ﬂ

Microsoft

Visual C# 2008 Microsoft® Visual C#®
fhe shap 2008 Step by Step

John Sharp (Content Master)

Step by Step‘

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/11298.aspx

Micresoft
9780735624306 Press

© 2008 John Sharp. All rights reserved.

Table of Contents

Acknowledgments. o i Xvii

INtrodUcCtiono e XiX

Part| Introducing Microsoft Visual C# and
Microsoft Visual Studio 2008

1 Welcometo C# ... oo e e e 3
Beginning Programming with the Visual Studio 2008 Environment.......... 3
Writing Your First Program. 8
Using Namespaces.o e 14
Creating a Graphical Application. 17
Chapter 1 Quick Reference. 28

2 Working with Variables, Operators, and Expressions 29
Understanding Statements. 29
Using ldentifiers 30
Identifying Keywords. 30
Using Variables. 31

Naming Variables. 32
Declaring Variables 32
Working with Primitive Data Types.t 33
Displaying Primitive Data Type Values............................. 34
Using Arithmetic Operators e 38
Operators and TYPeS. . ..ottt ittt 39
Examining Arithmetic Operators. 40
Controlling Precedence ... 43
Using Associativity to Evaluate Expressions 44
Associativity and the Assignment Operator 45

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey

vi Table of Contents

Incrementing and Decrementing Variables. 45
Prefix and Postfix........ ... 46
Declaring Implicitly Typed Local Variables. 47
Chapter 2 Quick Reference. 48
3 Writing Methods and Applying Scope 49
Declaring Methods 49
Specifying the Method Declaration Syntax......................... 50
Writing return Statements. 51
Calling Methods. 53
Specifying the Method Call Syntax................. 53
Applying SCOPE . ..o 56
Defining Local Scope.o 56
Defining Class SCope. o 56
Overloading Methods. 57
Writing Methods 58
Chapter 3 Quick Reference. i 66
4 Using Decision Statements oo 67
Declaring Boolean Variables. 67
Using Boolean Operators 68
Understanding Equality and Relational Operators 68
Understanding Conditional Logical Operators...................... 69
Summarizing Operator Precedence and Associativity 70
Using if Statements to Make Decisions ..., 71
Understanding if Statement Syntax............. 71
Using Blocks to Group Statements.......... i, 73
Cascading if Statements. 73
Using switch Statements i 78
Understanding switch Statement Syntax 79
Following the switch StatementRules. 80
Chapter 4 Quick Reference.o 84
5 Using Compound Assignment and Iteration Statements. 85
Using Compound Assignment Operators ...t .. 85
Writing while Statements. 87
Writing for Statements 91

Understanding for Statement Scope............... il 92

Table of Contents

Writing do Statements 93
Chapter 5 Quick Reference. o i 102
6 Managing Errors and Exceptions 103
Coping With Errors.o o 103
Trying Code and Catching Exceptions o i i, 104
Handling an Exception ... 105
Using Multiple catch Handlers o i i 106
Catching Multiple Exceptions ... 106
Using Checked and Unchecked Integer Arithmetic...................... 111
Writing Checked Statements.......... 112
Writing Checked Expressions. i 113
Throwing EXCeptions 114
Using a finally Block. 118
Chapter 6 Quick Reference. 120

Part I Understanding the C# Language

7 Creating and Managing Classes and Objects............... 123
Understanding Classification i, 123

The Purpose of Encapsulation 124
Definingand Usinga Class. ... 124
Controlling Accessibility 126

Working with Constructors. 127
Overloading Constructors 128

Understanding static Methodsand Data 136
CreatingaShared Field. 137

Creating a static Field by Using the const Keyword................ 137

Chapter 7 Quick Reference. ... 142

8 Understanding Values and References 145
Copying Value Type Variablesand Classes 145
Understanding Null Values and Nullable Types 150

Using Nullable Types. 151

Understanding the Properties of Nullable Types................... 152

Using ref and out Parameters. i 152

Creating ref Parameters.............. . o i 153

Creating out Parameters i 154

vii

viii

Table of Contents

How Computer Memory Is Organized. 156
Using the Stack and the Heap........ ... o i i i, 157

The System.Object Class, 158
BOXING .o 159
UNbOXING . .« oo 159
Casting Data Safely o 161
The is Operator 161

The @as Operator. 162
Chapter 8 Quick Reference. ... 164
9 Creating Value Types with Enumerations and Structures. 167
Working with Enumerations. 167
Declaring an Enumeration i i i 167
Using an Enumeration. i 168
Choosing Enumeration Literal Values. 169
Choosing an Enumeration’s Underlying Type...................... 170
Working with Structures. 172
Declaring a Structure. 174
Understanding Structure and Class Differences.................... 175
Declaring Structure Variables. 176
Understanding Structure Initialization.................. 177
Copying Structure Variables. o 179
Chapter 9 Quick Reference.o 183
10 Using Arrays and Collections. 185
What Is an Array?. 185
Declaring Array Variables. i i i i 185
Creatingan Array Instance. i 186
Initializing Array Variables 187
Creating an Implicitly Typed Array 188
Accessing an Individual Array Element, 189
Iterating Through an Array. 190
COPYING ArTaysS. . oot e e 191
What Are Collection Classes?. ... 192
The Arraylist Collection Class i .. 194

The Queue Collection Class. 196

The Stack Collection Class. ... 197

The Hashtable Collection Class 198

The SortedList Collection Class 199

Table of Contents

Using Collection Initializers 200
Comparing Arrays and Collections.o ... 200
Using Collection Classes to Play Cards. 201
Chapter 10 Quick Reference. ... 206
11 Understanding Parameter Arrays......................... 207
Using Array Arguments. 208
Declaring a params Array 209
Using params object[]ot 211
Using a params Array. o 212
Chapter 11 Quick Reference. 215
12 Working with Inheritance 217
What Is Inheritance? 217
Using Inheritance. 218
Base Classes and Derived Classesc..ooviiiiiineennnn.. 218
Calling Base Class Constructors.ooiiiiiiinnennnn.. 220
AssSigNiNg Classes 221
Declaring new Methods. 222
Declaring Virtual Methods. i i i i 224
Declaring override Methods 225
Understanding protected Access.....................ccoviii... 227
Understanding Extension Methods, 233
Chapter 12 Quick Reference. 237
13 Creating Interfaces and Defining Abstract Classes 239
Understanding Interfaces. 239
Interface Syntax 240
Interface Restrictions. i 241
Implementing an Interface. 241
Referencing a Class Through Its Interface......................... 243
Working with Multiple Interfaces 244
Abstract Classesttt 244
Abstract Methods 245
Sealed Classes. 246
Sealed Methods........ ... o i 246
Implementing an Extensible Framework, 247
Summarizing Keyword Combinations 255

Chapter 13 Quick Reference. 256

Table of Contents

14 Using Garbage Collection and Resource Management. 257
The Life and Timesof an Object i, 257
Writing Destructors. 258

Why Use the Garbage Collector? 260

How Does the Garbage Collector Work?. 261
Recommendations. 262
Resource Management. 262
Disposal Methods 263
Exception-Safe Disposal 263

The using Statement. 264
Calling the Dispose Method from a Destructor. 266
Making Code Exception-Safe.............. 267
Chapter 14 Quick Reference. 270

Part Il Creating Components

15 Implementing Properties to Access Fields 275
Implementing Encapsulation by Using Methods 276
What Are Properties?. 278

Using Properties. 279
Read-Only Properties 280
Write-Only Properties. 280
Property Accessibility 281
Understanding the Property Restrictions 282
Declaring Interface Properties., 284
Using Properties in a Windows Application 285
Generating Automatic Properties. ... i 287
Initializing Objects by Using Properties..................ooiiiii. ., 288
Chapter 15 Quick Reference. i 292
16 UsingIndexers..........c.ooiiiniiiiiiiiiiiiii i 295
What Isan Indexer? 295
An Example That Doesn't Use Indexers 295
The Same Example Using Indexers. 297
Understanding Indexer ACCESSOrS.t 299
Comparing Indexers and Arraysueeiiiiieeennnnnnnnnn 300
Indexers in Interfaces. 302
Using Indexers in a Windows Application.............................. 303

