
To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/9550.aspx

978-0-7356-2441-2

© 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah, and Steve Schofield, and Microsoft
Corporation. All rights reserved.

Internet Information
Services (IIS) 7.0
Resource Kit

Mike Volodarsky, Olga
Londer, Brett Hill, Bernard
Cheah, and Steve Schofield
with the Microsoft IIS Team

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title,
for early preview, and is subject to change prior to release. This excerpt is from Internet Information Services
(IIS) 7.0 Resource Kit from Microsoft Press (ISBN 978-0-7357356-2441-2, copyright 2008 Mike Volodarsky,
Olga Londer, Brett Hill, Bernard Cheah, and Steve Schofield, and Microsoft Corporation, all rights reserved),
and is provided without any express, statutory, or implied warranties

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Table of Contents
Part 1 - Foundation

Chapter 1 - Introducing IIS 7.0
1.1 Overview of IIS 7

1.2 What’s New

1.3 Benefits and Features

1.4 Versions and SKUs

1.5 Feature Mapping

1.6 Comparison with Previous Versions

1.7 SKUs Feature Matrix

1.8 IIS7 Features & Vista Editions

Chapter 2 - Understanding IIS 7.0 Architecture
2.1 IIS 7.0 Services and Processes

2.1.A HTTP. SYS

2.1.B World Wide Web Services (W3SVC)

2.1.C Windows Activation Services (WAS)

2.1.D Worker Process

2.1.E Inetinfo.exe

2.1.F IIS Admin

2.1.G W3svc, smtpsvc, msftpsvc, etc

2.2 IIS Worker Process Modes

2.2.A IIS 6 process model

2.2.B IIS 7 process model

2.3 .Net and IIS 7.0

2.3.A. Details on the integrated pipeline

2.3.B. Configuration stores

2.4 Role and Membership Providers

Chapter 3 - Understanding the Modular Foundation (from chapter ready for
review)

3.1 Concepts

3.1.A The Ideas

3.1.B Types of Modules

3.1.C Modules and Configuration Systems

3.2 Key Benefits

3.2.A Security

3.2.B Performance

3.2.C Extensibility

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

3.3 Built-in Modules

3.3.A Application Development

3.3.B Health and Diagnostics

3.3.C HTTP Features

3.3.D Performance

3.3.E Security

3.3.F Server Components

3.4 Module Activation

3.4.A Module Notifications

3.4.B Module Executions

3.5 Chapter Summary

Chapter 4 - Configuration System (from Brett via email)
4.1. Configuration System

4.1.A Concept and Overview (hierarchy diagram)

4.1.B. Key constructs in IIS config files

4.2 Metabase Compatibility

4.2.A IIS 6 Compatibility Support

4.2.B Deprecations:

Part 2 - Deployment

Chapter 5 - Installing IIS 7.0 (from chapter ready for review)
5.1 Planning the Installation

5.1.A Installing IIS 7.0

5.1.B Ways To Install IIS 7

5.1.C Using Server Manager

5.1.D Using Package Manager

5.1.E Using ServerManagerCMD

5.1.F Answer File

5.1.G Sysprep/New Setup System

5.1.H Auto-Installs

5.1.I Windows Server 2008 Setup for Optional Features

5.1.J Windows Server 2008 SKUs and feature set different

5.2 Post Installation

5.2.A Folders and Content

5.2.B Registry

5.2.C Services

5.2.D Validation

5.3 Troubleshooting Installation

5.3.A Event Logs

5.3.B IIS 7.0 Log

5.3.C Other Related Logging Options

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

5.4 Upgrading And Migration

5.5 Removing IIS 7.0

5.5.A UI - Windows Server 2008 and Windows Vista

5.5.B Command-Line Method

5.6 Chapter Summary

Part 3 - Administration

Chapter 6 – Using IIS Manager
(IIS Manager Overview

http://www.iis.net/default.aspx?tabid=2&subtabid=25&i=992

IIS Manager Feature-to-Configuration Mapping

6.1 Overview (background of why new interface, compare with MMC)

6.2 How to run in new mode and mmc

6.3 Screen capture (explain each section)

6.4 Basic navigation (filtering, search, sort, etc)

6.5 Feature name mapping with config section (application settings = appSettings)

6.6 Customizing IIS Manager

6.7 Remote Administration (reference to later section)

Chapter 7 - Using Command Line Tools
7.1 APPCMD - Getting Started w/AppCmd on IIS7

7.1.A Overview

7.1.B Syntax + samples

7.1.C Strength and Limitations

7.2 WMI Provider - OLD: Getting to know the IIS7 WMI Provider thru CIM Studio

7.2.A Installing

7.2.B Updates to WMI

7.2.C Show samples of using wmi. E.g. manage website, etc

7.3. Microsoft.Web.Administration

7.3.A Introduction

7.3.B Review of the API

7.3.C Examples of how to write tools to:

7.4. PowerSshell - An Introduction to Windows PowerShell & IIS7

7.4.A Introduction

7.4.B Installation

7.4.C Using with IIS

7.4.D Examples

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Chapter 8 – Remote Administration
8.1 Overview

8.2 Installation

8.2.A Server Manager

8.2.B Servermanagercmd

8.2.C pkgmgr

8.3 Configuration

8.3.A Configuring Service for Automatic start

8.3.B Remote Configuration

8.3.C Delegation (We need to at least mention it and refer to the config
chapter if covered)

8.3.D Troubleshooting

8.3.E Logging

8.4 Other Remote Management Options (Very briefly mention the syntax for using
them remotely without overlapping) This might not be even necessary

8.4.A AppCmd

8.4.B Scripts using AHADMIN

8.4.C MWA

8.4.D WMI

8.4.E Remote Desktop

Chapter 9 - Managing IIS 7.0 Server
9.1 Web site, Virtual directory, Application Pool and Application

9.1.A Application

9.1.B Application Pool

9.1.C Virtual Directory

9.1.D Web Site

9.2 HTTP Request Processing

9.2.A Processing Path

9.2.B Processing Components

9.2.C Processing Flow

9.3 Web Site Features Mapping

9.4 Managing Web Sites

9.4.A Adding New Web Site

9.4.B Configuring Web site’s IP Bindings

9.4.C Limiting Web Site Usage

9.4.D Configuring MIME Types

9.5 Managing Virtual Directories

9.5.A Configuring Virtual Directory

9.5.B Searching Virtual Directories

9.6 Managing Web Applications

9.6.A Configuring Web Application

9.6.B Listing of Web Applications

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

9.7 Managing Application Pools

9.7.A Application Pool Considerations

9.7.B Adding New Application Pool

9.7.C Managing Application Pool Identities

9.7.D Advanced Application Pool Configuration

9.8 Managing Worker Processes and Requests

9.8.A Monitoring Worker Processes and Requests

9.8.B Implementing Process Gating

9.8.C Enabling Dynamic Idle Threshold

9.9 Managing Remote Content

9.9.A UNC Authentication

9.9.B Accessing Remote Content in Workgroup Environment

9.9.C Remote Content Access in Domain Environment

9.9.D Configuring Remote Content Access in Domain Environment

9.9.E Remote Content Considerations

9.10 Chapter Summary

Chapter 10 – Hosting Application Development Frameworks
10.1 Intro

10.2 ASP.NET

10.2.A Deploying ASP.NET apps

10.2.B Integrated/Classic

10.2.C ASP.NET Versioning

10.2.D Migrating apps

10.2.E Breaking Changes / common issues

10.3 ASP

10.3.A Deploying ASP apps

10.3.B Breaking Changes / common issues

10.4 PHP

10.4.A Deploying PHP apps

10.4.B FastCGI module

10.4.C Breaking Changes / common issues

10.5 Other frameworks

10.5.A Using CGI / FastCGI modules for other frameworks

Chapter 11 – Managing Web Server Modules (from chapter ready for
review)

11.1 Extensibility in IIS7
11.1.A IIS7’s Extensibility Architecture at a Glance

11.1.B Introduction to managing extensibility

11.2 Runtime web server extensibility

11.2.A What is a module?

11.2.B Installing modules

11.2.C Common module management tasks

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

11.2.D Using the IIS7 Administration tool GUI to manage modules and
handlers

11.2.E Using AppCmd.exe to install and manage modules from command line

11.2.F Securing runtime web server extensibility

11.3 Summary

Chapter 12 – Managing Configuration Extensions

Chapter 13 – Managing User Interface Extensions

Chapter 14 - Implementing Security Strategies

Part 4 – Troubleshooting/Performance

Chapter 15 – Logging
15.1 What’s New?

