means
to cancel the long-running operation. If you wish to cancel the long-running operation,
you may do so by inserting a little of your own JavaScript into the page. You'll need to
do this manually because there’s no support for this using the Wizards. Write a client-
side script block and place it near the top of the page—just before the <htm/> tag.
The script block should get the instance of the Sys.WebForms.PageRequestManager. The
PageRequestManager is a class that's available to the client as part of the script injected
by the ASP.NET AJAX server-side controls. The PageRequestManager has a method
named get_isInAsyncPostBack() that you can use to figure out whether the page is in the
middle of an asynchronous callback (generated by the UpdatePanel). If the page is in
the middle of an asynchronous callback, use the PageRequestManager's abortPostBack()
method to quit the request. Add a Button to the ProgressTemplate and then assign its
OnClientClick property to make a call to your new abortAsyncPostback method. In addi-
tion to setting the OnClientClick property to the new abort method, insert return false;
immediately following the call to the abort method, as shown in the following code (insert-
ing “return false;” prevents the browser from issuing a postback).

504 Part V Services, AJAX, Deployment, and Silverlight

<%@ Page Language="C#"
AutoEventWireup="true"
CodeFile="UseUpdateProgressControl.aspx.cs"
Inherits="UseUpdateProgressControl" %>

<!DOCTYPE html PUBLIC

. >

<html xmlns="http://www.w3.0rg/1999/xhtml1">
<head runat="server">
<title>Untitled Page</title>

<script type="text/javascript'>
function abortAsyncPostback()

{
var obj =
Sys.WebForms .PageRequestManager.getInstance();
if(obj.get_isInAsyncPostBack())
{
obj.abortPostBack();
}
}
</script>
</head>
<body>
<form id="forml" runat="server">
<div>
<asp:ScriptManager ID="ScriptManagerl" runat="server">
</asp:ScriptManager>
</div>

<asp:UpdateProgress ID="UpdateProgressl"
runat="server"
AssociatedUpdatePanelID="UpdatePanelForProgress"
DisplayAfter="100">
<ProgressTemplate>
<asp:Label ID="Labell" runat="server"
Text="What's happening? This takes a long time...">
</asp:Label>
<asp:Button ID="Cancel" runat="server"
0OnClientClick="abortAsyncPostback(); return false;"
Text="Cancel" />
</ProgressTemplate>
</asp:UpdateProgress>
<asp:UpdatePanel ID="UpdatePanelForProgress" runat="server">
<ContentTempTlate>
This is from the update panel
<asp:Button ID="ButtonLongOperation"
runat="server"
onclick="ButtonLongOperation_Click"
Text="Activate Long Operation" />
</ContentTemplate>
</asp:UpdatePanel>

Chapter 22 AJAX 505

</form>
</body>
</htm1>

@ Caution Caveat Cancel: As you can see, canceling an asynchronous postback is completely a
client-side affair. Canceling a long-running operation on the client end is tantamount to discon-
necting the client from the server. Once the client is disconnected from the server, the client will
never see the response from the server.

Also, while the client is happy that he or she could cancel the operation, the server may never
know that the client canceled. So, the big caveat here is to plan for such a cancellation by mak-
ing sure you program long-running blocking operations carefully so they don't spin out of con-
trol. Although 1IS 6 and IS 7 should hopefully refresh the application pool eventually for such
runaway threads, it's better to depend on your own good programming practices to make sure
long-running operations end reasonably nicely.

ASP.NET's AJAX support provides a great infrastructure for managing partial page updates
and for setting up other events such as regular timer ticks. Now let's take a look at ASP.NET's
AJAX Extender Controls.

Extender Controls

The UpdatePanel provided a way to update only a portion of the page. That's pretty amaz-
ing. However, AJAX's compelling features have a very broad reach. One of the most useful
features is the Extender Control architecture.