Chapter 16 Quick Reference.coo i 308

Table of Contents

17 Interrupting Program Flow and Handling Events 311
Declaring and Using Delegates. ..., 311
The Automated Factory Scenario, .. 312
Implementing the Factory Without Using Delegates 312
Implementing the Factory by Using a Delegate. 313
Using Delegates. 316
Lambda Expressions and Delegates, 319
Creating a Method Adapter.......... ... i, 319
Using a Lambda Expression as an Adapter........................ 320
The Form of Lambda Expressions.coovviiiiiinn. 321
Enabling Notifications with Events 323
DeclaringanBvent...... 323
SubscribingtoanBvent 324
Unsubscribing froman Event.............. 324
Raising an Event. 325
Understanding WPF User Interface Events 325
Using Bvents 327
Chapter 17 Quick Reference. 329
18 IntroducingGenerics ...ttt 333
The Problem with objects. i i, 333
The Generics Solution 335
Generics vs. Generalized Classes., 337
Generics and Constraintst 338
Creatinga Generic Class oottt 338
The Theory of Binary Trees.t 338
Building a Binary Tree Class by Using Generics 341
Creating a Generic Method i i 350
Defining a Generic Method to Build a Binary Tree 351
Chapter 18 Quick Reference. 354
19 Enumerating Collections 355
Enumerating the Elements in a Collection. 355
Manually Implementing an Enumerator 357
Implementing the IEnumerable Interface 361
Implementing an Enumerator by Using an Iterator...................... 363
ASimple lterator 364
Defining an Enumerator for the Tree<TItem> Class by
Usingan lterator 366

Chapter 19 Quick Reference, 368

Xi

xii Table of Contents

20 Querying In-Memory Data by Using Query Expressions 371
What Is Language Integrated Query (LINQ)? 371
Using LINQ ina C# Application. 372

SelectingData ... 374
Filtering Data o 377
Ordering, Grouping, and Aggregating Data....................... 377
Joining Datao oo 380
Using Query Operators.ttt 381
Querying Data in Tree<Tltem> Objects.......................... 383
LINQ and Deferred Evaluation. o i, 389
Chapter 20 Quick Reference. i 392

21 OperatorOverloadingc. ... 395

Understanding Operators.ooouiuiiiinii e 395
Operator Constraints. 396
Overloaded Operators 396
Creating Symmetric Operatorso it 398

Understanding Compound Assignment ..., 400

Declaring Increment and Decrement Operators 401

Defining Operator Pairsoo oo 403

Implementing an Operator. 404

Understanding Conversion Operatorsciiieeeeena .. 406
Providing Built-In Conversions ..o 406
Implementing User-Defined Conversion Operators 407
Creating Symmetric Operators, Revisited 408
Adding an Implicit Conversion Operator.......................... 409

Chapter 21 Quick Reference. 411

Part IV Working with Windows Applications

22 Introducing Windows Presentation Foundation 415
Creating a WPF Application 415

Creating a Windows Presentation Foundation Application.......... 416

Adding Controlstothe Form. ... 430

Using WPF Controls. 430

Changing Properties Dynamically.o o i, 439

Handling Eventsina WPF Form 443

Processing Events in Windows Forms. 443

Chapter 22 Quick Reference. 449

Table of Contents

23 Working with Menus and Dialog Boxes 451
Menu Guidelinesand Style. 451

Menus and Menu Events. oo i 452

Creatinga Menu 452

Handling Menu Events i 458

Shortcut Menus . ..o 464

Creating Shortcut Menus 464

Windows Common Dialog Boxes 468

Using the SaveFileDialog Class 468

Chapter 23 Quick Reference. i 471

24 Performing Validation, 473
Validating Data.t 473

Strategies for Validating User Input 473

An Example—Customer Information Maintenance...................... 474
Performing Validation by Using Data Binding 475

Changing the Point at Which Validation Occurs 491

Chapter 24 Quick Reference. ... 495

Part V. Managing Data

25 Querying Informationina Database...................... 499
Querying a Database by Using ADO.NET, 499
The Northwind Database........... ..o .. 500
Creatingthe Database i, 500
Using ADO.NET to Query Order Information...................... 503
Querying a Database by Using DLINQ.o i, 512
Defining an Entity Class 512
Creating and Running a DLINQ Query., 514
Deferred and Immediate Fetching 516
Joining Tables and Creating Relationships 517
Deferred and Immediate Fetching Revisited. 521
Defining a Custom DataContext Class........................... 522
Using DLINQ to Query Order Information 523

Chapter 25 Quick Reference. 527

xiii

Xiv Table of Contents

26 Displaying and Editing Data by Using Data Binding......... 529
Using Data Binding with DLINQ 529

Using DLINQ to Modify Data.t 544

Updating Existing Data. 544

Handling Conflicting Updates.o, 545

Adding and Deleting Data. ..., 548

Chapter 26 Quick Reference. 556

Part VI Building Web Applications

27 Introducing ASP.INET i 559
Understanding the Internet as an Infrastructure 560
Understanding Web Server Requests and Responses............... 560
Managing State 561
Understanding ASP.INET 561
Creating Web Applications with ASPNET, 563
Building an ASP.NET Application. 564
Understanding Server Controls. 575
Creatingand UsingaTheme.o, 582
Chapter 27 Quick Reference. 586
28 Understanding Web Forms Validation Controls............. 587
Comparing Server and Client Validations 587
Validating Data atthe Web Server......... 588
Validating Data in the Web Browser. 588
Implementing Client Validation. 589
Chapter 28 Quick Reference. i 596

29 Protecting a Web Site and Accessing Data with
Web Forms. e 597
Managing SeCUNtY. 597
Understanding Forms-Based Security 598
Implementing Forms-Based Security........... 598
Querying and Displaying Data. 605
Understanding the Web Forms GridView Control 605
Displaying Customer and Order History Information............... 606

Paging Data 611

Table of Contents

Editing Data.o 612
Updating Rows Through a GridView Control 612
Navigating Between Forms 614
Chapter 29 Quick Reference. ... 621

30 Creating and Using a Web Service........................ 623
What Isa Web Service?. ... 623

The Role of SOAP. . .. 624

What Is the Web Services Description Language?. 625
Nonfunctional Requirements of Web Services..................... 625

The Role of Windows Communication Foundation................. 627
BuildingaWeb Service. ... 627
Creating the ProductsService Web Service........................ 628

Web Services, Clients, and Proxieso ... 637
Talking SOAP: The Difficult Way 637

Talking SOAP: The Easy Way 637
Consuming the ProductsService Web Service 638

Chapter 30 Quick Reference. ... i 644
IndeX. . ..o e 645

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey

Xv

Chapter 25
Querying Information in a Database

WV

After completing this chapter, you will be able to:

B Fetch and display data from a Microsoft SQL Server database by using
Microsoft ADO.NET.

B Define entity classes for holding data retrieved from a database.
B Use DLINQ to query a database and populate instances of entity classes.

B Create a custom DataContext class for accessing a database in a typesafe manner.

In Part IV of this book, "Working with Windows Applications,” you learned how to use
Microsoft Visual C# to build user interfaces and present and validate information. In Part

V, you will learn about managing data by using the data access functionality available in
Microsoft Visual Studio 2008 and the Microsoft .NET Framework. The chapters in this part

of the book describe ADO.NET, a library of objects specifically designed to make it easy to
write applications that use databases. In this chapter, you will also learn how to query data by
using DLINQ—extensions to LINQ based on ADO.NET that are designed for retrieving data
from a database. In Chapter 26, “Displaying and Editing Data by Using Data Binding,” you will
learn more about using ADO.NET and DLINQ for updating data.

Important To perform the exercises in this chapter, you must have installed Microsoft SQL
Server 2005 Express Edition, Service Pack 2. This software is available on the retail DVD with
Microsoft Visual Studio 2008 and Visual C# 2008 Express Edition and is installed by default.

Important It is recommended that you use an account that has Administrator privileges to
perform the exercises in this chapter and the remainder of this book.

Querying a Database by Using ADO.NET

The ADO.NET class library contains a comprehensive framework for building applications
that need to retrieve and update data held in a relational database. The model defined by
ADO.NET is based on the notion of data providers. Each database management system (such
as SQL Server, Oracle, IBM DB2, and so on) has its own data provider that implements an
abstraction of the mechanisms for connecting to a database, issuing queries, and updating
data. By using these abstractions, you can write portable code that is independent of the

499

500

Part V. Managing Data

underlying database management system. In this chapter, you will connect to a database
managed by SQL Server 2005 Express Edition, but the techniques that you will learn are
equally applicable when using a different database management system.

The Northwind Database

Northwind Traders is a fictitious company that sells edible goods with exotic names.

The Northwind database contains several tables with information about the goods that
Northwind Traders sells, the customers they sell to, orders placed by customers, suppliers
from whom Northwind Traders obtains goods to resell, shippers that they use to send goods
to customers, and employees who work for Northwind Traders. Figure 25-1 shows all the
tables in the Northwind database and how they are related to one another. The tables that
you will be using in this chapter are Orders and Products.