15.1.A The IIS 7.0 Manager

15.1.B The XML-Based Logging Schema

15.1.C Centralized Logging Configuration Options

15.1.D SiteDefaults Configuration Options

15.1.E Disable HTTP Logging Configuration Options

15.1.F Default Log File Location

15.1.G Default UTF-8 Encoding

15.1.H New Status Codes

15.1.I Management Service

15.2 Log File Formats That Have Not Changed

15.3 Centralized Logging

15.3.A W3C Centralized Logging Format

15.3.B Centralized Binary Logging Format

15.4 Remote Logging

15.4.A Setting Up Remote Logging by Using the IIS 7.0 Manager

15.4.B Setting Up Remote Logging by Using AppCMD

15.4.C Remote Logging using the FTP 7.0 Publishing Service

15.4.D Custom Logging

15.5 Configuring IIS Logging

15.5.A IIS 7.0 Manager

15.5.B AppCMD

15.5.C AppCMD Required for Vista

15.5.D Advanced AppCMD Details

15.6 HTTP.sys Logging

15.7 Application Logging

15.7.A Process Recycling Logging

15.7.B ASP

15.7.C ASP.NET

15.7.D IIS Events

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

15.8 Folder Compression Option

15.9 Logging Analysis Using Log Parser

15.10 Summary

Chapter 16 – Tracing and Troubleshooting
16.1 Tracing and Diagnostics

16.1.A Troubleshooting Failed Requests using Failed Request Tracing in IIS7

16.1.B Configuring Tracing

16.1.C Tracing and ASP.NET

16.1.D Instrumenting Apps for Tracing

16.1.E Examples and Considerations

16.2 Troubleshooting

16.2.A Methodology

16.2.B Tools and Utilities

16.2.C Troubleshooting HTTP

16.2.D Troubleshooting SSL

16.2.E Troubleshooting Application Pools

16.2.F Top 10 Issues and How to Solve Them

Chapter 17 – Performance and Tuning
(is an art and science)

Striking a Balance between Security and Performance

17.1 How to Measure Overhead

17.1.A Authentication

17.1.B SSL

17.1.C Etc

17.2 The Impact of Constrained Resources

17.2.A Processor ()

17.2.B Memory

17.2.C Hard Disk

17.2.D Network

17.3 64-Bit Mode versus 32-Bit Mode

17.4 Configuring for Performance

17.4.A Server level

17.4.B IIS

17.4.C Application

17.5 Performance Monitoring

17.5.A Tools (perfmon, wcat, event viewer, freb, etc)

17.5.B Performance Monitor

17.6 Scalability

17.6.A During Design

17.6.B Scale up or out

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 1
Part I

Foundation

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 2
Chapter 3

Understanding the Modular
Foundation

What does modular core mean to Internet Information Services (IIS) 7.0? How does it
make IIS 7.0 the most powerful Microsoft Web server ever? And what are the built-in
modules shipped with IIS 7.0? No worries—by the end of this chapter, you will be able to
answer all these questions and have a clear understanding of the new design concept
behind IIS 7.0. You will take a look at the idea of componentized design in IIS 7.0, the
intentions behind the revamped architecture, and the advantages of the design, as well as
detailed information about the built-in modules that ship with IIS 7.0.

Concepts
One of the core changes for IIS 7.0 is its component-based architecture, which
incorporates lessons learned from IIS 6.0 and feedback from customers. IIS 7.0 debuts with
a completely overhauled and redesigned architecture; the Web server core is now broken
down into discrete components called modules. For the first time, as a Web administrator
you have the power to custom build an IIS server according to your requirements. You can
easily add built-in modules whenever they are needed or, even better, add or replace
functionality with modules of your own design, produced commercially or provided by
the developer community on IIS.net. In this way, the modular engine will allow you to
achieve exactly the functionality you want from the Web server, and at the same time
provide flexibility so you can remove unwanted modules to further secure and better lock
down the Web server.

Although the main modularity point in IIS 7.0 is the Web server itself, features throughout
the entire platform are implemented as modules. The administration stack for example is
modular. For detailed information about extensibility of the IIS 7.0 Web server and the
administration stack, see Chapter 11, “Managing Web Server Modules” and Chapter 12,
“Managing Configuration Extensions”.

The Ideas

A module resembles a brick in a child’s LEGO™ toy set, which comes with bricks in many
different colors and shapes. When combined with additional bricks you can assemble
many different models in a variety of shapes. IIS 7.0 uses the same idea in the design of its
framework foundation. By using modules as the building blocks, this pluggable
architecture combined with the flexible configuration system and an extensible User
Interface (UI) make it possible to add or remove any capability to craft a server that fits
the specific needs of your organization. This new and open design is revolutionary for
Microsoft and opens new doors for the web platform.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 3
How It Works: The Modular Design
IIS 7.0 ships with many different modules. Each module is a component
(not in the Component Object Model (COM) sense) that provides services
to the Web server’s HyperText Transfer Protocol (HTTP) request-processing
pipeline. For example, the StaticFileModule is the module that handles all
static content such as HyperText Markup Language (HTML) pages, image
files, and so on. There are other modules that provide capabilities for
dynamic compression, basic authentication, and the other features you
typically associate with IIS. Modules are discretely managed in IIS 7.0. They
can easily be added to or removed from the core engine via the new
configuration system. Internally, the IIS Web server core provides the
request processing pipeline for modules to execute. It also provides
request processing services, whereby modules registered in the processing
pipeline are invoked for processing requests based on registered event
notifications. As an administrator, you cannot control which events the
modules are coded to use. This is done in the code within the module.
However, you have the ability to control which modules are loaded
globally, and you can even control which modules are loaded for a specific
site or application. For details about how to control module loading, see
the Chapter 11, “Managing Web Server Modules”.

Each time the IIS 7.0 worker process starts, it reads the server configuration
file, and loads all globally listed modules. Application modules are loaded
upon the first request to the application. It is the modular design and
configuration system that makes it easy for you to plug in, remove, and
replace modules in the request pipeline, offering full extensibility to the IIS
7.0 Web server.

Types of Modules

IIS 7.0 ships with approximately 40 modules, including security-related authentication
modules and modules for content compression. Modules build up the feature sets of the
Web server, and the Web application is made of up many modules servicing the requests.
In terms of roles, modules can be categorized as providing either request services such as
compression and authentication or request handling such as delivering static files, ASP.NET
filtering, and so on. Regardless of their roles, modules are the key ingredients to IIS 7.0. In
terms of how they are coded, there are two types of modules in IIS 7.0:

Managed modules
• A managed module is a .NET Framework component based on the ASP.NET

extensibility model. With the IIS 7.0 integrated processing architecture, ASP.NET
application services are no longer restricted to requests for .ASPX pages or other
content mapped to ASP.NET. The managed modules are plugged in directly to the
Web server’s request processing pipeline, making them as powerful as the modules
built using IIS 7.0’s native extensibility layer. Now, you can also provide ASP.NET
module services across all requests; however, this requires running in the integrated
process model with the ManagedEngine module installed. The ManagedEngine

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 4
component is a special module provided in IIS 7.0 that provides the .NET integration
into the request processing pipeline. Managed modules are loaded globally only when
the application pool is marked as “Integrated”. For more information about the new
integrated pipeline processing mode, see Chapter 11, “Managing Web Server
Modules”.

Native modules
• A native module is a Microsoft Windows Dynamic Link Library (DLL) typically written

in C++ that provides request processing services. In IIS 7.0, a new set of native server
(C++) Application Programming Interfaces (APIs) replaced the Internet Server API
(ISAPI) filters and extension APIs provided by earlier versions of IIS. These new APIs are
developed in an object-oriented model and are equipped with more powerful
interfaces that allow you more control when it comes to processing requests and
handling responses. Additional integration between Microsoft Visual Studio
development suites and IIS make developing IIS modules easier than ever. Developer’s
familiar with ISAPI and the new enhancements in native module APIs have been very
positive about how much easier it is now to code using native code than in previous
versions of IIS.

Note For details on how to write native modules, see:
http://www.iis.net/articles/view.aspx/IIS7/Extending-IIS7/Building-Native-
Modules/Develop-a-Native-C-C---Module-for-IIS7

Native and managed modules are managed and configured the same way in IIS 7.0 with
the exception of deployment of the modules. Native modules must be installed on the
server and registered in the <globalModules> section of the applicationHost.config file
before they can be enabled for application usage; managed modules are registered
directly in an application’s web.config file rather than installed. For more information
about the deployment of modules, see Chapter 11, “Managing Web Server Modules”.

Modules and Configuration

For modules to provide certain features or services to IIS 7.0, the modules must be
registered in the configuration system. This section looks at the relationship between
modules and various sections in the configuration file and provides a high-level overview
of the module settings in the configuration store. For more information about the IIS 7.0
configuration system, which is based on Extended Markup Language (XML), see Chapter 4,
“Understanding the Configuration System”.

Inside the <system.webServer> section group of the applicationHost.config file (the
main server configuration file), there are three different sections related to modules:

<globalModules>

• Configurable at the server level only, this section defines all native code modules that
will provide services for requests. The module declaration in the configuration section
also specifies the related DLL file that provides the module’s features. All native
modules must be defined or registered in this section before they can be turned on or
enabled for application usage as defined in the <modules> section.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 5
// Example of <globalModules> configuration section

<globalModules>

...

<add name="StaticCompressionModule" image="%windir%\...\compstat.dll" />

<add name="DefaultDocumentModule" image="%windir%\...\defdoc.dll" />

<add name="DirectoryListingModule" image="%windir%\...\dirlist.dll" />

...

</globalModules>

<handlers>
• Configurable at the server level, the application level, and the Uniform Resource

Locater (URL) level, this section defines how requests are handled. It also maps
handlers based on the URL and HTTP verbs, specifying the appropriate module that
supports the related handler. By parsing the handler mapping configuration, IIS
determines which modules to call when a specific request comes in.

