
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321885715
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321885715
https://plusone.google.com/share?url=http://www.informit.com/title/9780321885715
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321885715
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321885715/Free-Sample-Chapter

Praise for the First Edition of Learning iPad
Programming

“This amazing, thorough book takes an interesting approach by working
through the design and development of a simple, yet realistic, iPad app from
start to finish. It is refreshing to see a technical book that explains how and why
without inundating you with endless toy examples or throwing you into a sea of
mind-numbing details. Particularly amazing is that it does this without assuming
a large amount of experience at first. Yet it covers advanced topics at sufficient
depth and in a logical order for all developers to get plenty of valuable informa-
tion and insight. Kirby and Tom know this material and have done a great job
of introducing the various frameworks and the reasoning behind how, why, and
when you would use them. I highly recommend Learning iPad Programming to
anyone interested in developing for this amazing platform.”
—Julio Barros

E-String.com

“This is a great introduction to iPad programming with a well-done sample
project built throughout. It’s great for beginners as well as those familiar with
iPhone development looking to learn the differences in developing for the larger
screen.”
—Patrick Burleson

Owner, BitBQ LLC (http://bitbq.com)

“Kirby Turner and Tom Harrington’s Learning iPad Programming provides a com-
prehensive introduction to one of today’s hottest topics. It’s a great read for the
aspiring iPad programmer.”
—Robert Clair

Author, Learning Objective-C 2.0

“Learning iPad Programming is now my go-to reference when developing apps for
the iPad. This book is an absolute treasure trove of useful information and tips
for developing on the iPad. While it’s easy to think of the iPad as just a bigger
iPhone, there are specific topics that need to be treated differently on the iPad,
such as making best use of the larger display. Learning iPad Programming provides
an incredible amount of depth on all areas of iPad programming and takes you
from design to fully functioning application—which for me is a killer feature of
the book. This should be in everyone’s reference library.”
—Mike Daley

Author, Learning iOS Game Programming
Cofounder, 71Squared.com

http://bitbq.com

“A truly well-rounded book with something for every iOS developer, be they
aspirant or veteran. If you are new to iOS, there is a solid foundation provided
in Part I that will walk you through Objective-C, the core Apple frameworks,
provisioning profiles, and making the best of Xcode. If you’ve been around the
block but want solid insight into iPad programming, Part II has you covered:
Rather than just providing canned example code, Kirby and Tom give you
real code that incrementally builds and improves a real app. And if you’ve been
working with iOS for a while, but would benefit from a walk-through of the
plethora of new features that have come our way with iOS 5 and Xcode 4, dive
into the chapters on Storyboards, iCloud, and Core Image. Best of all, the book
is well-written and conversational, making it a joy to read. This book is stellar.”
—Alexis Goldstein

Coauthor, HTML5 & CSS3 for the Real World

“Learning iPad Programming is one of the most comprehensive resources on the
planet for those developing for Apple’s iPad platform. In addition to coverage
of the language, frameworks, and tools, it dives into features new in iOS 5, like
Automatic Reference Counting, Storyboarding, and connecting your applica-
tions with iCloud. But where this book really shines is in the tutorials and the
application you will build as you read through this book. Rather than being a
toy that employs only off-the-shelf iOS user interface components from Interface
Builder, the PhotoWheel app demonstrates custom view programming and view
controller containment, nonstandard gesture/user input handling, and provides
insight into how a complex iOS project comprised of multiple subsystems is
assembled into a shipping application. In other words, Learning iPad Programming
shows how to deal with the challenges you’ll face in real iPad development.”
—Erik Price

Senior Software Engineer, Brightcove

“A thoroughly crafted guide for learning and writing iOS applications, from the
humble beginnings in Xcode and Interface Builder to creating a full-featured
iPad application. There are many books that try to cover the gamut of knowl-
edge required to take a reader from zero to app; Kirby and Tom have actually
done it in this book. It is a fun and comprehensive guide to the world of devel-
oping apps for Apple’s magical device.”
—Rod Strougo

Founder, Prop Group

“The iPad is changing the way we think about and use technology. Learning iPad
Programming is one of the most in-depth and well-executed guides to get both
new and seasoned developers up to speed on Apple’s exciting new platform.”
—Justin Williams

Crew Chief, Second Gear

Learning iPad
Programming

Second Edition

The Addison-Wesley Learning Series is a collection of hands-on programming
guides that help you quickly learn a new technology or language so you can
apply what you’ve learned right away.

Each title comes with sample code for the application or applications built in
the text. This code is fully annotated and can be reused in your own projects
with no strings attached. Many chapters end with a series of exercises to
encourage you to reexamine what you have just learned, and to tweak or
adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away and
leave you with the ability to walk off and build your own application and apply
the language or technology to whatever you are working on.

Visit informit.com/learningseries for a complete list of available publications.

Addison-Wesley Learning Series

Learning iPad
Programming

A Hands-On Guide to
Building iPad Apps

Second Edition

Kirby Turner

Tom Harrington

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

The Addison-Wesley Learning Series is a collection of hands-on programming
guides that help you quickly learn a new technology or language so you can
apply what you’ve learned right away.

Each title comes with sample code for the application or applications built in
the text. This code is fully annotated and can be reused in your own projects
with no strings attached. Many chapters end with a series of exercises to
encourage you to reexamine what you have just learned, and to tweak or
adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away and
leave you with the ability to walk off and build your own application and apply
the language or technology to whatever you are working on.

Visit informit.com/learningseries for a complete list of available publications.

Addison-Wesley Learning Series

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial cap-
ital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Turner, Kirby, 1966–
 Learning iPad programming : a hands-on guide to building iPad
apps / Kirby Turner, Tom Harrington. — Second edition.
 pages cm
 Includes index.
 ISBN 978-0-321-88571-5 (pbk. : alk. paper)
1. iPad (Computer)—Programming. 2. Application software—
Development. 3. Mobile computing. 4. iOS (Electronic resource)
I. Harrington, Tom. II. Title.
 QA76.8.I863T87 2013
 005.258—dc23
 2013004508

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. To obtain permission to use material from
this work, please submit a written request to Pearson Education, Inc., Permissions Depart-
ment, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to
(201) 236-3290.

