“This book doesn't just focus on singular concepts, it also provides end-to-end
perspective on building an app in WinRT. It is one of those essential tools for
Windows developers that will help you complete your software goals
sooner than without it!"

—Tim Heuer, Principal Program Manager Lead, XAML Platform, Microsoft Corporation

Programming the
Windows' Runtime
by Example

A Comprehensive Guide to WinRT
with Examples in C# and XAML

| ——

Windows
; Development
[Series

Start gl

Jeremy Likness
John Garland

Wintellect

Know how.

FREE SAMPLE CHAPTER
SHARE WITH OTHERS

886 S

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321927972
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321927972
https://plusone.google.com/share?url=http://www.informit.com/title/9780321927972
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321927972
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321927972/Free-Sample-Chapter

Praise for
Programming the Windows Runtime by Example

“This is a great from-the-ground-up, very complete book on building Windows
Store Apps. You'll find it on your desk a year from now all dog-eared and marked
up from use.”

Dave Campbell, MVP, WindowsDevNews.com

“Programming with Windows Runtime by Example is a must-have book for any
professional developer building apps for WinRT/Win8.1, especially in the LOB
space for modern apps on Windows 8.1. For me it is the reference | provide my
team building LOB applications for WinRT. Jeremy and John have done a great
job putting together a great reference and educational book on professional
development for the WinRT platform.”

David J. Kelley, CTO, Microsoft MVP

“Jeremy and John are both very much IT masters from the old guard of software
development. With countless years of bending, shaping, and influencing the
world of software development behind them both, they continue to do so as
they push forward into new and emerging technologies.

“As with everything they do, this book also reflects their ongoing dedication and
passion for their quest to bring the reader not only the information he or she
requires, but far more beyond that, they build knowledge step-by-step, then
deliver it to the reader with cutting-edge, ninja-like precision to deliver exactly
what knowledge is needed, when it’s needed, and where it’s needed.

“If you want to learn the Windows Runtime, then | can think of no finer book,
and no finer guides to the WinRT landscape. By the end of this book, you’ll have
the knowledge, the power, and a hefty dose of passion to go out into the new
millennium and create some of the best WinRT apps available.”

Peter “Shawty” Shaw, LinkedIn .NET User Group manager

“This book is an invaluable resource for budding WinRT developers. It covers the
basics to more advanced topics like MVVM. Readers will find the chapter entitled
‘Connecting to the Cloud’ especially useful in getting up to speed with Azure and
creating cloud connected apps.”

Daniel Vaughan, President of Outcoder, Microsoft MVP,
Author of Windows Phone 8 Unleashed

“There are books that provide reference for a development topic, and others that
you will read from cover to end. Programming the Windows Runtime by Example
by Jeremy Likness and John Garland should be your go-to guide for getting up
to speed on WinRT. Jeremy and John wrote this book with the intention of being
easy to follow and hard to forget, and they succeeded in both areas. | recommend
this book for all developers, whether new to WinRT development, or those like
me who just want to fill in the gaps on advanced topics.”

Chris Woodruff, DeepFriedBytes.com, Microsoft MVP

Microsoft Windows Development Series

Betan Hary,

Visual Studio

Team Foundation
Server 2012 Adopting
Agile Software Practices

.... Visual Studio
WE?’II
|

) Building
Reengineering NET Windows 8 Apps

with JavaScript Essential C# 5.0

vvAddison-Wesley

Visit informit.com/mswinseries for a complete list of available publications.

The Windows Development Series grew out of the award-winning Microsoft .NET Development
Series established in 2002 to provide professional developers with the most comprehensive

and practical coverage of the latest Windows developer technologies. The original series has

been expanded to include not just .NET, but all major Windows platform technologies and tools.

It is supported and developed by the leaders and experts of Microsoft development technologies,
including Microsoft architects, MVPs and RDs, and leading industry luminaries. Titles and resources
in this series provide a core resource of information and understanding every developer needs to
write effective applications for Windows and related Microsoft developer technologies.

“This is a great resource for developers targeting Microsoft platforms. It covers all bases, from expert
perspective to reference and how-to. Books in this series are essential reading for those who want to
judiciously expand their knowledge and expertise.”

— JOHN MONTGOMERY, Principal Director of Program Management, Microsoft
“This series is always where | go first for the best way to get up to speed on new technologies. With its

expanded charter to go beyond .NET into the entire Windows platform, this series just keeps getting
better and more relevant to the modern Windows developer.”

— CHRIS SELLS, Independent Consultant specializing in Windows, devices, and the cloud

L

L)
Make sure to connect with us!
informit.com/socialconnect

A -
s | IMOMMIT | Safari

Baoks Online
Wesley

ALWAYS LEARNING PEARSON

Programming
the Windows
Runtime by
Example

A Comprehensive
Guide to WinRT
with Examples in
C# and XAML

Jeremy Likness
John Garland

vvAddison-Wesley

Upper Saddle River, NJ ¢ Boston ¢ Indianapolis ® San Francisco
New York ¢ Toronto * Montreal * London ® Munich ¢ Paris * Madrid
Capetown * Sydney © Tokyo Singapore * Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was aware
of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

Microsoft, Windows, Visual Basic, Visual C#, and Visual C++ are either registered trademarks or
trademarks of Microsoft Corporation in the U.S.A. and/or other countries/regions.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales depart-
ment at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.
Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2013954295

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290

ISBN-13: 978-0-321-92797-2
ISBN-10: 0-321-92797-4

Text printed in the United States on recycled paper at Edwards Brothers Malloy, Lillington, North
Carolina

First printing, June 2014

For Doreen and all her arrows, Lizzie and all her travels,
and Gordon and all his paint.

—Jeremy Likness

To Karen, Callie, Winnie, and Dude,
for the new adventure that is soon to begin.

—]John Garland

Contents at a Glance

0 N O v A WIN =

G T —
©C VW O N O V1 A W IN = O 0O

The New Windows Runtime 1
Windows Store Apps and WinRT Components 29
Layouts and Controls 81

Data and Content 153

Web Services and Syndication 199
Tiles and Toasts 225

Connecting to the Cloud 261
Security 323
Model-View-ViewModel (MVVM) 349
Networking 379

Windows Charms Integration 415
Additional Windows Integration 451
Devices 479

Printers and Scanners 531
Background Tasks 559

Multimedia 589

Accessibility 615

Globalization and Localization 631
Packaging and Deploying 649
Debugging and Performance Optimization 685
Under the Covers 719

Glossary 733

Index 749

Contents

Foreword xix
Preface xxii

1 The New Windows Runtime 1
Windows Runtime Specifics 1
Windows Store Apps 4

Example: Create a Windows Store App 5
NET and WinRT 9

Fundamental Types 9
Mapped Types 10

Streams and Buffers 14
Desktop Applications 15

Example: Reference WinRT from a Desktop Application 15
Example: Examine Projections in a WinRT Component 20

Asynchronous Functions 24

Summary 27

2 Windows Store Apps and WinRT Components 29
Fundamentals of a Windows Store App 30

Windows Store App Templates 32
Understanding the App Manifest 45
Finding Your Package on Disk 52
Running Your App 54

Vii

viii

Application Lifecycle 61

The Navigation Helper and Suspension Manager 67
Managed WinRT Components 75

Creating a Managed WinRT Component 76

Calling Managed WinRT Components from Any Language 78
Summary 79

3 Layouts and Controls 81
The Visual Tree 83
Data-Binding 85

Dependency Properties 91
Attached Properties 94

Value Precedence 95

Property Change Notification 95
Animations 97

Example: Dynamically Apply Animations to a Control 97
The Visual State Manager 100

Example: Visual State Manager 101
Groups 103
States 105

Transitions 106
The Visual State Manager Workflow 107
Programmatic Access to Visual States 109
Custom Visual State Managers 109
Styles 111
Templates 112

Example: Using Templates 112
Layouts 115

Panel 115

Border 115

Canvas 116

Grid 116

StackPanel 117

VirtualizingPanel and VirtualizingStackPanel 118

WrapGrid 119

VariableSizedWrapGrid 119

ContentControl 120

ItemsControl 121

ScrollViewer 122

ViewBox 122

GridView 123

ListBox 123

ListView 124

FlipView 124

Example: Using the Viewbox and Various Layouts 125
Controls 130

Flyouts 133
Custom Controls 135

Example: Creating a Custom Control 136
Parsing XAML 140
HTML Pages 143

Example: Working with HTML and JavaScript 144
Summary 150

Data and Content 153
Example: Data Manipulation with the Skrape App 154
The Clipboard 154
Application Storage 159
Roaming Data 161
Containers 162
Settings 163
Composite Values 165
Storage Folders and Files 166
Storage Folders 168
Storage Files 170
Buffers and Streams 171
Path and File Helper Classes 174
Storage Query Operations 176
Pickers and Cached Files 180
Compression 187

Data Formats 191
Example: Working with Data Formats 192
XSLT Transformations 195

Document Data 196

Summary 198

Web Services and Syndication 199
SOAP 200

REST 209

OData Client 217

Syndication 219

Summary 223

Tiles and Toasts 225
Tiles 226
Default Tiles 227
Live Tiles 229
Cycling Tile Notifications 234
Secondary Tiles 236
Badges 239
Periodic Notifications 242
Toasts 242
Toasts in Desktop Applications 248
Push Notifications 249
Registering to Receive Push Notifications 251
Sending Push Notifications 253
Summary 259

Connecting to the Cloud 261

Windows Azure Mobile Services 262
Example: Managing a Shared Group of Subscribers 267
Connecting an App to a Mobile Services Instance 267
Authentication 269
Data Storage 274
Custom APIs 289
Integrated Push Notification Support 291

Scheduled Tasks 297

Mobile Services Deployment Tiers 298
Live Connect 301

Getting Started 302

The Example App 304

Authentication 304

Working with Profile Information 308

Working with Contacts 310

Working with Calendars and Events 311

Working with OneDrive 315
Summary 321

Security 323
Authentication 324
Multistep Authentication (Google) 330
Unlocking the Password Vault 331
Encryption and Signing 333
The Data Protection Provider 333
Symmetrical Encryption 337
Verification 343
Asymmetric Algorithms 345
Summary 347

Model-View-ViewModel (MVVM) 349

Ul Design Patterns 350
The Model 351
The View 352
Model-View-Controller (MVC) 353
Model-View-Presenter (MVP) 354
Model-View-ViewModel (MVVM) 355
The ViewModel Decomposed 356
Common MVVM Misperceptions 362
Benefits of MVVM 364
Common MVVM Solutions 367
Design-Time Data 367
Accessing the UI Thread 369

Xi

Xii

10

11

Commands 371
Handling Dialogs 371
Selection Lists 371
Filtered Lists 373
Validation 375
Summary 377

Networking 379
Web and HTTP 379
HomeGroup 382
Connectivity and Data Plans 384
Sockets 389
WebSockets 389
UDP and TCP Sockets 392
Proximity (Near Field Communications) 397
NFC-Only Scenarios 397
Tap-to-Connect Scenarios 403
Background Transfers 408

Summary 412

Windows Charms Integration 415
Displaying App Settings 417
The Settings Example 418
Adding Settings Entries 418
Sharing 421
The Share Source Example 423
Creating a Share Source App 424
The Share Target Example 433
Creating a Share Target App 434
Debugging Share Target Apps 441
Using Play To 442
The Play To Example 443
Creating a Play To Source App 444
Creating a Play To Target App 446
Summary 448

xiii

12 Additional Windows Integration 451
Integrating with the File and Contact Pickers 452
The Example App 453
File Open Picker 454
File Save Picker 458
Contact Picker 460
Application Activation Integration 462
The Example App 463
File Activation 463
Protocol Activation 467
Account Picture Provider 470
AutoPlay 471
Working with Contacts and Appointments 473
The Example App 474
Contacts 474
Appointments 476
Summary 478

13 Devices 479
Working with Input Devices 480
The Example App 480
Identifying Connected Input Devices 481
Pointer, Manipulation, and Gesture Events 484
Keyboard Input 495
Sensor Input 498
The Example App 498
Geolocation 502
Geofencing 510
Motion and Orientation Sensors 517
Summary 529

14 Printers and Scanners 531
Working with Printers 532
The Example App 532
Getting Started 533

Xiv

15

16

Configuring a Print Task 534
Providing Printing Content 542
Working with Scanners 547
The Example App 547
Determining Scanner Availability 548
Working with Scan Sources 549
Previewing 550
Scanning 551
Scanner Settings 552
Summary 556

Background Tasks 559
The Thread Pool 560
Uploads and Downloads 562
Audio 563
Lock Screen Tasks 570
Lock Screen Capabilities 570
The Background Task 573
Listing Background Tasks 576
Timer 578
Conditions 578
Debugging Background Tasks 580
Raw Push Notifications 581
Control Channel 585
System Events 587
Summary 588

Multimedia 589

Playing Multimedia Content 590
The Example App 590
Getting Started 591
Controlling Playback 592
Appearance 595
Audio Settings 596
Media Information 597
Markers 597

17

18

Acquiring Audio and Video 598

The Example App 599

Declaring Application Capabilities 599

Using CameraCaptureUl 600

Using MediaCapture 604
Text-to-Speech Support 610

The Example App 611

Using the SpeechSynthesizer 611
Summary 613

Accessibility 615
Requested Theme 616

High Contrast 618
Keyboard Support 620
Automation Properties 622
Testing with Narrator 623
Automation and Lists 624
Live Settings 625
Automation Peers 626
Accessibility Checker 627
Summary 629

Globalization and Localization 631

Design Considerations 632

Default Language 633

Configuring Preferred Languages 635

Resource Qualification and Matching 637

Localizing XAML Elements 639

Formatting Dates, Numbers, and Currencies for Locale 642
MVVM and Localization 643

Multilingual Toolkit 644

Summary 648

XV

XVi

19

20

Packaging and Deploying 649
Packaging Your App 650
Creating an App Package 650
App Package and App Bundle Contents 654
Package Identifier 655
Deploying Your App 657
Publishing Your App in the Windows Store 657
Other Deployment Options 665
Making Money with Your App in the Windows Store 667
The Example App 668
Pricing Your App in the Windows Store 669
Trial Mode Apps 670
In-App Purchases 675
Including Advertisements 678
Summary 683

Debugging and Performance Optimization 685
Understanding the Debugger 686
Native, Managed, and Script Debuggers 686
Just My Code 688
Edit and Continue 690
Just in Time Debugging 691
How to Launch the Debugger 691
Program Databases 692
Debug Windows 693
Managing Exceptions 694
Logging and Tracing 696
Profiling and Performance Analysis 702
Performance Tips 704
CPU Sampling 706
XAML Ul Responsiveness 709
Energy Consumption 710
Code Analysis 712
Summary 717

A Under the Covers 719

B

Fundamental WinRT Concepts 719
Namespaces 720

Base Types 720

Primitives 720

Classes and Class Methods 721
Structures 722

Generics 722

Null 723

Enumerations 723

Interfaces 723

Properties 723

Delegates 724

Events 724

Arrays 725

WinRT Internals 725

Glossary 733

Index 749

XVii

This page intentionally left blank

Foreword

The concept of an app has changed dramatically over time, and more
increasingly so in the past eight years. The approachability for the masses
to have super computers in their pockets has led to the rapid adoption of
mobile apps at the fingertips of every user—not just those in cubicles all
day long. You can’t sit in public transit, walk down a street, or even enjoy
a nice meal without looking around and seeing the glow from a screen
of some sort on someone’s face. Everyone is a part of the app ecosystem
now. Whether it is a mobile phone, music device, e-reader, watch, or even
glasses, apps are a part of our lives. People desire them to make their lives
and jobs more productive or just to have fun. As a software developer, it
is hard to ignore this surge in opportunity and the desire to capitalize on
this ecosystem.