Extender Controls target existing control to extend functionality in the target. While controls
such as the ScriptManager and the Timer do a lot of heavy lifting in terms of injecting lots
of script code into the page as it's rendered, the Extender Controls often involve managing
the markup (HTML) in the resultant page.

Here are a couple of examples to familiarize you with ASP.NET AJAX Extender Controls. The
first one we'll look at is the AutoComplete Extender.

The AutoComplete Extender

This extender attaches to a standard ASP.NET TextBox. As the end user types text into the
TextBox, the AutoComplete Extender calls a Web service to look up candidate entries based
on the results of the Web service call. The example borrows a component from the chapter on
caching—it's the quotes collection containing a number of famous quotes by various people.

506

PartV Services, AJAX, Deployment, and Silverlight

Using the AutoComplete extender

1.

Add a new page to AJAXORama. Because this page will host the AutoComplete
Extender, name it UseAutocompleteExtender.

Add an instance of the ScriptManager control to the page you just added.

Borrow the QuotesCollection class from Chapter 15. Remember, the class derives from
System.Data.Table and holds a collection of famous quotes and their originators. You
can add the component to AJAXORama by creating an App_Code directory under the
project node in the Visual Studio Project Explorer, clicking the right mouse button on
the App_Code directory, selecting Add Existing Item, and locating the QuotesCollection.
cs file associated with the UseDataCaching example from Chapter 15.

Add a method to retrieve the quotes based on the last name. The method should accept
the last name of the originator as a string parameter. The System.Data.DataView class
you'll use for retrieving a specific quote is useful for performing queries on a table in
memory. The method should return the quotes as a list of strings. There may be none,
one, or many, depending on the selected quote author. You'll use this function shortly.

using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmIControls;

using System.Collections.Generic;

/// <summary>
/// Summary description for QuotesCollection
/// </summary>
public class QuotesCollection : DataTable
{
public QuotesCollection()
{17

public void Synthesize()

{
this.TabTeName = "Quotations";
DataRow dr;

Columns.Add(new DataColumn("Quote", typeof(string)));

Columns.Add(new DataColumn("OriginatorLastName", typeof(string)));

CoTumns.Add(new DataColumn(@"OriginatorFirstName",
typeof(string)));

dr = this.NewRow();
dr[0] = "Imagination is more important than knowledge.";
dr[1] = "Einstein";

Chapter 22 AJAX 507

dr[2] = "Albert";

Rows .Add(dr);

// Other quotes added here...
}

public string[]
GetQuotesByLastName(string strLastName)
{

List<string> 1ist = new List<string>Q;

DataView dvQuotes = new DataView(this);
string strFilter = String.Format('OriginatorLastName = '{0}'", strLastName)
dvQuotes.RowFilter = strFilter;

foreach (DataRowView drv in dvQuotes)
{
string strQuote =
drv["Quote"].ToString(Q;

Tist.Add(strQuote);

return Tist.ToArray(Q);

}

5. Add a class named QuotesManager to the Web site's App_Code directory to manage
caching. The Caching example from which this code was borrowed stores and retrieves
the QuotesCollection during the Page_Load event. Because the QuotesCollection will be
used within a Web service, the caching will have to happen elsewhere. To do this, add
a public static method named GetQuotesFromCache to retrieve the QuotesCollection
from the cache.

using System;

using System.Data;

using System.Configuration;

using System.Ling;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmIControls;
using System.Xml.Ling;

/// <summary>
/// Summary description for QuotesManager
/// </summary>
public class QuotesManager
{
public QuotesManager()
{
}

508

Part V

6.

Services, AJAX, Deployment, and Silverlight
public static QuotesCollection GetQuotesFromCache()
{
QuotesCollection quotes;
quotes =
(QuotesCollection)HttpContext.Current.Cache["quotes"];
if (quotes == null)
{
quotes = new QuotesCollection();
quotes.Synthesize();
}
return quotes;
}
}
Add an XML Web Service to your application. Click the right mouse button on the

project and add an ASMX file to your application. Name the service QuoteService.

