
 

To learn more about this book, visit Microsoft Learning at 
http://www.microsoft.com/MSPress/books/9541.aspx 

 
 

 

 

 
 
©

 

 

 

 

 



A05T622791.fm  Page vii  Friday, December 14, 2007  10:52 AM
Table of Contents
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Is This Book for Me?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

About the Companion CD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

System Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1 The Shell in Windows PowerShell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Installing Windows PowerShell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Verifying Installation with VBScript. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Deploying Windows PowerShell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Interacting with the Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Introducing Cmdlets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Configuring Windows PowerShell  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Creating a Windows PowerShell Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Configuring Windows PowerShell Startup Options . . . . . . . . . . . . . . . . . . . . . . . . 6

Security Issues with Windows PowerShell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Controlling the Execution of Cmdlets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Confirming Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Suspending Confirmation of Cmdlets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Supplying Options for Cmdlets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Working with Get-Help  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Working with Aliases to Assign Shortcut Names to Cmdlets . . . . . . . . . . . . . . . . . . . . 15

Additional Uses of Cmdlets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Using the Get-ChildItem Cmdlet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Formatting Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Using the Get-Command Cmdlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
vii

Microsoft is interested in hearing your feedback so we can continually improve our books and learning  
resources for you. To participate in a brief online survey, please visit: 

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!



viii Table of Contents

A05T622791.fm  Page viii  Friday, December 14, 2007  10:52 AM
Exploring with the Get-Member Cmdlet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Scripting Windows PowerShell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Why Use Scripting?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Configuring the Scripting Policy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Running Windows PowerShell Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Use of Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Use of Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Using Flow Control Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Adding Parameters to ForEach-Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Using the Begin Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Using the Process Parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Using the End Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Using the For Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Using Decision-Making Statements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Using If … Elseif … Else . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Using Switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Working with Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Unleashing the Power of Regular Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Using Command-Line Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 Managing Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Identifying the Event Logs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Reading the Event Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Exporting to Text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Export to XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Perusing General Log Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Examining Multiple Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Retrieving a Single Event Log Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Searching the Event Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Filtering on Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Selecting the Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Selecting the Severity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Selecting the Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



Table of Contents ix

A05T622791.fm  Page ix  Friday, December 14, 2007  10:52 AM
Managing the Event Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Identifying the Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Modifying the Event Log Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Examining WMI Event Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Making Changes to the WMI Logging Level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Using the Windows Event Command-Line Utility  . . . . . . . . . . . . . . . . . . . . . . . . 76

Writing to Event Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Creating a Source  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Putting Cmdlet Output into the Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Creating Your Own Event Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Managing Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Documenting the Existing Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Working with Running Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Writing to a Text File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Writing to a Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Setting the Service Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Accepting Command-Line Arguments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Stopping Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Performing a Graceful Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Starting Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Performing a Graceful Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Desired Configuration Maintenance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Verifying Desired Services Are Stopped . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Reading a File to Check Service Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Verifying Desired Services Are Running. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Confirming the Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Producing an Exception Report  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Managing Shares. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Documenting Shares. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Documenting User Shares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Writing Shares to Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Documenting Administrative Shares  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Writing Share Information to a Microsoft Access Database . . . . . . . . . . . . . . . 126



x Table of Contents

A05T622791.fm  Page x  Friday, December 14, 2007  10:52 AM
Auditing Shares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Modifying Shares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Using Parameters with the Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Translating the Return Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Creating New Shares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Creating Multiple Shares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Deleting Shares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Deleting Only Unauthorized Shares  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6 Managing Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Inventorying Printers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Querying Multiple Computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Logging to a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Writing to a Microsoft Access Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Reporting on Printer Ports  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Identifying Printer Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Installing Printer Drivers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Installing Printer Drivers Found on Your Computer  . . . . . . . . . . . . . . . . . . . . . 165

Installing Printer Drivers Not Found on Your Computer  . . . . . . . . . . . . . . . . . 167

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7 Desktop Maintenance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Maintaining Desktop Health. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Inventorying Drives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Writing Disk Drive Information to Microsoft Access . . . . . . . . . . . . . . . . . . . . . 175

Working with Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Matching Disks and Partitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Working with Logical Disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Monitoring Disk Space Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Logging Disk Space to a Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Monitoring File Longevity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Monitoring Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Using Performance Counter Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Identifying Sources of Page Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204



Table of Contents xi

A05T622791.fm  Page xi  Friday, December 14, 2007  10:52 AM
8 Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Working with Network Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Reporting Networking Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Working with Adapter Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Filtering Only Properties that Have a Value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Configuring Network Adapter Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Detecting Multiple Network Adapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Writing Network Adapter Information to a Microsoft Excel Spreadsheet . . . 224

Identifying Connected Network Adapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Setting Static IP Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Enabling DHCP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Configuring the Windows Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Reporting Firewall Settings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Configuring Firewall Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

9 Configuring Desktop Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Working with Desktop Configuration Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Setting Screen Savers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Auditing Screen Savers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Listing Only Properties with Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Reporting Secure Screen Savers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Managing Desktop Power Settings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Changing the Power Scheme  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

10 Managing Post-Deployment Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Setting the Time  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Setting the Time Remotely. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Logging Results to the Event Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Configuring the Time Source  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Using the Net Time Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Querying the Registry for the Time Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

Enabling User Accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

Creating a Local User Account  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Creating a Local User  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Creating a Local User Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306



xii Table of Contents

A05T622791.fm  Page xii  Friday, December 14, 2007  10:52 AM
Configuring the Screen Saver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

Renaming the Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Shutting Down or Rebooting a Remote Computer. . . . . . . . . . . . . . . . . . . . . . . . . . . 319

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

11 Managing User Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Working with Backups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Configuring Offline Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

Enabling the Use of Offline Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Working with System Restore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

Retrieving System Restore Settings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

Listing Available System Restore Points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

12 Troubleshooting Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Troubleshooting Startup Issues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Examining the Boot Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Examining Startup Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

Displaying Service Dependencies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Examining Startup Device Drivers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

Investigating Startup Processes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

Investigating Hardware Issues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

Troubleshooting Network Issues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

13 Managing Domain Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Creating Organizational Units  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Creating Domain Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

Modifying User Attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

Modifying General User Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

Modifying the Address Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

Modifying the Profile Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

Modifying the Telephone Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Modifying the Organization Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Modifying a Single User Attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

Creating Users from a .csv File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

Setting the Password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

Enabling the User Account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394



Table of Contents xiii

A05T622791.fm  Page xiii  Friday, December 14, 2007  10:52 AM
Creating Domain Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Adding a User to a Domain Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

Adding Multiple Users with Multiple Attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

14 Configuring the Cluster Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

Examining the Clustered Server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

Reporting Cluster Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

Reporting Node Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

Querying Multiple Cluster Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

Managing Nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Adding and Evicting Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Removing the Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

15 Managing Internet Information Services  . . . . . . . . . . . . . . . . . . . . . . . . 443

Enabling Internet Information Services Management  . . . . . . . . . . . . . . . . . . . . . . . . 443

Reporting IIS Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

Reporting Site Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

Reporting on Application Pools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

Reporting on Application Pool Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . 451

Reporting Site Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

Listing Virtual Directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

Creating a New Web Site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

Creating a New Application Pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

Starting and Stopping Web Sites  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

16 Working with the Certificate Store  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

Locating Certificates in the Certificate Store. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

Listing Certificates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

Locating Expired Certificates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

Identifying Certificates about to Expire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

Managing Certificates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

Inspecting a Certificate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

Importing a Certificate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

Deleting a Certificate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507



xiv Table of Contents

A05T622791.fm  Page xiv  Friday, December 14, 2007  10:52 AM
17 Managing the Terminal Services Service. . . . . . . . . . . . . . . . . . . . . . . . . 509

Configuring the Terminal Service Installation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

Documenting Terminal Service Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 509

Disabling Logons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513

Modifying Client Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

Managing Users  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

Enabling Users to Access the Server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

Configuring Client Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

18 Configuring Network Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

Reporting DNS Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

Configuring DNS Logging Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548

Reporting Root Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

Querying “A” Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

Configuring DNS Server Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562

Reporting DNS Zones  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568

Creating DNS Zones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

Managing WINS and DHCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

19 Working with Windows Server 2008 Server Core . . . . . . . . . . . . . . . . . 583

Initial Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583

Joining the Domain  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584

Setting the IP Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592

Configuring the DNS Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597

Renaming the Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

Managing Windows Server 2008 Server Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611

Monitoring the Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611

Querying Event Logs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617

A Cmdlet Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619

B ActiveX Data Object Provider Names  . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

C Frequently Asked Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623



Table of Contents xv

A05T622791.fm  Page xv  Friday, December 14, 2007  10:52 AM
D Scripting Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631

General Script Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631

Include Functions in the Script that Calls the Function . . . . . . . . . . . . . . . . . . . 631

Use Full Cmdlet Names and Full Parameter Names. . . . . . . . . . . . . . . . . . . . . . 632

Use Get-Item to Convert Path Strings to Rich Types . . . . . . . . . . . . . . . . . . . . . 633

General Script Readability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633

Formatting Your Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634

Working with Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

Creating Template Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637

Writing Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637

Creating and Naming Variables and Constants . . . . . . . . . . . . . . . . . . . . . . . . . 638

E General Troubleshooting Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
Microsoft is interested in hearing your feedback so we can continually improve our books and learning  
resources for you. To participate in a brief online survey, please visit: 

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!



A05T622791.fm  Page xvi  Friday, December 14, 2007  10:52 AM



C01622791.fm  Page 1  Saturday, December 8, 2007  6:28 PM
Chapter 1

The Shell in Windows PowerShell
After completing this chapter, you will be able to:

■ Install and configure Windows PowerShell.

■ Tackle security issues with Windows PowerShell.

■ Understand the basics of cmdlets.

■ Work with aliases to assign shortcut names to cmdlets.

■ Get help using Windows PowerShell.

On the Companion Disc All the scripts used in this chapter are located on the CD-ROM 
that accompanies this book in the \scripts\chapter01 folder.

Installing Windows PowerShell
Because Windows PowerShell is not installed by default on any operating system released by 
Microsoft, it is important to verify the existence of Windows PowerShell on the platform 
before the actual deployment of either scripts or commands. This can be as simple as trying to 
execute a Windows PowerShell command and looking for errors. You can easily accomplish 
this from inside a batch file by querying the value %errorlevel%.

Verifying Installation with VBScript

A more sophisticated approach to the task of verifying the existence of Windows PowerShell 
on the operating system is to use a script that queries the Win32_QuickFixEngineering 
Windows Management Instrumentation (WMI) class. FindPowerShell.vbs is an example of 
using Win32_QuickFixEngineering in Microsoft Visual Basic Scripting Edition (VBScript) to 
find an installation of Windows PowerShell.

The FindPowerShell.vbs script uses the WMI moniker to create an instance of the 
SwbemServices object and then uses the execquery method to issue the query. The WMI Query 
Language (WQL) query uses the like operator to retrieve hotfixes with a hotfix ID such as 
928439, which is the hotfix ID for Windows PowerShell on Windows XP, Windows Vista, 
Windows Server 2003, and Windows Server 2008. Once the hotfix is identified, the script 
simply prints out the name of the computer stating that Windows PowerShell is installed. 
This is shown in Figure 1-1.
1



2 Windows PowerShell Scripting Guide

C01622791.fm  Page 2  Saturday, December 8, 2007  6:28 PM
Figure 1-1 The FindPowerShell.vbs script displays a pop-up box indicating that Windows 
PowerShell has been found.

If the hotfix is not found, the script indicates that Windows PowerShell is not installed. The 
FindPowerShell.vbs script can easily be modified to include additional functionality you may 
require on your specific network. For example, you may want to run the script against multi-
ple computers. To do this, you can turn strComputer into an array and type in multiple com-
puter names. Or, you can read a text file or perform an Active Directory directory service 
query to retrieve computer names. You could also log the output from the script rather than 
create a pop-up box.

FindPowerShell.vbs
Const RtnImmedFwdOnly = &h30  

strComputer = "." 

wmiNS = "\root\cimv2" 

wmiQuery = "Select * from win32_QuickFixEngineering where hotfixid like '928439'" 

 

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS) 

Set colItems = objWMIService.ExecQuery(wmiQuery,,RtnImmedFwdOnly) 

 

For Each objItem in colItems 

Wscript.Echo "PowerShell is present on " & objItem.CSName 

Wscript.quit 

Next 

Wscript.Echo “PowerShell is not installed”

Deploying Windows PowerShell

Once Windows PowerShell is downloaded from http://www.microsoft.com/downloads, you 
can deploy Windows PowerShell in your environment by using any of the standard methods 
you currently use. A few of the methods customers use to deploy Windows PowerShell follow:

■ Create a Microsoft Systems Management Server (SMS) package and advertise it to the 
appropriate organizational unit (OU) or collection.

■ Create a Group Policy Object (GPO) in Active Directory and link it to the appropriate 
OU.

■ Call the executable by using a logon script.

If you are not deploying to an entire enterprise, perhaps the easiest way to install Windows 
PowerShell is to simply double-click the executable and step through the wizard.



Chapter 1 The Shell in Windows PowerShell 3

C01622791.fm  Page 3  Saturday, December 8, 2007  6:28 PM
Keep in mind that Windows PowerShell is installed by using hotfix technology. This means it 
is an update to the operating system, and not an add-on program. This has certain advantages, 
including the ability to provide updates and fixes to Windows PowerShell through operating 
system service packs and through Windows Update. But there are also some drawbacks, in 
that hotfixes need to be uninstalled in the same order that they were installed. For example, if 
you install Windows PowerShell on Windows Vista and later install a series of updates, then 
install Service Pack 1, and suddenly decide to uninstall Windows PowerShell, you will need to 
back out Service Pack 1 and each hotfix in the appropriate order. (Personally, at that point I 
think I would just back up my data, format the disks, and reinstall Windows Vista. I think it 
would be faster. But all this is a moot point anyway, as there is little reason to uninstall Win-
dows PowerShell.)

Understanding Windows PowerShell

One issue with Windows PowerShell is grasping what it is. In fact, the first time I met 
Jeffrey Snover, the chief architect for Windows PowerShell, one of the first things he said 
was, “How do you describe Windows PowerShell to customers?”

So what is Windows PowerShell? Simply stated, Windows PowerShell is the next gener-
ation command shell and scripting language from Microsoft that can be used to replace 
both the venerable Cmd.exe command interpreter and the VBScript scripting language.

This dualistic behavior causes problems for many network administrators who are used 
to the Cmd.exe command interpreter with its weak batch language and the powerful 
(but confusing) VBScript language for automating administrative tasks. These are not 
bad tools, but they are currently used in ways that were not intended when they were 
created more than a decade ago. The Cmd.exe command interpreter was essentially the 
successor to the DOS prompt, and VBScript was more or less designed with Web pages 
in mind. Neither was designed from the ground up for network administrators.

Interacting with the Shell
Once Windows PowerShell is launched, you can use it in the same manner as the Cmd.exe 
command interpreter. For example, you can use dir to retrieve a directory listing. You can also 
use cd to change the working directory and then use dir to produce a directory listing just as 
you would perform these tasks from the CMD shell. This is illustrated in the UsingPower-
Shell.txt example that follows, which shows the results of using these commands.

UsingPowerShell.txt
PS C:\Users\edwils> dir 

 

 

Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\edwils 

 

 



4 Windows PowerShell Scripting Guide

C01622791.fm  Page 4  Saturday, December 8, 2007  6:28 PM
Mode LastWriteTime Length Name 

---- ------------- ------ ---- 

d-r-- 11/29/2006 1:32 PM Contacts 

d-r-- 4/2/2007 12:51 AM Desktop 

d-r-- 4/1/2007 6:53 PM Documents 

d-r-- 11/29/2006 1:32 PM Downloads 

d-r-- 4/2/2007 1:10 AM Favorites 

d-r-- 4/1/2007 6:53 PM Links 

d-r-- 11/29/2006 1:32 PM Music 

d-r-- 11/29/2006 1:32 PM Pictures 

d-r-- 11/29/2006 1:32 PM Saved Games 

d-r-- 4/1/2007 6:53 PM Searches 

d-r-- 4/2/2007 5:53 PM Videos 

 

 

PS C:\Users\edwils> cd music 

PS C:\Users\edwils\Music> dir

In addition to using traditional command interpreter commands, you can also use some of the 
newer command-line utilities such as Fsutil.exe, as shown here. Keep in mind that access to 
Fsutil.exe requires administrative rights. If you launch the standard Windows PowerShell 
prompt from the Windows PowerShell program group, you will not have administrative 
rights, and the error shown in Figure 1-2 will appear.

