
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672338090
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672338090
https://plusone.google.com/share?url=http://www.informit.com/title/9780672338090
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672338090
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672338090/Free-Sample-Chapter

Collect, Combine, and
Transform Data Using
Power Query in Excel
and Power BI

Gil Raviv

COLLECT, COMBINE, AND TRANSFORM DATA USING POWER QUERY
IN EXCEL AND POWER BI

Published with the authorization of Microsoft Corporation by:
Pearson Education, Inc.
Copyright © 2019 by Gil Raviv

All rights reserved. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage
in a retrieval system, or transmission in any form or by any means, electronic,
 mechanical, photocopying, recording, or likewise. For information regarding
 permissions, request forms, and the appropriate contacts within the Pearson
 Education Global Rights & Permissions Department, please visit www.pearsoned.
com/permissions/. No patent liability is assumed with respect to the use of the
 information contained herein. Although every precaution has been taken in the
preparation of this book, the publisher and author assume no responsibility for
errors or omissions. Nor is any liability assumed for damages resulting from the use
of the information contained herein.

ISBN-13: 978-1-5093-0795-1
ISBN-10: 1-5093-0795-8

Library of Congress Control Number: 2018954693

01 18

Trademarks

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks”
web page are trademarks of the Microsoft group of companies. All other marks are the
property of their respective owners.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fi tness is implied. The information provided is on an “as is” basis.
The author, the publisher, and Microsoft Corporation shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages arising from
the information contained in this book.

PUBLISHER

Mark Taub

ACQUISITIONS EDITOR

Trina MacDonald

DEVELOPMENT EDITOR

Ellie Bru

MANAGING EDITOR

Sandra Schroeder

SENIOR PROJECT EDITOR

Tonya Simpson

COPY EDITOR

Kitty Wilson

INDEXER

Erika Millen

PROOFREADER

Abigail Manheim

TECHNICAL EDITOR

Justin DeVault

COVER DESIGNER

Twist Creative, Seattle

COMPOSITOR

codemantra

COVER IMAGE

Malosee Dolo/ShutterStock

http://www.pearsoned.com/permissions/
http://www.pearsoned.com/permissions/
http://www.microsoft.com

Contents at a Glance

Introduction xviii

CHAPTER 1 Introduction to Power Query 1

CHAPTER 2 Basic Data Preparation Challenges 21

CHAPTER 3 Combining Data from Multiple Sources 61

CHAPTER 4 Combining Mismatched Tables 83

CHAPTER 5 Preserving Context 111

CHAPTER 6 Unpivoting Tables 135

CHAPTER 7 Advanced Unpivoting and Pivoting of Tables 155

CHAPTER 8 Addressing Collaboration Challenges 181

CHAPTER 9 Introduction to the Power Query M Formula Language 205

CHAPTER 10 From Pitfalls to Robust Queries 247

CHAPTER 11 Basic Text Analytics 277

CHAPTER 12 Advanced Text Analytics: Extracting Meaning 311

CHAPTER 13 Social Network Analytics 351

CHAPTER 14 Final Project: Combining It All Together 375

Index 385

 iii

iv

Contents

Introduction . xviii

Chapter 1 Introduction to Power Query 1
What Is Power Query? . 2

A Brief History of Power Query . 3

Where Can I Find Power Query? . 6

Main Components of Power Query . 7

Get Data and Connectors . 8

The Main Panes of the Power Query Editor . 9

Exercise 1-1: A First Look at Power Query . 14

Summary . 19

Chapter 2 Basic Data Preparation Challenges 21
Extracting Meaning from Encoded Columns . 22

AdventureWorks Challenge . 22

Exercise 2-1: The Old Way: Using Excel Formulas 23

Exercise 2-2, Part 1: The New Way . 24

Exercise 2-2, Part 2: Merging Lookup Tables . 28

Exercise 2-2, Part 3: Fact and Lookup Tables . 32

Using Column from Examples .34

Exercise 2-3, Part 1: Introducing Column
from Examples . 35

Practical Use of Column from Examples . 37

Exercise 2-3, Part 2: Converting Size to
Buckets/Ranges . 37

Extracting Information from Text Columns .40

Exercise 2-4: Extracting Hyperlinks from Messages40

Handling Dates .48

Exercise 2-5: Handling Multiple Date Formats .48

Exercise 2-6: Handling Dates with Two Locales 50

Extracting Date and Time Elements . 53

 Contents v

Preparing the Model .54

Exercise 2-7: Splitting Data into Lookup
Tables and Fact Tables . 55

Exercise 2-8: Splitting Delimiter-Separated
Values into Rows . 57

Summary . 60

Chapter 3 Combining Data from Multiple Sources 61
Appending a Few Tables . 61

Appending Two Tables . 62

Exercise 3-1: Bikes and Accessories Example . 62

Exercise 3-2, Part 1: Using Append Queries as New 64

Exercise 3-2, Part 2: Query Dependencies
and References . 65

Appending Three or More Tables . 68

Exercise 3-2, Part 3: Bikes + Accessories + Components 68

Exercise 3-2, Part 4: Bikes + Accessories +
Components + Clothing . 70

Appending Tables on a Larger Scale . 71

Appending Tables from a Folder . 71

Exercise 3-3: Appending AdventureWorks Products
from a Folder . 71

Thoughts on Import from Folder . 74

Appending Worksheets from a Workbook . 74

Exercise 3-4: Appending Worksheets: The Solution 75

Summary . 81

Chapter 4 Combining Mismatched Tables 83
The Problem of Mismatched Tables . 83

What Are Mismatched Tables? .84

The Symptoms and Risks of Mismatched Tables 84

Exercise 4-1: Resolving Mismatched Column Names:
The Reactive Approach . 85

Combining Mismatched Tables from a Folder . 86

Exercise 4-2, Part 1: Demonstrating the Missing
Values Symptom. 87

vi Contents

Exercise 4-2, Part 2: The Same-Order Assumption
and the Header Generalization Solution . 89

Exercise 4-3: Simple Normalization Using
Table.TransformColumnNames . 90

The Conversion Table . 93

Exercise 4-4: The Transpose Techniques
Using a Conversion Table . 95

Exercise 4-5: Unpivot, Merge, and Pivot Back . 99

Exercise 4-6: Transposing Column Names Only 101

Exercise 4-7: Using M to Normalize Column Names 106

Summary . 109

Chapter 5 Preserving Context 111
Preserving Context in File Names and Worksheets .111

Exercise 5-1, Part 1: Custom Column Technique 112

Exercise 5-1, Part 2: Handling Context from File
Names and Worksheet Names . 113

Pre-Append Preservation of Titles . 114

Exercise 5-2: Preserving Titles Using Drill Down 115

Exercise 5-3: Preserving Titles from a Folder . 119

Post-Append Context Preservation of Titles . 121

Exercise 5-4: Preserving Titles from Worksheets
in the same Workbook . 122

Using Context Cues . 126

Exercise 5-5: Using an Index Column as a Cue 127

Exercise 5-6: Identifying Context by Cell Proximity 130

Summary . 134

Chapter 6 Unpivoting Tables 135
Identifying Badly Designed Tables . 136

Introduction to Unpivot . 138

Exercise 6-1: Using Unpivot Columns and
Unpivot Other Columns . 139

Exercise 6-2: Unpivoting Only Selected Columns 142

 Contents vii

Handling Totals . 143

Exercise 6-3: Unpivoting Grand Totals . 143

Unpivoting 2×2 Levels of Hierarchy . 146

Exercise 6-4: Unpivoting 2×2 Levels of Hierarchy with Dates 147

Exercise 6-5: Unpivoting 2×2 Levels of Hierarchy 149

Handling Subtotals in Unpivoted Data . 152

Exercise 6-6: Handling Subtotals . 152

Summary . 154

Chapter 7 Advanced Unpivoting and Pivoting of Tables 155
Unpivoting Tables with Multiple Levels of Hierarchy 156

The Virtual PivotTable, Row Fields, and Column Fields 156

Exercise 7-1: Unpivoting the AdventureWorks N×M
Levels of Hierarchy . 157

Generalizing the Unpivot Sequence . 160

Exercise 7-2: Starting at the End . 160

Exercise 7-3: Creating FnUnpivotSummarizedTable 162

The Pivot Column Transformation . 173

Exercise 7-4: Reversing an Incorrectly Unpivoted Table 173

Exercise 7-5: Pivoting Tables of Multiline Records 175

Summary . 179

Chapter 8 Addressing Collaboration Challenges 181
Local Files, Parameters, and Templates . 182

Accessing Local Files—Incorrectly . 182

Exercise 8-1: Using a Parameter for a Path Name 183

Exercise 8-2: Creating a Template in Power BI 185

Exercise 8-3: Using Parameters in Excel . 187

Working with Shared Files and Folders . 194

Importing Data from Files on OneDrive for
Business or SharePoint . 195

Exercise 8-4: Migrating Your Queries to
Connect to OneDrive for Business or SharePoint 197

Exercise 8-5: From Local to SharePoint Folders 199

Security Considerations . 201

viii Contents

Removing All Queries Using the Document
Inspector in Excel .202

Summary .203

Chapter 9 Introduction to the Power Query M Formula Language 205
Learning M .206

Learning Maturity Stages .206

Online Resources .209

Offl ine Resources .209

Exercise 9-1: Using #shared to Explore
Built-in Functions . 210

M Building Blocks . 211

Exercise 9-2: Hello World . 212

The let Expression . 213

Merging Expressions from Multiple Queries and
Scope Considerations . 215

Types, Operators, and Built-in Functions in M 218

Basic M Types .220

The Number Type .220

The Time Type . 221

The Date Type .222

The Duration Type .223

The Text Type .224

The Null Type. .224

The Logical Type .225

Complex Types .226

The List Type .226

The Record Type .229

The Table Type .232

Conditions and If Expressions .234

if-then-else .235

An if Expression Inside a let Expression .235

Custom Functions .237

Invoking Functions .239

The each Expression .239

 Contents ix

Advanced Topics .240
Error Handling. .240
Lazy and Eager Evaluations. .242
Loops .242
Recursion .243
List.Generate .244
List.Accumulate .244

Summary .246

Chapter 10 From Pitfalls to Robust Queries 247
The Causes and Effects of the Pitfalls .248

Awareness .250
Best Practices. .250
M Modifi cations . 251

Pitfall 1: Ignoring the Formula Bar . 251
Exercise 10-1: Using the Formula Bar to Detect Static

References to Column Names .252

Pitfall 2: Changed Types .254

Pitfall 3: Dangerous Filtering .256
Exercise 10-2, Part 1: Filtering Out Black Products257
The Logic Behind the Filtering Condition .258
Exercise 10-2, Part 2: Searching Values in the Filter Pane 260

Pitfall 4: Reordering Columns . 261
Exercise 10-3, Part 1: Reordering a Subset of Columns262
Exercise 10-3, Part 2: The Custom Function

FnReorderSubsetOfColumns .264

Pitfall 5: Removing and Selecting Columns .265
Exercise 10-4: Handling the Random Columns in

the Wide World Importers Table. .265

Pitfall 6: Renaming Columns. .267
Exercise 10-5: Renaming the Random Columns in

the Wide World Importers Table. .268

Pitfall 7: Splitting a Column into Columns . 271
Exercise 10-6: Making an Incorrect Split .272

Pitfall 8: Merging Columns . 274

More Pitfalls and Techniques for Robust Queries .275

Summary . 276

x Contents

Chapter 11 Basic Text Analytics 277
Searching for Keywords in Textual Columns .278

Exercise 11-1: Basic Detection of Keywords .278

Using a Cartesian Product to Detect Keywords282

Exercise 11-2: Implementing a Cartesian Product 283

Exercise 11-3: Detecting Keywords by Using a Custom Function . .290

Which Method to Use: Static Search, Cartesian Product,
or Custom Function? .293

Word Splits .293

Exercise 11-4: Naïve Splitting of Words .293

Exercise 11-5: Filtering Out Stop Words .298

Exercise 11-6: Searching for Keywords by Using Split Words300

Exercise 11-7: Creating Word Clouds in Power BI308

Summary . 310

Chapter 12 Advanced Text Analytics: Extracting Meaning 311
Microsoft Azure Cognitive Services . 311

API Keys and Resources Deployment on Azure 313

Pros and Cons of Cognitive Services via Power Query 316

Text Translation . 318

The Translator Text API Reference . 319

Exercise 12-1: Simple Translation .320

Exercise 12-2: Translating Multiple Messages .324

Sentiment Analysis .329

What Is the Sentiment Analysis API Call? .330

Exercise 12-3: Implementing the FnGetSentiment
Sentiment Analysis Custom Function . 331

Exercise 12-4: Running Sentiment Analysis on Large Datasets 342

Extracting Key Phrases . 344

Exercise 12-5: Converting Sentiment Logic to Key Phrases 344

Multi-Language Support .347

Replacing the Language Code .347

Dynamic Detection of Languages .347

Exercise 12-6: Converting Sentiment Logic to Language Detection . . . 348

Summary .349

 Contents xi

Chapter 13 Social Network Analytics 351
Getting Started with the Facebook Connector .352

Exercise 13-1: Finding the Pages You Liked .352

Analyzing Your Friends .357

Exercise 13-2: Finding Your Power BI Friends
and Their Friends .357

Exercise 13-3: Find the Pages Your Friends Liked360

Analyzing Facebook Pages .362

Exercise 13-4: Extracting Posts and Comments from
Facebook Pages—The Basic Way .363

Short Detour: Filtering Results by Time .367

Exercise 13-5: Analyzing User Engagement by
Counting Comments and Shares .367

Exercise 13-6: Comparing Multiple Pages .370

Summary .373

Chapter 14 Final Project: Combining It All Together 375
Exercise 14-1: Saving the Day at Wide World Importers 375

Clues . 376

Part 1: Starting the Solution .377

Part 2: Invoking the Unpivot Function .379

Part 3: The Pivot Sequence on 2018 Revenues380

Part 4: Combining the 2018 and 2015–2017 Revenues 381

Exercise 14-2: Comparing Tables and Tracking the Hacker 381

Clues .382

Exercise 14-2: The Solution .382

Detecting the Hacker’s Footprints in the
Compromised Table .383

Summary .384

Index 385

xii

Figure Credits

Chapter 1, “Introduction to Power Query,” Figures 1-1 through 1-9 courtesy
of Microsoft Corporation.

Chapter 2, “Basic Data Preparation Challenges,” Figures 2-1 through 2-16 courtesy
of Microsoft Corporation.

Chapter 3, “Combining Data from Multiple Sources,” Figures 3-1 through 3-8
courtesy of Microsoft Corporation.

Chapter 4, “Combining Mismatched Tables,” Figures 4-1 through 4-11 courtesy of
Microsoft Corporation.

Chapter 5, “Preserving Context,” Figures 5-1 through 5-11 courtesy of Microsoft
Corporation.

Chapter 6, “Unpivoting Tables,” Figures 6-1 through 6-9 courtesy of Microsoft
Corporation.

Chapter 7, “Advanced Unpivoting and Pivoting of Tables,” Figures 7-1 through 7-5
courtesy of Microsoft Corporation.

Chapter 8, “Addressing Collaboration Challenges,” Figures 8-1 through 8-10 courtesy
of Microsoft Corporation.

Chapter 9, “Introduction to the Power Query M Formula Language,” Figures 9-2
through 9-10 courtesy of Microsoft Corporation.

Chapter 10, “From Pitfalls to Robust Queries,” Figures 10-2 through 10-9 courtesy of
Microsoft Corporation.

Chapter 11, “Basic Text Analytics,” Figures 11-1 through 11-14, Figures 11-16 and 11-17
courtesy of Microsoft Corporation.

Chapter 12, “Advanced Text Analytics: Extracting Meaning,” Figures 12-3 through 12-8,
Figures 12-10 through 12-14 courtesy of Microsoft Corporation.

Chapter 13, “Social Network Analytics,” Figures 13-1 through 13-11 courtesy of
Microsoft Corporation.

Chapter 14, “Final Project: Combining It All Together,” Figures 14-1 through 14-3
courtesy of Microsoft Corporation.

 xiii

Foreword

When we set out to build the original Power Query add-in for Excel, we had a
simple yet ambitious mission: connecting to and transforming the world’s

data. Five years later, we’ve moved beyond the original Excel add-in with native inte-
gration into Excel, Power BI, Power Apps, and a growing set of products that need
to extract and transform data. But our original mission remains largely unchanged.
With the ever-increasing heterogeneity of data, in many ways, our mission feels even
more ambitious and challenging than ever. Much of today’s computing landscape is
centered around data, but data isn’t always where or how you need it—we continue
to advance Power Query with the goal of bridging that gap between the raw and
desired states of data.

Throughout the Power Query journey, the user community has played a critical role
in shaping the product through suggestions and feedback. The community has also
played a central role in developing valuable educational content. As one of the key
drivers of Power Query’s native integration into Excel 2016, Gil is well placed to provide
valuable insights and tips for a variety of scenarios. Even after his tenure at Microsoft,
Gil has remained an active and infl uential member of the Power Query community.
Happy querying!

—Sid Jayadevan, Engineering Manager for Power Query,
Microsoft Corporation

For readers not familiar with Power Query, it is an incredibly powerful and
extensible engine that is the core of Microsoft BI tools. It enhances self-service
business intelligence (BI) with an intuitive and consistent experience for discov-
ering, combining, and refi ning data across a wide variety of sources. With data
preparation typically touted as 80% of any BI solution, having a fi rm grasp of
Power Query should be your fi rst step in any sort of reporting or data discovery
initiative. In addition to the core Power Query functionalities, Gil covers more
advanced topics, such as how to use Power Query to automate data preparation
and cleansing, how to connect to social networks to capture what your customers
are saying about your business, how to use services like machine learning to do
sentiment analysis, and how to use the M language to make practically any type of
raw data a source of insights you glean value from. This book stands out in that it
provides additional companion content with completed samples, data sources, and
step-by-step tutorials.

xiv Foreword

Gil is a former member of the Excel team and the Microsoft Data Team. He directly
contributed to the features and design of Power Query and has an amazing wealth of
knowledge using Power Query and showing how it can make diffi cult data integration
problems easy. That said, despite Power Query’s inherently extensible and easy-to-use
design, mastering it for enterprise scenarios can still be diffi cult. Luckily for the reader, as
an avid community member, forum contributor, conference presenter, peer mentor, and
Power BI MVP, Gil Raviv is a master at taking complex concepts and decomposing them
into very easy-to-follow steps, setting the reader up for success and making this book a
must have for any BI specialist, data systems owner, or businessperson who wants to get
value out of the data around him.

—Charles Sterling, Senior Program Manager,
Microsoft Corporation

 xv

About the Author

Gil Raviv is a Microsoft MVP and a Power BI blogger at
https://DataChant.com. As a Senior Program Manager
on the Microsoft Excel Product team, Gil led the design
and integration of Power Query as the next-generation
Get Data and data-wrangling technology in Excel 2016,
and he has been a devoted M practitioner ever since.

With 20 years of software development experience,
and four U.S. patents in the fi elds of social networks,
cyber security, and analytics, Gil has held a variety of
innovative roles in cyber security and data analytics,

and he has delivered a wide range of software products, from advanced threat detection
enterprise systems to protection of kids on Facebook.

In his blog, DataChant.com, Gil has been chanting about Power BI and Power Query
since he moved to his new home in the Chicago area in early 2016. As a Group Manager in
Avanade’s Analytics Practice, Gil is helping Fortune 500 clients create modern self-service
analytics capability and solutions by leveraging Power BI and Azure.

