
To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/11297.aspx

978-0-7356-2431-3

© 2008 Dan Holme (All). All rights reserved.

Windows®
Administration Resource
Kit: Productivity
Solutions for IT
Professionals

Dan Holme

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title,
for early preview, and is subject to change prior to release. This excerpt is from Windows® Administration
Resource Kit: Productivity Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-62431-3,
copyright 2008 Dan Holme (All), all rights reserved), and is provided without any express, statutory, or
implied warranties

Table of Contents
FrontMatter

 1 Role-Based Management
Scenarios, Pain and Solution

1-1: Enumerate a user’s (or computer’s) group membership

1-2: Create a GUI tool to enumerate group memberships

1-3: Extend Active Directory Users and Computers to enumerate group
memberships

1-4: Understand role-based management

1-5: Implement role-based access control

1-6: Reporting and auditing RBAC and role-based management

1-7: Getting to role-based management

 2 Managing Files, Folders, and Shares
Scenarios, Pain and Solution

2-1: Work effectively with the ACL editor user interface

2-2: Manage Folder structure

2-3: Manage access to root data folders

2-4: Delegate the management of shared folders

2-5: Determine which folders should be shared

2-6: Implement folder access permissions based on required capabilities

2-7: Understand shared folder permissions (SMB permissions)

2-8: Script the creation of an SMB share

2-9: Provision the creation of a shared folder

2-10: Avoid the ACL inheritance propagation danger of files and folder movement

2-11: Preventing users from changing permissions on their own files

2-12: Prevent users from seeing what they cannot access

2-13: Determine who has a file open

2-14: Send messages to users

2-15: Distribute files across servers

2-16: Use quotas to manage storage

2-17: Reduce help desk calls to recover deleted or overwritten files

2-18: Create an effective, delegate DFS namespace

 3 Managing User Data and Settings
Scenarios, Pain and Solution

3-1: Define requirements for a user data and settings framework

3-2: Design UDS components to align requirements and scenarios with features and
technologies

3-3: Create, secure, manage, ad provision server-side user data stores

3-4: Create the SMB and DFS Namespaces for user data stores

3-5: Design and implement folder redirection

3-6: Configure offline files

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

3-7: Design and implement roaming profiles

3-8: Manage user data that should not be stored on servers

3-9: Manage user data that should be accessed locally

3-10: Back up local data stores for availability, mobility, and resiliency

3-11: Design UDS components that align requirements and scenarios with features
and technologies

 4 Administering Computers
4-1: Scenarios, Pain and Solution

 5 Administering Users
5-1: Scenarios, Pain and Solution

 6 Administering Groups
6-1: Scenarios, Pain and Solution

 7 Improving the Deployment and Management of Windows and
Applications

7-1: Scenarios, Pain and Solution

 8 Refining and Redesigning Active Directory for Security and
Administrative Delegation

8-1: Scenarios, Pain and Solution

 9 Implementing Document Collaboration with SharePoint
9-1: Scenarios, Pain and Solution

 10 Implementing and Extending Management through Group Policy
10-1: Scenarios, Pain and Solution

 11 Printer Management and Deployment
11-1: Scenarios, Pain and Solution

BackMatter

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 1
SOLUTIONS COLLECTION 2

Managing Files, Folders and Shares
Since the beginning of Windows networking time, one of the key roles of Windows servers
has been to provide a centralized location for users to share files. And fifteen years later,
you would think we, the IT professional community, would have file servers figured out;
and that Microsoft would have met all of our needs for file servers. But alas, fundamental
gaps remain in the toolset with which we manage file servers, and potentially serious gaps
in implementation lead to environments where data is undermanaged at best, and
exposed to security violations and denial of service or data loss scenarios at worst.

Solutions in this chapter will equip you to manage data on file servers more consistently
and more securely with less effort. We will address common questions about Windows
file servers, shared folders, access control lists (ACLs), access-based enumeration, shadow
copies and more. We will also look at exciting new features of Windows Server 2008,
including changes to the capabilities of file owners.

Scenarios, Pain and Solution
Chances are, you have experience managing files and folders within shared folders on
Windows servers. And, we will assume, you understand components of security such as
NTFS permissions, inheritance, and share permissions. “What could there possibly be left
to learn about a Windows file server?” you may ask. Consider the following scenarios, and
the common gaps in implementation of the file server role:

• The Finance department of Blue Yonder Airlines maintains a share which is used for
employees in that department to collaborate on files, primarily Excel worksheets. The
network administrator secured the share with a permission that allows the users
Modify permission on the root folder, which is of course inherited to all subfolders.
Early Monday morning, before his coffee has kicked in, Mark Bebbington, a Finance
manager for Blue Yonder Airlines, opens an Excel budget spreadsheet from the folder
to prepare it for a presentation to the CEO. He then clicks the parent folder to look at
its contents, so that he can decide if he needs to change any other worksheet. He turns
his eyes to Excel and the spreadsheet where he sees a number that does not belong.
He presses the Delete key. Not noticing that the Windows Explorer folder still has
focus, and not paying attention to the message that pops up in front of his still-bleary
eyes, he clicks a button and then realizes… too late… that he has just deleted the
contents of the entire Finance share.

Important If you have ever given a group the Allow:Modify NTFS permission, you have
set yourself up for just this kind of scenario: an accidental or intentional denial of
service. Any user in the group can delete all items in the shared folder.

• Engineers at Trey Research require access to engineering documents. The network
architecture and the nature of the engineering applications has led the IT organization
to determine that a hub-and-spoke model is most appropriate, where changes will be
made only to the “master” documents in the shared folder in the datacenter, and

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 2
those changes will be distributed to read-only replicas on servers in distributed
geographical offices. Because the replication technology also replicates NTFS ACLs, the
IT organization needs to determine how to enable modification of the documents in
the hub share while preventing changes to the documents in the spoke shares.

• As part of their effort to decrease costs, to increase responsiveness to customers and
to improve user productivity, the IT department of Proseware, Inc. wants to enable
users to recover accidentally deleted, modified, or overwritten documents without
requiring a call to the help desk to restore items from tape backup.

• Administrators of Litware, Inc. want to prevent non-technical users, and non-approved
users, from changing permissions of files or folders, even if they created those files or
folders.

• The IT professionals at contoso.com want to make it easier to locate data through a
logical namespace that organizes folders the way users think about them, rather than
presenting users with a server-based view of folder storage.

As we explore solutions these and other scenarios, we will address the following questions
and needs:

• What has changed with Windows Server 2008 file services?

• How can you facilitate moving folders to a new server without having to “touch” every
shortcut, mapped drive, and link that points to the original location?

• How is quota management different than in Windows 2000 and Windows Server
2003?

• Now that the NET SEND command is no longer available, how can you notify users
connected to a server before taking the server offline?

• What is the danger of moving files between two folders with different permissions?

• How can a user be prevented from changing permissions on a file he or she created?

The components of solutions in this chapter will include:

• NTFS files and folders and their permissions: access control entries, which are stored as
part of the discretionary ACL (DACL) in the security descriptor of the file or folder.

• Shared folders, including their permissions and settings: the share name (including
hidden shares), server message block (SMB) ACLs on the share, the share description,
and caching settings.

• Access Based Enumeration (ABE).

• The Creator Owner entry in the security descriptor.

• The new Owner Rights identity.

• Group Policy.

• Quota management.

• DFS namespaces.

• Symbolic links and network places.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 3
• Shadow copies of shared folders.

• Robocopy.

2-1: Work effectively with the ACL editor user
interfaces

Solution overview

Type of solution: Guidance and tips

Difficulty of implementation: Low

Features and tools: The ACL editor user interfaces: Properties dialog box Security page,
Advanced Security Settings dialog box, and Permission Entry dialog box.

Solution summary: Ensure that you are fully up to speed on the nuances of ACL editor
user interfaces

Benefits: Use ACL editor user interfaces more effectively.

Introduction

Security permissions are implemented as access control entries (ACEs) in the discretionary
access control list (DACL) within the security descriptor (SD) of a securable resource. The
SD also contains the system ACL (SACL), which stores auditing entries.

An important feature of the NTFS file system is that it supports SDs for files & folders. The
SD is, in fact, just one attribute of a file or folder, along with data attributes that contain
the actual data of a file. All of these attributes make up what we think of as the file or
folder on the NTFS volume.

The ACL is the basis for determining which users can access resources and at what level.
The security token that is generated by the server’s local security subsystem to represent
the user upon his or her authentication contains the security identifiers (SIDs) not only of
the user’s account, but of all the groups of which that user is a member as well. When a
user attempts to access a resource, the SIDs in the token are compared to the SIDs in the
ACL and access is calculated based on granular permissions that are allowed or denied.

In Windows 2000, ACLs determine access regardless of whether the resource is being
accessed locally or over the network. Windows Server 2003 added the ability to specify
different permissions based on local versus over-the-network access.

The ACL editor

The ACL of a resource is exposed in GUI by the ACL editor user interfaces, which include:

• The Security page of the resource’s Properties dialog box.

• The Advanced Security Settings dialog box.

• The Permission Entry dialog box.

Each of these interfaces is described in more detail, below.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 4
The Security page of the Properties dialog box

Right-click any resource, choose Properties, and select the Security tab. You will see a
general overview of the SD on the Security page, also called the Security Settings dialog,
shown in Figure 2-1.

Figure 2-1 The Security Settings dialog box

On the Security page of a securable object’s Properties dialog box, permission templates
appear in the lower half of the dialog box. These templates support typical access
scenarios such as Read, Write, Modify and Full Control. They represent a collection of
more granular permissions which can be explored on the Permissions page of the
Advanced Security Settings dialog box and in the Permission Entry dialog boxes. The type
of permission template is indicated by the state of the check boxes next to the permission.
A check mark in the box next to a permission template indicates that it is in force. Allow
and deny templates appear under the Allow and Deny columns, respectively. Templates
selected with a disabled (gray) checkbox are inherited from a parent folder or volume,
whereas those checkboxes that are selected and enabled (with a white background) are
assigned explicitly to the selected file or folder.

Generally, these permission templates do not tell the full story. When there are ACEs for a
security principal that do not fit nicely into the templates shown in the Security Settings
dialog, the template labeled “Special”, at the bottom of the permissions list. In this case,
you must click Advanced to see more detail regarding the permissions in the ACL.
However, it is recommended that you always click Advanced to view the details of the SD
displayed on the Permissions page of the Advanced Security Settings dialog box.

Best Practice

Always click the Advanced button on the Security page of the Properties dialog box to view
the details of the security descriptor displayed in the Advanced Security Settings dialog box.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 5
The Advanced button does not appear on the Security page of the Properties dialog box of a
volume accessed from the Share and Storage Management snap-in. You must go to the
properties of the volume from Windows Explorer to access the Advanced Security Settings
dialog box.

The Permissions page of the Advanced Security Settings dialog
box

From the Security page of the Properties dialog box, click the Advanced button to see
more detailed information about the SD. This interface, called the Advanced Security
Settings dialog box, shown in Figure 2-2, has pages, represented by tabs, for permissions,
auditing, ownership, and effective permissions.

Figure 2-2 The Advanced Security Settings dialog box

The Permissions page of the Advanced Security Settings dialog box has the following
important features, some of which may not be familiar to you:

• In Windows Server 2008 and Windows Vista, each page of the dialog box is in “view”
mode. You must click the Edit button on a page (which will be enabled only if your
credentials enable you to make a change) to modify settings on that page.

• Unlike the Security page of the Properties dialog box, you can identify the source of
inherited permissions: the Inherited From column will indicate the parent folder or
volume where the permissions are explicitly defined. Permissions assigned explicitly to
the selected object will show “<not inherited>” in the Inherited From column.

• The initial view of permission entries is in canonical order. This means the ACEs are
listed in the order with which the local security subsystem analyzes them against the
SIDs in the security token. The first match that is found—allow or deny—for the
specific type of access that is being requested will be used to determine whether that
access is permitted. Therefore the “more important” or “winning” permissions are at
the top of the list. You can sort the list by clicking any column header, and therefore
change the list from canonical order, but when you close and reopen the Advanced
Security Settings dialog box, you will again see the ACEs in canonical order.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 6
Best Practice

Recognize the importance of the canonical listing of permissions in the default view of the
Advanced Security Settings dialog box. Interpreting canonical order can facilitate an
understanding of how permissions are applied to a user attempting to access the resource.

• Permission sets (ACEs) that cannot be summarized correctly in the Permission column
will display “Special” in the Permission column. Windows Server 2008 will also show
“Special” in the Permission column if the selected object is a folder and the inheritance
setting of the permission is not “This folder, subfolders and files.”

We will explore additional features and uses of the Advanced Security Settings dialog box
later in this chapter.

The Permission Entry dialog box

The permissions as listed on the Permissions page of the Advanced Security Settings
dialog box are certainly more informative than the Security page of the Properties dialog
box, but are still not fully enumerated. To identify all of the granular ACEs that make up a
permission, you must view the ACEs in the Permission Entry dialog box.

Best Practice

Whenever a permission displays as “Special” in the Permission column of the Permissions page
of the Advanced Security Settings dialog box, or whenever you want a complete
understanding of a particular permission, view the permission in the Permission Entry dialog
box.

To access the Permission Entry dialog box:

1. If the Permissions page of the Advanced Security Settings dialog box is in “view” mode
(indicated by the presence of an Edit button but no Add or Remove buttons), click
Edit.

2. Select a permission entry from the Permission entries list.

3. Click Edit. The Permission Entry dialog box, shown in Figure 2-3, appears.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 7

Figure 2-3 The Permission Entry dialog box

The permission that is displayed in the Permission Entry dialog box is broken down to the
individual permissions (ACEs) that it comprises. Each permission’s status is further broken
down to Allow and Deny ACEs. If the ACE is inherited, the checkbox is disabled (grey). If it
is explicit, the checkbox is enabled (white). Finally, the inheritance flags are displayed in
the Apply to drop-down list. Inheritance will be discussed in later solutions in this
solutions collection.

Evaluating effective permissions

Whether a request for access to a file or folder is allowed or denied is determined by the
local security subsystem, which evaluates the ACEs in the ACL in canonical order against
the SIDs in the user’s security token. The first ACE for the particular type of access (e.g.
read, write, or delete) that is applied to a SID found in the token decides whether the
access request is allowed or denied. The “effective permissions” for a user are evaluated
by the cumulative effect of allowed, denied, explicit, and inherited permissions applied to
the user account and the groups in which those accounts are members.

To understand how the effective permissions are derived, we must look at the hierarchy of
permission settings and their precedence on an ACL. Following are the golden rules of
ACEs.

File permissions override folder permissions
• The only ACL that matters is the ACL for the object that is being accessed. When a user

has only Read permission on a folder and when Full Control permissions are given to a
child object, such as a file, the user will have Full Control over that object. The same is
true in reverse, so when the user has Full Control for a folder, but only Read
permission on the file, the user can read but not modify the file.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 8
Permission Settings
• ACEs have one of five possible states:

o Explicit Allow: Allow checkbox is checked.

o Inherited Allow: the Allow checkbox is grey and checked—the permission is
inherited from the parent folder or volume.

o Explicit Deny: the Deny checkbox is checked.

o Inherited Deny: the Deny checkbox is grey and checked—the permission is
inherited from the parent folder or volume.

Allow permissions are cumulative
• Whether you assign permissions to a user or to a group or groups to which a user

belongs, all the permissions apply to the user. For example, when a user is individually
given Read permissions to a file and is a member of a group that has Write
permissions, the user will have both Read and Write permissions. If that user is also a
member of another group that has Full Control of the parent folder and inheritance is
in use, then the user will have Full Control of the resource.

Deny overrides Allow
• A Deny permission takes precedence over an Allow permission, so even when a user is

a member seven of groups that have Allow permissions to a resource specified, the
user will be denied access if one group is assigned a Deny permission.

Explicit permissions override inherited permissions
• A selected gray check box in the ACL editor indicates that permissions are being

inherited from a parent folder or multiple parent folders. Although the default
condition is that the permissions will be cumulative between inherited permissions and
explicit permissions, indicated by a checked white check box, in the event the two
should contradict, the explicit permission will override the inherited. For example,
suppose a user has an inherited Deny Read permission, but a group to which that user
belongs has an explicit Allow Read permission. The Allow permission will take
precedence and the user will be able to read the file.

Evaluating effective permissions can be tricky. The Effective Permissions page of the
Advanced Security Settings dialog box, shown in Figure 2-4, can be helpful: select the user
or group for which you want to evaluate effective permissions, and a rough estimate of
the security principal’s effective permissions is displayed.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 9

Figure 2-4 The Effective Permissions page

However, this tool has its weaknesses. It does not account for:

• Whether the user accesses the file while logged on locally or via Remote Desktop, or
remotely through a shared folder. These access modalities are represented by well-
known SIDs such as Interactive, Network, Remote Interactive User, or Terminal Server
User.

• Other well-known SIDs including Restricted and Anonymous Logon.

You can learn more about the Effective Permissions page, how it works and what its
weaknesses are by clicking the link on the page labeled, “How are effective permissions
determined?” This will take you to the Access Control User Interface help file, to the How
Effective Permissions Are Determined page.

Best Practice

Understand the limitations of the Effective Permissions page.

In the end, it is difficult and time consuming to evaluate resource access at the level of
individual ACLs. In Solutions Collection 1, “Role-Based Management,” we presented an
approach to managing an enterprise environment with a database-driven approach that
used Active Directory groups to implement both the database and business logic
components of role based management. We suggested creating groups with names such
as ACL_Budget_Read and ACL_Budget_Edit to create a one-to-one relationship between a
database object (the group) and a point of management (the ACLs on a collection of
resources such as the budget). Doing so provides a visible, easily-managed approach to
the security of distributed resources.