Figure 1-2 Windows PowerShell respects user account control and by default will launch with 
normal user privileges. This can generate errors when trying to execute privileged commands.

Fsutil.txt
PS C:\Users\edwils> sl c:\mytest 

PS C:\mytest> fsutil file createNew c:\mytest\myNewFile.txt 1000 

File c:\mytest\myNewFile.txt is created 

PS C:\mytest> dir 

 

 

Directory: Microsoft.PowerShell.Core\FileSystem::C:\mytest 

 

 

Mode LastWriteTime Length Name 

---- ------------- ------ ---- 

-a--- 5/8/2007 7:30 PM 1000 myNewFile.txt 

 

 

PS C:\mytest>



Chapter 1 The Shell in Windows PowerShell 5

C01622791.fm  Page 5  Saturday, December 8, 2007  6:28 PM
Tip I recommend creating two Windows PowerShell shortcuts and saving them to the 
Quick Launch bar. One shortcut launches with normal user permissions and the other 
launches with administrative rights. By default you should use the normal user shortcut and 
document those occasions that require administrative rights.

When you are finished working with the files and the folder, you can delete the file very easily 
by using the del command. To keep from typing the entire file name, you can use wildcards 
such as *.txt. This is safe enough, since you have first used the dir command to ensure there 
is only one text file in the folder. Once the file is removed, you can use rd to remove the direc-
tory. As shown in DeleteFileAndFolder.txt example that follows, these commands work 
exactly the same as you would expect when working with the command prompt.

DeleteFileAndFolder.txt
PS C:\> sl c:\mytest 

PS C:\mytest> dir 

 

 

Directory: Microsoft.PowerShell.Core\FileSystem::C:\mytest 

 

 

Mode LastWriteTime Length Name 

---- ------------- ------ ---- 

-a--- 5/8/2007 7:30 PM 1000 myNewFile.txt 

 

 

PS C:\mytest> del *.txt 

PS C:\mytest> cd c:\ 

PS C:\> rd c:\mytest 

PS C:\> dir c:\mytest 

Get-ChildItem : Cannot find path 'C:\mytest' because it does not exist. 

At line:1 char:4 

+ dir <<<< c:\mytest 

PS C:\>

With these examples, you have been using Windows PowerShell in an interactive manner. 
This is one of the primary uses of Windows PowerShell. In fact, the Windows PowerShell team 
expects that 80 percent of users will work with Windows PowerShell interactively—simply as 
a better command prompt. You open up a Windows PowerShell prompt and type in com-
mands. The commands can be typed one at a time or they can be grouped together like a 
batch file. This will be discussed later, as the process doesn’t work by default.

Introducing Cmdlets
In addition to using traditional programs and commands from the Cmd.exe command inter-
preter, you can also use the cmdlets that are built into Windows PowerShell. Cmdlet is a name 
created by the Windows PowerShell team to describe these native commands. They are like 
executable programs but because they take advantage of the facilities built into Windows 



6 Windows PowerShell Scripting Guide

C01622791.fm  Page 6  Saturday, December 8, 2007  6:28 PM
PowerShell, they are easy to write. They are not scripts, which are uncompiled code, because 
they are built using the services of a special Microsoft .NET Framework namespace. Because 
of their different nature, the Windows PowerShell team came up with the new term cmdlet. 
Windows PowerShell comes with more than 120 cmdlets designed to assist network admin-
istrators and consultants to easily take advantage of Windows PowerShell without having to 
learn the Windows PowerShell scripting language. These cmdlets are documented in Appen-
dix A, “Cmdlet Naming Conventions.” In general, the cmdlets follow a standard naming con-
vention such as Get-Help, Get-EventLog, or Get-Process. The “get” cmdlets display 
information about the item that is specified on the right side of the dash. The “set” cmdlets are 
used to modify or to set information about the item on the right side of the dash. An example 
of a “set” cmdlet is Set-Service, which can be used to change the startmode of a service. An 
explanation of this naming convention is found in Appendix A, “Cmdlet Naming Conventions.”

Configuring Windows PowerShell
Once Windows PowerShell is installed on a platform, there are still some configuration issues 
to address. This is in part due to the way the Windows PowerShell team at Microsoft perceives 
the use of the tool. For example, the Windows PowerShell team believes that 80 percent of 
Windows PowerShell users will not utilize the scripting features of Windows PowerShell; 
thus, the scripting capability is turned off by default. Find more information on enabling 
scripting support in Windows Power Shell in Chapter 2, “Scripting Windows PowerShell.”

Creating a Windows PowerShell Profile

There are many settings that can be stored in a Windows PowerShell profile. These items can 
be stored in a psconsole file. To export the console configuration file, use the Export-Console 
cmdlet as shown here:

PS C:\> Export-Console myconsole

The psconsole file is saved in the current directory by default, and will have an extension of 
.psc1. The psconsole file is saved in an .xml format; a generic console file is shown here:

<?xml version="1.0" encoding="utf-8"?> 

<PSConsoleFile ConsoleSchemaVersion="1.0"> 

<PSVersion>1.0</PSVersion> 

<PSSnapIns /> 

</PSConsoleFile>

Configuring Windows PowerShell Startup Options

There are several methods available to start Windows PowerShell. For example, if the logo you 
receive when clicking the default Windows PowerShell icon seems to get in your way, you can 
launch without it. You can start Windows PowerShell using different profiles and even run a 



Chapter 1 The Shell in Windows PowerShell 7

C01622791.fm  Page 7  Saturday, December 8, 2007  6:28 PM
single Windows PowerShell command and exit the shell. If you need to start a specific version 
of Windows PowerShell, you can do that as well by supplying a value for the version parame-
ter. Each of these options is illustrated in the following list.

■ Launch Windows PowerShell without the banner by using the -nologo argument as 
shown here:

PowerShell -nologo

■ Launch a specific version of Windows PowerShell by using the -version argument:

PowerShell -version 1.0

■ Launch Windows PowerShell using a specific configuration file by specifying the 
-psconsolefile argument:

PowerShell -psconsolefile myconsole.psc1

■ Launch Windows PowerShell, execute a specific command, and then exit by using the 
-command argument. The command must be prefixed by the ampersand sign and 
enclosed in curly brackets:

powershell -command "& {get-process}"

Security Issues with Windows PowerShell
As with any tool as versatile as Windows PowerShell, there are some security concerns. Secu-
rity, however, was one of the design goals in the development of Windows PowerShell.

When you launch Windows PowerShell, it opens in your Users\userName folder; this ensures 
you are in a directory where you will have permission to perform certain actions and activities. 
This technique is far safer than opening at the root of the drive or opening in the system root.

To change to a directory, you can’t automatically go up to the next level; you must explicitly 
name the destination of the change directory operation (but you can use the dotted notation 
with the Set-Location cmdlets as in Set-Location ..).

Running scripts is disabled by default but this can be easily managed with Group Policy or 
login scripts.

Controlling the Execution of Cmdlets

Have you ever opened a CMD interpreter prompt, typed in a command, and pressed Enter so 
you could see what happens? If that command happens to be Format C:\, are you sure you 
want to format your C drive? There are several arguments that can be passed to cmdlets to 
control the way they execute. These arguments will be examined in this section.



8 Windows PowerShell Scripting Guide

C01622791.fm  Page 8  Saturday, December 8, 2007  6:28 PM
Tip Most of the Windows PowerShell cmdlets support a “prototype” mode that can be 
entered by using the -whatif parameter. The implementation of the whatif switch can be 
decided by the person developing the cmdlet; however, the Windows PowerShell team 
recommends that developers implement -whatif if the cmdlet will make changes to the system.

Although not all cmdlets support these arguments, most of the cmdlets included with Win-
dows PowerShell do. The three ways to control execution are -whatif, -confirm, and suspend. 
Suspend is not an argument that gets supplied to a cmdlet, but it is an action you can take at a 
confirmation prompt, and is therefore another method of controlling execution.

To use -whatif, first enter the cmdlet at a Windows PowerShell prompt. Then type the -whatif 
parameter after the cmdlet. The use of the -whatif argument is illustrated in the following 
WhatIf.txt example. On the first line, launch Notepad. This is as simple as typing the word 
notepad as shown in the path. Next, use the Get-Process cmdlet to search for all processes 
that begin with the name note. In this example, there are two processes with a name beginning 
with notepad. Next, use the Stop-Process cmdlet to stop a process with the name of notepad, 
but because the outcome is unknown, use the -whatif parameter. Whatif tells you that it will 
kill two processes, both of which are named notepad, and it also gives the process ID number 
so you can verify if this is the process you wish to kill. Just for fun, once again use the Stop-
Process cmdlet to stop all processes with a name that begins with the letter n. Again, wisely 
use the whatif parameter to see what would happen if you execute the command.

WhatIf.txt
PS C:\Users\edwils> notepad 

PS C:\Users\edwils> Get-Process note* 

 

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName 

------- ------ ----- ----- ----- ------ -- ----------- 

45 2 1044 3904 53 0.03 3052 notepad 

45 2 1136 4020 54 0.05 3140 notepad 

 

 

PS C:\Users\edwils> Stop-Process -processName notepad -WhatIf 

What if: Performing operation "Stop-Process" on Target "notepad (3052)". 

What if: Performing operation "Stop-Process" on Target "notepad (3140)". 

 

PS C:\Users\edwils> Stop-Process -processName n* -WhatIf 

What if: Performing operation "Stop-Process" on Target "notepad (3052)". 

What if: Performing operation "Stop-Process" on Target "notepad (3140)".

So what happens if the whatif switch is not implemented? To illustrate this point, notice that 
in the following WhatIf2.txt example, when you use the New-Item cmdlet to create a new 
directory named myNewtest off the root, the whatif switch is implemented and it 
confirms that the command will indeed create C:\myNewtest.

Note what happens, however, when you try to use the whatif switch on the Get-Help cmdlet. 
You might guess it would display a message such as, “What if: Retrieving help information for 



Chapter 1 The Shell in Windows PowerShell 9

C01622791.fm  Page 9  Saturday, December 8, 2007  6:28 PM
Get-Process cmdlet.” But what is the point? As there is no danger with the Get-Help cmdlet, 
there is no need to implement whatif on Get-Help.

WhatIf2.txt
PS C:\Users\edwils> New-Item -Name myNewTest -Path c:\ -ItemType directory -WhatIf 

What if: Performing operation "Create Directory" on Target 

"Destination: C:\myNewTest". 

 

PS C:\Users\edwils> get-help Get-Process -whatif 

Get-Help : A parameter cannot be found that matches parameter name 'whatif'. 

At line:1 char:28 

+ get-help Get-Process -whatif <<<<

Best Practices The use of the -whatif parameter should be considered an essential tool in 
the network administrator’s repertoire. Using it to model commands before execution can 
save hours of work each year.

Confirming Commands

As you saw in the previous section, you can use -whatif to create a prototype cmdlet in 
Windows PowerShell. This is useful for checking what a command will do. However, to be 
prompted before the command executes, use the -confirm switch. In practice, using the 
-confirm switch can generally take the place of -whatif, as you will be prompted before the 
action occurs. This is shown in the ConfirmIt.txt example that follows.

In the ConfirmIt.txt file, first launch Calculator (Calc.exe). Because the file is in the path, you 
don’t need to hard-code either the path or the extension. Next, use Get-Process with the c* 
wildcard pattern to find all processes that begin with the letter c. Notice that there are several 
process names on the list. The next step is to retrieve only the Calc.exe process. This returns 
a more manageable result set. Now use the Stop-Process cmdlet with the -confirm switch. The 
cmdlet returns the following information:

Confirm 

Are you sure you want to perform this action? 

Performing operation "Stop-Process" on Target "calc (2924)". 

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend 

[?] Help (default is "Y"):

You will notice this information is essentially the same as the information provided by the 
whatif switch but it also provides the ability to perform the requested action. This can 
save time when executing a large number of commands.

ConfirmIt.txt
PS C:\Users\edwils> calc 

PS C:\Users\edwils> Get-Process c* 

 



10 Windows PowerShell Scripting Guide

C01622791.fm  Page 10  Saturday, December 8, 2007  6:28 PM
Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName 

------- ------ ----- ----- ----- ------ -- ----------- 

43 2 1060 4212 54 0.03 2924 calc 

1408 7 3364 6556 81 372 casha 

1132 16 23156 34680 129 3084 CcmExec 

599 5 1680 4956 88 620 csrss 

480 10 15812 20500 195 688 csrss 

 

 

PS C:\Users\edwils> Get-Process calc 

 

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName 

------- ------ ----- ----- ----- ------ -- ----------- 

43 2 1060 4212 54 0.03 2924 calc 

 

 

PS C:\Users\edwils> Stop-Process -Name calc -Confirm 

 

Confirm 

Are you sure you want to perform this action? 

Performing operation "Stop-Process" on Target "calc (2924)". 

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] 

Help (default is "Y"): y 

PS C:\Users\edwils> Get-Process c* 

 

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName 

------- ------ ----- ----- ----- ------ -- ----------- 

1412 7 3364 6556 81 372 casha 

1154 16 23224 34740 130 3084 CcmExec 

598 5 1680 4956 88 620 csrss 

477 10 15812 20488 195 688 csrss

Suspending Confirmation of Cmdlets

The ability to prompt for confirmation of a cmdlet’s execution is extremely useful and at times 
may be vital in maintaining a high level of system uptime. For example, there are times when 
you have typed in a long command and then remember that you must perform another pro-
cedure first. In this case, simply suspend execution of the command. The commands used in 
the suspending execution of a cmdlet and associated output are shown in the following Sus-
pendConfirmation.txt example.

In the SuspendConfirmation.txt file, first launch Microsoft Paint (Mspaint.exe). Because 
Mspaint.exe is in the path, you don’t need to supply any path information to the file. You then 
get the process information by using the Get-Process cmdlet. Use the ms* wildcard, which 
matches any process name that begins with the letters ms. Once you have identified the 
correct process, use the Stop-Process cmdlet and the confirm switch. Instead of answering yes 
to the confirmation prompt, just suspend execution of the command so you can run an 
additional command (perhaps you forgot the process ID number). Once you have finished 
running the additional command, type exit to return to the suspended command from the 
nested prompt. Once you have killed the mspaint process, you can once again use the Get-
Process cmdlet to confirm the process has been killed.



Chapter 1 The Shell in Windows PowerShell 11

C01622791.fm  Page 11  Saturday, December 8, 2007  6:28 PM
SuspendConfirmation.txt
PS C:\Users\edwils> mspaint 

PS C:\Users\edwils> Get-Process ms* 

 

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName 

------- ------ ----- ----- ----- ------ -- ----------- 

98 4 5404 10492 72 0.09 3064 mspaint 

 

 

PS C:\Users\edwils> Stop-Process -id 3064 -Confirm 

 

Confirm 

Are you sure you want to perform this action? 

Performing operation "Stop-Process" on Target "mspaint (3064)". 

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "Y"): s 

PS C:\Users\edwils>>> Get-Process ms* 

 

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName 

------- ------ ----- ----- ----- ------ -- ----------- 

97 4 5404 10496 72 0.09 3064 mspaint 

 

 

PS C:\Users\edwils>>> exit 

 

Confirm 

Are you sure you want to perform this action? 

Performing operation "Stop-Process" on Target "mspaint (3064)". 

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "Y"): y 

PS C:\Users\edwils> Get-Process ms*

Supplying Options for Cmdlets
As you have seen in the previous sections, you can use -whatif and -confirm to control the 
execution of cmdlets. One question students often ask me is, “How do I know what options 
are available?” The answer is that the Windows PowerShell team created a set of standard 
options. These standard options are called common parameters. When you look at the syntax 
description for a cmdlet, often it will state that the cmdlet supports the common parameters. 
This is shown here for the Get-Process cmdlet:

SYNTAX 

Get-Process [[-name] <string[]>] [<CommonParameters>] 

 

Get-Process -id <Int32[]> [<CommonParameters>] 

 

Get-Process -inputObject <Process[]> [<CommonParameters>]

One of the useful features of Windows PowerShell is the standardization of the syntax in 
working with cmdlets. This vastly simplifies learning the new shell and language. Table 1-1 
lists the common parameters. Keep in mind that all cmdlets will not implement all of these 
parameters. However, if the parameters are used they will be interpreted in the same way for 
all cmdlets because the Windows PowerShell engine interprets the parameters.