Microsoft technologies present a large opportunity to software develop-
ers to reach a vast ecosystem of traditional users who have used Windows
technologies in their personal, educational, and professional lives. These
users seek out new ways to accomplish tasks and have fun on their technol-
ogy devices. Microsoft has computing devices across the various screens
presented in our lives in our hands, on our desks, and in our living rooms.
All these represent opportunities for you, the developer, to extend your
reach and ideas into the world.

As this evolution of mobility, multiple screens, and wearables has
increased, so has technology. Microsoft technologies have evolved as well

Xix

XX

on the client app areas. Over time Microsoft has delivered various ways
to write client applications through standard C++, MFC, Windows Forms,
Windows Presentation Foundation (WPF), Silverlight, and HTML. Putting
developers on a better path for development, Microsoft introduced the
Windows Runtime (WinRT). This technology and principles enable devel-
opers to have a single platform to target that extends their potential across
the personal, professional, and entertainment endpoints we have in our
lives. WinRT enables developers to choose how they can be most produc-
tive using their skills in C++, C#, Visual Basic, or JavaScript. Alongside
the language of choice, developers have a native UI framework in XAML
they can use for the best client app experience on Windows. XAML is
everywhere now in Windows, from system shell Ul to system apps to
key experiences delivered from Microsoft, such as Microsoft Office. When
developing an app in C# and XAML, you’ll be joining other successful
developers in the world and can tap into that ecosystem of knowledge,
experience, and examples.

Software is an art. Just like any art project, approaching software devel-
opment requires thought into the necessary tools, philosophies, and prin-
ciples you will use to create your app. I still remember one of my earliest
“professional” software development jobs, sitting in a meeting listening to
the customer describe all these (what was at the time) high-tech require-
ments of their app, all needing to be done in Internet Explorer 3. I scribbled
notes as fast as I could while my dev lead at the time, all too quickly I
thought, was busy nodding his head in acceptance of the requirements. As
we walked out of the meeting, I expressed my concern about the require-
ments and available technology at the time. He smiled and shrugged like
it was no problem stating, “No worries Tim, we just need the right tools.”

One of the key tools is a good guide and mentor. In my early days, for
me that was books just like this one you have now. To this day I still prefer
books on my shelf when learning new technology concepts. I've had the
pleasure of working with Jeremy Likeness over the years in the XAML
ecosystem, and I can attest to his expertise in building real-world apps
using these technologies. In Programming the Windows Runtime by Example,
Jeremy and John provide these key tools for any software developer to
understand the fundamentals of the Windows Runtime and XAML, and be

successful quickly. This book doesn’t try to only focus on singular concepts
but also provides an end-to-end perspective on building an app in WinRT.
Jeremy and John know that your scenarios are connected ones and deal
with web services, data, security, and integration. The book will walk you
through understanding how the pieces fit together in WinRT while still pro-
viding you the knowledge and tools to be productive at the core concepts
of working with C# and XAML in the Windows Runtime. John and Jeremy
describe philosophies and different approaches to using WinRT, empow-
ering you with knowledge to make the best decisions for your app. This
knowledge will enable you to write the best apps for Windows, Windows
Phone, Xbox, and whatever future Microsoft has in store for WinRT areas.

Like any artist, tools are essential. This book is one of those essential
tools for Windows developers and will help you complete your software
goals sooner than without it! To this day, my bookshelf is filled with books
just like this one that I refer to often. Even as your experience grows, you'll
find yourself referring back to this book for knowledge when developing,
just like I did.

—Tim Heuer, Principal Program Manager Lead, XAML Platform,
Microsoft Corporation

XXi

Preface

In 2011 I heard the first rumors about Windows 8 and knew immediately
what my next book would be about. Unlike Designing Silverlight Business
Applications that captured years of experience writing Line of Business
(LOB) apps in Silverlight, this book would be an introduction to an entirely
new platform. My goal was to take what I knew and loved about Silverlight,
find its similarities in the new platform, and then highlight what I felt were
some amazing developer experiences. It was important to get to market
fast, so through several iterations of the Windows 8 releases (including
changes to terminology) that required substantial rewrites of content and
a rapid release cycle, I managed to release Building Windows 8 Apps with C#
and XAML as Windows 8 was revealed to the world.

By necessity, this book introduced developers to the new platform but
didn’t dig into best practices (there were none yet) or get very deep (there
simply wasn’t time). I vowed to release another book that would fill in
the missing pieces and provide a comprehensive overview of the entire
Windows Runtime. Because anyone can read the documentation and refer-
ence the API, my intent with this book was to make it example-driven and
provide thousands of lines of code for you to integrate and use to kick-start
your own Windows Store apps.

I was relieved at the thought of not rewriting most of the book three
times, as I had to do with the first one, but Microsoft once again proved too
fast for me. What sounded at first like a relatively minor release (Windows

8.1) managed to integrate enough changes to warrant revisiting every one
of the ten chapters I had completed to date. With an eye on //BUILD in
2014, I reached out to Windows Store expert and Wintellect colleague John
Garland to help me finish the remaining chapters. John and I have worked
on several projects together (and incidentally two of them won awards for
their groundbreaking use of XAML for touch and mobile), and he helped
write pilot code for several of our customers who were early Windows 8
adopters, so I knew he was the right person to bring a fresh set of exam-
ple projects and content-rich chapters. As a bonus, he is also well-versed
in cloud technology and brought this firsthand knowledge to bear in the
chapters that deal with connecting to Azure.

In Windows 8.1 and the Windows Runtime, Microsoft has successfully
demonstrated their commitment to the development ecosystem by provid-
ing us with a rich, vast array of APIs, SDKs, and tools for building incred-
ible apps that run on a variety of devices. I was absolutely amazed when
I discovered how easy it was to connect to a web cam, open a web socket,
download files in the background, or profile my app to find “hot spots”
that I could target to improve performance using WinRT. I was delighted
to find that Portable Class Libraries (PCL), something I evangelized heavy
as a solution to target multiple platforms in the Silverlight and WPF days,
was evolving to embrace Windows Store apps. The first-class support for
mature design patterns like MVVM makes it easier than ever to write sta-
ble, reusable code that runs on a variety of target devices.

In Building Windows 8 Apps with C# and XAML, 1 shared my intent to
guide you through the process of learning the new territory quickly to
begin building amazing new applications using skills you already had
with C# and XAML. In this book, it is our goal to take you beyond that
initial exposure and help you dive deep into all the various APIs WinRT
makes available. Our goal was to hit virtually any scenario possible using
the Windows Runtime—not just provide code snippets, but full projects
you can use to experiment, learn, and use as a starting point for your own
apps. The most rewarding feedback I received from my first book was
hearing from authors sharing with me their excitement having their first
Windows 8 apps approved for the Store. I hope this book not only helps
take those apps to the next level, nor simply inspires your imagination, but

XXiii

XXiV

empowers you to implement solutions you only dreamed possible using
this incredible new platform. I know I speak for both John and myself
when I say we look forward to hearing back from you about what you
were able to achieve with Visual Studio, Windows 8.1, and this reference
on your desk.

What This Book Is About

The purpose of this book is to explain how to write applications—mainly
Windows Store apps—that are based on the Windows Runtime. The intent
is to explore every available API, exposing you to possibilities across all
areas and diving deep into major areas that are likely common to most
apps that will be built. Instead of a traditional reference guide that shares
API details and code snippets, this book includes more than 80 sample
projects. These projects provide a “by example” approach to learning the
various APIs; and the text either walks through how they were built, or
breaks apart the code step-by-step to make it easy to understand and use
as a template for your own projects.

This book is not an introduction to Windows 8.1. We assume you
have some experience working with C# and XAML and are familiar with
Windows Store apps. We also assume that you are at least familiar with the
concept of design patterns and the notion of decoupled code. Both of these
ideas have been core to the success of the applications we’ve helped build
and will be used as foundations for the concepts presented in this book.

Whether you're a Windows 8.1 developer looking to improve an exist-
ing app, or an experienced client technologies developer transitioning to
the Windows Runtime for the first time, this book will give you the guid-
ance, proven patterns and practices, and example projects you'll need to
build functional apps that run well across the myriad Windows 8.1 devices.

This version of the book specifically addresses Windows 8.1 using Visual
Studio 2013. At this writing, the Windows 8.1 Update was announced at
//BUILD, but fortunately the changes did not impact development as
much as use of the OS and deployment options. During the course of this
book, several changes have occurred that may not be reflected throughout:
Visual Studio 2013 Update 2 was released, the name SkyDrive was changed

to OneDrive, Windows Azure became Microsoft Azure, and Azure Mobile
Services are constantly being revised.

Where to Access the Source Code

The source code for this book is open source and will be maintained and
updated as needed to match any future revisions that may come out. You
can download the code samples from the companion website:
winrtexamples.codeplex.com.

How to Use This Book

The aim of this book is to enable you to discover the appropriate APIs to
build your Windows Store apps. Each chapter is designed to help you dis-
cover what features are available in that area of the framework and how
they are applied through example projects. Code examples are provided
that demonstrate the features for programming them using C# and XAML.
Although different chapters may relate to various parts of a comprehen-
sive project, the individual samples are designed to stand on their own.

Each chapter is similarly structured. The chapters begin with an intro-
duction to a topic and an inventory of the capabilities that topic provides.
This is followed by explanations of areas of the framework and runtime
and a walkthrough of the target APIs. The code samples are explained in
detail, either as a walkthrough “lab” or by analyzing the existing sample,
and the topic is summarized to highlight the specific information that is
most important for you to consider.

I suggest you start by reading the book from start to finish, regardless
of your existing situation. Inexperienced developers will find their under-
standing grows as they read each chapter and concepts are introduced,
reinforced, and tied together. Experienced developers will gain insights
into areas they might not have considered or had to deal with in the past,
or simply didn’t factor into their software lifecycles. Once you've read the
book in its entirety, you will then be able to keep it as a reference guide
and refer to specific chapters any time you require clarification about a
particular topic.

XXV

Acknowledgments

Jeremy Likness: Although this is my third book through Pearson and
fourth full book I've authored, writing a good book still depends on a solid
team. I continue to be grateful for my superhuman Editor, Joan Murray,
who has been patient and understanding, encouraging, and continuously
provided her support and guidance throughout the process. Once again,
Eleanor Bru braved working with me on this very ambitious project and,
like Joan, was very patient and understanding while keeping me honest
and on target. I can’t thank Lori Lyons and the production team (including
Krista Hansing and Debbie Williams) enough for taking my rambling and
helping turn it into coherent prose.

The content of this book was amazingly enriched by our thorough and
passionate technical editors. Thank you, Harry Pierson and Christophe
Nasarre, for your incredible attention to detail. If anything was missed, I'll
take the blame because Harry and Christophe ran every example, pored
over every word, and provided me with volumes of suggestions and feed-
back that helped shape the book to its present form. It is always a pleasure
to work with technical editors who bring strong technical insights to the
table and help keep me honest when I want to take a shortcut and leave a
thread spinning where it shouldn't.

Many thanks to my boss and friend, Steve Porter, for letting me devote a
large chunk of my time to a project that made me disappear for a few hours
every day. Thanks to Barbara Keihm for her support and encouragement,

to Todd Fine for always recognizing our hard work and being one of the
tirst to pre-order copies whenever they are available, and Bethany Vananda
and Sara Faatz for working tirelessly to help spread the word and share
what we're doing.

A special note goes to Dave Baskin, Dave Black, Josh Carroll, Aaron
Carta, Phil Denoncourt, Dave Frommer, James Katic, Edward Kim, Wes
McCammon, and Dan Sloan. This team worked with me on a major project
that has lasted longer than the writing of this book and always understood
when I had to turn down dinner or other outings so I could get back to my
hotel and write. OK, who am I kidding—sometimes I managed to break
away.

My wife and daughter have waited patiently through several books
now, so they know the routine. Doreen is always quick to remind me when
I need to push away from the dinner table and get back to writing, but
Lizzie always noticed when I'd been writing too much and was always
ready to have a movie date so I could unwind.

Finally, last but certainly not least, thank you! I appreciate my readers—
and of course it is for you this was written—so it is my sincere hope you
receive tremendous value from these pages.

John Garland: Like Jeremy, I'd very much like to thank Joan Murray,
Eleanor Bru, and Lori Lyons, as well as everyone else at Pearson for their
unwavering help and guidance throughout this project. Many thanks go
to Harry Pierson and Christophe Nasarre for their invaluable help and
insight throughout the technical review process—especially for helping to
me find the right mix of code and prose, which invariably was along the
lines of less prose and more code.