Customers g
(==E

i E:::p“;":;;zme CustomerCustomerDemo CustomerDemographics Employees
— @ |customerID 2 | CustomerTypelD G |EmployesD -
|| Cenkacthlame E‘ Customer TypelD H CustamerDesc | |Lastiiame j
| contactTitle | Firstivame
| ddress —riee
Lt || TitleofCourtesy
|_|Redion | |Bithoate
| |Postaicade —|HireDate
Country —
: Phone DOrders — Eij’ess
L |Fax | | OrderiD iI region
— C“ﬁlm”m | |Postaicads
EmplaysslD —
[|orderDate [L_|Country Bl
Shippers RequiredDate
| B[shipperin [|ShippedDate
|| Companyhiame [| shipvia
_|Phone [|Freiatt
[| shiphtame
[| shipaddress
5 [| shipGity
Suppliers || shipregion |
| 8 |supplieri — —
|| CompanyMame EmployeeTerritories Tormtories
| |Contactiame Products Order Details [::m;\'uyee]D | Terrtory10
| |contactTite g Productin 3] OrderiD l TerritoryID Terrtory Description
| |Address Producthiame =] | ProductiD RegioniD
| |city SupplierID UritPrice
| |region CategaryID Quantity
| |PostalCode QuantityPerUnit Discaunt
|| country UritPrice
L Ehune UnitslnStnck T
| |Fax UnitsOnOrder 7 [CateqoryiD Region
| |HomePage ReorderLewvel e % |RegiontD
CategaryMame g
Discontinued Description H RegionDsscription
Picture

Creating the Database

Before proceeding further, you need to create the Northwind database.

Chapter 25 Querying Information in a Database 501

Granting Permissions for Creating a SQL Server 2005 Database

You must have administrative rights for SQL Server 2005 Express before you can cre-
ate a database. By default, if you are using the Windows Vista operating system, the
computer Administrator account and members of the Administrators group do not have

these rights. You can easily grant these permissions by using the SQL Server 2005 User
Provisioning Tool for Vista, as follows:

1. Log on to your computer as an account that has administrator access.

2. Run the sglprov.exe program, located in the folder C:\Program Files\Microsoft
SQL Server\90\Shared.

3. In the User Account Control dialog box, click Continue. A console window briefly
appears, and then the SQL Server User Provisioning on Vista window is displayed.

4. In the User to provision text box, type the name of the account you are using to

perform the exercises. (Replace YourComputer\YourAccount with the name of your
computer and your account.)

5. In the Available privileges box, click Member of SQL Server SysAdmin role on
SQLEXPRESS, and then click the >> button.

510 8QL Server User Provisioning on Vista - YourComputer\Yourfccount on VSPROFESSIOMNAL 7 ==
A

I SQL Server 2005 User Provisioning Tool for Vista
- Help Protect Your SOL Server on Windows Vista

Granting administrative rights to Windows Yista user User to provision; YourComputeryY ourdcoaunt

Windows Yista users that are members of the Windows Administrators group are not automatically granted permizsion ta connect to SOL Server, and
they are not automatically granted administrative privileges.

Select the administrative privileges needed by Windaows uzer YourComputer\t ourbccount.

Ayailable privileges: Brivileges that will be granted to Y ourComputersy ourdcoount:

[] SOLEXPRESS
:[R, Member of SGOL Server Sysédmin rale on SOLEXPRESS

>

O

6. Click OK.

The permission will be granted to the specified user, and the SQL Server 2005
User Provisioning Tool for Vista will close automatically.

502

Part V. Managing Data

Create the Northwind database

1. On the Windows Start menu, click All Programs, click Accessories, and then click

Command Prompt to open a command prompt window. If you are using Windows
Vista, in the command prompt window type the following command to go to the
\Microsoft Press\Visual CSharp Step by Step\Chapter 25 folder under your Documents
folder. Replace Name with your user name.

cd “\Users\Name\Documents\Microsoft Press\Visual CSharp Step by Step\Chapter 25”

If you are using Windows XP, type the following command to go to the \Microsoft
Press\Visual CSharp Step by Step\Chapter 25 folder under your My Documents folder,
replacing Name with your user name.

cd “\Documents and Settings\Name\My Documents\Microsoft Press\Visual CSharp Step by
Step\Chapter 25”

. In the command prompt window, type the following command:

sqlecmd -S YourComputer\SQLExpress -E -iinstnwnd.sql
Replace YourComputer with the name of your computer.

This command uses the sglcmd utility to connect to your local instance of SQL Server
2005 Express and run the instnwnd.sql script. This script contains the SQL commands
that create the Northwind Traders database and the tables in the database and fills
them with some sample data.

Tip Ensure that SQL Server 2005 Express is running before you attempt to create the
Northwind database. (It is set to start automatically by default. You will simply receive an
error message if it is not started when you execute the sqglcmd command.) You can check
the status of SQL Server 2005 Express, and start it running if necessary, by using the SQL
Configuration Manager available in the Configuration Tools folder of the Microsoft SQL
Server 2005 program group.

3. When the script finishes running, close the command prompt window.

Note You can run the command you executed in step 2 at any time if you need to reset
the Northwind Traders database. The instnwnd.sql script automatically drops the database
if it exists and then rebuilds it. See Chapter 26 for additional information.

Chapter 25 Querying Information in a Database 503

Using ADO.NET to Query Order Information

In the next set of exercises, you will write code to access the Northwind database and display
information in a simple console application. The aim of the exercise is to help you learn more
about ADO.NET and understand the object model it implements. In later exercises, you will
use DLINQ to query the database. In Chapter 26, you will see how to use the wizards includ-
ed with Visual Studio 2008 to generate code that can retrieve and update data and display
data graphically in a Windows Presentation Foundation (WPF) application.

The application you are going to create first will produce a simple report displaying informa-
tion about customers’ orders. The program will prompt the user for a customer ID and then
display the orders for that customer.

Connect to the database

1.
2.

Start Visual Studio 2008 if it is not already running.

Create a new project called ReportOrders by using the Console Application template.
Save it in the \Microsoft Press\Visual CSharp Step By Step\Chapter 25 folder under your
Documents folder, and then click OK.

Note Remember, if you are using Visual C# 2008 Express Edition, you can specify the
location for saving your project by setting the Visual Studio projects location in the Projects
and Solutions section of the Options dialog box on the Tools menu.

In Solution Explorer, change the name of the file Program.cs to Report.cs. In the
Microsoft Visual Studio message, click Yes to change all references of the Program class
to Report.

In the Code and Text Editor window, add the following using statement to the list at the
top of the file:

using System.Data.SqlClient;

The System.Data.SqlClient namespace contains the SQL Server data provider classes for
ADO.NET. These classes are specialized versions of the ADO.NET classes, optimized for
working with SQL Server.

In the Main method of the Report class, add the following statement shown in bold
type, which declares a Sq/Connection object:

static void Main(string[] args)
{

SqlConnection dataConnection = new SqlConnection();

}

504

Part V. Managing Data

SqlConnection is a subclass of an ADO.NET class called Connection. It is designed to
handle connections to SQL Server databases.

. After the variable declaration, add a try/catch block to the Main method. All the code

that you will write for gaining access to the database goes inside the try part of this
block. In the catch block, add a simple handler that catches Sql/Exception exceptions.
The new code is shown in bold type here:

static void Main(string[] args)

{
try
{
// You will add your code here in a moment
}
catch(SqlException e)
{
Console.WriteLine(“Error accessing the database: {0}”, e.Message);
}
}

A SqglException is thrown if an error occurs when accessing a SQL Server database.

. Replace the comment in the try block with the code shown in bold type here:

try
{
dataConnection.ConnectionString =
“Integrated Security=true;Initial Catalog=Northwind;” +
“Data Source=YourComputer\\SQLExpress”;
dataConnection.Open();

Important In the ConnectionString property, replace YourComputer with the name of
your computer. Make sure that you type the string on a single line.

This code attempts to create a connection to the Northwind database. The contents of
the ConnectionString property of the Sqg/Connection object contain elements that spec-
ify that the connection will use Windows Authentication to connect to the Northwind
database on your local instance of SQL Server 2005 Express Edition. This is the pre-
ferred method of access because you do not have to prompt the user for any form of
user name or password, and you are not tempted to hard-code user names and pass-
words into your application. Notice that a semicolon separates all the elements in the
ConnectionString.

You can also encode many other elements in the connection string. See the
documentation supplied with Visual Studio 2008 for details.