ISBN-13: 978-0-321-88571-5
ISBN-10: 0-321-88571-6
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, May 2013

Editor-in-Chief
Mark L. Taub

Senior Acquisitions
Editor
Trina MacDonald

Senior
Development Editor
Chris Zahn

Managing Editor
John Fuller

Full-Service
Production
Manager
Julie B. Nahil

Production Project
Manager
Vicki Rowland

Copy Editor
Jill E. Hobbs

Indexer
Ted Laux

Proofreader
Janice R. Norris

Technical
Reviewers
Patrick Burleson
Michael Haberman
Andrew Moore

Editorial Assistant
Olivia Basegio

Compositor
Vicki Rowland

v

To Steve Jobs, who saw further than most.
— Kirby Turner and Tom Harrington

To Melanie and Rowan, for their continuous love and support.
And to my mom, my personal hero.

—Kirby Turner

To Carey, who gave me the courage to pursue my dreams.
—Tom Harrington

v

This page intentionally left blank

Contents at a Glance

	 	 Foreword	 	 xxv

	 	 Preface	 	 xxix

	 	 Acknowledgments	 	 xlv

	 	 About	the	Authors	 	 xlvii

I Getting Started 1

	 1	 Your	First	App	 	 3

	 2	 Getting	Started	with	Xcode	 	 21

	 3	 Getting	Started	with	Interface	Builder	 	 47

	 4	 Getting	Started	with	Objective-C	 	 71

	 5	 Getting	Started	with	Cocoa	 	 97

	 6	 Provisioning	Your	iPad	 	 125

	 7	 App	Design	 	 151

II Building PhotoWheel 175

	 8	 Creating	a	Master-Detail	App	 	 177

	 9	 Using	Table	Views	 	 197

	 10	 Using	Collection	and	Custom	Views	 	 235

	 11	 Using	Touch	Gestures	 	 269

	 12	 Adding	Photos	 	 285

	 13	 Data	Persistence	 	 301

	 14	 Storyboarding	in	Xcode	 	 337

	 15	 View	Controllers	and	Segues	 	 359

	 16	 Building	the	Main	Screen	 	 387

	 17	 Creating	a	Photo	Browser	 	 447

	 18	 Supporting	Device	Rotation	 	 489

Contents at a Glancex

	 19	 Printing	with	AirPrint	 	 517

	 20	 Sharing	with	Others	 	 525

	 21	 Web	Services	 	 541

	 22	 Syncing	with	iCloud	 	 579

	 23	 Producing	a	Slideshow	with	AirPlay	 	 605

	 24	 Visual	Effects	with	Core	Image	 	 625

	 25 Going	Universal	 	 653

III The Finishing Touches 663

	 26	 Debugging	 	 665

	 27	 Distributing	Your	App	 	 689

	 28	 The	Final	Word	 	 707

	 A	 Installing	the	Developer	Tools	 	 709

	 	 Index	 	 717

Contents

 Foreword xxv

 Preface xxix

 Acknowledgments xlv

 About the Authors xlvii

I Getting Started 1

 1 Your First App 3

Creating the Hello World Project 3

Getting Text on the Screen 11

Say Hello 13

Summary 19

 2 Getting Started with Xcode 21

The IDE 21

Workspace Window 22

Toolbar Area 22

Navigation Area 24

Editor Area 25

Utility Area 26

Debug Area 28

The Design of the Workspace Window 28

Preferences 29

Fonts and Colors 29

Text Editing 30

Line Wrapping 32

Key Bindings Preferences 34

Code Completion 36

Developer Documentation 37

Editors 38

Standard Editor 38

Assistant Editor 38

Version Editor 40

Project Settings 40

Contentsxii

Schemes 42

Organizer 43

Other Xcode Tools 44

Summary 45

 3 Getting Started with Interface Builder 47

Interface Builder 47

How Does IB Work? 48

Getting Hands-On Practice with IB 49

Selecting and Copying Objects 53

Aligning Objects 53

Layout Rectangle 56

Inspectors 57

Connecting Your NIB to Your Code 61

Defining an Outlet in Code 62

Using the Assistant Editor 68

Storyboards 70

Summary 70

 4 Getting Started with Objective-C 71

What Is Objective-C? 71

Hands-On Practice with Objective-C 72

Let’s Write Some Code 75

Memory Management 93

Automatic Reference Counting 94

Summary 95

 5 Getting Started with Cocoa 97

The Cocoa Stack 97

Foundation 99

Data Type 100

Collection Classes 106

Utility Classes and Functions 108

UIKit 112

UIApplication 113

UIWindow 113

UIScreen 113

Contents xiii

UIView 113

UIViewController 113

UIWebView 113

UILabel 113

UITextField 114

UITextView 114

UIButton 114

UITableView and UITableViewCell 115

UIScrollView 115

UIPageControl 116

UIPickerView 116

UIDatePicker 117

UISwitch 117

UISlider 117

UIMenuController and UIMenuItem 117

UIImage 117

UIImageView 118

UINavigationBar 119

UINavigationController 119

UIToolbar 119

UITabBar 120

UIBarButtonItem 120

UISegmentedControl 120

Common Design Patterns in Cocoa 121

Model-View-Controller 121

Target-Action 122

Summary 123

 6 Provisioning Your iPad 125

About the iOS Provisioning Portal 125

The Provisioning Process: A Brief Overview 127

What Is a Device ID? 127

What Is an App ID? 128

What Is a Development Provisioning Profile? 129

Setting Up Your Development Machine 130

Requesting a Development Certificate 131

Submit Your CSR for Approval 134

Contentsxiv

Download and Install Your Certificate 135

Setting Up Your Device 138

Use for Development 139

Using the iOS Provisioning Portal 141

Adding a Device ID 141

Adding an App ID 143

Creating a Development Provisioning Profile 145

Downloading a Development Provisioning Profile 146

Installing a Development Provisioning Profile 147

Summary 149

 7 App Design 151

Defining Your App 151

App Name 152

App Summary 152

Feature List 153

Target Audience 154

Revisit Your Feature List 155

Competing Products 155

A Sample App Charter 156

UI Design Considerations 158

Read the HIG 158

Make Your App “Tapworthy” 158

Design for the Device 159

People Use iOS Devices Differently from the Web or
Desktop 159

Wear Your Industrial Designer Hat 160

Metaphors 160

Sound Effects 162

Customize Existing Controls 162