I'd like to very much thank my friends and colleagues at Wintellect. It
is truly a privilege for me to count myself in your company and your pas-
sion for your craft is absolutely contagious. Many thanks to Steve Porter
and Todd Fine for the continued opportunity, and to Bethany Vananda for
all the help in putting my work in the best possible light. Much gratitude
is owed to Jeff Richter, Jeff Prosise, and John Robbins for their insights into
the writing process and for providing the Wintellect stage that I am fortu-
nate to be able to stand on.

XXVii

XXViii

Families often have to take a back seat when these projects are in high
gear, and mine was no exception. My wife Karen has been more than under-
standing and forgiving of many late nights, lost weekends, and grumpy
mornings. My daughter Callie continues to be a walking smile that forces
me to keep things in perspective, despite our having had to skip a few of
our priceless Daddy-Callie days. Now that the book is done and the snow
has melted, we can get back to bike rides, games of tag, and swing-pushes
in the backyard.

I owe many thanks to the folks on and involved with the Zumo (Azure
Mobile Services) team, including Kirill Gavrylyuk, Yavor Georgiev,
Merwan Hade, and Heinrich Nielsen, among several others. Your insights
into the Mobile Services inner workings, and prompt and helpful replies
to my inquiries, have been invaluable both for the content included in this
book as well as in my professional endeavors.

Finally, I'd like to thank Jeremy for asking me to come along not only on
this ride as his co-author, but also as a technical editor on two of his previ-
ous books. The experiences, insights, and most importantly, the friendship,
have been both personally and professionally invaluable.

About the Authors

Jeremy Likness is a multi-year Microsoft MVP for XAML technologies. A
Principal Consultant for Wintellect with 20 years of experience developing
enterprise applications, he has worked with software in multiple verticals
ranging from insurance, health and wellness, supply chain management,
and mobility. His primary focus for the past decade has been building
highly scalable web-based solutions using the Microsoft technology stack
with client stacks ranging from WPEF, Silverlight, and Windows 8.1 to
HTMLS5 and JavaScript. Jeremy has been building enterprise line of busi-
ness applications with Silverlight since version 2.0, and he started writing
Windows 8 apps when the Consumer Preview was released in 2011.

Prior to Wintellect, Jeremy was Director of Information Technology
and served as development manager and architect for AirWatch, where
he helped the company grow and solidify its position as one of the lead-
ing wireless technology solution providers in the United States prior to
their acquisition by VMware. A fluent Spanish speaker, Jeremy served as
Director of Information Technology for HolaDoctor (formerly Dr. Tango),
where he architected a multilingual content management system for the
company’s Hispanic-focused online diet program. Jeremy accepted his role
there after serving as Development Manager for Manhattan Associates, an
Atlanta-based software company that provides supply chain management
solutions.

XXiX

XXX

John Garland is a Principal Consultant for Wintellect with more than 15
years of experience developing software solutions. Prior to consulting, he
spent much of his career working on high-performance video and statisti-
cal analysis tools for premier sports teams, with an emphasis on the NFL,
the NBA, and Division 1 NCAA football and basketball. His consulting cli-
ents range from small businesses to Fortune-500 companies, and his work
has been featured at Microsoft conference keynotes and sessions.

John is a Microsoft Client Development MVD, as well as a member
of the Windows Azure Insiders and Windows Azure Mobile Services
Advisory Board. He lives in New Hampshire with his wife and daugh-
ter, where he is an active speaker and participant in the New England
software development community. He is a graduate of the University
of Florida with a Bachelor’s degree in Computer Engineering and holds
Microsoft Certifications spanning Windows, Silverlight, Windows Phone,
and Windows Azure. John is the author of the ebook Windows Store Apps
Succinctly (Syncfusion, 2013).

This page intentionally left blank

« 10

Networking

N ETWORK CONNECTIVITY IS A MAJOR FEATURE OF MOST WINDOWS
STORE apps, as you learned in previous chapters. Although you have
learned how to connect to services and keep your content fresh, Windows
8.1 devices are capable of connecting to the Internet and other devices
in myriad ways. In this chapter, you learn some of these more advanced
methods and how to integrate them into your own apps.

In addition to supporting the HTTP protocols, WinRT provides APIs
that make it easy to enumerate resources on your HomeGroup network.
You can enumerate network information and obtain the current data plan
so that your app can modify its behavior to avoid downloading large
amounts of data over a metered connection. The sockets APIs enable low-
level communications using traditional UDP and TCP protocols, as well
as the newer HTML5 WebSockets protocol. The proximity APIs enable
communications between peer devices using Near Field Communications
(NFC) and Wi-Fi Direct. Finally, the background transfer API allows your
app to effectively manage long-running data transfers even when the app
itself is not running.

Web and HTTP

In Chapter 5, “Web Services and Syndication,” you learned how to use
the HttpClient class to connect to an HTTP server and retrieve content

379

380

using the REST architecture. The Windows.Web.Http namespace contains
several classes that you can use to connect with HTTP-based services. The
HttpClient class represents a simple and easy-to-use interface for sending
HTTP-related requests and retrieving responses. Other classes provide
more advanced features and fine-grained control over interactions.

To provide more control over HTTP requests, use the HttpRequestMessage
class. For example, the following requests content from my blog:

var client = new HttpClient(Q);

var httpResponse = await client.GetAsync(new Uri(
"http://csharperimage.jeremylikness.com/", UriKind.Absolute));

If you want more control over the type of request and process the
request immediately after the headers have been read (instead of having to
wait for the entire body), you can issue the request like this instead:

var client = new HttpClient();
var request = new HttpRequestMessage(
HttpMethod.Get, new Uri("http://csharperimage.jeremylikness.
com"));
var response = await client.SendRequestAsync(request,
HttpCompletionOption.ResponseHeadersRead) ;

Using the latter method also gives you more control over the response.
You can create a cancellation token and convert the response to a Task that
uses the token:

this.cancellation = new CancellationTokenSource();

var response = await client.SendRequestAsync(
request, HttpCompletionOption.ResponseHeadersRead)
.AsTask(cancellation.Token);

When the page takes a significant time to load, from either a slow net-
work or a large amount of information, you can cancel the load automati-
cally or through user input by calling the cancel method on the cancellation
token. You see an example of this in the CancelUr1 method of the viewModel
class in the AdvancedHttpExample project:

cts.Cancel);
cts.Dispose();

The project enables you to enter a URL and then downloads and dis-
plays the content. The initial request ends when the headers are received
so that you can stream the content with progress updates. You can cancel
longer-running downloads and watch the progress. The content is exposed
through the Content property of the HttpResponseMessage that is returned.
The Loadur1 method demonstrates creating a progress handler that takes a
type ulong and asynchronously downloads the content as a string.

this.progress = new Progress<ulong>(ProgressHandler);

var stringContent = await response.Content
.ReadAsStringAsync() .AsTask(cancellation.Token, this.progress);

The progress handler is passed the number of bytes received and uses
the dispatcher to set them as a property on the viewmodel to show the
progress to the user.

private void ProgressHandler(ulong progressArgs)

If you use the default URL of my blog, the content loads immediately
and the progress method never gets called. Using a longer URL, such as the
URL to a large book such as Ulysses in HTML format from the Gutenberg
project, results in a longer download and progress updates. The URL,
listed in the source of the viewmodel, to make it easy for you to copy;, is
www.gutenberg.org/files /4300/4300-h /4300-h.htm.

You can also use the request message to post content, including
streams, to the server. The Content property of the HttpRequestMessage can
be assigned any instance that implements IHttpContent. This includes the
following content:

HttpBufferContent—Content that uses an IBuffer instance

HttpFormUr1EncodedContent—Content that uses name/value pairs for a
form post

HttpJsonContent—Content that is represented using the JSON format

HttpMultipartContent—Content that uses the multipart MIME type
for uploading multiple attachments

381

http://www.gutenberg.org/files/4300/4300-h/4300-h.htm

382

HttpMultipartFormDataContent—A special format for forms encoded
using the multipart/form-data MIME type
HttpStreamContent—Content that uses a stream, such as when
uploading files to the server

HttpStringContent—Content that uses a string

The HTTP API also provides the HttpProgress class for tracking and
handling the progress of long-running HTTP uploads. Simply create an
instance of the progress handler and pass it to the extension method that
converts the call to a Task:

var progress = new Progress<HttpProgress>(ProgressHandler);

HttpResponseMessage response = await httpClient.PostAsync(
resourceAddress, streamContent).AsTask(cts.Token, progress);

The signature of the handler is a simple method that takes an instance
of HttpProgress and can query items such as bytes sent versus total bytes
sent, number of retries, and the stage of the process (for example, sending
or receiving content).

HomeGroup

Microsoft provides a special service named HomeGroup that is designed
to make it easier to share folders, files, and devices on home networks. If
you are not familiar with HomeGroup, Microsoft provides an online tuto-
rial to help you set one up “from start to finish.”! The Windows shell han-
dles the special network behind the scenes and exposes it as a file system
in Explorer.

Figure 10.1 shows an example folder in the HomeGroup. Notice that
the initial set of “folders” corresponds to users on the network, followed
by the machines they are logged into. These, in turn, expose libraries based
on the user’s preferences for sharing pictures, documents, music, or other
items. You can browse to the folders you have permissions for and access
the items as you normally would.

"HomeGroup from start to finish, http:/ /bit.ly /1ak28nC

http://bit.ly/1ak28nC

HomeGroup

B[N = Picture Taals Pictures - a
Home Snare View Manage - @

© + 4 B+ Homegroup b Jeremy Likness » HPISTWINGIL » Pictures + Pictures w & Search Pictures -]

~
7T Favorites L

N avatar.png
B Deskiop B PNG File

& Downloads
L Gaagle Drive - o
= B T] —a

% Reeent pl .
L Recent places GTE0SIGLIGTE)p angulartrendspg avatar.png BlogHesderdpng commodore-6d,
B sharePaint q Pg

i SkyDrive p— Dimensions: 79592
Siz: 11.5K8
3 Homegroup ¢ ’ . fnilability: Available offine
[Jeremy Likness [Date crested: 9/6/2013 900 PM

BB HPISTWINIL conscletestsjpg expressionerrorjp man- 1378843715 sboxavatar.png Shared with: Hormegroup
q O0e.jpq

i Documents
ol Music
| Pictures
B videos
& Deskiop
& Downloads
BB IRL-YOGA

™ This PC

e Deskeap

k| Documents

i Downloads

I jlknessBlveco
b Music

& Pictures

B vidras
i Windaws (C4)
ol JEREMYTR? (F)
a JEREMYTEY (F)

FIGURE 10.1 The HomeGroup network

The HomeGroupExample project for Chapter 10 demonstrates access
to the HomeGroup. The first step is to declare your capabilities in the pack-
age manifest. You must have at least one of the available library capabilities
(music, pictures, or videos) checked, or you will receive an access denied
exception when you attempt to access the HomeGroup. Otherwise, you
will have access only to the folder types that you specified capabilities for.

Use the KnownFolders.HomeGroup enumeration to access the HomeGroup
network. The first set of folders you receive is mapped to the usernames
of users currently participating in the HomeGroup. The following code in
the Initialize method of the viewModel class fetches the user-level folders:

var folders = await Windows.Storage.KnownFolders
.HomeGroup.GetFoldersAsync();

The example project defines the HomeGroupUser class for user information
and maps the DisplayName attribute of the folder to the username displayed.

383

384

foreach (var user in folders.Select(
folder => new HomeGroupUser
{
UserName = folder.DisplayName,
IsHomeGroupUser = true
1) { this.Users.Add(user); }

When you have a StorageFolder instance for the user, you can use que-
ries to iterate items within the folder. This query sets up a search for pic-
tures with a known set of filename extensions and ultimately retrieves any
shared photos that user is sharing across all devices on the HomeGroup.

var query = new QueryOptions(CommonFileQuery.OrderBySearchRank,
new[] { ".jpg", ".png", ".bmp", ".gif" })
{ UserSearchFilter = "kind:picture" };
var files = await targetFolder
.CreateFileQueryWithOptions(query).GetFilesAsync(Q);

The app is designer-friendly and shows a sample image and title in the
designer. When you run the app, you see either an error message displayed
on a disabled button if the app cannot access a valid HomeGroup, or a
list of buttons for each user on the HomeGroup. Tap the button to see the
images that user is sharing. You can use similar functionality as covered in
Chapter 4, “Data and Content,” to access other folders and content types.

Connectivity and Data Plans

Windows Store apps can be connected in a number of ways. Although
traditional wired connections (Ethernet LAN) and Wireless Fidelity (Wi-
Fi) connections (also known as wireless local area connections, or WLAN)
are still popular, many devices offer wireless wide area network (WWAN)
connections over cellular technologies such as Global System for Mobile
Communications (GSM) and Long Term Evolution (LTE). Many of these
data plans have data limits and may charge for bandwidth usage. If users
roam outside their regular coverage area, they could incur additional
charges.

Windows Store apps should be aware of the type of connection they are
using to access information over the Internet so they can implement spe-
cific behaviors that are suitable for the type of connection. An app might
consider implementing this typical set of behaviors:

Offline—The app cannot connect to the Internet and must rely on
local cached data to function.

High Cost—The app is connected to the Internet, but the data plan
is either roaming, approaching a fixed data limit, or over the data
limit and, therefore, might incur additional charges. The app should
limit network activity to only extremely low bandwidth scenarios
(such as loading a set of headers but deferring the details).

Conservative—The app is connected to the Internet over a metered
connection. Downloading data is fine but should be done only as
needed and based on user-configurable preferences (the user must
have a way to disable large downloads when the connection is
metered). Lower-resolution images and lesser-bandwidth movies
should be used when available.

Standard—The app is connected to the Internet, and no charges
appear to be associated with data usage; therefore, the application
can download or upload data as needed.

The Windows .Networking.Connectivity namespace contains the APIs nec-
essary to determine the types of connections that are available and exam-
ine data plans and usage. You interact with the NetworkInformation class to
determine the available connections, the connection your app will use to
access the Internet, and what type of connection is being used. The exam-
ple app that demonstrates this API is called NetworkInfoExample; you
can find it in the Chapter 10 solution folder.