// Example of <handlers> configuration section

<handlers accessPolicy=”Script, Read”>

...

<add name="ASPClassic" path="*.asp" verb="GET,HEAD,POST"

 modules="IsapiModule" scriptProcessor="...\asp.dll" resourceType="File" />

<add name="SecurityCertificate" path="*.cer" verb="GET,HEAD,POST"

 modules="IsapiModule" scriptProcessor="...\asp.dll" resourceType="File" />

<add name="SSINC-stm" path="*.stm" verb="GET,POST"

 modules="ServerSideIncludeModule" resourceType="File" />

...

</handlers>

<modules>

• Configurable at the server level and the application level, this section defines modules
enabled for the application. Although native modules are registered in the
<globalModules> section, native modules must be enabled in the <modules>
section before they can provide their services for requests to applications. Managed
code modules however can be added directly to the <modules> section. For example,
you can add a custom managed basic authentication module to an application’s
web.config file.

// Example of <modules> configuration section

<modules>

...

<add name="BasicAuthenticationModule" />

<add name="WindowsAuthenticationModule" />

<add name="OutputCache" type="System.Web.Caching.OutputCacheModule"

 preCondition="managedHandler" />

<add name="Session" type="System.Web.SessionState.SessionStateModule"

 preCondition="managedHandler" />

...

</modules>

Key Benefits
The modular architecture in IIS 7.0 offers many advantages compared with previous
versions of IIS. This section outlines the benefits derived from the componentized design
of IIS 7.0. It also provides scenarios illustrating how a Web administrator can take
advantage of these benefits while building a robust Web server.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 6
Security

Security is of the utmost concern when it comes to today’s web applications. IIS 6.0 is not
installed by default except in the Windows Server 2003 Web Server edition. The IIS 6.0
default installation serves static content only; all other functionality is disabled. IIS 7.0
reflects the Web server’s modular nature, allowing the user to install only the modules
that they require for their application. Binaries that comprise the other features are not
installed, but instead are kept in a protected OS installation cache. This means that you
will not be prompted for a CD or asked to point to a source location when installing new
updates or adding features–yet, the binaries that you are not using are not loaded by the
IIS worker processes, rather they are quarantined such that they cannot be accessed.
When security updates from Microsoft are applied, the features that have not been
installed will be fully updated in the installation cache. This can eliminate the need to
reapply service packs when installing new features later.

From the security perspective, the modular design brings several key advantages
including:

Minimized attack surface
• By giving you the power to install only those components that are needed, IIS 7.0

directly minimizes the areas of possible attack. The attack points are limited to the
installed components because the binaries exist only for the installed components.
Because only exposed areas or installed components can be subject to potential
exploits, this is the best defense. For example, with the IIS 7.0 default installation, there
are about 10 components installed to support internal IIS logging and management as
well as serving static content requests. Technically speaking, these are the only
surfaces that are exposed for potential attack.

Reduced maintenance overhead
• Modular design not only provides new flexibility when adding, removing, and even

replacing components, it also provides a new maintenance experience through opt-in
patching. You need apply fixes or patches only to required or installed components;
unused components or modules that have not been installed do not require
immediate attention and no downtime is required when patching components that are
not installed. It also means that fewer administrative tasks are needed for routine
maintenance and upgrades. For example, if an IIS 7.0 server uses Windows
authentication only for its applications, only Windows authentication module patches
are applicable to the server. If a patch is distributed to protect the Basic authentication
module from a known exploit, and a patch is not immediately required because the
Basic authentication module is not installed. Note however that Microsoft
recommends that you apply all patches to ensure that modules and features you are
not using will be current in the event they are installed later.

Important Microsoft recommends that you apply all patches to the server. When patching
components that aren’t in use, the server doesn’t have to experience any downtime. If the
components are eventually installed, the latest versions of their binaries will automatically be
used, and there is no need to re-apply any patches.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 7
Unified Security Model
• IIS 7.0 is now better integrated with ASP.NET. Having both IIS 7.0 native modules and

ASP.NET managed modules running in the same request pipeline yields many benefits
including unifying the configuration system and security models for both IIS and
ASP.NET. From the security perspective, ASP.NET advanced security services can be
plugged in directly to the IIS main request processing pipeline and used together with
the security features offered by IIS. In short, with IIS 7.0 it is now possible to configure
ASP.NET security services for non ASP.NET requests. For example, with earlier versions
of IIS if an application consists of both PHP and ASP.NET resources, ASP.NET Forms
authentication can be applied to only ASP.NET resources. With the IIS 7.0 integrated
process model, it is now possible to have Forms authentication for PHP, ASP.NET, and
any other type of resources.

Direct from the Source: The Most Secure Web Server in the
World
The first time we presented IIS 7.0 to a large audience was also my first TechEd breakout
session, hosted at TechEd 2005. My first demo showcased the componentization
capabilities of IIS 7.0 by showing off what we jokingly called “the most secure Web Server
in the world.”

As part of the demo, I walked through how to edit the configuration in the
applicationHost.config file, removing all of the modules and handler mappings. After
saving the file, IIS would automatically pick up the changes and restart, loading absolutely
no modules. After making a request to the default web site, I would swiftly get back an
empty 200 response (this configuration currently returns a 401 Unauthorized error
because no authentication modules are present). The server had no modules loaded, and
therefore would perform virtually no processing of the request and return no content,
thus truly becoming the “most secure Web Server in the world”. After a pause, I
commented that, while secure, this server was also fairly useless, and then I segued into
adding back the functionality that I needed for my application.

I had done this demo before for internal audiences to much acclaim, but I will always
remember the audience reaction during that TechEd session. The people in the audience
went wild, some even breaking into a standing ovation. This was a resounding
confirmation of our efforts to give administrators the ability to start from nothing,
building up the server with an absolutely minimal set of features to produce a simple-to-
manage Web Server with the least possible surface area.

Mike Volodarsky

IIS7 Core Server Program Manager

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 8
Performance

With its componentized architecture, IIS 7.0 provides very granular control when it comes
to the Web server memory footprint. Modules are loaded into memory only if they are
installed and enabled. By removing unnecessary IIS 7.0 features, fewer components are
loaded in the processing pipeline—in other words, fewer steps are needed to fulfill
incoming requests and, therefore, overall server performance improves. At the same time,
by reducing memory usage for the IIS 7.0 server, more free memory space is available for
the Web application and operating system. For example, in IIS 6.0, all authentication
providers (Anonymous, Windows, Digest, and so on) are loaded in the worker process; in
IIS 7.0, only the needed authentication modules are loaded and included in the request
processing. For more details on removing modules you do not require, see Chapter 11,
“Managing Web Server Modules”.

Extensibility

In earlier versions of IIS, extending or adding IIS features is not easy because it can be
done only through ISAPI programming with limited API support and limited access to
information in the request processing pipeline. With the new modular-based engine and
the tight integration between ASP.NET and IIS, extending IIS 7.0 is much easier. Not only
are you able to decide which features to include in the Web server, you can extend your
Web server by adding your own custom components to provide specific functionality. For
example, you can develop an ASP.NET basic authentication module that uses the
Membership service and a SQL Server user database in place of the built-in IIS Basic
authentication feature that works only with Windows accounts. In short, you can build
your own custom server to deliver the feature sets your applications require. You might,
for example deploy a set of IIS 7.0 servers just for caching purposes, or you might deploy a
custom module to perform a specific function in an application such as implementing
your own ASP.NET application load balancing algorithm based on customer requirements.
For more information on customizing modules in IIS 7.0, see Chapter 11, “Managing Web
Server Modules”.

Built-in Modules
Modules shipped with IIS 7.0 are grouped into different categories accordingly to the role
of the services they provide. Table 3-1 highlights the different service categories and lists
sample built-in modules within those categories. A complete list of modules is included in
Appendix XM, “Module Listing”.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 9
Table 3-1 Module Categories
Category Module

Application Development CgiModule (%windir%\system32\inetsrv\cgi.dll)

Facilitates support for Common Gateway Interface (CGI) programs

 FastCgiModule (%windir%\system32\inetsrv\iisfcgi.dll) Supports FastCGI,
which provides a high-performance alternative to old-fashioned CGI-based
programs

 System.Web.SessionState.SessionStateModule (ManagedEngine)

Provides session state management, which enables storage of data specific
to a single client within an application on the server.

Health and Diagnostics FailedRequetsTracingModule (%windir%\system32\inetsrv\iisfreb.dll)

More commonly known as Failed Request Event Buffering (FREB), this
module supports tracing of failed requests. The definition and rules
defining a failed request can be configured.

 RequestMonitorModule (%windir%\system32\inetsrv\iisreqs.dll)

Implements the Run-time State and Control API (RSCA). RSCA allows its
consumers to query run-time information such as currently executing
requests, the start or stop state of a Web-site, or currently executing
application domains.

HTTP Features ProtocolSupportModule (%windir%\system32\inetsrv\protsup.dll)

Implements custom and redirect response headers, handles HTTP TRACE
and OPTIONS verbs, and supports keep-alive configuration.