You can contact Gil at gilra@datachant.com.

https://DataChant.com
http://DataChant.com
mailto:gilra@datachant.com

xvi

Acknowledgments

Writing this book is one of the scariest things I have willingly chosen to do, knowing
I was going to journey into an uncharted land where only a few people have gone

before and approach an ever-evolving technology that is relatively unfamiliar yet can
drastically improve the professional lives of many users. How can I share the knowledge
of this technology in a way that will enable you to harness its true essence and empower
you to make a real impact on your business?

The writing of this book would not have been possible without the help and
inspiration I received from many people.

First, I would like to thank my readers at DataChant.com. Your feedback and support
made this endeavor possible. You have taught me the power of sharing.

Thank you to my wife and children, for being stranded at home with me for many
days in late 2017 and the colder parts of 2018 to support my work. Thank you for your
support. I hope you can also blame the winter in Chicago for staying with me so many
weekends.

Special thanks to Trina MacDonald, my senior editor at Pearson. You reached out to
me one day with an idea to write a book and have been supporting me all the way in
publishing a completely different one. Good luck in your new journey.

Thank you to Justin DeVault, my fi rst Six Sigma Master Black Belt client. As a technical
editor, you combined your business savvy and technical prowess to review 14 chapters,
71 exercises, and 211 exercise fi les to ensure that the book can deliver on its promise.
Without your insights, we could not have made it. You were the best person for this job.

To Microsoft Press, Pearson, Loretta Yates and the whole publishing team that con-
tributed to the project, thank you! Thank you, Songlin Qiu, Ellie Bru, and Kitty Wilson for
editing and proofreading and Tonya Simpson for orchestrating the production efforts;
you have all magically transformed 14 chapters of Word documents into this book.

To my dear friend Yohai Nir, thank you for the rapport and guidance through the
initial stages of the book.

Thank you to Luis Cabrera-Cordon, for reviewing Chapter 12. I hope that this chapter
will help more business analysts use Microsoft Cognitive Services and gain new insights
without the help of developers or data scientists.

http://DataChant.com

 Acknowledgments xvii

To the amazing Program Managers Guy Hunkin, Miguel Llopis, Matt Masson, and
Chuck Sterling: Thank you for the ongoing support and technical advice. Your work is
truly inspirational.

Sid Jayadevan, Eli Schwarz, Vladik Branevich, and the brilliant people on the Redmond
and Israeli development teams: It was a real pleasure working with you to deliver Power
Query in Excel 2016.

To Yigal Edery, special thanks for accepting me into the ranks of the Microsoft Excel
team and for challenging me to do more. I will never forget the night you pulled me over
on the side of the road to share feedback and thank me.

Rob Collie, I wouldn’t be here without you. You had welcomed me to
PowerPivotPro.com as a guest blogger and a principal consultant, and you helped me
make the leap into a brave new world.

Marco Russo, Ken Puls, Chris Webb, Matt Allington, and Reza Rad—My fellow
Microsoft MVPs and Power BI bloggers—you are my role models, and I thank you for
the inspiration and vast knowledge.

Since I joined the Avanade Analytics team in early 2017, I have learned so much from
all of you at Avanade. Special thanks to Neelesh Raheja for your mentorship and leader-
ship. You have truly expanded my horizons in the sea of analytics.

Finally, to my parents. Although I now live 6,208 miles away, I want to thank you. Dad,
you had taught me how to crunch numbers and use formulas in Excel many years ago.
And, Mom, your artistic talent is infl uencing my Power BI visuals every day.

—Gil Raviv

http://PowerPivotPro.com

xviii

Introduction

Did you know that there is a data transformation technology inside Microsoft Excel,
Power BI, and other products that allows you to work miracles on your data, avoid

repetitive manual work, and save up to 80% of your time?

 ■ Every time you copy/paste similar data to your workbook and manually clean it,
you are wasting precious time, possibly unaware of the alternative way to do it
better and faster.

 ■ Every time you rely on others to get your data in the right shape and condition,
you should know that there is an easier way to reshape your data once and enjoy
an automation that works for you.

 ■ Every time you need to make quick informed decisions but confront massive data
cleansing challenges, know you can now easily address these challenges and gain
unprecedented potential to reduce the time to insight.

Are you ready for the change? You are about to replace the maddening frustration of
the repetitive manual data cleansing effort with sheer excitement and fun, and through-
out this process, you may even improve your data quality and tap in to new insights.

Excel, Power BI, Analysis Services, and PowerApps share a game-changing data
connectivity and transformation technology, Power Query, that empowers any person with
basic Excel skills to perform and automate data importing, reshaping, and cleansing. With
simple UI clicks and a unifi ed user experience across wide variety of data sources and for-
mats, you can resolve any data preparation challenge and become a master data wrangler.

In this book, you will tackle real data challenges and learn how to resolve them with
Power Query. With more than 70 challenges and 200 exercise fi les in the companion
content, you will import messy and disjointed tables and work your way through the cre-
ation of automated and well-structured datasets that are ready for analysis. Most of the
techniques are simple to follow and can be easily reused in your own business context.

Who this book is for

This book was written to empower business users and report authors in Microsoft
Excel and Power BI. The book is also relevant for SQL Server or Azure Analysis Services
developers who wish to speed up their ETL development. Users who create apps using
Microsoft PowerApps can also take advantage of this book to integrate complex datasets
into their business logic.

 Introduction xix

Whether you are in charge of repetitive data preparation tasks in Excel or you develop
Power BI reports for your corporation, this book is for you. Analysts, business intelligence
specialists, and ETL developers can boost their productivity by learning the techniques in
this book. As Power Query technology has become the primary data stack in Excel, and
as Power BI adoption has been tremendously accelerating, this book will help you pave
the way in your company and make a bigger impact.

The book was written to empower all Power Query users. Whether you are a new,
moderate, or advanced user, you will fi nd useful techniques that will help you move to
the next level.

Assumptions
Prior knowledge of Excel or Power BI is expected. While any Excel user can benefi t from
this book, you would gain much more from it if you meet one of the following criteria.
(Note that meeting a single criterion is suffi cient.)

 ■ You frequently copy and paste data into Excel from the same sources and often
need to clean that data

 ■ You build reports in Excel or Power BI that are connected to external sources, and
wish to improve them

 ■ You are familiar with PivotTables in Excel

 ■ You are familiar with Power Pivot in Excel and wish to simplify your data models

 ■ You are familiar with Power Query and want to move to the next level

 ■ You develop business applications using PowerApps and need to connect to data
sources with messy datasets

 ■ You are a developer in Analysis Services and wish to speed up your ETL
development

How this book is organized

The book is organized into 14 chapters that start from generic and simpler data
challenges and move on to advanced and specifi c scenarios to master. It is packed with
hands-on exercises and step-by-step solutions that provide the necessary techniques
for mastering real-life data preparation challenges and serve as a long-term learning
resource, no matter how many new features will be released in Power Query in
the future.

In Chapter 1, “Introduction to Power Query,” you will be introduced to Power Query
and gain the baseline knowledge to start the exercises that follow.

xx Introduction

In Chapter 2, “Basic Data Preparation Challenges,” you will learn how to tackle
relatively basic common data challenges. If you carry out frequent data cleansing tasks
at work, you will fi nd this chapter extremely helpful. You will be introduced to the sim-
plest techniques to automate your data cleansing duties, with simple mouse clicks and
no software development skills. If you are new to Power Query, you will already start
saving time by following the techniques in this chapter.

In Chapter 3, “Combining Data from Multiple Sources,” you will learn how to com-
bine disjointed datasets and append multiple tables in the Power Query Editor. You will
learn how to append together multiple workbooks from a folder and combine multiple
worksheets in a robust manner—so when new worksheets are added, a single refresh of
the report will suffi ce to append the new data into your report.

In Chapter 4, “Combining Mismatched Tables,” you will move to the next level and learn
how to combine mismatched tables. In real-life scenarios your data is segmented and siloed,
and often is not consistent in its format and structure. Learning how to normalize mis-
matched tables will enable you to gain new insights in strategic business scenarios.

In Chapter 5, “Preserving Context,” you will learn how to extract and preserve
external context in your tables and combine titles and other meta information, such as
fi lenames and worksheet names, to enrich your appended tables.

In Chapter 6, “Unpivoting Tables,” you will learn how to improve your table structure
to utilize a better representation of the entities that the data represents. You will learn
how the Unpivot transformation is a cornerstone in addressing badly designed tables,
and harness the power of Unpivot to restructure your tables for better analysis. You will
also learn how to address nested tables and why and how to ignore totals and subtotals
from your source data.

In Chapter 7, “Advanced Unpivoting and Pivoting of Tables,” you will continue the
journey in Unpivot transformations and generalize a solution that will help you unpivot any
summarized table, no matter how many levels of hierarchies you might have as rows and
columns. Then, you will learn how to apply Pivot to handle multiline records. The techniques
you learn in this chapter will enable you to perform a wide range of transformations and
reshape overly structured datasets into a powerful and agile analytics platform.

As a report author, you will often share your reports with other authors in your team
or company. In Chapter 8, “Addressing Collaboration Challenges,” you will learn about
basic collaboration challenges and how to resolve them using parameters and templates.

In Chapter 9, “Introduction to the Power Query M Formula Language,” you will embark
in a deep dive into M, the query language that can be used to customize your queries to
achieve more, and reuse your transformation on a larger scale of challenges. In this chapter,
you will learn the main building blocks of M—its syntax, operators, types, and a wide variety
of built-in functions. If you are not an advanced user, you can skip this chapter and return
later in your journey. Mastering M is not a prerequisite to becoming a master data wrangler,
but the ability to modify the M formulas when needed can boost your powers signifi cantly.

 Introduction xxi

The user experience of the Power Query Editor in Excel and Power BI is extremely
rewarding because it can turn your mundane, yet crucial, data preparation tasks into
an automated refresh fl ow. Unfortunately, as you progress on your journey to master
data wrangling, there are common mistakes you might be prone to making in the Power
Query Editor, which will lead to the creation of vulnerable queries that will fail to refresh,
or lead to incorrect results when the data changes. In Chapter 10, “From Pitfalls to Robust
Queries,” you will learn the common mistakes, or pitfalls, and how to avoid them by
building robust queries that will not fail to refresh and will not lead to incorrect results.

In Chapter 11, “Basic Text Analytics,” you will harness Power Query to gain fundamental
insights into textual feeds. Many tables in your reports may already contain abundant tex-
tual columns that are often ignored in the analysis. You will learn how to apply common
transformations to extract meaning from words, detect keywords, ignore common words
(also known as stop words), and use Cartesian Product to apply complex text searches.

In Chapter 12, “Advanced Text Analytics: Extracting Meaning,” you will progress from
basic to advanced text analytics and learn how to apply language translation, sentiment
analysis, and key phrase detection using Microsoft Cognitive Services. Using Power
Query Web connector and a few basic M functions, you will be able to truly extract
meaning from text and harness the power of artifi cial intelligence, without the help of
data scientists or software developers.

In Chapter 13, “Social Network Analytics,” you will learn how to analyze social network
data and fi nd how easy it is to connect to Facebook and gain insights into social activ-
ity and audience engagement on any brand, company, or product on Facebook. This
exercise will also enable you to work on unstructured JSON datasets and practice Power
Query on public datasets.

Finally, in Chapter 14, “Final Project: Combining It All Together,” you will face the fi nal
challenge of the book and put all your knowledge to the test applying your new data-
wrangling powers on a large-scale challenge. Apply the techniques from this book to
combine dozens of worksheets from multiple workbooks, unpivot and pivot the data,
and save Wide World Importers from a large-scale cyber-attack!

About the companion content

We have included this companion content to enrich your learning experience. You can
download this book’s companion content by following these instructions:

 1. Register your book by going to www.microsoftpressstore.com and logging in or
creating a new account.

 2. On the Register a Product page, enter this book’s ISBN (9781509307951), and
click Submit.

http://www.microsoftpressstore.com

xxii Introduction

 3. Answer the challenge question as proof of book ownership.

 4. On the Registered Products tab of your account page, click on the Access
Bonus Content link to go to the page where your downloadable content is
available.

The companion content includes the following:

 ■ Excel workbooks and CSV fi les that will be used as messy and badly formatted
data sources for all the exercises in the book. No need to install any external
database to complete the exercises.

 ■ Solution workbooks and Power BI reports that include the necessary queries to
resolve each of the data challenges.

The following table lists the practice fi les that are required to perform the exercises in
this book.

Chapter File(s)

Chapter 1: Introduction to Power Query C01E01.xlsx
C01E01 - Solution.xlsx
C01E01 - Solution.pbix

Chapter 2: Basic Data Preparation Challenges C02E01.xlsx
C02E01 - Solution.xlsx
C02E02.xlsx
C02E02 - Solution - Part 1.xlsx
C02E02 - Solution - Part 2.xlsx
C02E02 - Solution - Part 3.xlsx
C02E02 - Solution - Part 1.pbix
C02E02 - Solution - Part 2.pbix
C02E02 - Solution - Part 3.pbix
C02E03 - Solution.xlsx
C02E03 - Solution - Part 2.xlsx
C02E03 - Solution.pbix
C02E03 - Solution - Part 2.pbix
C02E04.xlsx
C02E04 - Solution.xlsx
C02E04 - Solution.pbix
C02E05.xlsx
C02E05 - Solution.xlsx
C02E05 - Solution.pbix
C02E06.xlsx
C02E06 - Solution.xlsx
C02E06 - Solution.pbix

 Introduction xxiii

Chapter File(s)

C02E07.xlsx
C02E07 - Solution.xlsx
C02E07 - Solution.pbix
C02E08.xlsx
C02E08 - Solution.xlsx
C02E08 - Solution.pbix

Chapter 3: Combining Data from Multiple Sources C03E01 - Accessories.xlsx
C03E01 - Bikes.xlsx
C03E01 - Clothing.xlsx
C03E01 - Components.xlsx
C03E03 - Products.zip
C03E03 - Solution.xlsx
C03E03 - Solution.pbix
C03E04 - Year per Worksheet.xlsx
C03E04 - Solution 01.xlsx
C03E04 - Solution 02.xlsx
C03E04 - Solution 01.pbix
C03E04 - Solution 02.pbix

Chapter 4: Combining Mismatched Tables C04E01 - Accessories.xlsx
C04E01 - Bikes.xlsx
C04E02 - Products.zip
C04E02 - Solution.xlsx
C04E02 - Solution.pbix
C04E03 - Products.zip
C04E03 - Solution.xlsx
C04E03 - Solution.pbix
C04E04 - Products.zip
C04E04 - Conversion Table.xlsx
C04E04 - Solution - Transpose.xlsx
C04E04 - Solution - Transpose.pbix
C04E05 - Solution - Unpivot.xlsx
C04E05 - Solution - Unpivot.pbix
C04E06 - Solution - Transpose Headers.xlsx
C04E06 - Solution - Transpose Headers.pbix
C04E07 - Solution - M.xlsx
C04E07 - Solution - M.pbix

Chapter 5: Preserving Context C05E01 - Accessories.xlsx
C05E01 - Bikes & Accessories.xlsx
C05E01 - Bikes.xlsx
C05E01 - Solution.xlsx
C05E01 - Solution 2.xlsx
C05E01 - Solution.pbix
C05E01 - Solution 2.pbix

xxiv Introduction

Chapter File(s)

C05E02 - Bikes.xlsx
C05E02 - Solution.xlsx
C05E02 - Solution.pbix
C05E03 - Products.zip
C05E03 - Solution.xlsx
C05E03 - Solution.pbix
C05E04 - Products.xlsx
C05E04 - Solution.xlsx
C05E04 - Solution.pbix
C05E05 - Products.xlsx
C05E05 - Solution.xlsx
C05E05 - Solution.pbix
C05E06 - Products.xlsx
C05E06 - Jump Start.xlsx
C05E06 - Jump Start.pbix
C05E06 - Solution.xlsx
C05E06 - Solution.pbix

Chapter 6: Unpivoting Tables C06E01.xlsx
C06E02.xlsx
C06E03.xlsx
C06E03 - Wrong Solution.pbix
C06E03 - Solution.xlsx
C06E03 - Solution.pbix
C06E04.xlsx
C06E04 - Solution.xlsx
C06E04 - Solution.pbix
C06E05.xlsx
C06E05 - Solution.xlsx
C06E05 - Solution.pbix
C06E06.xlsx
C06E06 - Solution.xlsx
C06E06 - Solution.pbix

Chapter 7: Advanced Unpivoting and Pivoting
of Tables

C07E01.xlsx
C07E01 - Solution.xlsx
C07E01 - Solution.pbix
C07E02.xlsx
C07E02.pbix
C07E03 - Solution.xlsx
C07E03 - Solution.pbix
C07E04.xlsx
C07E04 - Solution.xlsx
C07E04 - Solution.pbix
C07E05 - Solution.xlsx
C07E05 - Solution.pbix

 Introduction xxv

Chapter File(s)

Chapter 8: Addressing Collaboration Challenges C08E01.xlsx
C08E01 - Alice.xlsx
C08E01 - Alice.pbix
C08E01 - Solution.xlsx
C08E01 - Solution.pbix
C08E02 - Solution.pbix
C08E02 - Solution.pbit
C08E02 - Solution 2.pbit
C08E03 - Solution.xlsx
C08E03 - Solution 2.xlsx
C08E04 - Solution.xlsx
C08E04 - Solution.pbix
C08E05.xlsx
C08E05.pbix
C08E05 - Folder.zip
C08E05 - Solution.xlsx
C08E05 - Solution.pbix

Chapter 9: Introduction to the Power Query
M Formula Language

C09E01 – Solution.xlsx
C09E01 – Solution.pbix

Chapter 10: From Pitfalls to Robust Queries C10E01.xlsx
C10E01 - Solution.xlsx
C10E02 - Solution.xlsx
C10E02 - Solution.pbix
C10E03 - Solution.xlsx
C10E03 - Solution.pbix
C10E04 - Solution.xlsx
C10E04 - Solution.pbix
C10E05.xlsx
C10E05 - Solution.xlsx
C10E05 - Solution.pbix
C10E06.xlsx
C10E06 - Solution.xlsx
C10E06 - Solution.pbix
C10E06-v2.xlsx

Chapter 11: Basic Text Analytics Keywords.txt
Stop Words.txt
C11E01.xlsx
C11E01 - Solution.xlsx
C11E01 - Solution.pbix
C11E02 - Solution.xlsx
C11E02 - Refresh Comparison.xlsx
C11E02 - Solution.pbix

xxvi Introduction

Chapter File(s)

C11E03 - Solution.xlsx
C11E04 - Solution.xlsx
C11E04 - Solution.pbix
C11E05 - Solution.xlsx
C11E05 - Solution.pbix
C11E06 - Solution.xlsx
C11E06 - Solution.pbix
C11E07 - Solution.pbix

Chapter 12: Advanced Text Analytics: Extracting
Meaning

C12E01 - Solution.xlsx
C12E01 - Solution.pbix
C12E02.xlsx
C12E02 - Solution.xlsx
C12E02 - Solution.pbix
C12E02 - Solution.pbit
C12E03 - Solution.xlsx
C12E03 - Solution.pbix
C12E04.xlsx
C12E04.pbix
C12E04 - Solution.xlsx
C12E04 - Solution.pbix
C12E05 - Solution.pbix
C12E06 - Solution.xlsx
C12E06 - Solution.pbix

Chapter 13: Social Network Analytics C13E01 - Solution.xlsx
C13E01 - Solution.pbit
C13E02 - Solution.xlsx
C13E02 - Solution.pbit
C13E03 - Solution.xltx
C13E03 - Solution.pbit
C13E04 - Solution.xlsx
C13E04 - Solution.pbix
C13E05 - Solution.xlsx
C13E05 - Solution.pbix
C13E06 - Solution.xlsx
C13E06 - Solution.pbix

Chapter 14: Final Project: Combining It All
Together

C14E01 - Goal.xlsx
C14E01.zip
C14E01 - Solution.xlsx
C14E01 - Solution.pbix
C14E02 - Compromised.xlsx
C14E02 - Solution.xlsx
C14E02 - Solution.pbix

 Introduction xxvii

System requirements

You need the following software and hardware to build and run the code samples
for this book:

 ■ Operating System: Windows 10, Windows 8, Windows 7, Windows Server 2008 R2,
or Windows Server 2012

 ■ Software: Offi ce 365, Excel 2016 or later versions of Excel, Power BI Desktop,
Excel 2013 with Power Query Add-In, or Excel 2010 with Power Query Add-In

How to get support & provide feedback

The following sections provide information on errata, book support, feedback, and
contact information.