12 Windows PowerShell Scripting Guide

C01622791.fm  Page 12  Saturday, December 8, 2007  6:28 PM
Working with Get-Help
Windows PowerShell is intuitively easy to use; learn simply by doing. Online help makes it 
even easier to use the program. The help system in Windows PowerShell can be entered by 
several methods. To learn about using Windows PowerShell, use the Get-Help cmdlet as 
shown here:

get-help get-help

This command prints out help about the Get-Help cmdlet. The output from this cmdlet is 
shown here:

NAME 

Get-Help 

 

SYNOPSIS 

Displays information about Windows PowerShell cmdlets and concepts. 

 

 

SYNTAX 

Get-Help [[-name] <string>] [-component <string[]>] [-functionality <string 

[]>] [-role <string[]>] [-category <string[]>] [-full] [<CommonParameters>] 

 

Get-Help [[-name] <string>] [-component <string[]>] [-functionality <string 

[]>] [-role <string[]>] [-category <string[]>] [-detailed] [<CommonParamete 

rs>] 

 

Get-Help [[-name] <string>] [-component <string[]>] [-functionality <string 

[]>] [-role <string[]>] [-category <string[]>] [-examples] [<CommonParamete 

rs>] 

 

Table 1-1 Common Parameters

Parameter Meaning

-whatif Tells the cmdlet not to execute; instead it will tell you what would 
happen if the cmdlet were to actually run.

-confirm Tells the cmdlet to prompt prior to executing the command.

-verbose Instructs the cmdlet to provide a higher level of detail than a cmdlet 
not using the verbose parameter.

-debug Instructs the cmdlet to provide debugging information.

-erroraction Instructs the cmdlet to perform a certain action when an error 
occurs. Allowable actions are: continue, stop, SilentlyContinue, and 
inquire.

-errorvariable Instructs the cmdlet to use a specific variable to hold error informa-
tion. This is in addition to the standard $error variable.

-outvariable Instructs the cmdlet to use a specific variable to hold the output 
information.

-outbuffer Instructs the cmdlet to hold a certain number of objects prior to call-
ing the next cmdlet in the pipeline. 



Chapter 1 The Shell in Windows PowerShell 13

C01622791.fm  Page 13  Saturday, December 8, 2007  6:28 PM
Get-Help [[-name] <string>] [-component <string[]>] [-functionality <string 

[]>] [-role <string[]>] [-category <string[]>] [-parameter <string>] [<Comm 

onParameters>] 

 

 

DETAILED DESCRIPTION 

The Get-Help cmdlet displays information about Windows PowerShell cmdlets 

and concepts. You can also use "Help {<cmdlet name> | <topic-name>" or "<cmd 

let-name> /?". "Help" displays the help topics one page at a time. The "/?" 

displays help for cmdlets on a single page. 

 

 

RELATED LINKS 

Get-Command 

Get-PSDrive 

Get-Member 

 

REMARKS 

For more information, type: "get-help Get-Help -detailed". 

For technical information, type: "get-help Get-Help -full".

The awesome thing about online help for Windows PowerShell, is that not only does it display 
help about commands—which you would expect—but it also has three different levels of dis-
play: normal, detailed, and full. Additionally, you can obtain help about concepts in Windows 
PowerShell. This last feature is equivalent to having an online instruction manual. To retrieve 
a listing of all the conceptual help articles, use the Get-Help about* command as shown here:

get-help about*

Suppose you do not remember the exact name of the cmdlet you wish to use but you remem-
ber it was a “get” cmdlet. You can use a wildcard (such as *) to obtain the name of the cmdlet. 
This is shown here:

get-help get*

This technique of using a wildcard operator can be extended further. If you remember the 
cmdlet was a “get” cmdlet and it started with the letter p you could use the following syntax to 
retrieve the desired cmdlet:

get-help get-p*

Suppose, however, that you know the exact name of the cmdlet but you can’t exactly remem-
ber the syntax. For this scenario, you could use the -examples argument. To retrieve several 
examples of the Get-PSDrive cmdlet, you could use Get-Help with the -examples argument as 
shown here:

get-help get-psdrive -examples



14 Windows PowerShell Scripting Guide

C01622791.fm  Page 14  Saturday, December 8, 2007  6:28 PM
To see help displayed one page at a time, you can use the help function which displays the 
help output text through the more function. This is useful if you want to avoid scrolling up and 
down to see the help output. This command is shown here:

get-help get-help | more

The formatted output from the more function is shown in Figure 1-3.

Figure 1-3 By using the more function, you can display lengthy help topics one page at a time.

To obtain detailed help about the Get-Help cmdlet, use the -detailed argument as shown here:

get-help get-help -detailed

If you want to retrieve technical information about the Get-Help cmdlet, use the -full argu-
ment. This is shown here:

get-help get-help -full

Getting tired of typing Get-Help over and over? After all, it is eight characters long and one of 
them is a dash. The solution is to create an alias to the Get-Help cmdlet. An alias is a shortcut 
keystroke combination that will launch a program or cmdlet when typed. In the create Get-
Help alias for this example, you can assign the Get-Help to the gh key combination.

Tip Before creating an alias for a cmdlet, confirm there is not already an alias to the cmdlet 
by using Get-Alias. Then use Set-Alias to assign the cmdlet to a unique keystroke combination.



Chapter 1 The Shell in Windows PowerShell 15

C01622791.fm  Page 15  Saturday, December 8, 2007  6:28 PM
Working with Aliases to Assign Shortcut Names to 
Cmdlets

Aliases allow you to assign shortcut names to cmdlets. This can greatly simplify working at the 
Windows PowerShell prompt and it will allow you to customize the command syntax as you 
prefer. As an example, suppose you want to create an alias for the Get-Help cmdlet. Instead of 
typing Get-Help, perhaps you prefer to type gh. This can be accomplished in four simple steps. 
First, ensure there is not already an alias assigned to the desired keystroke combination to 
avoid confusion. The next thing you might want to do is review help for the Set-Alias cmdlet. 
Once you have done this, call the Set-Alias cmdlet and pass the new name you want to create 
and the name of the cmdlet you wish to alias. After you have created the alias, you may want 
to use Get-Alias to verify the alias was created properly. The completed code from this section 
is in the GhAlias.txt file in the chapter01 folder on the companion CD-ROM.

1. Retrieve an alphabetic listing of all currently defined aliases and inspect the list for one 
assigned to either the Get-Help cmdlet or for the keystroke combination gh. The com-
mand to do this is shown here:

get-alias |sort

2. Once you have determined there is no alias for the Get-Help cmdlet and that none is 
assigned to the gh keystroke combination, review the syntax for the Set-Alias cmdlet. Use 
the -full argument to the Get-Help cmdlet. This is shown here:

get-help set-alias -full

3. Use the Set-Alias cmdlet to assign the gh keystroke combination to the Get-Help cmdlet. 
To do this, use the following command:

set-alias gh get-help

4. Use the Get-Alias cmdlet to verify the alias was properly created. To do this, use the fol-
lowing command:

Get-Alias gh

Tip If the syntax of Set-Alias is a little confusing, you can use named parameters instead of 
the default positional binding. In addition, I recommend using either the whatif switch or the 
confirm switch. You can also specify a description for the alias. The modified syntax would 
look like this:

Set-Alias -Name gh -Value Get-Help -Description "mred help alias" -WhatIf

As you have seen, Windows PowerShell can be used as a replacement to the CMD interpreter. 
But it also has a large number of built-in cmdlets that provide the opportunity to perform a 
plethora of activities. These cmdlets can be used either in a stand-alone fashion or they can be 
run together as a group.



16 Windows PowerShell Scripting Guide

C01622791.fm  Page 16  Saturday, December 8, 2007  6:28 PM
Accessing Windows PowerShell

Once Windows PowerShell is installed, it immediately becomes available for use. How-
ever, pressing R while pressing the Windows flag key on your keyboard to bring up the 
Windows Run dialog box or mousing around—doing the old Start button/Run dialog 
box thing and typing PowerShell all the time—becomes somewhat less helpful. I created 
a shortcut to Windows PowerShell and placed that shortcut on my desktop. For me and 
the way I work, this is ideal. This is so useful, in fact, that I wrote a script to perform this 
function. This script can be called via a logon script, to automatically create the shortcut 
on the desktop. The script is named CreateShortCutToPowerShell.vbs:

CreateShortCutToPowerShell.vbs
Option Explicit 

Dim objshell 

Dim strDesktop 

Dim objshortcut 

Dim strProg 

strProg = "powershell.exe" 

 

Set objshell=CreateObject("WScript.Shell") 

strDesktop = objshell.SpecialFolders("desktop") 

set objShortcut = objshell.CreateShortcut(strDesktop & "\powershell.lnk") 

objshortcut.TargetPath = strProg 

objshortcut.WindowStyle = 1 

objshortcut.Description = funfix(strProg) 

objshortcut.WorkingDirectory = "C:\" 

objshortcut.IconLocation= strProg 

objshortcut.Hotkey = "CTRL+SHIFT+P" 

objshortcut.Save 

 

Function funfix(strin) 

funfix = InStrRev(strin,".") 

funfix = Mid(strin,1,funfix) 

End function

Additional Uses of Cmdlets
Now that you have learned about using the help utilities and working with aliases, it’s time to 
examine some additional ways to use cmdlets in Windows PowerShell.

Tip To save time when typing the cmdlet name, simply type enough of the cmdlet name to 
uniquely distinguish it, and then press the Tab key. What is the result? Tab completion 
finishes the cmdlet name for you. This also works with argument names and other procedures. 
Feel free to experiment with this great timesaving technique. You may never have to type 
get-command again!



Chapter 1 The Shell in Windows PowerShell 17

C01622791.fm  Page 17  Saturday, December 8, 2007  6:28 PM
As the cmdlets return objects instead of “string values” you can obtain additional information 
about the returned objects. This additional information would not be available if you were 
working with just string data. To obtain additional information, use the pipe character (|), 
then take information from one cmdlet and feed it to another cmdlet. This may seem compli-
cated, but in reality, it is quite simple. By the end of this chapter, the procedure should seem 
quite natural.

At the most basic level, consider the simple example of obtaining and formatting a directory 
listing. After you retrieve the directory listing, you may want to format the way it is displayed, 
perhaps as either a table or a list. As you can see, there are two separate operations: obtaining 
the directory listing and formatting the list. This formatting task takes place on the right side 
of the pipe after the directory listing has been gathered. This is the way pipelines work. Now, 
let’s examine them in action while looking at the Get-ChildItem cmdlet.

Using the Get-ChildItem Cmdlet

Earlier in this chapter, you used the dir command to obtain a listing of all the files in a direc-
tory. This works because there is an alias built into Windows PowerShell that assigns the Get-
ChildItem cmdlet to the letter combination dir. We can verify this by using the Get-Alias 
cmdlet. This is shown in the GetDirAlias.txt file.

GetDirAlias.txt
PS C:\> Get-Alias dir 

 

CommandType Name Definition 

----------- ---- ---------- 

Alias dir Get-ChildItem

In Windows PowerShell, there really is no cmdlet named dir, nor does it actually use the dir 
command. The alias dir is associated with the Get-ChildItem cmdlet. This is why the output 
from dir is different in Windows PowerShell than it is in the Cmd.exe interpreter. The alias dir 
is shown here when you use the Get-Alias cmdlet to resolve the association.

Tip When using Get-ChildItem to produce a directory listing, use the force switch if you 
want to view hidden and system files and folders. It would look like this: Get-ChildItem 
-Force.

Formatting Output

There are four format cmdlets included with Windows PowerShell. Of these cmdlets, you will 
routinely use three: Format-List, Format-Wide, and Format-Table. The fourth cmdlet, Format-
Custom, can display output in a fashion that is not a list, table, or wide format. It accomplishes 
this by using a *.format.ps1xml file. You can use either the default view contained in the *.for-
mat.ps1xml files or you can define your own format.ps1xml file.



18 Windows PowerShell Scripting Guide

C01622791.fm  Page 18  Saturday, December 8, 2007  6:28 PM
Let’s look at formatting output utilizing the remaining three format cmdlets beginning with 
the most useful of the three: Format-List.

Format-List

Format-List is one of the core cmdlets you will use time and again. For example, if you use the 
Get-WmiObject cmdlet to look at the properties of the Win32_LogicalDisk class, you will 
receive a minimum listing of the default properties of the class. This listing is shown here:

PS C:\> Get-WmiObject Win32_LogicalDisk 

 

 

DeviceID : C: 

DriveType : 3 

ProviderName : 

FreeSpace : 10559041536 

Size : 78452355072 

VolumeName : Sea Drive

Although in many cases this behavior is fine, there are times when you may be interested in 
the other properties of the class. The first thing to do when exploring other properties that 
may be available is to use the wildcard *. This will list all the properties as shown here:

PS C:\> Get-WmiObject Win32_LogicalDisk | Format-List * 

 

 

Status : 

Availability : 

DeviceID : C: 

StatusInfo : 

__GENUS : 2 

__CLASS : Win32_LogicalDisk 

__SUPERCLASS : CIM_LogicalDisk 

__DYNASTY : CIM_ManagedSystemElement 

__RELPATH : Win32_LogicalDisk.DeviceID="C:" 

__PROPERTY_COUNT : 40 

__DERIVATION : {CIM_LogicalDisk, CIM_StorageExtent, 

CIM_LogicalDevice, CIM_LogicalElement...} 

__SERVER : M5-1875135 

__NAMESPACE : root\cimv2 

__PATH : \\M5-1875135\root\cimv2:Win32_LogicalDisk.DeviceID="C:" 

Access : 0 

BlockSize : 

Caption : C: 

Compressed : False 

ConfigManagerErrorCode : 

ConfigManagerUserConfig : 

CreationClassName : Win32_LogicalDisk 

Description : Local Fixed Disk 

DriveType : 3 

ErrorCleared : 

ErrorDescription : 

ErrorMethodology : 

FileSystem : NTFS 



Chapter 1 The Shell in Windows PowerShell 19

C01622791.fm  Page 19  Saturday, December 8, 2007  6:28 PM
FreeSpace : 10559041536 

InstallDate : 

LastErrorCode : 

MaximumComponentLength : 255 

MediaType : 12 

Name : C: 

NumberOfBlocks : 

PNPDeviceID : 

PowerManagementCapabilities : 

PowerManagementSupported : 

ProviderName : 

Purpose : 

QuotasDisabled : 

QuotasIncomplete : 

QuotasRebuilding : 

Size : 78452355072 

SupportsDiskQuotas : False 

SupportsFileBasedCompression : True 

SystemCreationClassName : Win32_ComputerSystem 

SystemName : M5-1875135 

VolumeDirty : 

VolumeName : Sea Drive 

VolumeSerialNumber : F0FE15F7

Once you have looked at all the properties that are available for a particular class, you can then 
choose only the properties you are interested in. Replace the wildcard * with the property 
names gleaned from the preceding listing. This technique is shown here:

PS C:\> Get-WmiObject Win32_LogicalDisk | Format-List Name, FileSystem, FreeSpace 

 

 

Name : C: 

FileSystem : NTFS 

FreeSpace : 10559029248

Instead of typing a long list of property names, you can choose a range of property names by 
using wildcard characters. To see only the property names that begin with the letter f, you can 
use the technique shown here:

PS C:\> Get-WmiObject Win32_LogicalDisk | Format-List f* 

 

 

FileSystem : NTFS 

FreeSpace : 10558660608

If you want to see properties that begin with n and with f, then you need to introduce square 
brackets as shown here:

PS C:\> Get-WmiObject Win32_LogicalDisk | Format-List [nf]* 

 

 

FileSystem : NTFS 

FreeSpace : 10558238720 

Name : C: 

NumberOfBlocks :



20 Windows PowerShell Scripting Guide

C01622791.fm  Page 20  Saturday, December 8, 2007  6:28 PM
These commands, with their associated complete output, can be found in the Format-List.txt 
file in the chapter01 folder on the companion CD-ROM.