Best Practice

Unless business requirements mandate otherwise, do not use well-known SIDs such as
Interactive, Network, Remote, Terminal Services User, Restricted, Anonymous Logon, or
Limited User to configure ACEs on a securable resource. Doing so makes the evaluation of
effective permissions much more difficult. Instead, elevate the management of ACLs to a
managed level, by applying the concepts and tools of role based access control as presented
in Solutions Collection 1, “Role Based Management.”

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 10
Solution summary

The ACL editor user interfaces can be used to view or edit permissions on a securable
resource, such as a file or folder. While you may be very familiar with the Security page of
the Properties dialog box, the Advanced Security Settings dialog box, and the Permission
Entry dialog box, it is worth ensuring that you know and follow these best practices:

• When viewing permissions, always click the Advanced button on the Security page,
and evaluate permissions using the Advanced Security Settings dialog box. In most
situations, the permissions templates on the Security page will not provide a complete
picture of the resource’s ACL.

• Understand the importance of the canonical listing of permissions on the Advanced
Security Settings dialog box. Permissions at the top of the list will override permissions
below them. Knowing that can facilitate the evaluation of effective permissions.

• When a permission displays “Special” in the Permission column of the Permissions
page of the Advanced Security Settings dialog box, view that permission in the
Permission Entry dialog box to fully understand its ACEs and inheritance flags.

• Recognize that the results of the Effective Permissions page are an approximation of
effective permissions that ignore a number of special identities.

• To reduce the burden of security management, implement the concepts and tools of
role based access control presented in Solutions Collection 1, “Role Based
Management.”

2-2: Manage folder structure

Solution overview

Type of solution: Guidance

Difficulty of implementation: Low

Features and tools: NTFS volumes

Solution summary: Maintain a “wide and shallow” folder structure enabling the
management of folder security using inheritance, with minimal “levels” of explicit ACLs

Benefits: Increased manageability and security

Introduction

“Beauty is only skin deep,” the saying goes. And life is beautiful when the scopes of
management of security are only skin deep as well. Said another way, “Go wide, not
deep.”

Folders serve two purposes. A folder organizes content—files and subfolders—in a single
container. And a folder, by maintaining an ACL with inheritable ACEs, scopes security for
the folder’s contents.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 11
Typically, file servers are characterized by multi-level hierarchies of folders. For example, a
top-level folder named “Data” might have subfolders for each department. A
departmental subfolder breaks down into projects and teams. Those folders contain many
levels of subfolders.

Create a folder structure that is wider, rather than
deeper

Such “deep” folder structures are relatively harmless from the perspective of those folders’
role of organizing content. However, if you are having to scope security by managing
ACLs on folders more than a few levels down, you are likely to start feeling pain. The
deeper you go to scope a particular level of access for a specific user or group, the more
difficult security management becomes. You begin to deal with increasing numbers of
“exceptions to the rule,” where “the rule” is a level of access scoped by ACLs on a parent
folder and you find yourself having to “open up” or “lock down” access on a subfolder.
You may also find yourself with mutually exclusive access needs, where, for example, a
user named Joe may need access to a folder four levels down when he should not be
accessing files in the folder above it, only two levels down. While such a requirement can
be met using Traverse Folder permissions and rights, that doesn’t mean it should be met
that way.

Instead, it is a best practice to configure permissions on a high-level folder, for those
permissions to be sufficient to describe security for all subfolders and files, and to allow
ACL inheritance to apply those permissions down the tree.

Best Practice

It is best practice to manage security with inheritance wherever possible, so that permissions
can be administered at a single point, higher in the folder hierarchy.

A quick review of inheritance fundamentals

ACLs, like several other Windows components, are characterized by the concept of
inheritance. With ACL inheritance, you can configure permissions of a container, such as a
volume or folder, and those permissions will propagate automatically to that container's
contents.

When a folder is given a set of permissions, most of those permissions are inheritable by
default and will be passed down to all the objects in that folder. This inheritance is
because child objects are configured to allow inheritable permissions from the parent to
propagate to the child ACLs by default. Therefore, an administrator needs to set
permissions only once at the parent folder, and those permissions will propagate
automatically to child files and folders.

Managing inheritance

Inheritance is the combined effect of inheritance flags of ACEs of a parent volume or
folder and a child file or folder that allows inheritance. Therefore, inheritance is configured
at two points of management: a parent folder or volume, and a child file or folder. At the

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 12
parent, inheritance flags of ACEs are configured using the Permission Entry dialog box,
shown in Figure 2-3.

Specifically, the Apply To drop-down list allows you to specify that a permission entry
affects either:

• This folder, subfolders and files (Default)

• This folder only

• This folder and subfolders (not files)

• This folder and files (but not subfolders)

• Subfolders and files only (but not this folder)

• Subfolders only (but not this folder or any files)

• Files only (in this folder only, not in subfolders)

Additionally, inheritance is affected by the checkbox labeled “Apply these permissions to
objects and/or containers within this container only.” This option modifies the scope
inheritance so that it applies only one level down, rather than applying to an entire branch
of a folder tree.

Whether a child file or folder allows inheritance is configured in the object’s Advanced
Security Settings dialog box, on the Permissions page. On Windows XP and Windows
Server 2003 systems, shown in Figure 2-5, the inheritance option is labeled “Inherit from
parent the permission entries that apply to child objects. Include these with entries
explicitly defined here.” On Windows Vista and Windows Server 2008 systems, shown in
Figure 2-2, the same inheritance option is labeled, “Include inheritable permissions from
this object’s parent.”

Figure 2-5 The Windows XP and Windows Server 2003 Advanced Security Settings dialog box

ACE inheritance is granular and dynamic. If a child object is configured to allow
inheritance, then any changes to inheritable permissions on the parent folder or volume

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 13
will propagate to the child without any user intervention. Inherited permissions do not
remove permissions assigned explicitly to the child object. The fact that ACEs are
propagated is an important concept: adding, removing, or changing and inheritable ACE
causes the NTFS file system to reconfigure ACLs on child objects that allow inheritance.
This will lead to challenges we will address elsewhere in this solutions collection. In a
container with a large number of objects, this propagation can take some time.

Important If you are experiencing an emergency situation in which access to resources must be
quickly restricted, change permissions on the SMB share, rather than NTFS permissions. SMB
share permission changes will take effect immediately for the entire share, whereas NTFS
permission changes will need to propagate to each object, which could take a significant
amount of time.

The impact of inheritance on folder hierarchy

Because it is best practice to manage security with inheritance wherever possible, it is also
best practice to avoid, whenever possible, configuring explicit permissions on folders more
than a few levels deep in the folder hierarchy. In an ideal world, only the first-level folders
(the departmental folders) or maybe the second-level folders (the team or project folders)
would require explicit ACEs. It is unlikely this ideal will be achievable in every shared
folder, but it is worth aiming for that goal.

Generally speaking, then, from a access control management standpoint:

Best Practice

You will be best served with a folder structure that is wider, versus deeper.

By having a larger number of folders at higher levels, you will be able to more effectively
manage ACLs on those folders.

Use DFS namespaces to present shared folders in a
logical hierarchy

You might be concerned that by flattening and widening your folder structure, your users
will have trouble navigating to locate resources they require. In Solution 2-15, we will
explore the following best practice in detail:

Best Practice

Use DFS namespaces to present your shared folders to users in a hierarchy that reflects the
logical organization of information in your enterprise, rather than forcing users to navigate the
physical storage structure of servers and folders.

DFS namespaces enable you to abstract the physical structure of shared folders—the
servers on which shared folders are hosted and the paths to those folders—and to present
shared folders in a virtual namespace. That means you can have a physical structure of
folders on your servers that provide for effective scopes of management for access to
resources (i.e. a “wide” folder structure) and still expose those folders to users in what

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 14
appears to be a deep, thoughtful hierarchy. If you are familiar with data management
concepts, the management of the files and folders (the physical storage of your files and
folders) is separated from the presentation of the folders to users (the logical organization
of the folders in a DFS namespace).

As a pleasant side effect, NTFS volumes perform better when the directory structure is
wider rather than deeper. So not only will you be able to mange access more effectively,
you will also get an albeit-small performance increase.

Solution summary

Create a folder structure that is wider, rather than deeper. Utilize high level folders,
preferably first-or-second level folders, to scope the management of access by applying
an ACL with inheritable ACEs that will not need to be “overridden,” “opened up” or
“locked down” below. Present the shared folders to users in a DFS namespace that reflects
the logical organization of content in your enterprise.

2-3: Manage access to root data folders

Solution overview

Type of solution: Guidance

Difficulty of implementation: Low

Features and tools: NTFS volumes, Group Policy File System policy settings

Solution summary: Create consistent root data folders on each file server and manage
support teams’ access to those root data folders using Group Policy to apply and maintain
ACLs

Benefits: Increased manageability and security

Introduction

Throughout this Resource Kit I will emphasize that consistency and manageability are
fundamental building blocks of security. I will also remind you to manage security on a
Least Privilege basis, giving users only the rights and permissions they require to perform
their job. This solution will provide a manageable way to achieve consistency and least
privilege for root, or “top level” data folders on file servers.

Create one or more consistent root data folders on each
file server

File servers will be accessed remotely, not just by users as they connect to shared folders,
but also by support personnel who need to perform tasks such as creating, removing, and
securing folders.

Too often I see a data volume on a file server with top-level folders acting as shares for
users. But what happens if a support person needs to modify permissions on one of those
top-level shared folders? They cannot. When you connect to a shared folder remotely,

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 15
you cannot change its NTFS permissions. You can only change permissions on folders
within the shared folder. To change the NTFS permissions of the shared folder, you must
either use MMC snap-ins or open the folder’s Properties dialog box with Windows
Explorer. Typically, the latter approach is desirable. But that means that the support
person is either connecting to the server with Remote Desktop, which may not be
desirable given the two-connection limit of RDP used for remote administration, or
support personnel are connecting to the hidden administrative share of the server, which
means they are in the Administrators group on the server, which is likely to be more rights
than they really need. Personnel who support shared folders are not necessarily (or should
not necessarily be) administrators of the server, so they will not always be able to connect
to the server using its hidden drive\ share.

Therefore, you should create a folder on the server’s data volume that will host shared
folders, and secure that folder so that users and support personnel can perform tasks
required for first-level folders within that root. We will call such folders “root data folders.”

For example, if two servers will host shared folders for projects and teams on their E:\
drive, create a folder on each server named E:\Data. Support personnel require the ability
to create a top-level folder for a new project or team: assign the Create Folders ACE to an
appropriate group. The Create Folders permission is shown in Figure 2-6.

Figure 2-6 The Create Folders ACE

Create additional root data folders if one the type of data stored in shared folders
mandates delegation to unique support teams. If three different IT support teams are
responsible for administering subfolders, then create three different root data folders with
ACLs that enable the functionality required by each team.

Wherever possible, keep data volumes and root level data folders consistent on file
servers. This will enable you to more effectively manage security on those folders.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 16
Use Group Policy to manage and enforce ACLs on root
data folders

When root data folders are provisioned consistently, Group Policy can be leveraged to
manage and enforce the ACLs on those folders.

1. Create a Group Policy Object (GPO) scoped your file servers. Name the GPO according
to your naming conventions, e.g. GPO_File Server Configuration. For more information
on scoping and naming GPOs, see Solutions Collection X, “Name of chapter.”

2. Open the GPO in the Group Policy Management Editor (called the Group Policy Object
Editor in Windows Server 2003).

3. Navigate to Computer Configuration \ Windows Settings \ Security Settings \ File
System.

4. Right-click File System and choose Add File.

Note that the Add File command allows you to manage files or folders.

5. In the Folder box, type the path to the root data folder as it exists on the local volumes
of the file server(s) that will be managed by the GPO, e.g. E:\Data.

Note that you can type the path—the folder does not have to exist on the system
from which you are editing the GPO.

6. Click OK.

7. The Database Security dialog box opens, as shown in Figure 2-7. This dialog box is
equivalent to the Security page of the Properties dialog box. Use it to configure the
appropriate ACL for the specified root data folder. Be particularly careful to manage
the inheritance flags of ACEs in this ACL. Detailed guidance and sample ACLs are
provided later in this chapter.

Figure 2-7 Group Policy configuration of folder security

8. Click OK to close the Database Security dialog box.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 17
9. In the Add Object dialog box, select Configure This File Or Folder Then and select
Propagate Inheritable Permissions To All Subfolders And Files. If, in fact, all subfolders
and files should contain an ACL identical to that of the root data folder, select Replace
Existing Permissions On All Subfolders And Files With Inheritable Permissions.

10. Click OK.

The GPO will now enforce the specified ACL for any system that is within the scope of the
ACL and contains a folder matching the specified path. Because File System policy settings
are applied by the Security Configuration Engine (SCE) extension, those settings will be
reapplied every sixteen hours, by default, even if the GPO has not changed. Therefore, if
an administrator modifies the folder’s ACL directly on the server, the ACL will be reset to
the specified configuration, on average, within eight hours.

Solution summary

Create a root data folder—a top level folder on the data volume of a file server—to
support each unique top-level access requirement (e.g. different support teams
responsible for subfolders). Use File System Group Policy settings to configure and enforce
the ACLs of root data folders.

2-4: Delegate the management of shared folders

Solution overview

Type of solution: Guidance

Difficulty of implementation: Low

Features and tools: Group Policy Restricted Groups policy settings

Solution summary: Where possible, dedicate the File Server role and manage the
membership of the Administrators group using Restricted Groups policy settings.

Benefits: Managed delegation of the capability to create, delete, and modify shared
folders.

Introduction

Shared folders can be managed, by default, only by members of the server’s
Administrators group. It is not possible to specify that certain users can create shared
folders in certain locations on the server: it is a system privilege.

Dedicate servers performing a file server role

If a server performs mixed roles, anyone who requires the ability to create shared folders
will be an administrator, and therefore will be able to affect other services on the server.
For this reason, it is often necessary to dedicate servers performing a file server role.

Best Practice

Dedicate servers performing a file server role.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 18
Manage the delegation of administration of shared
folders

To delegate the management of shared folders, you must add a user to the Administrators
group. The easiest way to manage this delegation, is to use Restricted Groups settings in
Group Policy to drive a capability management group into the local Administrators group.

1. Create a group to centrally manage and represent the capability to administer shared
folders. Name the group based on your naming conventions, e.g. SYS_Shared
Folder_Admins. For more information on capability management groups and naming
conventions, see Solutions Collection 1, “Role Based Management.”

2. Create a Group Policy Object (GPO) scoped your file servers. Name the GPO according
to your naming conventions, e.g. GPO_File Server Configuration. For more information
on scoping and naming GPOs, see Solutions Collection X, “Name of solutions collection.”

3. Open the GPO in the Group Policy Management Editor (called the Group Policy Object
Editor in Windows Server 2003).

4. Navigate to Computer Configuration \ Windows Settings \ Security Settings \
Restricted Groups.

5. Right-click Restricted Groups and choose Add Group.

6. Click Browse and search for the group you created.

While you can type the group name (in the format domain\groupname), if you make
a mistake the setting will not take effect correctly. Therefore it is recommended to
search for and select the group.

7. Click OK to close the Add Group dialog box.

8. In the Properties dialog box, click the Add button next to the section labeled This
Group Is A Member Of.

9. In the Group Membership dialog box, type Administrators and click OK. The result
should look like Figure 2-8.

Figure 2-8 Group Policy Restricted Groups policy placing a group into the local Administrators group

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 19
10. Click OK to close the Properties dialog box.

This GPO will now ensure that the selected group is a member of the local Administrators
group on all servers within the scope of the GPO. It will not remove members from, or
otherwise manage, membership of the Administrators group.

Note If the local Administrators group should only contain the capability management group
(SYS_Shared Folders_Administer), then perform the procedure described above but, in Step 8,
click the Add button next to the section labeled Members Of This Group. Doing so will result
in the list of members being the complete and authoritative membership of the
Administrators group. The server will remove any members of the Administrators group not
provided for by the GPO.

The tricky part about this approach to group management is that if more than one GPO
attempt to specify group membership for a group with the Members Of This Group list, only
the most authoritative GPO’s setting will be applied.

It is unfortunate that Windows does not enable an enterprise to delegate the
management of shared folders with a user right or ACL. The only supported method for
allowing a user to create or manage shares is for that user’s token to include the
Administrators SID. Therefore, you must either:

• Accept the fact that support personnel who should be able to manage shared folders
will be administrators of the file server. This means they have a number of avenues
with which to access, modify, delete, or otherwise damage the integrity of the file
server and all of its data.

• Provide a tool that provisions shares using alternative credentials. Such tools are
described later in this book. Given the security sensitive nature of data on file servers,
this is highly recommended.

Solution summary

Create a group in Active Directory that represents and manages the capability to
administer shared folders (e.g. SYS_Shared Folders_Administer). Implement the capability
by nesting that group in the local Administrators group of file servers using Restricted
Group settings in a GPO scoped to file servers.

2-5: Determine which folders should be shared

Solution overview

Type of solution: Guidance

Difficulty of implementation: Low

Features and tools: Shared folders

Solution summary: Understand the design criteria that determine whether a folder
should be shared, and how many shares are required.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 20
Benefits: Optimize the number of shared folders in your environment.

Introduction

There are best practices to whether and how to share a folder. The best practices, which
will be laid out later in this solution, require consideration of the following settings:

• NTFS permissions. A folder should be correctly permissioned with NTFS ACLs prior to
being made available as a shared folder.

• Share protocols. Windows Server 2008 enables you to share folders using SMB, the
standard share protocol for Windows clients, and Network File System (NFS), which is
used for compatibility with Unix and Linux clients. In this solutions collection, we will
examine only SMB shared folders.

• The name for the SMB shared folder.

• An optional description for the shared folder.

• A limit to the number of concurrent users that the shared folder will allow.

• SMB permissions, also known as “share permissions.”

• Caching settings that determine whether files and folders within the shared folder may
be taken offline.