This page intentionally left blank

 247

C H A P T E R 1 0

From Pitfalls to Robust Queries

Data is a precious thing and will last longer than the systems themselves.
—Tim Berners-Lee

IN THIS CHAPTER, YOU WILL

 ■ Learn the main factors in creating weak queries and common pitfalls that lead to
refresh failures and incorrect data

 ■ Learn how awareness, best practices, and M modifi cations can help you prevent
the pitfalls

 ■ Learn how to avoid refresh failures due to the automatic detection and change of
column types

 ■ Learn how to avoid dangerous fi ltering that can lead to partial data in your reports

 ■ Learn when reordering the position of columns is effective and how to reorder a
subset of columns

 ■ Learn how to remove and select columns and avoid future refresh errors

 ■ Rename columns by their location in the table or by specifi c values

 ■ Learn the dangers of splitting a column into columns instead of rows

 ■ Improve the M formula when you merge multiple columns

The user experience of the Power Query Editor in Excel and Power BI is extremely rewarding, as it can
turn your mundane yet crucial data preparation tasks into an automated-refresh fl ow. Unfortunately,
as you progress on your journey to master data wrangling, you will face some common mistakes that
many people make in the Power Query Editor. These mistakes can lead to the creation of vulnerable
queries that will fail to refresh when the data changes. Even worse, these mistakes can lead to incorrect
data in your reports. In this chapter, you will learn about these common pitfalls and how to build robust
queries to avoid them.

The techniques in this chapter will help you create robust queries and think a step ahead in the
never-ending battle to maintain a reporting system that will last longer than the data.

248 CHAPTER 10 From Pitfalls to Robust Queries

See Also I discuss the 10 pitfalls on my blog, at https://datachant.com/tag/pitfalls/. While
you can explore all of the pitfalls in more details in my blog, this chapter encapsulates the
main points and provides new examples, exercises, and solution sample fi les. The tenth pit-
fall, which focuses on the removal of duplicates, has already been discussed in Chapter 2,
“Basic Data Preparation Challenges.”

The Causes and Effects of the Pitfalls

The Power Query Editor operates on two core principles:

 ■ It provides an easy-to-use user interface that translates your steps into programmatic transfor-
mation instructions.

 ■ It loads a snapshot or a preview of the data to enable you to build the transformation logic.

While these principles are crucial to your success in resolving many data preparations challenges,
they are also the culprits for key mistakes you may unintentionally make, which can lead to refresh
failures or unexpected situations of missing or incorrect data, as illustrated in Figure 10-1.

UI steps are
translated to

code

Only a snapshot
of the data is

used to generate
the code

Pitfalls
during
query

authoring

Data
changes

Refresh
failures

Missing data

Incorrect data

FIGURE 10-1 Several factors during the query authoring lead to refresh failures and data inconsistencies
when the data changes.

https://datachant.com/tag/pitfalls/

 CHAPTER 10 From Pitfalls to Robust Queries 249

Each step that you perform using the Power Query Editor user interface is added in Applied Steps,
with an auto-generated formula line that plays a role in the bigger sequence of the transformation
steps. As you build the transformation steps in the Power Query Editor, Power Query needs to make
constant “decisions” about how to translate your UI selections into code. For example, the Unpivot
Columns step described in Chapter 6, “Unpivoting Tables,” is generated as an M expression to reference
the unselected columns in your table instead of the selected ones. As another example of a translation
decision, when you import a worksheet in an Excel fi le, Power Query “decides” in the M expression to
reference the worksheet by name and not by its position in the workbook.

To be clear, the translation decisions that the Power Query Editor make are not random. They were
designed by the Power Query team to help you create the necessary queries to reach your goals. But,
while these translations might make sense during the creation of a query, they may fail you in the
future. When you create a query, some of the decisions the Power Query Editor makes to generate the
code rely on a preview of your data. When the data changes in a future refresh, some of the queries
may no longer be robust enough to endure the changes.

In a typical case, when your data changes, a refresh error occurs, and it is an easy task for you to
fi x the query. But often, refresh failures keep returning, as your data may zigzag between multiple
formats. Fixing the query to resist certain changes in your data today may not be able to handle other
changes tomorrow.

The most common scenario for refresh failures originates in column name changes in your source
tables. Most of the pitfalls in this chapter are related to incorrect handling of column names, which
leads to refresh errors. You may think at this stage that it’s not a big deal: Modifying your queries to
reference the new column names is an easy task, and it can take only few minutes of your time to do so.
You are right. It’s easy to edit a query and adapt to the column changes.

But by now you have become very profi cient with the Power Query Editor, and your queries may
be quite complex. So, when your queries fail due to nonexistent column names, you may end up
spending precious time fi xing multiple steps that reference these column names. Do you think it
makes sense to be locked in to a never-ending task of fi xing the queries whenever a column name is
missing in your data source? By now, your reports may be so important that hundreds of people in
your organization could be dependent on them. A failure to refresh a report may hit you at an incon-
venient time.

Finally, some of the pitfalls may not lead to refresh errors when the data changes. Instead, queries
may simply ignore a portion of the data, which will lead to incorrect calculations, skewed charts, and
incorrect KPIs in your report. Detecting these failures is not easy after the fact; avoiding them alto-
gether is easier and is the focus of this chapter.

Before you look more closely at the pitfalls and how to avoid them, let’s examine several common
principles that you should be aware of fi rst. These principles help minimize the pitfalls and are divided
into three themes: awareness, best practices, and M modifi cations.

250 CHAPTER 10 From Pitfalls to Robust Queries

Awareness
To increase your awareness and reduce the chances of refresh failures or incorrect results in your
reports, make sure you follow these recommendations after each transformation step you make in the
Power Query Editor:

 ■ Review the transformed results in the Preview pane. Make sure the data looks right. Scroll
down to review more rows. Scroll right to review all columns. If you fi nd anything odd, deter-
mine whether your step was created correctly or if it is time to consider an alternative
transformation step.

 ■ Always keep the formula bar open, and tell your colleagues to do so as well. (By default, the
formula bar is hidden.) To enable the formula bar, go to the View tab and select the formula bar
check box. Enabling the formula bar is fundamental to avoiding the pitfalls.

 ■ Review the code in the formula bar. You don’t need to understand M to effectively review the
code. Pay close attention to the hardcoded elements in a formula, such as column names and
values—especially if you provided these hardcoded elements in a dialog box or through a
selection of a UI control in the relevant step. For example, if you delete Column1 in your query,
you may see in the formula bar that the column was actually named Column1 with a trailing
space. There is a good chance that this column name will be fi xed in the future by the owner of
the data source, and your step will fail. Frequent inspection of the formula bar will increase your
awareness of such situations and allow you to prevent future failures.

Best Practices
The pitfalls described in this chapter can often be avoided by adhering to several best practices:

 ■ Maintain a data contract with the colleagues who own the external data source. Communicate
often and share the assumptions on your data. Work together to build change controls that
help you stay prepared for planned changes. Make sure colleagues are aware of your reports,
and engage with them so that they feel that they are part of your reporting project and share in
the success of the project.

 ■ Keep unrefreshed revisions of your report to track breaking changes. Your refreshed report
today may fail or show unexpected results. By maintaining the old revisions of the report, you
can compare the reports to identify the root causes for failures.

 ■ As you will learn in this chapter, some pitfalls can be entirely avoided by making the right
choices (for example, column removal) or by avoiding performing some unnecessary
transformations (for example, changed type, column reordering).

 CHAPTER 10 From Pitfalls to Robust Queries 251

M Modifi cations
There are a number of modifi cations you can perform at the formula level to create robust queries.
While avoiding each pitfall may involve its own unique M modifi cations, the most common modi-
fi cation that you will rely on is based on the function Table.ColumnNames. This function allows you
to modify a reference to a hardcoded column name into a dynamic reference that will not fail. You
already encountered such a scenario in Exercise 3-4 in Chapter 3, “Combining Data from Multiple
Sources.” In that example, you appended multiple worksheets into a single table and promoted the
contextual year data, 2015, as a column name for the fi rst column. Then you renamed the column
from 2015 to Release Year. The function Table.ColumnNames allowed you to rename the fi rst column
instead of renaming the 2015 column, which strengthened the query and helped you avoid a poten-
tial future refresh failure.

In this chapter, you will see various M modifi cations that include the Table.ColumnNames function
to avoid the pitfalls. You will learn many other M modifi cations that will help you create robust queries
and minimize the failures as the data changes.

Pitfall 1: Ignoring the Formula Bar

Early on in this book, as you followed along with the exercises, you many times needed to rely on
information in the formula bar to better understand the transformation at hand or lightly modify the
formula to achieve your goals. In Chapter 9, “Introduction to the Power Query M Formula Language,”
you learned the main principles of the M language, and by now you have formed some solid prefer-
ences about how much you like to use M. While many power users are eager to harness M to achieve
their goals, others see M as a strange programming language that is not easy to understand.

If you are in the fi rst group of users, the fi rst pitfall will be easy to avoid. But if you belong to the
 second group, and M seems too alien for you to master, you will fi nd this message very comforting: You
do not need to learn M to resolve 90% of the data challenges you will face. Lightweight manipulations
of the M formula will suffi ce to achieve most, if not all, of your goals. But if you use the Power Query
Editor to create reports that have an impact on your organization, you will fi nd the formula bar a
 strategic ally for your success.

Turn on the formula bar. Review it often. Learn how to identify the static elements, such as column
names and values. These static values will be encapsulated in brackets or double quotes. See if these
values make sense, and adhere to the best practices listed earlier in this chapter to prevent most of the
pitfalls.

In case you jumped straight to this chapter and missed all the preceding chapters, here is how you
turn on the formula bar: In the Power Query Editor, on the View tab, select the Formula Bar check box,
as shown in Figure 10-2.

252 CHAPTER 10 From Pitfalls to Robust Queries

FIGURE 10-2 By enabling the formula bar, you can see how steps like the Changed Type refer to column names.

Exercise 10-1: Using the Formula Bar to Detect Static
References to Column Names
This quick exercise demonstrates how to detect static column names in the formula bar and sets
the stage for dealing with the second pitfall. You will use the sample workbook C10E01.xlsx, which
can be downloaded from https://aka.ms/DataPwrBIPivot/downloads. This sample workbook summa-
rizes the revenues from orders of the fi ctional company Wide World Importers.

 1. Download the workbook C10E01.xslx and save it in the folder C:\Data\C10\.

 2. Open a blank new workbook or a new Power BI report.

In Excel: On the Data tab, select Get Data, From File, From Workbook.

In Power BI Desktop: On the Home tab, select Get Data, and in the Get Data dialog box, select
File and then select Excel.

 3. Select the fi le C10E01.xlsx and select Import.

 4. In the Navigator dialog box, select Sheet1 and click Edit.

 5. If the formula bar is not visible, go to the View tab and select the Formula Bar check box.

 6. Notice that the last step in Applied Steps is Changed Type, and the following formula appears in
the formula bar (refer to Figure 10-2):

= Table.TransformColumnTypes(#"Promoted Headers",{{"Date", type date}, {"Color",
type text}, {"Supplier Category", type text}, {"Supplier Name", type text},
{"Customer Category", type text}, {"City", type text}, {"Random Column1", type
number}, {"Random Column2", type number}, {"Revenue", type number}})

Without focusing on the actual meaning of the step, you can see that there are many values
here in double quotes. These values are the kind of things you should look for in the formula

https://aka.ms/DataPwrBIPivot/downloads

 CHAPTER 10 From Pitfalls to Robust Queries 253

bar as you create your own queries if you want to avoid many of the pitfalls. In many cases these
double-quoted values represent column names or values that you entered in dialog boxes.

In this case, you can see that there are two columns, named Random Column1 and Random
Column2. Let’s assume that, for the sake of this exercise, these columns contain meaning-
less random numbers, and they are not needed in your report. In real-life scenarios, you will
encounter column names that may have some arbitrary or temporary context to them. While
you may keep them in your report or want to remove them, you can see in the Changed Type
step that your code is already hardcoded with a reference to these columns. If these columns
are not important, there is a good chance that you will no longer fi nd them in the source table
in the future, as the owner of the external data source may choose to remove them.

The following steps demonstrate the refresh error at this stage.

 7. Close the Power Query Editor and load your query to your Excel worksheet or Power BI report.

 8. In this step, let’s pretend you are a different user now, and the owner of the data source. Open the
workbook C10E01.xlsx and remove Random Column1 and Random Column2 from the worksheet.
Save the workbook. You can go back to your previous role to discover the impact of this step.

 9. Go back to your report and refresh it. You see the obvious refresh error:

Expression.Error: The column 'Random Column1' of the table wasn't found.

It is important to note that you have not explicitly specifi ed the random columns in your report.
Instead, the Power Query Editor “decided” to reference these columns. You will learn more
about this in Pitfall 2, but for now, let’s just look at how you can tackle this scenario through the
three main principles mentioned earlier: awareness, best practices, and M modifi cations.

By having the formula bar open and looking for the double-quoted values in step 6, you dis-
covered the risk of having your formula hardcoded with unimportant column names. You can
now approach the data owners and bring their awareness to the existence of such columns.
You can then defi ne a data contract that allows you to be notifi ed if they intend in the future
to remove or rename these columns, and if these columns have any hidden business value, you
may want to include them in your reports.

 10. Finally, by modifying the M formula, you can remove the references to the random columns by
removing the following part from the formula:

{"Random Column1", type number}, {"Random Column2", type number},

Here is the robust revision of the formula, which ignores the random columns:

= Table.TransformColumnTypes(#"Promoted Headers",{{"Date", type date}, {"Color",
type text}, {"Supplier Category", type text}, {"Supplier Name", type text},
{"Customer Category", type text}, {"City", type text}, {"Revenue", type number}})

There are still many columns in this formula that may be removed or renamed in the future.
Do you really need to reference all the column names in this line? This is the topic of the
second pitfall.

254 CHAPTER 10 From Pitfalls to Robust Queries

Pitfall 2: Changed Types

In Exercise 10-1, you encountered the most common pitfall in the Power Query Editor and the number-
one factor for refresh failures due to column name changes: the Changed Type step. In the Applied
Steps pane in Figure 10-2, the last step, Changed Type, was automatically added when you loaded the
worksheet to the Power Query Editor.

To avoid the second pitfall, check the Applied Steps pane for Changed Type steps that you didn’t
explicitly create. The main scenario in which Changed Type is prone to refresh errors is when you load
text fi les and spreadsheets to the Power Query Editor or when you promote the fi rst row as headers.
Any minor changes to column names or column removal on the data source will lead to refresh errors.

The simplest and most common solution to avoid this pitfall is to delete the Changed Type step in
Applied Steps, as shown in Figure 10-3.

FIGURE 10-3 Delete the Changed Type step to avoid the second pitfall.

To clarify, you do need correct column types for some columns in your tables. Without the defi ni-
tion of types in some columns, you will not be able to perform arithmetic operations such as Sum and
Average or apply time intelligence on these columns in Excel PivotTables or Power BI visualizations. This
is why the Power Query Editor was designed to implicitly detect the types of all the columns in the table
and change them for you. Without this automatic step, if you forget to explicitly change the type, you
will not be able to calculate the sum of a numeric column when used in the Values pane of PivotTables
or Power BI visuals.

Instead of allowing the automatic Changed Type step, delete it, and change the types manually—
and consider doing it as late in the process as possible. Here are the reasons why.

Tip “The better the later” is a useful motto for changing types in Power Query. It is a
good practice to change the column types in the Power Query Editor rather than rely on
the automatic Changed Type—and the later in the process you explicitly change the types,
the better.

 CHAPTER 10 From Pitfalls to Robust Queries 255

If you perform type changes as the latest necessary step, you gain the following advantages:

 ■ Performance/refresh time: Type changes (for example, transforming text into datetime
values) require some computation effort of the M engine. If you intend to signifi cantly narrow
down the number of rows by applying fi lters throughout the transformation sequence, you
can decrease the refresh time of the query by manually applying the change type after the last
fi lter step.

 ■ Error handling: Changing column types may lead to cell-based errors for values that cannot
be converted to the new type. When these errors appear earlier in the chain of transformation
steps, it is sometimes more diffi cult to troubleshoot the issue.

See Also For an example of an error that is diffi cult to detect due to an early Changed Type
step, read the article https://datachant.com/2017/01/11/10-common-mistakes-powerbi-
powerquery-pitfall-2/.

 ■ Persistence: Early changes of types may not be persistent in some scenarios. For example,
when you append multiple workbooks from a folder, the type changes made on the sample
query level do not propagate to the appended results.

By now, you may be wondering if it is possible to confi gure the Power Query Editor to stop the auto-
detection and change of types so you can avoid manually deleting the steps, as shown in Figure 10-3.
The answer is yes. But you need to confi gure it for each workbook or Power BI fi le, and you cannot set it
for all your future reports.

To confi gure the Power Query Editor to stop the auto-detection and change of types, launch the
Query Options dialog box in Excel (on the Data tab, Get Data, Query Options), or the Options dialog
box in Power BI Desktop (on the File tab, Option and Settings, Options). Go to Current Workbook in the
Query Options dialog box in Excel or the Current File in the Options dialog box in Power BI Desktop
and deselect the box Automatically Detect Column Types and Headers for Unstructured Sources, as
shown in Figure 10-4.

Unfortunately, there is no such a check box under Global, Data Load, so you need to repeat the
process of deselecting this box for each new report.

Finally, after you delete or prevent the creation of the default Changed Type step, you should
explicitly change the types for the numeric and date/time columns that are needed for your analysis, or
modify the original Changed Type step as explained in step 10 in Exercise 10-1. Note that in the formula
that was described in Exercise 10-1 step 10, you have several text columns that are better removed from
the Changed Type step to prevent future refresh failures if these columns are renamed. These columns
are marked in bold in the next formula:

= Table.TransformColumnTypes(#"Promoted Headers",{{"Date", type date}, {"Color",
type text}, {"Supplier Category", type text}, {"Supplier Name", type text},
{"Customer Category", type text}, {"City", type text}, {"Revenue", type number}})

https://datachant.com/2017/01/11/10-common-mistakes-powerbi-powerquery-pitfall-2/
https://datachant.com/2017/01/11/10-common-mistakes-powerbi-powerquery-pitfall-2/

256 CHAPTER 10 From Pitfalls to Robust Queries

FIGURE 10-4 Disable the automatic detection and change of types.

