

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/12001.aspx

9780735625273

© 2008 Dino Esposito. All rights reserved.

Programming Microsoft
®

ASP.NET 3.5

Dino Esposito

vii
www.microsoft.com/learning/booksurvey

Microsoft is interested in hearing your feedback so we can continually improve our books and

learning resources for you. To participate in a brief online survey, please visit:

What do you think of this book? We want to hear from you!

Table of Contents

Acknowledgements .xix

Introduction .xxi

Part I Building an ASP.NET Page

1 The ASP.NET Programming Model. 3

What’s ASP.NET, Anyway? . 4

Programming in the Age of Web Forms . 5

Event-Driven Programming over HTTP . 6

The HTTP Protocol. 8

Structure of an ASP.NET Page . 11

The ASP.NET Component Model. 15

A Model for Component Interaction . 16

The runat Attribute . 16

ASP.NET Server Controls . 20

The ASP.NET Development Stack . 21

The Presentation Layer . 21

The Page Framework. 22

The HTTP Runtime Environment . 25

The ASP.NET Provider Model . 28

The Rationale Behind the Provider Model. 28

A Quick Look at the ASP.NET Implementation . 32

Conclusion . 37

Just the Facts. 37

2 Web Development in Microsoft Visual Studio 2008 39

Introducing Visual Studio 2008 . 40

Visual Studio Highlights . 40

Visual Studio 2008–Specific New Features . 45

New Language Features . 50

A05C625273.indd 7 1/15/2008 3:59:19 PM

viii Table of Contents

Create an ASP.NET Web Site Project . 55

Page Design Features . 55

Adding Code to the Project . 62

ASP.NET Protected Folders. 66

Build the ASP.NET Project. 72

Application Deployment. 75

XCopy Deployment . 75

Site Precompilation . 78

Administering an ASP.NET Application. 81

The Web Site Administration Tool. 82

Editing ASP.NET Configuration Files . 85

Conclusion . 87

Just the Facts. 88

3 Anatomy of an ASP.NET Page . 89

Invoking a Page . 89

The Runtime Machinery . 90

Processing the Request. 97

The Processing Directives of a Page . 102

The Page Class . 112

Properties of the Page Class. 113

Methods of the Page Class . 117

Events of the Page Class . 121

The Eventing Model . 122

Asynchronous Pages . 124

The Page Life Cycle . 132

Page Setup . 132

Handling the Postback . 135

Page Finalization . 136

Conclusion . 138

Just the Facts. 139

4 ASP.NET Core Server Controls. 141

Generalities of ASP.NET Server Controls . 142

Properties of the Control Class . 143

Methods of the Control Class. 146

Events of the Control Class . 146

Other Features . 147

A05C625273.indd 8 1/15/2008 3:59:19 PM

Table of Contents ix

HTML Controls . 153

Generalities of HTML Controls. 153

HTML Container Controls . 156

HTML Input Controls . 162

The HtmlImage Control . 168

Web Controls . 169

Generalities of Web Controls . 169

Core Web Controls . 172

Miscellaneous Web Controls . 179

Validation Controls. 184

Generalities of Validation Controls . 185

Gallery of Controls . 187

Special Capabilities . 192

Conclusion . 198

Just The Facts . 199

5 Working with the Page . 201

Programming with Forms . 202

The HtmlForm Class. 202

Multiple Forms . 205

Cross-Page Postings . 209

Dealing with Page Errors. 214

Basics of Error Handling . 215

Mapping Errors to Pages . 220

ASP.NET Tracing . 225

Tracing the Execution Flow in ASP.NET . 225

Writing Trace Messages . 227

The Trace Viewer . 229

Page Personalization . 230

Creating the User Profile. 231

Interacting with the Page . 234

Profile Providers . 241

Conclusion . 244

Just The Facts . 245

6 Rich Page Composition . 247

Working with Master Pages . 248

Authoring Rich Pages in ASP.NET 1.x . 248

Writing a Master Page. 250

A05C625273.indd 9 1/15/2008 3:59:19 PM

x Table of Contents

Writing a Content Page . 253

Processing Master and Content Pages. 258

Programming the Master Page . 262

Working with Themes . 265

Understanding ASP.NET Themes. 266

Theming Pages and Controls . 270

Putting Themes to Work. 273

Working with Wizards . 277

An Overview of the Wizard Control . 277

Adding Steps to a Wizard. 282

Navigating Through the Wizard . 285

Conclusion . 290

Just the Facts. 290

Part II Adding Data in an ASP.NET Site

7 ADO.NET Data Providers . 295

.NET Data Access Infrastructure. 295

.NET Managed Data Providers. 296

Data Sources You Access Through ADO.NET . 300

The Provider Factory Model. 303

Connecting to Data Sources. 307

The SqlConnection Class . 308

Connection Strings . 314

Connection Pooling. 321

Executing Commands . 327

The SqlCommand Class . 327

ADO.NET Data Readers. 331

Asynchronous Commands . 337

Working with Transactions . 342

SQL Server 2005–Specific Enhancements . 347

Conclusion . 352

Just The Facts . 353

8 ADO.NET Data Containers . 355

Data Adapters . 355

The SqlDataAdapter Class. 356

The Table-Mapping Mechanism . 362

A05C625273.indd 10 1/15/2008 3:59:19 PM

Table of Contents xi

How Batch Update Works . 367

In-Memory Data Container Objects . 369

The DataSet Object . 370

The DataTable Object . 377

Data Relations. 383

The DataView Object . 386

Conclusion . 389

Just The Facts . 390

9 The Data-Binding Model . 391

Data Source-Based Data Binding . 392

Feasible Data Sources . 392

Data-Binding Properties . 395

List Controls . 401

Iterative Controls . 407

Data-Binding Expressions . 413

Simple Data Binding . 413

The DataBinder Class. 416

Other Data-Binding Methods . 418

Data Source Components. 422

Overview of Data Source Components . 422

Internals of Data Source Controls . 424

The SqlDataSource Control. 427

The AccessDataSource Class . 433

The ObjectDataSource Control . 434

The LinqDataSource Class . 445

The SiteMapDataSource Class . 456

The XmlDataSource Class . 460

Conclusion .464

Just the Facts. 465

10 The Linq-to-SQL Programming Model . 467

LINQ In Brief . 468

Language-Integrated Tools for Data Operations 468

A Common Query Syntax. 473

The Mechanics of LINQ . 482

Working with SQL Server . 485

The Data Context . 486

A05C625273.indd 11 1/15/2008 3:59:19 PM

xii Table of Contents

Querying for Data . 490

Updating Data . 498

Other Features . 505

Conclusion . 507

Just the Facts. 508

11 Creating Bindable Grids of Data . 509

The DataGrid Control . 510

The DataGrid Object Model. 510

Binding Data to the Grid. 516

Working with the DataGrid . 520

The GridView Control . 524

The GridView Object Model. 524

Binding Data to a GridView Control . 530

Paging Data . 541

Sorting Data . 547

Editing Data . 554

Advanced Capabilities. 559

Conclusion . 565

Just The Facts . 566

12 Managing a List of Records . 567

The ListView Control . 567

The ListView Object Model . 568

Defining the Layout of the List . 576

Building a Tabular Layout . 577

Building a Flow Layout . 582

Building a Tiled Layout . 584

Styling the List . 590

Working with the ListView Control . 593

In-Place Editing . 594

Conducting the Update . 597

Inserting New Data Items . 599

Selecting an Item . 603

Paging the List of Items . 606

Conclusion . 610

Just the Facts. 610

A05C625273.indd 12 1/15/2008 3:59:19 PM

Table of Contents xiii

13 Managing Views of a Record . 613

The DetailsView Control . 613

The DetailsView Object Model . 614

Binding Data to a DetailsView Control . 620

Creating Master/Detail Views . 624

Working with Data. 627

The FormView Control . 637

The FormView Object Model . 637

Binding Data to a FormView Control . 639

Editing Data . 642

Conclusion . 645

Just The Facts . 646

Part III ASP.NET Infrastructure

14 The HTTP Request Context . 649

Initialization of the Application . 650

Properties of the HttpApplication Class . 650

Application Modules . 651

Methods of the HttpApplication Class . 652

Events of the HttpApplication Class. 653

The global.asax File . 656

Compiling global.asax . 656

Syntax of global.asax . 658

Tracking Errors and Anomalies . 661

The HttpContext Class . 662

Properties of the HttpContext Class . 663

Methods of the HttpContext Class . 665

The Server Object. 667

Properties of the HttpServerUtility Class . 667

Methods of the HttpServerUtility Class . 668

The HttpResponse Object . 674

Properties of the HttpResponse Class . 674

Methods of the HttpResponse Class . 678

The HttpRequest Object . 681

Properties of the HttpRequest Class . 681

Methods of the HttpRequest Class . 685

Conclusion . 686

Just the Facts. 687

A05C625273.indd 13 1/15/2008 3:59:20 PM

xiv Table of Contents

15 ASP.NET State Management . 689

The Application’s State . 690

Properties of the HttpApplicationState Class. 691

Methods of the HttpApplicationState Class . 692

State Synchronization . 693

Tradeoffs of Application State . 694

The Session’s State . 695

The Session-State HTTP Module . 696

Properties of the HttpSessionState Class . 700

Methods of the HttpSessionState Class . 702

Working with a Session’s State. 702

Identifying a Session . 703

Lifetime of a Session . 709

Persist Session Data to Remote Servers . 711

Persist Session Data to SQL Server . 715

Customizing Session State Management. 721

Building a Custom Session State Provider . 722

Generating a Custom Session ID . 725

The View State of a Page . 728

The StateBag Class . 728

Common Issues with View State . 730

Programming Web Forms Without View State. 733

Changes in the ASP.NET View State . 736

Keeping the View State on the Server . 741

Conclusion . 745

Just the Facts. 746

16 ASP.NET Caching. 747

Caching Application Data . 747

The Cache Class . 748

Working with the ASP.NET Cache . 752

Practical Issues . 760

Designing a Custom Dependency . 766

A Cache Dependency for XML Data. 768

SQL Server Cache Dependency . 773

Caching ASP.NET Pages. 782

The @OutputCache Directive . 782

The HttpCachePolicy Class . 788

Caching Multiple Versions of a Page . 791

A05C625273.indd 14 1/15/2008 3:59:20 PM

Table of Contents xv

Caching Portions of ASP.NET Pages . 794

Advanced Caching Features. .800

Conclusion . 803

Just the Facts. .804

17 ASP.NET Security . 805

Where the Threats Come From . 806

The ASP.NET Security Context . 807

Who Really Runs My ASP.NET Application?. 807

Changing the Identity of the ASP.NET Process . 810

The Trust Level of ASP.NET Applications . 813

ASP.NET Authentication Methods. 817

Using Forms Authentication. 819

Forms Authentication Control Flow . 820

The FormsAuthentication Class . 825

Configuration of Forms Authentication . 827

Advanced Forms Authentication Features. 831

The Membership and Role Management API . 836

The Membership Class. 836

The Membership Provider . 842

Managing Roles . 847

Security-Related Controls . 853

The Login Control. 853

The LoginName Control . 856

The LoginStatus Control . 856

The LoginView Control . 858

The PasswordRecovery Control . 860

The ChangePassword Control . 862

The CreateUserWizard Control . 863

Conclusion . 865

Just the Facts. 866

18 HTTP Handlers and Modules . 867

Quick Overview of the IIS Extensibility API . 868

The ISAPI Model. 868

Changes in IIS 7.0 . 872

Writing HTTP Handlers . 873

The IHttpHandler Interface. 873

An HTTP handler for Quick Data Reports . 876

A05C625273.indd 15 1/15/2008 3:59:20 PM

xvi Table of Contents

The Picture Viewer Handler . 882

Serving Images More Effectively. 886

Advanced HTTP Handler Programming. 894

Writing HTTP Modules . 901

The IHttpModule Interface . 901

A Custom HTTP Module . 903

The Page Refresh Feature. 906

Conclusion . 913

Just the Facts. 913

Part IV ASP.NET AJAX Extensions

19 Partial Rendering: The Easy Way to AJAX 917

The ASP.NET AJAX Infrastructure . 918

The Hidden Engine of AJAX. 919

The Microsoft AJAX JavaScript Library. 926

The Script Manager Control. 939

Selective Page Updates with Partial Rendering . 950

The UpdatePanel Control . 951

Optimizing the Usage of the UpdatePanel Control 957

Giving Feedback to the User . 962

Light and Shade of Partial Rendering. 969

The AJAX Control Toolkit . 973

Enhancing Controls with Extenders . 973

Improving the User Interface with Input Extenders. 981

Adding Safe Popup Capabilities to Web Pages . 994

Conclusion .1002

Just the Facts. .1003

20 AJAX-Enabled Web Services . 1005

Implementing the AJAX Paradigm .1006

Moving Away from Partial Rendering .1006

Designing the –Client Layer of an ASP.NET AJAX Application 1008

Designing the –Server Layer of ASP.NET AJAX Applications 1010

Web Services for ASP.NET AJAX Applications . 1013

Web Services as Application-Specific Services . 1013

Remote Calls via Web Services . 1016

Consuming AJAX Web Services. 1020

Considerations for AJAX-Enabled Web Services 1026

A05C625273.indd 16 1/15/2008 3:59:20 PM

Table of Contents xvii

WCF Services for ASP.NET AJAX Applications . 1028

Building a Simple WCF Service . 1028

Building a Less Simple Service . 1033

Remote Calls via Page Methods . 1036

Introducing Page Methods . 1036

Consuming Page Methods . 1038

Conclusion . 1041

Just the Facts. 1042

21 Silverlight and Rich Internet Applications 1043

Silverlight Fast Facts. .1044

Versions of Silverlight .1044

Silverlight and Flash. 1047

Hosting Silverlight in Web Pages. .1048

The Silverlight Engine .1049

Defining XAML Content . 1057

The XAML Syntax in Silverlight .1062

The Silverlight Object Model . 1074

Silverlight Programming Fundamentals. 1074

Introducing Silverlight 2.0 .1082

Conclusion . 1087

Index . 1089

www.microsoft.com/learning/booksurvey

Microsoft is interested in hearing your feedback so we can continually improve our books and

learning resources for you. To participate in a brief online survey, please visit:

What do you think of this book? We want to hear from you!