• Access-based enumeration, which, if configured, will hide the contents of a shared
folder to which users do not have Read permission when accessing the shared folder
remotely. ABE is available for download and installation on Windows Server 2003 SP1
or later, and is installed by default on Windows Server 2008. ABE is discussed in
Solution 2-12, “Prevent users from seeing what they cannot access.”

• Whether and how the shared folder will be presented in a DFS namespace. The DFS
Namespaces role service is discussed in Solution 2-18, “Create an effective, delegated
DFS namespace.”

Determine which folders should be shared

From a design perspective, the art and science of deciding what to share boils down to
two key factors:

Presentation of information to users

Shared folders provide a unique connection to a collection of files and folders. The UNC
to the share is, of course, \\servername\\sharename. Therefore, if you want to have
separate “entry points” to a collection of Finance documents and a collection of Marketing
documents, you could create a shared folder for each, \\servername\Finance and
\\servername\Marketing. If you were to organize the information in your enterprise in this
manner, you could end up with a large number of shares. Unfortunately, this is exactly
what most enterprises have done, and is not the best practice.

Since the introduction of Windows 2000, Windows clients have the ability to connect
“below” a share. Therefore, you could have a single root data folder shared as
“Departments$,” within which folders exit for Finance and Marketing. UNCs can target
“\\servername\Departments$\Finance” and “\\servername\Departments$\Marketing.” If

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 21
those UNCs are used to map a network drive to Marketing or Finance, or if the UNCs are
used as targets for folders in a DFS namespace (discussed in Solution 2-18), users will not
be able to go “up” to the Departments folder from their own department.

The combination of client connections to subfolders of a shared folder and the
implementation of DFS namespaces enables an enterprise to share only top-level data
folders, not each subfolder.

Management of SMB settings

Shared folders also provide a scope of management for settings described earlier: user
limits, SMB permissions, access-based enumeration, and caching settings. It is for these
reasons that you may need to create additional shared folders. If, for example, two
departments require different caching settings, those two departments must be in two
separate shared folders in order to provide two unique scopes of management.

Interestingly, this does not mean they need to be in separate folders on the file system. In
a scenario requiring Marketing users to be able to take files offline but restricting Sales
users from doing the same, you could create a file system hierarchy with two folders:
E:\Data\Sales and E:\Data\Marketing. You could, if you so choose, share each folder
separately with appropriate caching settings. Alternately, you could share E:\Sales and
Marketing as “Sales$” with caching disabled and SMB permissions allowing only Sales
users to connect to the share. The exact same folder could be shared a second time as
“Marketing$” with caching enabled and SMB permissions allowing only Marketing users to
connect to the share. It is the properties of the SMB shared folder that is enforcing
caching settings, not properties of the NTFS folder.

Solution summary

Create a shared folder for a top-level data folder. Create additional shared folders
wherever a scope of management is required for SMB permissions, caching, connection
limits or access-based enumeration.

2-6: Implement folder access permissions based on
required capabilities

Solution overview

Type of solution: Guidance, scripts

Difficulty of implementation: Low

Features and tools: NTFS folders, ACLs, icacls

Solution summary: Support folder access scenarios by applying thoughtful, nuanced
collections of NTFS permissions.

Benefits: Manageable, automated, and consistent application of least privilege access to
folders.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 22
Introduction

Prior to creating a shared folder, you must ensure that the folder’s NTFS permissions are
configured correctly. NTFS ACLs should be the primary, if not the sole, method with which
access levels are implemented.

Some organizations refer to a user having the “role” to access a folder at a particular level.
I prefer to reserve the word role to describe a user or computer based on business-driven
characteristics, such as location, department, team, or function. Several user roles (e.g.
departments) may each require the capability to read files in a folder. In keeping with the
terminology set forth in Solutions Collection 1, “Role Based Management,” we will refer to
access levels as capabilities—in this case, capabilities to access a file or folder at a
particular level.

This solution will examine specific access capabilities that may be desired and the ACLs
that must be implemented to enable those capabilities. We will describe how capabilities
can be implemented in the user interface, and we will use icacls.exe to apply the
permissions. Icacls.exe is available on Windows Vista and Windows Server 2008. It replaces
and enhances commands from previous versions of Windows including cacls.exe,
xcacls.exe, and xcacls.vbs.

Best Practice

It is always a best practice to assign permissions to groups, not to individual users.

Implement a Read capability

Read access is the simplest to implement. The Read permission template can be assigned
on the Security page of the Properties dialog box for a file or folder.

1. Open the Security page of the Properties dialog box for a folder or file.

2. Click the Add button. If it is not visible on a Windows Vista or Windows Server 2008
system, click Edit, then click Add.

3. Select a security principal, preferably a group.

The default permissions that are applied include Read & Execute, Read, and, if the object
is a folder, List Folder Contents. In the Advanced Security Settings dialog box, on the
Permissions page, the three permissions templates that are applied by default when you
add a security principal to the ACL are listed simply as Read & Execute in the Permission
column. The specific ACEs that make up this permission, which can be viewed in the
Permission Entry dialog box, are:

• Traverse folder/execute file

• List folder/read data

• Read attributes

• Read extended attributes

• Read permissions

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 23
NoteYou can learn more about what each permission provides by clicking the link Managing
Permission at the bottom of the Permission Entry dialog box.

These permissions make an effective and secure Read capability.

 To implement a Read capability using icacls.exe:

icacls.exe <path to folder> /grant <security principal>:(CI)(OI)RX

or

icacls.exe <path to file> /grant <security principal>:RX

For example, to implement a capability to read Team A’s folder:

icacls.exe "e:\data\team a" /grant "ACL_Team A_Read":(CI)(OI)RX

Note The parameters (CI) and (OI) implement the inheritance flags of a permission. (CI) means
apply to this folder and subfolders. (OI) means apply to files in this folder and in subfolders. To
apply a permission one level deep, add the (NP) parameter, which means “no propagation.” To
configure a permission to apply to objects within this folder, but not to the folder itself, use
the parameter (IO), or “inherit only.” Because we are assuming that you are managing ACLs at
a high level folder for all of its files and subfolders, we will be using (CI) and (OI) switches.

The default Read & Execute permission template, which includes the Read template and, if
a folder, the List Folder Contents template, allows users to open all file types. You can
prevent users from opening and running executables by removing the Execute File
permission entry. The easiest way to do this is to clear the check box Allow::Read &
Execute, leaving only Allow::Read and, if the object is a folder, Allow::List Folder Contents.

This resulting ACL should be tested to ensure it does not overly restrict users, and prevent
them from opening file types they require for business reasons. With the File Server
Resource Manager (FSRM) service, it is more effective to implement file screening to
prevent the storage of executables in the first place.

To implement a Read capability while restricting executables:

icacls.exe <path to folder> /grant <security principal>:(CI)RX <security

principal>:(CI)(OI)R

Implement a Browse To capability

There may be scenarios that require a user to connect to a resource deep within a folder
hierarchy that the user should otherwise not be able to browse. Imagine a folder structure
such as “E:\Data\Finance\Team A\Communications\.” A user in the communications
department requires access to the files in the Communications folder. We need the user to
be able to browse to the Communications folder, but we do not want the user to be able
to “browse” parent folders.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 24
To understand what the solution entails, you must know that if a user enters a path to a
folder, e.g. “\\servername\Departments$\Finance\Team A\Communications”, they require
two capabilities in order for Windows Explorer to successfully display the folder. First, they
require the ability to view the contents of the Communications folder.

This can be implemented as a Read capability, as described above. The least privilege
ACEs required to support the Browse To capability are two permission entries: List Folder
and Read Attributes. These can be allowed in the Permission Entry dialog box or using
icacls:

icacls <folder path> /grant <security principal>:(CI)(RD,RA)

Note this permission is not enough for users to open subfolders or files: only to view the
contents of this folder. To allow users to actually open files, implement a Read capability
on the target folder, Communications.

The second capability users require is to be able to traverse parent folders in the path to
the folder they are opening. In our example, that means users require the ability to
traverse the folder shared as Departments$, the Finance folder, and the Team A folder.
This capability can be implemented two ways: using a system privilege or an NTFS
permission.

 There is a system privilege, also known as a user right, called Bypass Traverse Checking,
which is granted to Everyone by default. With this default user right in place, a user
requires only the aforementioned permissions on the target folder, Communications. The
ability to traverse parent folders is provided by the user right.

The second way to implement the capability to traverse folders is to grant the
Allow::Traverse Folder ACE on each parent folder, using the Permission Entry dialog box
or, again, icacls:

icacls.exe <folder path> /grant <security principal>:(CI)(X)

If you change the default configuration of the Bypass Traverse Checking system privilege
so that users do not have the right to traverse folders, then the NTFS Traverse Folder ACE
must be granted on all parent folders, starting with the shared folder.

On subfolders that you do want users to browse to and open, apply the List Folder and
Read Attributes permissions or the full Read, or Read & Execute permission sets. To get
them to those folders, the Traverse Folder, List Folder, and Read Attributes ACEs are part
of the Read & Execute permission template, but if you want to prevent a user from
opening a parent folder, such as “\\servername\Departments$\Finance” or its Team A
subfolder, you need to grant the user only the Traverse Folder ACE on those parent
folders. Using icacls, the Browse To capability is implemented as shown below:

icacls.exe <path to shared folder> /grant <security principal>:(CI)(X)

icacls.exe <path to target folder> /grant <security principal>:(CI)(RD,RA)

Again, this will enable users to open the target folder when it is a subfolder in a folder
hierarchy. To enable users to open files within that target, implement a Read capability:

icacls.exe <path to target folder> /grant <security principal>:(OI)[R or RX]

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 25
Implement an Edit capability

The edit capability is commonly implemented for scenarios in which a team of users
should be able to open each other’s documents and make modifications to those
documents. The problem is that most enterprises implement the edit capability using the
Modify permission template. The Modify template includes the Delete permission entry.
When a group is given Modify permission to a folder, any user in that group can,
accidentally or intentionally, delete the folder and all of its contents, or any subset of the
folder’s contents. This creates at best a denial of service: for a period of time, users cannot
access the files they require while data is restored. At worst, data is lost—particularly data
that has not yet been backed up or captured by Shadow Copies.

Even more dangerous is the Full Control permission template, which adds the Delete
Subfolders and Files, Change Permissions, and Take Ownership permission entries. Each of
these entries open up new opportunities for any member of the group to damage or
destroy data in the folder tree, up to and including the entire folder tree. The Delete
Subfolders and Files ACE is a unique, container permission that enables a user to delete a
folder and all of its contents, even if the user has explicit Deny::Delete permissions on
those contents. It is an especially dangerous permission to apply to a group.

Best Practice

Unless required by business needs, do not allow a group the Modify or Full Control permission
templates on a folder, as both of those templates enable any user in the group to cause denial
of service or data loss within the folder.

In many business scenarios, it is not appropriate for users to be able to delete each other’s
documents—it is only necessary for them to be able to change each other’s documents.
Thus, the edit capability should be implemented using one or more of the following:

• The Write permission template for the group. The Write permission template,
applied to a folder and assigned to a group, gives any member of the group the ability
to make changes to, but not delete, other users’ documents. It also enables any
member of the group to create new files or folders.

• The Delete permission for a more restricted group. Consider granting Allow::Delete
to a subset of users on the team. Implement a folder cleanup or folder management
capability that includes the Allow::Delete ACE or the Allow::Modify permissions
template.

• The Modify permission template scoped to files, not folders. Alternatively, grant a
group the Allow::Modify permission on a folder, but change the inheritance flag so
that it applies only to files, not to folders. The effect of doing this will be that users can
still delete each other’s documents, but folders will be protected.

• The appropriate permissions for Creator Owner. When a user creates a file or
folder using the Create File or Create Folder ACE (both of which are included in the
Write permission template), that user becomes the Owner of the new object, and the
user’s account is given explicit ACEs equivalent to the inheritable ACEs assigned to the
Creator Owner special identity on the parent folder. So, if you give the Creator Owner
identity the Modify permissions template, which includes an Allow::Delete ACE, on the

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 26
parent folder, and apply that template to Files, then whoever creates a new file in the
folder will be given Modify, and therefore Delete permission on the new file. This is, in
fact, the best practice for most business scenarios. Thereby, the person who created a
file will have the ability to delete their own file, but users in the group cannot delete
each other’s files.

If you grant the Creator Owner Full Control, which is a standard practice and is, in
fact, the Windows default, you take two risks. First, users can change permissions on
the objects they create without such action triggering a Failure audit. We will
explore this issue in Solution 2-11. Second, if a user creates a folder, and thus
inherits Full Control of that folder, they can effectively take ownership of, change
permissions of, or completely delete any files or folders that are later added to the
folder they created.

When implementing an Edit capability, the best practice is to grant the Creator
Owner the Modify permissions template, inheritable to files only, but this is a
“squishy” best practice that applies primarily to team shared folders, and even then
should be fully evaluated given your business requirements. The “bottom line” is
that you need to carefully consider permissions granted to Creator Owner. Do so in
light of the guidance in Solution 2-11.

The method you use to implement an Edit capability will vary based on the business
requirements for the data in a folder. The most secure Edit capability, implemented such
that users can change but not delete each others’ documents, and only the creator of a
document can delete the document, can be implemented using icacls.exe:

icacls.exe <folder path> /grant <security principal>:(CI)W[R | RX] <security

principal>:(OI)

icacls.exe <folder path> /grant "Creator Owner":(CI)(OI)(IO)M

Implement a Contribute capability

An Edit capability enables users with the capability to modify each others’ documents. A
Contribute capability enables users to create or save documents in the shared folder, and
to read but not change each others’ documents.

Implement this capability by granting a group the ability to create files and folders within
a folder, and to read the contents of the folder. Using icacls.exe:

icacls.exe <folder path> /grant <security principal>:(CI)(WD,AD) <security

principal>:(CI)(OI)[R | RX]

Additionally, you must determine the capabilities you want users to obtain when they
create a new file or folder. Refer to the discussion of the Creator Owner permissions
above. For example:

icacls.exe <folder path> /grant "Creator Owner":(CI)(OI)(IO)M

Implement a Drop capability

A drop folder allows users to add files to the folder, but not to access those files once they
have been added. This is implemented by giving users the Create Files permission entry on
a folder, but not the List Folder Contents permission.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 27
icacls.exe <folder path> /grant <security principal>:(CI)(WD)

Because users don’t have Read permission to the drop folder, the folder will not appear if
you have access-based enumeration (ABE) configured for the shared folder. ABE must be
disabled for the share in which such a drop folder exists.

A variation of this capability allows users to drop files into the folder and then to have the
ability to access their own files, but not to see files from other users:

icacls.exe <folder path> /grant <security principal>:(CI)(WD) <security

principal>:(NP)[R | RX]

icacls.exe <folder path> /grant "Creator Owner":(OI)(IO)[R | RX | W | M]

This set of permissions gives a group the ability to add files to the folder, and to see the
contents of the folder. The tricky part is that you enable ABE, so users will only see the files
that they added. The user who added a file will have read, write, or modify permission,
according to the permission switch you used on the second icacls.exe command.

Implementing a Support capability

The support capability enables a user to perform administrative tasks on files and folders,
including renaming, moving, or deleting. The capability is often implemented using the
Full Control permission template. As discussed earlier, this template contains several
dangerous permission entries, so it should be granted with extreme caution. If you do
wish to use a Full Control permission template, the following icacls.exe command will do
so:

icacls.exe <folder path> /grant <security principal>:(CI)(OI)F

Often, support personnel do not require the ability to take ownership or change
permissions on a file or folder, and they rarely require the Delete Subfolders and Files
permission. So you should consider implementing the support capability using the Modify
permission template:

icacls.exe <folder path> /grant <security principal>:(CI)(OI)M

If you wish to add any of the remaining three granular permissions that distinguish the
Modify and Full Control permission templates, add the WO (write owner), WDAC (write
discretionary access control) or DC (delete child) permissions. For example, to allow the
support organization modify and to take ownership:

icacls.exe <folder path> /grant <security principal>:(CI)(OI)M(WO)

The Support capability may be called “support,” “administer,” or even “own.” All three of
those descriptions convey an ability to perform actions on resources in a shared folder.

Create scripts to apply permissions consistently

In order to facilitate consistent application of ACLs to support the capabilities you
implement in your organization, create scripts to ensure the correct permissions are
applied. For example, the following script will create a Contribute capability for a folder by
giving a group the correct permissions:

Folder_Capability_Contribute.bat

@echo off

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 28
Set GROUP=%1

Set FOLDER=%2

icacls.exe "%FOLDER%" /grant "%GROUP%":(CI)(WD,AD) "%GROUP%":(CI)(OI)R

icacls.exe <folder path> /grant "Creator Owner":(CI)(OI)(IO)M

@echo on

The script can be called with two parameters, the first specifying the group that should be
given the Contribute capability and the second specifying the folder, e.g.:

Folder_Capability_Contribute.bat ACL_MyFolder_Contribute

"\\server01.contoso.com\departments$\Finance\Team A"

Similar scripts, each utilizing the icacls.exe commands described in this solution, can be
prepared to implement capabilities you require.

Manage folder access capabilities using role-based
access control (RBAC)

Role-based access control (RBAC) is a common way to describe role-based management
(RBM) as it applies to the management of resource access. Nowhere does RBM provide a
bigger “bang for the buck” in terms of IT productivity than RBAC. Many organizations can
benefit from the agility that is enabled by RBM: when a user is hired, the definition of their
roles by HR and their manager results in instant and consistent resource access the day
they report to work. When a user is promoted or moved within the organization, the
redefinition of the user’s roles (moving them between groups) results in a seamless
transition from the resource access required by the previous roles and that required by the
new roles.

Additionally, RBAC enables an IT organization to answer two critical questions: “What can
user access?” and “Who can access resource?” Traditionally, when the first question is
asked, it requires an administrator to scan multitudes of ACLs to locate ACEs assigned to
groups to which the user belongs or directly to the user account. When the second
question is asked, an administrator must make sense of ACEs like Traverse Folder, Append
Data, and Delete Subfolders and Files. RBAC will revolutionize your ability to analyze and
audit resource security.