Hire a Designer 164

Mockups 164

What Is a Mockup? 164

What to Mock up 166

Tools to Use 166

Prototyping 171

What Is a Prototype? 171

Contents xv

How to Create a Prototype 172

Summary 173

II Building PhotoWheel 175

 8 Creating a Master-Detail App 177

Building a Prototype App 177

What Is the Split View Controller? 178

Create a New Project 180

Using the Simulator 181

A Closer Look 183

Project Structure 183

App Delegate 184

Launch Options 188

Other UIApplicationDelegate Methods 188

A Tour of UISplitViewController 189

Assigning the Split View Controller Delegate 192

Detail View Controller 194

Navigation Controller 194

Master View Controller 195

Summary 195

Exercises 196

 9 Using Table Views 197

First Things First 197

A Closer Look 201

UITableView 201

UITableViewCell 202

UITableViewDelegate 202

UITableViewDataSource 202

UITableViewController 202

Working with a Table View 203

A Simple Model 203

Display Data 206

Add Data 210

Edit Data 224

Delete Data 228

Contentsxvi

Reorder Data 229

Select Data 230

Summary 233

Exercises 234

 10 Using Collection and Custom Views 235

Collection Views 235

The Collection View Family of Objects 236

Flow Layout 236

Custom Cells 242

Custom Views 246

View Controller… Not 247

A Wheel View 248

A Carousel View 256

A Photo Wheel View Cell 263

Using PhotoWheelViewCell 265

Summary 268

Exercises 268

 11 Using Touch Gestures 269

Touch Gestures Explained 269

Predefined Touch Gestures 270

Gesture Types 270

How to Use Gesture Recognizers 271

Custom Touch Gestures 275

Creating a Spin Gesture Recognizer 276

Using the Spin Gesture Recognizer 278

Summary 283

Exercises 283

 12 Adding Photos 285

Two Approaches 285

Assets Library 285

Image Picker Controller 286

Using the Image Picker Controller 286

Using Action Sheets 289

Using UIImagePickerController 293

Saving to the Camera Roll 297

Contents xvii

Summary 299

Exercises 299

 13 Data Persistence 301

The Data Model 301

Photos 301

Photo Albums 302

Thinking Ahead 302

Building the Model with Core Data 302

What Is Core Data? 302

Managed Objects and Entity Descriptions 303

Managed Object Contexts 305

Persistent Stores and Persistent Store
Coordinators 306

Adding Core Data to PhotoWheelPrototype 306

Adding the Core Data Framework 306

Setting up the Core Data Stack 308

Using Core Data in PhotoWheel 312

The Core Data Model Editor 312

Adding the Entities 313

Creating NSManagedObject Subclasses 317

Adding Custom Code to Model Objects 321

Reading and Saving Photo Albums with
Core Data 327

Adding New Photos to an Album with Core Data 331

Displaying Photos in an Album with Core Data 334

Using SQLite Directly 335

Summary 336

Exercises 336

 14 Storyboarding in Xcode 337

What Is a Storyboard? 337

Using a Storyboard 338

Scenes 339

Segues 340

Storyboarding PhotoWheel 341

Workspace 341

Add the Main Storyboard 344

Contentsxviii

Set UIMainStoryboardFile 346

Update AppDelegate 347

Add Images 348

App Icon 349

Initial View Controller 350

Another Scene 352

Creating a Segue 355

Summary 357

Exercises 357

 15 View Controllers and Segues 359

Implementing a View Controller 359

Container View Controllers 364

Create a Container View Controller 365

Add the Child Scenes 366

Segue 369

Creating a Custom Segue 370

Setting the Scene 370

Implementing a Custom Segue 375

Before You Compile 380

Customizing the Pop Transitions 381

Summary 385

Exercises 385

 16 Building the Main Screen 387

Reusing Prototype Code 388

Copy Files 388

Core Data Model 390

Changes to WheelView 394

Displaying Photo Albums 406

Implementing the Photo Albums View Controller 408

Setting the Managed Object Context 414

Adding Photo Albums 416

Managing Photo Albums 417

Selecting the Photo Album 417

Naming the Photo Album 421

Fixing the Toolbar Display 426

Contents xix

Removing the Photo Album 428

A Better Photo Album Thumbnail 430

Adding Photos 434

Displaying Photos 439

Using the Collection View 442

Summary 446

Exercises 446

 17 Creating a Photo Browser 447

Using the Scroll View 447

Setting Up the Photo Browser UI 455

Launching the Photo Browser 456

Improving the Push and Pop 460

Adding Chrome Effects 468

Zooming 474

Deleting a Photo 480

Summary 488

Exercise 488

 18 Supporting Device Rotation 489

How to Support Rotation 489

Supported Orientations 491

Using Cocoa Auto Layout 492

Customized Rotation 495

Rotating the Photos Scene 502

Rotating the Albums Scene 508

Rotating the About View 510

Rotating the Photo Browser 510

Launch Images 513

Summary 515

Exercises 516

 19 Printing with AirPrint 517

How Printing Works 517

Print Center 518

Requirements for Printing 519

Printing API 519

Adding Printing to PhotoWheel 519

Contentsxx

The Printer Simulator 522

Summary 523

Exercises 524

 20 Sharing with Others 525

Sending Email 525

How It Works 525

The MFMailComposeViewController Class 527

The SendEmailController Class 527

Activity View Controller 537

Using the Activity View Controller 537

Summary 540

Exercises 540

 21 Web Services 541

The Basics 541

RESTful Web Services Using Cocoa 542

Flickr 543

Adding Flickr to PhotoWheel 545

Updating the Flickr View Controller Scene 547

Displaying the Flickr Scene 548

Wrapping the Flickr API 551

Downloading Photos Asynchronously 559