A05C625273.indd 17 1/15/2008 3:59:20 PM

89

Chapter 3

Anatomy of an ASP.NET Page

In this chapter:

Invoking a Page . 89

The Page Class . 112

The Page Life Cycle . 132

Conclusion . 138

ASP.NET pages are dynamically compiled on demand when first required in the context of

a Web application. Dynamic compilation is not specific to ASP.NET pages (.aspx files); it also

occurs with .NET Web Services (.asmx files), Web user controls (.ascx files), HTTP handlers

(.ashx files), and a few more ASP.NET application files such as the global.asax file. A pipeline

of run-time modules takes care of the incoming HTTP packet and makes it evolve from a

simple protocol-specific payload up to the rank of a server-side ASP.NET object—precisely,

an instance of a class derived from the system’s Page class. The ASP.NET HTTP runtime pro-

cesses the page object and causes it to generate the markup to insert in the response. The

generation of the response is marked by several events handled by user code and collectively

known as the page life cycle.

In this chapter, we’ll review how an HTTP request for an .aspx resource is mapped to a page

object, the programming interface of the Page class, and how to control the generation of

the markup by handling events of the page life cycle.

Invoking a Page

Let’s start by examining in detail how the .aspx page is converted into a class and then

compiled into an assembly. Generating an assembly for a particular .aspx resource is a two-

step process. First, the source code of the resource file is parsed and a corresponding class

is created that inherits either from Page or another class that, in turn, inherits from Page.

Second, the dynamically generated class is compiled into an assembly and cached in an

ASP.NET-specific temporary directory.

The compiled page remains in use as long as no changes occur to the linked .aspx source file

or the whole application is restarted. Any changes to the linked .aspx file invalidates the cur-

rent page-specific assembly and forces the HTTP runtime to create a new assembly on the

next request for page.

C03625273.indd 89 1/15/2008 4:04:54 PM

90 Part I Building an ASP.NET Page

Note Editing files such as web.config and global.asax causes the whole application to restart. In

this case, all the pages will be recompiled as soon as each page is requested. The same happens

if a new assembly is copied or replaced in the application’s Bin folder.

The Runtime Machinery

All resources that you can access on an Internet Information Services (IIS)–based Web server

are grouped by file extension. Any incoming request is then assigned to a particular run-time

module for actual processing. Modules that can handle Web resources within the context of

IIS are Internet Server Application Programming Interface (ISAPI) extensions—that is, plain

old Win32 dynamic-link libraries (DLLs) that expose, much like an interface, a bunch of API

functions with predefined names and prototypes. IIS and ISAPI extensions use these DLL

entries as a sort of private communication protocol. When IIS needs an ISAPI extension to

accomplish a certain task, it simply loads the DLL and calls the appropriate function with

valid arguments. Although the ISAPI documentation doesn’t mention an ISAPI extension as

an interface, it is just that—a module that implements a well-known programming interface.

When the request for a resource arrives, IIS first verifies the type of the resource. Static

resources such as images, text files, HTML pages, and scriptless ASP pages are resolved

directly by IIS without the involvement of any external modules. IIS accesses the file on

the local Web server and flushes its contents to the output console so that the requesting

browser can get it. Resources that require server-side elaboration are passed on to the reg-

istered module. For example, ASP pages are processed by an ISAPI extension named asp.dll.

In general, when the resource is associated with executable code, IIS hands the request to

that executable for further processing. Files with an .aspx extension are assigned to an ISAPI

extension named aspnet_isapi.dll, as shown in Figure 3-1.

FIGURE 3-1 The IIS application mappings for resources with an .aspx extension.

C03625273.indd 90 1/15/2008 4:04:54 PM

Chapter 3 Anatomy of an ASP.NET Page 91

Resource mappings are stored in the IIS metabase, which is an IIS-specific configuration data-

base. Upon installation, ASP.NET modifies the IIS metabase to make sure that aspnet_isapi.dll

can handle some typical ASP.NET resources. Table 3-1 lists some of these resources.

TABLE 3-1 IIS Application Mappings for aspnet_isapi.dll

Extension Resource Type

.asax ASP.NET application files such as global.asax.. The mapping is there to

ensure that global.asax can’t be requested directly.

.ascx ASP.NET user control files.

.ashx HTTP handlers, namely managed modules that interact with the low-level

request and response services of IIS.

.asmx Files that implement .NET Web services.

.aspx Files that represent ASP.NET pages.

.axd Extension that identifies internal HTTP handlers used to implement system

features such as application-level tracing (trace.axd) or script injection

(webresource.axd).

In addition, the aspnet_isapi.dll extension handles other typical Microsoft Visual Studio

extensions, such as .cs, .csproj, .vb, .vbproj, .config, and .resx.

As mentioned in Chapter 1, the exact behavior of the ASP.NET ISAPI extension depends on

the process model selected for the application. There are two options, as described in the

following sections.

IIS 5.0 Process Model

The IIS 5.0 process model is the only option you have if you host your ASP.NET application

on any version of Microsoft Windows prior to Windows 2003 Server. According to this pro-

cessing model, aspnet_isapi.dll doesn’t process the .aspx file, but instead acts as a dispatcher.

It collects all the information available about the invoked URL and the underlying resource,

and then it routes the request toward another distinct process—the ASP.NET worker process

named aspnet_wp.exe. The communication between the ISAPI extension and worker pro-

cess takes place through named pipes.

The whole model is illustrated in Figure 3-2.

C03625273.indd 91 1/15/2008 4:04:55 PM

92 Part I Building an ASP.NET Page

Browser

HTTP

named pipe

HTML HTML

IIS

inetinfo.exe

aspnet_isapi.dll

HttpRuntime

Application

Page Object

AppDomain

vdir1

HttpRuntime

Application

Page Object

AppDomain

vdirN

aspnet_wp.exe

. . .

ASP.NET worker process

CPU

CPU

CPU
.
.
.

FIGURE 3-2 The ASP.NET runtime environment according to the IIS 5.0 process model.

A single copy of the worker process runs all the time and hosts all the active Web applica-

tions. The only exception to this situation is when you have a Web server with multiple CPUs.

In this case, you can configure the ASP.NET runtime so that multiple worker processes run,

one per each available CPU. A model in which multiple processes run on multiple CPUs in a

single-server machine is known as a Web garden and is controlled by attributes on the <pro-

cessModel> section in the machine.config file.

When a single worker process is used by all CPUs and controls all Web applications, it doesn’t

necessarily mean that no process isolation is achieved. Each Web application is, in fact,

identified with its virtual directory and belongs to a distinct application domain, commonly

referred to as an AppDomain. A new AppDomain is created within the ASP.NET worker pro-

cess whenever a client addresses a virtual directory for the first time. After creating the new

AppDomain, the ASP.NET runtime loads all the needed assemblies and passes control to the

hosted HTTP pipeline to actually service the request.

C03625273.indd 92 1/15/2008 4:04:55 PM

Chapter 3 Anatomy of an ASP.NET Page 93

If a client requests a page from an already running Web application, the ASP.NET runtime

simply forwards the request to the existing AppDomain associated with that virtual directory.

If the assembly needed to process the page is not loaded in the AppDomain, it will be cre-

ated on the fly; otherwise, if it was already created upon the first call, it will be simply used.

IIS 6.0 Process Model

The IIS 6.0 process model is the default option for ASP.NET when the Web server operating

system is Windows 2003 Server or newer. As the name of the process model clearly sug-

gests, this model requires IIS 6.0. However, on a Windows 2003 Server machine you can still

have ASP.NET play by the rules of the IIS 5.0 process model. If this is what you want, explic-

itly enable the model by tweaking the <processModel> section of the machine.config file, as

shown here:

<processModel enable=”true”>

Be aware that switching back to the old IIS 5.0 process model is not a recommended practice,

although it is perfectly legal. The main reason lies in the fact that IIS 6.0 employs a different

pipeline of internal modules to process an inbound request and can mimic the behavior of

IIS 5.0 only if running in emulation mode. The IIS 6.0 pipeline is centered around a generic

worker process named w3wp.exe. A copy of this executable is shared by all Web applications

assigned to the same application pool. In the IIS 6.0 jargon, an application pool is a group of

Web applications that share the same copy of the worker process. IIS 6.0 lets you customize

the application pools to achieve the degree of isolation that you need for the various appli-

cations hosted on a Web server.

The w3wp.exe worker process loads aspnet_isapi.dll; the ISAPI extension, in turn, loads the

common language runtime (CLR) and starts the ASP.NET runtime pipeline to process the

request. When the IIS 6.0 process model is in use, the built-in ASP.NET worker process is

disabled.

Note Only ASP.NET version 1.1 and later takes full advantage of the IIS 6.0 process model. If

you install ASP.NET 1.0 on a Windows 2003 Server machine, the process model will default to the

IIS 5.0 process model. This happens because only the version of aspnet_isapi.dll that ships with

ASP.NET 1.1 is smart enough to recognize its host and load the CLR if needed. The aspnet_isapi.

dll included in ASP.NET 1.0 is limited to forwarding requests to the ASP.NET worker process and

never loads the CLR.

Figure 3-3 shows how ASP.NET applications and other Web applications are processed in IIS 6.0.

C03625273.indd 93 1/15/2008 4:04:55 PM

94 Part I Building an ASP.NET Page

Browser

HTTP

Manages the

lifetime and the

recycling of

worker processes

IIS 6.0 metabase

Listen and route

Application pool

request queue

Application pool

request queue

http.sys

Kernel-mode

User-mode

IIS worker process

(w3wp.exe)

This process loads

aspnet_isapi.dll to

process .aspx. In turn,

aspnet_isapi.dll

loads the CLR

IIS worker process

(w3wp.exe)

The process loads

asp.dll

to process .asp pages.

Web Administration Service (WAS)

WAS initializes

http.sys

WAS reads

metabase
Workers

get requests

from the

applications

queue

. . .

FIGURE 3-3 How ASP.NET and Web applications are processed in IIS 6.0.

IIS 6.0 implements its HTTP listener as a kernel-level module. As a result, all incoming re-

quests are first managed by a driver—http.sys. No third-party code ever interacts with the

listener, and no user-mode crashes will ever affect the stability of IIS. The http.sys driver lis-

tens for requests and posts them to the request queue of the appropriate application pool.

A module called the Web Administration Service (WAS) reads from the IIS metabase and

instructs the http.sys driver to create as many request queues as there are application pools

registered in the metabase.

C03625273.indd 94 1/15/2008 4:04:55 PM

Chapter 3 Anatomy of an ASP.NET Page 95

In summary, in the IIS 6.0 process model, ASP.NET runs even faster because no interprocess

communication between inetinfo.exe (the IIS executable) and the worker process is required.

The HTTP request is delivered directly at the worker process that hosts the CLR. Furthermore,

the ASP.NET worker process is not a special process but simply a copy of the IIS worker pro-

cess. This fact shifts to IIS the burden of process recycling, page output caching, and health

checks.

In the IIS 6.0 process model, ASP.NET ignores most of the contents of the <processModel>

section from the machine.config file. Only thread and deadlock settings are read from that

section of machine.config. Everything else goes through the metabase and can be configured

only by using the IIS Manager. (Other configuration information continues to be read from

.config files.)

Representing the Requested Page

Each incoming request that refers to an .aspx resource is mapped to, and served through,

a Page-derived class. The ASP.NET HTTP runtime environment first determines the name

of the class that will be used to serve the request. A particular naming convention links the

URL of the page to the name of the class. If the requested page is, say, default.aspx, the as-

sociated class turns out to be ASP.default_aspx. If no class exists with that name in any of the

assemblies currently loaded in the AppDomain, the HTTP runtime orders that the class be

created and compiled. The source code for the class is created by parsing the source code of

the .aspx resource, and it’s temporarily saved in the ASP.NET temporary folder. Next, the class

is compiled and loaded in memory to serve the request. When a new request for the same

page arrives, the class is ready and no compile step will ever take place. (The class will be re-

created and recompiled only if the source code of the .aspx source changes.)

The ASP.default_aspx class inherits from Page or, more likely, from a class that in turn inherits

from Page. More precisely, the base class for ASP.default_aspx will be a combination of the

code-behind, partial class created through Visual Studio and a second partial class dynami-

cally arranged by the ASP.NET HTTP runtime. Figure 3-4 provides a graphical demonstration

of how the source code of the dynamic page class is built.

C03625273.indd 95 1/15/2008 4:04:55 PM

96 Part I Building an ASP.NET Page

public partial class HelloWorld : Page
{
 // Any event handlers you need

 // NB: no protected members for
 // server controls in the page
}

Written by you in default.aspx Generated by ASP.NET while compiling

public partial class HelloWorld : Page
{
 // Any needed protected members
 // for server controls in the page

 // This code was in VS auto-generated
 // regions in VS 2003 and ASP.NET 1.x
}

Compiler merges partial class definitions

public class default.aspx : HelloWorld
{
 // Build the control tree
 // parsing the ASPX file in much
 // the same way as in ASP.NET 1.x
}

public class HelloWorld : Page
{
 // Any event handlers you need

 // Any needed protected members
 // for server controls in the page
}

ASP.NET runtime parses ASPX source and dynamically

generates the page to serve the request for default.aspx

FIGURE 3-4 ASP.NET generates the source code for the dynamic class that will serve a request.

Partial classes are a hot feature of the latest .NET compilers (version 2.0 and later). When

partially declared, a class has its source code split over multiple source files, each of which

appears to contain an ordinary class definition from beginning to end. The new keyword

partial, though, informs the compiler that the class declaration being processed is incom-

plete. To get full and complete source code, the compiler must look into other files specified

on the command line.

Partial Classes in ASP.NET Projects

Ideal for team development, partial classes simplify coding and avoid manual file synchroni-

zation in all situations in which a mix of user-defined and tool-generated code is used. Want

an illustrious example? ASP.NET projects developed with Visual Studio 2003.

Partial classes are a compiler feature specifically designed to overcome the brittleness of

tool-generated code in many Visual Studio 2003 projects, including ASP.NET projects. A

savvy use of partial classes allows you to eliminate all those weird, auto-generated, semi-

hidden regions of code that Visual Studio 2003 inserts to support page designers.