To improve your query, you can either delete the Changed Type step in Applied Steps and manually
change the types of Date and Revenue columns, or modify the M formula as follows:

= Table.TransformColumnTypes(#"Promoted Headers",{{"Date", type date},
{"Revenue", type number}})

Tip If you work with tables that contain too many columns to perform an explicit type
conversion and are looking for an automatic way to detect column types without referenc-
ing all column names, you will fi nd the M expression in the following article very useful:
http://datachant.com/2018/05/14/automatic-detection-of-column-types-in-powerquery.

Pitfall 3: Dangerous Filtering

The third pitfall is one of the most dangerous pitfalls. It is almost invisible; you can easily miss it when
you create the query, and you may ignore its impact when it is refreshed. The third pitfall may create
a bias in your reports, and when you will detect it, it may be too late: Your biased report may lead to
badly informed business decisions. It all starts with the fi lter control in the Power Query Editor and its
derived fi ltering step. It is such a trivial and common step that most of our queries include it.

http://datachant.com/2018/05/14/automatic-detection-of-column-types-in-powerquery

 CHAPTER 10 From Pitfalls to Robust Queries 257

Exercise 10-2, Part 1: Filtering Out Black Products
Before we really examine the risk of the third pitfall, let’s look at a basic scenario that demonstrates the
fi ltering error and how to avoid it. You will use the same sample data as in Exercise 10-1. As the chief
analyst of Wide World Importers, you have been asked to analyze the impact on business if you stop
importing products whose color is black. You decide to fi lter all the black products in your queries.

 1. Open a blank new workbook or a new Power BI report.

In Excel: On the Data tab, select Get Data, From File, From Workbook.

In Power BI Desktop: On the Home tab, select Get Data, and in the Get Data dialog box, select
File and then select Excel.

 2. Select the fi le C10E01.xlsx and select Import.

 3. In the Navigator dialog box, select Sheet1 and click Edit.

 4. Delete the Changed Type step in Applied Steps.

 5. Ensure that the formula bar is visible.

 6. Change the type of the Date column to Date and the type of the Revenue column to
Decimal Number.

(At this point, following steps 4–6 you have successfully passed Pitfalls 1 and 2.)

 7. Because the data contains many more colors than Black and Blue, fi lter out all the black
 products by clicking the fi lter control of the Color column and deselecting Black, as shown in
Figure 10-5.

FIGURE 10-5 Deselecting the value Black leads to dangerous results.

258 CHAPTER 10 From Pitfalls to Robust Queries

Following this fi ltering step, you may expect to have as output products of all colors
except Black.

 8. Inspect the resulting code in the formula bar and especially notice the following code:

= Table.SelectRows(#"Changed Type", each ([Color] = "Blue"))

Fortunately, because you’re aware of the fi rst pitfall, you now inspect the formula bar more
often, and you have learned to pay close attention to double-quoted values. So, the problem
is obvious to you, and you easily spot it at this stage. Deselecting Black led the Power Query
 Editor to incorrectly assume that you selected Blue. As a result, only the blue products are
fi ltered. If you use the output of this query without checking the formula bar, you may end up
having only blue products in your analysis instead of having all the non-black products.

Fixing the formula at this stage is easy. You need to change the equal sign before Blue (= “Blue”)
to a not-equal sign before Black (<> “Black”), as shown here:

= Table.SelectRows(#"Changed Type", each ([Color] <> "Black"))

You can also fi x the incorrect condition without making this M modifi cation by following
steps 9 and 10.

 9. Delete the Filtered Rows step from Applied Steps and select the fi lter control of the Color
 column. You will now apply the fi lter again in a better way.

 10. In the Filter pane, select Text Filters and then select Does Not Equal. When the Filter Rows dia-
log box opens, enter Black next to Does Not Equal, and click OK to close the dialog box.

Tip If you are not comfortable with M conditions, as explained in step 8, you can use the
Text Filters dialog box to defi ne the fi ltering condition, as explained in steps 9 and 10, and
avoid the third pitfall altogether. It is always better to use Text Filters than selecting the
 values in the text pane.

You can download the solution fi les C10E02 - Solution.xlsx and C10E02 - Solution.pbix from
https://aka.ms/DataPwrBIPivot/downloads.

The Logic Behind the Filtering Condition
At this stage, you may stop trusting the fi ltering rationale of the Power Query Editor and might start
being concerned that you have unintentionally entered the third pitfall in many of your existing
 queries. How often have you used the fi lter control as shown in the preceding example? Fortunately, in
most cases, when you deselect specifi c values in the Filter pane, the condition is created as you expect
it to be, and you do not make the mistake shown in Exercise 10-2.

https://aka.ms/DataPwrBIPivot/downloads

 CHAPTER 10 From Pitfalls to Robust Queries 259

Here are the two rules that the Power Query Editor follows to auto-generate the fi lter condition
when you select values in the Filter pane:

 ■ When you try to fi lter values in the Filter pane, and the number of unselected values in the Filter
pane is equal to the number of selected values, the Power Query Editor generates a positive
condition, using the equal sign on the selected values.

 ■ When the number of selected values in the Filter pane is higher than the number of unselected
values, the Power Query Editor always favors the negative condition, using the not-equal sign
on the items that are not selected.

Let’s look at these rules on a simple column with the values 1 to 6:

 1. Open a new Excel fi le or Power BI report and launch the Power Query Editor with a blank query.

 2. In the formula bar, enter the following line:

= {1..6}

 3. In List Tools, on the Transform tab, click To Table and click OK to close the To Table dialog box.

 4. Select the fi lter control of Column1. The Filter pane opens.

 5. Deselect value 1 and close the Filter pane. Notice that 1 has been correctly fi ltered out from the
table. Also notice that the formula bar includes the following line:

= Table.SelectRows(#"Converted to Table", each ([Column1] <> 1))

 6. Click the Filter pane again, and this time deselect both values 1 and 2. The results are as you
expect. Notice the following line in the formula bar:

= Table.SelectRows(#"Converted to Table", each ([Column1] <> 1 and [Column1] <> 2))

 7. Click the Filter pane again. This time deselect values 1, 2, and 3. The results look good. Only
the values 4, 5, and 6 are shown in the Preview pane. But the formula bar contains the positive
condition (positive in this context is a condition that uses the equal sign on the values you didn’t
deselect in the Filter pane):

= Table.SelectRows(#"Converted to Table", each ([Column1] = 4 or [Column1] = 5 or
[Column1] = 6))

However, the correct condition is the negative condition (negative condition in this context is
a condition that uses the not-equal sign on the values you deselected in the Filter pane), which
should look like this:

= Table.SelectRows(#"Converted to Table", each ([Column1] <> 1 and [Column1] <> 2
and [Column1] <> 3))

Why is the positive condition dangerous when you deselected the values 1, 2, and 3? Imagine that
in the future you also have the values 7, 8, 9, and 10 in your data, and not just 1 to 6. In step 7 you
wanted to fi lter out values 1, 2, and 3 and keep all the rest. When you refresh the report in the future,
values 7, 8, 9, and 10 will be fi ltered out from your report if you use the positive condition.

260 CHAPTER 10 From Pitfalls to Robust Queries

This example is simple, but it gives you a taste of what can happen when you work with large datasets
and encounter the third pitfall: Only a subset of the values will be loaded to the pane. In Exercise 10-2, for
example, you had more than two colors in the dataset, but only the black and blue values were loaded in
the Filter pane. Deselecting the Black value led to an equal number of selected and not selected values,
which then led to the positive condition.

One of the most dangerous and common factors that will lead you to the third pitfall is using the
search box in the Filter pane. You usually use the search box when you have a long list of values in the
Filter pane, and you want to zoom in on the desired values instead of scrolling down to the results.
Deselecting values from the found values will always lead to a positive condition, and may get you
in trouble.

Exercise 10-2, Part 2: Searching Values in the Filter Pane
You will use the sample workbook C10E01.xlsx, which you used in Exercise 10-1 and 10-2 part 1.
The workbook can be downloaded from https://aka.ms/DataPwrBIPivot/downloads.

 1. If you skipped the former exercises in this chapter, download the workbook C10E01.xslx and
save it in the folder C:\Data\C10\.

 2. Open a blank new workbook or a new Power BI report.

In Excel: On the Data tab, select Get Data, From File, From Workbook.

In Power BI Desktop: On the Home tab, select Get Data, and in the Get Data dialog box, select
File and then select Excel.

 3. Select the fi le C10E01.xlsx and select Import.

 4. In the Navigator dialog box, select Sheet1 and click Edit.

 5. To avoid the second pitfall, delete the Changed Type step in Applied Steps and change the type
of the Date column to Date and the type of the Revenue column to Decimal Number.

Imagine that you want to fi lter out all rows whose city is Baldwin City.

 6. Select the fi lter control of City column. The Filter pane opens. Since the list of cities that starts
with the letter A is long, and you would need to scroll down to fi nd the cities that start with the
letter B, you may prefer using the search box in the Filter pane. Let’s zoom in to all the cities that
start with Ba to fi nd the value Baldwin City.

Enter the prefi x Ba in the search box. The results include multiple cities in the pane, and luckily
Baldwin City is the fi rst result, so you can easily deselect it. Unfortunately, when you look at the
formula bar you can see that the resulting expression has an incorrect positive condition:

= Table.SelectRows(#"Changed Type", each ([City] = "Baraboo" or [City] = "Bayou
Cane" or [City] = "Bazemore" or [City] = "Beaver Bay" or [City] = "Bombay Beach" or
[City] = "Greenback" or [City] = "Wilkes-Barre"))

https://aka.ms/DataPwrBIPivot/downloads

 CHAPTER 10 From Pitfalls to Robust Queries 261

As a result, you will fall prey to the third pitfall, as your report will include all the cities that
contains the substring Ba except for Baldwin City, and all the other cities (and there are many
of them that don’t start with Ba) will be fi ltered out.

 7. To fi x this issue, you would need to fi x the formula:

= Table.SelectRows(#"Changed Type", each ([City] <> "Baldwin City"))

As you can see, the steps you made in this exercise are common, so you may experience the third
pitfall quite often. The best defenses are to use the Text Filters dialog box instead of the search box in
the Filter pane. But if you insist on using the search box, keep verifying the contents of the formula bar,
and correct your formulas when needed.

Pitfall 4: Reordering Columns

The fourth pitfall happens when you reorder the position of columns in the Power Query Editor. In
many cases, you don’t really care about the exact order of your columns but would like to apply a spe-
cifi c order on a small subset of the columns. For example, you might want to fl ip between two columns
or move a newly added custom column from the right end of the table to a certain position.

When you perform the reordering step, a Table.ReorderColumns function is generated with a
 reference to all the column names in your table. By referencing all columns, you weaken your query
and increase the chance of refresh failures in the future, when columns are renamed or removed from
the source data.

In many cases, the reordering step may be removed from Applied Steps altogether. For example,
when you create a custom column that applies some calculations on another column in the table, you
might want to place the new column next to its source column to verify the correctness of the code. In
such cases, after you have confi rmed that your code is correct, it is recommended that you delete the
reorder step to reduce the chance of refresh failures.

In some cases the reordering of a table is important. If you want to control the order of the fi elds
that will be shown in a PivotTable in Excel, or if you need to load a query to a worksheet, you can
 control the order of the columns. There are also some advanced scenarios that require a certain
order of columns in your query. For example, in Exercise 4-4 in Chapter 4, “Combining Mismatched
Tables,” you relied on the reordering step to move a calculated column to the beginning of the table to
 transpose it and then use it as headers.

If your reorder step is crucial, try to apply it after you keep only the columns that are really needed
in your report. (You’ll learn more about the selection of columns when we get to the fi fth pitfall.) It
would not make sense to load a table with hundreds of columns, reorder them, and then keep the
columns you need. Keeping only the dozen or so columns you need and reordering them will ensure
that you create a much more robust query. In Exercise 10-3, you will learn how to reorder a subset of
columns without referencing the complete column names, which will further improve the robustness of
your query.

262 CHAPTER 10 From Pitfalls to Robust Queries

Exercise 10-3, Part 1: Reordering a Subset of Columns
You start this exercise with the Wide World Importers revenue dataset from Exercise 10-1 and perform a
basic reordering of the columns City and Revenue.

 1. Open a blank new workbook or a new Power BI report.

In Excel: On the Data tab, select Get Data, From File, From Workbook.

In Power BI Desktop: On the Home tab, select Get Data, and in the Get Data dialog box, select
File and then select Excel.

 2. Select the fi le C10E01.xlsx and select Import.

 3. In the Navigator dialog box, select Sheet1 and click Edit.

 4. Delete the Changed Type step from the Applied Steps pane.

 5. Move the City column to be the second column and Revenue to be the third column, as shown
in Figure 10-6.

Before:

After:

FIGURE 10-6 Reordering the City and Revenue columns in the Power Query Editor.

 6. Inspect the formula bar, which contains the following line:

 = Table.ReorderColumns(#"Promoted Headers",{"Date", "City", "Revenue", "Color",
"Supplier Category", "Supplier Name", "Customer Category", "Random Column1",
"Random Column2"})

Obviously, this function will fail to refresh if column names such as Random Column1 and
Random Column2 change in the source table. Can you rewrite this formula to refer to the list of

 CHAPTER 10 From Pitfalls to Robust Queries 263

column names above for the reordering step, but somehow only mention “City” and “Revenue”
in the code? Yes, you can.

 7. Remove this part from the preceding formula:

{"Date", "City", "Revenue", "Color", "Supplier Category", "Supplier Name",
"Customer Category", "Random Column1", "Random Column2"}

Replace it with the following code, which returns the same list of column names:

List.InsertRange(List.Difference(Table.ColumnNames(#"Promoted Headers"),
{"City", "Revenue"}), 1, {"City", "Revenue"})

The fi nal formula is as follows:

= Table.ReorderColumns(#"Promoted Headers",List.InsertRange(List.Difference(
Table.ColumnNames(#"Promoted Headers"), {"City", "Revenue"}), 1, {"City", "Revenue"}))

Let’s look at how, with a combination of List.InsertRange, List.Difference, and Table.ColumnNames,
you achieved your goal and generated the same list of column names by referencing only City and
Revenue.

List.InsertRange receives a list as an input and inserts another list in a certain zero-based offset. So,
if you have a list A, to add City and Revenue as the second and third items in list A, you can write the
following formula:

List.InsertRange(A, 1, {"City", "Revenue"}

As you can see at the preceding Table.ReorderColumns formula, List.InsertRange is used as explained
above. Now, if list A can contain all the column names except City and Revenue, you will be able to
apply List.InsertRange on A and get the desired order. This is where List.Difference has a role. This func-
tion accepts a list as its fi rst argument and another list as its second, and it returns a new list with all the
items in the fi rst list that are not in the second list (the left-anti join of the two lists). So, if you apply
List.Difference on a list and use a subset of the list as the second argument, you get as a result a new list
that contains all the items from the original list except for all the items in the subset.

Therefore, if B is the list of column names, then the following function will return all the column
names except City and Revenue:

A = List.Difference(B, {"City", "Revenue"})

Now when you use Table.ColumnNames in the following formula, instead of B, you can build all the
pieces for the full expression:

B = Table.ColumnNames(#"Promoted Headers")

Finally, when you combine all the elements together, you reach the fi nal formula (provided here in
multiline format for better readability):

264 CHAPTER 10 From Pitfalls to Robust Queries

= Table.ReorderColumns(
 #"Promoted Headers",
 List.InsertRange(
 List.Difference(
 Table.ColumnNames(#"Promoted Headers"),
 {"City", "Revenue"}
),
 1,
 {"City", "Revenue"}
)
)

Exercise 10-3, Part 2: The Custom Function
FnReorderSubsetOfColumns
The technique you have been exploring in part 1 would be useful in many reports, and you might want
to reuse it. You can simplify your experience by using a custom function that implements the logic you
used in step 7. To see how to do this, continue the exercise with the following steps:

 8. Create a blank query and paste the following code into the Advanced Editor:
(tbl as table, reorderedColumns as list, offset as number) as table =>
 Table.ReorderColumns(
 tbl,
 List.InsertRange(
 List.Difference(
 Table.ColumnNames(tbl),
 reorderedColumns
),
 offset,
 reorderedColumns
)
)

 9. Rename the custom function FnReorderSubsetOfColumns.

 10. Remove the Reordered Columns step in Applied Steps and click the fx button in the formula bar
to create a new step. Then apply the following formula in the formula bar:
= FnReorderSubsetOfColumns(#"Promoted Headers", {"City", "Revenue"}, 1)

The results are the same as you obtained after step 5. You can see that invoking the function
FnReorderSubsetOfColumns is easy. The function receives the table, the subset of the reordered
column names as a list, and the zero-based index; it then performs the reordering in a robust manner,
without referencing any other column names.

See Also There are other ways to implement Table.ReorderColumns and avoid refresh
errors. You can use a third argument to ignore missing fi elds or add null values for missing
fi elds. While these techniques prevent refresh failures, they may give you unexpected
results. Read more at https://datachant.com/2017/01/18/power-bi-pitfall-4/.

You can download the solution fi les C10E03 - Solution.xlsx and C10E03 - Solution.pbix from
https://aka.ms/DataPwrBIPivot/downloads.

https://datachant.com/2017/01/18/power-bi-pitfall-4/
https://aka.ms/DataPwrBIPivot/downloads

 CHAPTER 10 From Pitfalls to Robust Queries 265

Pitfall 5: Removing and Selecting Columns

The fi fth pitfall is related to a very common operation in the Power Query Editor: removing columns.
While the removal of unnecessary columns is a crucial part of building effi cient reports (fewer columns
means a smaller memory footprint and smaller fi le size), each time you delete a column, you weaken
your query and expose it to the possibility of future refresh failures.

Each time you remove a column in the Power Query Editor, you take the risk that a future refresh
may fail when the removed column is missing in the external data source. Do you have a good data
contract with the owner of the source table? Consider that, for the same reasons you decide to remove
certain columns, the owner of the source table might do the same in the future, and determine that
these columns are unimportant.

To reduce the risk of refresh failures, you can follow a simple best practice: Focus on the columns
you want to keep rather than on the ones you need to remove. The Power Query Editor enables you
to remove or keep columns. While it is a more direct user experience to press the Delete button on the
selected columns you wish to remove, it is recommended in many cases that you select the columns
you wish to keep. Exercise 10-4 demonstrates this process on Random Column1 and Random Column2
in the Wide World Importers dataset from Exercise 10-1.

Exercise 10-4: Handling the Random Columns in the Wide
World Importers Table

 1. Open a blank new workbook or a new Power BI report.

In Excel: On the Data tab, select Get Data, From File, From Workbook.

In Power BI Desktop: On the Home tab, select Get Data, and in the Get Data
dialog box, select File and then select Excel.

 2. Select the fi le C10E01.xlsx and select Import.

 3. In the Navigator dialog box, select Sheet1 and click Edit.

 4. Delete the Changed Type step in Applied Steps.

 5. Remove the two random columns from Exercise 10-1 by selecting Random Column1 and
 Random Column2 and pressing Delete.

 6. Notice that the formula bar includes the following line:

= Table.RemoveColumns(#"Promoted Headers",{"Random Column1", "Random Column2"})

Now, if the source table will no longer include one of these columns, the refresh will fail. In the
next step you will remove the random columns in a different way, and improve the robustness
of the query.

266 CHAPTER 10 From Pitfalls to Robust Queries

 7. Remove the last step in Applied Steps, and then select Choose Columns on the Home tab
and deselect Random Column1 and Random Column2. Close the dialog box and notice the
 following line in the formula bar:

= Table.SelectColumns(#"Promoted Headers",{"Date", "Color", "Supplier Category",
"Supplier Name", "Customer Category", "City", "Revenue"})

Ignoring the Missing Column
In some situations, the number of columns you need to keep may be too high, and the risk of removing
a few columns may be lower than the problems associated with specifying large number of columns.