Implementing FlickrViewController 565

One More Thing 575

What’s Missing 576

Summary 577

Exercises 577

 22 Syncing with iCloud 579

Syncing Made Simple 579

iCloud Concepts 580

File Coordinators and Presenters 580

UIDocument and UIManagedDocument 581

Ubiquitous Persistent Stores 581

Device Provisioning, Revisited 582

Configuring the App ID 582

Provisioning for iCloud 584

Contents xxi

Configuring iCloud Entitlements 585

iCloud Considerations for PhotoWheel 586

Don’t Sync More Than You Need to Sync 586

Using Transient Core Data Attributes 586

Updating PhotoWheel for iCloud 588

Syncing Photos with iCloud 592

Making the Persistent Store Coordinator
Ubiquitous 592

Monitoring iCloud Data 597

Receiving Changes from iCloud 598

Going Further with iCloud 600

Preexisting Data Stores 600

Duplicate Detection 601

Repeated Calls to awakeFromInsert 601

Deleted Documents and Data 602

Summary 603

Exercises 603

 23 Producing a Slideshow with AirPlay 605

External Display Options 605

App Requirements for External Displays 606

External Display API 606

Attaching an External Display 607

Adding a Slideshow to PhotoWheel 609

Updating the Storyboard 610

Adding the Slideshow Display 610

Managing External Displays 613

Advancing to the Next Photo 617

Adding Slideshow User Interface
Controls 620

Updating the Photo Browser 622

Finishing Up 623

Summary 624

Exercises 624

 24 Visual Effects with Core Image 625

Core Image Concepts 625

Introducing CIFilter 627

Contentsxxii

Filter Types 628

Using CIFilter 628

Image Analysis 630

Automatic Enhancement 630

Face Detection 631

Adding Core Image Effects to PhotoWheel 633

Instance Variables for Filter Management 633

User Interface Additions 634

Creating the CIFilter Effects 640

Applying the Filters 645

Implementing Auto-Enhance 647

Implementing Face Zoom 647

Other Necessary Methods 649

Summary 651

Exercises 651

 25 Going Universal 653

Why Go Universal? 653

Reason Not to Go Universal 654

Making a Universal App 655

Two Storyboards 655

Separating Code by Device Type 656

The Tilde 657

Pitfalls 659

Avoid Hard-Coding 659

Be Defensive 660

Summary 661

Exercises 662

III The Finishing Touches 663

 26 Debugging 665

Understand the Problem 665

What Went Wrong? 665

Reproducing Bugs 665

Debugging Concepts 666

Contents xxiii

Breakpoints    666

Debugging in Xcode    667

Setting and Managing Breakpoints    667

Customizing Breakpoints    668

Hitting a Breakpoint    670

Checking on Variables    672

Debugging Example: External Display Code    675

When You Really Need NSLog    679

Profiling Code with Instruments    681

Profiling Example: Slideshow UI Control Updates    683

Summary    686

 27 Distributing Your App 689

Distribution Methods    689

Building for Ad Hoc Distribution    690

Provisioning for Ad Hoc Distribution    690

Prepare the (Ad Hoc) Build    691

Building for App Store Distribution    694

Provisioning for the App Store    695

Prepare the (App Store) Build    695

Next Steps    698

The App Store Process    698

What if Apple Rejects the App?    699

App Information for the App Store    700

App Store Assets    702

Using iTunes Connect    703

User Roles    703

Managing Applications    704

Submitting the App    705

Going Further    706

Summary    706

 28 The Final Word 707

What’s Next    708

 A Installing the Developer Tools 709

Membership Has Its Privileges    709

Contentsxxiv

Joining the iOS Developer Program 710

Which Program Type Is Right for You? 711

What You Need to Register 712

Installing Xcode 714

First Launch Experience 715

 Index 717

Foreword

I love books. I really love books. Anyone who’s known me for any amount of time
knows I’m a total bookworm. Well-written books are one of the cheapest and fastest
self-education tools. I can remember a number of books that were hugely significant
in my personal and professional development—books like Object Oriented Software Con-
struction by Bertrand Meyer, Scott Knaster and Stephen Chernicoff ’s early Mac pro-
gramming books, Dave Mark’s C programming books, Robert C. Martin’s horribly
titled (but full of wonderful a-ha! moments) Designing Object Oriented C++ Applications
Using the Booch Method, and, of course, the late W. Richard Stevens’ UNIX and Net-
work programming books. I remember lessons learned from these tomes, even those I
read many years ago.

Unfortunately, not all books are created equal. I’ve seen some real stinkers in my
time. When I was making the transition from Mac programming to iOS program-
ming, I got some really great books, but also some books that were terrible. Really,
really terrible. In some of these volumes, it was almost as if someone had filed the
serial numbers off of Instant Visual Basic Programming Guide for Complete Dummies in
24 Hours, sprinkled around some square brackets, and pasted in pictures of iPhones.
I thumbed through one early iPad programming book that literally had an error on
every page. Some were just typos. Some were subtle errors, understandable if you
haven’t already lived in the Cocoa universe for a couple of years. Some of it was
downright bad advice, obviously from someone who did not know what he was doing.
There is a certain expectation of trust when you drop your hard-earned currency on a
book, and violating that trust is unforgivable.