Chapter 25 Querying Information in a Database 505

Using SQL Server Authentication

Windows Authentication is useful for authenticating users who are all members of a
Windows domain. However, there might be occasions when the user accessing the
database does not have a Windows account, for example, if you are building an appli-
cation designed to be accessed by remote users over the Internet. In these cases, you
can use the User ID and Password parameters instead, like this:

string userName = ...;

string password = ...;
// Prompt the user for their name and password, and fill these variables

string connString = String.Format(
“User ID={0};Password={1};Initial Catalog=Northwind;” +
“Data Source=YourComputer\\SQLExpress”, username, password);

myConnection.ConnectionString = connString;

At this point, | should offer a sentence of advice: never hard-code user names and pass-
words into your applications. Anyone who obtains a copy of the source code (or who
reverse-engineers the compiled code) can see this information, and this renders the
whole point of security meaningless.

The next step is to prompt the user for a customer ID and then query the database to find all
of the orders for that customer.

Query the Orders table

1. Add the statements shown here in bold type to the try block after the dataConnection.
Open(); statement:

try
{

Console.Write(““Please enter a customer ID (5 characters): “);
string customerId = Console.ReadLine();

}

These statements prompt the user for a customer ID and read the user’s response in
the string variable customerld.

2. Type the following statements shown in bold type after the code you just entered:

try
{

Sql1Command dataCommand = new SqlCommand();
dataCommand.Connection = dataConnection;

506

Part V. Managing Data

dataCommand.CommandText =
“SELECT OrderID, OrderDate, ShippedDate, ShipName, ShipAddress, “ +
“ShipCity, ShipCountry “ +
“FROM Orders WHERE CustomerID=’" + customerId + “’”;
Console.WriteLine(“About to execute: {0}\n\n”, dataCommand.CommandText);
}
The first statement creates a Sg/Command object. Like Sg/Connection, this is a
specialized version of an ADO.NET class, Command, that has been designed for per-
forming queries against a SQL Server database. An ADO.NET Command object is used
to execute a command against a data source. In the case of a relational database, the
text of the command is a SQL statement.

The second line of code sets the Connection property of the Sg/Command object to

the database connection you opened in the preceding exercise. The next two state-
ments populate the CommandText property with a SQL SELECT statement that retrieves
information from the Orders table for all orders that have a CustomerID that matches
the value in the customerld variable. The Console.WriteLine statement just repeats the
command about to be executed to the screen.

Important If you are an experienced database developer, you will probably be about to
e-mail me telling me that using string concatenation to build SQL queries is bad practice.
This approach renders your application vulnerable to SQL injection attacks. However, the
purpose of this code is to quickly show you how to execute queries against a SQL Server
database by using ADO.NET, so | have deliberately kept it simple. Do not write code such
as this in your production applications.

For a description of what a SQL injection attack is, how dangerous it can be, and how you
should write code to avoid such attacks, see the SQL Injection topic in SQL Server Books
Online, available at http://msdn2.microsoft.com/en-us/library/ms161953.aspx.

. Add the following statement shown in bold type after the code you just entered:

try
{

ééiDataReader dataReader = dataCommand.ExecuteReader();
3
The ExecuteReader method of a Sg/Command object constructs a Sq/DataReader object
that you can use to fetch the rows identified by the SQL statement. The Sq/DataReader
class provides the fastest mechanism available (as fast as your network allows) for
retrieving data from a SQL Server.

The next task is to iterate through all the orders (if there are any) and display them.

Chapter 25 Querying Information in a Database 507

Fetch data and display orders

1. Add the while loop shown here in bold type after the statement that creates the
SqglDataReader object:

try
{
while (dataReader.Read())
{
// Code to display the current row
}

}

The Read method of the Sg/DataReader class fetches the next row from the database. It
returns true if another row was retrieved successfully; otherwise, it returns false, usually
because there are no more rows. The while loop you have just entered keeps reading
rows from the dataReader variable and finishes when there are no more rows.

2. Add the statements shown here in bold type to the body of the while loop you created
in the preceding step:

while (dataReader.Read())
{
int orderId = dataReader.GetInt32(0);
DateTime orderDate = dataReader.GetDateTime(1);
DateTime shipDate = dataReader.GetDateTime(2);
string shipName = dataReader.GetString(3);
string shipAddress = dataReader.GetString(4);
string shipCity = dataReader.GetString(5);
string shipCountry = dataReader.GetString(6);
Console.WriteLine(
“Order: {0}\nPlaced: {1}\nShipped: {2}\n” +
“To Address: {3}\n{4}\n{5}\n{6}\n\n”, orderId, orderDate,
shipDate, shipName, shipAddress, shipCity, shipCountry);
}

This block of code shows how you read the data from the database by using a
SglDataReader object. A Sg/DataReader object contains the most recent row retrieved
from the database. You can use the GetXXX methods to extract the information from
each column in the row—there is a GetXXX method for each common type of data. For
example, to read an int value, you use the GetInt32 method; to read a string, you use
the GetString method; and you can probably guess how to read a DateTime value. The
GetXXX methods take a parameter indicating which column to read: 0 is the first col-
umn, 1 is the second column, and so on. The preceding code reads the various columns
from the current Orders row, stores the values in a set of variables, and then prints out
the values of these variables.

508 Part V. Managing Data

Firehose Cursors

One of the major drawbacks in a multiuser database application is locked data.
Unfortunately, it is common to see applications retrieve rows from a database and keep
those rows locked to prevent another user from changing the data while the applica-
tion is using them. In some extreme circumstances, an application can even prevent
other users from reading data that it has locked. If the application retrieves a large
number of rows, it locks a large proportion of the table. If there are many users run-
ning the same application at the same time, they can end up waiting for one another to
release locks and it all leads to a slow-running and frustrating mess.

The Sg/DataReader class has been designed to remove this drawback. It fetches rows
one at a time and does not retain any locks on a row after it has been retrieved. It is
wonderful for improving concurrency in your applications. The Sqg/DataReader class is
sometimes referred to as a “firehose cursor.” (The term cursor is an acronym that stands
for “current set of rows.")

When you have finished using a database, it's good practice to close your connection and
release any resources you have been using.

Disconnect from the database, and test the application

1. Add the statement shown here in bold type after the while loop in the try block:

try
{
while(dataReader.Read())
{
}
dataReader.Close();
}

This statement closes the Sqg/DataReader object. You should always close a Sq/DataReader
object when you have finished with it because you will not able to use the current
SglConnection object to run any more commands until you do. It is also considered good
practice to do it even if all you are going to do next is close the Sq/Connection.

Note If you activate multiple active result sets (MARS) with SQL Server 2005, you can
open more than one Sq/DataReader object against the same Sq/Connection object and
process multiple sets of data. MARS is disabled by default. To learn more about MARS and
how you can activate and use it, consult SQL Server 2005 Books Online.

Chapter 25 Querying Information in a Database 509
2. After the catch block, add the following finally block:

catch(SqlException e)

{
}
finally
{
dataConnection.Close();
H

Database connections are scarce resources. You need to ensure that they are closed
when you have finished with them. Putting this statement in a finally block guarantees
that the Sq/Connection will be closed, even if an exception occurs; remember that the
code in the finally block will be executed after the catch handler has finished.

Q Tip An alternative approach to using a finally block is to wrap the code that creates the

SglDataConnection object in a using statement, as shown in the following code. At the end
of the block defined by the using statement, the Sq/Connection object is closed automati-
cally, even if an exception occurs:

using (SqlConnection dataConnection = new SqlConnection())

{
try
{
dataConnection.ConnectionString = “...”;
}
catch (SqlException e)
{
Console.WriteLine(“Error accessing the database: {0}”, e.Message);
}
}

3. On the Debug menu, click Start Without Debugging to build and run the application.
4. At the customer ID prompt, type the customer ID VINET, and press Enter.

The SQL SELECT statement appears, followed by the orders for this customer, as shown
in the following image:

Em Chwindowssystern32hemd.exe i [=] 3
[Please enter a customer ID <5 characters»: UINET

fhout to execute: SELECT OrderID. OrderDate. ShippedDate. ShipMame. Sl\ipﬂddress.n
ShipCity, ShipCountry FROM Orders WHERE CustomerID='UINET’ .

BA: A : 0@
Shipped: 16871996 0A:00:0

: Uins et alcools Chevalier
59 rue de 1’'Abbaye
Re ims

Chevalier

Order: 18295
Placed: 02091996 BQ:00:00

510

Part V. Managing Data

You can scroll back through the console window to view all the data. Press the Enter
key to close the console window when you have finished.