Solution 1-6, “Implement Role Based Access Control (RBAC)” discussed RBAC
implementation in detail, in the context of role based management as a whole. To
summarize the best practices for RBAC:

• Role groups are implemented as global security groups. They define collections of
users and computers based on common business characteristics.

• Resource access capabilities are implemented by adding permissions to ACLs.

• Those capabilities are managed by creating domain local security groups that
represent a specific capability for a specific collection of resources, e.g.
ACL_Budget_Read and ACL_Budget_Contribute.

• Role groups and, occasionally, individual users or computers are given capabilities not
by adding them directly to the ACL, but by nesting them within the appropriate
capability management group.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 29
Solution summary

Permission a folder based on the capabilities required by users for that folder.
Unfortunately, capabilities required by today’s information workers cannot be
implemented with least privilege access without managing granular permission entries
(ACEs) and inheritance properties of those ACEs. While these permissions can be applied
using the user interface, you will often be better served using icacls.exe to configure
security, particularly because you can then automate icacls.exe using scripts to ensure
consistent application of permissions. Be sure to manage resource access capabilities by
creating a capability management group to represent a specific type of access to a
collection of resources. That will enable you to leverage role based management to
implement role based access control (RBAC).

2-7: Understand shared folder permissions (SMB
permissions)

Solution overview

Type of solution: Guidance

Difficulty of implementation: Low

Features and tools: Shared folders, net share

Solution summary: In most scenarios, share permissions should be Everyone::Allow::Full
Control, and NTFS permissions should be used to secure the folder according to business
requirements. Unfortunately, the default SMB permissions applied to a new shared folder
are usually Everyone::Allow::Read, which is too restrictive to be useful in most scenarios.
The net share command can create a share with specific permissions, such as
Eveyrone::Allow::Full Control.

Benefits: Increased manageability of shared folder security.

Introduction

The permissions associated with a shared folder have long been called “share
permissions.” Because Windows Server 2008 natively supports sharing folders with NFS,
they are now referred to more specifically as SMB permissions. SMB permissions are
challenging to use for implementation of security, because they affect resource access in
unusual ways.

First, if the effective SMB permission for a user is more restrictive than their effective NTFS
permission, the SMB permission will “win.” So, even if a user has Allow::Full Control NTFS
permissions, if the folder is shared as Everyone::Allow::Read, the user will only be able to
read items. And Everyone::Allow::Read is the default permission applied when you create a
share with user interface tools in Windows Server 2003 and later operating systems.
Therefore, even Administrators creating the share will be unable to access the share with
anything more than Read permissions.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 30
Second, SMB permissions affect resource access only if the resource is accessed through
that shared folder’s UNC. If resources are accessed locally by logging on to the server
interactively, or if resources are accessed by a user logging on with remote desktop and
finding the resource on the file system, SMB permissions do not apply. The same physical
folder can be shared several times, each with unique share permissions. So users accessing
a file within that folder could have completely different effective permissions depending
on which shared folder UNC they accessed.

Third, SMB permissions are “weak.” They are stored in the registry, not in the security
descriptor of the shared folder itself. If the folder is moved or renamed, the share
permissions are effectively lost because they now refer to a folder that no longer exists.

There are a number of other reasons why share permissions are not used by many
organizations. Instead, these organizations set forth a policy under which every share is
created with Everyone::Allow::Full Control SMB permission. Doing so does not expose any
data within the shared folder, because the same folder is secured using NTFS permissions
to configure least privilege access.

There are, in my experience, only a handful of salient scenarios under which SMB
permissions should be anything other than Everyone::Allow::Full Control:

• Prevent users (even object owners) from changing permissions. Setting the SMB
permission to Allow::Change prevents users from changing the permissions of
resources in the shared folder, even if they are the owner of the object. Of course, the
restriction only applies to remote access through the shared folder’s UNC, not to local
or remote-desktop access to the folder. Starting with Windows Server 2008, this
business requirement can be met using the Owner Rights identity, described in
Solution 2-11.

• Create a hub-and-spoke distribution of resources. Some organizations wish to
distribute a copy of resources to multiple locations. DFS Replication (DFS-R) or the
Robocopy command can be used to do just that. If your organization wants to ensure
that changes are made to “original” documents in only one location, you have a
challenge. DFS-R replicates NTFS permissions, and Robocopy can and should be
configured to replicate permissions using the /COPY:S or /COPYALL switches.
Therefore, to allow changes in one place but not others, you must give users Write or
Modify NTFS permissions, then further restrict such changes by applying an
Allow::Read share permission to the shared folders that act as “copies.” This scenario is
addressed in Solution 2-15.

• Apply different SMB settings to different users for the same folder structure.
SMB settings include access-based enumeration and caching settings. Suppose you
have a departmental folder, and you want to prevent all but a few users from taking
files offline. You could achieve this by sharing the folder twice. The first share would
have caching disabled. The second share would have caching enabled, and share
permissions that allowed only the selected users to access the folder through that
share’s UNC. Similarly, you might have a folder structure which should appear to some
users with ABE enabled, but other users, such as the support staff, should see all files.
Two separate shares, with two separate configurations and permissions would achieve
this goal.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 31
• Temporary lockdown. Typically, a shared folder is configured with
Everyone::Allow::Full Control SMB permission, and access capabilities are implemented
using more restrictive NTFS permissions. A scenario might arise that requires “locking
down” a resource. Perhaps a security trigger requires “freezing” a folder—preventing
access or perhaps allowing only Read access. Changing the share permission from
Allow::Full Control to Allow::Read or even Deny::Full Control can instantly prevent
further changes to data in the shared folder. Changing the root level folder’s NTFS
permission, however, would result in an ACL propagation which could be problematic
because:

o ACL propagation to all objects requires that all child objects inherit
permissions, which may not be the case.

o An explicit permission on a child object might enable the very type of access
that you wish to prevent.

o ACL propagation “touches” files which might affect the ability to effectively
audit or perform forensic investigation on the files.

o ACL propagation takes time and, when a large number of files are affected,
may allow access to files at the previous level for an undesirable length of
time.

Locking down a folder using SMB permissions takes effect immediately, does not “touch” files
or folders within the share, and can be easily reverted. Just remember the weaknesses of SMB
permissions, such as the fact that they will not limit access to files by users logged on
interactively or using remote desktop to the file server.

Scripting SMB permissions

The easiest way to implement SMB permissions is to use the net share command to create
the share:

net share sharename=path /GRANT:user or group,[READ | CHANGE | FULL]

The net share command allows you to assign permissions only when creating a share. You
cannot modify permissions on an existing share using net share—you must delete and
recreate the share. Custom scripts, such as those written in VBScript, can attach to the
security descriptor for the SMB shared folder and modify its ACL at any time. Solution 2-9,
“Provision the creation of a shared folder,” will present just such a script.

Because of its ability to create a share and apply SMB permissions simultaneously and
efficiently, I recommend using the net share command, rather than the GUI, to create a
share. Using PSExec, you can execute the net share command on a remote system.

Solution summary

Shared folders should be secured for least privilege access using NTFS permissions.
Therefore, SMB permissions can be set to Everyone::Allow::Full Control. This best practice
is in place in most organizations. There are only a handful of scenarios, some of which
were detailed in this solution, which would require setting share permissions to anything
more restrictive. Because Windows’ default share permission is Everyone::Allow::Read
when creating a share using GUI tools, it is recommended to use the net share command

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 32
with the /GRANT:Everyone, Full switch to create a share and set its permissions
simultaneously.

2-8: Script the creation of an SMB share

Solution overview

Type of solution: Script

Difficulty of implementation: Low

Features and tools: VBScript, PSExec, net share

Solution summary: Customize and use the Share_Create.vbs script to script the creation
of an SMB share, including all of its properties.

Benefits: Increased manageability of shared folder security.

Introduction

The Share_Create.vbs script, in the Scripts folder of the companion media, creates a share
and assigns the Everyone::Allow::Full Control permission. The usage of the script is as
follows:

cscript Share_Create.vbs /server:ServerName /path:”Path to folder on server’s

file system” /sharename:”Share name” [/cache:CacheSettings]

[/username:AltCredsUsername /password:AltCredsPassword

where CacheSettings specifies the caching settings, and can be one of the following:
Manual, Documents, Programs, or None, and where AltCredsUsername and
AltCredsPassword are the user name and password, respectively, for credentials to be used
for creating the share. If alternate credentials are not specified, the script runs under the
security context of the currently logged-on user.

Customizing Share_Create.vbs

Unfortunately, caching settings are not exposed in a way that can be accessed using
VBScript. Therefore, we have to execute the “net share” command to configure caching
settings. The Share_Create.vbs script relies on psexec.exe to run net share on remote
machines.

You must specify, in the script’s Configuration block, the full path to psexec.exe. The path
is not required if psexec.exe is in the same folder as the script.

Optionally, you may wish to change the share permissions assigned by the script to a new
shared folder. By default, the script grants the Everyone::Allow::Full Control permission.
You can modify this default or configure additional permissions to be applied to the new
share.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 33
Understanding Share_Create.vbs

The core functional components of the script are described below.

Set oWMIService = ConnectWMI(sServer, "root\cimv2", sUsername, sPassword)

This line calls the ConnectWMI function to connect to the “root\cimv2” WMI namespace
on the server specified by the /server: argument on the command line. Before creating a
new shared folder, any previous share by the same name is removed:

Set oOutParams = oWMIService.ExecMethod("Win32_Share.Name='" & sShareName & "'",

"Delete")

Then, a security descriptor is generated that contains the SMB ACL for the shared folder.
These lines of code can be modified to specify a different default ACL:

Set oSecDescClass = oWMIService.Get("Win32_SecurityDescriptor")

Set oSecDesc = oSecDescClass.SpawnInstance_()

Set oTrustee = oWMIService.Get("Win32_Trustee").SpawnInstance_

Set oACE = oWMIService.Get("Win32_Ace").SpawnInstance_

' CONFIGURATION (Optional)

' Use these three lines of code for "EVERYONE"

oTrustee.Domain = Null

oTrustee.Name = "EVERYONE"

oTrustee.Properties_.Item("SID") = Array(1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)

' For a user/group other than Everyone, use the following line instead of the

previous three lines

' Set oTrustee = Trustee_Get("<domain>", "<name", "user | group")

' CONFIGURATION (Optional)

oACE.Properties_.Item("AccessMask") = 2032127

' 2032127 = "Full"

' 1245631 = "Change"

' 1179817 = "Read"

oACE.Properties_.Item("AceFlags") = 3

oACE.Properties_.Item("AceType") = 0

oACE.Properties_.Item("Trustee") = oTrustee

oSecDesc.Properties_.Item("DACL") = Array(oACE)

Once the security descriptor has been prepared, the shared folder can be created:

Set oWin32Share = oWMIService.Get("Win32_Share")

Set oInParam = oWin32Share.Methods_("Create").InParameters.SpawnInstance_()

oInParam.Properties_.Item("Access") = oSecDesc

oInParam.Properties_.Item("Description") = sRemark

oInParam.Properties_.Item("Name") = sShareName

oInParam.Properties_.Item("Path") = sPath

oInParam.Properties_.Item("Type") = 0

Set oOutParams = oWin32Share.ExecMethod_("Create", oInParam)

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 34
Finally, the net share command is launched to configure caching settings for the shared
folder:

sCommandLine = "net share """ & sShareName & """ /CACHE:" & sCache

PSExec_Run sCommandLine, sServer

Solution summary

The Share_Create.vbs script provisions the creation of a shared folder including its ACL,
description, share name, and more.

2-9: Provision the creation of a shared folder

Solution overview

Type of solution: Tool

Difficulty of implementation: Low

Features and tools: HTA, VBScript, PSExec, net share

Solution summary: Customize and use Folder_Provision.hta to fully provision the creation
of a shared folder including role-based access control.

Benefits: Automated, rule-based provisioning of shared folders and security.

Solution Preview

Figure 2-9 The Provision a Shared Folder tool

Introduction

Provisioning a shared folder is not a one-step process. To provision a shared folder, you
must:

• Create the folder, if it does not exist.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 35
• Create resource access capability management groups with which to secure the folder,
if you are following principles of role based access control (RBAC) and if the groups do
not already exist.

• Implement resource access by modifying the ACL of the folder to include appropriate
ACEs assigned to the capability management groups.

• Create of an SMB share.

• Assign SMB share permissions.

• Modify properties of the SMB share such as the description and caching settings.

Throughout this Resource Kit, we are leveraging the concept of provisioning to automate
multi-step processes, and to ensure consistent application of business rules. A process with
as many “moving parts” as the provisioning of a shared folder is an ideal candidate for a
custom administrative tool.

Figure 2-9 shows the interface for Folder_Provision.hta, located in the Scripts folder of the
companion media. This tool provisions folders, automating all of the steps listed above. It
will require a moderate amount of customization to reflect your enterprise configuration
and business logic. In this solution, we’ll examine Folder_Provision.hta to understand its
use, its customization, and the code that it leverages to achieve its task.

Using Folder_Provision.hta

Folder_Provision.hta is located in the Scripts folder of the companion media. It requires
the two scripts we introduced in earlier solutions, Folder_Create.vbs and Share_Create.vbs.
It also requires psexec.exe, which can be downloaded from
http://www.microsoft.com/technet/sysinternals and icacls.exe, which is a native tool on
Vista and Windows Server 2008 systems. Place the HTA in the same folder as the two
scripts. You will also need to configure the HTA to know the path to psexec.exe, unless
you put it in the same folder as the HTA itself. We will look at how to configure the HTA
later in this solution.

To use the tool to provision a folder, you must be able to:

• Create a folder in the specified location (unless the folder already exists)

• Create a share on the selected server (unless the share exists, or you are not sharing
the folder)

• Modify ACLs on the folder

• Create groups in the OU specified on the Options page (unless the groups already
exist)

When the tool opens, as shown in Figure 2-9, it displays a number of input controls that
will enable you to provision a shared folder.

To provision a folder:

1. Select a server from the Server drop-down list.

This list can be customized to display your file servers.

2. Enter a name for the folder

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 36
3. The Folder Location is populated automatically.

o The default location will be a first-level folder beneath a root data folder. The
root data folder can be configured on the Options page.

o You can customize the HTA’s logic with which the folder location is
populated.

o You can override the default folder location by entering the correct location
in the Folder Location box. You can customize the HTA to prevent manually
overriding the folder location.

4. Select the Share Folder check box (selected by default) to create a new SMB share for
the new folder.

5. If you are creating a share, you can specify whether to enable offline files for the share
by selecting the Enable Offline Files check box (cleared by default).

6. If you are creating a share, the UNC Path to Folder is populated automatically.

o By default, the UNC is a hidden share in the form \\server name\folder name.
You can configure whether the HTA creates hidden shares (the default) or not
on the Options page.

o You can customize the HTA’s logic with which the UNC path is created.

7. Enter a Description for the share.

8. Enter the Groups Base Name.

o The HTA provisions the folder using role based access control. It creates
capability management groups for selected capabilities, such as Read, Edit,
Contribute, or Administer. Each group’s name is in the form ACL_Folder
Name_Capability. As soon as you change the value in the Groups Base Name
box, the group names for each capability are automatically generated.

o On the Options page, you can change the prefix (ACL_ by default) used for
the naming standard for resource access capability management groups.

o You can customize the HTA to change the logic with which group names are
generated.

9. Select the capabilities you wish to implement for the folder.

o Only capabilities that are selected (checked) will be provisioned.

o When a capability is provisioned, the script modifies the ACL of the folder to
add appropriate ACEs for the specified groups.

o You can override the prepopulated group name. This is particularly useful
when you are creating a new folder in a collection of resources that have
already been provisioned, so there are already appropriate groups in Active
Directory. If a capability is being provisioned to a group that does not exist in
Active Directory, the group will be created in the OU specified on the Options
page.

o You can customize the HTA to add or remove supported capabilities.

10. Click the button labeled Provision Shared Folder.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 37
11. Several command windows will open as the HTA calls the Folder_Create.vbs and
Share_Create.vbs scripts, along with psexec.exe and icacls.exe.

The first time you run the script, you may be prompted to agree to the license
agreement for psexec.exe.

12. The Status window will alert you to any errors, and a message box will appear
indicating that the folder has been provisioned successfully.

To override the HTA defaults, click the Options button. The Options page, shown in Figure
2-X, allows you to change the default behavior of the HTA until the HTA is closed. The
defaults are themselves driven by the code in the HTA, so if you wish to permanently
change the defaults, you can customize the HTA itself.

Basic customization of Folder_Provision.hta

The folder provisioning tool will certainly require customization for your enterprise. There
is a configuration block near the top of the script that contains values such as the domain
name and paths to supporting scripts and tools.

Customizing the behavior of option defaults

There is also a block labeled “OPTION DEFAULTS,” which controls the default behaviors of
the tool, such as the default root data share location, whether unique shares are created
for each new folder, whether shares are hidden, the prefix used for the group naming
convention, etc. Each of these values is explained in comments in the code.

Each value in the “Option Defaults” section is displayed on the Options page of the HTA
and can be overridden when using the tool. The HTML for the Options page of the tool is
near the bottom of the HTA code.

There may be situations in which you don’t want a user to be able to override one of the
default values. For example, the HTA will not allow a user to change the prefix used in the
group naming standard (ACL_, by default). The justification is that an administrator has
configured the value of the prefix in the code of the HTA in order to enforce a naming
convention. Someone using the tool should not be able to go outside of the naming
convention.