Often, it doesn’t matter if you remove or select columns. You will eventually deal with external data
sources that are likely to change. To help prevent refresh errors, there is an optional argument that you
can use in Table.RemoveColumns and Table.SelectColumns that allows you to ignore errors instead of
failing to refresh. The third argument is MissingField.Ignore or MissingField.UseNull.

MissingField.Ignore ignores the missing column, while MissingField.UseNull keeps the column name
on errors but fi lls it with nulls. MissingField.UseNull is more practical than its sibling MissingField.Ignore
in conjunction with Table.SelectColumns, as it enables you to ensure that your selected column names
will be included in the end results. However, both options may expose you to errors that are diffi cult
to detect. Thus, a refresh failure may be preferable to the unexpected results that you may incur with
these arguments.

Selecting or Removing Columns Based on Their Position
In many scenarios, removing or selecting columns based on their position is more certain than
 referencing them by name. Using the function Table.ColumnNames to get the list of all column names
and List.Range to retrieve a subset of the columns enables you to select any subset of columns based
on their position.

Each one of the following formulas removes the fi rst column in a table:

= Table.RemoveColumns(Source, List.First(Table.ColumnNames(Source)))

= Table.RemoveColumns(Source, Table.ColumnNames(Source){0})

Using List.FirstN, this formula removes the fi rst two columns in the table:

= Table.RemoveColumns(Source, List.FirstN(Table.ColumnNames(Source), 2))

This formula removes the last column in the table:

= Table.RemoveColumns(Source, List.Last(Table.ColumnNames(Source), 1))

And this formula keeps the second and third column names in the table:

= Table.SelectColumns(Source, List.Range(Table.ColumnNames(Source), 1, 2))

 CHAPTER 10 From Pitfalls to Robust Queries 267

List.Range receives a list as the fi rst argument, a zero-based offset, and the count of items to return.
You can apply the code List.Range(Table.ColumnNames(Source), 1, 2) to return the two column names
in the Source table in offset 1, which is the second position in the list.

You can also select individual columns. The following formula is equivalent to the one above:

= Table.SelectColumns(Source, {Table.ColumnNames(Source){0}, Table.ColumnNames(Source){1}})

This code is practical when you need to select nonadjacent columns. In the case of the Wide World
Importers table, this formula removes the random columns, assuming that they are always the seventh
and eighth columns (offsets 6 and 7):

= Table.RemoveColumns(#"Promoted Headers", {Table.ColumnNames(#"Promoted Headers"){6},
Table.ColumnNames(#"Promoted Headers"){7}})

Selecting or Removing Columns Based on Their Names
There are countless possibilities for selecting or removing columns in M. The following two examples
involve removing the random columns in a generic way. The following formula applies List.Select on the
column names to remove columns that contain the substring Random:

= Table.RemoveColumns(#"Promoted Headers", List.Select(Table.ColumnNames(
#"Promoted Headers"), each Text.Contains(_, "Random")))

And here are the same results, using Table.SelectColumns and the negative logic (that is, you can
select all the columns that don’t contain “Random”):

= Table.SelectColumns(#"Promoted Headers", List.Select(Table.ColumnNames(
#"Promoted Headers"), each not Text.Contains(_, "Random")))

You can download the solution fi les C10E04 - Solution.xlsx and C10E04 - Solution.pbix from
https://aka.ms/DataPwrBIPivot/downloads.

Pitfall 6: Renaming Columns

Renaming columns is another common data preparation step. It is common to rename columns quite
often to improve the user experience and expose report consumers to user-friendly names. But each
time you rename a column in the Power Query Editor, you expose the query to higher chances of
refresh failures in the future. Following the techniques described in the section “Pitfall 5: Removing and
Selecting Columns,” earlier in this chapter, you can increase the robustness of the query by modifying
the formula and avoiding referencing the current column names.

Let’s look at this issue on the Wide World Importers dataset and examine the different ways to rename
columns. For the sake of this example, assume that you expect that all the column names that start with
the prefi x Random Column will in the future be renamed in the source table. Say that in your analysis, you
were asked to rename these columns Factor 1, Factor 2, and so forth, as shown in Figure 10-7.

https://aka.ms/DataPwrBIPivot/downloads

268 CHAPTER 10 From Pitfalls to Robust Queries

FIGURE 10-7 A column renaming challenge is to rename the Random columns without referencing their names.

Exercise 10-5: Renaming the Random Columns in the Wide
World Importers Table
For this exercise, you should use the sample workbook C10E05.xlsx, which can be downloaded from
https://aka.ms/DataPwrBIPivot/downloads. The sample workbook summarizes the fi ctional revenues of
Wide World Importers.

 1. Download the workbook C10E05.xslx and save it in the folder C:\Data\C10\.

 2. Open a blank new workbook or a new Power BI report.

In Excel: On the Data tab, select Get Data, From File, From Workbook.

In Power BI Desktop: On the Home tab, select Get Data, and in the Get Data
dialog box, select File and then select Excel.

 3. Select the fi le C10E05.xlsx and select Import.

 4. In the Navigator dialog box, select Sheet1 and click Edit.

 5. Delete the Changed Type step from the Applied Steps pane. You can see in the Preview pane
of the Power Query Editor that you now have seven Random columns. In this exercise, you will
learn multiple ways to rename these columns.

Manually rename the columns Random Column1 and Random Column2 to Factor 1 and Factor 2,
respectively. The formula bar now includes the following line:

= Table.RenameColumns(#"Promoted Headers",{{"Random Column1", "Factor 1"},
{"Random Column2", "Factor 2"}})

When the source table no longer includes one of these columns, the refresh will fail.

Imagine that the data owner of the source table notifi es you that he plans in the future to rename
these columns, but he guarantees that the columns will always be positioned in the same order in the
table. Under this assumption, you can reference these columns by their position. Here, for example, is
how you can rename the fi rst two random columns:

https://aka.ms/DataPwrBIPivot/downloads

 CHAPTER 10 From Pitfalls to Robust Queries 269

= Table.RenameColumns(#"Promoted Headers",{{Table.ColumnNames(#"Promoted Headers"){6},
"Factor 1"}, {Table.ColumnNames(#"Promoted Headers"){7}, "Factor 2"}})

The Custom Function FnRenameColumnsByIndices
To rename the columns based on their position in the table, you can write a custom function that
enables you to rename a large subset of column names without the need to separately write each pair
of old and new column names. In this section you will learn how to create such a function.

For example, once the function is ready, and named FnRenameColumnsByIndices, you can invoke it
to rename the random columns in step 5 to Factor 1 and Factor 2:

= FnRenameColumnsByIndices(#"Promoted Headers", {"Factor 1", "Factor 2"}, {6, 7})

The custom function approach is scalable, allowing you to rename a large number of columns at
once and even import the old and new column names from an external list. The function also enables
you to use a range of indices. For example, to rename all columns starting from the fourth column and
ending at the tenth column to Factor 1, Factor 2,…Factor 7, without using the custom function, you
could apply smart transformations.

Let’s start with an ineffective method. You could write a lot of code that specifi es each pair of old
and new column names, as follows:

= Table.RenameColumns(
 #"Promoted Headers",
 {
 {Table.ColumnNames(#"Promoted Headers"){6}, "Factor 1"},
 {Table.ColumnNames(#"Promoted Headers"){7}, "Factor 2"},
 {Table.ColumnNames(#"Promoted Headers"){8}, "Factor 3"},
 {Table.ColumnNames(#"Promoted Headers"){9}, "Factor 4"},
 {Table.ColumnNames(#"Promoted Headers"){10}, "Factor 5"},
 {Table.ColumnNames(#"Promoted Headers"){11}, "Factor 6"},
 {Table.ColumnNames(#"Promoted Headers"){12}, "Factor 7"}
 }
)

To avoid this complication, you can create smart renaming as follows:

= FnRenameColumnsByIndices(
 #”Promoted Headers”,
 List.Transform(
 {1..7},
 each “Factor “ & Text.From(_)
),
 {6..12}
)

In this formula, the second argument is a dynamic list that is created using List.Transform. Its fi rst
argument is a list of indices from 1 to 7. Its output is a transformed list of text concatenating the prefi x
Factor and the relevant index. The third argument of FnRenameColumnsByIndices is a list between
6 and 12 for the indices of the columns to rename.

270 CHAPTER 10 From Pitfalls to Robust Queries

Now, let’s review the function FnRenameColumnsByIndices:

(Source as table, ColumnNamesNew as list, Indices as list) =>
let
 ColumnNamesOld = List.Transform(Indices, each Table.ColumnNames(Source){_}),
 ZippedList = List.Zip({ ColumnNamesOld, ColumnNamesNew }),
 #"Renamed Columns" = Table.RenameColumns(Source, ZippedList)
in
 #"Renamed Columns"

Let’s look at this custom function, step by step. The arguments are Source for the table to rename,
ColumnNamesNew for the list of new column names, and Indices for the list of indices in the source
table. The fi rst line inside the let expression receives the indices and returns the relevant column names
in the Source table:

ColumnNamesOld = List.Transform(Indices, each Table.ColumnNames(Source){_}),

The next line uses List.Zip to create a list of nested lists. Each nested list contains two members—the
old and new column names from the same index of the different lists:

ZippedList = List.Zip({ ColumnNamesOld, ColumnNamesNew }),

For example, this List.Zip formula:

List.Zip({"a","b","c"}, {"A", "B", "C"}}

returns the following list of nested lists:

{{"a", "A"}, {"b", "B"}, {"c", "C"}}

The latter format is the required format for the second argument of Table.RenameColumns—a list
of nested lists, which are pairs of old and new column names, and is used in the third line inside the let
expression:

#"Renamed Columns" = Table.RenameColumns(Source, ZippedList)

The Table.TransformColumnNames Function
There is yet another way to rename the columns. Recall that in Chapter 4, you used the function
Table.TransformColumnNames to rename all columns. You applied it to replace underscores with
spaces or capitalize the headers. This function can also be used in this scenario to replace the column
names using a generic rule:

= Table.TransformColumnNames(#"Promoted Headers", each Text.Replace(_, "Random Column",
"Factor "))

The advantage of this method is that it successfully renames the columns, even if the random col-
umns will be reordered in the source table. Still, you need to be careful about the renaming logic you
use to avoid renaming columns that you were not supposed to rename.

 CHAPTER 10 From Pitfalls to Robust Queries 271

Tip In most cases, a simple rename, as you have always done, will suffi ce. Don’t
overthink it.

You can download the solution fi les C10E05 - Solution.xlsx and C10E05 - Solution.pbix from
https://aka.ms/DataPwrBIPivot/downloads.

Pitfall 7: Splitting a Column into Columns

The seventh pitfall can be as dangerous as the fi ltering pitfall (Pitfall 4), as it may lead to missed data. It
can happen when you apply Split Column By Delimiter into columns on delimiter-separated values with
a varying range of values.

Split Column By Delimiter is typically used to achieve two types of operations:

 ■ The basic operation enables you to split a column into multiple columns. It is often used to
split date and time columns into separate date and time columns or to divide client names into
fi rst and last names. The Split Column By Delimiter dialog box enables you by default to split a
column into columns.

 ■ The advanced operation of Split Column By Delimiter enables you to split multiple comma or
other delimiter-separated values into rows. This operation is extremely useful. It allows you to
create a new table that associates each split value with its entity. As shown in Figure 10-8, you
can create a reference table to the source table that pairs between product codes and colors to
fi nd out how many products you have by colors.

FIGURE 10-8 Split the comma-separated AdventureWorks Colors column to fi nd how many products are released
by color.

In Exercise 2-8 in Chapter 2, you worked with the AdventureWorks product table and split the Colors
column to fi nd the associations between products and colors in order to determine how many products
are released by color. Recall that you split the Colors column into rows to solve that challenge. The next
exercise will show you what can happen when you split a column into columns instead of into rows.

https://aka.ms/DataPwrBIPivot/downloads

272 CHAPTER 10 From Pitfalls to Robust Queries

The seventh pitfall, as you will see in Exercise 10-6, happens when you split delimited-separated
values and ignore the advanced (and relatively hidden) option to split the column into rows. If you
don’t select that option, you end up with the default option of splitting the column into columns, which
exposes your queries to missing crucial information when new data is loaded to your report.

Exercise 10-6: Making an Incorrect Split
In this exercise you will repeat Exercise 2-8, but this time, you will see what happens when you use the
incorrect split option, Split into Columns. This exercise demonstrates the risks and shows you how easy
it is to fall prey to this pitfall.

You will use the sample workbook C10E06.xlsx, which can be downloaded from https://aka.ms/
DataPwrBIPivot/downloads. The sample workbook summarizes the AdventureWorks product codes (a
new variation of codes) by average cost, average price, and comma-separated colors. As the head of
data science in AdventureWorks, you would like to create a report that shows how many products you
have for each color (refer to Figure 10-8).

 1. Download the workbook C10E06.xslx and save it in the folder C:\Data\C10\.

 2. Open a blank new workbook or a new Power BI report.

In Excel: On the Data tab, select Get Data, From File, From Workbook.

In Power BI Desktop: On the Home tab, select Get Data, and in the Get Data dialog box, select
File and then select Excel.

 3. Select the fi le C10E06.xlsx and select Import.

 4. In the Navigator dialog box, select Products and click Edit.

 5. Delete the Changed Type step from the Applied Steps pane.

 6. In the Queries pane, right-click Products and select Reference. Your goal is to create a new table
with a mapping between the product codes and the colors.

 7. Rename the new query Products and Colors and keep the new query selected.

 8. On the Home tab, select Choose Columns, and in the dialog box that opens, select
 ProductCodeNew and Colors. Click OK to close the dialog box, and all the unselected columns
are removed from your Products and Colors query.

 9. Select the Colors column, and on the Transform tab, select Split Column and then select
By Delimiter. In the Split Column by Delimiter dialog box that opens, notice that the comma
 delimiter is selected by default and the option Each Occurrence of the Delimiter is selected, as
shown in Figure 10-9. Unfortunately, by default, when you close the dialog box, the split is made
into columns rather than rows. To split by rows, you need to expand the Advanced Options
 section and switch the Split Into option from Columns to Rows, as you did in Exercise 2-8.

At this stage, keep the default split by columns option, so you can learn the implications of
going through the default experience. Click OK to close the dialog box.

https://aka.ms/DataPwrBIPivot/downloads
https://aka.ms/DataPwrBIPivot/downloads

 CHAPTER 10 From Pitfalls to Robust Queries 273

The correct options are hidden

FIGURE 10-9 The Split Column by Delimiter dialog box hides the Split into Rows option under Advanced Options.

 10. Notice in the Power Query Editor that the Colors column has been split into Colors.1 and Colors.2.
In Applied Steps, select the Split Column By Delimiter step and review the line in the formula bar:

= Table.SplitColumn(Products_Table, "Colors", Splitter.SplitTextByDelimiter(",",
QuoteStyle.Csv), {"Colors.1", "Colors.2"})

This formula instructs the M engine to split Colors into two columns—only two. You will put it
to the test soon.

 11. Because your goal is to map between product codes and colors, you need to use the Unpivot
transformation to have a table of code and color pairs, so select the ProductCodeNew column.

 12. On the Transform tab, expand the Unpivot Columns drop-down and select Unpivot Other
Columns. Colors.1 and Colors.2 are transformed into Attribute and Value columns. The latter
includes the colors, now paired correctly to their corresponding product codes. At this stage,
notice that some colors start with a space character. To fi x this, you can apply a Trim step on
the Value column or go to Applied Steps and in Split Column By Delimiter, click the settings
icon and change the delimiter to Custom, and then enter a comma and a space (,). Here is the
 corrected formula for the Split Column By Delimiter step:

= Table.SplitColumn(Products_Table, "Colors", Splitter.SplitTextByDelimiter(", ",
QuoteStyle.Csv), {"Colors.1", "Colors.2"})

 13. Remove the Attribute column and load the queries to your report to start the analysis. If you
like, build a bar chart by using a PivotChart like the one shown in Figure 10-8.

 14. To test what happens when a certain product code has more than two colors, save your report
and open C10E06.xslx.

 15. In cell D3, add two more colors to the existing two and change the Colors value from Yellow,
Blue to Yellow, Blue, Black, Red. Save the workbook C10E06.xslx and close it. Go back to your
exercise report and refresh it. The new colors are not included in the report.

To solve this problem, you should follow Exercise 2-4 and split the Colors column into rows. However,
if for some reason you must split the column into columns and not into rows, you can scale up your

274 CHAPTER 10 From Pitfalls to Robust Queries

solution by increasing the number of columns to split into. Say that you know in advance that the num-
ber of colors cannot exceed 20. You can use this formula at the Split Column By Delimiter step:

= Table.SplitColumn(Products_Table, "Colors", Splitter.SplitTextByDelimiter(", ",
QuoteStyle.Csv), 20)

Replacing the hardcoded part, {“Colors.1”, “Colors.2”}, with 20, which is the maximum number of
columns you expect, will strengthen your query and ensure that you will not miss data.

You can download the solution fi les C10E06 - Solution.xlsx and C10E06 - Solution.pbix from
https://aka.ms/DataPwrBIPivot/downloads.

Make sure you also download the workbook C10E06-v2.xlsx, which contains the second version of
the workbook C10E06.xlsx, with the modifi ed color values. The queries in the solution fi les assume that
you have the workbook C10E06-v2.xlsx in the folder C:\Data\C10\.

Pitfall 8: Merging Columns

In the preceding section, “Splitting a Column into Columns,” you learned how to avoid the seventh
pitfall by splitting columns into rows instead of into columns. You also saw that if you simply must split
a comma-separated column into columns, you can switch the second argument and call for the
number of columns to generate. In this section, you will learn how to improve the query when you
handle the reverse transformation: merging columns.

When you merge multiple columns into a single column, the generated formula fi rst transforms
all the numeric columns into text and then combines all the columns together. The following code
is auto generated (and indented and formatted here with multiple lines for better readability) when
you merge three columns in the Source table, the fi rst of which are numeric (Numeric Column1 and
Numeric Column 2) and the third of which is textual (Textual Column3):

#"Merged Columns" = Table.CombineColumns(
 Table.TransformColumnTypes(
 Source, {
 {"Numeric Column1", type text},
 {"Numeric Column2", type text}
 },
 "en-US"
),
 {"Numeric Column1", "Numeric Column2", "Textual Column3"},
 Combiner.CombineTextByDelimiter(":", QuoteStyle.None),
 "Merged"
)

In this formula, you can see that Table.TransformColumnTypes enforces the type conversion of all the
numeric columns, and then merges the relevant columns. This formula exposes the query to unneces-
sary refresh failures. You can modify the code and scale it to merge a given list of columns, without
referencing any hard-coded column names.

Say that you have the column names to merge in the ColumnsToMerge list. Here is the modifi ed
formula you can use instead of the preceding one:

https://aka.ms/DataPwrBIPivot/downloads

 CHAPTER 10 From Pitfalls to Robust Queries 275

#"Merged Columns" = Table.CombineColumns(
 Table.TransformColumnTypes(
 Source,
 List.Transform(
 ColumnsToMerge,
 each {_, type text}
),
 "en-US"
),
 ColumnsToMerge,
 Combiner.CombineTextByDelimiter(":", QuoteStyle.None),
 "Merged")

The main change between the two formulas is that this part of the code:

{
 {“Numeric Column1”, type text},
 {“Numeric Column2”, type text}
}

is replaced with a List.Transform function that generates the same code, but without referencing the
column names:

List.Transform(
 ColumnsToMerge,
 each {_, type text}
)

This code iterates over each column name in ColumnsToMerge and transforms it into a list of col-
umn names and a text type: {_, type text}.