5. Run the application again, and then type BONAP when prompted for the customer ID.

Some rows appear, but then an error occurs. If you are using Windows Vista, a mes-
sage box appears with the message “ReportOrders has stopped working.” Click Close
program (or Close the program if you are using Visual C# Express). If you are using

Windows XP, a message box appears with the message “ReportOrders has encountered

a problem and needs to close. We are sorry for the inconvenience.” Click Don’t Send.

An error message containing the text “Data is Null. This method or property cannot be
called on Null values” appears in the console window.

The problem is that relational databases allow some columns to contain null values.
A null value is a bit like a null variable in C#: It doesn't have a value, but if you try to
read it, you get an error. In the Orders table, the ShippedDate column can contain a
null value if the order has not yet been shipped. You should also note that this is a
SqlINullValueException and consequently is not caught by the Sql/Exception handler.

6. Press Enter to close the console window and return to Visual Studio 2008.

Closing Connections

In many older applications, you might notice a tendency to open a connection when
the application starts and not close the connection until the application terminates. The
rationale behind this strategy was that opening and closing database connections were
expensive and time-consuming operations. This strategy had an impact on the scalabil-
ity of applications because each user running the application had a connection to the
database open while the application was running, even if the user went to lunch for a
few hours. Most databases limit the number of concurrent connections that they allow.
(Sometimes this is because of licensing, but usually it's because each connection con-
sumes resources on the database server that are not infinite.) Eventually, the database
would hit a limit on the number of users that could operate concurrently.

Most .NET Framework data providers (including the SQL Server provider) implement
connection pooling. Database connections are created and held in a pool. When an
application requires a connection, the data access provider extracts the next available
connection from the pool. When the application closes the connection, it is returned
to the pool and made available for the next application that wants a connection. This
means that opening and closing database connections are no longer expensive op-
erations. Closing a connection does not disconnect from the database; it just returns
the connection to the pool. Opening a connection is simply a matter of obtaining

an already-open connection from the pool. Therefore, you should not hold on to
connections longer than you need to—open a connection when you need it, and close
it as soon as you have finished with it.

Chapter 25 Querying Information in a Database 511

You should note that the ExecuteReader method of the Sg/Command class,

which creates a Sq/DataReader, is overloaded. You can specify a System.Data.
CommandBehavior parameter that automatically closes the connection used by the
SglDataReader when the Sqg/DataReader is closed, like this:

SqlDataReader dataReader =
dataCommand. ExecuteReader (System.Data.CommandBehavior.CloseConnection);

When you read the data from the Sg/DataReader object, you should check that the
data you are reading is not null. You'll see how to do this next.

Handle null database values

1. In the Main method, change the code in the body of the while loop to contain an if ...
else block, as shown here in bold type:

while (dataReader.Read())

{
int orderId = dataReader.GetInt32(0);
if (dataReader.IsDBNull(2))
{
Console.WriteLine(“Order {0} not yet shipped\n\n”, orderId);
}
else
{
DateTime orderDate = dataReader.GetDateTime(l);
DateTime shipDate = dataReader.GetDateTime(2);
string shipName = dataReader.GetString(3);
string shipAddress = dataReader.GetString(4);
string shipCity = dataReader.GetString(5);
string shipCountry = dataReader.GetString(6);
Console.WriteLine(
“Order {0}\nPlaced {1}\nShipped{2}\n” +
“To Address {3}\n{4}\n{5}\n{6}\n\n”, orderId, orderDate,
shipDate, shipName, shipAddress, shipCity, shipCountry);
}
}

The if statement uses the IsDBNull method to determine whether the ShippedDate
column (column 2 in the table) is null. If it is null, no attempt is made to fetch it (or
any of the other columns, which should also be null if there is no ShippedDate value);
otherwise, the columns are read and printed as before.

2. Build and run the application again.
3. Type BONAP for the customer ID when prompted.

This time you do not get any errors, but you receive a list of orders that have not yet
been shipped.

4. When the application finishes, press Enter and return to Visual Studio 2008.

512 PartV Managing Data

Querying a Database by Using DLINQ

In Chapter 20, “Querying In-Memory Data by Using Query Expressions,” you saw how to

use LINQ to examine the contents of enumerable collections held in memory. LINQ pro-
vides query expressions, which use SQL-like syntax for performing queries and generating

a result set that you can then step through. It should come as no surprise that you can use

an extended form of LINQ, called DLINQ, for querying and manipulating the contents of

a database. DLINQ is built on top of ADO.NET. DLINQ provides a high level of abstraction,
removing the need for you to worry about the details of constructing an ADO.NET Command
object, iterating through a result set returned by a DataReader object, or fetching data
column by column by using the various GetXXX methods.

Defining an Entity Class

You saw in Chapter 20 that using LINQ requires the objects that you are querying be
enumerable; they must be collections that implement the /Enumerable interface. DLINQ can
create its own enumerable collections of objects based on classes you define and that map
directly to tables in a database. These classes are called entity classes. When you connect to
a database and perform a query, DLINQ can retrieve the data identified by your query and
create an instance of an entity class for each row fetched.

The best way to explain DLINQ is to see an example. The Products table in the Northwind
database contains columns that contain information about the different aspects of the vari-
ous products that Northwind Traders sells. The part of the instnwnd.sql script that you ran in
the first exercise in this chapter contains a CREATE TABLE statement that looks similar to this
(some of the columns, constraints, and other details have been omitted):

CREATE TABLE “Products” (
“ProductID” “int” NOT NULL ,
“ProductName” nvarchar (40) NOT NULL ,
“SupplierID” “int” NULL ,
“UnitPrice” “money” NULL,
CONSTRAINT “PK_Products” PRIMARY KEY CLUSTERED (“ProductID”),
CONSTRAINT “FK_Products_Suppliers” FOREIGN KEY (“SupplierID”)
REFERENCES “dbo”.”Suppliers” (“SupplierID”)
)

You can define an entity class that corresponds to the Products table like this:

[TabTe(Name = “Products”)]
public class Product

{
[CoTumn(IsPrimaryKey = true, CanBeNull = false)]
public int ProductID { get; set; }

[Column(CanBeNull = false)]
public string ProductName { get; set; }

Chapter 25 Querying Information in a Database 513

[CoTumn]
pubTlic int? SupplierID { get; set; }

[Column(DbType = “money”)]
public decimal? UnitPrice { get; set; }

3

The Product class contains a property for each of the columns in which you are interested in
the Products table. You don't have to specify every column from the underlying table, but
any columns that you omit will not be retrieved when you execute a query based on this
entity class. The important points to note are the Table and Column attributes.

The Table attribute identifies this class as an entity class. The Name parameter specifies the
name of the corresponding table in the database. If you omit the Name parameter, DLINQ
assumes that the entity class name is the same as the name of the corresponding table in the
database.

The Column attribute describes how a column in the Products table maps to a property in the
Product class. The Column attribute can take a number of parameters. The ones shown in this
example and described in the following list are the most common:

B The IsPrimaryKey parameter specifies that the property makes up part of the primary
key. (If the table has a composite primary key spanning multiple columns, you should
specify the IsPrimaryKey parameter for each corresponding property in the entity class.)

B The DbType parameter specifies the type of the underlying column in the database.
In many cases, DLINQ can detect and convert data in a column in the database to the
type of the corresponding property in the entity class, but in some situations you need
to specify the data type mapping yourself. For example, the UnitPrice column in the
Products table uses the SQL Server money type. The entity class specifies the corre-
sponding property as a decimal value.

= Note The default mapping of money data in SQL Server is to the decimal type in an entity
class, so the DbType parameter shown here is actually redundant. However, | wanted to
show you the syntax.

B The CanBeNull parameter indicates whether the column in the database can contain a
null value. The default value for the CanBeNull parameter is true. Notice that the two
properties in the Product table that correspond to columns that permit null values in
the database (SupplierlD and UnitPrice) are defined as nullable types in the entity class.

Part V. Managing Data

Note You can also use DLINQ to create new databases and tables based on the definitions of
your entity classes by using the CreateDatabase method of the DataContext object. In the cur-
rent version of DLINQ, the part of the library that creates tables uses the definition of the DbType
parameter to specify whether a column should allow null values. If you are using DLINQ to create
a new database, you should specify the nullability of each column in each table in the DbType
parameter, like this:

[CoTumn(DbType = “NVarChar(40) NOT NULL”, CanBeNull = false)]
public string ProductName { get; set; }

[CoTumn(DbType = “Int NULL”, CanBeNull = true)]
public int? SupplierID { get; set; }

Like the Table attribute, the Column attribute provides a Name parameter that you can use
to specify the name of the underlying column in the database. If you omit this parameter,
DLINQ assumes that the name of the column is the same as the name of the property in the
entity class.