The WebService and WebServiceBinding attributes may be removed but be sure to
adorn the XML Web Service class with the [System.Web.Script.Services.ScriptService]
attribute. That way, it will be available to the AutoComplete extender later on. The
AutoCompleteExtender will use the XML Web Service to populate its drop-down list box.

Add a method to get the last names of the quote originators—that’s the method that
will populate the drop-down box. The method should take a string representing the
text already typed in as the first parameter, an integer representing the maximum
number of strings to return. Grab the QuotesCollection from the cache using the
QuoteManager's static method GetQuotesFromCache. Use the QuotesCollection to get
the rows from the QuotesCollection. Finally, iterate through the rows and add the origi-
nator’s last name to the list of strings to be returned if it starts with the prefix passed in
as the parameter. The Common Language Runtime’s (CLR) String type includes a method
named StartsWith that's useful to figure out if a string starts with a certain prefix. Note
yoU'll also have to add using statements for generic collections and data (as shown).

using System;

using System.Ling;

using System.Web;

using System.Collections;

using System.Web.Services;

using System.Web.Services.Protocols;
using System.Xml.Ling;

using System.Data;

using System.Collections.Generic;

[System.Web.Script.Services.ScriptService]
public class QuoteService : System.Web.Services.WebService

{

[WebMethod]

public string[]

GetQuoteOriginatorLastNames(string prefixText,
int count)

8.

10.
11.

Chapter 22 AJAX 509

{
List<string> 1ist = new List<string>Q;
QuotesCollection quotes =
QuotesManager.GetQuotesFromCache() ;
prefixText = prefixText.ToLower();
foreach (DataRow dr in quotes.Rows)
{
string strName =
dr["OriginatorLastName"].ToString(Q);
if (strName.ToLower().StartsWith(prefixText))
{
if (!Tist.Contains(strName))
{
Tist.Add(strName);
}
}
}
return 1list.GetRange(O0,
System.Math.Min(count, Tist.Count)).ToArray(Q);
}

}

Now drop a TextBox on the UseAutocompleteExtender page to hold the originator’s last
name to be looked up. Give the TextBox an ID of TextBoxOriginatorLastName.

Pick up an AutoComplete extender from the AJAX Toolbox and add it to the page.
Point the AutoComplete's TargetControllD to the TextBox holding the originator’s
last name, TextBoxOriginatorLastName. Make the MinimumPrefix length 1, the
ServiceMethod GetQuoteOriginatorLastNames, and the ServicePath quoteservice
.asmx. This wires up the AutoComplete extender so that it will take text from the
TextBoxOriginatorLastName TextBox and use it to feed the XML Web Service
GetQuoteOriginatorLastNames method.

<ccl:AutoCompleteExtender
ID="AutoCompleteExtenderForOriginatorLastName"
TargetControlID="TextBoxOriginatorLastName"
MinimumPrefixLength="1"
ServiceMethod="GetQuoteOriginatorLastNames"
ServicePath="quoteservice.asmx"
runat="server">

</ccl:AutoCompleteExtender>

Add a TextBox to the page to hold the quotes. Name the TextBox TextBoxQuotes.

Update the Page_Load method. It should look up the quotes based on the name
in the text box by retrieving the QuoteCollection and calling the QuoteCollection’s
GetQuotesBylLastName method.

510 Part V Services, AJAX, Deployment, and Silverlight

using
using
using
using
using
using
using
using
using
using
using
using
using
using

System

System.
System.
System.
System.

System
System
System
System
System
System
System

System.
System.