While you may not commonly need such a function, this example is an important demonstration of
the use of list functions to write scalable and robust versions of your auto-generated formulas.

More Pitfalls and Techniques for Robust Queries

I mentioned earlier that I talk about 10 pitfalls in my blog series at DataChant, and you can see that this
chapter does not cover the ninth and tenth pitfalls. This section mentions them briefl y, and for more
information, you can visit my blog.

The ninth pitfall has to do with expanding table columns. Expand Table Columns is a common
 transformation that you apply when you combine multiple fi les from a folder, merge between two
tables, or work with unstructured datasets such as JSON.

When you expand table columns, you are required to select the columns to expand. As a result,
the Power Query Editor auto-generates a formula with hardcoded column names, and new column
names can be missed. To learn more about the Expand Table Columns transformation and how to avoid
missing new columns, go to https://datachant.com/2017/02/07/power-bi-pitfall-9/.

The tenth pitfall focuses on the removal of duplicates, and it is covered earlier in this book,
in Exercise 2-7, Chapter 2.

https://datachant.com/2017/02/07/power-bi-pitfall-9/

276 CHAPTER 10 From Pitfalls to Robust Queries

Summary

In this chapter you have improved your data-wrangling skills by focusing on long-term thinking. It
looks at how you can make your queries last longer, without needing to constantly edit them as the
data changes. You have learned about the most common pitfalls that lead to refresh failures and
incorrect data—as well as three important themes for avoiding them: awareness, best practices,
and M modifi cations. Having the formula bar active and reviewing it frequently can help you detect
 unexpected hardcoded double-quoted values, or incorrect conditions.

In this chapter you have also learned some best practices that can reduce failures. Having a formal
or informal data contract with your colleagues who own the data sources can help you build the correct
assumptions on the data and make good decisions about resolving your data preparation challenges.

You have also learned how to apply lightweight modifi cations to M formulas to strengthen your
queries. To conclude this chapter, Table 10-1 lists the main pitfalls, their impacts, and how to avoid them.

TABLE 10-1 The Main Pitfalls, Their Impacts, and How to Avoid Them

Pitfall Number and
Main Feature

Impact How to Avoid the Pitfall

Pitfall 1: Ignoring the
formula bar

Lack of awareness of the
potential failures of the
auto-generated M code

Activate the formula bar and keep reviewing its code. Look for
double-quoted values to verify that they are consistent with your
user interface selections.

Pitfall 2: Changed
types

High probability for
future refresh errors

Delete the Changed Type step. Turn off automatic detection of
types in the Query Options dialog box for each workbook or
Power BI report. Change the types manually on numeric/date/
time columns. The later you change the types, the better.

Pitfall 3: Dangerous
fi ltering

High probability for
incorrect data

Avoid using the values in the Filter pane. Use the Filter Rows
dialog box instead or audit the formula bar to ensure that your
fi ltering logic was created as expected.

Pitfall 4: Reordering
columns

High probability for
future refresh errors

Avoid reordering columns if possible. Use M function to reorder
only a subset of the columns.

Pitfall 5: Removing
and selecting
columns

Medium probability
for future refresh errors

If you have a small number of columns to keep, use Choose
Columns instead of Remove Columns. In many cases the columns
you choose to keep are more likely to stay in your source data.
Use M to remove or select columns by their position in the table.

Pitfall 6: Renaming
columns

Medium probability
for future refresh errors

Use the function Table.TransformColumnNames in M to rename
columns by their values, or use Table.ColumnNames with zero-
based indices to rename by position.

Pitfall 7: Splitting
a column into
columns

High probability for
missing data

Avoid using Split into Columns. Use the advanced option and
Split into Rows instead. If Split into Columns is required, use the
maximum number of columns as the second argument.

Pitfall 8: Merging
columns

Medium probability
for refresh errors

All the columns will be referenced in the code. Modify the M
code if needed to merge a large number of columns or if the list
of column names to merge is dynamic.

Pitfall 9: Expanding
table column

Medium probability
for missing data

See https://datachant.com/2017/02/07/power-bi-pitfall-9/.

Pitfall 10: Merging
duplicates

High probability for refresh
errors and failures to cre-
ate relationship between
lookup and fact tables

See Chapter 2, Exercise 2-7, in the section “When a Relationship
Fails,” and make sure you lowercase/uppercase and trim the
values before you remove duplicates in the column that is in the
relationship in lookup tables.

https://datachant.com/2017/02/07/power-bi-pitfall-9/

 385

Index

Numerals and Symbols
2x2 levels of hierarchy, unpivoting tables with

complex tables, 149–151
dates, 146–149

3x3 levels of hierarchy, unpivoting tables with, 156
AdventureWorks example, 157–160
Column fi elds, 156–157
Row fi elds, 156–157
virtual PivotTables, 156–157

2018 Revenues query (Wide World Importers project), 380
, (comma), 70
& (concatenate) operator, 227, 231
{ } (curly brackets), 70, 226
= (equal) operator, 224, 227
=> (goes-to symbol), 171
<> (not-equal) operator, 224, 227
[] (square brackets), 230
.. (two dots) operator, 227

A
Access Web Content dialog box, 196, 200
Add Column tab (Power Query Editor), 11, 16
Add Conditional Column dialog box, 38–40, 44, 52,

98, 124–125, 208, 279–280, 285
Advanced Editor (Power Query Editor), 12–13,

206, 208
AdventureWorks product catalog

challenge, 23–24
context. See context preservation
database, deploying, 22
dataset, exploring, 14–18
date/time values

dates with two locales, 50–53
extracting, 53–54
multiple date formats, 48–50
transformations, 48

delimiter-separated values, splitting, 57–59
diagram of, 23
encoded columns, extracting values from

with Excel formulas, 23–24
with Power Query Editor, 23–24

product size

converting to buckets/ranges, 37–40
extracting from product code, 34–35

queries
Append1, 113
Appended Products, 104
ColumnFields, 162–163
dependencies and references, 65–68
Numeric-Size Products.39
Products, 52, 63, 65, 69, 76
Products and Colors, 57–59
Products Sample, 89–90, 102–106, 120–121
Results, 172
Revenues - Fixed First Attribute, 177–179
Revenues - Fixed Number of Attributes, 176–177
RowFields, 162–163
Sales Order - Base, 55–56
Sales Orders, 56
Stock Items, 56

tables. See tables
Age transformation, 53
All Words query, 294
All Words - Trim Punctuations query, 297
Allington, Matt, 209
Analysis Services, 5
Analyzing Data with Power BI and Power Pivot for Excel

(Ferrari and Russo), 137
anchor columns, 139
API key parameter

Sentiment Analysis API, 335
Translator Text API, 321–322

Append Queries as New transformation, 64–65
Append Queries transformation, 62–64
Append1 query, 113
Appended Products query, 104
appending

pivoted data, 377–378
tables

Append Queries as New transformation, 64–65
Append Queries transformation, 62–64
from folders, 71–74
three or more tables, 68–70
two tables, 62–68
from workbooks, 74–81

worksheets

386

appending

AdventureWorks example, 74–79
robust approach to, 79–81

Applied Steps pane, 12, 16
Archimedes, 135
arithmetic operators, 221
attributes

fi xed number of, 176–177
unfi xed number of, 177–179

Azure Analysis Services, 5
Azure Cognitive Services, 311–313

multi-language support, 347
dynamic language detection, 348–349
FnDetectLanguages function, 348–349
language code, replacing, 347

pros and cons of, 316–318
Sentiment Analysis API, 329–330

API call syntax, 330
API key parameter, 335
converting to key phrases, 344–347
data loading, 332–333
data preparation, 330–331, 333–334
error prevention, 341
FnGetSentiment function, 332, 337–341
JSON content creation, 334–335
large datasets, 342–344
response handling, 337
web request creation, 335–336

Text Analytics API, 315–316, 344–347
Translator Text API

API key parameter, 321–322
deploying, 314–315
JSON content creation, 320
multiple message translation, 324–327
report sharing without API key, 324, 327–328
Translate call, 319–320
web request creation, 322–324

Azure connector, 8

B
Bell, Alexander Graham, 21
Berners-Lee, Tim, 247
BICCOUNTANT blog, 209
black products, fi ltering, 257–258
BreakSentence API call, 319–320
buckets, converting size values into, 37–40

C
Cartesian products, 282–283

implementing, 284–286
initial preparation, 283–284
performance improvement, 288–290
relationships, 286–287

case sensitivity, 17, 219
catalog. See product catalog
cell proximity, as context cues, 130–134
Changed Type steps

common pitfalls, 79
deleting, 163–164, 250

Changelog page, 354
Choose Columns dialog box, 334
cleaning datasets. See data preparation
co-authored reports, 181–182

local fi le access, 182–183
parameter values in Excel

data combination, rebuilding, 191–193
tables or named ranges as, 187–191

parameters as path names, 183–185
shared fi les

differences between, 198
importing data from, 195–197
migrating local queries to, 199–201
modifying queries for, 197–198
removing queries from, 202
security considerations, 201–202

shared fi les/folders, 194–195
templates, creating, 185–187

collaboration challenges, 181–182
co-authored reports

local fi le access, 182–183
parameter values in Excel, 187–193
parameters as path names, 183–185
templates, 185–187

shared fi les, 194–195
differences between, 198
importing data from, 195–197
migrating local queries to, 199–201
modifying queries for, 197–198
security considerations, 201–202

Column fi elds, 156–157, 162–163
Column from Examples

explained, 34–35
practical uses of, 37
size values

converting to buckets/ranges, 37–40
extracting from product code, 34–35

ColumnFields query, 162–163
columns

adding, 16
anchor, 139
Column fi elds, 156–157, 162–163
Column from Examples

explained, 34–35
practical uses of, 37
product size, converting to buckets/ranges,

34–35

conversion tables

 387

product size, extracting from product code,
34–35

conditional, 38, 44, 52, 98, 124–125, 279–280, 285
as context cues, 127–130
custom, 112–113, 285, 306, 334, 356, 378
encoded columns, extracting values from, 22

with Excel formulas, 23–24
with Power Query Editor, 23–24

expanding, 275
Facebook analytics

Comment, 365
Comment ID, 365
Comments Count, 370
created_time, 355–357
Facebook Page, 355–357
ID, 355–357
IsMutual, 359–360
object_link, 359, 365
Picture, 356–357
Time, 355–357

merging, 274–275
mismatched. See mismatched tables, combining
missing, 266
names, transposing, 100–106
negative numbers in, 16–17
Pivot transformation, 173

incorrectly unpivoted tables, reversing, 173–175
multiline records, 175–179

removing, 17, 265–267
renaming, 16, 79, 267–268

FnRenameColumnsByIndices function, 269–270
Table.TransformColumnNames function, 270–271

reordering, 261
FnReorderSubsetOfColumns function, 264
subsets of columns, 262–264

Source.Name, 73
splitting, 24–27, 271–274
static column names, detecting, 252–253
text columns, extracting data from, 40–48
type detection, 256
Unpivot transformations. See also

FnUnpivotSummarizedTable function
3x3 levels of hierarchy, 156–160
reversing, 173–175
Unpivot Columns, 139–142
Unpivot Only Selected Columns, 142–143
Unpivot Other Columns, 139–142

unpivoted, 139
Wide World Importers project, 377–378, 379

Combine Files dialog box, 72–73, 88, 92, 96
combining mismatched tables. See mismatched tables,

combining
comma (,), 70
Comment column (Facebook analytics), 365

Comment ID column (Facebook analytics), 365
comments (Facebook)

extracting
basic method, 363–367
count of comments and shares, 367–370
hyperlinks, 40–48

fi ltered by time, 367
Comments Count column (Facebook analytics), 370
Comments query (Facebook analytics), 363–365
Common Data Service for Apps, 2, 5
complex tables, unpivoting, 149–151
complex types

list, 226–227
functions, 228–229
operators, 227–228

record, 229–231
functions, 232
operators, 231–232

table, 232–234
Compromised Rows query (Wide World Importers

project), 383
concatenate (&) operator, 227, 231
conditional columns, 38, 44, 52, 98, 124–125, 279–280,

285
conditions, 234–235
connectors

custom, 209
Facebook, 352

friends and friends-of-friends, extracting, 357–360
multiple pages, comparing, 370–373
pages you liked, fi nding, 352–357
pages your friends liked, fi nding, 352–357,

360–362
posts and comments, extracting, 363–370

supported connectors, 8–9
context cues, 126–127

cell proximity, 130–134
index columns as, 127–130

context preservation, 111–112
context cues, 126–127

cell proximity, 130–134
index columns as, 127–130

custom column technique, 112–113
from fi le and worksheet names, 113–114
titles

Drill Down transformation, 115–119
from folders, 119–121
post-append preservation, 121–126
pre-append preservation, 113–119
from worksheets, 122–126

Conversion Table query, 302
conversion tables

column name-only transposition, 99–101
creating, 93–95

388

conversion tables

loading, 95–96
M query language, 106–109
merge sequence, 97–99
transpose techniques, 96–99
unpivoting, merging, and pivoting back, 99–101

Copy Path to Clipboard option, 195–196
counting Facebook comments/shares, 367–370
Create Function dialog box, 326
cues, context, 126–127

cell proximity, 130–134
index columns as, 127–130

curly bracket ({ }), 70, 226
Custom Column dialog box, 113, 206, 285, 306, 334, 356, 378
custom columns, 112–113, 285, 306, 334, 356, 378
custom connectors, 209
custom functions

creating, 237–238
detecting keywords with, 290–292

Custom XML Data, 202

D
Data Catalog connector, 8
data combination, rebuilding, 191–193
"Data Explorer" codename, 3
Data Load options, 14
data preparation, 21–22. See also context preservation

Column from Examples
explained, 34–35
practical uses of, 37
product size, converting to buckets/ranges, 34–35
product size, extracting from product code,

34–35
date/time values

dates with two locales, 50–53
extracting, 53–54
multiple date formats, 48–50
transformations, 48

delimiter-separated values, splitting, 57–59
encoded columns, extracting values from, 22

with Excel formulas, 23–24
with Power Query Editor, 23–24

Sentiment Analysis API, 330–331, 333–334
tables

merging, 23–24
relationship refresh failures, 56–57
relationships, creating, 32–34
splitting, 55–56

text columns, extracting data from, 40–48
Wide World Importers project, 378

Data Source Settings dialog box, 9
Databases connector, 8
DataChant blog, 209

dataset cleaning. See data preparation
#date expression, 222
Date Only transformation, 54
date type, 222
Date.AddDays function, 222
date/time values

dates with two locales, 50–53
extracting, 53–54
multiple date formats, 48–50
transformations, 48
unpivoting 2x2 levels of hierarchy with, 146–149

Date.X functions, 222
Day of Week transformation, 54
Day of Year transformation, 54
Day transformation, 54
Days in Month transformation, 54
declaring

functions, 219
types, 218–219

delimiter-separated values, splitting, 24–27
dependencies, query, 65–68
deployment

Text Analytics API, 315–316
Translator Text API, 314–315

Document Inspector, 202
documentation, function, 209–211
downloading Power Query add-in, 7
Drill Down transformation, context

preservation with, 115–119
drill down results, combining in query, 117–119
M query language, 116

duplicates, removing, 56, 275
#duration expression, 223
duration type, 223
Duration.X functions, 223
dynamic language detection, 348–349

E
each expression, 239–240
eager evaluations, 242
Edit Relationship dialog box, 345
editing queries, 18
Einstein, Albert, 61
encoded columns, extracting values from, 22

with Excel formulas, 23–24
with Power Query Editor, 23–24

End of Day transformation, 54
End of Month transformation, 54
End of Quarter transformation, 54
End of Week transformation, 54
End of Year transformation, 54
equal (=) operator, 224, 227

FnReorderSubsetOfColumns function

 389

errors
changed types, 79
Formula.Firewall, 190–193
M query language, 240–242
sentiment analysis, 341

ETL (Extract Transform Load) tools, Power Query as, 5
Example File drop-down menu, 88
Excel.CurrentWorkbook function, 191–192
Excelguru blog, 209
Excel.Workbook function, 183, 184, 190, 197
expanding columns, 275
Export a Template dialog box, 185–187, 328
expressions

#date, 222
#duration, 223
each, 239–240
if, 234–235

if-then-else, 235
in let expressions, 235–237

lazy versus eager evaluations, 242
let, 213–215, 235–237
merging, 215–218
#table, 233
#time, 221
try/otherwise, 241–242
Web.Contents, 322–323

Extract Transform Load (ETL) tools, 5

F
Facebook Access dialog box, 353
Facebook analytics. See also Microsoft Press posts,

analyzing; text analytics
Facebook connector overview, 352
friends and friends-of-friends, extracting, 357–360
hyperlinks, extracting from posts, 40–48
multiple pages, comparing, 370–373
pages you liked, fi nding, 352–357
pages your friends liked, fi nding, 360–362
posts and comments, extracting

basic method, 363–367
count of comments and shares, 367–370
fi ltered by time, 367

Facebook connector, 352
friends and friends-of-friends, extracting, 357–360
multiple pages, comparing, 370–373
pages you liked, fi nding, 352–357
pages your friends liked, fi nding, 352–357, 360–362
posts and comments, extracting

basic method, 363–367
count of comments and shares, 367–370
fi ltered by time, 367

Facebook dialog box, 353

Facebook Graph API. See Facebook analytics
Facebook Page column, 355–357
Facebook Pages I Like query, 352–357
Facebook.Graph function, 354–355
fact tables, 137

relationships
creating, 32–34
relationship refresh failures, 56–57

splitting data into, 55–56
Feldmann, Imke, 209
Ferrari, Alberto, 137
Fibonacci sequence, 243–245
File tab (Power Query Editor), 10
fi les

context preservation, 113–114
local fi le access

parameters as path names, 183–185
refresh errors, 182–183

shared, 194–195
differences between, 198
importing data from, 195–197
migrating local queries to, 199–201
modifying queries for, 197–198
removing queries from, 202
security considerations, 199–201
Translator Text API reports, 324, 327–328

templates, creating, 185–187
fi lter pane values, searching, 260–261
Filter Rows dialog box, 17, 127, 200
fi ltering

black products, 257–258
case-insensitive, 17
common pitfalls with, 80, 256

fi lter pane values, searching, 260–261
fi ltering condition logic, 258–260
sample scenario, 257–258

condition logic, 258–260
Facebook posts and comments by time, 367
stop words, 298–300

fi rst-degree friends (Facebook), extracting, 357–360
Fitzgerald, F. Scott, 375
FnCleanSummarizedTable function, 378
FnDetectKeywords function, 290
FnDetectLanguages function, 348–349
FnGetKeyPhrases function, 344–347
FnGetSentiment function, 332

creating, 337–339
invoking, 339–341

FnLoadPostsByPage function, 371
FnNormalizeColumnNames function, 106
FnRenameColumnsByIndices function,

269–270
FnReorderSubsetOfColumns function, 264

FnUnpivotSummarizedTable function

390

FnUnpivotSummarizedTable function
applying to Wide World Importers table, 379–380
creating