Each network that your device either is currently connected to or has
connected to in the past (as long as you did not ask Windows to forget
the connection) has a ConnectionProfile instance associated with it. The
UpdateNetworkInformation method in the viewModel class in the Data folder
demonstrates how to access this API. A simple call retrieves the full list of
available profiles:

var profiles = NetworkInformation.GetConnectionProfiles();

You can iterate the various profiles and acquire information from each
of them, but the most interesting profile is the one used to gain access to

385

386

the Internet. You can use the GetInternetConnectionProfile call to get the
profile associated with the active connection, if one exists. If the result is
null, the user is not currently connected. In the example app, this call is
used to get the identifier for the network adapter that is being used to
connect and then select that connection from the list. If your connection
is bridged for any reason (for example, you might be running Hyper-V
virtual machines that use virtual adapters to connect to your wireless con-
nection), the bridged connection might show up as the active connection
instead of the connection you were expecting.

The ConnectionProfile has a name that matches what you see in the
various network dialogs (either the list of available connections from the
Control Panel or the list of networks in the Networks flyout accessed from
the Charms bar). It indicates whether the network is a WLAN (wireless)
or a WWAN (wide area network or cellular) connection. If it is neither, it is
likely a wired Ethernet or Bluetooth connection.

You can quickly access information about the connected network
adapter, as well as the security settings for the connection. For example,
the wireless access point I run in my house uses RSNA-PSK authentica-
tion with CCMP encryption. You might have security settings available for
both wired and wireless networks. The FromConnectionProfile method on
the ConnectionInfo class demonstrates how these values are obtained.

if (profile.NetworkSecuritySettings != null)
{
connectionInfo.AuthenticationType = profile
.NetworkSecuritySettings.NetworkAuthenticationType.
wToString();
connectionInfo.EncryptionType = profile
.NetworkSecuritySettings.NetworkEncryptionType.ToString(Q);

Other information is available through method calls. To get the signal
strength from the connection (a value that ranges from 0 for no signal to
5 for maximum signal strength), you call the GetSignaiBars method. The
example app shows only four of five possible bars because it uses the built-
in symbol library, and that provides only four bars.

connectionInfo.SignalBars = profile.GetSignalBars();

The main reason for examining the connection is likely to understand
whether costs are associated with it. To find out, call the GetConnectionCost
method. This returns a class that contains an enumeration and several
flags. The enumeration provides you with details about how the connec-
tion is metered.

Unrestricted—No costs are associated with data usage.

Fixed—A data limit exists; until that limit is reached, usage is
unrestricted.

Variable—Data usage is charged on a per-byte basis.

Unknown—No cost information is available for the connection.
Additional flags provide further insights into the current plan:

Roaming—This flag is set when the user is outside the normal usage
area. You can assume that additional charges will apply.
ApproachingDataLimit—The plan has almost reached its limit;
additional costs might be incurred.

OverDataLimit—The plan has exceeded the data limit, and the user
is likely being charged for any additional usage.

Use this information to strategize how you will access the Internet from
your Windows Store app. When the type is fixed or variable, you should
follow a conservative behavior. When the flags indicate that the connec-
tion is roaming or over the data limit, you should implement the high-cost
behavior and allow the user to opt in to any data usage. Other scenarios
can follow the standard or offline behavior, depending on the status of the
connection.

If you need to find out more details about the plan, you can call the
GetDataPlanStatus method, as shown in the FromProfile method on the
DataPlanInfo class in the example app. The result gives you more details
when available, including the data limit and how much has been used
against the limit, the available speeds of the connection, and even when
the next billing cycle begins so you know when the usage is reset.

387

388

You can also query for historical usage of any connection. The
GetNetworkUsageAsync method enables you to specify a time range and a
sample frequency (increments in minutes, hours, or days, or a total for the
time period). Depending on how you call the method, you can get a list of
NetworkUsage instances for each data sample. If you requested hourly sam-
ples, each instance represents a sample taken for a given hour. The instance
contains the duration it represents, along with the bytes received and sent
during that period. The ConnectionInfo class in the example app retrieves a
total for the previous day:

var usage =

await profile.GetNetworkUsageAsync(
DateTimeOffset.Now.AddDays(-1),
DateTimeOffset.Now,
DataUsageGranularity.Total,

new NetworkUsageStates { Roaming = TriStates.DoNotCare,
Shared = TriStates.DoNotCare });

You might not sample data earlier than 60 days before the current date
(about 2 months), and minute granularity is available for only the previous
2 hours. You can also specify what network states you want to sample. You
can restrict the data to times when the connection was roaming or part of
a shared connection, or indicate that you “do not care,” as in the example
code.

The advantage of many Windows 8.1 devices is that they are highly
mobile. For this reason, it’'s common for the current active connection to
change frequently. The user might be using a cellular connection and might
come into range of a wireless connection that is lower cost, or the user
might travel and switch to different connections. The NetworkInformation
class raises an event when the current connection status changes. The
ViewModel class in the example app registers for this event:

NetworkInformation.NetworkStatusChanged +=
this.NetworkInformationNetworkStatusChanged;

The event itself does not provide other information. The typical practice
is to query for the current Internet connection again to determine whether
the app behavior should change. You can prompt the user or restrict
data usage when you find that the user has roamed or moved from an

unrestricted connection to a metered one. By default, Windows 8.1 prefers
unrestricted networks over metered networks and automatically connects
to the fastest available network in its category when multiple choices are
available.

Sockets

Windows Store apps have the capability to communicate over lower-level
networking protocols. The Windows Runtime provides built-in support
for User Datagram Protocol (UDP),2 Transmission Control Protocol (TCP),?
Bluetooth RFCOMM,* and the recent HTML5 WebSocket Protocol.®
Support for socket-based operations is provided through the types of the
Windows .Networking.Sockets namespace. Sockets in general provide low-
level network communications and enable real-time network notifications.

WebSockets

The WebSocket protocol was designed to be implemented in web brows-
ers and web servers, and it is fully supported from Windows Store apps.
Although it is part of the HTML5 group of specifications, it is an inde-
pendent TCP protocol. Its main advantage is that it provides a way for
the browser or Windows Store app to maintain a single connection with a
server and send data both ways while keeping that connection open. The
standard port for WebSockets is 80, the same one HTTP uses, which means
it is less likely to be blocked by firewalls.

The WebSocketsExamples project for Chapter 10 demonstrates two
APIs you can use from WinRT to take advantage of the WebSockets pro-
tocol. The example app leverages a server supplied by the WebSocket.org
website that provides an “echo service.” This service, when connected to,

2User Datagram Protocol, RFC 768, http:/ /bit.ly /16TkVsS
3Transmission Control Protocol, REC 793, http:/ /bit.ly /HLcHt]
“4Bluetooth RFCOMM, http:/ /bit.ly/1fu50ni

5WebSocket Protocol, RFC 6455

389

http://bit.ly/16TkVsS
http://bit.ly/HLcHtJ
http://bit.ly/1fu50ni

390

echoes back any data sent to it. WebSockets are accessed using a standard
UR], as declared in MainPage.xaml.cs:

private readonly Uri echoService =
new Uri("ws://echo.websocket.org", UriKind.Absolute);

The MessageWebSocket class is an abstraction of the protocol that focuses
on sending simple messages. A message is either read or written in a single
operation, instead of being streamed continuously. It is also the class you
must use to support UTF8 messages; the stream-based API supports only
binary (although you can encode and decode the binary to and from UTEFS,
the MessageWebSocket class provides native support for this). To use any
socket type within a Windows Store app, you must enable a networking
capability such as Internet (Client).

The ButtonBase_OnClick method in the MainPage.xaml.cs file demon-
strates how to use the MessageWebSocket class. After creating an instance of
the class, set the type of the message (either binary or UTFS8):

this.socket.Control.MessageType = SocketMessageType.Utf8;

You can also register for events that fire whenever a message is received
and when the socket is closed. The socket uses underlying unmanaged
resources, and you should dispose of it when you are done using it. The
easiest way to do this is to call Dispose in the Closed event handler.

Initiate the connection by calling and waiting for ConnectAsync to
complete:

await this.socket.ConnectAsync(echoService);

The example app accepts any message you type and sends it to the
echo service. The message must be sent using the OutputStream property
exposed by the socket. The easiest way to do this is to create an instance
of a DataWriter to send the message. The Datawriter enables you to write
various data types that it buffers until you call StoreAsync. This flushes the
buffer to the underlying stream.

var writer = new DataWriter(this.socket.OutputStream);

writer.WriteString(this.Text.Text);
await writer.StoreAsync();

Not all error messages for the socket are mapped to .NET Exception class
instances. Instead, you must inspect the HResult of the underlying excep-
tion to determine what went wrong. Fortunately, the webSocketError class
provides a static method that translates the result to the corresponding
WebErrorStatus enumeration. The ToErrorMessage method returns a string
with the original message and the enumeration value.

private static string ToErrorMessage(Exception ex)

{
var status = WebSocketError.GetStatus(
ex.GetBaseException() .HResult);
return string.Format("{0} ({1})", ex.Message, status);
}

The MessageReceived event is raised whenever a message is sent from
the server to the client through the socket. In the example app, this should
happen any time data is sent because the server echoes back the data. The
event provides the socket that the information was received from with
event arguments: You can inspect the message type (binary or UTE8) and
open a reader or stream to access the message. In this example, the reader
is set to use UFT8 encoding; then it obtains the message and displays it in
the SocketMessageReceived event handler.

using (var reader = args.GetDataReader())

{
reader.UnicodeEncoding = UnicodeEncoding.Utf8;
var text = reader.ReadString(reader.UnconsumedBufferLength);
this.Response.Text = text;

}

This is the simplest method for dealing with sockets that are designed
to share messages. When you are using the socket to stream real-time infor-
mation and you don’t necessarily have simple messages, you might want
to use the StreamWebSocket implementation instead. It provides a continu-
ous two-way stream for sending and receiving information. The example
app uses the same echo service to stream prime numbers and echo them
back to the display when you click the Start button.

You create and connect to a StreamWebSocket the same way as with a
MessageWebSocket. You can also register for the Closed event. Instead of
sending and receiving messages, however, the stream version expects you

391

392

to interface directly with the input and output streams provided by the
socket. The app starts a long-running Task encapsulated in the ComputePrimes
method. It is passed the OutputStream of the socket. It iterates through posi-
tive integers and writes out any that are computed to be primes; then it
delays for 1 second:

if (IsPrime(x))

{
var array = Encoding.UTF8.GetBytes(string.Format(" {0} ", x));
await outputStream.WriteAsync(array.AsBuffer());
await Task.Delay(TimeSpan.FromSeconds(1));

}

If the integer is not a prime, it delays for a millisecond just to prevent
hogging the CPU. Another long-running task receives the echo. It allocates
a buffer, waits for data to arrive in the stream, and then reads and decodes
the data.

var bytesRead = await stream.ReadAsync(buffer, 0, buffer.Length);

if (bytesRead > 0)

{
var text = Encoding.UTF8.GetString(buffer, 0, bytesRead);
this.DispatchTextToPrimes(text);

This example also demonstrates that you can have multiple sockets
open to the same server and port at once. You can run the example, click
the button to start generating primes, and then use the message-based
version to send and receive messages without interrupting the stream of
prime numbers. Both methods for communicating with the socket simplify
the amount of code you have to write by not worrying about the details
of the underlying transport (TCP). When you need to manage a raw TCP
connection, you can use the traditional sockets components.

UDP and TCP Sockets

UDP and TCP protocols have been around for decades. Many modern pro-
tocols, including HTTP, sit on top of these more low-level protocols (TCP is
the transport used by both HTTP and the WebSocket protocol you learned
to use in the previous section). Two main differences exist between UDP
and TCP: UDP does not require a connection, and UDP does not require

any special ordering of packets or chunks of data. As a result, TCP tends
to be more reliable and useful for bidirectional communication, and UDP
is used when faster transmission rates are required and the application
understands how to deal with unordered data.

Examples of protocols that sit on top of UDP include Domain Name
Service (DNS) and Simple Network Management Protocol (SNMP).
Protocols that sit on top of TCP include HTTP and Simple Mail Transfer
Protocol (SMTP). The UDP classes are all prefixed with batagram and oper-
ate similarly to the TCP classes prefixed with StreamSocket. The API enables
you to “connect” to either protocol and send or receive messages. This pro-
vides a consistent interface and approach to using each protocol. The main
difference is that no specific “listener” service for the UDP implementation
exists because a persistent connection is not needed. Instead, you simply
create a socket, register for the event when a message is received, and then
send data packets or process incoming data as needed.

The SocketsGame example provides a more comprehensive example
of using a persistent TCP connection. Although the game starts a server to
listen for incoming requests, it should be clear that you cannot use these
types of connections for communication between Windows Store apps on
the same machine. Network isolation prevents the loopback interface from
allowing connections across processes. The only reason this works in the
example project is that the client and server are hosted in the same process.
The example should show how to spin up a server to listen when neces-
sary (for example, the same type of connection can be used to host a service
for a Bluetooth service that allows Bluetooth devices to connect), as well as
act as a client for a server hosted on the Internet.

The game itself is a text-based adventure game. It creates a 10x10
matrix of rooms for 100 rooms total and randomly connects rooms and
places trophies in the various rooms. The object of the game is to explore
the rooms and collect trophies until all have been found. A rudimentary

s

parser accepts commands such as “look,” “get,” “north,” and “inventory.”