Data;

Configuration;
Collections;

Ling;

.Web;

.Web.Security;
.Web.UI;
.Web.UI.WebControls;
.Web.UI.WebControls.WebParts;
.Web.UI.HtmIControls;
.Xm1.Ling;
Collections.Generic;
Text;

public partial class UseAutocompleteExtender
System.Web.UI.Page

{

protected void Page_Load(object sender, EventArgs e)

{

}

Quot
Q

stri
q

if (
{

}

else

{

esCollection quotes =

uotesManager.GetQuotesFromCache();

ng[] quotesArray =
uotes.GetQuotesByLastName(TextBoxOriginatorLastName.Text);

quotesArray != null && quotesArray.Length > 0)

StringBuilder str = new StringBuilder();
foreach (string s in quotesArray)
{
str.AppendFormat (" {0}\r\n", s);
}
this.TextBoxQuotes.Text = str.ToString(Q);

this.TextBoxQuotes.Text = "No quotes match your request.";

12. To make the page updates more efficient, drop an UpdatePanel onto the page. Put the
TextBox for holding the quotes in the UpdatePanel. Put a button in the UpdatePanel.
This will cause only the TextBox showing the quotes to be updated (instead of the
whole-page refresh).

13.

Add two asynchPostBack triggers to the UpdatePanel. The first trigger should connect
the TextBoxOriginatorLastName TextBox to the TextChanged event. The second trigger
should connect the ButtonFindQuotes button to the button’s Click event.

The following graphic shows the layout of the page using the AutoComplete Ex-
tender in action.

Chapter 22 AJAX 511

@_il' Iehttp:f/localhost:lEb37IAJAXORamanseAutocompleteExtender‘aspx j *3 | K IGoogIe Pl
§ G @untited Page | | M~ B - & - |opeage v GiTook 7
-
. .
Test auto complete against the quotes service
Type in a quote author's Last Name: |P |__Find Quotes |
[Page
[Peart N
[Plant
=
|
L[[[[| @ mntemet | Protected vode: on [®100% ~ .

14. Run the page. As you type originator names into the TextBox, you should see a drop-
down list appear containing candidate names based on the QuotesCollection’s contents.

The AutoComplete Extender is an excellent example of the sort of things at which ASP.NET's
AJAX support excels. Microsoft Internet Explorer has had its own autocomplete feature built
into it for quite a while. Microsoft Internet Explorer remembers often-used names of HTML
input text tags and recent values that have been used for them. For example, when you go
online to buy an airline ticket at some point and go back to buy another one later, watch
what happens as you type in your address. You'll very often see Microsoft Internet Explorer’s
autocomplete feature show a drop-down list box below the address text box showing the last
few addresses you've typed that begin with the text showing in the text box.

The ASP.NET AutoComplete Extender works very much like this. However, the major differ-
ence is that the end user sees input candidates generated by the Web site rather than simply
a history of recent entries. Of course, the Web site could mimic this functionality by tracking
a user's profile identity and store a history of what a particular user has typed in to a specific
input field on a page. The actual process of generating autocomplete candidates is com-
pletely up to the Web server, giving a whole new level of power and flexibility to program-
ming user-friendly Web sites.

512

PartV Services, AJAX, Deployment, and Silverlight

A Modal Pop-up Dialog-Style Component

Another interesting feature provided by AJAX making Web applications appear more like
desktop applications is the ModalPopup Extender. Historically, navigating a Web site involves
walking down into the hierarchy of a Web site and climbing back out. When a user provides
inputs as he or she works with a page, the only means available to give feedback about the
quality of the data has been through the validation controls. In addition, standard Web pag-
es have no facility to focus the users’ attention while they type in the information.

The traditional desktop application usually employs modal dialog boxes to focus user atten-
tion when gathering important information from the end user. The model is very simple

and elegant—the end user is presented with a situation in which he or she must enter some
data and Click OK or Cancel before moving on. After dismissing the dialog, the end user sees
exactly the same screen he or she saw right before the dialog appeared. There's no ambigu-
ity and no involved process where the end user walks up and down some arbitrary page
hierarchy.

This example shows how to use the pop-up dialog extender control. You'll create a page with
some standard content and then have a modal dialog-style pop-up show right before sub-
mitting the page.