Generally, partial classes are a source-level, assembly-limited, non-object-oriented way to

extend the behavior of a class. A number of advantages are derived from intensive use of

C03625273.indd 96 1/15/2008 4:04:56 PM

Chapter 3 Anatomy of an ASP.NET Page 97

partial classes. For example, you can have multiple teams at work on the same component at

the same time. In addition, you have a neat and elegant way to add functionality to a class

incrementally. In the end, this is just what the ASP.NET runtime does.

The ASPX markup defines server controls that will be handled by the code in the code-

behind class. For this model to work, the code-behind class needs to incorporate references

to these server controls as internal members—typically, protected members. In Visual Studio

2003, these declarations are added by the integrated development environment (IDE) as you

save your markup and stored in semi-hidden regions. In Visual Studio 2005, the code-behind

class is a partial class that just lacks member declaration. Missing declarations are incremen-

tally added at run time via a second partial class created by the ASP.NET HTTP runtime. The

compiler of choice (C#, Microsoft Visual Basic .NET, or whatever) will then merge the two

partial classes to create the real parent of the dynamically created page class.

Note In Visual Studio 2008 and the .NET Framework 3.5 partial classes are partnered with

extension methods as a way to add new capabilities to existing .NET classes. By creating a class

with extension methods you can extend, say, the System.String class with a ToInt32 method that

returns an integer if the content of the string can be converted to an integer. Once you added to

the project the class with extension methods, any string in the project features the new methods.

IntelliSense fully supports this feature.

Processing the Request

To serve a request for a page named default.aspx, the ASP.NET runtime needs to get a

reference to a class ASP.default_aspx. As you recall, if this class doesn’t exist in any of the

assemblies currently loaded in the AppDomain, it will be created. Next, the HTTP run-

time environment invokes the class through the methods of a well-known interface—

IHttpHandler. The root Page class implements this interface, which includes a couple of

members—the ProcessRequest method and the Boolean IsReusable property. Once the HTTP

runtime has obtained an instance of the class that represents the requested resource, invok-

ing the ProcessRequest method—a public method—gives birth to the process that culmi-

nates in the generation of the final response for the browser. As mentioned, the steps and

events that execute and trigger out of the call to ProcessRequest are collectively known as the

page life cycle.

Although serving pages is the ultimate goal of the ASP.NET runtime, the way in which the

resultant markup code is generated is much more sophisticated than in other platforms and

involves many objects. The ASP.NET worker process—be it w3wp.exe or aspnet_wp.exe—

passes any incoming HTTP requests to the so-called HTTP pipeline. The HTTP pipeline is

a fully extensible chain of managed objects that works according to the classic concept of

a pipeline. All these objects form what is often referred to as the ASP.NET HTTP runtime

environment.

C03625273.indd 97 1/15/2008 4:04:56 PM

98 Part I Building an ASP.NET Page

The HttpRuntime Object

A page request passes through a pipeline of objects that process the original HTTP payload

and, at the end of the chain, produce some markup code for the browser. The entry point in

this pipeline is the HttpRuntime class. The ASP.NET worker process activates the HTTP pipe-

line in the beginning by creating a new instance of the HttpRuntime class and then calling its

ProcessRequest method for each incoming request. For the sake of clarity, note that despite

the name, HttpRuntime.ProcessRequest has nothing to do with the IHttpHandler interface.

The HttpRuntime class contains a lot of private and internal methods and only three public

static methods: Close, ProcessRequest, and UnloadAppDomain, as detailed in Table 3-2.

TABLE 3-2 Public Methods in the HttpRuntime Class

Method Description

Close Removes all items from the ASP.NET cache, and terminates the

Web application. This method should be used only when your

code implements its own hosting environment. There is no need

to call this method in the course of normal ASP.NET request

processing.

ProcessRequest Drives all ASP.NET Web processing execution.

UnloadAppDomain Terminates the current ASP.NET application. The application

restarts the next time a request is received for it.

It is important to note that all the methods shown in Table 3-2 have limited applicability in

user applications. In particular, you’re not supposed to use ProcessRequest in your own code,

whereas Close is useful only if you’re hosting ASP.NET in a custom application. Of the three

methods in Table 3-2, only UnloadAppDomain can be considered for use if, under certain

run-time conditions, you realize you need to restart the application. (See the sidebar “What

Causes Application Restarts?” later in this chapter.)

Upon creation, the HttpRuntime object initializes a number of internal objects that will

help carry out the page request. Helper objects include the cache manager and the file

system monitor used to detect changes in the files that form the application. When the

ProcessRequest method is called, the HttpRuntime object starts working to serve a page to

the browser. It creates a new empty context for the request and initializes a specialized text

writer object in which the markup code will be accumulated. A context is given by an in-

stance of the HttpContext class, which encapsulates all HTTP-specific information about the

request.

After that, the HttpRuntime object uses the context information to either locate or create a

Web application object capable of handling the request. A Web application is searched us-

ing the virtual directory information contained in the URL. The object used to find or create

C03625273.indd 98 1/15/2008 4:04:56 PM

Chapter 3 Anatomy of an ASP.NET Page 99

a new Web application is HttpApplicationFactory—an internal-use object responsible for

returning a valid object capable of handling the request.

Before we get to discover more about the various components of the HTTP pipeline, a look

at Figure 3-5 is in order.

Based on the URL, creates/selects

the application object to serve

the request

HttpApplicationFactory

Determines the type of the

request and invokes the proper

handler factory

HttpApplication

Determines the page class required

to serve the request and creates

it if not existing

PageHandlerFactory

ASP.default.aspx

HttpRuntime

Initializes the ASP.NET cache and HTTP context

Cache HTTP

Context

ASP.NET Worker Process - AppDomain

IHttpHandler

HttpRuntime invokes ProcessRequest

on ASP .default_aspx

default.aspx

FIGURE 3-5 The HTTP pipeline processing for a page.

The Application Factory

During the lifetime of the application, the HttpApplicationFactory object maintains a pool of

HttpApplication objects to serve incoming HTTP requests. When invoked, the application fac-

tory object verifies that an AppDomain exists for the virtual folder the request targets. If the

application is already running, the factory picks an HttpApplication out of the pool of avail-

able objects and passes it the request. A new HttpApplication object is created if an existing

object is not available.

C03625273.indd 99 1/15/2008 4:04:56 PM

100 Part I Building an ASP.NET Page

If the virtual folder has not yet been called for the first time, a new HttpApplication object

for the virtual folder is created in a new AppDomain. In this case, the creation of an

HttpApplication object entails the compilation of the global.asax application file, if one is

present, and the creation of the assembly that represents the actual page requested. This

event is actually equivalent to the start of the application. An HttpApplication object is used

to process a single page request at a time; multiple objects are used to serve simultaneous

requests.

The HttpApplication Object

HttpApplication is the base class that represents a running ASP.NET application. A run-

ning ASP.NET application is represented by a dynamically created class that inherits from

HttpApplication. The source code of the dynamically generated application class is cre-

ated by parsing the contents of the global.asax file, if any is present. If global.asax is avail-

able, the application class is built and named after it: ASP.global_asax. Otherwise, the base

HttpApplication class is used.

An instance of an HttpApplication-derived class is responsible for managing the entire life-

time of the request it is assigned to. The same instance can be reused only after the request

has been completed. The HttpApplication maintains a list of HTTP module objects that can

filter and even modify the content of the request. Registered modules are called during

various moments of the elaboration as the request passes through the pipeline.

The HttpApplication object determines the type of object that represents the resource

being requested—typically, an ASP.NET page, a Web service, or perhaps a user control.

HttpApplication then uses the proper handler factory to get an object that represents the

requested resource. The factory either instantiates the class for the requested resource from

an existing assembly or dynamically creates the assembly and then an instance of the class. A

handler factory object is a class that implements the IHttpHandlerFactory interface and is re-

sponsible for returning an instance of a managed class that can handle the HTTP request—an

HTTP handler. An ASP.NET page is simply a handler object—that is, an instance of a class that

implements the IHttpHandler interface.

The Page Factory

The HttpApplication class determines the type of object that must handle the request and

delegates the type-specific handler factory to create an instance of that type. Let’s see what

happens when the resource requested is a page.

Once the HttpApplication object in charge of the request has figured out the proper handler,

it creates an instance of the handler factory object. For a request that targets a page, the

C03625273.indd 100 1/15/2008 4:04:56 PM

Chapter 3 Anatomy of an ASP.NET Page 101

factory is a class named PageHandlerFactory. To find the appropriate handler, HttpApplication

uses the information in the <httpHandlers> section of the configuration file. Table 3-3

contains a brief list of the main handlers registered.

TABLE 3-3 Handler Factory Classes in the .NET Framework

Handler Factory Type Description

HttpRemotingHandlerFactory *.rem;

*.soap

Instantiates the object that will take care of a .NET

Remoting request routed through IIS. Instantiates

an object of type HttpRemotingHandler.

PageHandlerFactory *.aspx Compiles and instantiates the type that represents

the page. The source code for the class is built

while parsing the source code of the .aspx file.

Instantiates an object of a type that derives from

Page.

SimpleHandlerFactory *.ashx Compiles and instantiates the specified HTTP

handler from the source code of the .ashx file.

Instantiates an object that implements the

IHttpHandler interface.

WebServiceHandlerFactory *.asmx Compiles the source code of a Web service, and

translates the SOAP payload into a method invoca-

tion. Instantiates an object of the type specified in

the Web service file.

Bear in mind that handler factory objects do not compile the requested resource each time

it is invoked. The compiled code is stored in an ASP.NET temporary directory on the Web

server and used until the corresponding resource file is modified. (This bit of efficiency is the

primary reason the factory pattern is followed in this case.)

So when the request is received, the page handler factory creates an instance of an object

that represents the particular requested page. As mentioned, this object inherits from the

System.Web.UI.Page class, which in turn implements the IHttpHandler interface. The page

object is returned to the application factory, which passes that back to the HttpRuntime

object. The final step accomplished by the ASP.NET runtime is calling the IHttpHandler’s

ProcessRequest method on the page object. This call causes the page to execute the user-

defined code and generate the markup for the browser.

In Chapter 14, we’ll return to the initialization of an ASP.NET application, the contents of

global.asax, and the information stuffed into the HTTP context—a container object that, cre-

ated by the HttpRuntime class, is populated and passed along the pipeline and finally bound

to the page handler.

C03625273.indd 101 1/15/2008 4:04:56 PM

102 Part I Building an ASP.NET Page

What Causes Application Restarts?

There are a few reasons why an ASP.NET application can be restarted. For the most

part, an application is restarted to ensure that latent bugs or memory leaks don’t affect

in the long run the overall behavior of the application. Another reason is that too many

dynamic changes to ASPX pages may have caused too large a number of assemblies

(typically, one per page) to be loaded in memory. Any application that consumes more

than a certain share of virtual memory is killed and restarted. The ASP.NET runtime en-

vironment implements a good deal of checks and automatically restarts an application

if any the following scenarios occur:

The maximum limit of dynamic page compilations is reached. This limit is

configurable through the web.config file.

The physical path of the Web application has changed, or any directory under

the Web application folder is renamed.

Changes occurred in global.asax, machine.config, or web.config in the

application root, or in the Bin directory or any of its subdirectories.

Changes occurred in the code-access security policy file, if one exists.

Too many files are changed in one of the content directories. (Typically, this

happens if files are generated on the fly when requested.)

Changes occurred to settings that control the restart/shutdown of the ASP.

NET worker process. These settings are read from machine.config if you don’t

use Windows 2003 Server with the IIS 6.0 process model. If you’re taking full

advantage of IIS 6.0, an application is restarted if you modify properties in the

Application Pools node of the IIS manager.

In addition to all this, in ASP.NET an application can be restarted programmatically by

calling HttpRuntime.UnloadAppDomain.

The Processing Directives of a Page

Processing directives configure the runtime environment that will execute the page. In ASP.

NET, directives can be located anywhere in the page, although it’s a good and common

practice to place them at the beginning of the file. In addition, the name of a directive is

case-insensitive and the values of directive attributes don’t need to be quoted. The most

C03625273.indd 102 1/15/2008 4:04:56 PM

Chapter 3 Anatomy of an ASP.NET Page 103

important and most frequently used directive in ASP.NET is @Page. The complete list of ASP.

NET directives is shown in Table 3-4.

TABLE 3-4 Directives Supported by ASP.NET Pages

Directive Description

@ Assembly Links an assembly to the current page or user control.

@ Control Defines control-specific attributes that guide the behavior of the

control compiler.

@ Implements Indicates that the page, or the user control, implements a specified

.NET Framework interface.

@ Import Indicates a namespace to import into a page or user control.

@ Master Identifies an ASP.NET master page. (See Chapter 6.) This directive is

not available with ASP.NET 1.x.

@ MasterType Provides a way to create a strongly typed reference to the ASP.NET

master page when the master page is accessed from the Master

property. (See Chapter 6.) This directive is not available with ASP.NET

1.x.

@ OutputCache Controls the output caching policies of a page or user control.

(See Chapter 16.)

@ Page Defines page-specific attributes that guide the behavior of the page

compiler and the language parser that will preprocess the page.

@ PreviousPageType Provides a way to get strong typing against the previous page, as

accessed through the PreviousPage property.

@ Reference Links a page or user control to the current page or user control.

@ Register Creates a custom tag in the page or the control. The new tag (prefix

and name) is associated with the namespace and the code of a user-

defined control.

With the exception of @Page, @PreviousPageType, @Master, @MasterType, and @Control, all

directives can be used both within a page and a control declaration. @Page and @Control

are mutually exclusive. @Page can be used only in .aspx files, while the @Control directive

can be used only in user control .ascx files. @Master, in turn, is used to define a very special

type of page—the master page.

The syntax of a processing directive is unique and common to all supported types of

directives. Multiple attributes must be separated with blanks, and no blank can be placed

around the equal sign (=) that assigns a value to an attribute, as the following line of code

demonstrates:

<%@ Directive_Name attribute=”value” [attribute=”value”...] %>

C03625273.indd 103 1/15/2008 4:04:57 PM

104 Part I Building an ASP.NET Page

Each directive has its own closed set of typed attributes. Assigning a value of the wrong type

to an attribute, or using a wrong attribute with a directive, results in a compilation error.