So, this book—Learning iPad Programming. Is it worth the price? Does it fall in my
first category of books (awesome), or the second (unequivocally lame)? Good ques-
tion. Glad you asked!

First, a good book needs to cover its topic, and cover it well. Learning iPad Program-
ming, Second Edition, judging just by its heft, contains a lot of material. Well, that’s
true, assuming you’ve got the printed version in hand; War and Peace weighs the same
as The Little Prince in ebook form, so it’s hard to tell them apart. Just skim through
the table of contents—you can see the text covers a lot of stuff. A metric freakload
of stuff. And this stuff is all relevant. It covers such basics as installing the develop-
ment tools. Model-View-Controller. Master-Detail. Storyboards. Segues. Table views.
UIViewController. Navigation views. Handling device rotation. There are also more
advanced topics such as consuming Web services, the media library, touch gestures,

Forewordxxvi

data persistence, and the raw unpleasantness that is Apple’s device provisioning. And
there’s some cutting-edge stuff, such as AirPrint, AirPlay, iCloud, and Core Image.
Kirby and Tom have suffered the arrows in their backs dealing with months of f laky
underdocumented prerelease software so you don’t have to.

Very good books are timely, but not exploitative. I saw my first iPad programming
book about three months after the device was announced. There was no way this book
could convey the iPad gestalt to the reader, simply because the device hadn’t been
available to any author for a long enough period of time. The book was pumped out as
fast as possible to hit the market, and it showed. Learning iPad Programming is a mature
project, with years of work having gone into it. Good books take time to achieve high
levels of awesomeness.

Great books transcend their subject matter. This book is called Learning iPad Pro-
gramming. It’d be easy to assume that it just covers introductory iPad programming in
a simplistic manner. “Views are cool!” “Yay! Tapping a button!” But it’s more. Not
many books have a single project that lives and evolves through the entire narrative.
The reason not many books do this is because it is difficult to do well. Important
toolkit features get shoehorned into weird places because the author didn’t do enough
upfront design time. This book, though, takes you from design to prototype to the
Real Deal.

And then it goes further. Not many books talk about the inner game of design.
This one does. Even fewer books talk about the inner game of debugging. Debugging
is a fundamental part (if not the fundamental part) of the day-to-day life of a program-
mer, and few books devote more than a paragraph or two to it. Learning iPad Program-
ming has an entire chapter on the topic, and it deals with much more than how to
single-step with the debugger. As I was reading a preproduction version of this book, I
emitted an audible “SQUEE” when I hit Chapter 26. I love debugging, and I love see-
ing such an important topic covered in detail in what is ostensibly a beginner’s book.
And as you can tell, I love learning stuff. I learned some stuff from Chapter 26, even
after 23 years of programming professionally.

Finally, those who create the great books transcend the ordinary. The Mac and
iPhone community is pretty small and well connected. You tend to learn quickly who
the trusted players are. Many of the lame books I alluded to earlier were written by
individuals I had never heard of before, and never heard from again. No blogs, no
appearances at conferences, no footprint on the community. Get in, crank out some-
thing, exploit the community, and get out.

Kirby and Tom are different. They’re known entities. They have blogs. Tom has his
name on other books. They’ve shipped products. They’ve shipped the first edition of
this book. They have happy customers. They answer questions online. They organize
and speak at conferences. They’re involved with CocoaHeads. They have invested a
great deal of their time into the betterment of the community. It is why I am honored
and humbled that they asked me to write this foreword.

As you can probably tell, I’m pretty excited about this book. There are many excel-
lent introductory iOS programming books. I recommend reading all of them (at least

Foreword xxvii

the good ones) because iOS is such a huge topic that even Kirby and Tom can’t cover
everything you need to know in one volume. But if you’re specifically targeting the
iPad, this one is the one to get.

— Mark Dalrymple
Cofounder of CocoaHeads, the international Mac and iPhone programmer community
Author of Advanced Mac OS X Programming: The Big Nerd Ranch Guide
February 14, 2013

This page intentionally left blank

Preface

In October 2011, Apple CEO Tim Cook shared some interesting facts about the iPad:
nn Ninety-two percent of Fortune 500 companies are testing or deploying iPads.
nn More than 80 percent of U.S.-based hospitals are testing or piloting the iPad.
nn Every state in the United States has some type of iPad deployment program in

place or in pilot.

Just a year later, in October 2012, Tim Cook announced that 100 million iPads had
been sold. Think about that for a moment: 100 million iPads sold in just two and a
half years! That is an amazing feat.

And the news about the iPad doesn’t stop there. The FAA has approved the use of
the iPad instead of paper charts for on-duty airline pilots. Without a doubt, the iPad
is changing the way people think about (and use) computers today. And it continues
to get better with the release of iOS 6, the latest operating system for iPad and iPhone
devices.

Make no mistake, the iPad packs a punch. With its patented multi-touch interface,
an onboard graphics chip, the powerful A6X processor, and 4G and Wi-Fi network-
ing, the iPad is the benchmark in a post-PC world. More important, though, is how
the iPad fits into the Mac/iOS ecosystem. Mac OS X and iOS users can use FaceTime
for video chat from desktop to device. What’s more, iOS iMessage enables users to
text from their iPad to reach other iPad, iPhone, and Mac users. The iPad represents a
unique marriage of hardware and technology, and it is the Gold Standard for tablets.

This book was written with iOS 6 in mind and is aimed at new developers who
want to build apps for the iPad. The book will also appeal to iPhone developers who
want to learn more about how to make their apps sing on the iPad. While some people
look at the iPad as just a bigger iPhone, it really isn’t. There is a lot more that you as a
developer can do with the iPad from a user interface perspective that you just can’t do
on the iPhone.

While this book includes brief discussions of iPhone programming where appropri-
ate, its primary focus is the iPad. Learning iPad Programming highlights those areas of
the iOS SDK that are unique to the iPad, and it isn’t a rehash of similar books target-
ing the iPhone. Additionally, the book covers new features in iOS, such as embedded
segues, container view controllers, iCloud, and Core Image, as well as some of the
great new features in Xcode 4, such as storyboarding. Apple has gone to great lengths
to make it easier for you to develop for iOS and OS X, and the plan for this book is to
make it even easier for you to get there.