Using a ModalPopup extender

1. Add a new page to AJAXORama to host the pop-up extender. Call it
UseModalPopupExtender.

2. As with all the other examples using AJAX controls, pick up a ScriptManager from the
toolbox and add it to the page.

3. Add a title to the page (the example here uses “ASP.NET Code of Content”). Give the
banner some prominence by surrounding it in <h1> and </h1> tags.

4. Pick up a Panel from the toolbox and add it to the page. It will hold the page’s nor-
mal content.

5. Add a Button to the Panel for submitting the content. Give the Button the ID
ButtonSubmit and the text Submit and create a button Click event handler. You'll
need this button later.

6. Place some content on the panel. The content in this sample application uses several
check boxes that the modal dialog pop-up will examine before the page is submitted.

<h1l >ASP.NET Code Of Conduct </hl>

<asp:Panel ID="Panell" runat="server"
style="z-index: 1;left: 10px;top: 70px;
position: absolute;height: 213px;width: 724px;
margin-bottom: Opx;">

Chapter 22 AJAX

<asp:Label ID="Labell" runat="server"
Text="Name of Developer:"></asp:Label>
 <asp:TextBox ID="TextBox1l"
runat="server"></asp:TextBox>

As an ASP.NET developer, I promise to

<input
<label

<input
<label

<input
<label

<input
<label

type="checkbox" name="Check" id="Checkbox1"/>
for="Checkl">Use Forms Authentication</Tabel>

type="checkbox" name="Check" id="Checkbox2"/>
for="Check2">Separate UI From Code</label>

type="checkbox" name="Check" id="Checkbox3"/>
for="Check3">Take Advantage of Custom Controls</label>

type="checkbox" name="Check" id="Checkbox4"/>
for="Check4">Give AJAX a try</label>

<asp:Button ID="ButtonSubmit" runat="server" Text="Submit"

oncTlick="ButtonSubmit_Click" />

</asp:Panel>

513

7. Add another Panel to the page to represent the pop-up. Give this Panel a light yellow
background color so that you'll be able to see it when it comes up. It should also have
the ID PanelModalPopup.

Add some content to the new Panel that's going to serve as the modal pop-up. At the

very least, the popup should have OK and Cancel buttons. Give the OK and Cancel
buttons the ID values ButtonOK and ButtonCancel. You'll need them a bit later.

<asp:Panel

ID="PanelModalPopup" runat="server"

BorderColor="Black"
BorderStyle="Solid"
BackColor="LightYellow" Height="72px"
Width="403px">

<asp:Label
Text="Are you sure these are the correct entries?"
runat="server">
</asp:Label>

<asp:Button ID="ButtonOK"
runat="server"
Text="0K" />

<asp:Button ID="ButtonCancel"

runat='

'server" Text="Cancel" />

</asp:Panel>

514 Part V Services, AJAX, Deployment, and Silverlight

9. Add a script block to the ASPX file. You'll need to do this by hand. Write functions to
handle the OK and Cancel buttons. The example here examines check boxes to see
which ones have been checked and then displays an alert to show which features have
been chosen. The Cancel handler simply displays an alert saying the Cancel button
was pressed.

<script type="text/javascript">

function onOk() {
var optionsChosen;
optionsChosen = "Options chosen: ";

if($get('Checkboxl1l').checked)
{
optionsChosen =
optionsChosen.toString() +
"Use Forms Authentication ";

}

if($get('Checkbox2').checked)
{
optionsChosen =
optionsChosen.toString() +

"Separate UI From Code ";
}

if($get('Checkbox3') .checked)
{
optionsChosen =
optionsChosen.toString() +
"Take Advantage of Custom Controls ";

}

if($get('Checkbox4') .checked)
{
optionsChosen =
optionsChosen.toString() +
"Give AJAX a try ";
}

alert(optionsChosen);

}

function onCancel() {
alert("Cancel was pressed");

}

</script>

10. Pick up the ModalPopup Extender from the toolbox and add it to the page.

11. Add the following markup to the page. This will set various properties on the new
ModalPopup Extender. It will set the OkControlID property to ButtonOK and it will

set the CancelControlID property to ButtonCancel. It will also set the OnCancelScript
property to onCancel() (the client-side Cancel script handler you just wrote). Set

Chapter 22 AJAX 515

OnOkScript="onOk()" (the client-side OK script handler you just wrote). Finally, the fol-
lowing markup will set the TargetControlID property to be ButtonSubmit.