Creating and Running a DLINQ Query

Having defined an entity class, you can use it to fetch and display data from the Products
table. The following code shows the basic steps for doing this:

DataContext db = new DataContext(“Integrated Security=true;” +
“Initial Catalog=Northwind;Data Source=YourComputer\\SQLExpress”);

Table<Product> products = db.GetTable<Product>();
var productsQuery = from p in products

select p;

foreach (var product in productsQuery)

{

Console.WriteLine(“ID: {0}, Name: {1}, Supplier: {2}, Price: {3:C}”,
product.ProductID, product.ProductName,
product.SupplierID, product.UnitPrice);

}

Note Remember that the keywords from, in, and select in this context are C# identifiers. You
must type them in lowercase.

The DataContext class is responsible for managing the relationship between your entity
classes and the tables in the database. You use it to establish a connection to the database
and create collections of the entity classes. The DataContext constructor expects a connec-
tion string as a parameter, specifying the database that you want to use. This connection
string is exactly the same as the connection string that you would use when connecting

Chapter 25 Querying Information in a Database 515

through an ADO.NET Connection object. (The DataContext class actually creates an ADO.NET
connection behind the scenes.)

The generic GetTable<TEntity> method of the DataContext class expects an entity class as its
TEntity type parameter. This method constructs an enumerable collection based on this type
and returns the collection as a Table<TEntity> type. You can perform DLINQ queries over this
collection. The query shown in this example simply retrieves every object from the Products
table.

Note If you need to recap your knowledge of LINQ query expressions, turn back to Chapter 20.

The foreach statement iterates through the results of this query and displays the details of
each product. The following image shows the results of running this code. (The prices shown
are per case, not per individual item.)

B Chindowshsystem3diemd,exe

: Chai, Supplier:
H Chqng. Supplie

.0d
: Chef Anton Cajun Seasoning. ier o : E22 a8
: Chef Ant ier = £21.

: Grandma’ P r » ier E25 an

: Uncle Bobh’'s Organic Dried i 3, Pl u:e: £38.88
: Northwoods Cranherry Sau ier: 3, Price: £40.88
H Hr‘}u Kohe leu, Supplle 1]

I

-8a
Price: £38.80
Konbu,. Supplier
Tofu,. Supplie
Genen Shouyu, Supplie
Pavlova, Supplier:
Alice Mutton. H
Carnarvon Tigers. Suppl
Teatime Chuculate Biscuit

The DataContext object controls the database connection automatically; it opens the
connection immediately prior to fetching the first row of data in the foreach statement and
then closes the connection after the last row has been retrieved.

The DLINQ query shown in the preceding example retrieves every column for every row
in the Products table. In this case, you can actually iterate through the products collection
directly, like this:

Table<Product> products = db.GetTable<Product>(Q);

foreach (Product product in products)

{
}

When the foreach statement runs, the DataContext object constructs a SQL SELECT state-
ment that simply retrieves all the data from the Products table. If you want to retrieve a
single row in the Products table, you can call the Single method of the Products entity class.

516

Part V. Managing Data

Single is an extension method that itself takes a method that identifies the row you want

to find and returns this row as an instance of the entity class (as opposed to a collection of
rows in a Table collection). You can specify the method parameter as a lambda expression.
If the lambda expression does not identify exactly one row, the Single method returns an
InvalidOperationException. The following code example queries the Northwind database for
the product with the ProductID value of 27. The value returned is an instance of the Product
class, and the Console.WriteLine statement prints the name of the product. As before, the
database connection is opened and closed automatically by the DataContext object.

Product singleProduct = products.Single(p => p.ProductID == 27);
Console.WriteLine(“Name: {0}”, singleProduct.ProductName);

Deferred and Immediate Fetching

An important point to emphasize is that by default, DLINQ retrieves the data from the
database only when you request it and not when you define a DLINQ query or create a Table
collection. This is known as deferred fetching. In the example shown earlier that displays

all of the products from the Products table, the productsQuery collection is populated only
when the foreach loop runs. This mode of operation matches that of LINQ when querying
in-memory objects; you will always see the most up-to-date version of the data, even if the
data changes after you have run the statement that creates the productsQuery enumerable
collection.

When the foreach loop starts, DLINQ creates and runs a SQL SELECT statement derived from
the DLINQ query to create an ADO.NET DataReader object. Each iteration of the foreach loop
performs the necessary GetXXX methods to fetch the data for that row. After the final row
has been fetched and processed by the foreach loop, DLINQ closes the database connection.

Deferred fetching ensures that only the data an application actually uses is retrieved from
the database. However, if you are accessing a database running on a remote instance of SQL
Server, fetching data row by row does not make the best use of network bandwidth. In this
scenario, you can fetch and cache all the data in a single network request by forcing immedi-
ate evaluation of the DLINQ query. You can do this by calling the ToList or ToArray extension
methods, which fetch the data into a list or array when you define the DLINQ query, like this:

var productsQuery = from p in products.TolList()
select p;

In this code example, productsQuery is now an enumerable list, populated with information
from the Products table. When you iterate over the data, DLINQ retrieves it from this list
rather than sending fetch requests to the database.

Chapter 25 Querying Information in a Database 517

Joining Tables and Creating Relationships

DLINQ supports the join query operator for combining and retrieving related data held in
multiple tables. For example, the Products table in the Northwind database holds the ID of
the supplier for each product. If you want to know the name of each supplier, you have to
query the Suppliers table. The Suppliers table contains the CompanyName column, which
specifies the name of the supplier company, and the ContactName column, which con-
tains the name of the person in the supplier company that handles orders from Northwind
Traders. You can define an entity class containing the relevant supplier information like this
(the SupplierName column in the database is mandatory, but the ContactName allows null
values):

[Table(Name = “Suppliers”)]
public class Supplier

{
[Column(IsPrimaryKey = true, CanBeNull = false)]
public int SupplierID { get; set; }

[CoTumn(CanBeNull = false)]
pubTlic string CompanyName { get; set; }

[CoTumn]
pubTlic string ContactName { get; set; }
}

You can then instantiate Table<Product> and Table<Supplier> collections and define a DLINQ
query to join these tables together, like this:

DataContext db = new DataContext(...);
Table<Product> products = db.GetTable<Product>();
Table<Supplier> suppliers = db.GetTable<Supplier>Q);
var productsAndSuppliers = from p in products
join s in suppliers
on p.SupplierID equals s.SupplierID
select new { p.ProductName, s.CompanyName, s.ContactName };

When you iterate through the productsAndSuppliers collection, DLINQ will execute a SQL
SELECT statement that joins the Products and Suppliers tables in the database over the
SupplierID column in both tables and fetches the data.

However, with DLINQ you can specify the relationships between tables as part of the
definition of the entity classes. DLINQ can then fetch the supplier information for each
product automatically without requiring that you code a potentially complex and error-prone
Join statement. Returning to the products and suppliers example, these tables have a many-
to-one relationship in the Northwind database; each product is supplied by a single supplier,
but a single supplier can supply several products. Phrasing this relationship slightly differ-
ently, a row in the Product table can reference a single row in the Suppliers table through the
SupplierID columns in both tables, but a row in the Suppliers table can reference a whole set

518

Part V. Managing Data

of rows in the Products table. DLINQ provides the EntityRef<TEntity> and EntitySet<TEntity>
generic types to model this type of relationship. Taking the Product entity class first, you
can define the “one” side of the relationship with the Supplier entity class by using the
EntityRef<Supplier> type, as shown here in bold type:

[TabTe(Name = “Products”)]
public class Product

{
[Column(IsPrimaryKey = true, CanBeNull = false)]
public int ProductID { get; set; }

[CoTumn]
pubTlic int? SupplierID { get; set; }

private EntityRef<Supplier> supplier;
[Association(Storage = “supplier”, ThisKey = “SupplierID”, OtherKey = “SupplierID”)]
public Supplier Supplier

{
get { return this.supplier.Entity; }
set { this.supplier.Entity = value; }

}

The private supplier field is a reference to an instance of the Supplier entity class. The public
Supplier property provides access to this reference. The Association attribute specifies how
DLINQ locates and populates the data for this property. The Storage parameter identifies

the private field used to store the reference to the Supplier object. The ThisKey parameter
indicates which property in the Product entity class DLINQ should use to locate the Supplier
to reference for this product, and the OtherKey parameter specifies which property in the
Supplier table DLINQ should match against the value for the ThisKey parameter. In this exam-
ple, The Product and Supplier tables are joined across the SupplierlD property in both entities.