Prefacexxx

What Will I Learn?
This book will teach you how to build apps specifically for the iPad, taking you step
by step through the process of making a real app that is freely available in the App
Store right now! The app you’ll build in this book is called PhotoWheel.

Download the App!

You can download the PhotoWheel app from the App Store.1 The app is freely available, so go
ahead—download PhotoWheel, and start playing around with it.

PhotoWheel is a spin on the Photos app that comes on every iPad (pun intended).
With PhotoWheel, you can organize your favorite photos into albums, share pho-
tos with family and friends via email, and view photos on your TV wirelessly using
AirPlay.

Even more important than the app itself is what you will learn as you build it.
You will learn how to take advantage of the latest features in iOS and Xcode, includ-

ing storyboarding, Automatic Reference Counting, iCloud, and Core Image. You will
learn how to leverage other iOS features such as the Activity View Controller, AirPrint,
AirPlay, and Grand Central Dispatch (GCD). And you will learn how to extend the
boundaries of your app by communicating with Web services hosted on the Internet.

Think of this book as an epic-length tutorial, showing you how you can cre-
ate a real iPad app from start to finish. You’ll be coding along with the book, and
we’ll explain things step by step. By the time you have finished reading and working
through this book, you’ll have a fully functional version of PhotoWheel that you can
proudly show off to friends and family (you can even share it with them, too). Best of
all, you’ll have confidence and the knowledge of what it takes to design, program, and
distribute iPad apps of your own.

What Makes the iPad So Different?
While the iPad runs the same version of iOS that runs on the iPhone, iPod touch, and
Apple TV, the iPad is significantly different from those other iOS-based devices. Each
device is used differently, and iOS brings certain things to the table for each of them.
For example, the version of iOS that runs in your Apple TV doesn’t yet offer the same
touch interface; in fact, the interface is totally different. Apple TV’s user interface (UI)
runs as a layer on top of iOS, providing a completely different user experience.

But the iPad is so different. It is not something you can hold in the palm of your
hand—unless you have an iPad mini. The iPad is something you use with both hands.
You swipe. You touch. You interact with it more than with most iPhone apps. It’s easy
to dismiss the iPad as “just a large iPhone,” but it really isn’t.

1. PhotoWheel: https://itunes.apple.com/app/photowheel/id424927196&mt=8

https://itunes.apple.com/app/photowheel/id424927196&mt=8

Preface xxxi

While the physical size is the obvious difference between the iPad and iPhone, the real
difference—the difference that sets the iPad apart from the iPhone—is conceptual. The
conceptual differences stem from how an iPad application is designed and how the user
interacts with the application. And the conceptual differences start with the bigger display.

Bigger Display
The iPad’s bigger screen provides more than double the screen real estate found on the
iPhone. In turn, your application can display more information, giving you more space
to work with for your user interface. A good example of this is WeatherBug.

WeatherBug HD has been designed to take full advantage of the iPad’s larger
screen. As you can see in Figure P.1, the iPad version of WeatherBug displays much

Figure P.1 On the left is the WeatherBug app displayed on the iPad. The
screen shot on the right is the same WeatherBug app running on the iPhone.

(Used with permission of Earth Networks.)

Prefacexxxii

more weather-related information on a single screen than you can get on the iPhone
version. Instead of your having to touch and swipe (and sometimes pray) to find addi-
tional weather information, WeatherBug HD on the iPad gives you everything you
need to know right on the main screen—no additional touching or swiping needed.
Of course, additional detail is still available at a touch.

Less Hierarchical
Because of the smaller screen, many iPhone applications tend to sport a hierarchical
navigation system. You see this throughout many iPhone apps. The user taps an item
and a new screen slides into view. Tap another item and another view slides in. To
navigate back, you tap a back button, usually found in the upper-left corner of the
screen.

The Dropbox app illustrates the hierarchical navigation system quite well. Drop-
box, for those who may not know, is an online service that allows you to store your
data files, documents, and images in the cloud. Stored files are then synced across all
of your computers and devices that run the Dropbox client software. Suppose you are
working on a text document from your laptop. You save the text document to your
Dropbox folder. Later you need to review the text document, so you open the same
text document on your iPhone. Dropbox makes this possible.

When you use the Dropbox app on your iPhone, you see a list of files and folders
sorted alphabetically. Tapping a file or folder will open it, causing the new screen to
slide into view. If you open a file, you see the contents of the file. If you open a folder,
you see a new list of files and folders. Continue tapping folders to navigate farther
down the hierarchy.

To move back up the hierarchy, tap the back button in the upper-left corner of the
screen. The text label for this button can vary. Usually it displays the name of the pre-
vious item on the stack, but sometimes it displays the word Back. While the text label
may vary, the style of the back button does not. The back button has a pointy left side.
This almost arrow-like style conveys a sense of moving backward through the screens.

The forward and backward navigation through the hierarchy is illustrated in
Figure P.2.

Dropbox is also available for the iPad. So how did the developers redesign an
app that obviously requires hierarchical navigation to make it feel f latter, less hier-
archical? They took advantage of an iOS object available only to the iPad called
UISplitViewController, shown in Figure P.3.

The split view controller is a nonvisual object that controls the display of two
side-by-side views. When you hold your iPad in landscape mode, the two views are
displayed side by side. Rotate your iPad to portrait orientation, and the left-side view
disappears. This allows the user to focus his attention on the main content displayed
on the right side.

Preface
xxxiii

Figure P.2 Example of navigating the hierarchy of folders and files using the Dropbox app on the iPhone. You tap to
move forward, or drill down, to more content, and you tap the back button to move backward.