Performance TokenCacheModule (%windir%\system32\inetsrv\cachtokn.dll)

Caches windows security tokens for password-based authentication
schemes (anonymous authentication, basic authentication, and IIS client
certificate authentication).

 System.Web.Caching.OutputCacheModule (ManagedEngine)

Defines the output caching policies of an ASP.NET page or a user control
contained in a page

Security RequestFilteringModule (%windir%\system32\inetsrv\modrqflt.dll)

Provides URLSCAN-like functionality in IIS 7.0 by implementing a powerful
set of security rules to reject suspicious request at a very early stage.

 UrlAuthorizationModule (%windir%\system32\inetsrv\urlauthz.dll)

Supports rules-based configurations for content authorization.

 System.Web.Security.FormsAuthenticationModule (ManagedEngine)

Implements ASP.NET Forms authentication against requested resources.

Server Components ConfigurationValidationModule (%windir%\system32\inetsrv\validcfg.dll)

Responsible for verifying IIS 7.0 configuration systems, such as when an
application is running in Integrated mode but has handlers or modules
declared in the <system.web> section.

 ManagedEngine / ManagedEngine64 (webengine.dll)

Managed Engine has a special place within all the other modules. It is
responsible for integrating IIS with the ASP.NET runtime.

For more information regarding the module configuration store, module dependencies,
and potential issues when a module is removed, see Appendix XM, “Module Listing”.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 10
Chapter Summary
The key features delivered by IIS 7.0 come from the modular design. This is the first time
the Web administrator has full control over the IIS server. It is also the first version of IIS
that is fully extensible. It provides a unified request processing model that integrates
ASP.NET and IIS. Modules are fundamental building blocks to IIS 7.0 server. IIS 7.0
provides quite a few ways to manage modules (the basic unit of the IIS feature set) in
order to implement efficient low-footprint Web servers optimized for a specific task. By
choosing the right set of modules, you can enable a rich set of functionality on your
server, or you can remove features you do not need to reduce the security surface area
and improve performance. In Chapter 11: Managing Web Server Modules, you can learn
more about the different types of modules IIS 7.0 supports, how they work, and learn how
to properly deploy and manage them in the IIS environment.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 1
Part 4

Troubleshooting and
Performance

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 2
Chapter 15

Logging
Though not technology’s most fascinating topic, Web server log files are extraordinarily
important. They are a core resource used, for example, as the basis for billing, reliability,
performance, compliance, and forensics. This chapter discusses IIS logging and related
features in Microsoft IIS 7.0.

What’s New?
In IIS 7.0, as in IIS 6.0, log files are handled by the HTTP.sys kernel mode device driver. No
user code runs in this service because HTTP.sys runs in kernel mode. In general, not a lot
has changed related to logging, but a few differences as well as new opportunities are
notable. You’ll find that many of the enhancements to logging introduced as late as
Windows Server 2003 Service Pack 1 (SP1) are included in IIS 7.0. For example, you can
use World Wide Web Consortium (W3C) centralized logging and binary logging; you can
use standard log formats such as W3C extended, National Center for Supercomputing
Applications (NCSA), and IIS; and you can set the custom logging option.

One of the coolest features in IIS 7.0 is its modular architecture and the Integrated
Pipeline. (The Integrated Pipeline is covered in depth in Chapter XX.) Logging greatly
benefits from the flexibility provided by the modularity in IIS 7.0 and the Integrated
Pipeline because you can write your own logging module and inject it into the pipeline.
Your custom module can capture just the information needed for your application. We’ll
demonstrate how to implement your own HTTP SQL logging module later in this chapter.

IIS 7.0 incorporates several changes pertinent to logging. You use the IIS Manager to
configure logging-related settings; the new configuration system is based on XML; there
are a number of new logging configuration options and a new set of status codes; and IIS
7.0 provides logging for a new service that enables remote administration of an IIS 7.0
server.

The IIS Manager

IIS 7.0 introduces a completely new user interface, the IIS Manager. The IIS Manager
makes it easier to browse and make changes to IIS settings, including log file settings. For
example, if you wanted to implement the centralized logging in IIS 6.0, you had to use
ADSUtil.vbs. Now, the Centralized Logging option is exposed in the IIS Manager, as shown
in Figure 15-1.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 3

Figure 15-1 The Centralized Logging option in the IIS Manager

Chapter 7, “Using The IIS Manager,” provides an in-depth look at the IIS Manager.

The XML-Based Logging Schema

IIS 7.0 uses a new configuration system that is XML-based and is very similar to ASP.NET.
Each configuration section is defined in XML schema files located in
systemRoot\system32\inetsrv\config\schema. Details on the configuration sections are
covered in Chapter 4, “Configuration.” Because information is defined in XML files, it is
easy to determine what attributes, elements, and enums are used. The schema for IIS 7.0
contains a list of all the configurable options, so looking in the schema fie is a quick way
to identify all the configurable settings for any feature, including logging.

The following listing is from the system.applicationHost/log section that is located in
systemRoot\system32\inetsrv\config\schema\IIS_Schema.xml. (Some long lines have been
split to fit on the printed page.) As you can see, the XML clearly defines the names and
data types associated with each item.

<sectionSchema name="system.applicationHost/log">

 <attribute name="logInUTF8" type="bool" defaultValue="true" />

 <attribute name="centralLogFileMode" type="enum" defaultValue="Site" >

 <enum name="Site" value="0"/>

 <enum name="CentralBinary" value="1"/>

 <enum name="CentralW3C" value="2"/>

 </attribute>

 <element name="centralBinaryLogFile">

 <attribute name="enabled" type="bool" defaultValue="false" />

 <attribute name="directory" type="string" expanded="true"

 defaultValue="%SystemDrive%\inetpub\logs\LogFiles" />

 <attribute name="period" type="enum" defaultValue="Daily">

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 4
 <enum name="Hourly" value="4"/>

 <enum name="Daily" value="1"/>

 <enum name="Weekly" value="2"/>

 <enum name="Monthly" value="3"/>

 <enum name="MaxSize" value="0"/>

 </attribute>

 <attribute name="truncateSize" type="int64" defaultValue="20971520"

 validationType="integerRange"

 validationParameter="1048576,4294967295" />

 <attribute name="localTimeRollover" type="bool"

 defaultValue="false"/>

 </element>

 <element name="centralW3CLogFile">

 <attribute name="enabled" type="bool" defaultValue="true" />

 <attribute name="directory" type="string" expanded="true"

 defaultValue="%SystemDrive%\inetpub\logs\LogFiles"

 validationType="nonEmptyString" />

 <attribute name="period" type="enum" defaultValue="Daily">

 <enum name="Hourly" value="4"/>

 <enum name="Daily" value="1"/>

 <enum name="Weekly" value="2"/>

 <enum name="Monthly" value="3"/>

 <enum name="MaxSize" value="0"/>

 </attribute>

 <attribute name="truncateSize" type="int64" defaultValue="20971520"

 validationType="integerRange"

 validationParameter="1048576,4294967295" />

 <attribute name="localTimeRollover" type="bool"

 defaultValue="false"/>

 <attribute name="logExtFileFlags" type="flags"

 defaultValue="Date, Time, ClientIP, UserName, SiteName, ServerIP,

 Method, UriStem, UriQuery, HttpStatus, Win32Status,

 ServerPort, UserAgent, HttpSubStatus">

 <flag name="Date" value="1"/>

 <flag name="Time" value="2"/>

 <flag name="ClientIP" value="4"/>

 <flag name="UserName" value="8"/>

 <flag name="SiteName" value="16"/>

 <flag name="ComputerName" value="32"/>

 <flag name="ServerIP" value="64"/>

 <flag name="Method" value="128"/>

 <flag name="UriStem" value="256"/>

 <flag name="UriQuery" value="512"/>

 <flag name="HttpStatus" value="1024"/>

 <flag name="Win32Status" value="2048"/>

 <flag name="BytesSent" value="4096"/>

 <flag name="BytesRecv" value="8192"/>

 <flag name="TimeTaken" value="16384"/>

 <flag name="ServerPort" value="32768"/>

 <flag name="UserAgent" value="65536"/>

 <flag name="Cookie" value="131072"/>

 <flag name="Referer" value="262144"/>

 <flag name="ProtocolVersion" value="524288"/>

 <flag name="Host" value="1048576"/>

 <flag name="HttpSubStatus" value="2097152"/>

 </attribute>

 </element>

 </sectionSchema>

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 5
Centralized Logging Configuration Options

Here is the logging section defined in the applicationHost.config file that controls
Centralized Logging options. You can change this so that your files are stored on another
drive or volume. You can enable options you want and disable whatever options you do
not need.

 <log>

 <centralBinaryLogFile enabled="true"

 directory="%SystemDrive%\inetpub\logs\LogFiles" />

 <centralW3CLogFile enabled="true"

 directory="%SystemDrive%\inetpub\logs\LogFiles" />

 </log>

SiteDefaults Configuration Options

The SiteDefaults section in the applicationHost.config file, shown in the following listing,
controls the logging settings that are used when creating new sites. You can configure
two options: the format of the log file and the location in which Failed Request tracing
files are stored. Failed Request tracing is covered in depth in Chapter XXX.