Note The Storage parameter is actually optional. If you specify it, DLINQ accesses the
corresponding data member directly when populating it rather than going through the set
accessor. The set accessor is required for applications that manually fill or change the entity
object referenced by the EntityRef<TEntity> property. Although the Storage parameter is actually
redundant in this example, it is recommended practice to include it.

The get accessor in the Supplier property returns a reference to the Supplier entity by using
the Entity property of the EntityRef<Supplier> type. The set accessor populates this property
with a reference to a Supplier entity.

Chapter 25 Querying Information in a Database 519

You can define the “many” side of the relationship in the Supplier class with the
EntitySet<Product> type, like this:

[Table(Name = “Suppliers”)]
public class Supplier

{
[CoTumn(IsPrimaryKey = true, CanBeNull = false)]
public int SupplierID { get; set; }

private EntitySet<Product> products = null;
[Association(Storage = “products”, OtherKey = “SupplierID”, ThisKey = “SupplierID”)]
public EntitySet<Product> Products

{
get { return this.products; }
set { this.products.Assign(value); }

Tip Itis conventional to use a singular noun for the name of an entity class and its properties.
The exception to this rule is that EntitySet<TEntity> properties typically take the plural form
because they represent a collection rather than a single entity.

This time, notice that the Storage parameter of the Association attribute specifies the private
EntitySet<Product> field. An EntitySet<TEntity> object holds a collection of references to en-
tities. The get accessor of the public Products property returns this collection. The set acces-
sor uses the Assign method of the EntitySet<Product> class to populate this collection.

So, by using the EntityRef<TEntity> and EntitySet<TEntity> types you can define properties
that can model a one-to-many relationship, but how do you actually fill these properties
with data? The answer is that DLINQ fills them for you when it fetches the data. The follow-
ing code creates an instance of the Table<Product> class and issues a DLINQ query to fetch
the details of all products. This code is similar to the first DLINQ example you saw earlier. The
difference is in the foreach loop that displays the data.

DataContext db = new DataContext(...);
Table<Product> products = db.GetTable<Product>(Q);

var productsAndSuppliers = from p in products
select p;

foreach (var product in productsAndSuppliers)

{
Console.WriteLine(“Product {0} supplied by {1}”,
product.ProductName, product.Supplier.CompanyName) ;

520

Part V. Managing Data

The Console.WriteLine statement reads the value in the ProductName property of the product
entity as before, but it also accesses the Supplier entity and displays the CompanyName
property from this entity. If you run this code, the output looks like this:

Em Chwindowssystern32hemd.exe

-0l x|

Chartreuse vew supplied by Aux joyeux ecc astiques
Bos Grab Meat supplied by New England Seafood Cannery
s Mew England Clam Chowder supplied by New England Seafood Cannery
Singaporean Hokkien Fried Mee supplied by Leka Trading
Ipoh Coffee supplied by Leka Trading
Gula Malacca .,upp11e(l by Leka T1 adlng
Rogede sil hy
Spegesild d
Zaanse ki supplied by Zaan.,e Snoepfabriek
Chocolade pplied by Zaanse Snoepfabriek
Maxilaku supplied by Karkki Oy
Ualkoinen suklaa supplied hy Ral kki Oy
ManJ1mllp ried Apples supplied by G‘day Mate
supplied by G’day. Mate

supplied by G'day. Mate

lied by Ma Maison

supplied by Ma Maison
Gnocchi d1 nnnna flice supplied by Pasta Buttini s.».1.
Ravioli fAingelo supplied by Pasta Butti 1.
Escargots de Bourgogne supplied by E.,t:algn s Mouveaux
Raclette Courdavault "lll]l)lled hy Gal paturage

Product Camembert Pierrot sw

As the code fetches each Product entity, DLINQ executes a second, deferred, query to
retrieve the details of the supplier for that product so that it can populate the Supplier
property, based on the relationship specified by the Association attribute of this property in
the Product entity class.

When you have defined the Product and Supplier entities as having a one-to-many
relationship, similar logic applies if you execute a DLINQ query over the Table<Supplier>
collection, like this:

DataContext db = new DataContext(...);

Table<Supplier> suppliers = db.GetTable<Supplier>Q);

var suppliersAndProducts = from s in suppliers
select s;

foreach (var supplier in suppliersAndProducts)

{
Console.WriteLine(“Supplier name: {0}”, supplier.CompanyName);
Console.WriteLine(“Products supplied”);
foreach (var product in supplier.Products)
{
Console.WriteLine(“\t{0}”, product.ProductName);
}
Console.WriteLine();
}

In this case, when the foreach loop fetches a supplier, it runs a second query (again deferred)
to retrieve all the products for that supplier and populate the Products property. This time,
however, the property is a collection (an EntitySet<Product>), so you can code a nested

Chapter 25 Querying Information in a Database 521

foreach statement to iterate through the set, displaying the name of each product. The
output of this code looks like this:

B ChWind oweshsystern32hemd.exe B =13

Supplier name: Exotic Liguids
Products supplie

Chai

Chang

Aniseed Syrup

Supplier name: Hew Orleans Cajun Delights
Products supplie
Chef Anton’s Cajun Seasoning
Chef Anton’s Gumbo Mix
Louisiana Fiery Hot Pepper Sauce
Louwisiana Hot Spiced Okra

Supplier name: Grandma Kelly’s Homestead
Products supplied
Grandma's Boysenberry Spread
Uncle Bob's Organic Dried Pears
Northwoods Cranberry Sauce

Supplier name: Tokyo Traders
Products supplied
Mishi Kobe Miku

Ikura
Longlife Tofu

Deferred and Immediate Fetching Revisited

Earlier in this chapter, | mentioned that DLINQ defers fetching data until the data is actually
requested but that you could apply the ToList or ToArray extension method to retrieve data
immediately. This technique does not apply to data referenced as EntitySet<TEntity> or
EntityRef<TEntity> properties; even if you use TolList or ToArray, the data will still be fetched
only when accessed. If you want to force DLINQ to query and fetch referenced data immedi-
ately, you can set the LoadOptions property of the DataContext object as follows:

DataContext db = new DataContext(...);

Table<Supplier> suppliers = db.GetTable<Supplier>Q);

DatalLoadOptions loadOptions = new DatalLoadOptions();

ToadOptions.LoadWith<Supplier>(s => s.Products);

db.LoadOptions = ToadOptions;

var suppliersAndProducts = from s in suppliers
select s;

The DataloadOptions class provides the generic LoadWith method. By using this method,
you can specify whether an EntitySet<TEntity> property in an instance should be loaded
when the instance is populated. The parameter to the LoadWith method is another method,
which you can supply as a lambda expression. The example shown here causes the Products
property of each Supplier entity to be populated as soon as the data for each Product en-
tity is fetched rather than being deferred. If you specify the LoadOptions property of the
DataContext object together with the ToList or ToArray extension method of a Table collec-
tion, DLINQ will load the entire collection as well as the data for the referenced properties for
the entities in that collection into memory as soon as the DLINQ query is evaluated.

522 PartV Managing Data

Tip If you have several EntitySet<TEntity> properties, you can call the LoadWith method of the
same LoadOptions object several times, each time specifying the EntitySet<TEntity> to load.

Defining a Custom DataContext Class

The DataContext class provides functionality for managing databases and database connec-
tions, creating entity classes, and executing commands to retrieve and update data in a da-
tabase. Although you can use the raw DataContext class provided with the .NET Framework,
it is better practice to use inheritance and define your own specialized version that declares
the various Table<TEntity> collections as public members. For example, here is a special-
ized DataContext class that exposes the Products and Suppliers Table collections as public
members:

public class Northwind : DataContext

{
pubTlic Table<Product> Products;
pubTlic TabTle<Supplier> Suppliers;
public Northwind(string connectionInfo) : base(connectionInfo)
{
}
}

Notice that the Northwind class also provides a constructor that takes a connection string as
a parameter. You can create a new instance of the Northwind class and then define and run
DLINQ queries over the Table collection classes it exposes like this:

Northwind nwindDB = new Northwind(...);

var suppliersQuery = from s in nwindDB.Suppliers
select s;

foreach (var supplier in suppliersQuery)

{
3

This practice makes your code easier to maintain, especially if you are retrieving data from
multiple databases. Using an ordinary DataContext object, you can instantiate any entity class
by using the GetTable method, regardless of the database to which the DataContext object
connects. You find out that you have used the wrong DataContext object and have con-
nected to the wrong database only at run time, when you try to retrieve data. With a custom
DataContext class, you reference the Table collections through the DataContext object. (The
base DataContext constructor uses a mechanism called reflection to examine its members,
and it automatically instantiates any members that are Table collections—the details of how

Chapter 25 Querying Information in a Database 523

reflection works are outside the scope of this book.) It is obvious to which database you need
to connect to retrieve data for a specific table; if IntelliSense does not display your table
when you define the DLINQ query, you have picked the wrong DataContext class, and your
code will not compile.