Prefacexxxiv

Note
You get hands-on experience writing a split-view-based application in Chapter 8, “Creating a
Master-Detail App.”

This view pattern, in which the master view is displayed on the left side and the
detail view is displayed on the right side, is often called “master-detail.” The master
view is used to navigate the hierarchy of data, or in the case of Dropbox, the master
view is used to navigate the list of files and folders. When you find the file you want
to view, tap it in the master view and the file contents are displayed on the right in the
detail view. Rotate your iPad to a portrait position to focus your attention on the file’s
content, hiding the master view.

Orientation Matters
Most iPhone applications support only a single orientation. Many iPhone games are
played in landscape mode, while many other iPhone apps are displayed in portrait
mode. Like the iPad, the iPhone does support rotation and changes in orientation, but
the small size of the device makes supporting different orientations unnecessary. Most
users hold their iPhones in portrait mode with the Home button at the bottom when
using applications, rotating to landscape orientation only to play a game.

Figure P.3 Screen shots of Dropbox running on the iPad. Notice how the
navigation is displayed in the left-side view when the device is held in a

landscape orientation, but is hidden when the iPad is rotated to portrait.

Preface xxxv

The iPad is different. With the iPad, users grab the device and turn it on without
regard to a certain orientation. This is even truer when the iPad is not in a case. Try
this little experiment . . .

Place your iPhone, or iPod touch, on your desk or table with the Home button
pointing at 10 o’clock. Walk away or turn around. Come back to the device and pick
it up. Take a look at the device as you hold it in your hand. There’s a good chance that
as you picked up the device, you rotated it so that the Home button is at the bottom.
You did this rotation even before turning on the device. It is an almost natural instinct
to hold your iPhone with the Home button at the bottom.

Now try the same experiment, but this time use your iPad. Place it on your desk or
table. Make sure the Home button is positioned away from you—say, at 10 o’clock—
and then walk away. Come back and pick up your iPad. Chances are good you did not
rotate the device. Instead, you are likely holding your iPad in the same orientation it
was in before you picked it up.

Multi-Touch Amped Up
Did you know that the iPad and the iPhone support the same multi-touch interface?
They do. As a matter of fact, the iOS multi-touch interface supports up to 11 simulta-
neous touches. This means that you can use all your fingers—and maybe one or two
more if you have a friend nearby—to interact with an application.

The iPad, with its larger screen, makes multi-touch use more feasible. While two-
handed gestures have limited use on the iPhone, they can become a natural part of
interacting with an iPad application. Take, for example, Apple’s own Keynote app
for the iPad. It takes advantage of the multi-touch interface to provide features once
reserved for the point-and-click world of the desktop. Selecting multiple slides and
moving them is just one example of how Keynote on the iPad maximizes the user
experience with multi-touch.

So you already know that the multi-touch interface supports up to 11 simultane-
ous touches, but how can you confirm this? Write an iPad app that counts the number
of simultaneous touches. That is exactly what Matt Legend Gemmell did. He wrote
a really neat iPad app, shown in Figure P.4, that shows the number of simultaneous
touches. But Matt went beyond just showing the touch count. He made the app sci-fi-
looking, which also makes it fun to play with.

You can read more about Matt’s iPad multi-touch sample and download the source
code from his blog posting.2

Another way to explore the iPad multi-touch interface is to play with Uzu for iPad,
only $1.99 in the App Store.3 Uzu is a “kinetic multi-touch particle visualizer” and it’s
highly addictive. (Figure P.5 doesn’t do the app justice; you should really download
and play around with Uzu if you want to see some clever use of multi-touch.)

2. Multi-touch sample: http://mattgemmell.com/2010/05/09/ipad-multi-touch/

3. Uzu: https://itunes.apple.com/app/uzu/id376551723?mt=8

http://mattgemmell.com/2010/05/09/ipad-multi-touch/
https://itunes.apple.com/app/uzu/id376551723?mt=8

Prefacexxxvi

Figure P.4 Matt Legend Gemmell’s multi-touch sample app for the iPad
illustrating 11 touches

Figure P.5 Uzu, the particle visualizer for the iPad

Preface xxxvii

The iPad Bridges the Gap between the Phone and the Computer
So, everyone agrees that the iPad is not an oversize iPhone. Great, glad to have you on
the same page here. Now on to the larger question: Is the iPad a replacement for a lap-
top or desktop? No, not yet, but it’s pretty darn close.

For many users, the iPad represents a mobile device bridging the gap between
the smartphone and a full-f ledged computer, whether a laptop or desktop computer.
While many individuals use the iPad for content consumption, the iPad is also used
to perform a good number of tasks previously left to the desktop or laptop computer.
This causes iOS developers to rethink how to implement software concepts that have
been around for eons. Word-processing software is one such concept that is seeing new
life on the iPad.

The iPad opens the door to a wide range of applications not feasible on the small
form factor of the iPhone. Word processing, again, is one such application that comes
to mind.

While the iPhone is great for capturing quick notes, it is not ideal for writing lengthy
documents. And while it is technically possible to implement a full-featured word proces-
sor on the iPhone, why would you? The screen is too small, and even in landscape mode,
typing two-thumbed on a tiny screen would be less than productive. The iPhone is ideal
for performing simple, quick tasks—writing a note, scheduling an event, marking a to-do
item as complete—but it is less than ideal for lengthier tasks such as writing a book.

Enter the iPad
The iPad provides an experience similar to a small laptop. And when combined with
a wireless keyboard, your iPad becomes a nice setup for writing long documents. I’m
speaking from experience. A lot of the text in this book was originally written on an
iPad. I can’t imagine what writing a book on an iPhone would be like, but I know
what it is like on the iPad, and it is a joy. Best of all, the iPad allows you to concen-
trate on a single task. This eliminates distractions and gives you better focus on the
task at hand.

Organization of This Book
This book provides you with a hands-on guide for, as the book’s title states, learning
iPad programming. It walks you through every stage of the process—from download-
ing and installing the iOS SDK to submitting the first application to Apple for review.