To lock down a default value, you can delete the table row that displays the value in the
Options page by deleting the entire table row tag, from the <tr> opening tag to and
including the </tr> closing tag. Alternatively, you can allow the value to be displayed but
not modified on the Options page by adding an attribute to the <input> tag:

disabled="true"

You can see an example of this on the line of HTML that displays the group name prefix.
This latter method is recommended over deleting the table row, because by disabling the
control a user of the tool can continue to see what is configured, which can be useful.
They just can’t change it.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 38
Customizing the list of servers

The drop-down list of servers should display appropriate file servers in your enterprise.
The list is hard coded near the bottom of the HTA:

 <select name="cboServer" />

 <option value="">Select a server</option>

 <option value="SERVER01.contoso.com">SERVER01</option>

 <option value="SERVER02.contoso.com">SERVER02</option>

 </select>

The <select> tag creates a drop-down list. Each <option> tag creates an item in the drop-
down list. To modify, add or remove servers, simply change, create, or delete <option>
tags. It is important that the “value” attribute be set to the server’s name. I recommend
that you always use fully-qualified domain names (FQDNs) when referring to any
computer by name. The text between the opening <option> and closing </option> tags
is the text that appears in the drop-down list. This is simply the user-friendly name of the
server displayed in the form. You can use simpler (flat NetBIOS or host) names if you so
desire.

Understanding the code behind Folder_Provision.hta and
advanced customization

In order to perform more advanced customization of the folder provisioning tool, you
need to understand how the tool works. This section will be useful for you if you are
experienced in scripting with HTML and VBscript. There are three major components of
the HTA’s functionality that we will examine: the way the application is displayed, the form
controls’ behavior, and the code that actually provisions the folder.

Application display

The application has two “pages”: Provision and Options. Each page is represented by a
button generated by HTML code:

<table border="0" cellpadding="3" cellspacing="5">

 <tr><td id="btnProvision" onclick="ShowProvision()" style="background-color:

#CCCCCC; width:60px; text-align:center;">Provision</td>

 <td id="btnOptions" onclick="ShowOptions()" style="background-color:

#CCCCCC; width:60px; text-align:center;">Options</td>

 </tr>

</table>

Each page is contained within a division (<div> tag), for example:

<div id="divOption" name="divOption">

<table border="0" cellpadding="0" cellspacing="0">

 <!-- OPTIONS PAGE of the HTA is below. If you don't want a user to be able

to override the default value of

 one of these options, either delete the table row <tr>...</tr> entirely or

add

 disabled="true"

 within the <input> tag -->

 <tr><td class="frmlabel">Root data folder</td><td><input type="text"

name="txtRootPath" size="60" /></td></tr>

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 39
 ...

</table>

</div>

The <div> tag contains a table which lays out input controls for the page’s form.

When you click a button, such as the Options button, an OnClick event is fired. The
OnClick event is wired up in the <td> tag for the button, shown above, and calls a
subroutine such as:

Sub ShowOptions()

 divProvision.style.display = "none"

 btnProvision.style.backgroundcolor = "#CCCCCC"

 divOption.style.display = "inline"

 btnOptions.style.backgroundcolor = "#EEEEEE"

End Sub

This simple VBscript turns “on” the page represented by the button
(divOption.style.display = “inline”) and turns “off” the other page. It also changes the color
of the buttons so that the lighter colored button represents the current page.

When the application launches, the Window_OnLoad sub is called, automatically. That sub
resizes the application window to appropriate dimensions then calls the sub that makes
the Provision page visible, and sets the values of the controls on the hidden, Options
page.

No customization should be necessary to the code that controls the display of the
application, unless you add more controls and require a larger horizontal or vertical
dimension of the HTA window.

Form controls

The two “forms” of the HTA are the Options page and the Provision page. As described
above, each form is contained in a <div> that is displayed when the corresponding button
is clicked. Each <div> contains a table that lays out input controls: text boxes, drop-down
lists, and check boxes. Each input control has a name that can be used to refer to the
control and its values.

If you decide to create additional input parameters, simply add table rows to the
appropriate form, and insert new input controls.

The default values on the Options form are hard-coded in the OPTION DEFAULTS section
of the script. You should configure the defaults in the code to reflect the correct values for
your enterprise.

In order to make those values easier to override by a user of the HTA, each value is
exposed in an input control on the Options page. The default values are inserted into the
controls by the SetDefaultOptions() sub, which is called by the Window_OnLoad event
when the HTA is opened, and is also called when the Reset Options to Defaults button is
clicked.

You can change the way options are displayed on the Options page. For example, as
described earlier, you could add a disabled="true" attribute to an <input> tag to disable

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 40
the control and thereby prevent a user from overriding one of the defaults. You could
also change a control type. If you have several OUs in which a resource access capability
group can be created, you could change the txtGroupOU control to a drop-down list
(<select> tag). Just be sure to modify other locations in the code that refer to
txtGroupOU.

If you add new parameters to control the behavior of the tool, I recommend that you
follow the model that is in place. Define a variable with the default value in the OPTION
DEFAULTS section of the script, add an input control to the Options <div>, and add a line
of code to inject the default value into the control in the SetDefaultOptions() sub. You
would obviously need to modify other code in the HTA to actually use your new
parameter to achieve your goals.

The values on the Provision form are displayed using input controls in a table in the
Provision <div>. Controls are set to their default value (blank) by the ResetControls() sub,
except for the folder name and server name controls. All controls, including the folder
name and server name, are initialized by the ResetForm() sub, which is called when the
Reset Form button is clicked. If you add any controls to the form, be sure to set them to
their default value in the ResetControls() sub.

Some controls, when changed, trigger the autopopulation of values in other controls. This
is achieved by using an OnChange event or, in the case of check boxes, an OnClick event.
For example, if you change the value of the Groups Base Name box, all of the names of
the capability groups are autopopulated. The Groups Base Name box on the form is
named “txtGroupBaseName” in the HTML code. The following script wires up the
OnChange event for that text box:

Sub txtGroupBaseName_OnChange()

 ' When the base name is changed, reconfigure the values in the capability

group name boxes

 If txtGroupBaseName.value > "" Then

 txtReadGroup.Value = txtGroupPrefix.Value & txtGroupBaseName.Value &

"_Read"

 txtEditGroup.Value = txtGroupPrefix.Value & txtGroupBaseName.Value &

"_Edit"

 txtContributeGroup.Value = txtGroupPrefix.Value &

txtGroupBaseName.Value & "_Contribute"

 txtAdministerGroup.Value = txtGroupPrefix.Value &

txtGroupBaseName.Value & "_Administer"

 Else

 txtReadGroup.Value = ""

 txtEditGroup.Value = ""

 txtContributeGroup.Value = ""

 txtAdministerGroup.Value = ""

 End If

End Sub

If the new value of the text box is not blank, the code constructs the four capability group
names by taking the prefix from the txtGroupPrefix text box on the Options page,
appending the value entered into the Group Base Name box, and then appending the
capability. On the other hand, if the value in the Group Base Name text box is blank, all
the capability group text boxes are set to blank as well.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 41
If you want to change any of the logic that determines how values are autopopulated,
look for the appropriate OnChange or OnClick event in the HTA’s code.

Folder provisioning

The code that manages the provisioning process is the ProvisionIt() sub, called when the
Provision Shared Folder button is clicked.

ProvisionIt() first calls the CreateFolder() function, which simply constructs a command line
to call the Folder_Create.vbs script described earlier in this solutions collection. The
CreateFolder() function takes values from input controls on the form, such as the folder
name and path. CreateFolder() returns its results as a string and ProvisionIt is able to
examine the results to determine whether an error was encountered.

ProvisionIt() then looks to see if the checkbox is checked to indicate that an SMB share
should be created. If so, the ShareFolder() function is called. It examines values on the
form and creates a command line to call the Share_Create.vbs script.

If the folder exists and, if configured, the share has been created, ProvisionIt() then applies
default permissions to the folder. Administrators, System, and Creator Owner all each
allowed full control. The permissions are assigned to the string variable named
sPermission. sPermission is in the same syntax as switches for the icacls.exe command. In
fact, sPermission is passed, along with the UNC to the folder, to the ACLit() sub, which
simply calls icacls with sPermission as its switches.

If you want to change the default permissions applied to every folder created by the HTA,
change the assignment of sPermission.

Once default permissions have been applied, ProvisionIt() then looks at each capability
that has been selected (checked). It first calls the CreateGroup() sub to create the group in
Active Directory. There is business logic in CreateGroup that provisions the Description
property of the group as the UNC to the resource controlled by the group. CreateGroup
also is coded to create the group as a domain local security group.

ProvisionIt again assigns permissions by configuring sPermission as the switches for icacls
and, again, calls ACLit() to execute icacls.exe.

As each selected capability is implemented, a variable named sRolesConfigured is
appended with the friendly name of the capability. This variable is then used to create a
summary event in the event logs.

If you want to modify the way capabilities are implemented change the permissions
assigned to sPermission. If you want to add capabilities to the existing four, you will need
to:

• Add a row to the HTML table for the new capability. Use the existing capabilities as a
template.

• Add code to the txtGroupBaseName_OnChange event to prepopulate the group name
for the new capability.

• Add code to ProvisionIt to evaluate whether the new capability is checked and, if so, to
send the appropriate sPermission string to ACLit().

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 42
As ProvisionIt performs each major step, it updates the status box on the form, named
txtStatus in the code. If the process is successful, a message box is generated informing
the user of the successful provisioning of the shared folder.

Solution summary

Folder_Provision.hta is an example of a powerful provisioning tool that automates a multi-
step procedure and encourages or enforces business logic and process. The tool also
demonstrates some useful approaches to configuring default values, displaying separate
pages within an HTA, autopopulating input controls, and leveraging external scripts and
tools. With basic customization, you can configure the HTA to provision folders, including
the creation of role based access control. With slightly more advanced customization, you
can leverage the approach to create a perfect solution for your enterprise.

 2-10: Avoid the ACL inheritance propagation danger
of files and folder movement

Solution overview

Type of solution: Guidance

Difficulty of implementation: Low

Features and tools: Robocopy.exe

Solution summary: Never use Windows Explorer to move files or folders between two
locations in the same namespace with different permissions. Instead, use Robocopy or an
alternative.

Benefits: Correct application of permissions.

Important This solution addresses what many (including all of my customers) would consider a
“bug” or “design flaw” in the security of files on Windows systems. Microsoft has documented
the problem as the result of a “known feature” of the NTFS file system, but changed it
nonetheless in Windows Server 2008. Whether you call it a “feature” or a “bug,” you must
educate your administrators to avoid the security implications. Do not skip over this solution.

Introduction

Imagine that you have configured a shared folder for a department. Beneath that shared
folder are folders for departmental teams. Each team folder is secure so that only
members of that team can access the folder’s contents. The departmental manager, who
has access to all the team folders, accidentally puts a sensitive file into the wrong team’s
folder. She notifies you immediately and you connect to the share and drag-and-drop the
file into the correct folder. Unfortunately, you discover that members of the wrong team
are still able to access the file in its new location, and members of the correct team are
unable to access the file. You have created a security problem.

The bottom line of this solution is that you cannot use Windows Explorer to move a file
between two differently permission folders in the same namespace (e.g. within the same

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 43
share or on the same disk volume of a system you are logged on to interactively or
through remote desktop). Moving a file using drag-and-drop, cut and paste, or any
number of other methods, can lead to the incorrect application of security permissions.
Windows Server 2008 has corrected the problem and, not surprisingly, Microsoft is not
“highlighting” the potential security concern that was fixed eight years after it was
introduced, but we’re glad, nonetheless, that it is fixed.

We will go into some of the details of why this happens, and how to avoid it. I will not
cover every detail or exception to the rule, but you will understand the problem and a
variety of solutions. You will also learn best practices for moving files between folders on
any Windows operating system.

See the “bug-like feature” in action

A “hands on experience” is worth a thousand words, sometimes, and in this case it’s
absolutely true. The easiest way for you to understand the problem is to experience it
yourself. Follow these steps to replicate the scenario on an NTFS volume on a Windows
Server 2003 or Windows XP system.

1. Create a parent folder, e.g. C:\Data.

2. Create a subfolder, e.g. C:\Data\TeamA.

3. Permission that folder so that TeamA has Modify permission.

4. Create another subfolder, e.g. C:\Data\TeamB.

5. Permission the second folder so that TeamB has Modify permission.

6. Add a file to the TeamA folder, e.g. C:\Data\TeamA\TeamAInfo.txt.

7. Add a permission to the file giving a user or group Full Control of that specific file.

8. Drag the file into C:\Data\TeamB.

What do you expect the permission on the file to be, after you’ve moved it? Common
sense would suggest that the explicit permission you added in Step 7 would remain
attached to the file, but that the file would now inherit its permissions from the new
parent folder, TeamB So TeamB would have inherited modify permission and TeamA
would no longer have access.

Not so! Open the Security page of the file’s property dialog box, and click Advanced. In
the Advanced Security Settings dialog box, shown in Figure 2-10, you’ll notice that TeamA
still has access, and TeamB does not. Even more interesting, the Permissions list cannot
display where the permission is being inherited from.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 44

Figure 2-10 Permissions inherited from a file’s previous parent

Now let’s make it even more interesting. Open the Security page of the property dialog
box of the TeamB folder. If you are on Vista or Windows Server 2008, click Edit. Clear the
checkbox that allows TeamB Modify permission, click Apply, then re-select the Allow
Modify permission and click Apply again. All you have done is to remove then reapply
the Modify permission for TeamB.

Open the Advanced Security Settings dialog box for the file. Notice, now, that TeamB
does, in fact, have inherited Modify permission and TeamA no longer has permission.

The practical implication of this experiment is that, if you move files between two
differently-permissioned folders in the same namespace (in this case, the C:\ volume)
using Windows Explorer, the file will have an unexpected permission set until something
happens to fix it! In short, it’s unexpected (whether a “bug” or a “feature”) and it is
inconsistent (whether that’s a “bug” or a “feature.”).

The same thing happens in a variety of scenarios, including moving files between two
subfolders of a remote share, or using tools other than Windows Explorer. Scary, huh?

What in the world is going on?

This odd and potentially disturbing phenomenon is a result of the way ACLs are applied to
NTFS resources. An object, such as our file, has a flag that enables the object to inherit
permissions from its parent container that are themselves inheritable. The ACL on the file
has specific, individual access control entries (ACEs) for each permission that applies to the
file, including the inherited permissions.

But what actually applies those inherited permissions? Well, there’s a process that we’ll call
the “ACL propagator” that, when triggered, goes from a folder to its subfolders and files
and applies the inheritable ACEs into the ACLs of the child objects.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 45
When you created the file in the TeamA folder, the instantiation (“creation”) of the new
object triggered the ACL propagator to apply inheritable permissions from the parent
onto the file. So the file’s ACL contained ACEs allowing TeamA “Modify” permission. You
then applied an explicit ACE to the file.

When you move a file in a namespace, you are basically renaming it, not moving it
physically. So when you moved the file into the new folder, nothing triggered the ACL
propagator to apply inheritable permissions (from the new parent folder) onto the file. So
it’s ACL “kept” its previously applied ACEs.

Then you made a change to the second, parent folder. Changing permissions on a
container triggers the ACL propagator, so the ACLs of child objects were opened and
modified correctly.

Important Until the ACL propagator is triggered, permissions will be incorrect on the moved
object.

Solving the problem

There are several ways to solve this problem. One is to ensure that whenever a file is
moved into a new folder with different permissions in the same namespace, that the ACL
propagator is triggered. To do this:

1. Move the object.

2. Open the Advanced Security Settings dialog box for the object.

3. Clear the check box, “Include inheritable permissions” (Windows Server 2008 or
Windows Vista) or “Inherit from parent” (Windows Server 2003 or Windows XP) and
click Apply.

4. When you are prompted to Copy or Remove inherited permissions, choose Remove.

5. Re-select the same checkbox and click Apply. This triggers the ACL propagator to
apply inheritable permissions from the parent folder to the object.

That’s a lot of steps, isn’t it?

Another option is to copy, rather than move the object. When you copy an object, you
create a new instance of the object, which immediately triggers the ACL propagator. You
then simply delete the original item.

The only potential pitfall with this method is that you might have explicit permissions
assigned to the original object that you will need to maintain when you move the object.
Therefore, rather than use copy and paste, use a command that can copy the object
including its security descriptor. You can use xcopy.exe with the /x switch to copy a file
with its security descriptor intact. On Windows Server 2008, you can also use robocopy.exe
with the /copyall switch. By copying the entire security descriptor, you also maintain
auditing and ownership information. Then delete the original file.

Any utility that can copy or backup and restore an NTFS object while maintaining its
security descriptor will similarly solve this unusual feature of NTFS permissions.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 46
Change the culture, change the configuration

It is important to inform appropriate users and support personnel about the dangers of
moving files between two differently-permissioned folders in the same namespace.
Education can go a long way towards avoiding the inherited permissions trap.

You can also enforce success by aiming for a configuration in which each uniquely
permissioned folder is, in fact, its own share. A connection to a share creates a unique
namespace, so if you move a file between two folders in two different shares, you are in
fact copying the file, so the inherited permissions problem will not rear its ugly head.
Unfortunately, in these situations you might run into another challenge: by copying the
file you are not keeping the security descriptor (ownership, auditing, and explicit ACEs),
unless you again use a security descriptor friendly tool like xcopy /x or robocopy /copyall.

But aiming towards a unique share for each uniquely permissioned folder is a decent idea.
“But,” you ask, “won’t that make my resource namespace very flat and wide?” To which I
reply “Yes, except that users won’t be going directly to shares—they’ll view your resource
namespace with DFS namespaces, which create a virtual hierarchy within which you can
organize your shares in any structure that aligns with your business.”

You begin to see why even a question as seemingly simple as, “How should I organize the
folders on my servers?” can only be answered by a consultant by the truism, “It depends.”
There are a lot of moving parts in Windows that must be aligned to your business’
requirements.