Using DLINQ to Query Order Information

In the following exercise, you will write a version of the console application that you
developed in the preceding exercise that prompts the user for a customer ID and displays the
details of any orders placed by that customer. You will use DLINQ to retrieve the data. You
will then be able to compare DLINQ with the equivalent code written by using ADO.NET.

Define the Order entity class

1.

Using Visual Studio 2008, create a new project called DLINQOrders by using the
Console Application template. Save it in the \Microsoft Press\Visual CSharp Step By
Step\Chapter 25 folder under your Documents folder, and then click OK.

In Solution Explorer, change the name of the file Program.cs to DLINQReport.cs. In the
Microsoft Visual Studio message, click Yes to change all references of the Program class
to DLINQReport.

On the Project menu, click Add Reference. In the Add Reference dialog box, click the
.NET tab, select the System.Data.Ling assembly, and then click OK.

This assembly holds the DLINQ types and attributes.

In the Code and Text Editor window, add the following using statements to the list at
the top of the file:

using System.Data.Ling;
using System.Data.Ling.Mapping;
using System.Data.SqlClient;

. Add the Order entity class to the DLINQReport.cs file after the DLINQReport class, as

follows:

[TabTe(Name = “Orders”)]

public class Order

{

}

The table is called Orders in the Northwind database. Remember that it is common
practice to use the singular noun for the name of an entity class because an entity ob-
ject represents one row from the database.

524

Part V. Managing Data

6.

Add the property shown here in bold type to the Order class:

[TabTe(Name = “Orders”)]
public class Order

{
[Column(IsPrimaryKey = true, CanBeNull = false)]
public int OrderID { get; set; }

}

The OrderID column is the primary key for this table in the Northwind database.

Add the following properties shown in bold type to the Order class:

[Table(Name = “Orders”)]
public class Order

{
[Column]
public string CustomerID { get; set; }

[Column]
public DateTime? OrderDate { get; set; }

[CoTlumn]
public DateTime? ShippedDate { get; set; }

[CoTlumn]
public string ShipName { get; set; }

[CoTlumn]
public string ShipAddress { get; set; }

[CoTlumn]
public string ShipCity { get; set; }

[CoTlumn]

public string ShipCountry { get; set; }
}
These properties hold the customer ID, order date, and shipping information for an or-
der. In the database, all of these columns allow null values, so it is important to use the
nullable version of the DateTime type for the OrderDate and ShippedDate properties
(string is a reference type that automatically allows null values). Notice that DLINQ au-
tomatically maps the SQL Server NVarChar type to the .NET Framework string type and
the SQL Server DateTime type to the .NET Framework DateTime type.

Add the following Northwind class to the DLINQReport.cs file after the Order entity
class:

public class Northwind : DataContext

{
public Table<Order> Orders;

Chapter 25 Querying Information in a Database 525

public Northwind(string connectionInfo) : base (connectionInfo)

{

3
3
The Northwind class is a DataContext class that exposes a Table property based on
the Order entity class. In the next exercise, you will use this specialized version of the

DataContext class to access the Orders table in the database.

Retrieve order information by using a DLINQ query

1. In the Main method of the DLINQReport class, add the statement shown here in bold
type, which creates a Northwind object. Be sure to replace YourComputer with the
name of your computer:

static void Main(string[] args)
{
Northwind northwindDB = new Northwind(“Integrated Security=true;” +
“Initial Catalog=Northwind;Data Source=YourComputer\\SQLExpress”);

3

The connection string specified here is exactly the same as in the earlier exercise. The
northwindDB object uses this string to connect to the Northwind database.

2. After the variable declaration, add a try/catch block to the Main method:

static void Main(string[] args)

{
try
{
// You will add your code here in a moment
}
catch(SqlException e)
{
Console.WriteLine(“Error accessing the database: {0}”, e.Message);
}
}

As when using ordinary ADO.NET code, DLINQ raises a Sg/Exception if an error occurs
when accessing a SQL Server database.

3. Replace the comment in the try block with the following code shown in bold type:

try

{
Console.Write(“Please enter a customer ID (5 characters): “);
string customerId = Console.ReadLine();

}

These statements prompt the user for a customer ID and save the user’s response in the
string variable customerld.

526

Part V. Managing Data

4.

Type the statement shown here in bold type after the code you just entered:

try
{

var ordersQuery = from o in northwindDB.Orders
where String.Equals(o.CustomerID, customerId)
select o;

}

This statement defines the DLINQ query that will retrieve the orders for the specified
customer.

. Add the foreach statement and if...else block shown here in bold type after the code

you added in the preceding step:

try
{
foreach (var order in ordersQuery)
{
if (order.ShippedDate == null)
{
Console.WriteLine(“Order {0} not yet shipped\n\n”, order.OrderID);
}
else
{
// Display the order details
}
}
}

The foreach statement iterates through the orders for the customer. If the value in the
ShippedDate column in the database is null, the corresponding property in the Order
entity object is also null, and then the if statement outputs a suitable message.

Replace the comment in the else part of the if statement you added in the preceding
step with the code shown here in bold type:

if (order.ShippedDate == null)
{

}

else

{

Console.WriteLine(“Order: {0}\nPlaced: {1}\nShipped: {2}\n” +

“To Address: {3}\n{4}\n{5}\n{6}\n\n”, order.OrderID,
order.OrderDate, order.ShippedDate, order.ShipName,
order.ShipAddress, order.ShipCity,
order.ShipCountry);

Chapter 25 Querying Information in a Database 527
7. On the Debug menu, click Start Without Debugging to build and run the application.

8. In the console window displaying the message “Please enter a customer ID (5 charac-
ters):”, type VINET.

The application should display a list of orders for this customer. When the application
has finished, press Enter to return to Visual Studio 2008.

9. Run the application again. This time type BONAP when prompted for a customer ID.

The final order for this customer has not yet shipped and contains a null value for the
ShippedDate column. Verify that the application detects and handles this null value.
When the application has finished, press Enter to return to Visual Studio 2008.

You have now seen the basic elements that DLINQ provides for querying information from a
database. DLINQ has many more features that you can employ in your applications, includ-
ing the ability to modify data and update a database. You will look briefly at some of these
aspects of DLINQ in the next chapter.

B |f you want to continue to the next chapter
Keep Visual Studio 2008 running, and turn to Chapter 26.
B |f you want to exit Visual Studio 2008 now

On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using
Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and save
the project.

Chapter 25 Quick Reference

To Do this

Connect to a SQL Server data- Create a Sq/Connection object, set its ConnectionString property

base by using ADO.NET with details specifying the database to use, and call the Open
method.

Create and execute a database Create a Sq/Command object. Set its Connection property to a

query by using ADO.NET valid Sg/Connection object. Set its CommandText property to a

valid SQL SELECT statement. Call the ExecuteReader method to
run the query and create a Sq/DataReader object.

Fetch data by using an ADO.NET Ensure that the data is not null by using the IsDBNull method. If
SglDataReader object the data is not null, use the appropriate GetXXX method (such
as GetString or GetInt32) to retrieve the data.

528 PartV Managing Data

Define an entity class

Create and execute a query by
using DLINQ

Define a class with public properties for each column. Prefix the
class definition with the Table attribute, specifying the name of
the table in the underlying database. Prefix each property with
the Column attribute, and specify parameters indicating the
name, type, and nullability of the corresponding column in the
database.

Create a DataContext variable, and specify a connection string
for the database. Create a Table collection variable based on
the entity class corresponding to the table you want to query.
Define a DLINQ query that identifies the data to be retrieved
from the database and returns an enumerable collection of en-
tities. Iterate through the enumerable collection to retrieve the
data for each row and process the results.

	Cover
	Table of Contents
	Chapter 25: Querying Information in a Database
	Querying a Database by Using ADO.NET
	The Northwind Database
	Creating the Database
	Using ADO.NET to Query Order Information

	Querying a Database by Using DLINQ
	Defining an Entity Class
	Creating and Running a DLINQ Query
	Deferred and Immediate Fetching
	Joining Tables and Creating Relationships
	Deferred and Immediate Fetching Revisited
	Defining a Custom DataContext Class
	Using DLINQ to Query Order Information

	Chapter 25 Quick Reference