Instead of playing as a local game, however, the game is hosted on a socket;

the app must connect as a client to issue commands and receive updates.
Two sockets are defined in MainPage.xaml.cs: a StreamSocketListener,

which is the server that listens for and establishes connections to clients,

393

394

and a StreamSocket, which emulates a client connecting to the server. The
server provides several options to bind to a generic service and listen to
all incoming connections, to bind to a specific address, or even to bind to
a specific network adapter. The service name can be a local service name
or a port, or it can remain empty to have a port assigned. If you are using
the socket for Bluetooth (REFECOMM), use the Bluetooth service ID. In this
example, the name is set to 21212 as a unique port for the game. Binding
enables your app to use that specific port to listen for incoming requests.
If another app has already bound to the specified service, an exception is
thrown.

this.serverSocket = new StreamSocketListener();

this.serverSocket.ConnectionReceived +=

this.ServerSocketConnectionReceived;
await this.serverSocket.BindServiceNameAsync(ServiceName);

As with Web Sockets, to understand errors thrown by the sockets API,
use the GetStatus static method of the SocketError class, as shown in the
GetErrorText method.

private static string GetErrorText(Exception ex)

{
return string.Format("{0} ({1})", ex.Message,
SocketError.GetStatus(ex.GetBaseException() .HResult));

When a connection is received, the server creates a persistent writer and
reader for the connection (note that this example uses exactly one client, so
only one writer and reader are used—if you are building a server to man-
age multiple connections, you need to spin up a new reader and writer for
each unique connection).

if (serverWriter == null)

{

serverWriter = new DataWriter(args.Socket.OutputStream);
serverReader = new DataReader(args.Socket.InputStream);

The listener for the socket goes into an infinite loop waiting for mes-
sages. As messages are received, they are passed to the parser to inter-
act with the game world, and the result is written back to the client. To

facilitate communication over the socket, the messages are written with
a special format. The size of the string in bytes is sent ahead of the string
itself so that the reader can allocate the appropriate buffer size to process
the incoming message. The SendString method encodes the text and sends
it over the socket.

writer.WriteUInt32(writer.MeasureString(text));

writer.WriteString(text);
await writer.StoreAsync();

Listing 10.1 shows the GetStringFromReader method that receives the
incoming data. It loads enough data to constitute an unsigned integer, pro-
cesses the integer, and finally loads enough data to create a string based on
the size that was passed in.

LISTING 10.1 Reading a String from the TCP Socket

private static async Task<string> GetStringFromReader(
IDataReader reader)

{
var sizeFieldCount = await reader.LoadAsync(sizeof(uint));
if (sizeFieldCount != sizeof(uint))
{
return string.Empty;
}
var stringLength = reader.ReadUInt32Q);
var actualStringlLength = await reader.LoadAsync(stringlLength);
if (stringlLength != actualStringlLength)
{
return string.Empty;
}
var data = reader.ReadString(actualStringlLength);
return data;
3

Just as the server goes into an infinite loop after a connection is received,
waits for instructions, and then returns a response, the client also starts a
long-running task. On the Ul thread, the Go_onC11ick method is called when-
ever the user clicks the button to send the next command. The click han-
dler simply sends the command to the socket and then forgets about it. The
long-running ClientListener method waits to get the data from the server
and then writes it for the end user to see.

395

396

CHAPTER 10: Networking

Figure 10.2 shows a game in progress. At the top, you can see the server
messages that involve receiving the incoming connection, receiving com-
mands, and sending responses. The bottom is the client console for game
play; it shows all the responses from the server and provides an input box
for the user to type and send commands.

Sockets Game

Server Conscle

Responded with: You move North.

A
Asmelly room: You are standing inside a smelly room. You are s
Recewved: e
Responded with: You move East.
A warm room: You are standing inside a warm room, You are surrou..
Reccived: get w
Responded with: You arab the Commodaore 64..
Client Console
-~

‘fou move West.
A cramped room: You are standing inside a cramped reom. You are surrounded by rough, rocky walls. The room is otherwise empty.
You see exils in the directions: North, South, Basl

You move Morth,

A smelly room: You are standing inside a smelly room. You are surrounded by rough, rocky walls, In the center of the room is a deep, dark well with no
chain or bucket.

You see exits in the directions: South, East, West.

You move kast.

A wiarm room: You are standing inside a warm room, You are surrounded by rocky walls with bands of color. In the center of the room stands a dry
fountain.

You see a classic Commdore 54 "bread box” complete with a joy stick and small portable RCA television on the floar.

You see exits in the directions: East, West.

You arab the Commodare &4,

! Go

FIGURE 10.2 The example game played over a TCP socket

The provided example handles both client and server aspects for TCP
connections. The RFECOMM for Bluetooth uses the same classes. Although
UDP uses a different set of classes, the implementation is similar—the only
difference is that you don’t create a persistent listener for managing con-
nections because the protocol is stateless.

Proximity (Near Field Communications)

Near Field Communications (NFC?) is a set of standards based on Radio-
Frequency Identification (RFID) standards for smartphones, tablets, smart
tags, and other devices to establish communications in extremely close sit-
uations (less than a few inches difference). Two main NFC scenarios exist.
The first is a tap gesture for a short transmission of information, such as
contact information, a URL, or a “smart poster.” The second is a similar
gesture used to create a handshake between two devices so they can estab-
lish a peer-to-peer connection over wireless to exchange large amounts of
information.

NFC not only operates over extremely short distances, but it also has a
fairly slow transfer rate, with theoretical speeds between 50 and 100 bytes
per second. For this reason, it is useful for exchanging only a small amount
of information, unless you use the NFC tap to establish a more persistent
connection over a longer range and using faster technology, including
Bluetooth, Wi-Fi, and Wi-Fi Direct. The WinRT API fully supports both of
these scenarios.

NFC-Only Scenarios

When you exchange information via NFC, you must either send or receive
a message encoded in the NFC Data Exchange Format (NDEF). This is a
lightweight, platform-independent binary format for exchanging mes-
sages. The message allows one or more specific payloads (referred to as
NDEEF records) to be sent in a single package. Windows provides built-
in support for a set of proprietary NDEF records that Windows 8.1 and
Windows Phone devices can exchange. You can also format and exchange
other types of records that target other platforms or are platform-indepen-
dent by either building your own payload or using an open source library
such as the NDEEF Library for Proximity APIs that is available as a NuGet
package.”

®Near Field Communication Technical Specifications, http:/ /bit.ly/HQSnXA

"NuGet package for NDEF Library for Proximity APIs, http:/ /bit.ly/1lavemFo

397

http://bit.ly/HQSnXA
http://bit.ly/1avcmFo

398

The ProximityExample project provides some examples of using the
Proximity APIs defined in the windows.Networking.Proximity namespace.
The ProximityDevice class provides the simplest API to use and focuses spe-
cifically on short-range, short-duration NFC scenarios. To see whether the
system has a proximity device available, simply call the GetDefault static
method, shown in the constructor of the viewModel class. Be sure to declare
the Proximity capability in the application’s manifest.

this.proximityDevice = ProximityDevice.GetDefault();

The call returns null when a device is not present. If this is the case on
your machine, you will not be able to take advantage of NFC exchanges
and gestures, but you may still be able to create peer-to-peer connections
using Bluetooth, Wi-Fi, or Wi-Fi Direct. You learn more about that in a later
section. The proximity device exposes properties for its unique identifier,
the maximum number of bytes it can send in a single message, and the bits
per second it is capable of transmitting or receiving. You can also register
for events that fire when another proximity device comes within range:

this.proximityDevice.DeviceArrived +=

this.ProximityDeviceDeviceArrived;

this.proximityDevice.DeviceDeparted +=
this.ProximityDeviceDeviceDeparted;

The events are purely informational and do not provide any specific
information. The ProximityDevice parameter of the handler is a reference
back to the device that detected the event, which, in most cases, is the
default device referenced in the constructor. Other classes exist for enu-
merating multiple proximity devices, in the rare case that the machine has
multiple ones installed. This is a rare scenario because one NFC device is
usually sufficient.

An easy way to share information with another NFC device is to use
the Pub1ishMessage method on the ProximityDevice class. This method is use-
tul for sharing simple string data with other Windows or Windows Phone
devices. It takes two parameters: the message type and the message itself.
The message type is a unique identifier that enables other devices to deter-
mine how to handle the message. The message type always starts with a

protocol, followed by a dot, followed by whatever custom identifier you
prefer. In this case, the protocol must always be Windows. (The simple
code for publishing and subscribing in this section is shared here for refer-
ence purposes but is not part of a specific example project.)

var publishedMessageld =

proximityDevice.PublishMessage("Windows.WinRTByExampleMessage",
"This is a simple message.");

The publication is not a transient event. The message will be available
until you explicitly stop publishing, so multiple NFC devices over time can
connect and subscribe for that message to receive it. To stop publishing,
you call the StopPubTishingMethod on the ProximityDevice

proximityDevice.StopPublishingMessage(publishedMessageld);

If you want to know when the message has been transmitted, you can
pass a MessageTransmittedHandler as a third parameter when you publish.
The handler is called with the proximity device and the identifier for the
message. You can use this to log that the message was transmitted, or even
unsubscribe in the callback to ensure that the message is sent only once.

private void MessagePublished(ProximityDevice sender,
Tong messageld)

{

proximityDevice.StopPublishingMessage(messageld);

}

To receive a message, you use the SubscribeForMessage method on the
ProximityDevice class. You do not have to wait for a device to arrive or
depart before you subscribe, and the subscription is valid for any device
that publishes that particular message type. The subscription includes a
handler that is called whenever the message is received, and it is provided
a unique identifier that you can use to unsubscribe when you want to stop
receiving the message.

var subscribedMessageld =

proximityDevice.SubscribeForMessage("Windows.

wWinRTByExampleMessage",
MessageReceived);

399

400

The method to receive the message is passed the ProximityDevice and
a ProximityMessage. The message includes the data as a buffer, the data
as a string, and the subscription ID, in case you want to use that to stop
subscribing.

private void MessageReceived(ProximityDevice device,

ProximityMessage message)

{
var messageText = message.DataAsString;
device.StopSubscribingForMessage(subscribedMessageld);

The subscription method enables you to subscribe to any type of mes-
sage. For messages that use non-Windows protocols, you need to decode
the message. For example, the message type WindowsUri provides a URI, but
you must first decode it from UTF16LE:

void messageReceivedHandler(ProximityDevice device,
ProximityMessage message)

{
var buffer = message.Data.ToArray();
var uri = Encoding.Unicode.GetString(buffer, 0, buffer.Length);

Note that some devices, such as the Windows Phone, handle URIs at
the operating system level. In other words, you cannot override the default
behavior. The OS itself intercepts the NFC tag and opens the correspond-
ing program. The program depends on the protocol. HTTP launches the
Internet Explorer browser and navigates to the encoded web page, and a
mailto protocol results in the default mail program being launched.

You can use the NFC API to write to smart tags, or special tags that
use induction to store and publish information. Smart tags have vary-
ing capacities, depending on the manufacturer. Publishing to a smart tag
always overwrites the data, and most smart tags have a lifetime of several
hundred thousand writes. To get the capacity of a smart tag, you can sub-
scribe to the WriteableTag message. This transmits an Int32 message that
contains the capacity of the tag.

401

private void MessageReceived(ProximityDevice device,
ProximityMessage message)

{
var capacity = System.BitConvert.ToInt32(
message.Data.ToArray(), 0);

Table 10.1 lists the various message types you can subscribe to.

TABLE 10.1 Common NFC Message Protocols

Protocol Description
Windows Consists of raw binary data.
Windows. * Provides a custom string type proprietary to Windows,

where * represents a custom type.

WindowsUri Consists of a UTF-16LE encoded URI string. Note that the
operating system shell intercepts these messages and
marshals them to the appropriate protocol handler.

WindowsMime Contains a specific MIME type-like image/jpeg for a bit-
map image.

WriteableTag Published by smart tags when they come within range of
reading or writing. Contains the capacity of the smart tag

in bytes.

NDEF[:*] Consists of formatted NDEF records. Third-party libraries
are available to easily encode and decode these record
formats.

You also can publish messages for cross-platform compatibility or
for the purpose of writing to smart tags. Instead of using the proprietary
PublishMessage method, use the PublishBinaryMessage method. You can use
this method to publish messages to other NFC devices, but it is also useful
for writing messages to smart tags. The following code snippet encodes the
URI to launch Skype and calls the echo service on a Windows or Windows
Phone device.

var uri = new Uri("skype:echol23?call™);

var buffer = Encoding.Unicode.GetBytes(uri.ToString());

var publishId = device.PublishBinaryMessage("WindowsUri:WriteTag",
buffer.AsBuffer());

402

Table 10.2 lists various protocols you can use when writing messages
to tags.

TABLE 10.2 Maessage Protocols for Writing to Smart Tags

Protocol Description

Windows:WriteTag Publish binary data to a static smart tag

WindowsUri :WriteTag Write a URI to a static smart tag

LaunchApp:WriteTag Write a tag that launches an app with specific
launch parameters

NDEF:WriteTag Write a cross-platform message using the NDEF
format

To write a tag that launches an app, use the LaunchApp:WriteTag for-
mat; then provide a tab-delimited list that starts with the text to pass in
as an argument and then includes pairs of platforms and application
names. You can find the application name for a Windows 8.1 applica-
tion in the application manifest. It is in the format of the Package family
name (from the Packaging tab) and an exclamation mark. The following
tag passes an argument named id with a value of 1 to both the Windows
8.1 ProximityExample app and a fictional app on Windows Phone 8
(the application name on Windows Phone is simply the GUID for the
application ID).

var TlaunchTag =

"id=1\tWindows\tWinRTByExampleProximityExample_req6rhny9ggkj! " +

"ProximityExample.App\tWindowsPhone\t{063e933a-fc8e-4f0c" +
"-8395-ab0e84725f0f}";

If the app is present on the target device, it is launched with the argu-
ments passed (the user is always prompted to opt in for the launch when-
ever this type of tag is encountered). If the app is not present, the device
automatically takes the user to the app’s entry in the Windows Store. This
makes the tag extremely useful: If you pass out smart tags with the encod-
ing, users can easily discover and install your app, as well as subsequently
launch it.

In this section, you learned ways to publish small messages that can
be sent to other devices or encoded in smart tags. You also learned how
to subscribe to and receive these messages. I mentioned earlier a way to
share much more information than permitted by the limited bandwidth
and speed of the NFC protocol. In this next section, you explore the tap-to-
connect scenario that uses NFC to establish a persistent peer-to-peer con-
nection for exchanging information.

Tap-to-Connect Scenarios

The PeerFinder class enables you to find and interact with other devices
capable of peer-to-peer communications. Although a common use case is
through NFC, you can also use Bluetooth and Wi-Fi Direct to locate and
communicate with peers. The WinRT API abstracts these decisions from
you and enables you to focus on the actual process of locating a peer and
establishing a socket so that you can stream data back and forth.

Even if you don’t have a proximity device, chances are good that you
can take advantage of the ProximityExample sample app to create a peer-
to-peer connection. That’s because the WinRT API supports a browse sce-
nario using Wi-Fi Direct, a technology that enables peer-to-peer wireless
connections between devices that exists in most modern radios. Using the
browsing scenario, you can install the app on two different devices and use
them to discover each other.