Format-Table

The Format-Table cmdlet provides a number of features that make it especially well suited for 
network management tasks. In particular, it produces columns of data that allow for quick 
viewing. As with Format-List and Format-Wide, you can choose the properties you wish to dis-
play, and in so doing, easily eliminate distracting data from annoyingly verbose cmdlets. In 
the example shown here, first take a recursive look through the hard drive to find all the log 
files (those designated with the .log extension). While the output is considerable, it has been 
trimmed here to show a sample of the output. The Format-Table cmdlet is used to produce the 
output from the Get-ChildItem cmdlet shown here:

PS C:\> Get-ChildItem c:\ -Recurse -Include *.log | Format-Table 

 

 

Directory: Microsoft.PowerShell.Core\FileSystem::C:\Backup_Extras_92705 

 

 

Mode LastWriteTime Length Name 

---- ------------- ------ ---- 

-a--- 8/3/2004 6:34 PM 3931872 setupapi.log 

-a--- 8/2/2004 9:32 PM 206168 Windows Update.log 

-a--- 6/8/2004 12:41 AM 170095 wmsetup.log

In addition to relying on the default behavior of the cmdlet, you can also choose specific prop-
erties. One issue with this approach, as shown here, is that the formatting uses the existing 
screen resolution for the window, thus you often end up with columns on opposite sides of 
the window. This can be acceptable for a quick-and-dirty column list, but it is not a format for 
saving data.

PS C:\> Get-ChildItem c:\ -Recurse -Include *.log | Format-Table  

-Property name, length, lastWriteTime 

 

Name Length 

LastWriteTime  

----  

------ -------------  

setupapi.log 3931872 

8/3/2004 6:34:53 PM  

Windows Update.log 206168 

8/2/2004 9:32:06 PM  

wmsetup.log 170095 

6/8/2004 12:41:32 AM  

Debug.log 0 

8/23/2006 8:10:38 PM  

AVCheck.Log 191694 

5/8/2007 9:28:05 AM  

AVCheckServer.Log 7762 

5/8/2007 9:28:05 AM



Chapter 1 The Shell in Windows PowerShell 21

C01622791.fm  Page 21  Saturday, December 8, 2007  6:28 PM
To produce a list that uses the window size a bit more efficiently, you can specify the autosize 
switch. There is only one thing to keep in mind when using the autosize switch: It needs to 
know the length of the longest item to be stored in each column. To do this, the switch must 
wait until all objects have been enumerated, then it will determine the maximum length of 
each column and determine the size of the listing. This can cause the command execution to 
block until all items have enumerated, so this process takes a while to complete. You may not 
want to wait for the autosize to enumerate a large collection of objects if you are in a hurry, for 
example, working on a server-down issue. For small object sets, the performance hit is negli-
gible; however, with a command that takes a long time to complete, such as this one, the dif-
ference is noticeable. The difference in output, however, is also noticeable (and you will 
probably feel it is worth the wait to have a more manageable output).

PS C:\> Get-ChildItem c:\ -Recurse -Include *.log | Format-Table  

-Property name, length, lastWriteTime -AutoSize 

 

Name Length LastWriteTime  

---- ------ -------------  

setupapi.log 3931872 8/3/2004 6:34:53 PM  

Windows Update.log 206168 8/2/2004 9:32:06 PM  

wmsetup.log 170095 6/8/2004 12:41:32 AM  

Debug.log 0 8/23/2006 8:10:38 PM  

AVCheck.Log 191694 5/8/2007 9:28:05 AM

The last thing to look at in conjunction with Format-Table is pairing it with the Sort-Object 
cmdlet. Sort-Object allows you to organize data by property and to display it in a sorted fash-
ion. In this example, the alias for Sort-Object (sort) is used, which reduces the amount of typ-
ing necessary. The command is still rather long and is wrapped here for readability. (To be 
honest, when commands begin to reach this length, I have a tendency to turn the process into 
a script.) When you examine the following command, notice that the data is sorted before 
feeding it to the Format-Table cmdlet. Please note that by default the Sort-Object cmdlet sorts 
in ascending (smallest to largest) order. If desired, you can specify the -descending switch to see 
the files organized from largest to smallest.

PS C:\>Get-ChildItem c:\ -Recurse -Include *.log | Sort -Property 

length | Format-Table name, lastwriteTime, length -AutoSize 

Name LastWriteTime Length 

---- ------------- ------ 

PASSWD.LOG 5/10/2007 2:44:58 AM 0 

sam.log 11/29/2006 1:14:33 PM 0 

poqexec.log 2/1/2007 6:50:49 PM 0 

ChkAcc.log 5/10/2007 2:45:00 AM 0 

Debug.log 8/23/2006 8:10:38 PM 0 

setuperr.log 3/16/2007 7:18:17 AM 0 

setuperr.log 4/4/2007 6:34:54 PM 0 

netlogon.log 2/1/2007 7:04:44 PM 3

There are also other ways to sort. For example, you can sort the list of log files by date modi-
fied in descending order. By doing this, you can see the most recently modified log files. To 
perform this procedure, you need to modify the sort object. The remainder of the command is 



22 Windows PowerShell Scripting Guide

C01622791.fm  Page 22  Saturday, December 8, 2007  6:28 PM
the same. A portion of this output is shown here. It is interesting to note that the majority of 
these logs were modified during the log-on process.

PS C:\> Get-ChildItem c:\ -Recurse -Include *.log | Sort -Property 

lastWriteTime -descending | Format-Table name, lastwriteTime, length -AutoSize 

Name LastWriteTime Length 

---- ------------- ------ 

mtrmgr.log 5/10/2007 4:56:52 AM 1538364 

LocationServices.log 5/10/2007 4:56:26 AM 830557 

StateMessage.log 5/10/2007 4:55:00 AM 129595 

Scheduler.log 5/10/2007 4:55:00 AM 393352 

StatusAgent.log 5/10/2007 4:53:24 AM 723564 

edb.log 5/10/2007 4:51:49 AM 131072 

PolicyEvaluator.log 5/10/2007 4:51:25 AM 1672613 

ClientLocation.log 5/10/2007 4:51:24 AM 330046 

FSPStateMessage.log 5/10/2007 4:51:18 AM 228879 

CBS.log 5/10/2007 4:46:55 AM 28940091 

CertificateMaintenance.log 5/10/2007 4:42:17 AM 206472 

CcmExec.log 5/10/2007 4:00:51 AM 537177 

wmiprov.log 5/10/2007 3:03:11 AM 19503 

PolicyAgentProvider.log 5/10/2007 2:54:02 AM 252866 

UpdatesHandler.log 5/10/2007 2:53:19 AM 108552 

CIAgent.log 5/10/2007 2:53:19 AM 99114 

ScanAgent.log 5/10/2007 2:53:18 AM 354939 

UpdatesDeployment.log 5/10/2007 2:53:18 AM 1106297 

SrcUpdateMgr.log 5/10/2007 2:53:02 AM 151452 

smssha.log 5/10/2007 2:52:02 AM 107104 

execmgr.log 5/10/2007 2:52:02 AM 150942 

InventoryAgent.log 5/10/2007 2:52:02 AM 34034 

ServiceWindowManager.log 5/10/2007 2:52:02 AM 139955 

SdmAgent.log 5/10/2007 2:49:46 AM 172101 

UpdatesStore.log 5/10/2007 2:49:43 AM 64787 

WUAHandler.log 5/10/2007 2:49:39 AM 14590 

CAS.log 5/10/2007 2:49:35 AM 198955 

PeerDPAgent.log 5/10/2007 2:49:35 AM 7900 

PolicyAgent.log 5/10/2007 2:49:35 AM 246873 

RebootCoordinator.log 5/10/2007 2:49:35 AM 20420 

InternetProxy.log 5/10/2007 2:49:34 AM 85825 

ClientIDManagerStartup.log 5/10/2007 2:49:34 AM 158351 

WindowsUpdate.log 5/10/2007 2:46:46 AM 1553462 

edb.log 5/10/2007 2:46:43 AM 65536 

setupapi.dev.log 5/10/2007 2:46:38 AM 6469237 

setupapi.app.log 5/10/2007 2:46:38 AM 2722285 

WMITracing.log 5/10/2007 2:45:57 AM 16777216 

ChkAcc.log 5/10/2007 2:45:00 AM 0 

PASSWD.LOG 5/10/2007 2:44:58 AM 0

If you look at the Format-Table.txt file in the chapter01 folder, you will notice there are many 
errors in the log file. This is because the Get-ChildItem cmdlet attempted to access directories 
and files that are protected, causing access-denied messages. During development these 
errors are helpful to let you know that you are not accessing files and folders; however, they 



Chapter 1 The Shell in Windows PowerShell 23

C01622791.fm  Page 23  Saturday, December 8, 2007  6:28 PM
become problematic once you begin to analyze the data. An example of one of these errors is 
shown here:

Get-ChildItem : Access to the path 'C:\Windows\CSC' is denied. 

At line:1 char:14

The error message is helpful in that it tells you the name of the cmdlet that caused the error 
and the action that provoked the error. You can eliminate these types of errors by using the 
-ErrorAction common parameter on the Get-ChildItem cmdlet, specifying the SilentlyCon-
tinue keyword. This modified line of code is shown here:

PS C:\> Get-ChildItem c:\ -Recurse -Include *.log -errorAction SilentlyContinue 

| Sort -Property lastWriteTime -descending | Format-Table name, lastwriteTime,  

length -AutoSize

Format-Wide

The Format-Wide cmdlet is not nearly as useful as Format-Table or Format-List. This is due to 
the limitation of displaying only one property per object. It can be useful, however, to have 
such a list. For example, suppose you only want a list of the processes running on your com-
puter. You can use Get-Process cmdlet, and pipeline the resulting object to the Format-Wide 
cmdlet. This is shown here:

PS C:\> Get-Process | Format-Wide 

 

 

ApMsgFwd ApntEx 

Apoint audiodg 

casha CcmExec 

csrss csrss 

dwm explorer 

FwcAgent Idle 

InoRpc InoRT 

InoTask lsass 

lsm mobsync 

MSASCui powershell 

powershell PowerShellIDE 

rundll32 SearchFilterHost 

SearchIndexer SearchProtocolHost 

services SLsvc 

smss spoolsv 

SRUserService svchost 

svchost svchost 

svchost svchost 

svchost svchost 

svchost svchost 

svchost svchost 

svchost svchost 

svchost svchost 

System taskeng 

taskeng ThpSrv 



24 Windows PowerShell Scripting Guide

C01622791.fm  Page 24  Saturday, December 8, 2007  6:28 PM
ThpSrv TODDSrv 

wininit winlogon 

WINWORD wmdc 

WmiPrvSE WmiPrvSE

The output, while serviceable, uses a lot of lines on the console and it also wastes quite a bit 
of screen real estate. A better output can be obtained by using the -column parameter. This is 
illustrated here:

PS C:\> Get-Process | Format-Wide -Column 4

Although the four-column output cuts the list length by half, it still does not maximize all the 
available screen space. Though it might be possible to write a script that will figure out the 
optimum value of the -column parameter, such as the following DemoFormatWide.ps1 script, 
it is hardly worth the time and the trouble to pursue such an undertaking.

DemoFormatWide.ps1
function funGetProcess() 

{  

if ($args) 

{ 

Get-Process |  

Format-Wide -autosize 

} 

else 

{ 

Get-Process |  

Format-Wide -column $i 

} 

} 

 

cls 

$i = 1 

for  

($i ; $i -le 10 ; $i++)  

{  

Write-Host -ForegroundColor red "`$i is equal to $i" 

funGetProcess 

} 

Write-Host -ForeGroundColor red "Now use format-wide -autosize" 

funGetProcess("auto")

A better option for finding the optimum screen configuration for Format-Wide is to use the 
-autosize switch, shown here:

PS C:\> Get-Process | Format-Wide -AutoSize

Using the Get-Command Cmdlet

There are three cmdlets that are analogous to the three key spices used in Cajun cooking. You 
can make anything in the Cajun style of cooking if you remember: salt, pepper, and paprika. 
You want to make Cajun green beans? Add some salt, pepper, and paprika. You want to work 



Chapter 1 The Shell in Windows PowerShell 25

C01622791.fm  Page 25  Saturday, December 8, 2007  6:28 PM
with Windows PowerShell? Remember the “Cajun” cmdlets: Get-Help, Get-Command, and 
Get-Member. Calling on these three cmdlets, you can master Windows PowerShell. Since you 
have already looked at Get-Help, the next cmdlet to examine is Get-Command.

The most basic use of Get-Command is to produce a listing of commands available to Win-
dows PowerShell. This is useful if you want to quickly see which cmdlets are available. This 
elementary use of Get-Command is illustrated here. One point to notice is that the definition 
is truncated.

PS C:\> Get-Command 

 

CommandType Name Definition 

----------- ---- ---------- 

Cmdlet Add-Content Add-Content 

[-Path] <String[]> [-Value] <Object[... 

Cmdlet Add-History Add-History 

[[-InputObject] <PSObject[]>] [-Pass... 

Cmdlet Add-Member Add-Member 

[-MemberType] <PSMemberTypes> [-Name]... 

Cmdlet Add-PSSnapin Add-PSSnapin 

[-Name] <String[]> [-PassThru] [-Ve... 

Cmdlet Clear-Content Clear-Content 

[-Path] <String[]> [-Filter <Strin... 

Cmdlet Clear-Item Clear-Item 

[-Path] <String[]> [-Force] [-Filter ...

By default, Get-Command is limited to producing a listing of cmdlets; therefore the cmdlet 
field is redundant. A nicer format of the list can be achieved by pipelining the resulting object 
into the Format-List cmdlet and choosing only the name and definition. This is illustrated 
here. As you can see in the code, this output is much easier to read and it provides the syntac-
tical definition of each command:

PS C:\> Get-Command | Format-List name, definition 

 

 

Name : Add-Content 

Definition : Add-Content [-Path] <String[]> [-Value] <Object[]> [-PassThru] 

[-Filter <String>] [-Include <String[]>] [-Exclude <String[]>] [-Force] 

[-Credential<PSCredential>] [-Verbose] [-Debug] [-ErrorAction <ActionPreference>] 

[-ErrorVariable<String>] [-OutVariable <String>] [-OutBuffer <Int32>] [-WhatIf] 

[-Confirm][-Encoding <FileSystemCmdletProviderEncoding>] Add-Content 

[-LiteralPath] <String[]> [-Value] <Object[]> [-PassThru][-Filter <String>] 

[-Include <String[]>] [-Exclude <String[]>] [-Force] [-Credential<PSCredential>] 

[-Verbose] [-Debug] [-ErrorAction <ActionPreference>] [-ErrorVariable 

<String>] [-OutVariable <String>] [-OutBuffer <Int32>] [-WhatIf] [-Confirm] 

[-Encoding <FileSystemCmdletProviderEncoding>] 

 

 

Name : Add-History 

Definition : Add-History [[-InputObject] <PSObject[]>] [-Passthru] [-Verbose] 

[-Debug] [-ErrorAction <ActionPreference>] [-ErrorVariable <String>] [-OutVariable  

String>] [-OutBuffer <Int32>]



26 Windows PowerShell Scripting Guide

C01622791.fm  Page 26  Saturday, December 8, 2007  6:28 PM
So far, we have looked at normal usage of the Get-Command cmdlet. However, a more inter-
esting method uses our knowledge of the noun and verb combination of cmdlet names. 
Armed with this information, we can look for commands that have a noun-called process in 
the name of the cmdlet This command would look like the following:

PS C:\> Get-Command -Noun process 

 

CommandType Name Definition 

----------- ---- ---------- 

Cmdlet Get-Process Get-Process 

[[-Name] <String[]>] [-Verbose] [-De... 

Cmdlet Stop-Process Stop-Process 

[-Id] <Int32[]> [-PassThru] [-Verbo...

Using this procedure, if you want to find a cmdlet that contains the letter p in the noun por-
tion of the name, you can use wildcards to assist. This can reduce typing and help you explore 
available cmdlets. This command is shown here:

PS C:\> get-command -Noun p* 

 

CommandType Name Definition 

----------- ---- ---------- 

Cmdlet Add-PSSnapin Add-PSSnapin 

[-Name] <String[]> [-PassThru] [-Ve... 

Cmdlet Convert-Path Convert-Path 

[-Path] <String[]> [-Verbose] [-Deb... 

Cmdlet Get-PfxCertificate Get-PfxCertificate [-

FilePath] <String[]> [-Verb... 

Cmdlet Get-Process Get-Process 

[[-Name] <String[]>] [-Verbose] [-De... 

Cmdlet Get-PSDrive Get-PSDrive 

[[-Name] <String[]>] [-Scope <String... 

Cmdlet Get-PSProvider Get-PSProvider 

[[-PSProvider] <String[]>] [-Verb... 

Cmdlet Get-PSSnapin Get-PSSnapin 

[[-Name] <String[]>] [-Registered] ... 

Cmdlet Join-Path Join-Path 

[-Path] <String[]> [-ChildPath] <Strin... 