<ccl:ModalPopupExtender
ID="ModalPopupExtenderl"
OkControlID="ButtonOK"
CancelControlID="ButtonCancel"
OnCancelScript="onCancel ()"
OnOkScript="on0k()"
TargetControlID="ButtonSubmit"
PopupControlID="PanelModalPopup">
runat="server"
DynamicServicePath="" Enabled="True"

</ccl:ModalPopupExtender>

This graphic shows the layout of the page using the ModalPopup Extender within Visual
Studio 2008.

@0 AJAXORama - Microsoft Visual Studio (Administrator)

File Edit W¥iew Mdebgite Build Debug Format Teble Tools Window Help
Al S @ & B9~ ~L~E b Debug * MNET - [# developer

;] N | i= = | = = | XHTML 1.0 Transi = ®i Style Application: Mar » Target Bule: < Inline Style »

E USEM“dﬂlp‘]PUPEx‘EHdET—ﬂspxk App_Code/OuoteskManager cs | 5 X
7 -
2 - .
o || ScriptManager - Scripthanager]] Solution ‘AJAXORama’ (1 project) N
£ | Casp ParelPanelt 5 @ G\ \AJAXORamat
= Gl 5 App_Code
@
= PoNEF L vur i Conduct 5 App_Data
_f @ Bin
3 = [E Default aspx
=} . L
| PomasRiT T deslonte Ipsentienitesr K| 2 Dt aeprccs
Use Fomls Authentication 4] Global asax
_ﬁince - ot = [GroupChat aspx
[Take Adavantage of Custom Controls a " GroupChat.aspx os
M Give AJAX a #| QuoteService asmx
try B [UseAutocompleteExtender. aspx

Subrmit | ‘¥ UseAutocompleteExtender. aspx.cs

UsetModalPopupExtender.aspx
UseTimer.aspx
=] UseUpdateProgressControl aspx

= 3l Solution Explorer [Class Vwewl
I | .

3 Design | O Spit | = Sourcs | 4| sdiv> | [<asp PaneléFanel 1> sasp Labellabell>] | || panel1 System Web.UlWebContrals Panel -

@z [A
= =]
) | = | 4k - =
¥ | & By | Sk }J (‘EDxuresslons) —
ane|
Find =ll "loadquotes”, Subfolders, Find Results 1, "Entire Solution” (D) -
Matching lines: O Matching files: O Total files searched: 21 L Accesske
(D)

Programmatic name of the control.
4

4 Error List 5] Find Results 1 Properti. |AJCSS Pr... |[#:Mana AL Apply S
) P 7 g & SRRl

Drag barder or press arrow keys to mave. Drag margin handles to resize Ln 81 Col 21 Ch 21 NS 2

-
4 |2

12. Run the page. When you click the Submit button, the Panel designated to be the modal
popup window will be activated (remember, the Submit button is the TargetControllD
of the ModalPopup Extender). When you dismiss the popup using OK or Cancel, you
should see the client-side scripts being executed. The following graphic image shows
the ModalPopup Extender displaying the modal pop-up panel.