The proximity APIs support finding peers running the same applica-
tion. The application is defined by the package family, a unique identi-
fier for your app that is shared across target platforms. For this reason,
your app on a machine running Windows 8.1 can easily connect to the
same app on a machine running Windows RT. You can also extend the
peer to find instances of your app on other platforms, such as Windows
Phone and Android. The PeerFinder class contains a dictionary named
Alternateldentities that hosts a list of platforms and application identi-
fiers. In the previous section, you learned how to create a tag that launches
the application and can contain multiple platforms and identities. You can
add the same identifier to recognize that app as a peer like this:

PeerFinder.Alternateldentities.Add("WindowsPhone",
"{063e933a-fc8e-4f0c-8395-ab0e84725f0f}");

403

404

You can discover and negotiate the peer connection either through
an NFC tap gesture or by browsing Wi-Fi Direct. After the devices rec-
ognize each other and initiate the handshake, Windows tries to connect
simultaneously using infrastructure (wireless or wired), Wi-Fi Direct,
and Bluetooth. It uses whichever connection completes first (most likely,
Bluetooth, when available) and passes the connection as an active socket
to your app. You can restrict which connection types to allow by setting
the static A1TowBluetooth, AllowInfrastructure, and AllowwiFiDirect proper-
ties on the PeerFinder class.

The PeerSocket class in the example app provides a convenient way to
manage a persistent socket connection. It takes a StreamSocket in the con-
structor and immediately creates a persistent reader and writer to interact
with it.

public PeerSocket(StreamSocket socket)

{
this.socket = socket;
reader = new DataReader(socket.InputStream);
writer = new DataWriter(socket.OutputStream);
}

It exposes a write method that uses the Datawriter to send a message
to the socket and starts an infinite loop that runs on a background thread
to listen for incoming messages. When it receives an incoming message, it
raises an event so the app can register for the event, receive the message,
and process it (in the case of the sample app, by marshalling it to the Ul
thread and showing it on the display). It also raises an error event when-
ever it encounters an error and disposes of both the reader and the writer
when its own Dispose method is called.

To begin the process of connecting with a peer, you must first set your
app to advertise. This broadcasts its identity over Wi-Fi Direct and makes it
available for tap gestures if a proximity device is present. The Wi-Fi Direct
mode is referred to as a browsed connect, and the NFC mode is referred to
as a triggered connect. The PeerFinder class is instructed to begin advertis-
ing in the StartPeerFinder method on the viewMode1 class.

First, the app registers to two events: the TriggeredConnectionStateChanged
thatisraised whenan NFCtap gestureisreceived,and the ConnectionRequested

event that is raised when another device browses your device and requests
a connection.

PeerFinder.TriggeredConnectionStateChanged +=
this.PeerFinderTriggeredConnectionStateChanged;

PeerFinder.ConnectionRequested +=
this.PeerFinderConnectionRequested;

Next, the role is set. Three possible roles exist. In the peer role (included
in the example app), two apps can connect with each other and commu-
nicate as peers. In a client/server scenario, one app can serve as the host
and must set the Host role; then up to four other apps can connect using the
Client role. Note that only Peer roles can browse to each other. The Host role
can browse only Client roles, and vice versa.

PeerFinder.Role = PeerRole.Peer;

Finally, some discovery text is set. This is additional text you can share,
such as an application name, an invitation to connect, information about
the host system, or any other data up to 240 bytes in length. This data is
broadcast and can be displayed when browsing. After the data is set, the
PeerFinder starts advertising when you call the Start method.

PeerFinder.Role = PeerRole.Peer;

PeerFinder.DiscoveryData = Encoding.UTF8.GetBytes(
DiscoveryText) .AsBuffer();

PeerFinder.Start();

When both peers have started advertising, one of two scenarios can
take place. The first is the NFC tap-to-connect scenario. When the proxim-
ity devices are tapped together, the TriggeredConnectionStateChanged event
is raised. This event fires multiple times as the devices come within range
and negotiate a connection.

The event handler for the triggered connection receives a State prop-
erty of the type TriggeredConnectState (an enumeration). The handler on
the viewmodel is called PeerFinderTriggeredConnectionStateChanged. The
Listening state indicates that the proximity device is waiting for a tap. When
the state is PeerFound or Connecting, the connection is being established and
the handler simply updates the status for the user. If the connection fails, a

405

406

Failed state is passed. The Completed state indicates success, and the argu-
ments contain a Socket property with the active socket between the two
devices:
case TriggeredConnectState.Completed:
this.RouteToUiThread(() =>{this.IsConnecting = false;});

this.InitializeSocket(args.Socket);
break;

The InitializeSocket method sets up an instance of the PeerSocket to
handle further communications. A state of Canceled means the connection
was broken for some reason—for example, the devices moved out of range
or a user intervention occurred.

The browse scenario starts when you request a list of available peers.
The BrowseCommand method on the viewmodel calls the FindA11PeersAsync
method and then loads the results to the list of available peers.

var peers = await PeerFinder.FindAl11PeersAsync();

The user can then select a peer and request a connection. The connec-
tion is initiated in the ConnectCommand method.

var socket = await PeerFinder.ConnectAsync(
this.SelectedPeer.Information);
this.InitializeSocket(socket);

Note that the end result is the same as the triggered connection sce-
nario: A socket is obtained and initialized to establish communications.
The mode of the connection is transparent to your app, and there is no
way to determine whether the connection was made using Bluetooth,
infrastructure, or Wi-Fi Direct (unless you have restricted the allowable
connection types to a single mode).

If your device is running a version of the app and the connection is
requested from another device, a ConnectionRequested event is raised. The
viewmodel handles this in the PeerFinderConnectionRequested method. In
this scenario, you typically prompt the user to confirm that he or she wants
to accept the request, and then either ignore the request or connect. The
sample app automatically initiates the connection. The method to connect
is identical for the host, client, or peer; the only difference is that, instead of

passing a peer from a list of selections, the peer requesting the connection
is passed as arguments to the event.

var socket = await PeerFinder.ConnectAsync(args.PeerInformation);
this.InitializeSocket(socket);

If the call succeeds for both peers, a connection is established and
duplex communication can be initiated. You can transmit anything over
the binary socket—from images, to streaming videos, to text or documents.
The sample app simplifies the connection by transmitting only text. The
text you enter is sent to the peer via the output stream of the socket, and
any text received raises an event that is marshalled to the UL

To use the sample program, install it on two Windows 8.1 devices that
support Wi-Fi Direct or have proximity devices. The easiest way is to build
and deploy the source, but you can also use the Store option on the Project
Properties menu to create a side load package. Copy the package to a
thumb drive and execute the included PowerShell script to install it on the
other device.

Run the app on both devices. You must start advertising on both devices
to establish a connection. After you've started advertising, either tap the
devices or tap Browse to use Wi-Fi Direct. If you browse, select another
machine and tap Connect. When the connection is established, via either
NFC tap or browsing, you can begin to send messages between the two
peers (see Figure 10.3).

Proximity Example

Proximity Device: None Trigger: Mot Supported Browse: Supported Connected Peer: JRL-Yoga
Start Advertising Stop Advertising Browse Connect

hi from this devicel h 4 | Send Last Message: hello from another devicel

Selecled Peer: JRL-Yuya
JRL-Yoga

[WinRT By Example Proximity

FIGURE 10.3 Example of communicating between peers using the
Proximity API

407

408

Numerous possibilities exist for taking advantage of the peer connec-
tion. You can use it to share documents or pictures between devices, archive
data, create a chat session, or even share game state in a multiplayer game.
The API handles all the necessary low-level handshakes and connectivity
so that you can focus on the implementation of your application without
worrying about the underlying NFC protocol or even whether the devices
connect over Bluetooth or Wi-Fi Direct. The Proximity API is nearly iden-
tical on the Windows Phone, making it possible to build apps that span
devices and create a truly continuous user experience among Windows
PCs, tablets, and phones.

Background Transfers

Many apps must download large amounts of information to present to the
user. For example, an app focused on providing instructional videos might
need to download new videos from the Internet. These files could be hun-
dreds of megabytes or even gigabytes in size. Although the HttpClient class
is capable of retrieving files of this size, you must also take into account the
application lifecycle.

As you learned in Chapter 2, “Windows Store Apps and WinRT
Components,” whenever the user moves your app into the background,
your app can be suspended or frozen, essentially stopping any downloads
dead in their tracks. In some scenarios, the app might even be terminated,
forcing you to create a new instance of the class in an attempt to start the
download again. Fortunately, WinRT provides a way to handle this spe-
cific scenario using a background task.

You learn more about background tasks in Chapter 15. This chapter
introduces a specific API for downloading files that exists in the Windows.
Networking.BackgroundTransfer namespace. The API is defined for several
reasons. The most obvious is to enable your app to download files without
interruption. These download tasks should continue even if your app is
swapped to the background or terminated. You should also be able to dis-
cover any existing downloads when your app is launched again, to either
continue to download or cancel them as needed. The extra advantage this
API provides is a power-friendly and cost-aware means of transferring

files. The API is architected to handle the download in a way that maxi-
mizes battery life and can pause the transfer when the user switches to a
metered network. These features combine to provide the best mobile expe-
rience possible for the device user.

The reference project TapAndGoProximityNetworking serves two
purposes. As a follow-up to the previous section about the Proximity API,
it downloads an excellent video presentation by my colleague Jeff Prosise
from Microsoft’s Channel 9 website. His talk, given at TechEd Europe in
2013, covers the Proximity API and provides working examples of encod-
ing tags, reading tags, and tapping to share data between multiple devices.
It is a great way to reinforce the information you learned in the previous
section. The project downloads a high-fidelity version of the video that
is almost 600MB in size. The second purpose is to demonstrate the back-
ground transfer capabilities.

To simplify the example, I placed all the code in the code-behind of
the main page to simply download a file and then play it using the file
launcher. The associated video player should pick up the file and begin
playing the presentation after it is downloaded. The app first checks to see
whether the movie already exists, based on a specific name in your video
library. The Video Library capability must be enabled in the manifest for
this to work. If the video exists, you are given the option to delete it to start
over or launch it.

To start a background transfer, you need only two pieces of informa-
tion: the URI of the resource to download and a file to download it to. The
example app encodes the URI to the video download and creates a file with
the name TapAndGo_Prosise.mp4 in your video library in the bownloadonC11ck
method.

var source = new Uri(DownloadUri, UriKind.Absolute);
var destinationFile =
await KnownFolders.VideosLibrary.CreateFileAsync(
LocalName, CreationCollisionOption.ReplaceExisting);

An instance of the BackgroundDownloader class is created, and the
CreateDownload method is called with the source and destination.

var downloader = new BackgroundDownloader();
download = downloader.CreateDownload(source, destinationFile);

409

410

You can provide a callback to receive updates as the download pro-
gresses. This is done by creating an instance of the Progress class of type
DownloadOperation and passing the callback handler, as shown in the
DownTloadProgressAsync method.

var progress = new Progress<DownloadOperation>(UpdateProgress);

The download is then kicked off and cast to a Task with a cancellation
token and the callback for progress.

await this.download.StartAsync().AsTask(cts.Token, progress);

The download is now kicked off and continues to execute even after
your app terminates. If it encounters an error, it updates the error state
for your app to query when the app is launched again. While the app is
running, it provides progress updates, as shown in the UpdateFromProgress
method.

BytesReceived.Text = download.Progress.BytesReceived.ToString(Q);
TotalBytes.Text = download.Progress.TotalBytesToReceive.ToString(Q);

Table 10.3 lists the possible statuses available via the Progress.Status
enumeration. Use this to determine the state of the download and take
appropriate action (in the example app, it is used to enable or disable the
Pause and Resume buttons).

TABLE 10.3 BackgroundTransferStatus Enumeration

Status Description

Idle The application is idle (the download is still
active).

Running The transfer is in progress.

PausedByApplication The app has paused the download by calling the
Pause method on the DownloadOperation.

PausedCostedNetwork The user transitioned to a metered network, and
the download has been paused to avoid additional
cost. It will resume when the user returns to a
nonmetered network.

Status Description

PausedNoNetwork The user has lost network connectivity. The
download will resume when Internet connectivity
is restored.

Completed The operation successfully completed.

Canceled The operation was canceled.

Error An error was encountered.

While the download is running, you can perform a number of actions.
For example, you can call the Pause method on the DownloadOperation to
temporarily pause the download. After it is paused, you can call Resume
to continue the download. Calling Pause twice in a row or calling Resume
before Pause results in an exception, so always keep track of or check the
current status. If you passed a cancellation token to the task, you can also
call Cancel on the token source to abort the download.

If the download completes while your app is still running, it returns
control after await of the StartAsync call. The example app disposes of the
cancellation token and then launches the video. If your app is terminated
or exits before the download is finished, it will continue in the background.
When the app is launched again, you can check for existing transfers, as
the CheckState method shows.

var downloads = await BackgroundDownloader
.GetCurrentDownloadsAsync();

An entry for the download exists whether it is still downloading or it
completed when your app was not running. Either way, you can obtain the
reference to the download, query the status, or attach to receive updates.
The sample app always reattaches to update the status. If the download
has completed, the call to AttachAsync returns immediately; otherwise, it
continues the same way the call to StartAsync worked.

await this.download.AttachAsync() .AsTask(cts.Token, progress);

411

412

To test the app, compile, deploy, and run it. Tap the Download but-
ton. You then see a status similar to Figure 10.4. You can pause, resume,
or cancel the download. After the download has begun, close the app by
stopping it if you are running through the debugger or by pressing Alt+F4.
You can navigate to the video library and refresh the file list to verify that
the download is still running. Start the app again; it should return to the
progress display and begin showing you the current progress. If you let
the download finish, the app automatically launches the video and closes
itself.

Downloading...
263500013/612786425

® O O

Cancel Pause

FIGURE 10.4 The download progress

The transfer API enables you to launch multiple downloads and keep
track of each download individually. You can also group downloads and
perform various tasks on the group. In addition, you can set a priority for
the download and even request that the download run unconstrained so
that it happens more quickly. This prompts the user and also can affect
battery life and quality of the user experience. You learn more about the
various background APIs in Chapter 15.