 <siteDefaults>

 <logFile logFormat="W3C"

 directory="%SystemDrive%\inetpub\logs\LogFiles" />

 <traceFailedRequestsLogging

 directory="%SystemDrive%\inetpub\logs\FailedReqLogFiles" />

 </siteDefaults>

Disable HTTP Logging Configuration Options

In some cases, an IIS administrator does not require log files. If you would like to turn off
httpLogging at the server level, you can disable logging in the IIS Manager. You can also
disable logging at the site level. You might wonder why these options are available. It’s so
that you can disable logging on your test or development machines to reduce the disk
space that unnecessary files use.

You should evaluate your options before disabling HTTP logging. Check with your
business or legal department to ascertain what your company’s logging requirements and
policies are. The default value for this setting, as shown here, is false.

<httpLogging dontLog="false" />

Default Log File Location

One of the most significant changes in IIS 7.0 is that the folder where IIS stores WWW logs
has been changed to SystemDrive\Inetpub\Logs\LogFiles (typically C:\
Inetpub\Logs\LogFiles). This means that by default in IIS 7.0, all log files are stored under a
single folder. Note, however, that log files for the legacy built-in File Transfer Protocol
(FTP) and Simple Mail Transfer Protocol (SMTP) services are still located in
windir\System32\Logfiles. You can manage these files by using the IIS Manager 6.0, an
MMC console that is installed when you install the legacy FTP service or the SMTP service.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 6
[NOTE]The new FTP Publishing Service for IIS 7.0 stores its log files in windir\Inetpub\Logs by
default. You need to download and install this add-on because it does not ship with IIS 7.0.
Both an x86 version and an AMD version (for x64-based machines) are available at:
www.iis.net/downloads/default.aspx?tabid=34&g=6&i=1454

Default UTF-8 Encoding

By default, IIS 7.0 stores log files by using UTF-8 encoding. This changes the default file
naming convention so that the files start with u_ (for example, u_exYYMMDD.log). Here is
the portion of the IIS_Schema.xml file that sets the UTF-8 encoding option. The default
setting is true.

 <sectionSchema name="system.applicationHost/log">

 <attribute name="logInUTF8" type="bool" defaultValue="true" />

...

 </sectionSchema>

UTF-8 encoding allows for single-byte and multi-byte characters in one string. This
encoding enables you to read text-based logs (for example, logs that use W3C Extended,
IIS, and NCSA Common formats) in a language other than English. Additionally, if your
Web server serves URLs in a language or dialect other than the one supported by the
server’s default code page.

IIS does not support the UTF-8 format for the built-in FTP Publishing Service log files.
UTF-8 encoding is available in IIS 6.0, but it is not enabled by default. If you do not want
to have your logs use UTF-8 encoding, you can use ANSI as the format.

New Status Codes

There are new status codes introduced for HTTP and FTP. The additional error codes
provide more details about events and better descriptions of how to fix errors, with
suggestions on what to look for or what procedures to run. Appendix XXX provides a
complete list of all new status codes.

Management Service

IIS 7.0 introduces Management Service, which enables computer and domain
administrators to remotely manage a machine using the IIS Manager. The Management
Service also enables nonadministrators to control sites and various applications using the
IIS Manager from a workstation.

This service has its own logs that are used to track information related to the
Management Service. This service is not installed by default. If you install and enable this
service, the logs will be saved in SystemDrive\Inetpub\logs\WMSvc.

From a logging perspective, you should make sure this option is enabled. The logs can
help you audit and troubleshoot issues when clients are connecting to your server. The
Management Service is discussed in depth in Chapter XXX.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 7
Log File Formats That Have Not Changed
IIS 7.0 supports all the common logging formats that are available in prior versions of IIS.
There have been no changes in IIS 7.0 to the following log file formats:

• Microsoft IIS

• NCSA

• Open Database Connectivity (ODBC)

• W3Svc extended

[NOTE]For descriptions, further discussion, and examples of these log formats, see:
msdn2.microsoft.com/en-us/library/ms525807.aspx

Centralized Logging
Centralized logging in IIS 7.0 operates the same way it does in IIS 6.0. However, you can
now configure this option in the IIS 7.0 Manager. To access this feature, go to
Administrative Tools > Internet Information Services (IIS) Manager. Click on the Computer
Name and locate the Logging option listed in the IIS section.

Using the Logging option can reduce administrative costs because only one IIS log file is
being maintained. If you use binary logging, the log can be stored in a much smaller file
than the equivalent text log file.

W3C Centralized Logging Format

W3C centralized logging was first introduced in Windows Server 2003 SP1. W3C
centralized logging is a server-level setting. When you enable this feature on a server, all
Web sites on that server are configured to write log data to a central log file. Data is
stored in the log file using the W3C Extended log file format. You can enable this setting
through the IIS 7.0 Manager or by using AppCMD. If you use W3C centralized logging,
you can view the log file with a text editor such as Notepad.

[Note]W3C centralized logging uses the W3C Extended log format, which includes the
following four fields: HostHeader, Cookie, UserAgent, and Referrer. These fields are not
available in centralized binary logging.

Centralized Binary Logging Format

Centralized binary logging is essentially the same as W3C centralized logging, except that
the log file uses a proprietary, binary format. Because the resulting file is binary, it is
smaller than an equivalent text file so that you can conserve disk space. It cannot be read
with a text editor and requires parsing to produce useful information. However, this is
easier than you might think when you use the Log Parser tool, which reads the centralized
binary file format natively. The Log Parser tool is briefly discussed later in this chapter.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 8
[Important]The built-in FTP and SMTP services do not support W3C centralized logging.

Remote Logging
IIS 7.0 supports writing log files to a network share. This option enables you to have your
log files stored in real time to a remote computer. For example, suppose that you have a
Web farm configured for logging to a central location. The back end log server could be a
server running DFS (Distributed file system). DFS can provide multiple benefits including a
central location to collect your log files and automatic replication of your logs to multiple
locations. Having such a primary collection point can make handling your reporting
processes much easier.

[Important] When you set up your remote logging environment, make sure the A and PTR
DNS records are set up so that authentication and resolution happens correctly. This can help
avoid problems such as Kerberos authentication errors when HTTP.sys is trying to write log
files.

You can use either the IIS 7.0 Manager or AppCMD to set up Universal Naming
Convention (UNC) remote logging.

Setting Up Remote Logging by Using the IIS 7.0
Manager

Here are the steps to enable remote logging by using the IIS 7.0 Manager.

 1. Create a directory called IISLogs on the remote server that will store the log files.
This machine is typically in the same domain as the Web servers. If the remote server
is not in the same domain or is a stand-alone machine, you can create a local
account with the same user ID and password as is being used to connect from the
Web server.

[Note]If your remote server will be in a different domain, you can set up a Null Session
to support remote logging. The following TechNet article describes the steps necessary
to configure this scenario: www.microsoft.com/technet/prodtechnol/
WindowsServer2003/Library/IIS/a4939515-b651-4ee0-b327-
867b31fd8c9a.mspx?mfr=true

 2. Share the IISLogs folder you created in the previous step. Change the share
permissions to at a minimum enable both the remote machine accounts
Administrators group and the account writing the log files full control. Change the
NTFS file system (NTFS) permissions so that the remote machine accounts
Administrators have full control and the account writing the log files has modify
permissions. This example assumes that you are using the NETWORK SERVICE as
your application pool account and that the remote server and Web server are in the
same domain.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 9
[Note]When the NETWORK SERVICE account accesses a remote resource, it uses the
machine account stored in Microsoft Active Directory directory service as the actual
account accessing the log folder.

 3. In the IIS 7.0 Manager, navigate to your Web site and type in the UNC path to the
server. To do so, go to Administrative Tools > Internet Information (IIS) Manager.
Select the computer name in the leftmost column and then double-click the
Logging icon in the IIS Section. Type the path to the share in the Directory text box
by using the syntax \\ServerName\ShareName, as shown in Figure 15-2.

[Note]You can also use the syntax \\FQDN\ShareName to specify the logging path, but
you might run into issues if you try to use the syntax \\IPAddress\ShareName to specify
the path. The \\IPAddress\ShareName syntax can cause an authentication issue that
prevents the log files from being created. The following is an example of an error
generated when trying to use an IP Address when remote logging is enabled.

Microsoft-Windows-HttpService , LogFileCreateFailed ,

49, 0, 16, 2, 59, 9,

0x0000000000000800, 0x00000004, 0x000005AC, 0,

 , ,

{00000000-0000-0000-0000-000000000000}, ,

128277049412643098, 220, 0, 0xC0000022,

"ResponseLogging ", "Site ", "W3C ",

"\dosdevices\UNC\192.168.0.125\UncLogFiles\W3SVC1\u_ex070630.log", 0

 4. Click Apply.

 5. Browse a Web page in your site.

 6. Open a command prompt by using elevated credentials and type netsh http flush
logbuffer. If this is the first time entries have been logged, HTTP.sys will create the
folder and a log file. Open the log file in Notepad to confirm your example entries
have been logged.

Figure 15-2 Configuring the default Web site to enable remote logging

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 10
Setting Up Remote Logging by Using AppCMD

You can also use AppCMD to update the logfile directory for a specific Web site. The
syntax for configuring UNC remote logging using AppCMD is shown here. (The line has
been split to fit it on the printed page.)