Solution summary

NTFS permissions that are inherited from a parent folder will “stick” to a file (or folder)
when you move it to another folder. The permissions of the new parent folder won’t apply
to the object until something triggers the ACL propagator. Therefore, it’s critical for
security that you do not just move files between folders with different permissions. You
must either move the object then remove and reenable inheritance to the object; or you
must use a security descriptor friendly tool, such as xcopy /x or robocopy /copyall, to copy
the object to its new location, then delete the original. While Windows Server 2008 has
addressed the problem by triggering propagation immediately when a file is added to a
folder, it is nevertheless important to follow best practices to ensure that security
descriptors are moved correctly.

 2-11: Preventing users from changing permissions on
their own files

Solution overview

Type of solution: Guidance

Difficulty of implementation: Low

Features and tools: The Owner Rights identity

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 47
Solution summary: New to Windows Server 2008, the Owner Rights identity enables
administrators to prevent object owners from changing the objects’ permissions.

Benefits: Decreased help desk calls and reduced exposure to denial of service on file
servers.

Introduction

For as long as I can remember, Windows administrators have fought a battle to prevent
users from changing permissions on their own files or folders. When a user creates a file
on a Windows system, the user becomes the owner of the object. An object’s owner has a
built-in right to modify security descriptor of the object. The idea behind that design is
that there is always someone (the owner) who can “unlock” a resource, even if Deny
permissions are preventing all other access.

A problem arises when users accidentally or intentionally change the ACL on an object
they’ve created and thereby open an object to users who should not, based on the
organizations’ information security policy, have access to the file; or restrict an object from
users who should have access, generating a support call from those users.

Earlier in this solutions collection we emphasized the importance of least privilege access.
In all reality, the only users who should set permissions on files or folders in most
organizations are IT or data security personnel. Restricting the ability to set permissions
enables the organization to follow the best practice of configuring ACLs only on the first
levels of a folder hierarchy, and allowing inheritance to manage security below that.

Unfortunately, until recent versions of Windows, the only way to restrict an object owner
from changing the ACL on the object was to restrict the SMB (share) permission to
“Change.” Without a share permission of “Full Control,” an owner cannot modify the ACL.
The problems with this approach are, first, not every Windows administrator knew that it
was possible. Second, share permissions have significant limitations, some of which were
discussed in Solution 2-5.

Windows Server 2008 solves the problem. A new well-known SID, the built in identity
called “Owner Rights,” was added specifically to address this scenario. ACEs assigned to
the Owner Rights identity will override the system rights assigned to the Owner of an
object.

Imagine that you have created a shared folder with the default permission that allows
Creator Owner Full Control. When a user creates an object, an ACE is added to the object
granting that user Full Control permission. If in any way the user is denied access to the
object, the user can, as the object’s owner, change permissions to grant himself or herself
access.

Now, we make one small change to the ACL of the shared folder. We create an ACE with a
single permission: Owner Rights::Deny::Change Permissions. This is shown in Figure 2-11.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 48

Figure 2-11 Denying the Owner the right to change permissions

If the owner attempts to change permissions, one of two things will happen, depending
on the user’s credentials and operating system. Either the controls that would enable the
user to edit permissions are disabled, or if the controls are enabled, the user will receive an
“Access Denied” error when attempting to change permissions. The deny permission
assigned to the Owner Rights identity is now overriding even the built-in system privilege
that allows an owner to modify an object’s ACL.

And as ownership of the object is transferred to another user, the new owner is similarly
restricted by the Owner Rights ACE.

Now that is a great, new, small, important feature!

You can also leverage the Owner Rights identity to do things like prevent the user who
drops a file into a folder from being able to open the file: deny the Owner Rights identity
Read permission.

Caution You, the administrator, can likewise lock yourself out of resources! If you are
the owner of a file or folder, you will also be unable to change permissions. Use this
feature wisely.

What about object lockout?

You might be wondering, now, if an object owner cannot change the ACL, wouldn’t it be
possible to lock all users out of a resource. Apparently not. According to my testing, if you
are a member of the Administrators group and are the owner of an object, you are not
restricted by the Owner Rights ACEs. That caveat makes sense.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 49
Solution summary

In earlier versions of Windows, the only way to prevent a user from changing permissions
on their own files was to restrict the Share Permission to “Change.” Now, a better solution
based on NTFS permissions is available. Any permission assigned to the Owner Rights
identity will override the permissions and system rights assigned to the owner of an
object. So by configuring a folder with the ACE Deny::Owner Rights::Change Permissions,
you can effectively prevent any user who creates a file or subfolder from being able to
alter that object’s ACL.

2-12: Prevent users from seeing what they cannot
access

Solution overview

Type of solution: Guidance

Difficulty of implementation: Low

Features and tools: Access based enumeration

Solution summary: The Windows Server 2008 file server role includes access based
enumeration, which enables you to “hide” from users the folders and files that they cannot
access in a shared folder.

Benefits: Decreased help desk calls and a security-trimmed view of shared folders.

Introduction

On a traditional Windows folder, the List Folder Contents and Read Attributes permissions
will enable a user to see what the folder contains. The user will see all files and subfolders,
whether or not the user can actually open those objects. The ability to open the object
itself is managed by the Read or Read and Execute permissions.

When I began providing consulting and training to Windows IT professionals back in the
early days of Windows NT server, most administrators were approaching Windows
networking from a perspective of experience with Novell NetWare. That platform, as well
as some other network operating systems, exposes shared folders differently than
Windows. When you looked at a mounted volume on a Novell server, you would see only
the files and subfolders to which you had permission. Those that you couldn’t open were
hidden from your view.

So for as long as I’ve been working with Windows, one of the most frequent questions I’d
be asked has been, “How do I hide files from users.”

This solution will address that question

One perspective: Don’t worry about it.

One answer to the question, “How do I hide files from users?” is not to worry about it.
Here’s my “take” on the problem: if I were to tell one of your users that somewhere on

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 50
your network there was a folder with the performance reviews of your company’s
employees, that would probably not surprise the user. Users know that on your network
there is information and, in fact, sensitive information and even information to which they
cannot gain access. They know it’s there.

So “seeing” the file really isn’t that big of a deal, perhaps. It’s not “news” to your users that
it exists. What really matters is whether they can get to it or not. So the user shouldn’t be
able to open it and, if you’ve applied your permissions correctly, they can’t.

A second perspective: Manage your folders

When a customer runs into this problem frequently, it suggests to me that the folder
structure is not ideal. If users can see a lot of things they can’t get to, those things should
probably be somewhere else—in another folder—which itself cannot be accessed by
users.

Folders should, ideally, contain objects that share common access requirements. That’s
the whole point, really: a folder is a container of like objects, controlled by one ACL that is
inherited by all of those objects, with ACEs that define users’ access to those objects based
on least privilege. If you are having to manage multiple ACLs within a single folder you
probably should be rethinking your folder structure.

A third perspective, and a solution: Access based
enumeration

Windows Server 2003 SP1 introduced access based enumeration (ABE). ABE can be
downloaded from Microsoft’s Downloads site for Windows Server 2003, and it is available
as a feature of the File Server role in Windows Server 2008.

ABE can be enabled for an entire server, affecting all of its shares, or for individually
specified shares. When ABE applies to a share, users cannot see items to which they do
not have Read permission. That simple! About time!

Figure 2-12 below shows the same share, viewed by James Fine. On the left, he is viewing
the share without ABE enabled. Once an administrator enables ABE on the share, he
cannot see the file or folder to which he does not have Read permission, as shown on the
right.

Figure 2-12 A share viewed without (left) and with (right) ABE enabled

Note that ABE applies to an entire share, and applies only when the share is accessed over
an SMB connection. If James were to log on to the server with Remote Desktop and look
at the folder directly on the local file system, he would see all files and folders.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 51
Solution summary

If you want to hide items from users, you have three options. The first is not to worry
about it, and instead to focus on ensuring that the items are properly permissioned to
prevent users from opening or viewing the items. The second is to move the items to
another folder to which the user does not have access. The third—a simple and elegant
solution—is to enable ABE on shared folders. ABE will hide files and folders to which the
user doesn’t have Read access.

2-13: Determine who has a file open

Solution overview

Type of solution: Script

Difficulty of implementation: Low

Features and tools: VBScript

Solution summary: The FileServer_OpenFile.vbs script enables you to determine who has
a file open on a file server.

Introduction

When you administer a file server with shared resources for users, it is not uncommon for
multiple users to need a file at the same time. Some applications don’t support multiple
users opening a file concurrently. So occasionally one user will need a file and be unable
to access it, and typically that user contacts the help desk.

If the user needs the file badly enough, the help desk may need to determine who is
currently accessing the file so that person can be contacted and asked to close the file.
FileServer_OpenFile.vbs, located in the Scripts folder of the companion media, will enable
you to do just that.

The script requires two parameters, ServerName and FileName. ServerName is the name of
the server that contains the file—a fully-qualified domain name is preferred, but not
required. FileName is any part of the file name—the script performs the equivalent of a
wildcard search to locate matching files. The syntax of the script is:

cscript //nologo FileServer_OpenFile.vbs /server:ServerName /file:FileName

Understanding FileServer_OpenFile.vbs

The script itself is straightforward and simple:

sComputerName = WScript.Arguments.Named("server")

sFileName = WScript.Arguments.Named("file")

if sComputerName = "" or sFileName = "" then

 WScript.Echo "Usage: cscript FileServer_OpenFile.vbs /server:SERVERNAME

/file:FILENAME"

 WScript.Quit (501)

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 52
end if

Set oServer = GetObject("WinNT://" & sComputerName & "/LanmanServer")

for each oResource in oServer.resources

 on error resume next

 if (Not oResource.User="") AND (Not Right(oResource.User,1) = "$") Then

 if Instr(1, oResource.Path, sFileName, 1) >0 then

 WScript.echo "Path: " & oResource.path

 Wscript.echo "User: " & oResource.user

 wscript.echo "Lock: " & oResource.lockcount

 Wscript.echo

 end if

 end if

next

First, the script parses the arguments passed to the script. If one of the arguments is
missing, the script prompts for better input.

Then, the script connects to the file services (the LanmanServer service) on the specified
sserver. LanmanServer exposes a collection of resources—open files. We loop through that
collection looking for any resource which contains a match for the file name provided to
the script. If a match is found, the information about the matching resource is outputted.

Solution summary

That was easy, wasn’t it? A simple script looking for a match in the resources collection of
the LanmanServer service enables us to answer the question, “Who has this file open?”

2-14: Send messages to users

Solution overview

Type of solution: Script

Difficulty of implementation: Low

Features and tools: VBScript, PSExec

Solution summary: Leveraging PSExec and the Message_Notification.vbs script, you can
once again send messages to users, which is particularly useful to notify users that a server
will be taken offline.

Introduction

Back in the “good old days,” the Messenger and Alerter services allowed you to send a
message to a user or computer. Then some bad guys got ahold of those services and
started sending my mother messages, over her Internet connection, encouraging her to
purchase their wares. Microsoft subsequently locked down those two services so that they
now do not start automatically. OK, my mother probably wasn’t the only person troubled
by the security vulnerabilities exposed by the Messenger and Alerter services but you get
the idea.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 53
If you’re going to take a server off line, or want (for some other reason) to send a
“network message” to users, you can no longer expect the NET SEND command to
succeed, since dependent services are not running. We need an alternative. In this
solution, we’ll assemble tools that allow us to notify users that they should close files that
they have open from a server before we take the server offline. The tools will also help you
send network messages in any other situation.

Using Message_Notification.vbs

On the companion media, in the Scripts folder, you’ll find a script named
Message_Notification.vbs. To use the script, enter the following command:

cscript //nologo Message_Notification.vbs /message:”Message Text”

 [/title:”Title Bar Text”] [/time:[0 | n]

The message is a required parameter, and must not be blank. The title parameter sets the
text of the title bar which, if the parameter is omitted, will be “Notification.” The time
parameter can be zero, which causes the dialog box to appear until the user clicks the OK
button, or can be a number representing the number of seconds to display the message. If
omitted, a default of 60 seconds is used. Because of the nature of this script, you can also
easily use wscript.exe to execute the script, rather than cscript.exe.

This script can be used to create a message, but it’s not quite enough to display a
message on a remote machine. We’ll solve that problem in a moment.

Understanding Message_Notification.vbs

The body of Message_Notification.vbs is shown below:

Const PopupOK = 0

Const PopupWarning = 48

sMessage = WScript.Arguments.Named("message")

sTitle = WScript.Arguments.Named("title")

iWait = WScript.Arguments.Named("time")

if sMessage = "" then WScript.Quit(0)

if sTitle = "" then sTitle = "NOTIFICATION"

if iWait = "" then iWait = 60

Set WSHShell = CreateObject("WScript.Shell")

Call WSHShell.Popup (sMessage, iWait, sTitle, PopupWarning + PopupOK)

The script is a simple wrapper around an existing method of the Shell object: a method
called Popup. The Popup method creates a dialog box that can have a title bar, message,
buttons (such as OK, or Yes and No, or Retry and Cancel), and an icon (stop sign, question
mark, exclamation point, or information mark). The dialog box can be set to time out, so
that after a specific time it disappears, or you can configure the message to wait for user
input. The Popup dialog box can also hold more than 1,023 characters (the limit of
messages produced by the MsgBox statement). This makes Popup an ideal candidate for
communicating a message to a user in many situations.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 54
In this particular script, we define the button that will be available (the OK button) and the
icon (an exclamation point) at the beginning of the script. The script’s arguments are then
located and processed: if the message is empty the script exits, and if either of the other
two arguments are missing the values are set to defaults. Then a reference to the Shell
object is created and the Popup method is called.

If you want to adapt this script for popup messages with other buttons or icons, see the
documentation of the Popup method at http://msdn2.microsoft.com/en-
us/library/x83z1d9f.aspx.

Using PSExec to execute a script on a remote machine

PSExec comes, once again, to our rescue in this solutions collection. It is available at
http://www.microsoft.com/technet/sysinternals. We’ve used PSExec from within scripts
elsewhere in this solutions collection, now we’re going to address its usage directly in the
context of this solution. If you have not been fortunate enough to have been exposed to
the tool previously, you’re in for a happy day. It is an extraordinarily important component
of the administrator’s toolset, as it lets you execute commands on a remote machine.

To send a message to a remote computer, we will use PSExec to execute our
Message_Notification.vbs script on the remote system. This will require that you are an
administrator of the remote system, and that you are able to connect to the remote
system (ports 445 and 139 must be open).

Place the Message_Notification.vbs script in a shared folder on a server, so that it can be
accessed from the remote computer. Then use the following command:

psexec.exe \\computername –i –u DOMAIN\username –p Password –d wscript

“\\server\share\path\Message_Notification.vbs” /message:”Message” [-

title:”Title”] [-time:0|n]

That’s a lot of switches! Let’s examine each:

\\computername
• This specifies the computer on which to execute the script. The popup message will

appear on this computer.

-i
• The script will run under credentials that are an administrator on the machine, but you

want the message to appear to the currently logged on user. The –i switch enables the
process to interact with the user’s session.

 -u DOMAIN\username and –p Password
• These two switches provide the credentials with which to execute the process. The

credentials must be a member of the local Administrators group on the remote
computer. They also must have read permission to the script in the network shared
folder. You must provide credentials explicitly because you are passing the credentials
to the remote system which must then reuse those credentials to access the network.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 55
-d
• The -d switch instructs PSExec not to wait for the process to complete. This prevents

PSExec from waiting for the amount of time specified and also prevents interference in
the case that the script does not run on the target computer.

wscript.exe
• PSExec will launch the process wscript.exe on the remote machine. Because wscript.exe

is in the command path of Windows systems, no path is required. We’re using wscript
because if we use cscript, a black command prompt window opens, which is not the
aesthetic effect we want.

“\\server\share\path\Message_Notification.vbs”
• Is the UNC to the script that will be executed by wscript.exe.

The remainder of the switches are arguments for the script, which were described earlier
in this solution.

As a result of combining PSExec with a simple VBScript wrapper around the Shell Popup
method, we have a useful replacement for the NET SEND command! And because PSExec
does its work securely, and requires local administrative credentials on the remote
machine to execute, it’s a reasonably robust and secure solution!

Listing the open sessions on a server

Now that we have a tool with which to send a network message, we simply have to
identify which users to notify. In the previous solutions collection, we examined a script
that looked at the open files on a server using the LanmanServer’s resources collection.
LanmanServer also has a collection for open sessions, which can be enumerated by the
following code:

sComputerName = "SERVER02.contoso.com"

Set oServer = GetObject("WinNT://" & sComputerName & "/LanmanServer")

for each oSession in oServer.sessions

 wscript.echo "User: " & oSession.user

 wscript.echo "Computer: " & oSession.computer

next

Using this approach, we are able to identify the computer from which each user has
connected to the server. That is the computer to which we send our notification.

Using and customizing
FileServer_NotifyConnectedUsers.vbs

By combining the code, above, that finds which computers are connected to a server with
our PSExec command that launches the Message_Notification.vbs script, we are able to
create the solution we require. The result is FileServer_NotifyConnectedUsers.vbs in the
Scripts folder of the companion media.

Before you use the script, be sure to modify the configuration block with the path to
Message_Notification.vbs, and the path to PSExec.exe (no path is required if PSExec.exe is
in the same folder as the FileServer_NotifyConnectedUsers.vbs script). You can also modify
the title bar text and timeout that is used for the notification message.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 56

The syntax used to run the script is:

cscript FileServer_NotifyConnectedUsers.vbs /user:DOMAIN\username

 /password:password /server:SERVERNAME /message:”Message to send to users”

The username and password provided must be an administrator on all systems to which
messages will be sent. If it is not, those systems will not receive notifications, but the script
will continue. The server name you provide points to the server which will be analyzed for
open sessions. The message is what you wish to communicate to users connected to the
server.

The script determines which computers have open sessions with the server, then sends the
specified message to each computer. As it does so, the script reports each computer
name. Some computers may not respond as quickly as others—give the script time to
execute.