Cmdlet New-PSDrive New-PSDrive 

[-Name] <String> [-PSProvider] <Stri... 

Cmdlet Out-Printer Out-Printer 

[[-Name] <String>] [-InputObject <PS... 

Cmdlet Remove-PSDrive Remove-PSDrive 

[-Name] <String[]> [-PSProvider <... 

Cmdlet Remove-PSSnapin Remove-PSSnapin 

[-Name] <String[]> [-PassThru] [... 

Cmdlet Resolve-Path Resolve-Path 

[-Path] <String[]> [-Credential <PS... 

Cmdlet Set-PSDebug Set-PSDebug 

[-Trace <Int32>] [-Step] [-Strict] [... 

Cmdlet Split-Path Split-Path 

[-Path] <String[]> [-LiteralPath <Str... 

Cmdlet Stop-Process Stop-Process 



Chapter 1 The Shell in Windows PowerShell 27

C01622791.fm  Page 27  Saturday, December 8, 2007  6:28 PM
[-Id] <Int32[]> [-PassThru] [-Verbo... 

Cmdlet Test-Path Test-Path 

[-Path] <String[]> [-Filter <String>] ... 

Cmdlet Write-Progress Write-Progress 

[-Activity] <String> [-Status] <S...

By default, the Get-Command cmdlet displays only cmdlets; however, it can retrieve other 
items as well—even .exe files and .dll files. This is because Get-Command will display informa-
tion about every item you can run in Windows PowerShell. An example of this is shown here 
in a listing of commands that contains the word file in the name. One point to remember: 
Only Windows PowerShell entities are displayed.

PS C:\> get-command -Name *file* 

 

CommandType Name Definition 

----------- ---- ---------- 

Application avifile.dll 

C:\Windows\system32\avifile.dll 

Application filemgmt.dll 

C:\Windows\system32\filemgmt.dll 

Application FileSystem.format.ps1xml 

C:\Windows\System32\WindowsPowerShell\v1.0\FileS... 

Application filetrace.mof 

C:\Windows\System32\Wbem\filetrace.mof 

Application forfiles.exe 

C:\Windows\system32\forfiles.exe

You can easily correct this behavior by using the -commandType parameter and limiting the 
search to cmdlets. This modified command is shown here:

PS C:\> get-command -Name *file* -CommandType cmdlet 

 

CommandType Name Definition 

----------- ---- ---------- 

Cmdlet Out-File Out-File 

[-FilePath] <String> [[-Encoding] <Stri

These examples give you an idea of the types of searches you can perform with the Get-
Command cmdlet. These commands and their associated output are contained in the 
Get-Command.txt file in the chapter01 folder on the companion CD-ROM.

Exploring with the Get-Member Cmdlet

The third important cmdlet provided with Windows PowerShell is Get-Member. Some stu-
dents look askance when I introduce Get-Member as one of the three “Cajun” cmdlets. 
Indeed, I had one student who raised his hand and asked what it was good for. This is a fair 
question. The thing that makes Get-Member so useful is that it can tell you which properties 
and methods are supported by an object. If you remember that everything in Windows 
PowerShell is an object, then you are well on your way to achieving enlightenment with this 
command. Perhaps a simple example will illustrate the value of this cmdlet.



28 Windows PowerShell Scripting Guide

C01622791.fm  Page 28  Saturday, December 8, 2007  6:28 PM
If you have a folder named mytest, and use the Get-Item cmdlet to obtain an object that repre-
sents the folder, you can store this reference in a variable named $a. This is shown here:

PS C:\> $a = Get-Item c:\mytest

Once you have an instance of the folder object contained in the $a variable, you can examine 
the methods and properties of a folder object by pipelining the object into the Get-Member 
cmdlet. This command and associated output are shown here:

PS C:\> $a | Get-Member 

 

 

TypeName: System.IO.DirectoryInfo 

 

Name MemberType Definition 

---- ---------- ---------- 

Create Method System.Void Create(), System.Void 

Create(DirectorySecurity directorySecurity) 

CreateObjRef Method System.Runtime.Remoting.ObjRef 

CreateObjRef(Type requestedType) 

CreateSubdirectory Method System.IO.DirectoryInfo 

CreateSubdirectory(String path), System.IO.Director... 

Delete Method System.Void Delete(), System.Void 

Delete(Boolean recursive) 

Equals Method System.Boolean Equals(Object obj) 

GetAccessControl Method System.Security.AccessControl.DirectorySecurity Get

AccessControl(), System 

GetDirectories Method System.IO.DirectoryInfo[] 

GetDirectories(), System.IO.DirectoryInfo[GetFiles Method System.IO

.FileInfo[] GetFiles(String searchPattern), System.IO.FileInfo[] G... 

GetFileSystemInfos Method System.IO.FileSystemInfo[] GetFileSystemInfos(String

searchPattern), System... 

GetHashCode Method System.Int32 GetHashCode() 

GetLifetimeService Method System.Object GetLifetimeService() 

GetObjectData Method System.Void GetObjectData 

*(SerializationInfo info, StreamingContext context) 

GetType Method System.Type GetType() 

get_Attributes Method System.IO.FileAttributes get_Attributes() 

get_CreationTime Method System.DateTime get_CreationTime() 

get_CreationTimeUtc Method System.DateTime get_CreationTimeUtc() 

get_Exists Method System.Boolean get_Exists() 

get_Extension Method System.String get_Extension() 

get_FullName Method System.String get_FullName() 

get_LastAccessTime Method System.DateTime get_LastAccessTime() 

get_LastAccessTimeUtc Method System.DateTime get_LastAccessTimeUtc() 

get_LastWriteTime Method System.DateTime get_LastWriteTime() 

get_LastWriteTimeUtc Method System.DateTime get_LastWriteTimeUtc() 

get_Name Method System.String get_Name() 

get_Parent Method System.IO.DirectoryInfo get_Parent() 

get_Root Method System.IO.DirectoryInfo get_Root() 

InitializeLifetimeService Method System.Object InitializeLifetimeService() 

MoveTo Method System.Void MoveTo(String destDirName) 

Refresh Method System.Void Refresh() 



Chapter 1 The Shell in Windows PowerShell 29

C01622791.fm  Page 29  Saturday, December 8, 2007  6:28 PM
SetAccessControl Method System.Void 

SetAccessControl(DirectorySecurity directorySecurity) 

set_Attributes Method System.Void set_Attributes(FileAttributes 

value) 

set_CreationTime Method System.Void set_CreationTime(DateTime 

value) 

set_CreationTimeUtc Method System.Void set_CreationTimeUtc(DateTime 

value) 

set_LastAccessTime Method System.Void set_LastAccessTime(DateTime 

value) 

set_LastAccessTimeUtc Method System.Void set_LastAccessTimeUtc(DateTime 

value) 

set_LastWriteTime Method System.Void set_LastWriteTime(DateTime 

value) 

set_LastWriteTimeUtc Method System.Void set_LastWriteTimeUtc(DateTime 

value) 

ToString Method System.String ToString() 

PSChildName NoteProperty System.String PSChildName=mytest 

PSDrive NoteProperty System.Management.Automation.PSDriveInfo 

PSDrive=C 

PSIsContainer NoteProperty System.Boolean PSIsContainer=True 

PSParentPath NoteProperty System.String 

PSParentPath=Microsoft.PowerShell.Core\FileSystem::C:\ 

PSPath NoteProperty System.String 

PSPath=Microsoft.PowerShell.Core\FileSystem::C:\mytest 

PSProvider NoteProperty System.Management.Automation.ProviderInfo 

PSProvider=Microsoft.PowerShell.C... 

Attributes Property System.IO.FileAttributes Attributes 

{get;set;} 

CreationTime Property System.DateTime CreationTime {get;set;} 

CreationTimeUtc Property System.DateTime CreationTimeUtc {get;set;} 

Exists Property System.Boolean Exists {get;} 

Extension Property System.String Extension {get;} 

FullName Property System.String FullName {get;} 

LastAccessTime Property System.DateTime LastAccessTime {get;set;} 

LastAccessTimeUtc Property System.DateTime LastAccessTimeUtc {get;set;} 

LastWriteTime Property System.DateTime LastWriteTime {get;set;} 

LastWriteTimeUtc Property System.DateTime LastWriteTimeUtc {get;set;} 

Name Property System.String Name {get;} 

Parent Property System.IO.DirectoryInfo Parent {get;} 

Root Property System.IO.DirectoryInfo Root {get;} 

Mode ScriptProperty System.Object Mode {get=$catr = "";...

From the listing of folder members, you can see there is a parent property. You can use the par-
ent property information to find the genus of the mytest folder. This is shown here:

PS C:\> $a.parent 

 

Mode LastWriteTime Length Name 

---- ------------- ------ ---- 

d--hs 5/11/2007 2:39 PM C:\



30 Windows PowerShell Scripting Guide

C01622791.fm  Page 30  Saturday, December 8, 2007  6:28 PM
Perhaps you are interested in knowing when the folder was last accessed. To check on this, 
you can use the LastAccessTime property as shown here:

PS C:\> $a.LastAccessTime 

 

Friday, May 11, 2007 2:39:12 PM

If you want to confirm the object contained in $a is indeed a folder, you can use the PsIsCon-
tainer property. The Get-Member output tells you that PsIsContainer is a Boolean value, and so 
it will reply as either true or false. This command is shown here:

PS C:\> $a.PsIsContainer 

True

Maybe you would like to use one of the methods returned. You can use the moveTo method to 
move the folder to another location. Get-Member tells you that the moveTo method must have 
a string input that points to a destination directory. So, move the mytest folder to c:\moved-
Folder, then use the Test-Path cmdlet to check if the folder was moved to the new location. 
These commands are illustrated here:

PS C:\> $a.MoveTo("C:\movedFolder") 

PS C:\> Test-Path c:\movedFolder 

True 

PS C:\> Test-Path c:\mytest 

False 

PS C:\>

To confirm the name of the folder you now have represented by the object in the $a variable, 
you can use the Name property. This is shown here with the associated output:

PS C:\> $a.name 

movedFolder

If you want to delete the folder, you can use the delete method. This is shown here. To confirm 
it is actually deleted, use dir m* to verify it is gone. These commands are shown here. Note that 
the folder has now been deleted.

PS C:\> $a.Delete() 

PS C:\> dir m* 

 

 

Directory: Microsoft.PowerShell.Core\FileSystem::C:\ 

 

 

Mode LastWriteTime Length Name 

---- ------------- ------ ---- 

d---- 4/21/2007 4:56 PM Maps 

d---- 5/5/2007 3:51 PM music 

-a--- 2/1/2007 6:17 PM 54 MASK.txt



Chapter 1 The Shell in Windows PowerShell 31

C01622791.fm  Page 31  Saturday, December 8, 2007  6:28 PM
All of these commands and their associated output are contained in the Get-Member.txt file in 
the chapter01 folder on the companion CD-ROM. 

Working with the .NET Framework

It might be interesting to note that these commands are actually commands that come 
from the .NET Framework. These are not Windows PowerShell commands at all. Of 
course the Get-Item, Get-Member, and Test-Path cmdlets are Windows PowerShell com-
mands but System.IO.DirectoryInfo does not come from Windows PowerShell. This 
means you use the same methods and properties from Windows PowerShell as a profes-
sional developer using Visual Basic .NET or C#. This also means that much more infor-
mation is available to you by using the Microsoft Developer Network (MSDN) and the 
Windows Software Development Kit (SDK). The good news for you: If you can’t find 
information using the online help (by using Get-Help), you can always refer to the 
MSDN Web site or the Windows SDK for assistance.

Summary
This chapter examined the different ways to determine if Windows PowerShell is installed on 
a computer and the steps involved in configuring Windows PowerShell for use in a corporate 
enterprise environment. We covered the creation of Windows PowerShell profiles and 
explored various methods of launching both Windows PowerShell and Windows PowerShell 
commands. The chapter included extending the features of Windows PowerShell via the cre-
ation of custom aliases and functions. Finally, we concluded with a discussion of three Win-
dows PowerShell cmdlets: Get-Help, Get-Command, and Get-Member.



C01622791.fm  Page 32  Saturday, December 8, 2007  6:28 PM



C02622791.fm  Page 33  Saturday, December 8, 2007  6:32 PM
Chapter 2

Scripting Windows PowerShell
After completing this chapter, you will be able to:

■ Configure the scripting policy for Windows PowerShell.

■ Run Windows PowerShell scripts.

■ Use Windows PowerShell flow control statements.

■ Use decision-making and branching statements.

■ Identify and work with data types.

■ Use regular expressions to provide advanced matching capabilities.

■ Use command-line arguments.

On the Companion Disc All the scripts used in this chapter are located on the CD that 
accompanies this book in the \scripts\chapter02 folder.

Why Use Scripting?
For many network administrators writing scripts—any kind of scripts—is a dark art more akin 
to reading tea leaves than administering a server. Indeed, while most large corporations 
seem to always have a “scripting guy,” they rarely have more than one. This is in spite of the 
efforts by Microsoft to promote Visual Basic Scripting Edition (VBScript) as an administrative 
scripting language. While most professionals will agree that the ability to quickly craft a script 
to make ad hoc changes to dozens of networked servers is a valuable skill, few actually possess 
this skill. In reality, however, many of the corporate “scripting guy” skills are more akin to 
knowing where to find a script that can easily be modified than to actually understanding how 
to write a script from scratch.

Hopefully, this will change in the Windows PowerShell world. The Windows PowerShell 
syntax was deliberately chosen to facilitate ease of use and ease of learning. Corporate 
enterprise Windows administrators are the target audience.

So why use scripting? There are several reasons. First, a script makes it easy to document a 
particular sequence of commands. If you need to produce a listing of all the shares on a 
computer, you can use the Win32_share WMI class and the Get-WmiObject cmdlet to retrieve 
the results, as shown here:

PS C:\> Get-wmiObject win32_share 
33

 



34 Windows PowerShell Scripting Guide

C02622791.fm  Page 34  Saturday, December 8, 2007  6:32 PM
Name Path Description 

---- ---- ----------- 

ADMIN$ C:\Windows Remote Admin 

C$ C:\ Default share 

CCMLogs$ C:\Windows\system32\ccm\logs 

CCMSetup$ C:\Windows\system32\ccmsetup 

IPC$

Remote IPC 

music C:\music none 

VPCache$ C:\Windows\system32\VPCache 

WMILogs$ C:\Windows\system32\wbem\logs

But, suppose you only want to have a list of file shares? You may not be aware that a file share 
is a type 0 share. So perhaps you need to search for this information on the Internet. Once you 
have obtained the information, use the modified command shown here:

PS C:\> Get-WmiObject win32_share -Filter "type = '0'" 

 

Name Path Description 

---- --- ----------- 

CCMLogs$ C:\Windows\system32\ccm\logs 

CCMSetup$ C:\Windows\system32\ccmsetup 

music C:\music none 

VPCache$ C:\Windows\system32\VPCache 

WMILogs$ C:\Windows\system32\wbem\logs

You can see that not only do you need to remember the share type of 0, but the syntax is a bit 
more complicated as well. So where do you write down this information? Here’s one sugges-
tion: When I was an administrator working on the Digital VAX, I kept a small pocket-size note-
book to store such cryptic commands. Of course, if I ever lost my little notebook or failed to 
carry it, I was in big trouble!

Now suppose you are only interested in file shares that do not have a description assigned to 
them. This command is shown here:

PS C:\> Get-WmiObject win32_share -Filter "type = '0' AND description = ''" 

 

Name Path Description 

---- ---- ----------- 

CCMLogs$ C:\Windows\system32\ccm\logs 

CCMSetup$ C:\Windows\system32\ccmsetup 

VPCache$ C:\Windows\system32\VPCache 

WMILogs$ C:\Windows\system32\wbem\logs

At this point, you may feel the command and associated syntax are complicated enough to jus-
tify writing a script. Creating the script is easy; simply copy it from the Windows PowerShell 
console and paste it into a text file. Name the script and change the extension to .ps1. You can 
then run the script from inside Windows PowerShell. The commands just shown are saved 
in Share.txt in the chapter02 folder on the companion CD-ROM. The script is named GetFile-
Shares.ps1.



Chapter 2 Scripting Windows PowerShell 35

C02622791.fm  Page 35  Saturday, December 8, 2007  6:32 PM
An additional advantage to configuring a command as a script is that you can easily make 
modifications. Whereas the previous command was limited to reporting only on file shares, 
you can make a change to the script to allow reporting on print shares, remote administrative 
shares, IPC shares, or any other defined share type. You can modify the script so you can 
choose a share type when you launch the script. To do this, use an if … else statement to see if 
a command-line argument has been supplied to the script.