516 Part V Services, AJAX, Deployment, and Silverlight

_io/x]
@?' IﬁahttDilﬂocthost:153TJAJAXORama/UseModaIPopupExtender.aspx j | [XK IGoog\e Pl
5% 4 @ united Page | | v B - ® v [oreage v (0o v
=

ASP.NET Code Of Conduct

Name of Developer: IGE‘UTQS

As an ASP.NET develooper, I promise to
" Use Forms Authentication

[™ Separate Ul From Code

[Take Advantage of Custom Controls
v Give ATAX atry

|Are your sure these are the correct entries? 0K| Cancel |

=l

UseMadalPopLpExtender. aspi ‘ | | ‘ | | ‘0 Internet | Protected Mode: On H100% ~

Summary

Without a doubt, supporting AJAX is one of the most important new features of ASP.NET.
Using AJAX in your ASP.NET applications helps you improve your Web site’s user experience
by getting rid of unnecessary postbacks and whole-page refreshes. In addition, AJAX is use-
ful for modifying certain standard server-side controls and HTML elements to change their
appearances and behaviors to seem much more “desktop-like.” Although many technologies
and tricks to improve the user interface experience have been around for a while (DHTML,
writing your own client-side script, etc.), AJAX represents the first standard user interface
technology available for targeting multiple client platforms. In addition, ASP.NET wraps these
capabilities up nice and neatly so they're very convenient to use.

In this chapter, we saw how to use ASP.NET's new UpdatePanel to perform partial page up-
dates. We also saw how the Timer produces regularly scheduled postbacks and is especially
useful in conjunction with the UpdatePanel. We saw how the UpdateProgress control displays
progress information asynchronously. In addition, we got to see how the AutoComplete
Extender will talk to a Web service to produce an effective "autocomplete” experience, and
we saw how the ModalPopup Extender allows you to show a Panel as though it were a modal
dialog box within a desktop application.

Chapter 22 AJAX 517

If you feel the urge and have the gumption to look at the HTML and script produced by a
page using ASP.NET AJAX controls, it's very interesting. You'll also realize the power and
convenience of ASP.NET's AJAX support. It's better to have someone else have all that script
code packaged within a server-side control than it is to have to write it all by hand.

Chapter 22 Quick Reference

To
Enable a Web site for AJAX

Implement partial page updating in your
page

Assign arbitrary triggers to an UpdatePanel
(that is, trigger partial page updates us-
ing controls and events not related to the
panel)

Implement regularly timed automatic
posts from your page

Use AJAX to apply special Ul nuances to
your Web page

Do This

Normal Web sites generated by Visual Studio 2008's tem-
plate are AJAX-enabled by default. However, you must add a
ScriptManager to a page before using any of the AJAX server-
side controls.

From within an ASP.NET project, select an UpdatePanel from
the toolbox. Controls that you place in the UpdatePanel will
trigger updates for only that panel, leaving the rest of the page
untouched.

Modify an UpdatePanel’s trigger collection to include the new
events and controls. Highlight the UpdatePanel from within the
Visual Studio designer. Select the Triggers property from within
the property editor. Assign triggers as appropriate.

Use the AJAX Timer control, which will cause a postback to the
server at regular intervals.

After installing Visual Studio 2008, you can create AJAX-enabled
sites, and use the new AJAX-specific server-side controls avail-
able in the AJAX toolkit. Select the control you need. Most AJAX
server-side controls may be programmed completely from the
server. However, some controls require a bit of JavaScript on the
client end.

	Cover
	Copyright Page

	Table of Contents
	Chapter 22: AJAX
	What Is AJAX?
	AJAX Overview
	Reasons to Use AJAX
	Real-World AJAX
	AJAX in Perspective

	ASP.NET Server-Side Support for AJAX
	ScriptManager Control
	ScriptManagerProxy Control
	UpdatePanel Control
	UpdateProgress Control
	Timer Control

	AJAX Client Support
	ASP.NET AJAX Control Toolkit
	Other ASP.NET AJAX Community-Supported Stuff
	AJAX Control Toolkit Potpourri

	Getting Familiar with AJAX
	The Timer
	Updating Progress
	Extender Controls
	The AutoComplete Extender
	A Modal Pop-up Dialog-Style Component

	Summary
	Chapter 22 Quick Reference