The result is a “reasonable effort” to notify users. There is no guarantee that the user is
paying any attention. Nor is there a guarantee that PSExec will be able to connect to each
computer and successfully run the script. Firewall and other issues can prevent
connections. The same concerns were characteristic of the old “NET SEND” notifications.

Solution summary

It is common for network administrators to need to send a message to users. Email is an
option, assuming users are checking their Inbox. But there’s nothing like a popup
message, right in the middle of the desktop, to catch a user’s attention. This solution
leveraged a simple VBScript wrapper around the Shell object’s Popup method, and the
incredibly useful tool, PSExec.exe, to execute that script on a remote machine.

In the event that you must take a server offline, you can notify all connected users of the
impending change by running FileServer_NotifyConnectedUsers.vbs. This script identifies
all open sessions on the server then automates the execution of PSExec to run the
notification script on the computer of each connected user.

2-15: Distribute files across servers

Solution overview

Type of solution: Command and procedure

Difficulty of implementation: Low

Features and tools: schtasks.exe, robocopy.exe, DFS-Replication, SMB (Share) permissions

Solution summary: Create a “master/mirrors” topology to distribute files from a single
(“master”) source to multiple (“mirror”) destinations using Robocopy or DFS-Replication.

Introduction

In a distributed organization, it is often necessary to distribute files to servers that are local
to users. For example, you might need to copy a folder that contains drivers or
PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 57
applications to servers in branch offices; or you may need to distribute commonly-
accessed corporate documents to multiple servers. In such scenarios, organizations often
desire a “single source” model, where changes made to a folder in one location are
distributed, but changes cannot be made to the distributed copies. We’ll refer to the
single source as the “master,” and to the distributed copies as “mirrors.” We will solve the
problem two ways: using Robocopy and using DFS-Replication.

Using Robocopy to distribute files

Robocopy.exe is available in the native, out-of-box toolset for Windows Vista and
Windows Server 2008. It is a Resource Kit utility for previous versions of Windows. Many
organizations have leveraged Robocopy to distribute or replicate files. The most
straightforward syntax for mirroring a folder to another location is:

robocopy.exe Source Destination /copyall /mir

The source and destination parameters are paths to the source and destination folders.
You will typically execute Robocopy on the source server, so the source parameter will be
a local path and the destination will be a UNC, but both paths can be either local or UNC
paths, as appropriate. The /copyall switch specifies that all file attributes, including
security, auditing, and ownership, should be copied. The /mir switch directs Robocopy to
mirror the source folder: any file that is newer in the source will overwrite an older file in
the destination; files that are missing in the destination are added; and any file that exists
in the destination but not in the source will be deleted.

To create a master/mirror file distribution topology, simply create a scheduled task to
execute the Robocopy command at a desired repetition interval. The schtasks.exe
command can be used as follows:

schtasks.exe /create /RU DOMAIN\Username /RP password /TN TaskName /TR

"robocopy.exe source destination /copyall /mir" /sc MINUTE /mo Interval

The domain username and password is used to execute the Robocopy task. It must have
NTFS Full Control permission on the source and destination folder and files. The task
name is a friendly name for the scheduled task. The interval is the number of minutes
between repetitions. From a command prompt, type schtasks.exe /create /? for more
detail about the parameters available for the schtasks command.

To ensure that the source (the “master”) is the only location where files can be added for
distribution, you must use share permissions to control access. You should not use NTFS
permissions, because Robocopy will replicate NTFS permissions to the mirrors. Instead, on
the mirrors, configure share permissions so that only the account used by the scheduled
task has Full Control. All other users requiring access to the mirrors should have Read
share permission. The schtasks.exe account and other users requiring access to the master
should have Full Control share permission on the master. Because a user’s effective access
is the most restrictive combination of NTFS permissions and share permissions, users who
can create, change, or delete files based on their NTFS permissions will only be able to do
so on the master share.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 58
Using DFS-Replication to distribute files

DFS-Replication (DFS-R), introduced in Windows Server 2003 R2, provides highly efficient
and manageable replication, leveraging differential compression and bandwidth controls
to ensure that replication of data has as small an impact on the network as possible.

One of the common misconceptions about a “hub and spoke” replication topology for
DFS-R is that it provides a master/mirror functionality. That is not the case. With a hub and
spoke topology, changes made at a “spoke” are replicated to the hub and then replicated
to other spokes. To create a master/mirror topology, you start by creating the DFS-R
topology, then you change share permissions. The steps are as follows:

1. Open the DFS Management console.

2. Expand the Replication node.

3. Right-click Replication and choose New Replication Group.

4. The New Replication Group Wizard appears.

5. On the Replication Group Type page, select Multipurpose replication group. Click
Next.

6. On the Name and Domain page, enter a name for the replication group, such as:
Master-Mirror File Distribution. Optionally enter a description. Click Next.

7. On the Replication Group Members page, click the Add button and enter the name of
the master server. Click OK. Repeat the process for each mirror server. Click Next after
all servers are listed in the Members box.

8. On the Topology Selection, select Hub and Spoke if you have at least three members.
If you have two members, select Full Mesh. Then, click Next. If you are using Full Mesh
topology, skip to Step 11.

9. On the Hub Members page, select the master server from the Spoke Members list and
click the Add button to move the master server to the Hub members list. Click Next.

10. Accept the defaults on the Hub and Spoke Connections page and click Next.

11. On the Replication Group Schedule and Bandwidth page, you can accept the default
bandwidth (Full), or you can configure the bandwidth utilization for the replication.
Remember that DFS-R is a highly efficient replication mechanism, so even at “Full”
bandwidth usage it is unlikely that all available bandwidth will be utilized when
replication occurs. Click Next.

12. On the Primary Member page, select the master server and click Next.

13. On the Folders to Replicate page, click the Add button and, enter the path to the
folder you wish to replicate. All subfolders will be included in the replication.
Optionally give the folder a custom name, then click OK. Repeat for each folder you
wish to replicate. Then click Next.

14. On the Local Path of Shared Data on Other Members page, select the first mirror
server, click Edit, and select Enabled. Enter the path to the folder on that server, and
click OK. Repeat for each mirror server. Then click Next.

15. Review the settings you have configured.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 59
16. Click Create.

17. Confirm that the tasks completed successfully.

18. Click Close to close the New Replication Group Wizard.

On the master, ensure that share permissions allow full control for all users who may
require access to the folder. On the mirrors, users who may require access to the mirrors
should be allowed only Read share permission. Unlike Robocopy, which uses an account
to copy files between shared folders, DFS-R is a service, so no other changes to share
permissions are required.

Important The process described above is the supported method to create “one-way”
replication, from the master to the mirror. Numerous Web sites recommend deleting
replication connections. This is not recommended as it can have unintended side effects on
DFS-R. Microsoft does not support deleting replication connections.

Solution summary

Using a scheduled task that executes Robocopy, or using DFS-R, you can replicate files
from a master to mirrors of a shared folder. To ensure that changes cannot be made
directly to the mirrors, use share permissions on the mirrored copies that enable only
Read access. NTFS permissions should not be modified on the mirrors, as the master’s
NTFS permissions will be replicated out to the mirrors and will thus override any
modifications you might have made. Deleting DFS-R links is also not recommended.

 2-16: Use quotas to manage storage

Solution overview

Type of solution: Guidance

Difficulty of implementation: Low

Features and tools: Quotas

Solution summary: Understand changes to the quota management capabilities of
Windows Server 2008.

Introduction

The quota management capability of Windows servers was overhauled in Windows Server
2003 R2. Like that predecessor, Windows Server 2008 enables a powerful, flexible, and
effective set of features for monitoring or enforcing storage utilization. This solution will
provide an overview of Windows quota management and will highlight key concepts and
tricks. Refer to the Help and Support Center for detailed documentation regarding quota
management.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 60
What’s new in quota management

The following discussion highlights changes to quotas compared to Windows Server 2003
and Windows 2000. No changes in functionality have been introduced since Windows
Server 2003 R2.

Perhaps the most significant change is that quotas can now be enforced at the folder, as
well as the volume level, and when a folder quota is configured, all users are subject to the
quota. In other words, if you specify that the Marketing folder’s quota is 100MB, then that
is the maximum storage allocated to that folder, regardless of who has created files in the
folder. As soon as 100MB of data is in the folder, the next user who attempts to create a
new file in the folder will be denied access.

The quota is also now based on the physical disk usage, rather than the logical disk usage.
So if a file is compressed using NTFS compression, the resulting (compressed) size counts
against the quota.

Quota behavior is very flexible. Quotas can be defined as hard quotas, which prevent all
users from adding data once the quota is reached, or soft quotas, which continue to allow
data to be added to a folder that has reached its quota, but can be used to monitor
storage utilization. Each quota can have multiple notification thresholds, which define
what happens at specific percentages of the quota. And at each threshold, one or more
actions can be triggered:

E-mail Message
• An email message can be sent to one or more administrators and/or to the user whose

modifications to the folder caused the threshold to be breached. The message to the
user is definable and can include a number of variables.

Event Log
• An warning can be added to the event log. Like the email message, you can define any

text for the warning and several variables can be included to ensure a detailed and
understandable log entry.

Command
• You can configure a threshold to execute any command. This makes the quota actions

infinitely extensible.

Report
• Storage utilization reports can be generated and sent by email to administrators

and/or to the user who exceeded the threshold. Reports are also saved in the
%systemdrive%\StorageReports\Incident folder on the server.

Quota templates

While Windows’ quota management functionality offers innumerable options for
configuration, the chances are very good that you will determine a small number of
configurations that are desirable for quota management in your enterprise. You may
decide, for example, that a departmental folder will have a certain quota and, when 85%
of the quota is reached, users will begin to receive emails instructing them to remove
outdated files, and administrators will be notified that the folder is nearing capacity. When
100% of the quota is reached, you may disallow further additions of files. You might

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 61
define other configurations for a handful of various storage scenarios in your
organization.

To implement your quota design decisions, you should create quota templates. A handful
of default quota templates are available initially. You can create new templates in the File
Server Resource Manager snap-in. Expand Quota Management, right-click Quota
Templates, and choose Create Quota Template. The new template can start as a copy of
an existing template, or you can create all properties from scratch. Name the template
and specify the maximum size of the quota. Configure the quota as hard or soft, then add
notification thresholds. For each threshold, configure the email messages, log entry,
command or reports to be triggered.

Once you’ve defined a quota template you will apply that quota template to folders. You
are likely to want to use similar quota templates across multiple servers. Use the
dirquota.exe command with the /export and /import switch to transfer quotas between
systems.

Apply a quota to a folder

Once you’ve created the appropriate quota templates, you can create quotas for specific
paths. Right-click the Quotas node in the Quota Management branch of the File Server
Resource Management snap-in. Choose Create Quota. Enter the path to which you want
to apply the quota: a folder or an entire volume. Then select your template from the
drop-down list in the middle of the Create Quota dialog box, as shown in Figure 2-13.

Figure 2-13 The Create Quota dialog box

Note that you are allowed to define a custom quota in the Create Quota dialog box, but
by utilizing quota templates you are able to manage quotas more effectively than using a
one-off approach. In addition to simplifying the application of quota properties, quota
templates also give you long-term flexibility. If you modify the properties of a quota
template, all folders to which that template was applied are immediately updated to
reflect the changes you have made.

The Create Quota dialog box has an option labeled, “Auto apply template…” This option is
particularly useful when you have a top-level folder (typically with no quota) that will
contain subfolders and, as each subfolder is created, you want to automatically apply a

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 62
specific quota to the new subfolder. Consider a scenario in which a departmental folder
will have subfolders for functions or teams within the department. You want each
subfolder to have a specific quota. This option supports that goal. Another common
scenario for this option is user data folders: a root folder exists “above” folders for each
user. As user data folders are created, you want to apply a specific quota to them. This
“auto apply” quota option will be discussed in detail in Solutions Collection X, [User Data
and Settings Title].

2-17: Reduce help desk calls to recover deleted or
overwritten files

Solution overview

Type of solution: Guidance

Difficulty of implementation: Low

Features and tools: Shadow Copies of Shared Folders

Solution summary: Enable Shadow Copies and provide users a method to recover
previous versions of files in shared folders.

Introduction

When a user accidentally deletes or overwrites a file, the support intervention that is
required can be significant—locating a backup, mounting the backup, and retrieving the
file. Windows Server 2003 introduced the Shadow Copies of Shared Folders feature, which
enables point-in-time snapshots of disk volumes, and the Previous Versions client, which
allows users to restore files from those snapshots without administrative intervention.

The underlying Shadow Copies technology is important to understand in detail, so I
recommend that you read Microsoft’s documentation:

• Feature documentation:
http://technet2.microsoft.com/windowsserver/en/library/77a571cc-a360-468a-ad99-
6c80049530db1033.mspx?mfr=true

• Technical reference:
http://technet2.microsoft.com/windowsserver/en/library/2b0d2457-b7d8-42c3-b6c9-
59c145b7765f1033.mspx?mfr=true

• White paper:
http://www.microsoft.com/windowsserver2003/techinfo/overview/scr.mspx

This solution will provide guidance in specific areas to help you align the feature with your
business requirements.

Enabling shadow copies

Shadow copies must be enabled on Windows servers—they are not enabled by default.
The feature is enabled per volume, not per folder or share. From a volume’s properties,
shown in Figure 2-14, click the Settings button.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 63

Figure 2-14 The Shadow Copies page of the volume Properties dialog box

Best Practice

Do not click the Enable button.

The Enable button is a “quick fix.” It configures Shadow Copies with all default settings,
and the default settings will not be appropriate for every scenario. Instead, click the
Settings button. The Settings dialog appears, as shown in Figure 2-15. Once you have
configured settings and click OK in the Settings dialog, you will simultaneously enable
shadow copies with your specific settings.

Figure 2-15 The Shadow Copies Settings dialog box

A shadow copy requires a storage area which does not have to be on the same volume for
which you are enabling shadow copies. In fact, it is a best practice to locate the shadow
copy storage area on another volume that, itself, is not being shadow copied.

Click the Schedule button in the Settings dialog box to modify the schedule of shadow
copies, also called “snapshots.” Using the Schedule tab, shown in Figure 2-16, You can

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 64

have multiple schedules configured. For example, you might create a snapshot at the end
of each day, plus a snapshot at lunch time during weekdays.

Figure 2-16 Shadow Copies Schedule dialog box

Understanding and configuring shadow copies

The art and science of configuring shadow copies is detailed in the Microsoft references
listed earlier. It boils down to balancing out desired functionality, specifically a user’s
ability to restore a file, with performance and storage. We will discuss how a user restores
a previous version later in this solution, but to summarize, a user is able to restore a
version as of the last snapshot time. Not every change or version is available to restore—
only versions captured at each scheduled snapshot.

You might think to yourself, “I should configure frequent snapshots, then.” But not so fast!
You must also consider performance and storage. First, the good news: when a snapshot is
created, Windows does not create a copy of the entire volume at that moment in time.
Each shadow copy does not take an amount of storage equivalent to the size of the
volume. Instead, a snapshot in effect “freezes” a volume’s current state and creates a
cache (in the snapshot storage area) for the snapshot. From that point forward, when a
change needs to be written to the disk, the volume shadow copy service (VSS) “intercepts”
the change and, before writing the change to the disk, takes what is currently on the disk
and moves the information into the cache of the most recent snapshot. Then the new
information is written to disk. So if snapshots are scheduled at 7:00am and 12:00pm, all
changes written to the disk between 7:00am and 12:00pm are intercepted, the current
data (that existed at 7:00am) is moved into the storage area for the 7:00am snapshot, then
the change is made. The changes are at the block level, so they can be very efficient,
depending on the application that is making the change to the disk. So the size of a
snapshot reflects the amount of disk activity between the snapshot and the next snapshot.

Now, the bad news. You can maintain a maximum 64 snapshots. So if you take one
snapshot a day, you could possibly maintain 64 days worth of snapshots. On the 65th day,
the first (oldest) snapshot would be deleted to make room for the next. A snapshot every
PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 65
three hours would mean eight per day, so you could possibly maintain 8 days worth of
snapshots. I say “possibly” because the amount of activity could be such that the storage
area fills up before the 64th snapshot is taken. When the storage area fills, the oldest
snapshot is removed. Now, perhaps, you can see the need for art and science to
determine your snapshot schedule.

There are some additional guidelines I’d like to highlight:

• Select a volume that is not being shadow copied for the shadow copy storage area
whenever possible, and particularly on heavily used file servers.

• Mount points and symbolic links (folders that expose data that is in another location)
are not included in shadow copies. You must enable shadow copies on the volumes
that host the data that is being mounted or linked to if you wish to utilize the shadow
copy feature on that data.

• Do not schedule copies more than once per hour, as it will impact performance.

• If a volume will use shadow copy, format the source volume with an allocation unit
size of 16KB or larger. Shadow copy stores changes in 16KB blocks. Smaller allocation
unit sizes will lead to inefficient storage. This is particularly important if you regularly
defragment the volume. Sadly, this 16KB cluster size recommendation means you
cannot use NTFS compression on the volume. NTFS compression cannot be used with
an allocation unit size larger than 4KB. Put simply, format your volumes with 16KB
clusters and forget NTFS compression. Sorry for the bad news.

One more critical note:

Important Shadow Copies of Shared Folders (“Previous Versions” or “snapshots”) should not be
considered as an alternative to a comprehensive backup and recovery strategy.

Because shadow copies are not maintained indefinitely, you should use shadow copies
only for these purposes:

• Recovering a file that was accidentally deleted.

• Recovering a file that has been overwritten.

• Comparing a version of a file to a recent version captured by a snapshot.

Make sure you have designed, implemented and (most importantly) validated your server
backup and recovery procedures.

Accessing previous versions

To access previous versions of files for the purposes listed above, you must use the
Previous Versions client, also known as the Shadow Copies client. The client is built in to
Windows XP SP2 and later. It is available from Microsoft’s web site for download to
Windows 2000 and Windows XP clients. It is also found in the
%systemroot%\system32\clients\twclient folder on a Windows 2003 Server or Windows
2008 Server.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 66
Clients work differently on various versions of Windows. Windows Vista and Windows
Server 2008 allow you to go to the properties of any file and click the Previous Versions
tab, as shown in Figure 2-17.