Important The content of directive attributes is always rendered as plain text. However,

attributes are expected to contain values that can be rendered to a particular .NET Framework

type, specific to the attribute. When the ASP.NET page is parsed, all the directive attributes

are extracted and stored in a dictionary. The names and number of attributes must match the

expected schema for the directive. The string that expresses the value of an attribute is valid as

long as it can be converted into the expected type. For example, if the attribute is designed to

take a Boolean value, true and false are its only feasible values.

The @Page Directive

The @Page directive can be used only in .aspx pages, and it generates a compile error if

used with other types of ASP.NET pages, such as controls and Web services. Each .aspx file

is allowed to include at most one @Page directive. Although not strictly necessary from the

syntax point of view, the directive is realistically required by all pages of some complexity.

@Page features about 30 attributes that can be logically grouped in three categories:

compilation (defined in Table 3-5), overall page behavior (defined in Table 3-6), and page

output (defined in Table 3-7). Each ASP.NET page is compiled upon first request, and the

HTML actually served to the browser is generated by the methods of the dynamically gener-

ated class. Attributes listed in Table 3-5 let you fine-tune parameters for the compiler and

choose the language to use.

TABLE 3-5 @Page Attributes for Page Compilation

Attribute Description

ClassName Specifies the name of the class name that will be dynamically com-

piled when the page is requested. Must be a class name without

namespace information.

CodeFile Indicates the path to the code-behind class for the current page. The

source class file must be deployed to the Web server. Not available

with ASP.NET 1.x.

CodeBehind Attribute consumed by Visual Studio .NET 2003, indicates the path to

the code-behind class for the current page. The source class file will

be compiled to a deployable assembly. (Note that for ASP.NET ver-

sion 2.0 and later, the CodeFile attribute should be used.)

CodeFileBaseClass Specifies the type name of a base class for a page and its associ-

ated code-behind class. The attribute is optional, but when it is

used the CodeFile attribute must also be present. Not available with

ASP.NET 1.x.

C03625273.indd 104 1/15/2008 4:04:57 PM

Chapter 3 Anatomy of an ASP.NET Page 105

Attribute Description

CompilationMode Indicates whether the page should be compiled at run time. Not

available with ASP.NET 1.x.

CompilerOptions A sequence of compiler command-line switches used to compile the

page.

Debug A Boolean value that indicates whether the page should be compiled

with debug symbols.

Explicit A Boolean value that determines whether the page is compiled with

the Visual Basic Option Explicit mode set to On. Option Explicit forces

the programmer to explicitly declare all variables. The attribute is

ignored if the page language is not Visual Basic .NET.

Inherits Defines the base class for the page to inherit. It can be any class

derived from the Page class.

Language Indicates the language to use when compiling inline code blocks (<%

… %>) and all the code that appears in the page <script> section.

Supported languages include Visual Basic .NET, C#, JScript .NET, and

J#. If not otherwise specified, the language defaults to Visual Basic

.NET.

LinePragmas Indicates whether the runtime should generate line pragmas in the

source code

MasterPageFile Indicates the master page for the current page. Not available with

ASP.NET 1.x.

Src Indicates the source file that contains the implementation of the base

class specified with Inherits. The attribute is not used by Visual Studio

and other rapid application development (RAD) designers.

Strict A Boolean value that determines whether the page is compiled with

the Visual Basic Option Strict mode set to On. When enabled, Option

Strict permits only type-safe conversions and prohibits implicit con-

versions in which loss of data is possible. (In this case, the behavior is

identical to that of C#.) The attribute is ignored if the page language

is not Visual Basic .NET.

Trace A Boolean value that indicates whether tracing is enabled. If tracing

is enabled, extra information is appended to the page’s output. The

default is false.

TraceMode Indicates how trace messages are to be displayed for the page

when tracing is enabled. Feasible values are SortByTime and

SortByCategory. The default, when tracing is enabled, is SortByTime.

WarningLevel Indicates the compiler warning level at which you want the compiler

to abort compilation for the page. Possible values are 0 through 4.

C03625273.indd 105 1/15/2008 4:04:57 PM

106 Part I Building an ASP.NET Page

Notice that the default values of the Explicit and Strict attributes are read from the

application’s configuration settings. The configuration settings of an ASP.NET application are

obtained by merging all machine-wide settings with application-wide and even folder-wide

settings. This means you can also control what the default values for the Explicit and Strict at-

tributes are. Unless you change the default configuration settings—the configuration files are

created when the .NET Framework is installed—both Explicit and Strict default to true. Should

the related settings be removed from the configuration files, both attributes would default to

false instead.

Attributes listed in Table 3-6 allow you to control to some extent the overall behavior of the

page and the supported range of features. For example, you can set a custom error page,

disable session state, and control the transactional behavior of the page.

Note The schema of attributes supported by the @Page is not as strict as for other directives. In

particular, you can list as a @Page attribute, and initialize, any public properties defined on the

page class.

TABLE 3-6 @Page Attributes for Page Behavior

Attribute Description

AspCompat A Boolean attribute that, when set to true, allows the page to be executed

on a single-threaded apartment (STA) thread. The setting allows the page

to call COM+ 1.0 components and components developed with Microsoft

Visual Basic 6.0 that require access to the unmanaged ASP built-in

objects. (I’ll cover this topic in Chapter 14.)

Async If set to true, the generated page class derives from IHttpAsyncHandler

rather than having IHttpHandler add some built-in asynchronous capabili-

ties to the page. Not available with ASP.NET 1.x.

AsyncTimeOut Defines the timeout in seconds used when processing asynchronous

tasks. The default is 45 seconds. Not available with ASP.NET 1.x.

AutoEventWireup A Boolean attribute that indicates whether page events are automatically

enabled. Set to true by default. Pages developed with Visual Studio .NET

have this attribute set to false, and page events are individually tied to

handlers.

Buffer A Boolean attribute that determines whether HTTP response buffering is

enabled. Set to true by default.

Description Provides a text description of the page. The ASP.NET page parser ignores

the attribute, which subsequently has only a documentation purpose.

EnableEventValidation A Boolean value that indicates whether the page will emit a hidden field

to cache available values for input fields that support event data valida-

tion. Set to true by default. Not available with ASP.NET 1.x.

C03625273.indd 106 1/15/2008 4:04:57 PM

Chapter 3 Anatomy of an ASP.NET Page 107

Attribute Description

EnableSessionState Defines how the page should treat session data. If set to true, the session

state can be read and written. If set to false, session data is not available

to the application. Finally, if set to ReadOnly, the session state can be read

but not changed.

EnableViewState A Boolean value that indicates whether the page view state is maintained

across page requests. The view state is the page call context—a collection

of values that retain the state of the page and are carried back and forth.

View state is enabled by default. (I’ll cover this topic in Chapter 15.)

EnableTheming A Boolean value that indicates whether the page will support themes for

embedded controls. Set to true by default. Not available in ASP.NET 1.x.

EnableViewStateMac A Boolean value that indicates ASP.NET should calculate a machine-spe-

cific authentication code and append it to the view state of the page (in

addition to Base64 encoding). The Mac in the attribute name stands for

machine authentication check. When the attribute is true, upon postbacks

ASP.NET will check the authentication code of the view state to make sure

that it hasn’t been tampered with on the client.

ErrorPage Defines the target URL to which users will be automatically redirected in

case of unhandled page exceptions.

MaintainScrollPosition-

OnPostback

Indicates whether to return the user to the same scrollbar position in the

client browser after postback. The default is false.

SmartNavigation A Boolean value that indicates whether the page supports the Microsoft

Internet Explorer 5 or later smart navigation feature. Smart navigation

allows a page to be refreshed without losing scroll position and element

focus.

Theme,

StyleSheetTheme

Indicates the name of the theme (or style-sheet theme) selected for the

page. Not available with ASP.NET 1.x.

Transaction Indicates whether the page supports or requires transactions. Feasible

values are: Disabled, NotSupported, Supported, Required, and RequiresNew.

Transaction support is disabled by default.

ValidateRequest A Boolean value that indicates whether request validation should occur. If

this value is set to true, ASP.NET checks all input data against a hard-cod-

ed list of potentially dangerous values. This functionality helps reduce the

risk of cross-site scripting attacks for pages. The value is true by default.

This feature is not supported in ASP.NET 1.0.

ViewStateEncryption-

Mode

Indicates how view state is encrypted, with three possible enumerated

values: Auto, Always, or Never. The default is Auto meaning that the

viewstate is encrypted only if a control requests that. Note that using en-

cryption over the viewstate adds some overhead to the processing of the

page on the server for each request.

C03625273.indd 107 1/15/2008 4:04:57 PM

108 Part I Building an ASP.NET Page

Attributes listed in Table 3-7 allow you to control the format of the output being generated

for the page. For example, you can set the content type of the page or localize the output to

the extent possible.

TABLE 3-7 @Page Directives for Page Output

Attribute Description

ClientTarget Indicates the target browser for which ASP.NET server controls should

render content.

CodePage Indicates the code page value for the response. Set this attribute only if

you created the page using a code page other than the default code page

of the Web server on which the page will run. In this case, set the attribute

to the code page of your development machine. A code page is a charac-

ter set that includes numbers, punctuation marks, and other glyphs. Code

pages differ on a per-language basis.

ContentType Defines the content type of the response as a standard MIME type.

Supports any valid HTTP content type string.

Culture Indicates the culture setting for the page. Culture information includes the

writing and sorting system, calendar, and date and currency formats. The

attribute must be set to a non-neutral culture name, which means it must

contain both language and country information. For example, en-US is a

valid value, unlike en alone, which is considered country-neutral.

LCID A 32-bit value that defines the locale identifier for the page. By default,

ASP.NET uses the locale of the Web server.

ResponseEncoding Indicates the character encoding of the page. The value is used to set the

CharSet attribute on the content type HTTP header. Internally, ASP.NET

handles all strings as Unicode.

Title Indicates the title of the page. Not really useful for regular pages which

would likely use the <title> HTML tag, the attribute has been defined to

help developers add a title to content pages where access to the <title>

attribute may not be possible. (This actually depends on how the master

page is structured.)

UICulture Specifies the default culture name used by the Resource Manager to look

up culture-specific resources at run time.

As you can see, many attributes discussed in Table 3-7 are related to page localization.

Building multilanguage and international applications is a task that ASP.NET, and the .NET

Framework in general, greatly simplify. In Chapter 5, we’ll delve into the topic.

The @Assembly Directive

The @Assembly directive links an assembly to the current page so that its classes and inter-

faces are available for use on the page. When ASP.NET compiles the page, a few assemblies

are linked by default. So you should resort to the directive only if you need linkage to a non-

default assembly. Table 3-8 lists the .NET assemblies that are automatically provided to the

compiler.

C03625273.indd 108 1/15/2008 4:04:57 PM

Chapter 3 Anatomy of an ASP.NET Page 109

TABLE 3-8 Assemblies Linked by Default

Assembly File Name Description

Mscorlib.dll Provides the core functionality of the .NET Framework,

including types, AppDomains, and run-time services.

System.dll Provides another bunch of system services, including regular

expressions, compilation, native methods, file I/O, and net-

working.

System.Configuration.dll Defines classes to read and write configuration data. Not

included in ASP.NET 1.x.

System.Data.dll Defines data container and data access classes, including the

whole ADO.NET framework.

System.Drawing.dll Implements the GDI+ features.

System.EnterpriseServices.dll Provides the classes that allow for serviced components and

COM+ interaction.

System.Web.dll The assembly implements the core ASP.NET services, controls,

and classes.

System.Web.Mobile.dll The assembly implements the core ASP.NET mobile services,

controls, and classes. Not included if version 1.0 of the .NET

Framework is installed.

System.Web.Services.dll Contains the core code that makes Web services run.

System.Xml.dll Implements the .NET Framework XML features.

System.Runtime.Serialization Defines the API for .NET serialization. This was one of the addi-

tional assemblies that was most frequently added by develop-

ers in ASP.NET 2.0 applications. Only included in ASP.NET 3.5.

System.ServiceModel Defines classes and structure for Windows Communication

Foundation (WCF) services. Only included in ASP.NET 3.5.

System.ServiceModel.Web Defines the additional classes required by ASP.NET and AJAX to

support WCF services. Only included in ASP.NET 3.5.

System.WorkflowServices Defines classes for making workflows and WCF services

interact. Only included in ASP.NET 3.5.

In addition to these assemblies, the ASP.NET runtime automatically links to the page all the

assemblies that reside in the Web application Bin subdirectory. Note that you can modify,

extend, or restrict the list of default assemblies by editing the global settings set in the global

machine-level web.config file. In this case, changes apply to all ASP.NET applications run on

that Web server. Alternately, you can modify the assembly list on a per-application basis by

editing the application’s specific web.config file. To prevent all assemblies found in the Bin

directory from being linked to the page, remove the following line from the root configura-

tion file:

<add assembly=”*” />

C03625273.indd 109 1/15/2008 4:04:57 PM

110 Part I Building an ASP.NET Page

Warning For an ASP.NET application, the whole set of configuration attributes is set at the

machine level. Initially, all applications hosted on a given server machine share the same set-

tings. Then individual applications can override some of those settings in their own web.config

files. Each application can have a web.config file in the root virtual folder and other copies of

specialized web.config files in application-specific subdirectories. Each page is subject to settings

as determined by the configuration files found in the path from the machine to the containing

folder. In ASP.NET 1.x, the machine.config file contains the complete tree of default settings. In

ASP.NET 2.0, the configuration data that specifically refers to Web applications has been moved

to a web.config file installed in the same system folder as machine.config. The folder is named

CONFIG and located below the installation path of ASP.NET—that is, %WINDOWS%\Microsoft.

Net\Framework\[version].

To link a needed assembly to the page, use the following syntax:

<%@ Assembly Name=”AssemblyName” %>

<%@ Assembly Src=”assembly_code.cs” %>

The @Assembly directive supports two mutually exclusive attributes: Name and Src. Name

indicates the name of the assembly to link to the page. The name cannot include the path or

the extension. Src indicates the path to a source file to dynamically compile and link against

the page. The @Assembly directive can appear multiple times in the body of the page. In

fact, you need a new directive for each assembly to link. Name and Src cannot be used in the

same @Assembly directive, but multiple directives defined in the same page can use either.