Changed Type steps, deleting, 163–164
ColumnFields, 162–163
List.Count, 164–167
List.FirstN, 164–167
List.Zip, 168–169
queries, converting into function, 169–171
Renamed Columns step, 168–169
RowFields, 162–163
Table.ColumnNames, 164–167
ValueField, 162–163

invoking, 160–162
testing, 172

folders
appending tables from, 71–74
combining mismatched tables from, 86–89

header generalization, 89–90
same-order assumption, 89–90
simple normalization, 90–93

importing from, 74
preserving titles from, 119–121
shared, 194–195

differences between, 198
importing data from, 195–197
migrating local queries to, 199–201
modifying queries for, 197–198
removing queries from, 202
security considerations, 199–201
Translator Text API reports, 324, 327–328

formula bar (Power Query Editor), 12–13, 16
ignoring, 251–252
M query language in, 206–207

Formula.Firewall error, 190–193
formulas

LEFT, 23
Parameters{0}189
RIGHT, 24
Source{0}116–117, 189
static column names, detecting, 252–253
SUBSTITUTE, 24
VLOOKUP, 24

friends (Facebook)
extracting, 357–360
pages your friends liked, fi nding, 360–362

Friends and Pages query (Facebook analytics), 361–362
functions

built-in, 219–220
converting queries into, 169–171
custom

creating, 237–238
detecting keywords with, 290–292

Date.X, 222
declarations, 219
documentation for, 209–211
Duration.X, 223
Excel.CurrentWorkbook, 191–192
Excel.Workbook, 183, 184, 190, 197
Facebook.Graph, 354–355
FnCleanSummarizedTable, 378
FnDetectKeywords, 290
FnDetectLanguages, 348–349
FnGetKeyPhrases, 344–347
FnGetSentiment, 332

creating, 337–339
invoking, 339–341

FnLoadPostsByPage, 371
FnNormalizeColumnNames, 106
FnRenameColumnsByIndices, 269–270
FnReorderSubsetOfColumns, 264
FnUnpivotSummarizedTable, invoking, 379–380
FnUnpivotSummarizedTable creation

Changed Type steps, deleting, 163–164
ColumnFields, 162–163
List.Count, 164–167
List.FirstN, 164–167
List.Zip, 168–169
queries, converting into function, 169–171
Renamed Columns step, 168–169
RowFields, 162–163
Table.ColumnNames, 164–167
testing, 172
ValueField, 162–163

FnUnpivotSummarizedTable invocation, 160–162
invoking, 239
List.Accumulate, 208, 229, 244–246, 303–307
List.Average, 229
List.Combine, 229
List.Contains, 229
List.Count, 164–167, 227, 228
List.Dates, 229
List.Difference, 229, 263
List.First, 228
List.FirstN, 164–167, 228
List.Generate, 208, 229, 244
List.InsertRange, 263
List.Intersect, 229
List.IsEmpty, 228
List.Last, 126, 228
List.LastN, 228
List.Max, 229
List.MaxN, 229
List.Min, 229
List.MinN, 229
List.Numbers, 227, 229

 391

hyperlinks, extracting from Facebook posts

List.PositionOf, 131–132, 146
List.Range, 267
List.Select, 228
List.Sort, 229
List.StandardDeviation, 229
List.Transform, 229
List.Union, 229
List.Zip, 168–169
MissingField.Ignore, 266
MissingField.UseNull, 266
Number.Abs, 219
Number.From, 221
Number.IsEven, 221
Number.PI, 221
Number.Power, 221
Number.Sin, 221
Record.AddField, 232
Record.Combine, 232
Record.FieldCount, 232
Record.HasFields, 232
Replacer.ReplaceText, 91
Splitter.SplitTextByAnyDelimiter, 42, 47, 295
Splitter.SplitTextByDelimiter, 295
SUM, 145
Table.AddColumn, 44, 326
Table.Buffer, 288–293
Table.ColumnCount, 233
Table.ColumnNames, 80, 123, 164–167, 234, 263
Table.Combine, 69–70
Table.CombineColumns, 166
Table.Distinct, 338
Table.FillDown, 164–166
Table.FirstN, 146
Table.FirstValue, 233
Table.FromColumns, 234
Table.FromList, 234
Table.FromRecords, 234
Table.FromRows, 234
Table.IsEmpty, 233
Table.Profi le, 233
Table.RemoveColumns, 90, 122, 265–267
Table.RemoveLastN, 146
Table.RenameColumns, 79, 80, 126, 168–169, 268–269
Table.ReorderColumns, 262–264
Table.Repeat, 290
Table.ReplaceValue, 303
Table.ReplaceValues, 303
Table.RowCount, 233
Table.SelectColumns, 266
Table.SelectRows, 259, 290, 338
Table.SplitColumn, 45, 47, 167, 273–274
Table.ToColumns, 234
Table.ToList, 234

Table.ToRecords, 234
Table.ToRows, 234
Table.TransformColumnNames, 90–93, 270–271
Table.TransformColumns, 46, 47
Table.TransformColumnType, 78
Table.TransformColumnTypes, 163–164, 169, 252–253,

274–275
Table.Unpivot, 142
Table.UnpivotOtherColumns, 140, 167
Text.BetweenDelimiters, 37
Text.Proper, 91
Text.Trim, 46, 297
Time.Hour, 222

G
generalizing Unpivot sequence

FnUnpivotSummarizedTable creation
Changed Type steps, deleting, 163–164
ColumnFields, 162–163
List.Count, 164–167
List.FirstN, 164–167
List.Zip, 168–169
queries, converting into function, 169–171
Renamed Columns step, 168–169
RowFields, 162–163
Table.ColumnNames, 164–167
testing, 172
ValueField, 162–163

FnUnpivotSummarizedTable invocation, 160–162
purpose of, 160

Get & Transform Data section, 7
Get Data dialog box, 95, 200

Facebook data. See Facebook analytics
opening, 7, 8–9, 15

Get Data interface, 8–9
Get External Data section, 7
GetSentiment query, 333
Go to Column dialog box, 26
goes-to symbol (=>), 171
grand totals

removing, 145–146
unpivoting, 143–146

Group By dialog box, 343

H
hackers, detecting and tracking, 384
Hacker's Instructions query (Wide World Importers

project), 384
header generalization, 89–90
"Hello World" program, 212–213
Home tab (Power Query Editor), 10
hyperlinks, extracting from Facebook posts, 40–48

392

ID column (Facebook analytics)

I
ID column (Facebook analytics), 355–357
if expressions, 234–235

if-then-else, 235
in let expressions, 235–237

Ignore the Privacy Levels option, 190
Import Data dialog box, 15, 18, 31, 32
Import from Folder option, 74
importing. See also appending

from folders, 74
tables, 15

index columns, as context cues, 127–130
infi nity, positive/negative, 221
Insert Step dialog box, 45, 305
Integer-Divide, 176–177, 342
Invoke Custom Function dialog box, 326, 343, 345
invoking

FnGetSentiment function, 339–341
functions, 239

IsMutual column (Facebook analytics), 359–360

J
Jobs, Steve, 181
JSON content, creating

Sentiment Analysis API, 334–335
Translator Text API, 320

K
Kazantzakis, Nikos, 311
key phrases, extracting, 344–347
keyword searches

basic detection of keywords, 278–282
Cartesian products, 282–283

implementing, 284–286
initial preparation, 283–284
performance improvement, 288–290
relationships, 286–287

custom functions, 290–292
multi-word keywords, 302–308
selecting method for, 293
with split words, 300–301

Merge Queries, 301–302
multi-word keywords, 302–308

Keywords.txt dialog box, 284, 301

L
languages

language code, replacing, 347
multi-language support, 347

dynamic language detection, 348–349
FnDetectLanguages function, 348–349
language code, replacing, 347

lazy evaluations, 242
LEFT formula, 23
let expression, 213–215, 235–237
"liked" pages, fi nding

pages you liked, 352–357
pages your friends liked, 360–362

list type, 226–227
functions, 228–229

List.Accumulate, 208, 229, 244–246, 303–307
List.Average, 229
List.Combine, 229
List.Contains, 229
List.Count, 164–167, 227, 228
List.Dates, 229
List.Difference, 229, 263
List.First, 228
List.FirstN, 164–167, 228
List.Generate, 208, 229, 244
List.InsertRange, 263
List.Intersect, 229
List.IsEmpty, 228
List.Last, 126, 228
List.LastN, 228
List.Max, 229
List.MaxN, 229
List.Min, 229
List.MinN, 229
List.Numbers, 227, 229
List.PositionOf, 131–132, 146
List.Range, 267
List.Select, 228
List.Sort, 229
List.StandardDeviation, 229
List.Transform, 229
List.Union, 229
List.Zip, 168–169

operators, 227–228
List.Accumulate function, 208, 229, 244–246, 303–307
List.Average function, 229
List.Combine function, 229
List.Contains function, 229
List.Count function, 164–167, 227, 228
List.Dates function, 229
List.Difference function, 229, 263
List.First function, 228
List.FirstN function, 164–167, 228
List.Generate function, 208, 229, 244
List.InsertRange function, 263
List.Intersect function, 229
List.IsEmpty function, 228

Microsoft Azure Cognitive Services

 393

List.Last function, 126, 228
List.LastN function, 228
List.Max function, 229
List.MaxN function, 229
List.Min function, 229
List.MinN function, 229
List.Numbers function, 227, 229
List.PositionOf function, 131–132, 146
List.Range function, 267
List.Select function, 228
List.Sort function, 229
List.StandardDeviation function, 229
List.Transform function, 229
List.Union function, 229
List.Zip function, 168–169
loading

conversion tables, 95–96
queries, 18

local fi le access
parameters as path names, 183–185
refresh errors, 182–183

locales, handling in dates, 50–53
logical operators, 221, 234
logical type, 225
lookup tables

delimiter-separated values, splitting, 57–59
merging, 23–24
relationships

creating, 32–34
relationship refresh failures, 56–57

splitting data into, 55–56
loops, 242–243

M
M query language, 12–13, 205–206. See also functions

case sensitivity, 219
column name normalization, 106–109
custom functions, 237–238
Drill Down transformation, 116
error handling, 240–242
expressions

#date, 222
#duration, 223
each, 239–240
if, 234–237
lazy versus eager evaluations, 242
let, 213–215
merging, 215–218
#table, 233
#time, 221
try/otherwise, 241–242
Web.Contents, 322–323

"Hello World" program, 212–213
loops, 242–243
maturity stages, 206–209
modifi cations for robust queries, 250
offl ine resources, 209–211
online resources, 209
operators

arithmetic, 221
concatenate (&), 227, 231
equal (=), 224, 227
logical, 221, 234
not, 234
not-equal (<>), 224, 227
two dots (.), 227

recursion, 243
types

Changed Type step, 250
conditions, 234–235
date, 222
declaring, 218–219
duration, 223
if expressions, 234–237
list, 226–229
logical, 225
null, 224–225
number, 220–221
record, 229–232
table, 232–234
text, 224
time, 221–222
uses of, 218–220

maturity stages in learning M, 206–209
Merge Columns dialog box, 52, 123, 124, 159
Merge dialog box, 28–32, 97, 382–383
Merge Queries, 301–302
merging

columns
common pitfall with, 274–275
Wide World Importers project, 381

expressions, 215–218
mismatched tables, 97–99
queries, 301–302
tables, 382–383

Microsoft Azure Analysis Services, 5
Microsoft Azure Cognitive Services, 311–313

multi-language support, 347
dynamic language detection, 348–349
FnDetectLanguages function, 348–349
language code, replacing, 347

pros and cons of, 316–318
Sentiment Analysis API, 329–330

API call syntax, 330
API key parameter, 335

394

Microsoft Azure Cognitive Services

converting to key phrases, 344–347
data loading, 332–333
data preparation, 330–331, 333–334
error prevention, 341
FnGetSentiment function, 332, 337–341
JSON content creation, 334–335
large datasets, 342–344
response handling, 337
web request creation, 335–336

Text Analytics API, 315–316, 344–347
Translator Text API

API key parameter, 321–322
deploying, 314–315
JSON content creation, 320
multiple message translation, 324–327
report sharing without API key, 324, 327–328
Translate call, 319–320
web request creation, 322–324

Microsoft Press posts, analyzing, 277. See also Facebook
analytics
key phrases, extracting, 344–347
keyword searches

basic detection of keywords, 278–282
Cartesian products, 282–290
custom functions, 290–292
selecting method for, 293
with split words, 300–308

multi-language support, 347
dynamic language detection, 348–349
FnDetectLanguages function, 348–349
language code, replacing, 347

queries
All Words, 294
All Words - Trim Punctuations, 297
Conversion Table, 302
Microsoft Press Posts, 279–281, 283–284, 294
No Stop Words, 298–299
Post Topics, 301
Post Topics - Fastest, 291
Post Topics with Function, 290
Punctuations, 294

sentiment analysis, 329–330
API call syntax, 330
API key parameter, 335
converting to key phrases, 344–347
data loading, 332–333
data preparation, 330–331, 333–334
error prevention, 341
FnGetSentiment function, 332, 337–341
JSON content creation, 334–335
large datasets, 342–344
response handling, 337
web request creation, 335–336

word clouds, creating, 308–310
word splits, 293

keyword searches with, 300–308
stop words, fi ltering, 298–300
words with punctuation, 294–298
words with spaces, 293–294

Microsoft Press Posts query, 279–281, 283–284, 294
Microsoft SQL Azure Labs, 3
Microsoft SQL Server Data Tools (SSDT), 2, 5
mismatched tables, combining

conversion tables
column name-only transposition, 99–101
creating, 93–95
loading, 95–96
M query language, 106–109
merge sequence, 97–99
transpose techniques, 96–99
unpivoting, merging, and pivoting back,

99–101
examples of, 84
from folders, 86–87

header generalization, 89–90
missing values symptom, 87–89
same-order assumption, 89–90
simple normalization, 90–93

mismatched table symptoms and risks, 84–85
problem of, 83–84
reactive approach, 85–86
Wide World Importers project, 381–383

missing columns, ignoring, 266
missing values problem, 378

header generalization, 89–90
same-order assumption, 89–90
simple normalization, 90–93
symptoms and risks, 87–89

MissingField.Ignore function, 266
MissingField.UseNull function, 266
Month transformation, 54
multi-language support, 347

dynamic language detection, 348–349
FnDetectLanguages function, 348–349
language code, replacing, 347

multiline records, pivoting, 175–176
fi xed number of attributes, 176–177
Integer-Divide, 176–177
unfi xed number of attributes, 177–179

multiple Facebook pages, comparing, 370–373
multiple levels of hierarchy, unpivoting tables with, 156

AdventureWorks example, 157–160
Column fi elds, 156–157
Row fi elds, 156–157
virtual PivotTables, 156–157

multiple message translation, 324–327

pitfalls

 395

multiple tables, appending
from folders, 71–74
three or more tables, 68–70
two tables, 62

Append Queries as New transformation,
64–65

Append Queries transformation, 62–64
Bikes and Accessories example, 62–64
query dependencies and references, 65–68

from workbooks
AdventureWorks example, 74–81
robust approach to, 79–81

multi-word keywords, detecting, 302–308

N
Nadella, Satya, 1
Name of Day transformation, 54
Name of Month transformation, 54
names

context preservation, 113–119
removing columns based on, 267
static column names, detecting, 252–253
transposing, 100–106

NaN (not a number), 221
Navigator dialog box, 15
negative infi nity, 221
negative numbers, correcting, 16–17
nesting let expressions, 214
New Query menu, 7
No Stop Words query, 298–299
Noland, Kenneth, 111
normalization. See also context preservation

conversion tables
column name-only transposition, 100–106
creating, 93–95
loading, 95–96
M query language, 106–109
merge sequence, 97–99
transpose techniques, 96–99
unpivoting, merging, and pivoting back, 99–101

Table.with TransformColumnNames function, 90–93
not operator, 234
not-equal (<>) operator, 224, 227
null type, 224–225
number type, 220–221
Number.Abs function, 219
Number.From function, 221
Number.IsEven function, 221
Number.PI function, 221
Number.Power function, 221
Number.Sin function, 221
Numeric-Size Products query, 39

O
object_link column (Facebook analytics), 359, 365
OneDrive for Business folders

importing data from, 195–197
modifying queries for, 197–198
removing queries from, 202
security considerations, 199–201
SharePoint compared to, 198

operators
arithmetic, 221
concatenation, 227, 231
equal, 224, 227
logical, 221, 234
not, 234
not-equal, 224, 227
two dots (.), 227

Options dialog box, 13–14

P
pages (Facebook)

hyperlinks, extracting from, 40–48
multiple pages, comparing, 370–373
pages you liked, fi nding, 352–357
pages your friends liked, fi nding, 360–362
posts and comments, extracting

basic method, 363–367
count of comments and shares, 367–370
fi ltered by time, 367

Pages query (Facebook analytics), 370–371
parameter values

data combination, rebuilding, 191–193
as path names, 183–185
tables or named ranges as, 187–191

Parameters dialog box, 183–184, 186, 321, 325, 335
Parameters{0} formula, 189
parent category, identifying, 126–127

cell proximity, 130–134
index columns as context clues, 127–130

path names, parameters as, 183–185
Path query, 190
Path2 query, 189
performance, Cartesian products, 288–290
Picasso, Pablo, 155
Picture column (Facebook analytics), 355–357
pitfalls

awareness of, 250
best practices, 250
causes and effects, 248–249
Changed Type step, 250
expanded columns, 275
fi ltering, 80, 256

396

pitfalls

fi lter pane values, searching, 260–261
fi ltering condition logic, 258–260
sample scenario, 257–258

formula bar, ignoring, 251–252
M modifi cations for, 250
merged columns, 274–275
removal of columns, 265–267
removal of duplicates, 56, 275
renamed columns, 79, 267–268

FnRenameColumnsByIndices function, 269–270
Table.TransformColumnNames function, 270–271

reordered columns, 261
FnReorderSubsetOfColumns function, 264
subsets of columns, 262–264

split columns, 271–274
table of, 276

Pivot transformation, 173
incorrectly unpivoted tables, reversing, 173–175
mismatched tables, combining, 99–101
multiline records, 175–176

fi xed number of attributes, 176–177
Integer-Divide, 176–177
unfi xed number of attributes, 177–179

Wide World Importers project
pivot sequence on 2018 revenues, 380
transforming and appending data, 377–378
unpivoting, 379–380

position, removing columns based on, 266–267
positive infi nity, 221
Possible Data Loss dialog box, 64
Post Topics - Fastest query, 291
Post Topics query, 301
Post Topics with Function query, 290
post-append preservation, 121–126
posts (Facebook)

extracting
basic method, 363–367
count of comments and shares, 367–370
hyperlinks, 40–48

fi ltered by time, 367
Posts - All Pages query (Facebook analytics), 371–373
Posts - Base query (Facebook analytics), 363–365, 367
Power BI Designer, 4
Power BI Desktop, history of, 62
Power Query

advantages of, 2
defi ned, 2
entry points for, 6–7
history of, 3–5
navigating, 14–18
supported connectors, 8–9

Power Query add-in, downloading, 7
Power Query Editor components, 9–10

Advanced Editor, 12–13
Applied Steps pane, 12
formula bar, 12–13, 16
Preview pane, 10
Queries pane, 12
Query Options dialog box, 13–14
Query Settings pane, 12
ribbon tabs, 10–11