//AppCMD to set the log directory path for Default Web Site

appcmd set sites "Default Web Site"

 -logFile.directory:\\RemoteServerCMD.Contoso.com\LogFiles

[Note]To automate configuring remote logging, you could put this example into a script to
which you can pass variables.

Executing this command results in the following output.

SITE object "Default Web Site" changed

Remote Logging Using the FTP 7.0 Publishing Service

The FTP 7.0 Publishing Service is an out-of-band add-on that is meant to replace the built-in
FTP service. The FTP 7.0 Publishing Service supports logs stored on a remote computer, which
can enhance your ability to track down security breaches. Imagine a particular machine is
compromised, but you have your logs stored on a remote system. When the infiltrator tries to
cover her tracks by deleting the local log files, those log files will be unavailable because they
are stored on a remote share. If your remote share uses DFS, the log files can even be
replicated to multiple locations. Remote logging with replication can help in your forensic
efforts. To configure the FTP logs to be stored on a remote server, you just have to configure
your remote server that houses your logs files the same as you would configure a Web server.
Figure 15-3 shows the FTP 7.0 Publishing Service configured to log remotely.

Figure 15-3 FTP 7.0 Publishing Service configured to store log files on a remote computer

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 11
Custom Logging

The modular architecture of IIS 7.0 enables you to implement your own logging modules
or extend or replace existing logging options. Your module can be implemented directly
into the request pipeline. Your logging module can be either a native module or a module
written using managed code. You can use any .NET language such as C# or Microsoft
Visual Basic.NET.

Configuring IIS Logging
IIS 7.0 provides multiple ways to configure and administer your Web server, and that
includes configuring your log settings. This section covers how to use the built-in
graphical user interface (GUI) as well as command line tools to configure log settings.
You’ll learn how to use the IIS Manager, AppCMD, and Windows Powershell.

IIS Manager (7.0)

The IIS 7.0 Manager is a completely rewritten tool that administrators can use to manage
their Web servers. The intuitive interface enables you to quickly review and adjust all
settings, including those that apply to log files. To access the Logging section of the IIS
Manager, follow this procedure.

 1. Go to Administrative Tools, Internet Information Services (IIS) and select the server
name. Figure 15-4 shows the icon for the global Logging section when it is selected.

Figure 15-4 The icon for the global Logging section selected in the IIS Manager

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 12
 2. Double-click the Logging icon to view the interface through which you can
administer logging settings for the server.

The default settings are shown in Figure 15-5. Because is the server node selected in
the tree in the left pane, these settings are inherited by all Web sites configured on
the server.

Figure 15-5 Default global settings

 3. To make changes, select the appropriate drop-down box and select the option you
want. For example, to change the server from site-level logging (creating one log
file per site) to server-level logging (creating one log file per server), select Server in
the One Log File Per drop-down list, as shown in Figure 15-6.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 13

Figure 15-6 Go to the IIS Manager to change logging from site-level logging to server-level
logging

In IIS 6.0, you need to write a script to change the CentralW3CLoggingEnabled metabase
property. This is one example of how the IIS Manager is more powerful and easier to use.
(For more information about this metabase attribute, visit the following link at TechNet:
www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/6d593c76-94a2-
4360-b93d-8ec2bc384f5a.mspx?mfr=true)

[Note]When you configure IIS 7.0 to use server-level logging, the Binary format is selected by
default. To have your server-level log use W3C extended logging, simply select W3C in the
Format drop-down list.

IIS 7.0 also enables you to make changes on individual Web sites. For example, you can
click the Select Fields button to adjust which options are logged for a specific Web site, as
shown in Figure 15-7. In this figure, the Bytes Sent (sc-bytes), Bytes Received (cs-bytes),
Time Taken (time-taken) and Referrer (cs(Referer)) options have been selected. You can
also adjust the log Directory setting, the Log File Rollover setting, and the Use Local Time
For File Naming And Rollover setting.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 14

Figure 15-7 Clicking the Select Fields button lets you choose which options are logged for a given Web
site.

AppCMD

The IIS Manager is a great tool for managing individual settings using a GUI. AppCMD is a
tool that is intended to perform all administrative functions from a command line.
AppCMD replaces a variety of scripts and tools used in previous IIS versions.

All the logging settings you might need to adjust are located in two sections of
applicationHost.config: the system.applicationHost/log section and the
system.applicationHost/sites section.

The previous example uses IIS Manager to configure server-level logging. To use AppCMD
to perform this same operation, follow this procedure:

 1. Open a command prompt and navigate to the systemRoot\System32\inetsrv folder
where AppCMD is deployed.

[Note] If you add this path to your global PATH environment variable, you can execute
AppCMD from any folder location. Be careful when adjusting global settings.

 2. Execute the following command from the command prompt to list the current
settings.

appcmd list config -section:log

This will display the applicationHost.config section where the centralLogFileMode
settings are stored.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 15
 3. Next execute the following command to configure server-level logging.

appcmd set config -section:log -centralLogFileMode:CentralW3C

 4. After you have executed the command in step 3, execute the following command to
list the current settings and verify the settings have been changed.

appcmd list config -section:log

The result, showing that the centralLogFileMode has changed to CentralW3C,
should look like the following. (Some lines have been split to fit on the printed
page.)

C:\Windows\System32\inetsrv>appcmd list config -section:log

<system.applicationHost>

 <log centralLogFileMode="CentralW3C">

 <centralBinaryLogFile enabled="true"

 directory="%SystemDrive%\inetpub\logs\LogFiles" />

 <centralW3CLogFile enabled="true"

 directory="%SystemDrive%\inetpub\logs\LogFiles" />

 </log>

</system.applicationHost>

C:\Windows\System32\inetsrv>

Notice log centralLogFileMode="CentralW3C"> setting, shown in bold. Before executing
the appcmd set config command, there was no value listed because the Site option is the
default setting as defined in the schema.

The section titled “Advanced AppCMD Details” later in this chapter covers how to find out
which options can be set.

As another example, assuming you have already set the global Server attribute, if you
want to adjust the global localTimeRollover setting use this command.

appcmd set config -section:log -centralW3CLogFile.localTimeRollover:True

The result should look like this.

Applied configuration changes to section "system.applicationHost/log" for

"MACHINE/WEBROOT/APPHOST" at configuration commit path "MACHINE/WEBROOT/APPHOST"

Or, for example, you might want to change the siteDefaults log format to NCSA so that all
new sites will inherit this setting unless otherwise configured on a specific site. You can
adjust the global Format option to NCSA with this command.

appcmd set config -section:sites -siteDefaults.logFile.logFormat:NCSA

Here’s the result.

Applied configuration changes to section "system.applicationHost/sites" for

"MACHINE/WEBROOT/APPHOST" at configuration commit path "MACHINE/WEBROOT/APPHOST"

AppCMD enables you to quickly use the command line to make changes to your IIS log
settings. You can create a set of scripts that use AppCMD to replace the repetitive changes
typically required when using the IIS Manager GUI. Such scripts can help streamline and
automate your server configuration and deployment.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 16
AppCMD Required for Windows Vista

By default, Windows Vista does not provide a GUI to manage your log files. You need to
use AppCMD to make adjustments to your log file settings. Microsoft has provided an
out-of-band add-on for IIS 7.0 on Windows Vista. Here is the link to obtain the Vista
logging UI add-on: www.iis.net/downloads/default.aspx?tabid=34&g=6&i=1328

Advanced AppCMD Details

AppCMD enables you to perform many advanced operations. Here are some tips for using
AppCMD to configure advanced properties.

When you configure the centralLogFileMode attribute, the only way to view which
properties (also known as enums) are available is to open the IIS_Schema.xml file. This is
OK to do once in a while, but it’s more efficient to use AppCMD to list the available
properties. For example, the following command lists all the properties that can be set in
the system.applicationHost/log section.

//List all properties available the system.applicationHost/log section

appcmd set config –section:log -?

The output looks like this.

ERROR (message:-logInUTF8

-centralLogFileMode

-centralBinaryLogFile.enabled

-centralBinaryLogFile.directory

-centralBinaryLogFile.period

-centralBinaryLogFile.truncateSize

-centralBinaryLogFile.localTimeRollover

-centralW3CLogFile.enabled

-centralW3CLogFile.directory

-centralW3CLogFile.period

-centralW3CLogFile.truncateSize

-centralW3CLogFile.localTimeRollover

-centralW3CLogFile.logExtFileFlags

)

To adjust a property value, use the following syntax. (You can adjust multiple attributes by
putting a space between each property value.)

appcmd set config –section:log –property1Name:Value –property2Name:Value

If you are not sure which values are available to set on a particular property, you can use
the following command to find out the values. This example shows how to get all values
that can be set for the centralLogFileMode property.

//Find out which values can be set.

Appcmd set config –section:log –centralLogFileMode -?

The resulting error message lists the valid values, in this case Site, CentralBinary, and
CentralW3C.

ERROR (message:Unknown attribute "centralLogFileMode".. Reason: Enum must be one of

Site, CentralBinary, CentralW3C.)