Note In terms of performance, the difference between Name and Src is minimal, although

Name points to an existing and ready-to-load assembly. The source file referenced by Src

is compiled only the first time it is requested. The ASP.NET runtime maps a source file with

a dynamically compiled assembly and keeps using the compiled code until the original file

undergoes changes. This means that after the first application-level call the impact on the page

performance is identical whether you use Name or Src.

The @Import Directive

The @Import directive links the specified namespace to the page so that all the types defined

can be accessed from the page without specifying the fully qualified name. For example,

to create a new instance of the ADO.NET DataSet class, you either import the System.Data

namespace or specify the fully qualified class name whenever you need it, as in the following

code:

System.Data.DataSet ds = new System.Data.DataSet();

C03625273.indd 110 1/15/2008 4:04:57 PM

Chapter 3 Anatomy of an ASP.NET Page 111

Once you’ve imported the System.Data namespace into the page, you can use more natural

coding, as shown here:

DataSet ds = new DataSet();

The syntax of the @Import directive is rather self-explanatory:

<%@ Import namespace=”value” %>

@Import can be used as many times as needed in the body of the page. The @Import

directive is the ASP.NET counterpart of the C# using statement and the Visual Basic .NET

Imports statement. Looking back at unmanaged C/C++, we could say the directive plays a

role nearly identical to the #include directive.

Caution Notice that @Import helps the compiler only to resolve class names; it doesn’t

automatically link required assemblies. Using the @Import directive allows you to use shorter

class names, but as long as the assembly that contains the class code is not properly linked,

the compiler will generate a type error. When an assembly has not been linked, using the fully

qualified class name is of no help because the compiler lacks the type definition.

You might have noticed that, more often than not, assembly and namespace names coincide.

Bear in mind it only happens by chance and that assemblies and namespaces are radically

different entities, each requiring the proper directive.

For example, to be able to connect to a SQL Server database and grab some disconnected

data, you need to import the following two namespaces:

<%@ Import namespace=”System.Data” %>

<%@ Import namespace=” System.Data.SqlClient” %>

You need the System.Data namespace to work with the DataSet and DataTable classes, and

you need the System.Data.SqlClient namespace to prepare and issue the command. In this

case, you don’t need to link against additional assemblies because the System.Data.dll as-

sembly is linked by default.

The @Implements Directive

The @Implements directive indicates that the current page implements the specified .NET

Framework interface. An interface is a set of signatures for a logically related group of func-

tions and is a sort of contract that shows the component’s commitment to expose that group

of functions. Unlike abstract classes, an interface doesn’t provide code or executable func-

tionality. When you implement an interface in an ASP.NET page, you declare any required

methods and properties within the <script> section. The syntax of the @Implements directive

is as follows:

<%@ Implements interface=”InterfaceName” %>

C03625273.indd 111 1/15/2008 4:04:57 PM

112 Part I Building an ASP.NET Page

The @Implements directive can appear multiple times in the page if the page has to imple-

ment multiple interfaces. Note that if you decide to put all the page logic in a separate class

file, you can’t use the directive to implement interfaces. Instead, you implement the interface

in the code-behind class.

The @Reference Directive

The @Reference directive is used to establish a dynamic link between the current page and

the specified page or user control. This feature has significant consequences regarding the

way in which you set up cross-page communication. It also lets you create strongly typed

instances of user controls. Let’s review the syntax.

The directive can appear multiple times in the page and features two mutually exclusive

attributes—Page and Control. Both attributes are expected to contain a path to a source file:

<%@ Reference page=”source_page” %>

<%@ Reference control=”source_user_control” %>

The Page attribute points to an .aspx source file, whereas the Control attribute contains the

path of an .ascx user control. In both cases, the referenced source file will be dynamically

compiled into an assembly, thus making the classes defined in the source programmatically

available to the referencing page. When running, an ASP.NET page is an instance of a .NET

Framework class with a specific interface made of methods and properties. When the refer-

encing page executes, a referenced page becomes a class that represents the .aspx source

file and can be instantiated and programmed at will. Notice that for the directive to work the

referenced page must belong to the same domain as the calling page. Cross-site calls are not

allowed, and both the Page and Control attributes expect to receive a relative virtual path.

Note Starting with ASP.NET 2.0, you are better off using cross-page posting to enable

communication between pages.

The Page Class

In the .NET Framework, the Page class provides the basic behavior for all objects that an ASP.

NET application builds by starting from .aspx files. Defined in the System.Web.UI namespace,

the class derives from TemplateControl and implements the IHttpHandler interface:

public class Page : TemplateControl, IHttpHandler

C03625273.indd 112 1/15/2008 4:04:57 PM

Chapter 3 Anatomy of an ASP.NET Page 113

In particular, TemplateControl is the abstract class that provides both ASP.NET pages and

user controls with a base set of functionality. At the upper level of the hierarchy, we find the

Control class. It defines the properties, methods, and events shared by all ASP.NET server-side

elements—pages, controls, and user controls.

Derived from a class—TemplateControl—that implements INamingContainer, Page also

serves as the naming container for all its constituent controls. In the .NET Framework,

the naming container for a control is the first parent control that implements the

INamingContainer interface. For any class that implements the naming container interface,

ASP.NET creates a new virtual namespace in which all child controls are guaranteed to have

unique names in the overall tree of controls. (This is also a very important feature for iterative

data-bound controls, such as DataGrid, for user controls, and controls that fire server-side

events.)

The Page class also implements the methods of the IHttpHandler interface, thus qualifying as

the handler of a particular type of HTTP requests—those for .aspx files. The key element of

the IHttpHandler interface is the ProcessRequest method, which is the method the ASP.NET

runtime calls to start the page processing that will actually serve the request.

Note INamingContainer is a marker interface that has no methods. Its presence alone, though,

forces the ASP.NET runtime to create an additional namespace for naming the child controls of

the page (or the control) that implements it. The Page class is the naming container of all the

page’s controls, with the clear exception of those controls that implement the INamingContainer

interface themselves or are children of controls that implement the interface.

Properties of the Page Class

The properties of the Page object can be classified in three distinct groups: intrinsic objects,

worker properties, and page-specific properties. The tables in the following sections

enumerate and describe them.

Intrinsic Objects

Table 3-9 lists all properties that return a helper object that is intrinsic to the page. In other

words, objects listed here are all essential parts of the infrastructure that allows for the page

execution.

C03625273.indd 113 1/15/2008 4:04:57 PM

114 Part I Building an ASP.NET Page

TABLE 3-9 ASP.NET Intrinsic Objects in the Page Class

Property Description

Application Instance of the HttpApplicationState class; represents the state of the applica-

tion. It is functionally equivalent to the ASP intrinsic Application object.

Cache Instance of the Cache class; implements the cache for an ASP.NET application.

More efficient and powerful than Application, it supports item priority and

expiration.

Profile Instance of the ProfileCommon class; represents the user-specific set of data

associated with the request.

Request Instance of the HttpRequest class; represents the current HTTP request. It is

functionally equivalent to the ASP intrinsic Request object.

Response Instance of the HttpResponse class; sends HTTP response data to the client. It

is functionally equivalent to the ASP intrinsic Response object.

Server Instance of the HttpServerUtility class; provides helper methods for processing

Web requests. It is functionally equivalent to the ASP intrinsic Server object.

Session Instance of the HttpSessionState class; manages user-specific data. It is

functionally equivalent to the ASP intrinsic Session object.

Trace Instance of the TraceContext class; performs tracing on the page.

User An IPrincipal object that represents the user making the request.

We’ll cover Request, Response, and Server in Chapter 14; Application and Session in Chapter

15; Cache will be the subject of Chapter 16. Finally, User and security will be the subject of

Chapter 17.

Worker Properties

Table 3-10 details page properties that are both informative and provide the grounds

for functional capabilities. You can hardly write code in the page without most of these

properties.

TABLE 3-10 Worker Properties of the Page Class

Property Description

ClientScript Gets a ClientScriptManager object that contains the client script used

on the page. Not available with ASP.NET 1.x.

Controls Returns the collection of all the child controls contained in the current

page.

ErrorPage Gets or sets the error page to which the requesting browser is redirect-

ed in case of an unhandled page exception.

Form Returns the current HtmlForm object for the page. Not available with

ASP.NET 1.x.

C03625273.indd 114 1/15/2008 4:04:57 PM

Chapter 3 Anatomy of an ASP.NET Page 115

Property Description

Header Returns a reference to the object that represents the page’s header. The

object implements IPageHeader. Not available with ASP.NET 1.x.

IsAsync Indicates whether the page is being invoked through an asynchronous

handler. Not available with ASP.NET 1.x.

IsCallback Indicates whether the page is being loaded in response to a client script

callback. Not available with ASP.NET 1.x.

IsCrossPagePostBack Indicates whether the page is being loaded in response to a postback

made from within another page. Not available with ASP.NET 1.x.

IsPostBack Indicates whether the page is being loaded in response to a client

postback or whether it is being loaded for the first time.

IsValid Indicates whether page validation succeeded.

Master Instance of the MasterPage class; represents the master page that

determines the appearance of the current page. Not available with ASP.

NET 1.x.

MasterPageFile Gets and sets the master file for the current page. Not available with

ASP.NET 1.x.

NamingContainer Returns null.

Page Returns the current Page object.

PageAdapter Returns the adapter object for the current Page object.

Parent Returns null.

PreviousPage Returns the reference to the caller page in case of a cross-page

postback. Not available with ASP.NET 1.x.

TemplateSourceDirectory Gets the virtual directory of the page.

Validators Returns the collection of all validation controls contained in the page.

ViewStateUserKey String property that represents a user-specific identifier used to hash

the view-state contents. This trick is a line of defense against one-click

attacks. Not available with ASP.NET 1.0.

In the context of an ASP.NET application, the Page object is the root of the hierarchy. For

this reason, inherited properties such as NamingContainer and Parent always return null. The

Page property, on the other hand, returns an instance of the same object (this in C# and Me

in Visual Basic .NET).

The ViewStateUserKey property that has been added with version 1.1 of the .NET Framework

deserves a special mention. A common use for the user key is to stuff user-specific informa-

tion that would then be used to hash the contents of the view state along with other infor-

mation. (See Chapter 15.) A typical value for the ViewStateUserKey property is the name of

C03625273.indd 115 1/15/2008 4:04:57 PM

116 Part I Building an ASP.NET Page

the authenticated user or the user’s session ID. This contrivance reinforces the security level

for the view state information and further lowers the likelihood of attacks. If you employ a

user-specific key, an attacker can’t construct a valid view state for your user account unless

the attacker can also authenticate as you. With this configuration, you have another barrier

against one-click attacks. This technique, though, might not be effective for Web sites that

allow anonymous access, unless you have some other unique tracking device running.

Note that if you plan to set the ViewStateUserKey property, you must do that during the

Page_Init event. If you attempt to do it later (for example, when Page_Load fires), an excep-

tion will be thrown.

Context Properties

Table 3-11 lists properties that represent visual and nonvisual attributes of the page, such as

the URL’s query string, the client target, the title, and the applied style sheet.

TABLE 3-11 Page-Specific Properties of the Page Class

Property Description

ClientID Always returns the empty string.

ClientQueryString Gets the query string portion of the requested URL. Not

available with ASP.NET 1.x.

ClientTarget Set to the empty string by default; allows you to specify

the type of the browser the HTML should comply with.

Setting this property disables automatic detection of

browser capabilities.

EnableViewState Indicates whether the page has to manage view-state

data. You can also enable or disable the view-state fea-

ture through the EnableViewState attribute of the @Page

directive.

EnableViewStateMac Indicates whether ASP.NET should calculate a machine-

specific authentication code and append it to the page

view state.

EnableTheming Indicates whether the page supports themes. Not

available with ASP.NET 1.x.

ID Always returns the empty string.

MaintainScrollPositionOnPostback Indicates whether to return the user to the same position

in the client browser after postback. Not available with

ASP.NET 1.x.

SmartNavigation Indicates whether smart navigation is enabled. Smart

navigation exploits a bunch of browser-specific capabili-

ties to enhance the user’s experience with the page.

StyleSheetTheme Gets or sets the name of the style sheet applied to this

page. Not available with ASP.NET 1.x.

C03625273.indd 116 1/15/2008 4:04:57 PM

Chapter 3 Anatomy of an ASP.NET Page 117

Property Description

Theme Gets and sets the theme for the page. Note that themes

can be programmatically set only in the PreInit event. Not

available with ASP.NET 1.x.

Title Gets or sets the title for the page. Not available with

ASP.NET 1.x.

TraceEnabled Toggles page tracing on and off. Not available with

ASP.NET 1.x.

TraceModeValue Gets or sets the trace mode. Not available with

ASP.NET 1.x.

UniqueID Always returns the empty string.

ViewStateEncryptionMode Indicates if and how the view state should be encrypted.

Visible Indicates whether ASP.NET has to render the page. If you

set Visible to false, ASP.NET doesn’t generate any HTML

code for the page. When Visible is false, only the text

explicitly written using Response.Write hits the client.

The three ID properties (ID, ClientID, and UniqueID) always return the empty string from a

Page object. They make sense only for server controls.

Methods of the Page Class

The whole range of Page methods can be classified in a few categories based on the tasks

each method accomplishes. A few methods are involved with the generation of the markup

for the page; others are helper methods to build the page and manage the constituent con-

trols. Finally, a third group collects all the methods that have to do with client-side scripting.

Rendering Methods

Table 3-12 details the methods that are directly or indirectly involved with the generation of

the markup code.

TABLE 3-12 Methods for Markup Generation

Method Description

DataBind Binds all the data-bound controls contained in the page to their

data sources. The DataBind method doesn’t generate code itself

but prepares the ground for the forthcoming rendering.

RenderControl Outputs the HTML text for the page, including tracing informa-

tion if tracing is enabled.

VerifyRenderingInServerForm Controls call this method when they render to ensure that they

are included in the body of a server form. The method does not

return a value, but it throws an exception in case of error.

C03625273.indd 117 1/15/2008 4:04:58 PM

118 Part I Building an ASP.NET Page

In an ASP.NET page, no control can be placed outside a <form> tag with the runat attribute

set to server. The VerifyRenderingInServerForm method is used by Web and HTML controls to

ensure that they are rendered correctly. In theory, custom controls should call this method

during the rendering phase. In many situations, the custom control embeds or derives an ex-

isting Web or HTML control that will make the check itself.