Summary

In this chapter, you learned how to use advanced features of the HttpClient.
You used the Windows 8.1 seamless integration of HomeGroup technol-
ogy to enumerate resources on your home network and then queried net-
work information to determine what type of connection was active and see
whether it was a metered plan. You leveraged the Sockets APIs to transfer
messages and packets of data between a client and a server. You learned

how to use NFC to transmit short, fast messages; subscribe to messages;
and write data to smart tags. The APIs also enable a scenario to tap and
create a persistent connection over your wired or wireless infrastructure,
Bluetooth, or Wi-Fi Direct. Finally, the background transfer API enabled
an app to download a large video resource even when it wasn’t running.

In Chapter 11, “Windows Charms Integration,” you learn more about
the special icons that appear on the right side of your monitor when you
swipe or hold down Windows+C. These icons, called charms, provide a
special way for your app to integrate with the OS and communicate with
other apps. Using charms enables scenarios such as streaming media to
a projector, using one app to take notes and then sending those notes to
another app to post them online, or accessing the specific settings of vari-
ous apps in a consistent way.

413

This page intentionally left blank

= 13

Devices

IN EARLIER CHAPTERS, YOU SAW THAT ALTHOUGH THE BUILT-IN CON-
trols you can use in your Windows 8.1 apps include extensive support
for touch-based interactions, input from mouse and keyboard input devices
continues to be fully supported. The Windows Runtime also features
extensive support for gathering information from other inputs, includ-
ing sensors. The information these sensors provide includes details about
a device’s location, as well as knowledge about its position and motion
within its immediate environment. Having the capability to incorporate
this information into your apps means you can consider giving your users
new kinds of interactivity and immersion.

In this chapter, you see how the WinRT APIs provide a common model
for working with the various kinds of input pointer devices. This model
provides a range of access, allowing you not only to obtain information
about raw pointer events, but also to work with higher-level abstract
gestures, depending on the needs of your app. You also see how you can
access keyboard events from your code and obtain information about the
user’s key presses.

In addition, you learn about the WinRT APIs for working with location
information, including the capability to set up geographic fences that can
result in automatic notifications to your app when your device crosses a
fence boundary. Furthermore, you learn how to work with the WinRT APIs
that provide access to sensors that can give you information about your

479

480

device’s interactions with the physical world around it, including details
about its orientation, its heading, the rate and direction of its motion, and
even the amount of light currently shining on it.

Working with Input Devices

In Chapter 2, “Windows Store Apps and WinRT Components,” you saw
how the built-in controls that the Windows Runtime provides are designed
to support first-class interactions through touch, as well as keyboard and
mouse combinations. Although access to touch input is becoming more
common in modern computers and devices, it is not yet available every-
where. Attached keyboards, mouse devices, and pens continue to be
important tools for application interaction, not only when touch input is
unavailable, but also in addition to touch input when certain interactions
are simply easier and more natural using these other input mechanisms.

For touch, mouse, and pen inputs, the Windows Runtime API provides
several different kinds of methods and events for working with these
devices and responding to user interaction with them. In addition to the
APIs for working with these devices, a set of methods and events are avail-
able for responding to user interactions with their keyboards.

The Example App

The InputsExample project illustrates several kinds of input device API
integration that you can add to your apps. The app enables the user to add
shapes to the application canvas, which are then animated to move around
the canvas area. The app also detects what input devices are available and
shows information about these connected devices, and it provides options
for configuring what device types the app will listen to for input and
which of the screen or keyboard events the app will respond to. Shapes
can be added through buttons provided on the user interface or by press-
ing predefined keyboard buttons. The shapes themselves are configured to
respond in several ways to interaction with pointer input devices. When a
pointer intersects the edge of a shape, the shape is highlighted and stops
moving. The shapes can also be manipulated to change position, degree of
rotation, and size, with or without inertia. Finally, the shapes respond to

gestures by changing color when tapped, changing direction when dou-
ble-tapped, and resetting to their initial size, color, and rotation when they
are held or right-clicked.

Identifying Connected Input Devices

You can determine which touch input devices are connected and what
their capabilities are in a couple ways. One approach is to use the informa-
tion that the PointerDevice class provides to obtain detailed information
about available touch, mouse, or pen devices. Alternatively, higher-level
classes can garner more general information about the current mouse and
touch capabilities.

The PointerDevice class can obtain detailed information about one or
more connected pointer devices. It provides a static GetPointerDevices
method that returns a list of available devices as PointerDevice object
instances, as well as a static GetPointerDevice method that can retrieve a spe-
cific device based on a pointer ID value (the “Pointer Events” section, later
in this chapter, explains how to obtain a pointer ID). Properties of particular
interest that the PointerDevice type exposes include the PointerDeviceType,
which shows whether the device is a Mouse, Touch, or Pen device, and the
IsIntegrated flag, to indicate whether the device is considered to be inte-
grated into the current machine or has been connected externally. It also
includes a SupportedUsages collection that lists Human Interface Device
(HID) “usages” as PointerDeviceUsage objects. These usages are defined by
Usage Page and Usage Id values that are part of the USB HID specification!
and expose value ranges that the pointer device supports.

Listing 13.1 shows how the example application uses device informa-
tion to determine whether touch, mouse, or pen devices are available. A
list of available devices is obtained depending on whether the list should
include only integrated devices. The resulting values are then queried to
see if any of the desired device types are present.

1USB HID information, www.usb.org/developers/hidpage

481

http://www.usb.org/developers/hidpage

482

LiIsTING 13.1 Determining Device Availability

var devices = PointerDevice.GetPointerDevices();
if (PointerIntegratedDevicesOnly)

{

devices = devices.Where(x => x.IsIntegrated).ToList(Q);
}
IsTouchAvailable

= devices.Any(x => x.PointerDeviceType == PointerDeviceType.Touch);
IsMouseAvailable

= devices.Any(x => x.PointerDeviceType == PointerDeviceType.Mouse);
IsPenAvailable

= devices.Any(x => x.PointerDeviceType == PointerDeviceType.Pen);

The MouseCapabilities and TouchCapabilities classes obtain higher-level
system-wide information about the available mouse and touch device sup-
port. When an instance of one of these types is created, its properties pro-
vide access to information about the respective device availability.

For MouseCapabilities:
The MousePresent property is set to a value of 1 if one or more mouse
devices are currently available.
The Number0fButtons value indicates the highest value available for
any given device.
The VerticalWheelPresent or HorizontalWwheelPresent properties is set
to a value of 1 to indicate whether a device is connected that has
each respective feature.
The swapButtons property is set to 1 if the mouse buttons have been
swapped in the system settings.

For TouchCapabilities:
The TouchPresent property returns a value of 1 if a touch digitizer is
present.
The Contacts property indicates the highest number of concurrent
contacts that are supported.

The example application uses these values to populate the message
boxes that display when the user clicks the Details buttons next to the
check boxes that it provides to enable or disable mouse and touch input
(see Listings 13.2 and 13.3).

483

LISTING 13.2 Displaying Mouse Capabilities

var capabilities = new MouseCapabilities();
String message;
if (capabilities.MousePresent == 1)
{
var rawMessage =
"There is a mouse present. " +
"The connected mice have a max of {0} buttons. " +

"There {1} a vertical wheel present. +

"There {2} a horizontal wheel present. +
"Mouse buttons {3} been swapped.";

message = String.Format(rawMessage
, capabilities.NumberOfButtons

, capabilities.VerticalWheelPresent == ? "is" : "is not"
, capabilities.HorizontalWheelPresent == 1 ? "is" : "is not"
, capabilities.SwapButtons == 1 ? "have" : "have not"
K

}

else

{

message = "There are no mice present.";
}

ShowMessage(message, "Mouse Properties");

LisTING 13.3 Displaying Touch Capabilities

var capabilities = new TouchCapabilities();
String message;
if (capabilities.TouchPresent == 1)
{
var rawMessage =
"Touch support is available. " +
"Up to {0} touch points are supported.";

message = String.Format(rawMessage, capabilities.Contacts);

}

else

{

message

"Touch support is not available.";

3

ShowMessage(message, "Touch Properties");

484

Pointer, Manipulation, and Gesture Events

Instead of having a separate set of input events for touch, mouse, and pen
inputs, the Windows Runtime API combines input from these devices and
provides several distinct tiers of events that can be raised in response to
input from any of these devices. At the lowest tier are the pointer events,
which are raised for each press, move, release, or other simple interaction.
Next are the manipulation events, which track and consolidate actions
from one or more pointers into higher-level events related to motion, scale,
rotation, and inertia. Finally, the gesture events consolidate pointer actions
into even higher-level gesture abstractions, such as tapping, double-
tapping, and holding.

In the example application, all the support for working with input
device pointer, manipulation, and gesture events has been consolidated
into a single InputEventHandler class. This class handles the subscriptions
to the desired events and provides the event handler implementations for
these subscriptions.

"= NOTE

Chapter 2 introduced you to the Visual Studio simulator for Windows
Store Apps, which enables you to run and test your Windows 8.1 app
within a simulated environment on your development system. Ulti-
mately, testing touch support in an application is best done with a
device that actually has touch support. However, if you happen to be
using a development environment that does not provide this support,
using the simulator’s touch-emulation features is a good start toward
exercising this kind of functionality in your app. Ultimately, however,
it is a good idea to make sure your app is exercised for some amount
of time in an actual touch environment.

Pointer Events

The Windows Runtime combines input from touch, mouse, or stylus devices
into the abstract concept of a pointer. Each contact point from each device
is represented by a unique pointer instance. For example, imagine an app
running on a touch-enabled tablet that supports multiple touch points, and
imagine that multiple fingers are pressing the screen simultaneously. In

this case, each finger touching the screen is treated as a unique pointer.
The same holds true if the touch actions include a combination of several
fingers, as well as a click by a mouse or screen contact with a stylus. The
mouse and/or stylus inputs are treated as additional unique pointers.

In Windows 8 XAML apps, the most common way to subscribe to
pointer events is through events that individual UIETement objects expose.
An alternative approach involves subscribing to similar events exposed by
an ICoreWindow instance, which can be obtained through the window.Current.
CoreWindow property. This latter approach is primarily used by DirectX
WInRT games when UIElement objects aren’t readily available. Table 13.1
summarizes the pointer events that are available when a UIETlement is used.

TABLE 13.1 Pointer Events

Event Description

PointerEntered A pointer has moved into the item’s bounding area. For
mouse and stylus input, this does not require a press.
For touch input, because there is no “hover” support,
an actual touch is required; it results in an immediate
subsequent PointerPressed event, unless cancelled in
this event’s handler.

PointerExited A pointer that was in an element’s bounding area has
left that area. For touch input, this event immediately
follows a PointerReleased event.

PointerPressed A pointer has been pressed while within the bound-
ing area for an item. Note that a PointerPressed is not
always terminated by a PointerRelased event, but

it can instead be ended by PointerCanceled or
PointerCapturelLost events.

PointerMoved A pointer that has entered an item’s bounding area is
being moved within that area, or a pointer that has
been captured by an item is moving, even if its position
is beyond the item’s bounding area.

PointerReleased A pointer that was pressed has been released, usu-
ally within an item’s bounding area. This occurs if the
pointer was pressed while inside the item’s bounding
area; a corresponding PointerPressed event then has
been raised, or if the pointer was already pressed
when it moved into the item’s bounding area, the
PointerPressed event might have occurred elsewhere.
If the pointer is currently captured by an item, this
event can also be raised when the pointer is released
outside the item’s boundary.

485

486

Event Description

PointerCanceled A pointer has lost contact with an item in an
unexpected way. This event can fire instead of the
PointerReleased event. Potential reasons for unex-
pected contact loss include changes in an app’s display
size, the user logging off, or the depletion of available
contact points. Note that this event is only part of the
UIElement events, and the ICorewindow interface does
not provide or raise it.

PointerCapture- A pointer capture that the event source item obtained
Lost has been released either programmatically or because a
corresponding PointerPressed has been released.

Several of the pointer events in Table 13.1 either are directly related
to or have side effects that are related to the idea of a pointer being cap-
tured. When a pointer is captured, only the element that captured it
receives any of the input events related to that pointer until the capture
has been released. Typically, a pointer is captured within the handler for a
PointerPressed event because a pointer must be pressed to be captured. To
capture a pointer, the UIETement class includes a CapturePointer method that
takes a Pointer class instance that identifies the pointer to capture. It just
so happens that the PointerRoutedEventArgs that are passed to the UIETement
pointer event handlers include this pointer object, as the following code
illustrates:

private void HandlePointerPressed(Object sender,
PointerRoutedEventArgs args)

{

_eventSourceElement.CapturePointer(args.Pointer);

}

The Pointer object includes a PointerId, which is simply a unique inte-
ger that is assigned to the current pointer and identifies it throughout the
various subsequent pointer events. It also includes a PointerDeviceType
property that returns a value of the PointerDeviceType enumeration and
indicates whether the current pointer is related to input from a touch
device, a mouse device, or a pen device. In the example project, this value

is used to ignore processing in the pointer events when a particular device
type is deselected in the user interface.

if (!IsValidDevice(args.Pointer.PointerDeviceType)) return;

The Pointer object also includes a pair of flags to indicate the position of
the pointer relative to the touch sensor. IsInContact indicates whether the
device is actually contacting the sensor, such as whether a stylus is in direct
contact with the screen when using a touchscreen tablet. In the case of a
mouse device, this is true when one of its buttons is being pressed. IsInRange
indicates whether the device is within detection range but not touching; it
is primarily meant for pen devices because, unlike touch devices, they can
usually be detected before they make physical contact. Generally, mouse
devices always return True for this value, and touch devices return True
only when a touch is actually occurring.

In addition to the Pointer object, the arguments passed to the pointer
events include a KeyModifiers property that indicates whether one or more
of the Control, Menu, Shift, or Windows special keyboard keys was pressed
at the time of the event.

Finally, the event arguments include a pair of methods that obtain addi-
tional information about the input pointer associated with the current inter-
action. The GetCurrentPoint and GetIntermediatePoints methods both accept
a UIElement to provide a frame of reference for any of the coordinate proper-
ties included in the method results. If this value is nu11, the coordinate val-
ues that are returned are relative to the app itself. Whereas GetCurrentPoint
returns a single PointerPoint instance, the GetIntermediatePoints returns a
collection of PointerPoint instances from the last pointer event through the
current one. In addition to being able to obtain PointerPoint information
from the pointer event arguments, the PointerPoint class itself includes
static methods that accept a PointerId value and return the current or inter-
mediate PointerPoint values, with coordinates relative to the app.