Tip To check for a command-line argument, look for $args, which is the automatic variable 
created to hold command-line arguments.

If there is a command-line argument, use the value supplied to the command line. If no value 
is supplied when the script is launched, then you must supply a default value to the script. For 
this script, you will list file shares and inform the user that you are using default values. The 
Get-WmiObject syntax is the same as you used previously in the VBScript days. When writing 
a script, it’s also useful to display a usage string. The following script, GetSharesWithArgs.ps1, 
includes an example command to assist you with typing the correct syntax for the script.

GetSharesWithArgs.ps1
if($args) 

{ 

$type = $args 

Get-WmiObject win32_share -Filter "type = $type" 

} 

ELSE 

{ 

Write-Host  

" 

Using defaults values, file shares type = 0.  

Other valid types are: 

2147483651 for disk drive admin share 

2147483649 for print queue admin share 

2147483650 for device admin share 

2147483651 for ipc$ admin share 

Example: C:\GetSharesWithArgs.ps1 '2147483651' 

" 

$type = '0' 

Get-WmiObject win32_share -Filter "type = $type" 

}

Another reason why network administrators write Windows PowerShell scripts is to run the 
script as a scheduled task. In the Windows world there are multiple task scheduler engines. 
Using the Win32_ScheduledJob WMI class you can create, monitor, and delete scheduled jobs. 
This WMI class has been available since the Windows NT 4.0 days. Both Windows XP and 
Windows Server 2003 have the Schtasks.exe utility, which offers more flexibility than the 
Win32_ScheduledJob WMI class. Besides Schtasks.exe, Windows Vista and Windows Server 
2008 also include the Schedule.Service object to simplify the configuration of scheduled jobs.



36 Windows PowerShell Scripting Guide

C02622791.fm  Page 36  Saturday, December 8, 2007  6:32 PM
The script, ListProcessesSortResults.ps1, is something you may want to schedule to run 
several times daily. The script produces a list of currently running processes and writes the 
results to a text file as a formatted and sorted table.

ListProcessesSortResults.ps1
$args = "localhost","loopback","127.0.0.1" 

 

foreach ($i in $args) 

{$strFile = "c:\mytest\"+ $i +"Processes.txt" 

Write-Host "Testing" $i "please wait ...";  

Get-WmiObject -computername $i -class win32_process |  

Select-Object name, processID, Priority, ThreadCount, PageFaults,  

PageFileUsage |  

Where-Object {!$_.processID -eq 0} | Sort-Object -property name |  

Format-Table | Out-File $strFile}

Configuring the Scripting Policy
Since scripting in Windows PowerShell is not enabled by default, it is important to verify the 
level of scripting support provided on the platform before deployment of either scripts or 
commands. If you attempt to run a Windows PowerShell script when the support has not 
been enabled, you’ll receive an error message and the script won’t run. This error message is 
shown in Figure 2-1.

Figure 2-1 Attempting to run a script before scripting support is enabled generates an error.



Chapter 2 Scripting Windows PowerShell 37

C02622791.fm  Page 37  Saturday, December 8, 2007  6:32 PM
This is referred to as the restricted execution policy. There are four levels of execution policy 
that can be configured in Windows PowerShell with the Set-ExecutionPolicy cmdlet. These 
four levels are listed in Table 2-1. The restricted execution policy can be configured via Group 
Policy by using the Turn On Script Execution Group Policy setting in Active Directory 
directory service. It can be applied to either the computer object or to the user object. The 
computer object setting takes precedence over other settings.

Tip To retrieve the script execution policy use the Get-ExecutionPolicy cmdlet.

Configure user preferences for the restricted execution policy with the Set-ExecutionPolicy cmdlet 
but note that these preferences won’t override settings configured by Group Policy. Obtain the 
resulting set of restricted execution policy settings by using the Get-ExecutionPolicy cmdlet.

You should be aware that on Windows Vista, access to the registry key that contains the 
script execution policy is restricted. A “normal” user will not be allowed to modify the key, 
and even an administrator running with User Account Control (UAC) turned on will not 
be allowed to modify the setting. If modification is attempted, the error shown in Figure 2-2 will 
be generated.

There are, of course, several ways around the UAC issue. One choice is to simply turn off UAC; 
in most circumstances this is an undesirable solution. A better solution is to right-click the 
Windows PowerShell icon and select Run As Administrator as shown in Figure 2-3.

If you find right-clicking a bit too time-consuming (as I do!) you might prefer to create a 
second Windows PowerShell shortcut. You might name this second shortcut admin_ps and 
configure the shortcut properties to launch with administrative rights. For about 90 percent of 
all your administrative needs, the first shortcut should suffice. If, however, you need “more 
power,” then choose the administrative one. The shortcut properties you can use for the 
admin_ps “administrative PowerShell” shortcut are shown in Figure 2-4.

Table 2-1 Script Execution Policy Levels

Level Meaning

Restricted Will not run scripts or configuration files.

AllSigned All scripts and configuration files must be signed by a trusted 
publisher.

RemoteSigned All scripts and configuration files downloaded from the Internet 
must be signed by a trusted publisher.

Unrestricted All scripts and configuration files will run. Scripts downloaded 
from the Internet will prompt for permission prior to running.



38 Windows PowerShell Scripting Guide

C02622791.fm  Page 38  Saturday, December 8, 2007  6:32 PM
Figure 2-2 An attempt to run the Set-ExecutionPolicy cmdlet will fail if the user does not have 
administrative rights.

Figure 2-3 To launch Windows PowerShell with administrative rights, you can right-click the icon, 
and select Run As Administrator.



Chapter 2 Scripting Windows PowerShell 39

C02622791.fm  Page 39  Saturday, December 8, 2007  6:32 PM
Figure 2-4 To configure the Windows PowerShell shortcut to run with administrative rights, choose 
the Run As Administrator check box found under Advanced Properties.

Running Windows PowerShell Scripts
You can’t simply double-click a Windows PowerShell script and have it run. You cannot type 
the name in the Start | Run dialog box, either. If you are inside Windows PowerShell, you can 
run scripts if you have enabled the execution policy, but you need to type the entire path to 
the script you want to run and make sure to include the .ps1 extension.

If you need to run a script from outside Windows PowerShell, you must type the full path to 
the script, but you must also feed it as an argument to the PowerShell.exe program. In addi-
tion, you probably want to specify the -noexit switch so you can read the output from the script 
inside the Windows PowerShell console. This syntax is shown in Figure 2-5.

Figure 2-5 To run a Windows PowerShell script from outside the console, use the -noexit argument 
to allow you to see the results of the script.

Use of Variables
When working with Windows PowerShell, the default is that you don’t need to declare 
variables prior to use; the variable is declared when you use it to hold data. All variable names 
must be preceded with a dollar sign. There are a number of special variables in Windows 
PowerShell. These variables are created automatically and each has a special meaning. Table 2-2 
lists the special variables and their associated meanings.



40 Windows PowerShell Scripting Guide

C02622791.fm  Page 40  Saturday, December 8, 2007  6:32 PM
Use of Constants
Constants in Windows PowerShell are like variables with two important exceptions: Their 
value never changes, and they cannot be deleted. Constants are created by using the Set-Variable 
cmdlet and specifying the -option argument to be equal to constant.

Tip When referring to a constant in the body of the script, you must preface it with the 
dollar sign—just like any other variable. However, when creating the constant (or even a variable) 
by using the Set-Variable cmdlet, as you specify the name argument you don’t include a 
dollar sign. 

Table 2-2 Use of Special Variables 

Name Use

$^ Contains the first token of the last line input into the shell.

$$ Contains the last token of the last line input into the shell.

$_ The current pipeline object; used in script blocks, filters, Where-Object, 
ForEach-Object, and switch.

$? Contains the success/fail status of the last statement.

$args Used in creating functions requiring parameters.

$error If an error occurred, the error object is saved in the $error variable.

$executioncontext The execution objects available to cmdlets.

$foreach Refers to the enumerator in a foreach loop.

$home The user’s home directory; set to %HOMEDRIVE%\%HOMEPATH%.

$input Input is piped to a function or code block.

$match A hash table consisting of items found by the -match operator.

$myinvocation Information about the currently executing script or command line.

$pshome The directory where Windows PowerShell is installed.

$host Information about the currently executing host.

$lastexitcode The exit code of the last native application to run.

$true Boolean TRUE.

$false Boolean FALSE.

$null A null object.

$this In the Types.ps1 XML file and some script block instances this represents 
the current object.

$ofs Output field separator used when converting an array to a string.

$shellid The identifier for the shell. This value is used by the shell to determine 
the execution policy and what profiles are run at startup.

$stacktrace Contains detailed stack trace information about the last error.



Chapter 2 Scripting Windows PowerShell 41

U

C02622791.fm  Page 41  Saturday, December 8, 2007  6:32 PM
In the GetHardDiskDetails.ps1 script that follows, there is a constant named $intDriveType 
with a value of 3 assigned. This constant is used because the Win32_LogicalDisk WMI class 
uses a value of 3 in the DiskType property to describe a local fixed disk. When using Where-
Object and a value of 3, you eliminate network drives, removable drives, and ram drives from 
the items returned.

The $intDriveType constant is only used with the Where filter line. The value of $strComputer, 
however, will change once for each computer name that is specified in the array $aryComputers. 
In the GetHardDiskDetails.ps1 script, the value of $strComputer will change twice. The first 
time through the loop it will be equal to loopback and the second time through the loop it will 
be equal to localhost. Even if you add 250 different computer names, the effect will be the 
same—the value of $strComputer will change each time through the loop.

GetHardDiskDetails.ps1
$aryComputers = "loopback", "localhost" 

Set-Variable -name intDriveType -value 3 -option constant  

 

foreach ($strComputer in $aryComputers) 

 

{"Hard drives on: " + $strComputer 

Get-WmiObject -class win32_logicaldisk -computername $strComputer|  

Where {$_.drivetype -eq $intDriveType}}

sing Flow Control Statements
Once scripting support is enabled on Windows PowerShell, you have access to some 
advanced flow control cmdlets. However, this does not mean you cannot do flow control 
inside the console. You can certainly use flow control statements inside the console. This is 
shown here:

PS C:\> Get-Process | foreach ( $_.name ) { if ( $_.name -eq "system" ) {  

Write-Host "system process is ID : " $_.ID } }

The problem is the amount of typing. It may be preferable to save such a command in a script. 
Besides saving a long command in a file, there is also an advantage in readability. For example, 
you can line up the curly brackets and the other components of the commands. You can also 
avoid hard-coding process names into the script and instead save them as variables. This 
makes it easy to modify the script or even to write the script to accept command-line argu-
ments. In the GetProcessByID.ps1 script shown here, you can see these options exhibited.

GetProcessByID.ps1
$strProcess = "system" 

Get-Process |  

foreach ( $_.name ) {  

if ( $_.name -eq $strProcess )  

{  

Write-Host "system process is ID : " $_.ID  

}  

}



42 Windows PowerShell Scripting Guide

C02622791.fm  Page 42  Saturday, December 8, 2007  6:32 PM
Adding Parameters to ForEach-Object

In the GetWmiAndQuery.ps1 script, the ForEach-Object cmdlet produces a listing from all 
the WMI classes that have names containing usb. This particular script is very useful in that it 
produces a listing of both the process name and associated process ID (PID). In addition, the 
GetProcessByID.ps1 script is a good candidate to modify to accept a command-line argument. 
Begin with the list switch from the Get-WmiObject cmdlet; you’ll end up with a complete list-
ing of all WMI classes in the default WMI namespace. Pipeline the resulting object into the 
Where-Object cmdlet and filter the result set by the Name property when it is like the value 
contained in the variable $strClass.

Using the Begin Parameter

Use the -begin parameter of the ForEach-Object cmdlet to write the name used to generate the 
WMI class listings. This action does not affect the current pipeline object. In fact, neither the 
-begin parameter or the -end parameter interact with the current pipeline object. But they are 
great places to perform pre-processing and post-processing. The -process parameter is used to 
contain the script block that will interact with the current pipeline object. This is the default 
parameter, and doesn’t need to be named. The Get-WmiAndQuery.ps1 script is shown here.

GetWmiAndQuery.ps1
$strClass = "usb" 

Get-WmiObject -List |  

Where { $_.name -like "*$strClass*" } |  

ForEach-Object -begin ` 

{  

Write-Host "$strClass wmi listings" 

Start-Sleep 3 

} ` 

-Process ` 

{  

Get-wmiObject $_.name  

}

In the ProcessUsbHub.ps1 script, the Get-WmiObject cmdlet retrieves instances of the 
Win32_USBHub class. Once we have a collection of usb hub objects, we pipeline the object to 
the ForEach-Object cmdlet. Suggestion: To make the script easier to read, line up all the -begin, 
-process, and -end parameters on the left side of the script. However, you will have to use the 
“backtick” or grave accent (`) to indicate line continuation.

Tip The environment variable %computername% is always available and can be used to 
extract the computer name for a script. An easy way to retrieve the value of this variable is to 
use the Get-Item cmdlet to grab the value from the env:\ psdrive. The Value property 
contains the computer name. This is illustrated here: (Get-Item env:\computerName) value.



Chapter 2 Scripting Windows PowerShell 43

C02622791.fm  Page 43  Saturday, December 8, 2007  6:32 PM
The -begin section uses a code block to write the name of computer using the Write-Host 
cmdlet. Use a sub-expression to get the computer name from the env:\ psdrive; use the 
%computername% variable and extract its value.

Using the Process Parameter

In the -process section, simply use the current pipeline object (indicated by the $_ automatic 
variable) to print the PnpDeviceID property from the Win32_USBHub WMI class. Again, use 
the grave accent to indicate line continuation.

Using the End Parameter

The last section of the ProcessUsbHub.ps1 script contains the -end parameter. Use the Write-
Host cmdlet to print a string that indicates the command completed, and use a sub-expression 
to print the value returned by the Get-Date cmdlet. The ProcessUsbHub.ps1 script is listed here.

ProcessUsbHub.ps1
Get-WmiObject win32_usbhub |  

foreach-object ` 

-begin { Write-Host "Usb Hubs on:" $(Get-Item env:\computerName).value } ` 

-process { $_.pnpDeviceID} ` 

-end { Write-Host "The command completed at $(get-date)" }

Using the For Statement
Similar to the ForEach-Object cmdlet, the for statement is used to control execution of a script 
block as long as a condition is true. Most of the time, you will use the for statement to perform 
an action a certain number of times. In the line of code that follows, notice the basic for 
construction. Use parentheses to separate the expression being evaluated from the code 
block contained in curly brackets. The evaluated expression is composed of three sections. 
The first section is a variable $a; you assign the value of 1 to it. The second section contains 
the condition to be evaluated. In the code shown here, as long as the variable $a is less 
than or equal to the number 3, the command in the code block section continues to run. The 
last section of the evaluation expression adds the number 1 to the variable $a. The code block 
is a simple printout of the word hello.

for ($a = 1; $a -le 3 ; $a++) {"hello"}

The PingARange.ps1 script shown here is a very useful little script because it can be used to 
ping a range of Internet protocol (IP) addresses and will tell you whether or not the computer 
is responding to Internet Control Message Protocol (ICMP) packets. This is helpful in 
doing network discovery or in ensuring a computer is talking to the network. The $intPing 
variable is set to 10 and defined as an integer. Next, the $intNetwork variable is assigned the 
string 127.0.0. and is defined as a string.



44 Windows PowerShell Scripting Guide

C02622791.fm  Page 44  Saturday, December 8, 2007  6:32 PM
The for statement is used to execute the remaining code the number of times specified in the 
$intPing variable. The counter variable is created on the for statement line. This counter 
variable, named $i, is assigned the value of 1. As long as $i is less than or equal to the value set 
in the $intPing variable, the script will continue to execute. The final step, completed inside 
the evaluator section of the for statement, is to add one to the value of $i.

The code block begins with the curly bracket. Inside the code block, first create a variable 
named $strQuery; this is the string that holds the WMI query. Placing this in a separate 
variable makes it easier to use $intNetwork along with the $i counter variable; these are used to 
create a valid IP address for the WMI query that results in a ping.