Not directly exposed by the Page class, but strictly related to it, is the GetWebResourceUrl

method on the ClientScriptManager class in ASP.NET 2.0 and higher. The method provides a

long-awaited feature to control developers. When you develop a control, you often need to

embed static resources such as images or client script files. You can make these files be sepa-

rate downloads but, even though it’s effective, the solution looks poor and inelegant. Visual

Studio .NET 2003 and newer versions allow you to embed resources in the control assembly,

but how would you retrieve these resources programmatically and bind them to the control?

For example, to bind an assembly-stored image to an tag, you need a URL for the im-

age. The GetWebResourceUrl method returns a URL for the specified resource. The URL refers

to a new Web Resource service (webresource.axd) that retrieves and returns the requested

resource from an assembly.

// Bind the tag to the given GIF image in the control’s assembly

img.ImageUrl = Page.GetWebResourceUrl(typeof(TheControl), GifName));

GetWebResourceUrl requires a Type object, which will be used to locate the assembly that

contains the resource. The assembly is identified with the assembly that contains the defini-

tion of the specified type in the current AppDomain. If you’re writing a custom control, the

type will likely be the control’s type. As its second argument, the GetWebResourceUrl method

requires the name of the embedded resource. The returned URL takes the following form:

WebResource.axd?a=assembly&r=resourceName&t=timestamp

The timestamp value is the current timestamp of the assembly, and it is added to make the

browser download resources again should the assembly be modified.

Controls-Related Methods

Table 3-13 details a bunch of helper methods on the Page class that are architected to let you

manage and validate child controls and resolve URLs.

TABLE 3-13 Helper Methods of the Page Object

Method Description

DesignerInitialize Initializes the instance of the Page class at design time, when

the page is being hosted by RAD designers such as Visual

Studio.

FindControl Takes a control’s ID and searches for it in the page’s naming

container. The search doesn’t dig out child controls that are

naming containers themselves.

C03625273.indd 118 1/15/2008 4:04:58 PM

Chapter 3 Anatomy of an ASP.NET Page 119

Method Description

GetTypeHashCode Retrieves the hash code generated by ASP.xxx_aspx page

objects at run time. In the base Page class, the method imple-

mentation simply returns 0; significant numbers are returned

by classes used for actual pages.

GetValidators Returns a collection of control validators for a specified valida-

tion group. Not available with ASP.NET 1.x.

HasControls Determines whether the page contains any child controls.

LoadControl Compiles and loads a user control from an .ascx file, and re-

turns a Control object. If the user control supports caching, the

object returned is PartialCachingControl.

LoadTemplate Compiles and loads a user control from an .ascx file, and re-

turns it wrapped in an instance of an internal class that imple-

ments the ITemplate interface. The internal class is named

SimpleTemplate.

MapPath Retrieves the physical, fully qualified path that an absolute or

relative virtual path maps to.

ParseControl Parses a well-formed input string, and returns an instance of

the control that corresponds to the specified markup text. If

the string contains more controls, only the first is taken into

account. The runat attribute can be omitted. The method

returns an object of type Control and must be cast to a more

specific type.

RegisterRequiresControlState Registers a control as one that requires control state. Not avail-

able with ASP.NET 1.x.

RegisterRequiresPostBack Registers the specified control to receive a postback han-

dling notice, even if its ID doesn’t match any ID in the col-

lection of posted data. The control must implement the

IPostBackDataHandler interface.

RegisterRequiresRaiseEvent Registers the specified control to handle an incoming postback

event. The control must implement the IPostBackEventHandler

interface.

RegisterViewStateHandler Mostly for internal use, the method sets an internal flag caus-

ing the page view state to be persisted. If this method is not

called in the prerendering phase, no view state will ever be

written. Typically, only the HtmlForm server control for the

page calls this method. There’s no need to call it from within

user applications.

ResolveUrl Resolves a relative URL into an absolute URL based on the

value of the TemplateSourceDirectory property.

Validate Instructs any validation controls included on the page to vali-

date their assigned information. ASP.NET 2.0 supports valida-

tion groups.

C03625273.indd 119 1/15/2008 4:04:58 PM

120 Part I Building an ASP.NET Page

The methods LoadControl and LoadTemplate share a common code infrastructure but return

different objects, as the following pseudocode shows:

public Control LoadControl(string virtualPath) {

 Control ascx = GetCompiledUserControlType(virtualPath);

 ascx.InitializeAsUserControl();

 return ascx;

}

public ITemplate LoadTemplate(string virtualPath) {

 Control ascx = GetCompiledUserControlType(virtualPath);

 return new SimpleTemplate(ascx);

}

Both methods differ from ParseControl in that the latter never causes compilation but simply

parses the string and infers control information. The information is then used to create and

initialize a new instance of the control class. As mentioned, the runat attribute is unnecessary

in this context. In ASP.NET, the runat attribute is key, but in practice, it has no other role than

marking the surrounding markup text for parsing and instantiation. It does not contain infor-

mation useful to instantiate a control, and for this reason it can be omitted from the strings

you pass directly to ParseControl.

Script-Related Methods

Table 3-14 enumerates all the methods in the Page class that have to do with HTML and

script code to be inserted in the client page.

TABLE 3-14 Script-Related Methods

Method Description

GetCallbackEventReference Obtains a reference to a client-side function that, when in-

voked, initiates a client call back to server-side events. Not

available with ASP.NET 1.x.

GetPostBackClientEvent Calls into GetCallbackEventReference.

GetPostBackClientHyperlink Appends javascript: to the beginning of the return string re-

ceived from GetPostBackEventReference.

javascript:__doPostBack(‘CtlID’,’’)

GetPostBackEventReference Returns the prototype of the client-side script function that

causes, when invoked, a postback. It takes a Control and an ar-

gument, and it returns a string like this:

__doPostBack(‘CtlID’,’’)

IsClientScriptBlockRegistered Determines whether the specified client script is registered with

the page. Marked as obsolete.

IsStartupScriptRegistered Determines whether the specified client startup script is regis-

tered with the page. Marked as obsolete.

C03625273.indd 120 1/15/2008 4:04:58 PM

Chapter 3 Anatomy of an ASP.NET Page 121

Method Description

RegisterArrayDeclaration Use this method to add an ECMAScript array to the client page.

This method accepts the name of the array and a string that will

be used verbatim as the body of the array. For example, if you

call the method with arguments such as theArray and “’a’, ‘b’”,

you get the following JavaScript code:

var theArray = new Array(‘a’, ‘b’);

Marked as obsolete.

RegisterClientScriptBlock An ASP.NET page uses this method to emit client-side script

blocks in the client page just after the opening tag of the HTML

<form> element. Marked as obsolete.

RegisterHiddenField Use this method to automatically register a hidden field on the

page. Marked as obsolete.

RegisterOnSubmitStatement Use this method to emit client script code that handles the cli-

ent OnSubmit event. The script should be a JavaScript function

call to client code registered elsewhere. Marked as obsolete.

RegisterStartupScript An ASP.NET page uses this method to emit client-side script

blocks in the client page just before closing the HTML <form>

element. Marked as obsolete.

SetFocus Sets the browser focus to the specified control. Not available

with ASP.NET 1.x.

As you can see, some methods in Table 3-14, which are defined and usable in ASP.NET 1.x,

are marked obsolete. In ASP.NET 3.5 applications, you should avoid calling them and resort

to methods with the same name exposed out of the ClientScript property. (See Table 3-10.)

// Avoid this in ASP.NET 3.5

Page.RegisterArrayDeclaration(…);

// Use this in ASP.NET 3.5

Page.ClientScript.RegisterArrayDeclaration(…);

We’ll return to ClientScript in Chapter 5.

Methods listed in Table 3-14 let you emit JavaScript code in the client page. When you use

any of these methods, you actually tell the page to insert that script code when the page is

rendered. So when any of these methods execute, the script-related information is simply

cached in internal structures and used later when the page object generates its HTML text.

Events of the Page Class

The Page class fires a few events that are notified during the page life cycle. As Table 3-15

shows, some events are orthogonal to the typical life cycle of a page (initialization, postback,

rendering phases) and are fired as extra-page situations evolve. Let’s briefly review the events

and then attack the topic with an in-depth discussion on the page life cycle.

C03625273.indd 121 1/15/2008 4:04:58 PM

122 Part I Building an ASP.NET Page

TABLE 3-15 Events That a Page Can Fire

Event Description

AbortTransaction Occurs for ASP.NET pages marked to participate in an automatic trans-

action when a transaction aborts.

CommitTransaction Occurs for ASP.NET pages marked to participate in an automatic trans-

action when a transaction commits.

DataBinding Occurs when the DataBind method is called on the page to bind all the

child controls to their respective data sources.

Disposed Occurs when the page is released from memory, which is the last stage

of the page life cycle.

Error Occurs when an unhandled exception is thrown.

Init Occurs when the page is initialized, which is the first step in the page

life cycle.

InitComplete Occurs when all child controls and the page have been initialized. Not

available in ASP.NET 1.x.

Load Occurs when the page loads up, after being initialized.

LoadComplete Occurs when the loading of the page is completed and server events

have been raised. Not available in ASP.NET 1.x.

PreInit Occurs just before the initialization phase of the page begins. Not

available in ASP.NET 1.x.

PreLoad Occurs just before the loading phase of the page begins. Not available

in ASP.NET 1.x.

PreRender Occurs when the page is about to render.

PreRenderComplete Occurs just before the pre-rendering phase begins. Not available in

ASP.NET 1.x.

SaveStateComplete Occurs when the view state of the page has been saved to the persis-

tence medium. Not available in ASP.NET 1.x.

Unload Occurs when the page is unloaded from memory but not yet disposed.

The Eventing Model

When a page is requested, its class and the server controls it contains are responsible for

executing the request and rendering HTML back to the client. The communication between

the client and the server is stateless and disconnected because of the HTTP protocol. Real-

world applications, though, need some state to be maintained between successive calls made

to the same page. With ASP, and with other server-side development platforms such as Java

Server Pages and Linux-based systems (for example, LAMP), the programmer is entirely re-

sponsible for persisting the state. In contrast, ASP.NET provides a built-in infrastructure that

saves and restores the state of a page in a transparent manner. In this way, and in spite of

C03625273.indd 122 1/15/2008 4:04:58 PM

Chapter 3 Anatomy of an ASP.NET Page 123

the underlying stateless protocol, the client experience appears to be that of a continuously

executing process. It’s just an illusion, though.

Introducing the View State

The illusion of continuity is created by the view state feature of ASP.NET pages and is based

on some assumptions about how the page is designed and works. Also, server-side Web con-

trols play a remarkable role. Briefly, before rendering its contents to HTML, the page encodes

and stuffs into a persistence medium (typically, a hidden field) all the state information that

the page itself and its constituent controls want to save. When the page posts back, the state

information is deserialized from the hidden field and used to initialize instances of the server

controls declared in the page layout.

The view state is specific to each instance of the page because it is embedded in the HTML.

The net effect of this is that controls are initialized with the same values they had the last

time the view state was created—that is, the last time the page was rendered to the cli-

ent. Furthermore, an additional step in the page life cycle merges the persisted state with

any updates introduced by client-side actions. When the page executes after a postback, it

finds a stateful and up-to-date context just as it is working over a continuous point-to-point

connection.

Two basic assumptions are made. The first assumption is that the page always posts to itself

and carries its state back and forth. The second assumption is that the server-side controls

have to be declared with the runat=server attribute to spring to life once the page posts

back.

The Single Form Model

Admittedly, for programmers whose experience is with ASP or JSP, the single form model of

ASP.NET can be difficult to make sense of at first. These programmers frequently ask ques-

tions on forums and newsgroups such as, “Where’s the Action property of the form?” and

“Why can’t I redirect to a particular page when a form is submitted?”

ASP.NET pages are built to support exactly one server-side <form> tag. The form must in-

clude all the controls you want to interact with on the server. Both the form and the controls

must be marked with the runat attribute; otherwise, they will be considered as plain text to

be output verbatim. A server-side form is an instance of the HtmlForm class. The HtmlForm

class does not expose any property equivalent to the Action property of the HTML <form>

tag. The reason is that an ASP.NET page always posts to itself. Unlike the Action property,

other common form properties such as Method and Target are fully supported.

Valid ASP.NET pages are also those that have no server-side forms and those that run HTML

forms—a <form> tag without the runat attribute. In an ASP.NET page, you can also have

both HTML and server forms. In no case, though, can you have more than one <form> tag

C03625273.indd 123 1/15/2008 4:04:58 PM

124 Part I Building an ASP.NET Page

with the runat attribute set to server. HTML forms work as usual and let you post to any page

in the application. The drawback is that in this case no state will be automatically restored. In

other words, the ASP.NET Web Forms model works only if you use exactly one server <form>

element. We’ll return to this topic in Chapter 5.

Asynchronous Pages

ASP.NET pages are served by an HTTP handler like an instance of the Page class. Each re-

quest takes up a thread in the ASP.NET thread pool and releases it only when the request

completes. What if a frequently requested page starts an external and particularly lengthy

task? The risk is that the ASP.NET process is idle but has no free threads in the pool to serve

incoming requests for other pages. This is mostly due to the fact that HTTP handlers, includ-

ing page classes, work synchronously. To alleviate this issue, ASP.NET supports asynchronous

handlers since version 1.0 through the IHTTPAsyncHandler interface. Starting with ASP.

NET 2.0, creating asynchronous pages is even easier thanks to specific support from the

framework.

Two aspects characterize an asynchronous ASP.NET page: a new attribute on the @Page

directive, and one or more tasks registered for asynchronous execution. The asynchronous

task can be registered in either of two ways. You can define a Begin/End pair of asynchronous

handlers for the PreRenderComplete event or create a PageAsyncTask object to represent an

asynchronous task. This is generally done in the Page_Load event, but any time is fine pro-

vided that it happens before the PreRender event fires.

In both cases, the asynchronous task is started automatically when the page has progressed

to a well-known point. Let’s dig out more details.