Figure 2-17 The Previous Versions page of a file’s Properties dialog box

If a previous version exists, it will be listed. You can then click Open to the file in its default
application, or you can right-click the file to select an application with which to open the
file. This allows you to view the file and, of course, you could use the application to save a
copy of the file to a specific location. From the Previous Versions tab you can also click
Copy to copy the file to a specific location. Finally, you can click Restore to restore the
version to the original location, thereby restoring a deleted file or overwriting the current
version.

Windows 2000, Windows XP, and Windows Server 2003 support accessing previous
versions only through a shared folder. If you have opened a folder using a UNC, i.e.
\\server\share\[path], you can go to the properties and see Previous Versions. You can
then perform the actions described above. You cannot get to the Previous Versions from
the properties of a local file on Windows 2000, Windows XP, or Windows Server 2003.

Some notes about Previous Versions:

• If a file has not changed since the first snapshot, you will not see any previous version
listed. Recall that shadow copies works when changes are made after a snapshot. So
only files that have been changed at least once since the first snapshot will have
previous versions listed.

• If you rename a file, it will no longer display its previous versions.

• When you restore a file, you are not restoring the permissions of the file. If you are
restoring a deleted file, it will inherit its ACL from the parent folder. If you are restoring
a file over the current version, it will use the ACL of the current version.

Solution summary

Caveats and all, Shadow Copies of Shared Folders is a fantastic feature to address the
solution we’re discussing: reducing help desk calls that result from a deleted or

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 67
overwritten file. Spend time reading Microsoft’s documentation so that you can configure
shadow copies effectively on your servers, deploy the client to any computers running
Windows XP SP1 or earlier, and communicate to users the process with which to restore
previous versions.

2-18: Create an effective, delegated DFS namespace

Solution overview

Type of solution: Guidance

Difficulty of implementation: Low

Features and tools: DFS Namespaces

Solution summary: Address business and technical intricacies of DFS namespace design.

Introduction

If you are familiar with DFS Namespaces, you can skip this overview. If you are not, then
let me introduce you to DFS Namespaces, a component I like to call, “The Role Service
Previously Known as Distributed File System (DFS) and Known Before That as Distributed
File System (Dfs).”

DFS Namespaces is as close to a “no brainer” solution as anything Microsoft has provided.
DFS Namespaces, and DFS before it, and Dfs before it, have, since Windows NT 4.0,
provided the capability to abstract the physical location of files and folders from any
pointer to those resources.

The fundamental challenge is that if you have a pointer, such as a shortcut, mapped drive,
or other UNC to a share, folder, or file, it takes the form \\server\share\[path]\[file]. If you
restructure the physical storage of the file in any way, such as change the share name or
move the folder tree to another share or server, you have to reconfigure the shortcut,
mapped drive, or other UNC pointer. If there are numerous pointers, the management
headaches increase exponentially. In a business of any size whatsoever, if data is moved
between servers, it takes a mammoth effort to reconfigure everything that refers to the
files and folders and shares.

DFS Namespaces solves this problem by creating a separate namespace—a “folder
hierarchy” that can present enterprise resources in a logical, rather than physical structure.
For example, you might choose to represent the path to the marketing department share
as: \\contoso.com\departments\marketing. Each folder in the DFS Namespace is a virtual
entity. It points to, or refers to, the physical location of the folder. So the
\\contoso.com\departments\marketing folder in the DFS namespace refers to the current
location of the folder, \\server01\data$\marketing. All other references to the marketing
folder will use the DFS namespace: mapped drives, shortcuts, links between files, etc.
When a Windows client requests \\contoso.com\departments\marketing, the DFS client
(built in to every recent version of Windows) contacts a DFS Namespace server. The DFS
namespace server refers the client to the current location of the folder, and the client then
connects to that server. All of this happens transparently to the user.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 68
If the marketing folder is moved to server02, the only change that must be made is to the
reference of the DFS namespace folder, pointing it now to \\server02\data$\marketing.
Clients will continue to request \\contoso.com\departments\marketing but now they will
be referred to the new location.

Because the physical location of resources is abstracted, administration of those resources
is significantly easier. In addition, it’s easier for users to locate data they require, as the
data is presented in a logical format. Users will more easily determine that a Marketing
folder is within a Departments folder than they could figure out that it must be on
Server02.

Additionally, DFS namespace folders can refer to more than one target. In other words,
the Marketing folder in DFS can point to copies of the folder that exist both on Server01
and Server02. The folders can be replicated using a closely-related feature, DFS
Replication. A folder that refers to more than one target provides a form of load sharing,
as clients will get alternating referrals to the two servers. Or, if the servers are in different
Active Directory sites, clients will be referred to the server that is “closest,” from a site link
cost perspective, to the client. And as if that is not enough, if one of the servers fails,
clients will be referred to the other server, producing a level of fault tolerance I refer to as
“poor man’s clustering.”

Creating DFS Namespaces

Microsoft has documented DFS Namespaces to great detail:

• Feature documentation:
http://technet2.microsoft.com/windowsserver/en/library/77a571cc-a360-468a-ad99-
6c80049530db1033.mspx?mfr=true

• Technical reference:
http://technet2.microsoft.com/windowsserver/en/library/2b0d2457-b7d8-42c3-b6c9-
59c145b7765f1033.mspx?mfr=true

You should certainly read the documentation prior to implementing DFS Namespaces, but
like other solutions in this Resource Kit I would like to provide guidance in several specific
areas that I have seen “trip up” many an experienced administrator.

Creating a DFS Namespace is detailed in the feature documentation. To summarize, open
the DFS Management console, right-click the Namespaces node, and choose New
Namespace. A wizard will step you through each task required to create the namespace.
For the sake of example in the following sections, let’s assume you create a namespace
called “Human Resources.”

Delegating DFS Namespaces

The Enterprise and Datacenter editions of Windows Server 2003 R2 and 2008 can host
multiple DFS namespaces. If your DFS server is Standard or Web edition, you are limited to
one DFS namespace. If you have more than one namespace, you will likely want to
delegate management of the namespaces.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 69
This is where I see organizations make the first “mistake” which is, in my experience, not to
delegate the management of DFS Namespaces. The typical argument I hear in such
situations is, “Corporate wants to maintain control of the namespace to ensure a logical
hierarchy of folders.” That is, in my opinion, shortsighted to say the least, unless you are
working with the Standard or Web editions and therefore can only have one namespace.

DFS Namespaces is just that: namespaces… a hierarchy… a folder tree. Does Corporate
maintain control over what folders are on a file server? Do you have to call up a vice
president before adding a subfolder to a share? Probably not. The organization of data
should generally be pushed out to those who “own” the data and who can best evaluate
how it should be presented.

Now I’m not suggesting that “Corporate” doesn’t have a good point: there is a lot of value
in a centrally-driven namespace that stays more consistent over time. We will solve that
problem in the next section, “Linking DFS Namespaces.” So Corporate will get its way also.
But I highly recommend that those who know the data and the servers on which data is
stored and, most importantly, know how and why the data is accessed, will best be able to
organize the data in a logical namespace.

Let’s assume that you have a significant number of resources related to Human Resources,
such as corporate policies, information about benefits, etc. One or more individuals has
been tasked with determining how that data is used and accessed, and creates a logical
hierarchy of folders:

 HR

 Benefits

 Vacation

 Medical

 Retirement

 Corporate Discounts

 Policies

 Diversity Statement

 Information Technology Usage

 Sexual Harassment Policy

 Compensation

 Payroll Calendar

 Direct Deposit Forms

I recommend that you delegate to that individual or team the ability to manage the
namespace, so that if new resources need to be added to the namespace, they can do it.
To delegate a namespace, right-click the namespace in the DFS Management console and
choose Delegate Management Permissions. Enter the name of the user or, preferably, of
the group that should be given permission to manage the namespace. It’s that simple! In

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 70
previous versions of DFS, a delegation of namespace management required that the user
or group was a member of the local Administrators group on the namespace server. That
is no longer the case. The team can now manage the namespace.

From a change control perspective, DFS namespaces should be managed carefully. The
whole “point” of DFS namespaces is to provide a stable, logical view of enterprise
resources. Any change to the DFS namespace itself will require changing the references
(mapped drives, shortcuts, etc.) to the namespace. So good planning should result in a
structure that doesn’t need to be changed regularly, if at all. However, new resources are
likely to be added to the enterprise, and can certainly be added to the namespace as long
as existing structure (folders) remain stable.

Linking DFS namespaces

Now let’s address the concern we raised about “Corporate,” which wanted control of the
namespace. Typically, that requirement arises from the desire to maintain a very stable
namespace that creates a taxonomy—a way of organizing enterprise resources. This
section will a trick that will solve this, and other, business requirements.

We presented, above, a scenario in which the Human Resources department maintains a
DFS Namespace. Let’s assume other departments also have unique, delegated DFS
namespaces, including Information Technology (IT).

It is quite useful to present your enterprise application distribution points within a DFS
namespace. For example, the path from which Microsoft Office is installed might be a
UNC through a DFS namespace called “Software,” such as
\\contoso.com\software\microsoft\office\2007\. That DFS namespace folder might refer to
several copies of the software throughout the enterprise, such as
\\DenverServer\Software$\Office2007. Using DFS folders for software distribution UNCs
makes software management (installation, repair, removal) much more efficient. We will
discuss this in detail later in the book.

You might delegate the management of the Software namespace to a limited number of
administrators who manage software installation. But because the software folders are
often thought of as IT resources, you want to be able to locate software through the IT
namespace.

That’s where the trick comes in. Create a DFS namespace folder in the IT namespace, e.g.
\\contoso.com\IT\software. The target of that folder is another DFS namespace,
specifically \\contoso.com\software. If a client navigates to the IT namespace, they see
“Software” within it. When they navigate to that folder, they’re actually (transparently)
navigating an entirely different DFS Namespace!

Figure 2-18 shows an example, as seen by a client, of the resulting namespace.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 71

Figure 2-18 The IT namespace with a folder, Software, that exposes another DFS namespace

With that trick in mind, you can imagine a solution to Corporate’s request. Corporate can
create a namespace that it maintains, at a high level, such as:

\\contoso.com\Corporate

 Departments

 HR

 IT

 Finance

 Marketing

 …

The folders the corporate namespace target the departmental namespaces that have been
delegated to those who are best equipped to manage them.

This concept also can solve a common dilemma within an organization: should the
namespace be departmental or geographical? Why not both? You can absolutely create a
DFS namespace with multiple paths to the same resource. The goal is to make your
resources easy to manage and, for users, easy to find. The only caveat I’d provide here is
that if you do, in fact, provide multiple paths to the same resource, you train users to
know that just because they see a file in two “paths”, it is still one file, so not to delete the
file because they believe it is a “copy.”

Presenting DFS namespaces to users

Because DFS namespaces create a logical view of enterprise resources, it is reasonable to
provide a way for users to navigate the namespace as a more intelligent form of
“browsing.” There are several ways to incorporate DFS namespaces into the client user
interface.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 72
Shortcuts
• Shortcuts, with location properties that reference a DFS namespace folder, can be

placed in any location within the user’s experience: the desktop, the Documents folder,
the Start menu, etc. Shortcuts provide access to users running any recent version of
Windows.

Mapped Drives
• Similarly, network drives mapped to a DFS namespace folder can be accessed by users

running any recent version of Windows. The advantage of a mapped drive over a
shortcut is the fact that the mapped drive exposes an expandable node within the
Explorer folder tree. Additionally, it is easy to reference “the S:\ drive” as the location
where users can find software, for example. But mapped drives are limited to the
number of available letters, and are in many ways a legacy form of connection to
network resources.

Network Places
• Network places are the “best of both worlds” for Windows XP users. You can create a

network place in the My Network Places folder then move it to any other location, like
a shortcut and, also like a shortcut, the network place can have any name. Like a
mapped drive, a network place expands within the Explorer folder tree giving easy
visibility to the hierarchy of the DFS namespace to which the network place points.
Network places, unfortunately and unexplainably, were dropped from Windows Vista.

Symbolic Links
• Symbolic links, new to Windows Vista, replace network places for the purposes of this

solution. You can create a symbolic link to a DFS namespace. The link can be created
in any folder, e.g. Desktop, Documents, or in the user’s profile; and it can have any
name. When viewed in the Explorer folder tree, the symbolic link expands to show the
DFS hierarchy. To create a symbolic link, use the mklink.exe command. You must be an
administrator to create a directory link, which is necessary to refer to a DFS
namespace. For example, to create a symbolic link for a user, James Fine, called
“Corporate” that points to the Corporate DFS namespace, the syntax would be:

mklink.exe /d “c:\users\jfine\Corporate” \\contoso.com\Corporate

An example of the Corporate DFS namespace, exposed within the user profile of James
Fine, is displayed in Figure 2-19.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

Preview Content from Windows® Administration Resource Kit: Productivity Solutions for IT
Professionals 73

Figure 2-19 A DFS namespace exposed, though a symbolic link, within a User’s profile

Solution summary

DFS namespaces is a phenomenally useful feature of Windows servers that can be used to
facilitate administration, user access to resources, and performance across servers and
sites. If you haven’t looked at DFS namespaces yet, look now. It is a “no brainer,” in my
opinion. Refer to the Microsoft documentation listed early in this section to learn about
the technology. If you are using the Enterprise edition of Windows server, you can have
multiple domain namespaces, and you can therefore create delegated namespaces that
are managed by administrators that understand the data, its use, and its location. To
create centralized or hierarchical namespaces, you can create a high-level DFS namespace
with folders that target other DFS namespaces.

After you’ve created the perfect enterprise DFS namespaces implementation, you can
present the namespaces, or portions thereof, to users. Features such as shortcuts, mapped
drives, network places (Windows XP) and symbolic links (Windows Vista) will empower
users to browse for resources efficiently, through the logical namespace you have
designed.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows® Administration Resource Kit: Productivity
Solutions for IT Professionals from Microsoft Press (ISBN 978-0-7356-2431-3, copyright 2008 Dan Holme (All), all rights
reserved), and is provided without any express, statutory, or implied warranties.

	Cover
	Table of Contents
	SOLUTIONS COLLECTION 2: Managing Files, Folders and Shares
	Scenarios, Pain and Solution
	2-1: Work effectively with the ACL editor user interfaces
	Solution overview
	Introduction
	The ACL editor
	Evaluating effective permissions
	Solution summary

	2-2: Manage folder structure
	Solution overview
	Introduction
	Create a folder structure that is wider, rather than deeper
	Use DFS namespaces to present shared folders in a logical hierarchy
	Solution summary

	2-3: Manage access to root data folders
	Solution overview
	Introduction
	Create one or more consistent root data folders on each file server
	Use Group Policy to manage and enforce ACLs on root data folders
	Solution summary

	2-4: Delegate the management of shared folders
	Solution overview
	Introduction
	Dedicate servers performing a file server role
	Manage the delegation of administration of shared folders
	Solution summary

	2-5: Determine which folders should be shared
	Solution overview
	Introduction
	Determine which folders should be shared
	Solution summary

	2-6: Implement folder access permissions based on required capabilities
	Solution overview
	Introduction
	Implement a Read capability
	Implement a Browse To capability
	Implement an Edit capability
	Implement a Contribute capability
	Implement a Drop capability
	Implementing a Support capability
	Create scripts to apply permissions consistently
	Manage folder access capabilities using role-based access control (RBAC)
	Solution summary

	2-7: Understand shared folder permissions (SMB permissions)
	Solution overview
	Introduction
	Scripting SMB permissions
	Solution summary

	2-8: Script the creation of an SMB share
	Solution overview
	Introduction
	Customizing Share_Create.vbs
	Understanding Share_Create.vbs
	Solution summary

	2-9: Provision the creation of a shared folder
	Solution overview
	Introduction
	Using Folder_Provision.hta
	Basic customization of Folder_Provision.hta
	Understanding the code behind Folder_Provision.hta and advanced customization
	Solution summary

	2-10: Avoid the ACL inheritance propagation danger of files and folder movement
	Solution overview
	Introduction
	See the “bug-like feature” in action
	What in the world is going on?
	Solving the problem
	Change the culture, change the configuration
	Solution summary

	2-11: Preventing users from changing permissions on their own files
	Solution overview
	Introduction
	What about object lockout?
	Solution summary

	2-12: Prevent users from seeing what they cannot access
	Solution overview
	Introduction
	One perspective: Don’t worry about it.
	A second perspective: Manage your folders
	A third perspective, and a solution: Access based enumeration
	Solution summary

	2-13: Determine who has a file open
	Solution overview
	Introduction
	Understanding FileServer_OpenFile.vbs
	Solution summary

	2-14: Send messages to users
	Solution overview
	Introduction
	Using Message_Notification.vbs
	Understanding Message_Notification.vbs
	Using PSExec to execute a script on a remote machine
	Listing the open sessions on a server
	Using and customizing FileServer_ NotifyConnectedUsers.vbs
	Solution summary

	2-15: Distribute files across servers
	Solution overview
	Introduction
	Using Robocopy to distribute files
	Using DFS-Replication to distribute files
	Solution summary

	2-16: Use quotas to manage storage
	Solution overview
	Introduction
	What’s new in quota management
	Quota templates
	Apply a quota to a folder

	2-17: Reduce help desk calls to recover deleted or overwritten files
	Solution overview
	Introduction
	Enabling shadow copies
	Understanding and configuring shadow copies
	Accessing previous versions
	Solution summary

	2-18: Create an effective, delegated DFS namespace
	Solution overview
	Introduction
	Creating DFS Namespaces
	Delegating DFS Namespaces
	Linking DFS namespaces
	Presenting DFS namespaces to users
	Solution summary