The $wmi variable is used to hold the collection of objects that is returned by the Get-WmiObject 
cmdlet. By using the optional query argument of the Get-WmiObject cmdlet, you are able to 
supply a WMI query. The StatusCode property contains the result of the ping operation. A 0 
indicates success, any other number means the ping failed. To present this information in a 
clear fashion, use an if … else statement to evaluate the StatusCode property.

PingARange.ps1
 [int]$intPing = 10 

[string]$intNetwork = "127.0.0." 

 

for ($i=1;$i -le $intPing; $i++) 

{ 

$strQuery = "select * from win32_pingstatus where address = '" + 

$intNetwork + $i + "'" 

$wmi = get-wmiobject -query $strQuery 

"Pinging $intNetwork$i ... " 

if ($wmi.statuscode -eq 0) 

{"success"} 

else 

{"error: " + $wmi.statuscode + " occurred"}

Using Decision-Making Statements
The ability to make decisions to control branching in a script is a fundamental technique. In 
fact, this is the basis of automation. A condition is detected and evaluated, and a course 
of action is determined. If you are able to encapsulate your logic into a script, you are well on 
your way to having servers that monitor themselves. As an example, when you open Task 
Manager on the server, what is the first thing you do? I often sort the list of processes by 
memory consumption. The GetTopMemory.ps1 script, shown here, does this.

GetTopMemory.ps1
Get-Process |  

Sort-Object workingset -Descending |  

Select-Object -First 5



Chapter 2 Scripting Windows PowerShell 45

C02622791.fm  Page 45  Saturday, December 8, 2007  6:32 PM
The GetTopMemory.ps1 script might be useful because it saves time in sorting a list. But what 
do you do next? Do you kill the top memory consuming process? If you do, then there is no 
decision to make. However, suppose you want to kill off only user mode processes that 
consume more than 100 MB of memory? That may be a more constructive and better choice. 
This will require some decision-making capability. Let us first examine the classic if … elseif … 
else decision structure.

Using If … Elseif … Else

The most basic decision-making statement is the if … elseif … else structure. This structure is 
easy to use because it is perfectly natural and is implied in normal conversation. For example, 
consider the following conversation between two American tourists in Copenhagen:

If ( sunny and warm ) 

{ go to NyHavn } 

Elseif ( cloudy and cool ) 

{ go to Tivoli }  

Else  

{ take s-tog to Malmo }

Even if you don’t speak Danish, you will be able to follow the conversation. If it is sunny and 
warm, then the tourists will go to NyHavn. The first condition evaluation is whether the 
weather is going to be sunny and warm. The condition is always enclosed in smooth paren-
theses. The script block that will be executed if the condition is true is in curly brackets. In 
this example, if the weather is sunny and warm, the tourists will go to NyHavn (a beautiful 
port with lots of outdoor cafes). However, if the weather is cloudy and cool, they will go to 
Tivoli (an amusement park in the center of Copenhagen). If neither of these conditions is true, 
for example, if it is raining or snowing, the tourists will take the train to Malmo (a city in 
Sweden famous for its shopping).

To use the GetServiceStatus.ps1 script, you will first obtain a listing of all the services on the 
computer. Do this by using the Get-Service cmdlet. Once you have a listing of the services, use 
the Sort-Object cmdlet to sort the list of services based on their status. Next, use foreach to 
walk through the collection of services. As you iterate through the services, use if … elseif … else 
to evaluate the status. If the service is stopped, use the color red to display the name and 
status. If the service is running, use green to display the name and status. If the service is in a 
different state (such as pause), default to yellow to display the name and status. A decision 
matrix such as this is very useful in allowing you to quickly scan a long list of services. The 
GetServiceStatus.ps1 script is shown here. The constant color values that can be used with the 
Write-Host cmdlet are detailed in the table that follows.

GetServiceStatus.ps1
Get-Service |  

Sort-Object status -descending | 

foreach { 

if ( $_.status -eq "stopped")  

{Write-Host $_.name $_.status -ForegroundColor red} 



46 Windows PowerShell Scripting Guide

C02622791.fm  Page 46  Saturday, December 8, 2007  6:32 PM
elseif ( $_.status -eq "running" ) 

{Write-Host $_.name $_.status -ForegroundColor green} 

else 

{Write-Host $_.name $_.status -ForegroundColor yellow} 

}

Using Switch

In other programming languages, switch would be called the select case statement. The switch 
statement is used to evaluate a condition against a series of potential matches. In this way, it is 
essentially a streamlined if … elseif statement. When using the switch statement, the condition 
to be evaluated is contained in side parentheses. Then, each condition to be evaluated is 
placed inside a curly bracket within the code block. This is shown in the following command:

$a=5;switch ($a) { 4{"four detected"} 5{"five detected"} }

In the DisplayComputerRoles.ps1 script that follows, the script begins by using the $wmi vari-
able to hold the object that is returned by using the Get-WmiObject cmdlet. The DomainRole 
property of the Win32_computersystem class is returned as a coded value. To produce an out-
put that is more readable, the switch statement is used to match the value of the DomainRole 
property to the appropriate text value.

DisplayComputerRoles.ps1
$wmi = get-wmiobject win32_computersystem 

"computer " + $wmi.name + " is: " 

switch ($wmi.domainrole) 

{  

0 {"`t Stand alone workstation"} 

1 {"`t Member workstation"} 

2 {"`t Stand alone server"} 

3 {"`t Member server"} 

4 {"`t Back up domain controller"} 

5 {"`t Primary domain controller"} 

default {"`t The role can not be determined"} 

}

Evaluating Command-Line Arguments

Switch is ideally suited to evaluate command-line arguments. In the GetDriveArgs.ps1 script 
example that follows, you can use a function named funArg to evaluate the value of the 
automatic variable $args. This automatic variable contains arguments supplied to the command 
line when a script is run. This is a convenient variable to use when working with command-line 

Black DarkBlue DarkGreen DarkCyan

DarkRed DarkMagenta DarkYellow Gray

DarkGray Blue Green Cyan

Red Magenta Yellow White



Chapter 2 Scripting Windows PowerShell 47

C02622791.fm  Page 47  Saturday, December 8, 2007  6:32 PM
arguments. Switch is used to evaluate the value of $args. Four parameter arguments are 
allowed with this script. The all argument does a WMI query to retrieve basic information on 
all logical disks on the computer. The argument c is used to return only information about the 
C drive. An interesting trick: The floppy drive is typically enumerated first, and the second 
element in the array is the C drive. If this is not the case on your system, you can change it. The 
purpose of the script is simply to point out the use of switch to parse command-line arguments. 
Using the array element number is a nice way to retrieve WMI information in Windows 
PowerShell. The free argument is used to only return free disk space on the C drive.

The help argument is used to print a help statement. It uses a here-string to make it easy to 
type in the help message. The help message displays the purpose of the script and several 
examples of command lines.

GetDriveArgs.ps1
Function funArg()  

{ 

switch ($args)  

{ 

"all" { gwmi win32_logicalDisk } 

"c" { (gwmi win32_logicaldisk)[1] } 

"free" { (gwmi win32_logicaldisk)[1].freespace } 

"help" { $help = @" 

This script will print out the drive information for 

All drives, only the c drive, or the free space on c: 

It also will print out a help topic 

EXAMPLE:  

>GetDriveArgs.ps1 all 

Prints out information on all drives 

>GetDriveArgs.ps1 c 

Prints out information on only the c drive 

>GetDriveArgs.ps1 free 

Prints out freespace on the c drive 

"@ ; Write-Host $help } 

} 

} 

 

#$args = "help" 

funArg($args)

Using Switch Wildcards

One of the more interesting uses of the switch command is the use of wildcards. This can open 
up new opportunities to write clear and compact code that is both powerful and easy to 
implement. The SwitchIPConfig.ps1 script holds the results of the ipconfig /all command in 
the $a variable. Use switch with the -wildcard argument and feed it the text to parse inside the 
smooth parenthesis. Then, open the script block with the curly brackets and type the pattern 
to match. In this case, it is a simple *DHCP Server* phrase. In the script block that will execute 
when the pattern match is found, use the Write-Host cmdlet to print the current line inside 
the switch block. The interesting point is the use of the $switch automatic variable as the 



48 Windows PowerShell Scripting Guide

C02622791.fm  Page 48  Saturday, December 8, 2007  6:32 PM
enumerator. Specify the current property and retrieve the current line that is processing. In 
this way, you can print the line you are interested in examining. The SwitchIPConfig.ps1 
script is shown here.

SwitchIPConfig.ps1
$a = ipconfig /all  

 

switch -wildCard ($a)  

{  

"*DHCP Server*" { Write-Host $switch.current } 

}

Using Switch with Regular Expressions

Unlike a normal select case statement, the switch statement has the ability to work with regular 
expressions. When looking for valuable information, you can use the switch statement to open 
a text file, read the file into memory, and then use regular expressions to parse the file. Regu-
lar expressions can be as simple as matching a particular word or phrase or as complicated as 
validating a legitimate e-mail address. The SwitchRegEx.ps1 script that follows examines a 
sample text file for two words: test and good. If either word is found, the entire line containing 
the matched word prints.

Following the switch statement, you can use the -regex parameter to indicate that you want to 
use regular expressions as the matching tool. The value to switch on, inside the smooth paren-
theses, is actually a sub-expression that opens and reads the text file. The $ in front of the 
curly brackets surrounding the path to a text file is the command to open and read the text 
file into memory. Open the switch with the curly brackets and place each pattern to match 
inside single quotations. The code block that will execute if the regular expression is matched 
is also contained in curly brackets, and in this example it is a simple write-host. Once again, 
use the $switch enumerator to retrieve the current line where the pattern match occurs.

SwitchRegEx.ps1
switch -regex (${c:\testa.txt}) 

{ 

'test' {Write-Host $switch.current} 

'good' {Write-Host $switch.current} 

}

The text of the TestA.txt file is shown here. This example will assist you in evaluating the out-
put from the script.

TestA.txt
This was a test file. 

This was a good file.  

This was a good test file.



Chapter 2 Scripting Windows PowerShell 49

C02622791.fm  Page 49  Saturday, December 8, 2007  6:32 PM
Perhaps a more useful example of using the regular expression feature of the switch statement 
is the VersionOfVista.ps1 script. Assign the string version to the $strPattern variable, and hold 
the output of the net config workstation command in the $text variable. Then, use the -regex 
parameter on the switch statement and feed it the content stored in the $text variable, and look 
for the pattern that is stored in the $strPattern variable. Once you find it, print the entire line 
by using the current property of the automatic variable $switch. The nice thing about this 
script is that it tells you what version of Windows Vista you have. The entire output from net 
config workstation command is 19 lines long. To compare results, here is a sample output 
from VersionOfVista.ps1:

Software version Windows Vista (TM) Enterprise

VersionOfVista.ps1
$strPattern = "version" 

$text = net config workstation 

 

switch -regex ($text)  

{ 

$strPattern { Write-Host $switch.current } 

}

Working with Data Types
Windows PowerShell is a strongly typed language that acts as if it were typeless. This is 
because Windows PowerShell does a good job of detecting data types and acting on them 
accordingly. If something appears to be a string, Windows PowerShell will treat it as a string. 
As an example, consider these three statements:

PS C:\> 1 + 1 

2 

PS C:\> 12:00 + :30 

Unexpected token ':00' in expression or statement. 

At line:1 char:6 

+ 12:00 <<<< + :30 

PS C:\> a + b 

The term 'a' is not recognized as a cmdlet, function, operable program, 

or script file. Verify the term and try again At line:1 char:2 + a <<<< + b 

PS C:\>

Notice that only one statement completed without error—the one containing 1 + 1. Windows 
PowerShell properly detected these as numbers and allowed the addition to proceed. 
However, it is impossible to add letters or time.

However, if you put the letters a and b within double quotation marks and then add them, you 
will notice that the action succeeds. This is shown here:

PS C:\> "a" + "b" 

Ab



50 Windows PowerShell Scripting Guide

C02622791.fm  Page 50  Saturday, December 8, 2007  6:32 PM
This behavior is not surprising, and in fact, is to be expected. Double quotation marks turn 
the letters a and b into string values and concatenates the two letters. You can see this if 
you pipeline the letter a into the Get-Member cmdlet as shown here. Notice that the first line 
of output indicates the letter a is an object of the type system.string. Also observe that there are 
many properties and methods you can use on a system.string object.

PS C:\> "a" | get-member 

 

 

TypeName: System.String 

 

Name MemberType Definition 

---- ---------- ---------- 

Clone Method System.Object Clone() 

System.Int32 CompareTo(String strB) 

Contains Method System.Boolean Contains(String value) 

CopyTo Method System.Void CopyTo(Int32 sourceIndex, Char[] 

destination, Int32 destinationIn 

EndsWith Method System.Boolean EndsWith(String value), 

System.Boolean EndsWith(String value,  

Equals Method System.Boolean Equals(Object obj), 

System.Boolean Equals(String value), Syste... 

GetEnumerator Method System.CharEnumerator GetEnumerator() 

GetHashCode Method System.Int32 GetHashCode() 

GetType Method System.Type GetType() 

GetTypeCode Method System.TypeCode GetTypeCode() 

get_Chars Method System.Char get_Chars(Int32 index) 

get_Length Method System.Int32 get_Length() 

IndexOf Method System.Int32 IndexOf(Char value, Int32 

startIndex, Int32 count), System.Int32... 

IndexOfAny Method System.Int32 IndexOfAny(Char[] anyOf, Int32 

startIndex, Int32 count), System.... 

Insert Method System.String Insert(Int32 startIndex, String 

value) 

IsNormalized Method System.Boolean IsNormalized(), System.Boolean 

IsNormalized(NormalizationForm  

LastIndexOf Method System.Int32 LastIndexOf(Char value, Int32 

startIndex, Int32 count), System.I... 

LastIndexOfAny Method System.Int32 LastIndexOfAny(Char[] anyOf, Int32 start

Index, Int32 count), Sys... 

Normalize Method System.String Normalize(), System.String 

Normalize(NormalizationForm normaliz... 

PadLeft Method System.String PadLeft(Int32 totalWidth), 

System.String PadLeft(Int32 totalWid... 

PadRight Method System.String PadRight(Int32 totalWidth), 

System.String PadRight(Int32 totalW... 

Remove Method System.String Remove(Int32 startIndex, Int32 

count), System.String Remove(Int... 

Replace Method System.String Replace(Char oldChar, Char 

newChar), System.String Replace(Stri... 

Split Method System.String[] Split(Params Char[] 

separator), System.String[] Split(Char[] ... 

StartsWith Method System.Boolean StartsWith(String value), 

System.Boolean StartsWith(String val... 

Substring Method System.String Substring(Int32 startIndex), 

System.String Substring(Int32 star... 



Chapter 2 Scripting Windows PowerShell 51

C02622791.fm  Page 51  Saturday, December 8, 2007  6:32 PM
ToCharArray Method System.Char[] ToCharArray(), System.Char[] 

ToCharArray(Int32 startIndex, Int3... 

ToLower Method System.String ToLower(), System.String 

ToLower(CultureInfo culture)  

ToLowerInvariant Method System.String ToLowerInvariant() 

ToString Method System.String ToString(), System.String 

ToString(IFormatProvider provider)  

ToUpper Method System.String ToUpper(), System.String 

ToUpper(CultureInfo culture)  

ToUpperInvariant Method System.String ToUpperInvariant() 

Trim Method System.String Trim(Params Char[] trimChars), 

System.String Trim()  

TrimEnd Method System.String TrimEnd(Params Char[] 

trimChars)  

TrimStart Method System.String TrimStart(Params Char[] 

trimChars)  

Chars ParameterizedProperty System.Char Chars(Int32 index) {get

If you pipeline the number 1 into the Get-Member cmdlet, you will see that it is a system.int32 
object, with a smaller listing of methods available than is available with the string class:

PS C:\> 1 | get-member 

 

 

TypeName: System.Int32 

 

Name MemberType Definition 

---- ---------- ---------- 

CompareTo Method System.Int32 CompareTo(Int32 value), System.Int32 

CompareTo(Object value) 

Equals Method System.Boolean Equals(Object obj), System.Boolean 

Equals(Int32 obj)  

GetHashCode Method System.Int32 GetHashCode() 

GetType Method System.Type GetType() 

GetTypeCode Method System.TypeCode GetTypeCode() 

ToString Method System.String ToString(), System.String 

ToString(IFormatProvider provider), System.String ToS...