Note An ASP.NET asynchronous page is still a class that derives from Page. There are no special

base classes to inherit for building asynchronous pages.

The Async Attribute

The new Async attribute on the @Page directive accepts a Boolean value to enable or disable

asynchronous processing. The default value is false.

<%@ Page Async=”true” ... %>

The Async attribute is merely a message for the page parser. When used, the page parser

implements the IHttpAsyncHandler interface in the dynamically generated class for the

.aspx resource. The Async attribute enables the page to register asynchronous handlers for

the PreRenderComplete event. No additional code is executed at run time as a result of the

attribute.

C03625273.indd 124 1/15/2008 4:04:58 PM

Chapter 3 Anatomy of an ASP.NET Page 125

Let’s consider a request for a TestAsync.aspx page marked with the Async directive attribute.

The dynamically created class, named ASP.TestAsync_aspx, is declared as follows:

public class TestAsync_aspx : TestAsync, IHttpHandler, IHttpAsyncHandler

{

 ...

}

TestAsync is the code file class and inherits from Page, or a class that in turn inherits from

Page. IHttpAsyncHandler is the canonical interface used for serving resources asynchronously

since ASP.NET 1.0.

The AddOnPreRenderCompleteAsync Method

The AddOnPreRenderCompleteAsync method adds an asynchronous event handler for the

page’s PreRenderComplete event. An asynchronous event handler consists of a Begin/End pair

of event handler methods, as shown here:

AddOnPreRenderCompleteAsync (

 new BeginEventHandler(BeginTask),

 new EndEventHandler(EndTask)

);

The BeginEventHandler and EndEventHandler are delegates defined as follows:

IAsyncResult BeginEventHandler(

 object sender,

 EventArgs e,

 AsyncCallback cb,

 object state)

void EndEventHandler(

 IAsyncResult ar)

In the code file, you place a call to AddOnPreRenderCompleteAsync as soon as you can, and

always earlier than the PreRender event can occur. A good place is usually the Page_Load

event. Next, you define the two asynchronous event handlers.

The Begin handler is responsible for starting any operation you fear can block the underly-

ing thread for too long. The handler is expected to return an IAsyncResult object to describe

the state of the asynchronous task. The End handler completes the operation and updates

the page’s user interface and controls. Note that you don’t necessarily have to create your

own object that implements the IAsyncResult interface. In most cases, in fact, to start lengthy

operations you just use built-in classes that already implement the asynchronous pattern and

provide IAsyncResult ready-made objects.

C03625273.indd 125 1/15/2008 4:04:58 PM

126 Part I Building an ASP.NET Page

Important The Begin and End event handlers are called at different times and generally on

different pooled threads. In between the two methods calls, the lengthy operation takes place.

From the ASP.NET runtime perspective, the Begin and End events are similar to serving distinct

requests for the same page. It’s as if an asynchronous request is split in two distinct steps—a

Begin and End step. Each request is always served by a pooled thread. Typically, the Begin step is

served by a thread picked up from the ASP.NET worker thread pool. The End step is served by a

thread selected from the completion thread pool.

The page progresses up to entering the PreRenderComplete stage. You have a pair of asyn-

chronous event handlers defined here. The page executes the Begin event, starts the lengthy

operation, and is then suspended until the operation terminates. When the work has been

completed, the HTTP runtime processes the request again. This time, though, the request

processing begins at a later stage than usual. In particular, it begins exactly where it left

off—that is, from the PreRenderComplete stage. The End event executes, and the page finally

completes the rest of its life cycle, including view-state storage, markup generation, and

unloading.

The Significance of PreRenderComplete

So an asynchronous page executes up until the PreRenderComplete stage is reached and

then blocks while waiting for the asynchronous operation to complete. When the opera-

tion is finally accomplished, the page execution resumes from the PreRenderComplete stage.

A good question to ask would be the following: “Why PreRenderComplete?” What makes

PreRenderComplete such a special event?

By design, in ASP.NET there’s a single unwind point for asynchronous operations (also

familiarly known as the async point). This point is located between the PreRender and

PreRenderComplete events. When the page receives the PreRender event, the async point

hasn’t been reached yet. When the page receives PreRenderComplete, the async point has

passed.

Building a Sample Asynchronous Page

Let’s roll a first asynchronous test page to download and process some RSS feeds. The page

markup is quite simple indeed:

<%@ Page Async=”true” Language=”C#” AutoEventWireup=”true”

 CodeFile=”TestAsync.aspx.cs” Inherits=”TestAsync” %>

<html>

<body>

 <form id=”form1” runat=”server”>

 <% = rssData %>

 </form>

</body>

</html>

C03625273.indd 126 1/15/2008 4:04:58 PM

Chapter 3 Anatomy of an ASP.NET Page 127

The code file is shown next, and it attempts to download the RSS feed from my personal

blog:

public partial class TestAsync : System.Web.UI.Page

{

 const string RSSFEED = “http://weblogs.asp.net/despos/rss.aspx”;

 private WebRequest req;

 public string rssData;

 void Page_Load (object sender, EventArgs e)

 {

 AddOnPreRenderCompleteAsync (

 new BeginEventHandler(BeginTask),

 new EndEventHandler(EndTask));

 }

 IAsyncResult BeginTask(object sender,

 EventArgs e, AsyncCallback cb, object state)

 {

 // Trace

 Trace.Warn(“Begin async: Thread=” +

 Thread.CurrentThread.ManagedThreadId.ToString());

 // Prepare to make a Web request for the RSS feed

 req = WebRequest.Create(RSSFEED);

 // Begin the operation and return an IAsyncResult object

 return req.BeginGetResponse(cb, state);

 }

 void EndTask(IAsyncResult ar)

 {

 // This code will be called on a pooled thread

 string text;

 using (WebResponse response = req.EndGetResponse(ar))

 {

 StreamReader reader;

 using (reader = new StreamReader(response.GetResponseStream()))

 {

 text = reader.ReadToEnd();

 }

 // Process the RSS data

 rssData = ProcessFeed(text);

 }

 // Trace

 Trace.Warn(“End async: Thread=” +

 Thread.CurrentThread.ManagedThreadId.ToString());

C03625273.indd 127 1/15/2008 4:04:58 PM

128 Part I Building an ASP.NET Page

 // The page is updated using an ASP-style code block in the ASPX

 // source that displays the contents of the rssData variable

 }

 string ProcessFeed(string feed)

 {

 // Build the page output from the XML input

 ...

 }

}

As you can see, such an asynchronous page differs from a standard one only for the

aforementioned elements—the Async directive attribute and the pair of asynchronous event

handlers. Figure 3-6 shows the sample page in action.

FIGURE 3-6 A sample asynchronous page downloading links from an RSS feed.

It would also be interesting to take a look at the messages traced by the page. Figure 3-7

provides visual clues of it. The Begin and End stages are served by different threads and take

place at different times.

C03625273.indd 128 1/15/2008 4:04:58 PM

Chapter 3 Anatomy of an ASP.NET Page 129

FIGURE 3-7 The traced request details clearly show the two steps needed to process a request

asynchronously.

Note the time elapsed between the time we enter BeginTask and exit EndTask stages

(indicated by the elapsed time between the “Begin async” and “End async” entries shown in

Figure 3-7). It is much longer than intervals between any other two consecutive operations.

It’s in that interval that the lengthy operation—in this case, downloading and processing the

RSS feed—took place. The interval also includes the time spent to pick up another thread

from the pool to serve the second part of the original request.

The RegisterAsyncTask Method

The AddOnPreRenderCompleteAsync method is not the only tool you have to register an

asynchronous task. The RegisterAsyncTask method is, in most cases, an even better solution.

RegisterAsyncTask is a void method and accepts a PageAsyncTask object. As the name sug-

gests, the PageAsyncTask class represents a task to execute asynchronously.

The following code shows how to rework the sample page that reads some RSS feed and

make it use the RegisterAsyncTask method:

void Page_Load (object sender, EventArgs e)

{

 PageAsyncTask task = new PageAsyncTask(

 new BeginEventHandler(BeginTask),

 new EndEventHandler(EndTask),

 null,

 null);

 RegisterAsyncTask(task);

}

C03625273.indd 129 1/15/2008 4:04:59 PM

130 Part I Building an ASP.NET Page

The constructor accepts up to five parameters, as shown in the following code:

public PageAsyncTask(

 BeginEventHandler beginHandler,

 EndEventHandler endHandler,

 EndEventHandler timeoutHandler,

 object state,

 bool executeInParallel)

The beginHandler and endHandler parameters have the same prototype as the correspond-

ing handlers we use for the AddOnPreRenderCompleteAsync method. Compared to the

AddOnPreRenderCompleteAsync method, PageAsyncTask lets you specify a timeout function

and an optional flag to enable multiple registered tasks to execute in parallel.

The timeout delegate indicates the method that will get called if the task is not completed

within the asynchronous timeout interval. By default, an asynchronous task times out if not

completed within 45 seconds. You can indicate a different timeout in either the configuration

file or the @Page directive. Here’s what you need if you opt for the web.config file:

<system.web>

 <pages asyncTimeout=”30” />

</system.web>

The @Page directive contains an integer AsyncTimeout attribute that you set to the desired

number of seconds. Note that configuring the asynchronous timeout in web.config causes all

asynchronous pages to use the same timeout value. Individual pages are still free to set their

own timeout value in their @Page directive.

Just as with the AddOnPreRenderCompleteAsync method, you can pass some state to the

delegates performing the task. The state parameter can be any object.

The execution of all tasks registered is automatically started by the Page class code just be-

fore the async point is reached. However, by placing a call to the ExecuteRegisteredAsyncTasks

method on the Page class, you can take control of this aspect.

Choosing the Right Approach

When should you use AddOnPreRenderCompleteAsync, and when is RegisterAsyncTask a

better option? Functionally speaking, the two approaches are nearly identical. In both cases,

the execution of the request is split in two parts—before and after the async point. So

where’s the difference?

The first difference is logical. RegisterAsyncTask is an API designed to run tasks asyn-

chronously from within a page—and not just asynchronous pages with Async=true.

AddOnPreRenderCompleteAsync is an API specifically designed for asynchronous pages.

This said, a couple of further differences exist.

C03625273.indd 130 1/15/2008 4:04:59 PM

Chapter 3 Anatomy of an ASP.NET Page 131

One is that RegisterAsyncTask executes the End handler on a thread with a richer context than

AddOnPreRenderCompleteAsync. The thread context includes impersonation and HTTP con-

text information that is missing in the thread serving the End handler of a classic asynchro-

nous page. In addition, RegisterAsyncTask allows you to set a timeout to ensure that any task

doesn’t run for more than a given number of seconds.

The other difference is that RegisterAsyncTask makes significantly easier the implementa-

tion of multiple calls to remote sources. You can have parallel execution by simply setting a

Boolean flag, and you don’t need to create and manage your own IAsyncResult object.

The bottom line is that you can use either approach for a single task, but you should opt for

RegisterAsyncTask when you have multiple tasks to execute simultaneously.

Note For more information on asynchronous pages, check out Chapter 5 of my book

Programming Microsoft ASP.NET 2.0 Applications: Advanced Topics (Microsoft Press 2006).

Async-Compliant Operations

Which required operations force, or at least strongly suggest, the adoption of an

asynchronous page? Any operation can be roughly labeled in either of two ways: CPU

bound or I/O bound. CPU bound indicates an operation whose completion time is

mostly determined by the speed of the processor and amount of available memory. I/O

bound indicates the opposite situation, where the CPU mostly waits for other devices to

terminate.

The need for asynchronous processing arises when an excessive amount of time is

spent getting data in to and out of the computer in relation to the time spent process-

ing it. In such situations, the CPU is idle or underused and spends most of its time wait-

ing for something to happen. In particular, I/O-bound operations in the context of ASP.

NET applications are even more harmful because serving threads are blocked too, and

the pool of serving threads is a finite and critical resource. You get real performance

advantages if you use the asynchronous model on I/O-bound operations.

Typical examples of I/O-bound operations are all operations that require access to

some sort of remote resource or interaction with external hardware devices. Operations

on non-local databases and non-local Web service calls are the most common I/O-

bound operations for which you should seriously consider building asynchronous

pages.

C03625273.indd 131 1/15/2008 4:04:59 PM

132 Part I Building an ASP.NET Page

The Page Life Cycle

A page instance is created on every request from the client, and its execution causes itself

and its contained controls to iterate through their life-cycle stages. Page execution begins

when the HTTP runtime invokes ProcessRequest, which kicks off the page and control life

cycles. The life cycle consists of a sequence of stages and steps. Some of these stages can be

controlled through user-code events; some require a method override. Some other stages, or

more exactly sub-stages, are simply not marked as public and are out of the developer’s con-

trol. They are mentioned here mostly for completeness.

The page life cycle is articulated in three main stages: setup, postback, and finalization. Each

stage might have one or more substages and is composed of one or more steps and points

where events are raised. The life cycle as described here includes all possible paths. Note that

there are modifications to the process depending upon cross-page posts, script callbacks,

and postbacks.

Page Setup

When the HTTP runtime instantiates the page class to serve the current request, the page

constructor builds a tree of controls. The tree of controls ties into the actual class that the

page parser created after looking at the ASPX source. It is important to note that when the

request processing begins, all child controls and page intrinsic objects such as HTTP context,

request objects, and response objects are set.

The very first step in the page lifetime is determining why the runtime is processing the page

request. There are various possible reasons: a normal request, postback, cross-page postback,

or callback. The page object configures its internal state based on the actual reason, and it

prepares the collection of posted values (if any) based on the method of the request—either

GET or POST. After this first step, the page is ready to fire events to the user code.

The PreInit Event

Introduced with ASP.NET 2.0, this event is the entry point in the page life cycle. When the

event fires, no master page and no theme have been associated with the page as yet.

Furthermore, the page scroll position has been restored, posted data is available, and all

page controls have been instantiated and default to the property values defined in the

ASPX source. (Note that at this time controls have no ID, unless it is explicitly set in the .aspx

source.) Changing the master page or the theme programmatically is possible only at this

time. This event is available only on the page. IsCallback, IsCrossPagePostback, and IsPostBack

are set at this time.

C03625273.indd 132 1/15/2008 4:04:59 PM

Chapter 3 Anatomy of an ASP.NET Page 133

The Init Event

The master page and theme, if each exists, have been set and can’t be changed anymore.