The Pointerpoint class includes a lot of information about the current
interaction. At the root, it includes the Pointerid value, a Position value
indicating the Point where the pointer event occurred, and a PointerDevice
property that provides the same PointerDevice value discussed in the
earlier section “Identifying Connected Input Devices.” It also includes a

487

488

Properties value that provides access to significantly more detailed infor-
mation. Among the properties provided, this value includes touch infor-
mation, such as the contact rectangle value; mouse information, such as
whether the left, middle, right, first extended, or second extended buttons
are pressed; and pen information, including several values that describe
the physical position of the pen, whether it is inverted, and the amount of
pressure being applied to its tip. Furthermore, the HasUsage and GetUsage
methods are useful in obtaining HID value information from the device
for the current interaction. These are the same HID values that can be enu-
merated with the SupportedUsages method that PointerDevice class instances
mentioned earlier provide. The following code shows how to request the
amount of tip pressure (usageId value 0x30) applied to a digitizer stylus
device (usagePage value 0x0D).

if (pointerDetails.Properties.HasUsage(0x0D, 0x30))
{

pressure = pointerDetails.Properties.GetUsageValue(0x0D, 0x30);

}

Although the amount of detail provided by the pointer events can har-
ness a lot of power, the information provided is at a very low level. For
most application needs, this information needs to be synthesized into
more abstract concepts. Examples might include recognizing a pair of
PointerPressed and PointerReleased events potentially as either a single tap
or a hold action, depending on how much time elapses between the two
pointer actions, or perhaps tracking multiple pointer actions to determine
whether pinch or rotation actions are occurring. Fortunately, you will most
likely not need to write and maintain the state-tracking code required to
achieve this level of abstraction; these kinds of events are already calcu-
lated and provided for you in the form of the manipulation events and
gesture events.

Manipulation Events

Manipulation events are the result of grouping and translating several
pointer events associated to an item that originate from either one or sev-
eral pointers. During a manipulation, changes to translation (position),
scale (size), and rotation are computed, tracked, and made available via
the event argument parameters provided by these events. A manipulation

also tracks the velocities with which these changes are occurring and
includes the capability to optionally calculate and apply inertia based on
these velocities when the pointer events complete.

In Windows 8.1 XAML apps, the most common way you subscribe to
manipulation events is through the events that individual UIETement objects
expose. For a UIETement to generate manipulation events, the element needs
to have its ManipulationMode property set to a value of the ManipulationModes
enumeration other than None or System. The default value for most controls
is System, and it enables the UIElement to process manipulations internally,
whereas a value of None suppresses all manipulations. Other significant
values include TranslateX and TranslateY to track movement on the x- and
y-axis, Rotate to track rotation, and Scale to track stretching or pinching.
Values for TranslateInertia, RotateInertia, and ScaleInertia are also avail-
able to indicate that these manipulations should trigger inertia calcu-
lations. Table 13.2 summarizes the manipulation events exposed by the
UIETement class.

TABLE 13.2 Manipulation Events

Event Description

ManipulationStarting A PointerPressed event has occurred, and
manipulation processing starts looking for
the pointer to move, to actually start track-
ing a manipulation.

ManipulationStarted A pressed pointer has moved. This marks
the beginning of the manipulation, which
contains some number of Manipulation-
Delta events and is concluded with a
ManipulationCompleted event.

ManipulationDelta One or more of the pressed pointers have
moved or inertia is being applied.

ManipulationInertiaStarting | The manipulation has been configured to
support inertia, and the last pointer was
released while the manipulation still had

a velocity. ManipulationDelta events are
raised until velocity falls below the inertia-
defined threshold.

ManipulationCompleted The last pointer is no longer pressed, and

any inertia calculations have completed.

489

490

Thefirsteventreceived duringamanipulationistheManipulationStarting
event. This event includes a Mode property that initially matches the
ManipulationMode value set on the UIETement object. It allows the types of
manipulations that will be tracked to be modified one last time before the
manipulation tracking actually starts. If a pressed pointer is moved, the
ManipulationStartedeventis fired, followed by one or moreManipulationDelta
events as the pointer continues to move.

The arguments provided to the ManipulationDelta event handler provide
the information that can be used to react to the manipulation. The argu-
ments contain some general-purpose informational properties that include
the PointerDeviceType, which is the same as it was for the pointer events
(note that this implies that a manipulation cannot span device types, such
as a pinch occurring with both a finger and a mouse); a Container value
that indicates the UIE1ement on which the manipulation is occurring; and an
IsInertial flag that specifies whether the ManipulationDelta event is a result
of inertia that occurs after pointers have been released. Of particular inter-
est, however, are the Delta, Cumulative, and Velocity values.

The Delta property provides the changes in the values for Translation,
Expansion, Scale, and Rotation that have occurred since the last
ManipulationDelta event occurred. Translation indicates how much move-
ment occurred on the x- and y-axis. Expansion specifies how far the distance
grew or shrank between touch contacts. Scale is similar to Expansion, but
it specifies the change in distance as a percentage. Finally, Rotation speci-
fies the change in the rotation degrees. The Cumulative property returns the
same items, except that the values returned are the overall changes that
have occurred since the manipulation started instead of since the previ-
ous ManipulationDelta event. Finally, the velocity provides a Linear prop-
erty that contains the x and y velocities specified in pixels/milliseconds, an
Expansion property that specifies the scaling change in pixels/ milliseconds,
and an Angular property that specifies the rotational velocity in degrees/
milliseconds.

In the example application, the delta values are applied to the shape
being manipulated to move it onscreen, resize it, or rotate it (rotation is
better seen with the square shape than the circular one). Listing 13.4 shows

491

the event handler in the InputEventHandler class for the ManipulationDelta
event.

LISTING 13.4 Handling Manipulation Changes

private void HandleManipulationDelta
(Object sender, ManipulationDeltaRoutedEventArgs args)

{
// Check to see if this kind of device is being ignored
if (!IsvValidDevice(args.PointerDeviceType)) return;
// Update the shape display based on the delta values
var delta = args.Delta;
_shapeModel.MoveShape(delta.Translation.X, delta.Translation.Y);
_shapeModel.ResizeShape(delta.Scale);
_shapeModel.RotateShape(deTlta.Rotation);

}

The processing in the ShapeModel class is fairly straightforward. The
MoveShape method simply makes sure that adding the offset values to the
current position doesn’t move the shape beyond the current borders and
adjusts the resulting position value accordingly. ResizeShape multiplies
the current shape scale by the provided percentage and then makes sure
the resulting shape size is within the minimum and maximum boundar-
ies established for a shape. RotateShape simply adds the degree value to
the current Rotation property. A TranslateTransform is bound to the shape
position values. A RotateTransform has its Angle value bound to the rotation
angle, as well as its CenterX and CenterY values bound to the position of the
shape. Finally, a ScaleTransform has its Scalex and Scaley values bound to
the scale of the shape, with the Centerx and CenterY values also bound to
the shape position.

The final manipulation concept to be discussed is inertia. If one or more
of the inertia ManipulationMode values is specified, the manipulation pro-
cessing can include the application of inertia, depending on whether the
last pointer involved in the manipulation was removed following an action
that had a velocity. In the example app, this occurs when a shape is being
dragged from one side of the screen to another and, halfway through, the
finger /mouse/pen is suddenly released. In the physical world, the object

492

would tend to continue to slide along until slowed by friction. With manip-
ulation support for inertia, your app can include similar behavior without
any extra work on your part.

When inertia starts, the ManipulationInertiaStarting event is raised. The
arguments for this event include the arguments that were discussed for the
ManipulationDelta event, as well as TranslationBehavior, ExpansionBehavior,
and RotationBehavior arguments to control the behavior of the inertia
effect. Each of these values includes a value called DesiredDeceleration
that defines the deceleration rate, as well as a value to indicate the final
desired value for each property, respectively named DesiredDisplacement,
DesiredExpansion, and DesiredRotation. You can either leave the default val-
ues in place or replace them with your own value for more control over
the inertia behavior. After the handler for this event has completed, the
manipulation processor automatically raises ManipulationDelta events with
values based on the application of inertia to the current state until either
the desired value is reached (if specified) or deceleration results in a veloc-
ity of zero.

When the last pointer has been released, or when inertia has com-
pleted (when specified through the ManipulationMode setting), the
ManipulationCompleted event is raised, signaling that the manipula-
tion is now complete. The arguments to this event include the general-
purpose informational properties that were discussed previously, as well
as the Cumulative and Velocities information that was also provided to the
ManipulationDelta event.

"= NOTE

Although the manipulation and gesture events the UIETement class pro-
vides will take care of most needs, more control or additional gesture
types are required in some cases. The Windows Runtime provides the
Windows.UI.Input.GestureRecognizer class, which can directly process
pointer events to generate these high-level events.

Gesture Events

Gesture events are similar to manipulation events, in that they are the
result of grouping and interpreting several pointer events. However, a few
key differences set them apart. First, gesture events communicate more
abstract and discrete concepts than manipulation events. Manipulation
events communicate information about the beginning, middle, and end
of a manipulation and include arguments that provide information about
the different kind of changes that have occurred. Gesture events each relay
information about the occurrence of a single, isolated event, such as a tap
or a double-tap. Second, manipulation events provide information that
synthesizes input from several pointers, whereas gesture events are con-
cerned with the action of only one pointer at a given time.

As with manipulation events, the UIETement class provides the most
commonly used access to gesture events and related configuration settings.
Table 13.3 summarizes the gesture events made available by UIElement
instances.

TABLE 13.3 Gesture Events Defined in UIElement

Event Description

Tapped A tap has occurred, defined by a quick pointer press and
release (where a long press followed by a release results
in Holding and RightTapped events). This is equivalent to a
mouse Click event.

DoubleTapped A second tap has occurred after a first tap event, within a
system-setting defined time. This is equivalent to a mouse
DoubleClick event.

Holding A long-duration press is occurring or has completed. The
event is raised when the long-press is initially detected,
and once again when the long-press is either completed
or cancelled. Mouse devices generally do not raise this
event.

RightTapped A right-tap has occurred, defined by either the completion
of a holding gesture (for touch and pen devices) or a click
with the right button (for mouse devices). This is equiva-

lent to a mouse RightClick event.

493

494

All the gesture events include a PointerDeviceType property that indi-
cates the type of device that generated the event, as well as a GetPosition
method that returns the coordinates of the action that led to the event,
relative to the UIETement argument in the method call. If a nu11 value is pro-
vided to GetPosition, the coordinates returned are relative to the app itself.
The Holding event also includes a HoldingState property that is discussed
shortly. Note that the Tapped and Holding events are mutually exclusive.
Also, when a double-tap occurs, a Tapped event is raised for the first interac-
tion, but the second one generates only the DoubleTapped event.

The UIETement class also provides the IsTapEnabled, IsDoubleTapEnabled,
IsHoldingEnabled, and IsRightTapEnabled properties. By default, they are all
set to true; setting them to false prevents the corresponding event from
being raised.

The Tapped, DoubleTapped, and RightTapped events are similar, but the
Holding event behaves a little differently. As Table 13.3 mentioned, the
Tapped event is usually generated only by interaction with touch and stylus
devices, not by mouse devices. It is also the only event that is raised when
the pointer involved in the event is in a pressed state. When a pointer is
pressed and held steady, and after the initial hold time interval has passed,
the Holding event is raised with its HoldingState property set to a value of
Started. After the hold has begun, if the pointer is moved or the same ele-
ment captures another pointer, the hold is considered to have been can-
celled and the Holding event is raised once again, with the HoldingState
property set to a value of Cancelled. Otherwise, when the pressed pointer is
lifted, the Holding event is raised again with a HoldingState property set to a
value of Completed. If the hold was successfully completed, the RightTapped
event follows.

In the example application, the tap-related gesture events cause dif-
ferent actions to happen to the shapes they occur on. The Tapped event
changes the shape color to a random value, the DoubleTapped event causes
the shape to take a new randomly calculated direction, and the RightTapped
event causes the shape to be reset to its original color, size, and rotation.
The code in Listing 13.5 illustrates this interaction for a Tapped event.

LISTING 13.5 Processing a Gesture Event

private void HandleTapped(Object sender, TappedRoutedEventArgs args)
{

// Check to see if this kind of device is being ignored

if (!IsValidDevice(args.PointerDeviceType)) return;

// Examine the current position
var position = args.GetPosition(_eventSourceETlement);
Debug.WriteLine("Tapped at X={0}, Y={1}", position.X, position.Y);

// Alter the shape based on the gesture performed
_shapeModeT.SetRandomColor();

Keyboard Input

In addition to the pointer-based input devices, the Windows Runtime
includes support for working with input gathered from keyboards.
To obtain information about the available keyboard support, you can
use the KeyboardCapabilities class. Similar to the MouseCapabilities and
TouchCapabiTlities counterparts, it includes a KeyboardPresent property that
is set to a value of 1 if one or more keyboards are currently available. The
example application uses this value to provide the text for a message box
that displays when the user clicks the Details button next to the Keyboard
header, as in Listing 13.6.

LISTING 13.6 Displaying Keyboard Capabilities

var keyboardCapabilities = new KeyboardCapabilities();
var message = keyboardCapabilities.KeyboardPresent ==
? "There 1is a keyboard present."”
: "There 1is no keyboard present.";

ShowMessage(message, "Keyboard Properties");

The UIETement class provides two available keyboard events. The KeyDown
event is raised when a key is pressed, and the KeyUp event is raised when a
pressed key is released. These events are raised by a control only when the
control has the input focus, either when the user taps inside the control or
uses the Tab key to rotate focus to that control, or when the control’s Focus
method has been called programmatically.

495

496

As an alternative, the CoreWindow class provides three events related to
keyboard interactions. Similar to the UIETement, it provides KeyDown and KeyUp
events. However, these events are raised regardless of which control cur-
rently has input focus. The CoreWindow class also includes a CharacterReceived
event, which is discussed in more detail shortly.

In the case of the UIETlement, both the KeyDown and KeyUp events provide
KeyRoutedEventArgs arguments; for the CoreWindow cl