Once you have figured out how to use Get-Member to verify the reason for the behavior of an 
object, you can use the type constraint objects to confirm an object of a specific data type. If 
you want 12:00 to be interpreted as a date time object, use the [datetime] type constraint to 
cast the string 12:00 into a date time object. This is shown here:

PS C:\> [datetime]"12:00" | get-member 

 

 

TypeName: System.DateTime 

 

Name MemberType Definition 

---- ---------- ----------  

Add Method System.DateTime Add(TimeSpan value) 

AddDays Method System.DateTime AddDays(Double value) 

AddHours Method System.DateTime AddHours(Double value) 

AddMilliseconds Method System.DateTime AddMilliseconds(Double value) 

AddMinutes Method System.DateTime AddMinutes(Double value) 

AddMonths Method System.DateTime AddMonths(Int32 months) 



52 Windows PowerShell Scripting Guide

C02622791.fm  Page 52  Saturday, December 8, 2007  6:32 PM
AddSeconds Method System.DateTime AddSeconds(Double value) 

AddTicks Method System.DateTime AddTicks(Int64 value) 

AddYears Method System.DateTime AddYears(Int32 value) 

CompareTo Method System.Int32 CompareTo(Object value), 

System.Int32 CompareTo(DateTime value)  

Equals Method System.Boolean Equals(Object value), 

System.Boolean Equals(DateTime value)  

GetDateTimeFormats Method System.String[] GetDateTimeFormats(), 

System.String[] GetDateTimeFormats(IFormat... 

GetHashCode Method System.Int32 GetHashCode() 

GetType Method System.Type GetType() 

GetTypeCode Method System.TypeCode GetTypeCode() 

get_Date Method System.DateTime get_Date() 

get_Day Method System.Int32 get_Day() 

get_DayOfWeek Method System.DayOfWeek get_DayOfWeek() 

get_DayOfYear Method System.Int32 get_DayOfYear() 

get_Hour Method System.Int32 get_Hour() 

get_Kind Method System.DateTimeKind get_Kind() 

get_Millisecond Method System.Int32 get_Millisecond() 

get_Minute Method System.Int32 get_Minute() 

get_Month Method System.Int32 get_Month() 

get_Second Method System.Int32 get_Second() 

get_Ticks Method System.Int64 get_Ticks() 

get_TimeOfDay Method System.TimeSpan get_TimeOfDay() 

get_Year Method System.Int32 get_Year() 

IsDaylightSavingTime Method System.Boolean IsDaylightSavingTime() 

Subtract Method System.TimeSpan Subtract(DateTime value), 

System.DateTime Subtract(TimeSpan value)  

ToBinary Method System.Int64 ToBinary() 

ToFileTime Method System.Int64 ToFileTime() 

ToFileTimeUtc Method System.Int64 ToFileTimeUtc() 

ToLocalTime Method System.DateTime ToLocalTime() 

ToLongDateString Method System.String ToLongDateString() 

ToLongTimeString Method System.String ToLongTimeString() 

ToOADate Method System.Double ToOADate() 

ToShortDateString Method System.String ToShortDateString() 

ToShortTimeString Method System.String ToShortTimeString() 

ToString Method System.String ToString(), System.String 

ToString(String format), System.String T... 

ToUniversalTime Method System.DateTime ToUniversalTime() 

Date Property System.DateTime Date {get;} 

Day Property System.Int32 Day {get;} 

DayOfWeek Property System.DayOfWeek DayOfWeek {get;} 

DayOfYear Property System.Int32 DayOfYear {get;} 

Hour Property System.Int32 Hour {get;} 

Kind Property System.DateTimeKind Kind {get;} 

Millisecond Property System.Int32 Millisecond {get;}Property 

System.Int32 Minute {get;}  

Month Property System.Int32 Month {get;} 

Second Property System.Int32 Second {get;} 

Ticks Property System.Int64 Ticks {get;} 

TimeOfDay Property System.TimeSpan TimeOfDay {get;} 

Year Property System.Int32 Year {get;} 

DateTime ScriptProperty System.Object DateTime {get=if 

($this.DisplayHint -ieq "Date")...



Chapter 2 Scripting Windows PowerShell 53

C02622791.fm  Page 53  Saturday, December 8, 2007  6:32 PM
There is no reason to use Get-Member to determine the data type of a particular object if you 
are only interested in the name of the object. To do this, you can use the getType() method as 
shown here. In the first case, you confirm that 12:00 is indeed a string. In the second case, you 
cast the string into a datetime data type, and confirm it by once again using the getType() 
method as shown here:

PS C:\> "12:00".getType() 

 

IsPublic IsSerial Name BaseType 

-------- -------- ---- -------- 

True True String System.Object 

 

 

PS C:\> ([dateTime]"12:00").getType() 

 

IsPublic IsSerial Name BaseType 

-------- -------- ---- -------- 

True True DateTime System.ValueType

All of these commands are in the DataTypes.txt file found in the chapter02 folder on the com-
panion CD-ROM. Additional data type aliases are shown in Table 2-3.

Unleashing the Power of Regular Expressions
One of the interesting features of Windows PowerShell is the ability to work with regular 
expressions. Regular expressions are optimized to manipulate text. You’ve learned about 
using regular expressions with the switch statement to match a particular word, however, you 
can do as much with the -wildcard switch. Now you’ll learn some of the more advanced tasks 
you can complete with regular expressions. Table 2-4 lists the escape sequences you can use 
with regular expressions.

Table 2-3 Data Type Aliases

Alias Type

[int] 32-bit signed integer

[long] 64-bit signed integer

[string] Fixed length string of Unicode characters

[char] A Unicode 16-bit character 

[bool] True/False value

[byte] An 8-bit unsigned integer

[double] Double-precision 64-bit floating point number

[datetime] DateTime data type

[decimal] A 128-bit decimal value

[single] Single precision 32-bit floating point number

[array] An array of values

[xml] Xml objects

[hashtable] A hashtable object (similar to a dictionary object)



54 Windows PowerShell Scripting Guide

C02622791.fm  Page 54  Saturday, December 8, 2007  6:32 PM
The RegExTab.ps1 script illustrates using an escape sequence in a regular expression script. It 
opens a text file and looks for tabs. The easiest way to work with regular expressions is to 
store the pattern in its own variable. This makes it easy to modify and to experiment without 
worrying about breaking the script (simply use the # sign to comment out the line, then cre-
ate a new line with the same name and a different value).

The RegExTab.ps1 script specifies \t as the pattern. According to Table 2-4 this means you 
look for tabs. Feed the pattern, contained in $strPattern, to the [regex] type accelerator as 
shown here:

$regex = [regex]$strPattern

Next, store the content of the TabLine.txt text tile into the $text variable by using the syntax 
shown here:

$text = ${C:\Chapter02\tabline.txt}

Then, use the matches method to parse the text file and look for matches with the pattern 
specified in the $strPattern. Notice that you have already associated the pattern with the 
regular expression object in the $regex variable. Count the number of times you have a match. 
The complete RegExTab.ps1 script is shown here.

Table 2-4 Escape Sequences

Character Description

ordinary characters Characters other than . $ ^ { [ ( | ) * + ? \ match themselves.

\a Matches a bell (alarm) \u0007.

\b Matches a backspace \u0008 if in a [] character class; in a regular 
expression, \b is a word boundary.

\t Matches a tab \u0009.

\r Matches a carriage return \u000D.

\v Matches a vertical tab \u000B.

\f Matches a form feed \u000C.

\n Matches a new line \u000A.

\e Matches an escape \u001B.

\040 Matches an ASCII character as octal (up to three digits); numbers 
with no leading zero are backreferences if they have only one digit 
or if they correspond to a capturing group number. For example, 
the character \040 represents a space.

\x20 Matches an ASCII character using hexadecimal representation 
(exactly two digits).

\cC Matches an ASCII control character; for example, \cC is control-C.

\u0020 Matches a Unicode character using hexadecimal representation 
(exactly four digits).



Chapter 2 Scripting Windows PowerShell 55

C02622791.fm  Page 55  Saturday, December 8, 2007  6:32 PM
RegExTab.ps1
$strPattern = "\t" 

$regex = [regex]$strPattern 

 

$text = ${C:\Chapter02\tabline.txt} 

 

$mc = $regex.matches($text) 

$mc.count

Table 2-5 lists the character patterns that can be used with regular expressions for performing 
advanced pattern matching.

Table 2-5 Character Patterns

Character Description

[character_group] Matches any character in the specified character group. For 
example, to specify all vowels, use [aeiou]. To specify all 
punctuation and decimal digit characters, use [\p{P}\d].

[^character_group] Matches any character not in the specified character group. For 
example, to specify all consonants, use [^aeiou]. To specify 
all characters except punctuation and decimal digit characters, 
use [^\p{P}\d].

[firstCharacter-lastCharacter] Matches any character in a range of characters. For example, to 
specify the range of decimal digits from '0' through '9', the 
range of lowercase letters from 'a' through 'f', and the range of 
uppercase letters from 'A' through 'F', use [0-9a-fA-F].

. Matches any character except \n. If modified by the Singleline 
option, a period matches any character. 

\p{name} Matches any character in the Unicode general category or 
named block specified by name (for example, Ll, Nd, Z, IsGreek, 
and IsBoxDrawing).

\P{name} Matches any character not in Unicode general category or 
specified named block 

\w Matches any word character. Equivalent to the Unicode general 
categories [\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nd}\p{Pc}\p{Lm}]. If ECMA-
Script-compliant behavior is specified with the ECMAScript 
option, \w is equivalent to [a-zA-Z_0-9].

\W Matches any nonword character. Equivalent to the Unicode gen-
eral categories [^\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nd}\p{Pc}\p{Lm}]. If 
ECMAScript-compliant behavior is specified with the ECMAScript 
option, \W is equivalent to [^a-zA-Z_0-9].

\s Matches any white-space character. Equivalent to the escape 
sequences and Unicode general categories [\f\n\r\t\v\x85\p{Z}]. 
If ECMAScript-compliant behavior is specified with the ECMA-
Script option, \s is equivalent to [ \f\n\r\t\v].



56 Windows PowerShell Scripting Guide

C02622791.fm  Page 56  Saturday, December 8, 2007  6:32 PM
Suppose you want to identify white space in a file. To do this, you can use the match pattern 
\s which is listed in Table 2-5 as a character pattern. The ability to find white space in a text 
file is quite useful, because for many items, the end of line separator is just white space. To 
illustrate working with white space, examine the following RegWhiteSpace.ps1 script.

The first line of the script includes a line of text to use for testing against. The pattern comes 
from Table 2-5 and is a simple \s, which tells the regular expression you want to match on 
white space. Then use the $matches variable to hold the match object returned by the match 
static method of the regex type accelerator.

After printing the results of the match, move to phase two, which is to replace, using the same 
pattern. To do this, feed the pattern to the replace method along with the variable containing 
the unadulterated text message. Go ahead and print the value of $strReplace that now contains 
the modified object.

RegWhiteSpace.ps1
$strText = "a nice line of text. We will search for an expression" 

$Pattern = "\s" 

$matches = [regex]::match($strText, $pattern) 

 

"Result of using the match method, we get the following:" 

$matches 

 

$strReplace = [regex]::replace($strText, $pattern, "_") 

"Now we will replace, using the same pattern. We will use 

an underscore to replace the space between words:" 

 

$strReplace

Using Command-Line Arguments
Modifying a script at run time is an important time-saving, labor-saving, and flexibility-pre-
serving technique. In many companies, first-level support is given the ability to run scripts but 
not to create scripts. The first-level support personnel do not have access to script editors, 
nor are they expected to know how to modify a script at design time. The solution is to use 

\S Matches any non-white-space character. Equivalent to the 
escape sequences and Unicode general categories 
[^\f\n\r\t\v\x85\p{Z}]. If ECMAScript-compliant behavior is 
specified with the ECMAScript option, \S is equivalent to 
[^ \f\n\r\t\v].

\d Matches any decimal digit. Equivalent to \p{Nd} for Unicode and 
[0-9] for non-Unicode, ECMAScript behavior.

\D Matches any nondigit character. Equivalent to \P{Nd} for 
Unicode and [^0-9] for non-Unicode, ECMAScript behavior.

Table 2-5 Character Patterns (continued)

Character Description



Chapter 2 Scripting Windows PowerShell 57

C02622791.fm  Page 57  Saturday, December 8, 2007  6:32 PM
command-line arguments that modify the behavior of the script. In this manner, the scripts 
become almost like custom-written utilities that are edited by the user, rather than compo-
nents that are modified via a series of switches and parameters. An example of this technique 
is shown in the ArgsShare.ps1 script.

The ArgsShare.ps1 script defines a simple function that is used to perform the WMI query. It 
takes a single argument from the command line when the script is run. This will determine 
the kind of shares that are returned.

An if … else statement is used to determine if a command-line argument is present. If it is not 
present, then a friendly help message is displayed that suggests running help for the script. In 
reality, anything that is not a recognized as a valid argument will result in displaying the help 
string. The help message suggests the common question mark switch.

Once it is determined a valid command-line argument is present, the switch statement will 
assign the appropriate value to the $strShare variable, and will then call the WMI function. 
This procedure allows a user to type in a simple noun such as: admin, print, file, ipc, or all and 
generate the appropriate WMI query. However, WMI expects a valid share type integer. By 
using switch in this way, you generate the appropriate WMI query based upon input received 
from the command line. If an unexpected command-line argument is supplied, the default 
switch is used; this simply prints the help message. You can change this to perform an all type 
of query or some other default WMI query, if desired. You can even paste your default WMI 
query into the if(!args) statement and allow the default query to run when there is no argu-
ment present. This mimics the behavior of some Windows command-line utilities. The 
ArgsShare.ps1 script is shown here.

ArgsShare.ps1
Function FunWMI($strShare) 

{ 

Get-WmiObject win32_share -Filter "type = $strShare" 

} 

 

if(!$args)  

{ "you must supply an argument. Try ArgsShare.ps1 ?"} 

ELSE 

{ 

$strShare = $args 

switch ($strShare)  

{  

"admin" { $strShare = 2147483648 ; funwmi($strShare) } 

"print" { $strShare = 2147483649 ; funwmi($strShare) } 

"file" { $strShare = 0 ; funwmi($strShare) } 

"ipc" { $strShare = 2147483651 ; funwmi($strShare) } 

"all" { Get-WmiObject win32_share } 

Default { Write-Host "You must supply either: admin, print, file, ipc, or all `n 

Example: > ArgsShare.ps1 admin" } 

} 

}



58 Windows PowerShell Scripting Guide

C02622791.fm  Page 58  Saturday, December 8, 2007  6:32 PM
Summary
In this chapter, we first examined the scripting policy provided by Windows PowerShell. We 
looked at the steps involved in configuring Windows PowerShell for scripting use, explored 
the various flow control statements, and examined scripts that use flow control for advanced 
scripting needs. We looked at implementing decision making in Windows PowerShell and 
saw how encapsulated logic can vastly simplify network administration tasks by acting upon 
routine events when they are presented to the script. Finally, we explored the use of regular 
expressions to provide advanced pattern-matching capabilities to both scripts and cmdlets.


	Cover
	Table of Contents
	Chapter 1: The Shell in Windows PowerShell
	Installing Windows PowerShell
	Verifying Installation with VBScript
	Deploying Windows PowerShell

	Interacting with the Shell
	Introducing Cmdlets
	Configuring Windows PowerShell
	Creating a Windows PowerShell Profile
	Configuring Windows PowerShell Startup Options

	Security Issues with Windows PowerShell
	Controlling the Execution of Cmdlets
	Confirming Commands
	Suspending Confirmation of Cmdlets

	Supplying Options for Cmdlets
	Working with Get-Help
	Working with Aliases to Assign Shortcut Names to Cmdlets
	Additional Uses of Cmdlets
	Using the Get-ChildItem Cmdlet
	Formatting Output
	Using the Get-Command Cmdlet
	Exploring with the Get-Member Cmdlet

	Summary

	Chapter 2: Scripting Windows PowerShell
	Why Use Scripting?
	Configuring the Scripting Policy
	Running Windows PowerShell Scripts
	Use of Variables
	Use of Constants
	Using Flow Control Statements
	Adding Parameters to ForEach-Object
	Using the Begin Parameter
	Using the Process Parameter
	Using the End Parameter

	Using the For Statement
	Using Decision-Making Statements
	Using If … Elseif … Else
	Using Switch

	Working with Data Types
	Unleashing the Power of Regular Expressions
	Using Command-Line Arguments
	Summary