The page processor—that is, the ProcessRequest method on the Page class—proceeds and

iterates over all child controls to give them a chance to initialize their state in a context-sen-

sitive way. All child controls have their OnInit method invoked recursively. For each control in

the control collection, the naming container and a specific ID are set, if not assigned in the

source.

The Init event reaches child controls first and the page later. At this stage, the page and

controls typically begin loading some parts of their state. At this time, the view state is not

restored yet.

The InitComplete Event

Introduced with ASP.NET 2.0, this page-only event signals the end of the initialization sub-

stage. For a page, only one operation takes place in between the Init and InitComplete

events: tracking of view-state changes is turned on. Tracking view state is the operation that

ultimately enables controls to really persist in the storage medium any values that are pro-

grammatically added to the ViewState collection. Simply put, for controls not tracking their

view state, any values added to their ViewState are lost across postbacks.

All controls turn on view-state tracking immediately after raising their Init event, and the

page is no exception. (After all, isn’t the page just a control?)

Important In light of the previous statement, note that any value written to the ViewState

collection before InitComplete won’t be available on the next postback. In ASP.NET 1.x, you must

wait for the Load event to start writing safely to the page or any control view state.

View-State Restoration

If the page is being processed because of a postback—that is, if the IsPostBack property is

true—the contents of the __VIEWSTATE hidden field are restored. The __VIEWSTATE hidden

field is where the view state of all controls is persisted at the end of a request. The overall

view state of the page is a sort of call context and contains the state of each constituent

control the last time the page was served to the browser.

At this stage, each control is given a chance to update its current state to make it identical to

what it was on last request. There’s no event to wire up to handle the view-state restoration.

If something needs be customized here, you have to resort to overriding the LoadViewState

method, defined as protected and virtual on the Control class.

C03625273.indd 133 1/15/2008 4:04:59 PM

134 Part I Building an ASP.NET Page

Processing Posted Data

All the client data packed in the HTTP request—that is, the contents of all input fields defined

with the <form> tag—are processed at this time. Posted data usually takes the following

form:

TextBox1=text&DropDownList1=selectedItem&Button1=Submit

It’s an &-separated string of name/value pairs. These values are loaded into an internal-use

collection. The page processor attempts to find a match between names in the posted col-

lection and ID of controls in the page. Whenever a match is found, the processor checks

whether the server control implements the IPostBackDataHandler interface. If it does, the

methods of the interface are invoked to give the control a chance to refresh its state in light

of the posted data. In particular, the page processor invokes the LoadPostData method on

the interface. If the method returns true—that is, the state has been updated—the control is

added to a separate collection to receive further attention later.

If a posted name doesn’t match any server controls, it is left over and temporarily parked in a

separate collection, ready for a second try later.

The PreLoad Event

Introduced with ASP.NET 2.0, the PreLoad event merely indicates that the page has terminat-

ed the system-level initialization phase and is going to enter the phase that gives user code

in the page a chance to further configure the page for execution and rendering. This event is

raised only for pages.

The Load Event

The Load event is raised for the page first and then recursively for all child controls. At this

time, controls in the page tree are created and their state fully reflects both the previous

state and any data posted from the client. The page is ready to execute any initialization

code that has to do with the logic and behavior of the page. At this time, access to control

properties and view state is absolutely safe.

Handling Dynamically Created Controls

When all controls in the page have been given a chance to complete their initialization

before display, the page processor makes a second try on posted values that haven’t been

matched to existing controls. The behavior described earlier in the “Processing Posted Data”

section is repeated on the name/value pairs that were left over previously. This apparently

weird approach addresses a specific scenario—the use of dynamically created controls.

Imagine adding a control to the page tree dynamically—for example, in response to a cer-

tain user action. As mentioned, the page is rebuilt from scratch after each postback, so any

information about the dynamically created control is lost. On the other hand, when the

C03625273.indd 134 1/15/2008 4:04:59 PM

Chapter 3 Anatomy of an ASP.NET Page 135

page’s form is submitted, the dynamic control there is filled with legal and valid information

that is regularly posted. By design, there can’t be any server control to match the ID of the

dynamic control the first time posted data is processed. However, the ASP.NET framework

recognizes that some controls could be created in the Load event. For this reason, it makes

sense to give it a second try to see whether a match is possible after the user code has run

for a while.

If the dynamic control has been re-created in the Load event, a match is now possible and

the control can refresh its state with posted data.

Handling the Postback

The postback mechanism is the heart of ASP.NET programming. It consists of posting form

data to the same page using the view state to restore the call context—that is, the same state

of controls existing when the posting page was last generated on the server.

After the page has been initialized and posted values have been taken into account, it’s

about time that some server-side events occur. There are two main types of events. The first

type of event signals that certain controls had the state changed over the postback. The sec-

ond type of event executes server code in response to the client action that caused the post.

Detecting Control State Changes

The ASP.NET machinery works around an implicit assumption: there must be a one-to-one

correspondence between some HTML input tags that operate in the browser and some other

ASP.NET controls that live and thrive in the Web server. The canonical example of this cor-

respondence is between <input type=”text”> and TextBox controls. To be more technically

precise, the link is given by a common ID name. When the user types some new text into an

input element and then posts it, the corresponding TextBox control—that is, a server control

with the same ID as the input tag—is called to handle the posted value. I described this step

in the “Processing Posted Data” section earlier in the chapter.

For all controls that had the LoadPostData method return true, it’s now time to execute the

second method of the IPostBackDataHandler interface: the RaisePostDataChangedEvent

method. The method signals the control to notify the ASP.NET application that the state of

the control has changed. The implementation of the method is up to each control. However,

most controls do the same thing: raise a server event and give page authors a way to kick

in and execute code to handle the situation. For example, if the Text property of a TextBox

changes over a postback, the TextBox raises the TextChanged event to the host page.

Executing the Server-Side Postback Event

Any page postback starts with some client action that intends to trigger a server-side action.

For example, clicking a client button posts the current contents of the displayed form to the

C03625273.indd 135 1/15/2008 4:04:59 PM

136 Part I Building an ASP.NET Page

server, thus requiring some action and new, refreshed page output. The client button con-

trol—typically, a hyperlink or a submit button—is associated with a server control that imple-

ments the IPostBackEventHandler interface.

The page processor looks at the posted data and determines the control that caused the

postback. If this control implements the IPostBackEventHandler interface, the processor

invokes the RaisePostBackEvent method. The implementation of this method is left to the

control and can vary quite a bit, at least in theory. In practice, though, any posting control

raises a server event that allows page authors to write code in response to the postback. For

example, the Button control raises the onclick event.

There are two ways a page can post back to the server—by using a submit button (that is,

<input type=”submit”>) or through script. A submit HTML button is generated through the

Button server control. The LinkButton control, along with a few other postback controls, in-

serts some script code in the client page to bind an HTML event (for example, onclick) to the

form’s submit method in the browser’s HTML object model. We’ll return to this topic in the

next chapter.

Note Starting with ASP.NET 2.0, a new property, UseSubmitBehavior, exists on the Button class

to let page developers control the client behavior of the corresponding HTML element as far

as form submission is concerned. In ASP.NET 1.x, the Button control always outputs an <input

type=”submit”> element. In ASP.NET 2.0 and beyond, by setting UseSubmitBehavior to false, you

can change the output to <input type=”button”> but at the same time the onclick property of the

client element is bound to predefined script code that just posts back.

The LoadComplete Event

Introduced in ASP.NET 2.0, the page-only LoadComplete event signals the end of the page-

preparation phase. It is important to note that no child controls will ever receive this event.

After firing LoadComplete, the page enters its rendering stage.

Page Finalization

After handling the postback event, the page is ready for generating the output for the

browser. The rendering stage is divided in two parts—pre-rendering and markup generation.

The pre-rendering sub-stage is in turn characterized by two events for pre-processing and

post-processing.

The PreRender Event

By handling this event, pages and controls can perform any updates before the output is ren-

dered. The PreRender event fires for the page first and then recursively for all controls. Note

C03625273.indd 136 1/15/2008 4:04:59 PM

Chapter 3 Anatomy of an ASP.NET Page 137

that at this time the page ensures that all child controls are created. This step is important

especially for composite controls.

The PreRenderComplete Event

Because the PreRender event is recursively fired for all child controls, there’s no way for

the page author to know when the pre-rendering phase has been completed. For this rea-

son, in ASP.NET 2.0 a new event has been added and raised only for the page. This event is

PreRenderComplete.

The SaveStateComplete Event

The next step before each control is rendered out to generate the markup for the page is

saving the current state of the page to the view-state storage medium. It is important to note

that every action taken after this point that modifies the state could affect the rendering,

but it is not persisted and won’t be retrieved on the next postback. Saving the page state is

a recursive process in which the page processor walks its way through the whole page tree

calling the SaveViewState method on constituent controls and the page itself. SaveViewState

is a protected and virtual (that is, overridable) method that is responsible for persisting the

content of the ViewState dictionary for the current control. (We’ll come back to the ViewState

dictionary in Chapter 14.)

Starting with ASP.NET 2.0, controls provide a second type of state, known as a “control state.”

A control state is a sort of private view state that is not subject to the application’s control. In

other words, the control state of a control can’t be programmatically disabled as is the case

with the view state. The control state is persisted at this time, too. Control state is another

state storage mechanism whose contents are maintained across page postbacks much like

view state, but the purpose of control state is to maintain necessary information for a con-

trol to function properly. That is, state behavior property data for a control should be kept

in control state, while user interface property data (such as the control’s contents) should be

kept in view state.

Introduced with ASP.NET 2.0, the SaveStateComplete event occurs when the state of controls

on the page have been completely saved to the persistence medium.

Note The view state of the page and all individual controls is accumulated in a unique

memory structure and then persisted to storage medium. By default, the persistence me-

dium is a hidden field named __VIEWSTATE. Serialization to, and deserialization from, the

persistence medium is handled through a couple of overridable methods on the Page class:

SavePageStateToPersistenceMedium and LoadPageStateFromPersistenceMedium. For example, by

overriding these two methods you can persist the page state in a server-side database or in the

session state, dramatically reducing the size of the page served to the user. Hold on, though. This

option is not free of issues, and we’ll talk more about it in Chapter 15.

C03625273.indd 137 1/15/2008 4:04:59 PM

138 Part I Building an ASP.NET Page

Generating the Markup

The generation of the markup for the browser is obtained by calling each constituent control

to render its own markup, which will be accumulated into a buffer. Several overridable meth-

ods allow control developers to intervene in various steps during the markup generation—

begin tag, body, and end tag. No user event is associated with the rendering phase.

The Unload Event

The rendering phase is followed by a recursive call that raises the Unload event for each

control, and finally for the page itself. The Unload event exists to perform any final clean-

up before the page object is released. Typical operations are closing files and database

connections.

Note that the unload notification arrives when the page or the control is being unloaded

but has not been disposed of yet. Overriding the Dispose method of the Page class, or more

simply handling the page’s Disposed event, provides the last possibility for the actual page to

perform final clean up before it is released from memory. The page processor frees the page

object by calling the method Dispose. This occurs immediately after the recursive call to the

handlers of the Unload event has completed.

Conclusion

ASP.NET is a complex technology built on top of a substantially simple—and, fortunately,

solid and stable—Web infrastructure. To provide highly improved performance and a richer

programming toolset, ASP.NET builds a desktop-like abstraction model, but it still has to rely

on HTTP and HTML to hit the target and meet end-user expectations.

There are two relevant aspects in the ASP.NET Web Forms model: the process model, includ-

ing the Web server process model, and the page object model. Each request of a URL that

ends with .aspx is assigned to an application object working within the CLR hosted by the

worker process. The request results in a dynamically compiled class that is then instantiated

and put to work. The Page class is the base class for all ASP.NET pages. An instance of this

class runs behind any URL that ends with .aspx. In most cases, you won’t just build your ASP.

NET pages from the Page class directly, but you’ll rely on derived classes that contain event

handlers and helper methods, at the very minimum. These classes are known as code-behind

classes.

C03625273.indd 138 1/15/2008 4:04:59 PM

Chapter 3 Anatomy of an ASP.NET Page 139

The class that represents the page in action implements the ASP.NET eventing model

based on two pillars, the single form model (page reentrancy) and server controls. The

page life cycle, fully described in this chapter, details the various stages (and related sub-

stages) a page passes through on the way to generate the markup for the browser. A deep

understanding of the page life cycle and eventing model is key to diagnosing possible

problems and implementing advanced features quickly and efficiently.

In this chapter, we mentioned controls several times. Server controls are components that get

input from the user, process the input, and output a response as HTML. In the next chapter,

we’ll explore various server controls, which include Web controls, HTML controls, and valida-

tion controls.

Just the Facts

A pipeline of run-time modules receive from IIS an incoming HTTP packet and make it

evolve from a protocol-specific payload up to an instance of a class derived from Page.

The page class required to serve a given request is dynamically compiled on demand

when first required in the context of a Web application.

The page class compiled to an assembly remains in use as long as no changes occur to

the linked .aspx source file or the whole application is restarted.

Each page class is an HTTP handler—that is, a component that the run time uses to

service requests of a certain type.

The ASP.NET code-behind model employs partial classes to generate missing declara-

tions for protected members that represent server controls. This code was auto-gener-

ated by old versions of Visual Studio and placed in hidden regions.

ASP.NET pages always post to themselves and use the view state to restore the state of

controls existing when the page was last generated on the server.

The view state creates the illusion of a stateful programming model in a stateless

environment.

Processing the page on the server entails handling a bunch of events that collectively

form the page life cycle. A deep understanding of the page life cycle is key to diagnos-

ing possible problems and implementing advanced features quickly and efficiently.

C03625273.indd 139 1/15/2008 4:04:59 PM

	Cover
	Table of Contents
	Chapter 3: Anatomy of an ASP.NET Page
	Invoking a Page
	The Runtime Machinery
	Processing the Request
	The Processing Directives of a Page

	The Page Class
	Properties of the Page Class
	Methods of the Page Class
	Events of the Page Class
	The Eventing Model
	Asynchronous Pages

	The Page Life Cycle
	Page Setup
	Handling the Postback
	Page Finalization

	Conclusion