Power Query Editor, launching, 5, 37
pragmatics, 136
pre-append preservation, 113–114
preserving context. See context preservation
Preview pane (Power Query Editor), 10
Privacy Levels dialog box, 327, 336
privacy levels, ignoring, 190
product catalog. See AdventureWorks product catalog
product size

converting to buckets/ranges, 37–40
extracting from product code, 34–35

Products and Colors query, 57–59
Products query, 52, 63, 65, 69, 76
Products Sample query, 89–90, 102–106, 120–121
Puls, Ken, 209
punctuation

splitting words from, 294–296
trimming off, 296–298

Punctuations query, 294

Q
Quarter of Year transformation, 54
queries. See also M query language

AdventureWorks product catalog
Append1, 113
Appended Products, 104
ColumnFields, 162–163
dependencies and references, 65–68
Numeric-Size Products.39
Products, 52, 63, 65, 69, 76
Products and Colors, 57–59
Products Sample, 89–90, 102–106, 120–121
Results, 172
Revenues - Fixed First Attribute, 177–179
Revenues - Fixed Number of Attributes, 176–177
RowFields, 162–163
Sales Order - Base, 55–56
Sales Orders, 56
Stock Items, 56

common pitfalls
awareness of, 250
best practices, 250
causes and effects, 248–249
Changed Type step, 254–256

reports

 397

expanded columns, 275
fi ltering, 80, 256–261
formula bar, ignoring, 251–252
M modifi cations for, 251
merged columns, 274–275
removal of columns, 265–267
removal of duplicates, 56, 275
renamed columns, 79, 267–271
reordered columns, 261–264
split columns, 271–274
table of, 276

converting into functions, 169–171
dependencies, 65–68
editing, 18
Facebook analytics

Comments query, 363–365
Facebook Pages I Like, 352–357
Friends and Pages, 361–362
Pages, 370–371
Posts - All Pages, 371–373
Posts - Base, 363–365, 367

GetSentiment, 333
loading to reports, 18
merging, 301–302
merging expressions from, 215–218
Microsoft Press posts example

All Words, 294
All Words - Trim Punctuations, 297
Conversion Table, 302
Microsoft Press Posts, 279–281, 283–284, 294
No Stop Words, 298–299
Post Topics, 301
Post Topics - Fastest, 291
Post Topics with Function, 290
Punctuations, 294

migrating to SharePoint sites, 199–201
modifying for OneDrive for Business and SharePoint,

197–198
Path, 190
Path2, 189
references, 65–68
removing, 202
renaming, 16
Scored Posts, 342
Sentiment Scores, 339–340
Translated Messages, 326
Wide World Importers project

2018 Revenues, 380
Compromised Rows, 383
Hacker's Instructions, 384

Workbook, 192–193
Queries pane (Power Query Editor), 12
Query Dependencies dialog box, 65–66, 191–193, 198
Query Options dialog box, 13–14, 255, 317

Query Settings dialog box, 16
Query Settings pane (Power Query Editor), 12

R
Rad, Reza, 209
RADACAD blog, 209
ranges, converting size values into, 37–40
rebuilding data combination, 191–193
Recent Sources dialog box, 9
record type, 229–231

functions, 232
operators, 231–232

Record.AddField function, 232
Record.Combine function, 232
Record.FieldCount function, 232
Record.HasFields function, 232
recursion, 243
references, query, 65–68
refresh errors

local fi le access, 182–183
troubleshooting, 79–81

refreshes of reports, 18
relationships

Cartesian products, 286–287
refresh failures, 56–57
between tables

creating, 32–34
relationship refresh failures, 56–57

Remove Bottom Rows dialog box, 120, 122
removing

columns, 17, 265–267
duplicates, 56, 275
queries, 202
totals, 145–146

Renamed Columns step, 168–169
renaming

columns, 16, 79, 267–268
FnRenameColumnsByIndices function, 269–270
Table.TransformColumnNames function, 270–271

queries, 16
reordering columns, 261

FnReorderSubsetOfColumns function, 264
subsets of columns, 262–264

Replace Errors dialog box, 38
Replace Values dialog box, 47, 303
Replacer.ReplaceText function, 91
reports, 181–182

loading queries to, 18
local fi le access, 182–183
parameter values in Excel

data combination, rebuilding, 191–193
tables or named ranges as, 187–191

398

reports

parameters as path names, 183–185
refreshes of, 18
shared fi les, 194–195

differences between, 198
importing data from, 195–197
migrating local queries to, 199–201
modifying queries for, 197–198
removing queries from, 202
security considerations, 201–202

sharing without API key, 324, 327–328
templates, creating, 185–187

response handling, Sentiment Analysis API, 337
Results query, 172
revenues, Wide World Importers

combining, 381
comparing, 381–383
pivot sequence on, 380
transforming and appending, 377–378
unpivoting, 379–380

Revenues - Fixed First Attribute query, 177–179
Revenues - Fixed Number of Attributes query, 176–177
reversing Unpivot transformation, 173–175
ribbon tabs (Power Query Editor), 10–11
RIGHT formula, 24
Row fi elds, 156–157, 162–163
RowFields query, 162–163
rows

Row fi elds, 156–157, 162–163
splitting delimiter-separated values into, 57–59

Russo, Marco, 137

S
Sales Order - Base query, 55–56
Sales Orders query, 56
same-order assumption, 89–90
saving workbooks as templates, 202
Schlegal, Friedrich, 83
Scored Posts query, 342
searches

fi lter pane values, 260–261
keyword

basic detection of keywords, 278–282
Cartesian products, 282–290
custom functions, 290–292
selecting method for, 293
with split words, 300–308

second-degree friends (Facebook), extracting, 357–360
security, shared fi les/folders, 199–201
semantics, 136
Sentiment Analysis API, 329–330

API call syntax, 330
API key parameter, 335

converting to key phrases, 344–347
data loading, 332–333
data preparation, 330–331, 333–334
error prevention, 341
FnGetSentiment function, 332

creating, 337–339
invoking, 339–341

JSON content creation, 334–335
large datasets, 342–344
response handling, 337
web request creation, 335–336

Sentiment Scores query, 339–340
shared fi les/folders, 194–195

importing data from, 195–197
migrating local queries to, 199–201
modifying queries for, 197–198
removing queries from, 202
security considerations, 201–202
Translator Text API reports, 324, 327–328

#shared variable, 209–211
SharePoint sites

migrating local queries to, 199–201
OneDrive for Business compared to, 198
removing queries from, 202
security considerations, 199–201
shared fi les

importing data from, 195–197
modifying queries for, 197–198

shares (Facebook), counting, 367–370
social network analytics, 351–352. See also Microsoft

Press posts, analyzing
Facebook connector overview, 352
friends and friends-of-friends, extracting, 357–360
multiple pages, comparing, 370–373
pages you liked, fi nding, 352–357
pages your friends liked, fi nding, 360–362
posts and comments, extracting

basic method, 363–367
count of comments and shares, 367–370
fi ltered by time, 367
hyperlinks, 40–48

Source{0} formula, 116–117, 189
Source.Name column, 73
spaces, splitting words with, 293–294
Split Column By Delimiter dialog box, 26–27, 42, 51, 59,

125, 273, 294
Split Column by Number of Characters dialog box, 341
split data, 378
Splitter.SplitTextByAnyDelimiter function, 42, 47, 295
Splitter.SplitTextByDelimiter function, 295
splitting data

common pitfalls, 271–274
delimiter-separated values, 24–27, 57–59
words, 293

 399

tables

keyword searches with, 300–308
with spaces, 293–294
stop words, fi ltering, 298–300
words with punctuation, 294–298

SQL Server 2017
Analysis Services, 5
SSDT (SQL Server Data Tools), 2, 5

SQL Server Data Tools (SSDT), 2, 5
square brackets ([]), 230
SSDT (SQL Server Data Tools), 2, 5
Start of Day transformation, 54
Start of Month transformation, 54
Start of Quarter transformation, 54
Start of Week transformation, 54
Start of Year transformation, 54
static column names, detecting, 252–253
Stock Items query, 56
stop words, fi ltering, 298–300
subsets of columns, reordering, 262–264
SUBSTITUTE formula, 24
subtotals, unpivoting, 152–154
SUM function, 145
summarized tables

cleaning, 378
unpivoting, 379–380

syntax, 136

T
#table expression, 233
table type, 232–234
Table.AddColumn function, 44, 326
Table.Buffer function, 288–293
Table.ColumnCount function, 233
Table.ColumnNames function, 80, 123, 164–167, 234, 263
Table.Combine function, 69–70
Table.CombineColumns function, 166
Table.Distinct function, 338
Table.FillDown function, 164–166
Table.FirstN function, 146
Table.FirstValue function, 233
Table.FromColumns function, 234
Table.FromList function, 234
Table.FromRecords function, 234
Table.FromRows function, 234
Table.IsEmpty function, 233
Table.Profi le function, 233
Table.RemoveColumns function, 90, 122, 265–267
Table.RemoveLastN function, 146
Table.RenameColumns function, 79, 80, 126, 168–169,

268–269
Table.ReorderColumns function, 262–264
Table.Repeat function, 290

Table.ReplaceValue function, 303
Table.ReplaceValues function, 303
Table.RowCount function, 233
tables. See also AdventureWorks product catalog;

context preservation
appending

Append Queries as New transformation, 64–65
Append Queries transformation, 62–64
from folders, 71–74
three or more tables, 68–70
two tables, 62–68
from workbooks, 74–81

badly designed, 136–138
columns. See columns
conversion

column name-only transposition, 100–106
creating, 93–95
loading, 95–96
M query language, 106–109
merge sequence, 97–99
transpose techniques, 96–99
unpivoting, merging, and pivoting back, 99–101

date/time values
dates with two locales, 50–53
extracting, 53–54
transformations, 48

fact, 137
importing, 15
merging, 23–24
mismatched, combining, 99–101

examples of, 84
from folders, 86–93
mismatched table symptoms and risks, 84–85
problem of, 83–84
reactive approach, 85–86
Wide World Importers project, 381–383

Pivot transformation, 173
incorrectly unpivoted tables, reversing,

173–175
multiline records, 175–179

relationship refresh failures, 56–57
relationships, creating, 32–34, 48–50
splitting, 55–56, 57–59
Unpivot transformations. See also

FnUnpivotSummarizedTable function
2x2 levels of hierarchy, 146–151
3x3 levels of hierarchy, 156–160
applying, 136–138
grand totals, 143–146
mismatched tables, combining, 99–101
reversing, 173–175
subtotals, 152–154
Unpivot Columns, 139–142
Unpivot Only Selected Columns, 142–143

400

tables

Unpivot Other Columns, 139–142
Wide World Importers project, 379–380

Wide World Importers project
cleaning, 378
combining, 381
comparing, 381–383
merging, 382–383
unpivoting, 379–380

Table.SelectColumns function, 266
Table.SelectRows function, 259, 290, 338
Table.SplitColumn function, 45, 47, 167, 273–274
Table.ToColumns function, 234
Table.ToList function, 234
Table.ToRecords function, 234
Table.ToRows function, 234
Table.TransformColumnNames function, 90–93, 270–271
Table.TransformColumns function, 46, 47
Table.TransformColumnType function, 78
Table.TransformColumnTypes function, 163–164, 169,

252–253, 274–275
Table.Unpivot function, 142
Table.UnpivotOtherColumns function, 140, 167
team environments, 181–182

co-authored reports
local fi le access, 182–183
parameter values in Excel, 187–193
parameters as path names, 183–185
templates, 185–187

shared fi les, 194–195
differences between, 198
importing data from, 195–197
migrating local queries to, 199–201
modifying queries for, 197–198
security considerations, 201–202

templates
creating, 185–187
saving workbooks as, 202

text analytics, 277. See also Azure Cognitive Services;
Facebook analytics
case sensitivity, 17
keyword searches

basic detection of keywords, 278–282
Cartesian products, 282–290
custom functions, 290–292
selecting method for, 293
with split words, 300–308

Microsoft Azure Cognitive Services, 311–313
multi-language support, 347

dynamic language detection, 348–349
FnDetectLanguages function, 348–349
language code, replacing, 347

sentiment analysis, 329–330
API call syntax, 330
API key parameter, 335

converting to key phrases, 344–347
data loading, 332–333
data preparation, 330–331, 333–334
error prevention, 341
FnGetSentiment function, 332, 337–341
JSON content creation, 334–335
large datasets, 342–344
response handling, 337
web request creation, 335–336

Text Analytics API, 344–347
text translation

API key parameter, 321–322
deploying, 314–315
JSON content creation, 320
multiple message translation, 324–327
report sharing without API key, 324, 327–328
Translate call, 319–320
web request creation, 322–324

word clouds, creating, 308–310
word splits, 293

keyword searches with, 300–308
stop words, fi ltering, 298–300
words with punctuation, 294–298
words with spaces, 293–294

Text Analytics API, 315–316, 344–347
Text Between Delimiters dialog box, 37
text columns, extracting data from, 40–48
Text to Columns wizard, 22
text translation, 318–319

API key parameter, 321–322
deploying, 314–315
JSON content creation, 320
multiple message translation, 324–327
report sharing without API key, 324, 327–328
Translate call, 319–320
web request creation, 322–324

text type, 224
Text.BetweenDelimiters function, 37
Text.Proper function, 91
Text.Trim function, 46, 297
Time column (Facebook analytics), 355–357
#time expression, 221
time type, 221–222
time/date values

dates with two locales, 50–53
extracting, 53–54
fi ltering Facebook data by, 367
multiple date formats, 48–50
transformations, 48
unpivoting 2x2 levels of hierarchy with, 146–149

Time.Hour function, 222
titles, preserving

Drill Down transformation, 115–119
from folders, 119–121

Unpivot transformations

 401

post-append preservation, 121–126
pre-append preservation, 113–119
from worksheets, 122–126

totals
removing, 145–146
unpivoting

grand totals, 143–146
subtotals, 152–154

tracking hackers, 384
Transform tab (Power Query Editor), 11
transformations

Drill Down, 115–119
Pivot, 173, 377–378

incorrectly unpivoted tables, reversing, 173–175
mismatched tables, combining, 99–101
multiline records, 175–179
Wide World Importers project, 377–380

transpose
column names only, 100–106
transposing, merging, and transposing back,

96–99
Unpivot. See also FnUnpivotSummarizedTable function

2x2 levels of hierarchy, 146–151
3x3 levels of hierarchy, 156–160
applying, 136–138
grand totals, 143–146
mismatched tables, combining, 99–101
reversing, 173–175
subtotals, 152–154
Unpivot Columns, 139–142
Unpivot Only Selected Columns, 142–143
Unpivot Other Columns, 139–142
Wide World Importers project, 379–380

Translate call, 319–320
Translated Messages query, 326
translation, text, 318–319

API key parameter, 321–322
deploying, 314–315
JSON content creation, 320
multiple message translation, 324–327
report sharing without API key, 324, 327–328
Translate call, 319–320
web request creation, 322–324

Translator Text API
API key parameter, 321–322
deploying, 314–315
JSON content creation, 320
multiple message translation, 324–327
report sharing without API key, 324, 327–328
Translate call, 319–320
web request creation, 322–324

transpose techniques
column names only, 100–106
transposing, merging, and transposing back, 96–99

trimming punctuation, 296–298
troubleshooting. See also pitfalls

appended tables, 79–81
Formula.Firewall error, 190–193
local fi le access, 182–183
relationship refresh failures, 56–57

try/otherwise expression, 241–242
two dots operator (.), 227
types

Changed Type step, 250
date, 222
declaring, 218–219
detecting, 256
duration, 223
list. See list type
logical, 225
null, 224–225
number, 220–221
record, 229–231

functions, 232
operators, 231–232

table, 232–234
text, 224
time, 221–222
uses of, 218–220

U
Unpivot Columns transformation, 139–142
Unpivot Only Selected Columns transformation, 142–143
Unpivot Other Columns transformation, 139–142
Unpivot transformations

2x2 levels of hierarchy
complex tables, 149–151
with dates, 146–149

3x3 levels of hierarchy, 156
applying, 136–138
FnUnpivotSummarizedTable creation

Changed Type steps, deleting, 163–164
ColumnFields, 162–163
List.Count, 164–167
List.FirstN, 164–167
List.Zip, 168–169
queries, converting into function, 169–171
Renamed Columns step, 168–169
RowFields, 162–163
Table.ColumnNames, 164–167
testing, 172
ValueField, 162–163

FnUnpivotSummarizedTable invocation, 160–162
grand totals, 143–146
mismatched tables, combining, 99–101
multiple levels of hierarchy

402

Unpivot transformations

AdventureWorks example, 157–160
Column fi elds, 156–157
Row fi elds, 156–157
virtual PivotTables, 156–157

reversing, 173–175
subtotals, 152–154
Unpivot Columns, 139–142
Unpivot Only Selected Columns, 142–143
Unpivot Other Columns, 139–142
Wide World Importers project, 379–380

unpivoted columns, 139
user engagement (Facebook)

multiple pages, comparing, 370–373
posts and comments, extracting

basic method, 363–367
count of comments and shares, 367–370
fi ltered by time, 367

V
Value fi elds, creating, 162–163
values, missing, 87–89, 378
View tab (Power Query Editor), 11
virtual PivotTables, 156–157
VLOOKUP formula, 24

W
From Web dialog box, 196
web request creation

Sentiment Analysis API, 335–336
Translator Text API, 322–324

Webb, Chris, 209
Web.Contents M expression, 322–323
Week of Month transformation, 54
Week of Year transformation, 54
Wide World Importers project

black products, fi ltering, 257–258
challenge, 375–376
clues, 376–377
columns

merging, 274–275
removing, 265–267
renaming, 268–271
reordering, 262–264
splitting, 272–274
static column names, detecting, 252–253

fi lter pane values, searching, 260–261
fl ow diagram, 376
functions

FnCleanSummarizedTable, 378
FnUnpivotSummarizedTable,

379–380
hacker, detecting and tracking, 384
queries

2018 Revenues, 380
Compromised Rows, 383
Hacker's Instructions, 384

revenues tables
cleaning, 378
combining, 381
comparing, 381–383

summarized tables
pivot sequence on 2018 revenues, 380
transforming and appending,

377–378
unpivoting, 379–380

wizards, Text to Columns, 22
word clouds, creating, 308–310
word splits, 293

keyword searches with, 300–301
Merge Queries, 301–302
multi-word keywords, 302–308

words with punctuation
splitting words from punctuation,

294–296
stop words, fi ltering, 298–300
trimming off punctuation, 296–298

words with spaces, 293–294
Word-Breaking, turning off, 346
Workbook query, 192–193
workbooks/worksheets

appending tables from
AdventureWorks example, 74–81
robust approach to, 79–81

context preservation, 113–114
Custom XML Data, 202
preserving titles from, 122–126
removing queries from, 202
saving as templates, 202

X-Y-Z
Year transformation, 54
Zuckerberg, Mark, 351

	Cover
	Title Page
	Copyright Page
	Contents
	Introduction
	Chapter 10 From Pitfalls to Robust Queries
	The Causes and Effects of the Pitfalls
	Awareness
	Best Practices
	M Modifications

	Pitfall 1: Ignoring the Formula Bar
	Exercise 10-1: Using the Formula Bar to Detect Static References to Column Names

	Pitfall 2: Changed Types
	Pitfall 3: Dangerous Filtering
	Exercise 10-2, Part 1: Filtering Out Black Products
	The Logic Behind the Filtering Condition
	Exercise 10-2, Part 2: Searching Values in the Filter Pane

	Pitfall 4: Reordering Columns
	Exercise 10-3, Part 1: Reordering a Subset of Columns
	Exercise 10-3, Part 2: The Custom Function FnReorderSubsetOfColumns

	Pitfall 5: Removing and Selecting Columns
	Exercise 10-4: Handling the Random Columns in the Wide World Importers Table

	Pitfall 6: Renaming Columns
	Exercise 10-5: Renaming the Random Columns in the Wide World Importers Table

	Pitfall 7: Splitting a Column into Columns
	Exercise 10-6: Making an Incorrect Split

	Pitfall 8: Merging Columns
	More Pitfalls and Techniques for Robust Queries

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