You can change the site’s log settings. To list all the properties that are available and their
syntax, type this command:

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 17
//List all properties available on the Sites section

appcmd set config -section:sites -?

The output shows all properties related to the Sites section. The options starting with -
siteDefaults.logFile, shown in the next lines of code in bold, enable you to adjust the
defaults inherited by new sites. (Some lines have been split to fit on the printed page.)

C:\Windows\System32\inetsrv>appcmd set config -section:sites -?

ERROR (message:-siteDefaults.name

-siteDefaults.id

-siteDefaults.serverAutoStart

-siteDefaults.bindings.

 [protocol='string',bindingInformation='string'].protocol

-siteDefaults.bindings.

 [protocol='string',bindingInformation='string'].bindingInformation

-siteDefaults.limits.maxBandwidth

-siteDefaults.limits.maxConnections

-siteDefaults.limits.connectionTimeout

-siteDefaults.logFile.logExtFileFlags

-siteDefaults.logFile.customLogPluginClsid

-siteDefaults.logFile.logFormat

-siteDefaults.logFile.directory

-siteDefaults.logFile.period

-siteDefaults.logFile.truncateSize

-siteDefaults.logFile.localTimeRollover

-siteDefaults.logFile.enabled

-siteDefaults.traceFailedRequestsLogging.enabled

-siteDefaults.traceFailedRequestsLogging.directory

-siteDefaults.traceFailedRequestsLogging.maxLogFiles

-siteDefaults.traceFailedRequestsLogging.maxLogFileSizeKB

-siteDefaults.traceFailedRequestsLogging.customActionsEnabled

-applicationDefaults.path

-applicationDefaults.applicationPool

-applicationDefaults.enabledProtocols

-virtualDirectoryDefaults.path

-virtualDirectoryDefaults.physicalPath

-virtualDirectoryDefaults.userName

-virtualDirectoryDefaults.password

-virtualDirectoryDefaults.logonMethod

-virtualDirectoryDefaults.allowSubDirConfig

-[name='string',id='unknown'].name

-[name='string',id='unknown'].id

-[name='string',id='unknown'].serverAutoStart

-[name='string',id='unknown'].bindings.

 [protocol='string',bindingInformation='string'].protocol

-[name='string',id='unknown'].bindings.

 [protocol='string',bindingInformation='string'].bindingInformation

-[name='string',id='unknown'].limits.maxBandwidth

-[name='string',id='unknown'].limits.maxConnections

-[name='string',id='unknown'].limits.connectionTimeout

-[name='string',id='unknown'].logFile.logExtFileFlags

-[name='string',id='unknown'].logFile.customLogPluginClsid

-[name='string',id='unknown'].logFile.logFormat

-[name='string',id='unknown'].logFile.directory

-[name='string',id='unknown'].logFile.period

-[name='string',id='unknown'].logFile.truncateSize

-[name='string',id='unknown'].logFile.localTimeRollover

-[name='string',id='unknown'].logFile.enabled

-[name='string',id='unknown'].traceFailedRequestsLogging.enabled

-[name='string',id='unknown'].traceFailedRequestsLogging.directory

-[name='string',id='unknown'].traceFailedRequestsLogging.maxLogFiles

-[name='string',id='unknown'].traceFailedRequestsLogging.maxLogFileSizeKB

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 18
-[name='string',id='unknown'].

 traceFailedRequestsLogging.customActionsEnabled

-[name='string',id='unknown'].applicationDefaults.path

-[name='string',id='unknown'].applicationDefaults.applicationPool

-[name='string',id='unknown'].applicationDefaults.enabledProtocols

-[name='string',id='unknown'].virtualDirectoryDefaults.path

-[name='string',id='unknown'].virtualDirectoryDefaults.physicalPath

-[name='string',id='unknown'].virtualDirectoryDefaults.userName

-[name='string',id='unknown'].virtualDirectoryDefaults.password

-[name='string',id='unknown'].virtualDirectoryDefaults.logonMethod

-[name='string',id='unknown'].virtualDirectoryDefaults.allowSubDirConfig

-[name='string',id='unknown'].[path='string'].path

-[name='string',id='unknown'].[path='string'].applicationPool

-[name='string',id='unknown'].[path='string'].enabledProtocols

-[name='string',id='unknown'].[path='string'].virtualDirectoryDefaults.path

-[name='string',id='unknown'].[path='string'].

 virtualDirectoryDefaults.physicalPath

-[name='string',id='unknown'].[path='string'].

 virtualDirectoryDefaults.userName

-[name='string',id='unknown'].[path='string'].

 virtualDirectoryDefaults.password

-[name='string',id='unknown'].[path='string'].

 virtualDirectoryDefaults.logonMethod

-[name='string',id='unknown'].[path='string'].

 virtualDirectoryDefaults.allowSubDirConfig

-[name='string',id='unknown'].[path='string'].[path='string'].path

-[name='string',id='unknown'].[path='string'].[path='string'].physicalPath

-[name='string',id='unknown'].[path='string'].[path='string'].userName

-[name='string',id='unknown'].[path='string'].[path='string'].password

-[name='string',id='unknown'].[path='string'].[path='string'].logonMethod

-[name='string',id='unknown'].[path='string'].[path='string'].

 allowSubDirConfig

)

You can also adjust settings for specific Web sites by using the properties starting with -
[name='string',id='unknown'].logFile. You need to just replace the 'unknown' value with
the Web site name. Here is an example of how to do a specific site. Notice the example for
the Default Web Site contains double quotation marks. This is necessary to handle spaces
in the Web site name. Remember to change the name and id when using the example.

//Example how to set the logFile.directory property with a

//Site with spaces in the name.

C:\Windows\System32\inetsrv>appcmd set config -section:sites /[name='"Default Web

Site"',id='1'].logFile.directory:c:\wwwlogs

//Example how to setup logFile.directory property with no spaces

//in the Site name.

C:\Windows\System32\inetsrv>appcmd set config -section:sites

/[name='Contoso.om',id='2'].logFile.directory:c:\wwwlogs

You can also use Windows Powershell 1.0 to administer your IIS 7.0 server. This section
shows a few examples of setting the Logfile directory value. In the following sample script,
you first load Microsoft.Web.Administration.dll into your Windows Powershell session.
Next, you assign an instance of the ServerManager object to the $sm variable, which
allows you to query and set Logfile values. (In the following listing, some lines have been
split so that they fit on the printed page.)

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 19
//Load the dll into the Powershell session

[System.Reflection.Assembly]::LoadFrom

 ("C:\windows\system32\inetsrv\Microsoft.Web.Administration.dll")

//Load an instance of the Server Manager object into the $sm variable

$sm = new-object Microsoft.Web.Administration.ServerManager

//List Default Web Site LogFile Directory value.

$sm.Sites["Default Web Site"].LogFile.Directory

//List SiteDefaults LogFile Directory value.

$sm.SiteDefaults.LogFile.Directory

//Set Default Website LogFile Directory

$sm.Sites["Default Web Site"].LogFile.Directory =

 "\\RemoteServer.Contoso.com\Logfiles"

$sm.CommitChanges()

//Set SiteDefaults LogFile Directory

$sm.SiteDefaults.Logfile.Directory = "\\RemoteServer.Contoso.com\Logfiles"

$sm.CommitChanges()

 Using Windows Powershell to administer IIS 7.0 is covered in Chapter 8, “Name.” For
information about building a cmdlet to administer many common functions in IIS 7.0, see
the following Web site: www.iis.net/articles/view.aspx/IIS7/Use-IIS7-Administration-
Tools/Scripting-IIS7/Writing-PowerShell-Command-lets-for-IIS7

Immediately flushing log entries to disk is introduced in Windows Server 2008. The
HTTP.sys service holds requests until they are periodically flushed to disk. When you are
troubleshooting an immediate issue, you can use the following netsh command, which
can be especially useful for troubleshooting HTTP.sys-related errors.

//Flush log entries to disk immediately

Netsh http flush logbuffer

HTTP.sys Logging
In IIS 6.0, the HTTP.sys process was introduced and took over logging duties that used to
be handled by Inetinfo.exe. HTTP.sys introduced another log called httperr.log. The
HTTPERR logs for Windows Server 2008 are located in the same location as for Windows
Server 2003. The path is SystemRoot\System32\LogFiles\httperr. This log records all errors
that are not handed off to a valid worker process, typically responses to clients,
connection time-outs, and orphaned requests. This additional information can help you
troubleshoot HTTP-based errors, which are logged before the request reaches IIS.

Windows Vista and Windows Server 2008 introduce enhancements to the HTTP.sys
logging process. You use ETW (Event Tracing for Windows) to obtain the enhanced
information. Here are steps to start, capture, and display information from an ETW tracing
session:

 1. Open a command prompt (click Start, select Run, and then type cmd.exe).

 2. Start the ETW trace session for HTTP.sys by using the following command.

logman.exe start httptrace -p Microsoft-Windows-HttpService 0xFFFF -o

 httptrace.etl –ets

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 20
 3. Reproduce or perform the steps or tests that need to be traced.

 4. To stop the ETW trace session for HTTP.sys, use the following command.

logman stop httptrace –ets

 5. To convert the ETL file to a CSV file, use this command.

tracerpt httptrace.etl -of csv -o httptrace.csv /y

The CSV files can then be viewed in a text editor or spreadsheet application. This
complete procedure is covered in the following white paper:
http://download.microsoft.com/download/3/b/a/3ba6d659-6e39-4cd7-b3a2-
9c96482f5353/HTTP.sys%20Manageability%20in%20Windows%20Vista%20and%20L
onghorn%20Server.doc

The following site discusses the new networking features in Windows Vista and Windows
Server 2008: http://technet.microsoft.com/en-us/library/bb726965.aspx

Application Logging
Besides the standard IIS type logs, other items can be logged. Many of these options can
be set wither with the IIS Manager or by using AppCMD.

Process Recycling Logging

In IIS 7.0, events are logged with more granularity when an application pool recycles. You
can control eight configuration settings if each option listed in Table 15-1 generates an
event log message. Table 15-1 lists these settings.

Table 15-1 Recycling Options Under Generate Recycle Event Log Entry
Option Description Default

Setting

Application Pool Configuration
Changed

Event is logged when the application pool
recycles due to a change in its
configuration

No

Isapi Report Unhealthy Event is logged because an ISAPI
extension has reported itself as unhealthy

No

Manual Recycle Event is logged when the application pool
has been manually recycled

No

Private Memory Limit Exceeded Event is logged when the application pool
recycles after exceeding its private
memory limit

Yes

Regular Time Interval Event is logged when the application pool
recycles on its scheduled interval

Yes

Request Limit Exceeded Event is logged when the application pool
recycles after exceeding its request limit

No

Specific Time Event is logged when the application pool
recycles at a scheduled time

No

Virtual Memory Limit Exceeded Event is logged when the application pool
recycles after exceeding its virtual memory
limits

Yes

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 21
ASP

Classic ASP is alive and well in IIS 7.0, and you can configure options for logging ASP
errors under the ASP section in the IIS Manager. Use the following options to track down
issues when migrating your Classic ASP applications to IIS 7.0.

• Enable Log Error Requests Controls whether the Web server writes ASP errors to
the application event log

• Log Errors To The NT Log Specifies that ASP errors are recorded in the Windows
event log

These options are available in IIS 6, but you have to use ADSUtil.vbs to enable in the
Metabase. Now, in IIS 7.0, you can use the IIS Manager to enable these options.

ASP.NET

All ASP.NET 2.0 unhandled exceptions are written to the Application Event log. Along with
application pool recycle events or other errors in the event logs, this can be very helpful in
troubleshooting application errors. You can turned off ASP.NET logging by following the
instructions in this KB article: support.microsoft.com/kb/911816

[Important]Microsoft recommends you not do this because it might result in leaked resources
and abandon locks.

IIS Events

Other processes related to IIS also log to the Windows Event log. This includes the HTTP,
IISAdmin, FTP Publishing Service, W3SVC services. For a complete list of events, see:

• www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/af0a2e97-
0c46-4e0a-9f2f-bdbe4a220c49.mspx?mfr=true

• www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/d91983bf-
6c67-46f8-9db9-a8ab502e55d3.mspx?mfr=true

Folder Compression Option
Log files are necessary to keep track of Web site statistics and trends, and Web developers
and business people use them to ensure their Web sites continue to grow. One of the
biggest challenges administrators face is how to retain and manage log files. By default,
IIS rolls over log files once a day. Your log files can become quite large even if you use the
default log file rollover setting.

Windows Server 2008 allows for folder compression to help save space. You can enable
this option by using Windows Explorer. Figure 15-8 shows a folder with compression
enabled. In this example, the size of the folder is 259 megabytes (MB), but the actual
space the folder uses on the disk is only 64.6 MB. If your uncompressed log files take up
several gigabytes (GB), you could save yourself a lot of disk space by using folder
compression.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 22

Figure 15-8 Folder compression enabled on the WWWLogs folder

Because HTTP.sys buffers information written to the IIS log files, there will not be a
performance hit if your log files are in a folder for which compression is enabled. Some
people use third-party log compression products or free tools such as Gzip along with
scripts to compress their log files. Unless you have a tool that searches inside zip files, this
is an acceptable method only if you rarely need to unzip and search your archived log
files. If you have compression enabled, however, you can leave your files in their original,
easily searchable state. At most, you’ll need to implement some type of archival and
deletion script by using your favorite script or third-party program.

Using the built-in compression feature provided by Windows Server 2008 can save you
disk space and simplify how you retain your log files. For more information on managing
log files, Chapter 6, “Name,” of the Microsoft Log Parser book discusses conversion,
archival, and repudiation strategies. The ISBN is 1932266526.

Logging Analysis Using Log Parser
A chapter on logging would not be complete without mentioning Log Parser. This is one
of the most useful tools for searching your logs. Teaching you Log Parser is beyond the
scope of this book, we’ll give you some examples you can use in your environment. You
can download Log Parser at: www.iis.net/default.aspx?tabid=2&subtabid=29#LogParser

Members of the Microsoft.com team are big fans of Log Parser. Look at this Web site for
an article that discusses how they use Log Parser:
blogs.technet.com/mscom/archive/2005/10/19/412745.aspx

Here are three examples of using Log Parser to extract common information from your IIS
logs:

 1. List the top 10 .ASPX WebRequests.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

Preview Content from Internet Information Services (IIS) 7.0 Resource Kit 23
LogParser -i:iisw3c "SELECT TOP 10 cs-uri-stem,

 COUNT(*) AS HitCount INTO Results.csv FROM LOGFILENAME.LOG

 GROUP BY cs-uri-stem ORDER BY HitCount DESC" -o:csv

 2. Show the 20 requests that take the longest to execute.

//Change the date to fit your needs

SELECT

TOP 20

CS-URI-STEM,

TIME-TAKE,time-taken

FROM LOGFILENAME.LOG

WHERE DATE > '2007-03-26'

ORDER BY TIME-TAKEN DESC

 3. Select information between two dates and pipe results to a text file named
Output.txt.

SELECT

DATE,

TIME,

CS-URI-STEM,

SC-STATUS,

COUNT(*) AS MaxTime

INTO Output.txt

FROM LOGFILENAME.LOG

WHERE TO_TIME(time)

BETWEEN

TIMESTAMP('01/01 13:50:00', 'MM/dd hh:mm:ss') AND

 TIMESTAMP('01/01 18:30:00', 'MM/dd hh:mm:ss') AND SC-STATUS = 500

GROUP BY

CS-URI-STEM,

DATE,

TIME,

SC-STATUS

ORDER BY MaxTime DESC

If you are responsible for maintaining an IIS environment, take a look at Log Parser. You’ll
want to make it one of your main tools when troubleshooting all kinds of issues. (For
more information about Log Parser, visit the community forums at:
forums.iis.net/default.aspx?GroupID=51)

Summary
IIS 7.0 takes the best features first introduced in Windows Server 2003 and builds on them.
The modular architecture and Integrated Pipeline open up a lot of opportunities to
enhance your application logging options. The IIS Manager exposes and simplifies how
you manage your log settings. You can set your default logging settings to be on a per-
site or per-server basis.

IIS 7.0 also introduces many tools for automating your log file configuration. You can use
AppCMD or Windows Powershell along with Microsoft.Web.Administration to configure
or search for information. The new UTF-8 encoding helps standardize your logs.

IIS 7.0 exposes more data in logging. You can use the new tools provided by IIS 7.0 and by
Windows Server 2008 to browse the additional information as you track down and
eliminate problems in your environment.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Internet Information Services (IIS) 7.0 Resource Kit
from Microsoft Press (ISBN 978-0-7356-2441-2, copyright 2008 Mike Volodarsky, Olga Londer, Brett Hill, Bernard Cheah,
and Steve Schofield, and Microsoft Corporation, all rights reserved), and is provided without any express, statutory, or
implied warranties.

	Cover
	Table of Contents
	Part 1: Foundation
	Chapter 3: Understanding the Modular Foundation
	Concepts
	The Ideas
	Types of Modules
	Modules and Configuration

	Key Benefits
	Security
	Performance
	Extensibility

	Built-in Modules
	Chapter Summary

	Part 4: Troubleshooting and Performance
	Chapter 15: Logging
	What’s New?
	The IIS Manager
	The XML-Based Logging Schema
	Centralized Logging Configuration Options
	SiteDefaults Configuration Options
	Disable HTTP Logging Configuration Options
	Default Log File Location
	Default UTF-8 Encoding
	New Status Codes
	Management Service

	Log File Formats That Have Not Changed
	Centralized Logging
	W3C Centralized Logging Format
	Centralized Binary Logging Format

	Remote Logging
	Setting Up Remote Logging by Using the IIS 7.0 Manager
	Setting Up Remote Logging by Using AppCMD
	Remote Logging Using the FTP 7.0 Publishing Service
	Custom Logging

	Configuring IIS Logging
	IIS Manager (7.0)
	AppCMD
	AppCMD Required for Windows Vista
	Advanced AppCMD Details

	HTTP.sys Logging
	Application Logging
	Process Recycling Logging
	ASP
	ASP.NET
	IIS Events

	Folder Compression Option
	Logging Analysis Using Log Parser
	Summary