There are 28 chapters and one appendix in the book, as follows:
nn Part I, “Getting Started”

Part I introduces you to the tools of the trade. Here you learn about developer
tools such as Xcode and Interface Builder. You learn how to write code using

Prefacexxxviii

Objective-C and the Cocoa framework. And you learn what it takes to provision
your iPad as a development device.

nn Chapter 1, “Your First App”

This chapter immediately immerses you in creating your first application. It
provides a step-by-step guide to creating a simple, but functional, iPad appli-
cation that runs in the iPad Simulator. You’ll use Xcode to create the applica-
tion, which means there is also some light coding to be done, but knowledge
of Objective-C is not required at this point in the book. The goal of this
chapter is for you to immediately get your hands on the tools and the code
you’ll use to create iPad apps.

nn Chapter 2, “Getting Started with Xcode”

Xcode is the developer’s integrated development environment (IDE) used to
write Objective-C code for iPad applications. This chapter highlights key fea-
tures of Xcode, including recommended preference settings, commonly used
shortcut keys, and descriptions of the various windows you will see when
using Xcode.

nn Chapter 3, “Getting Started with Interface Builder”

In this chapter, you explore Interface Builder (IB). Interface Builder is the
tool used to create an application UI with no programming required. This
chapter explains how to use IB and many of its useful features. In addition,
the chapter warns you about common mistakes made when using IB, such as
forgetting to associate an event with an IBAction.

nn Chapter 4, “Getting Started with Objective-C”

This chapter introduces Objective-C by providing a brief overview of the
programming language of choice for iPad programming. It is not intended
to be a comprehensive review of the programming language, but instead
to provide enough information to get you started in writing your f irst real
iPad app.

nn Chapter 5, “Getting Started with Cocoa”

A programming language is only as powerful as the frameworks that support
it, and Cocoa provides an impressive stack of frameworks and a library that
make it possible for you to build your iPad app in less time.

nn Chapter 6, “Provisioning Your iPad”

Walking down the yellow brick road to the wonderful world of iPad devel-
opment can have its own set of scary moments. One of the scariest is dealing
with provisioning profiles, certificates, and registering a device for testing.
Xcode 4 provides improvements in this area, but it is still far from perfect.
This chapter guides you through the ominous forest of provisioning profiles,
certificates, and device registration.

Preface xxxix

nn Chapter 7, “App Design”

You can’t build an app if you don’t know what you’re building. This chapter
shares tips on designing an application before the first line of code is ever
written.

nn Part II, “Building PhotoWheel”

Part II is the heart of the book—where you get hands-on practice with building
a real iPad app. The app you build is no simple “Hello, World” app. Rather, it
is PhotoWheel, a full-featured photo app. In Part II, you learn about everything
from creating custom animations for view transitions to iCloud syncing to view-
ing your photos on TV.

nn Chapter 8, “Creating a Master-Detail App”

You start building PhotoWheel by first building a prototype of it. While
building the prototype, you have a chance to learn about the splitview con-
troller used in master-detail apps.

nn Chapter 9, “Using Table Views”

In this chapter, you learn the basics of displaying data using table views. You
also learn how to reorder, delete, and even edit data displayed in a table view.

nn Chapter 10, “Using Collection and Custom Views”

In this chapter, you dive into the world of views. Here you learn how to use
the collection view introduced in iOS 6, and create a custom wheel view for
displaying photos.

nn Chapter 11, “Using Touch Gestures”

This chapter teaches you how to take advantage of the iPad’s multi-touch
screen. You learn to use touch gestures so that users can interact with your app.

nn Chapter 12, “Adding Photos”

PhotoWheel deals with photos, so it is only natural that you need to learn how
to add photos to the app. In this chapter, you discover how to retrieve photos
from the Photos app library and how to take new photos using the device’s
built-in camera.

nn Chapter 13, “Data Persistence”

PhotoWheel won’t be very useful if people can’t save their work. In this chap-
ter, you explore Core Data, and you learn how to use it to persist data in your
application.

nn Chapter 14, “Storyboarding in Xcode”

A storyboard is an exciting new way to design an app’s user interface. In this
chapter, you get hands-on practice with storyboarding, and you learn how
you can do more with less code by using Interface Builder.

Prefacexl

nn Chapter 15, “View Controllers and Segues”

A storyboard can take you only so far. At some point in time, you must write
code to make your app really shine. In this chapter, you learn how to take
advantage of view controllers to do more, and you learn how to create segues
that transition between view controllers.

nn Chapter 16, “Building the Main Screen”

In this chapter, you dive into PhotoWheel. Prototyping is over and you have
the basic UI in place with a storyboard. Now it’s time to build the main
screen, and that’s exactly what you do in this chapter. You also learn how to
use container view controllers, and you build a custom grid view that can be
used in other projects.

nn Chapter 17, “Creating a Photo Browser”

In this chapter, you learn how to use a scroll view to create a full-screen
photo browser. You also learn how to use a pinch gesture to zoom in and out
on a photo.

nn Chapter 18, “Supporting Device Rotation”

Users expect iPad apps to display properly regardless of how the device is being
held. A user may hold his iPad with the Home button on the left or right, or
maybe on the top or bottom. As a developer, it is your job to ensure that your
app displays properly regardless of the device’s orientation. That is what you
learn in this chapter: how to support device rotation. You also learn how to
leverage Cocoa Auto Layout for supporting rotation of your user interface.

nn Chapter 19, “Printing with AirPrint”

This chapter gets straight to the point and teaches you how to print from your
app using AirPrint.

nn Chapter 20, “Sharing with Others”

Virtually everyone has an email account these days, and everyone loves
looking at photos. So it only makes sense that PhotoWheel users will want
to share photos with family and friends using email. In this chapter, you
learn how to send email from your app. But the chapter doesn’t stop there—
you also learn how to use the Activity View Controller for sharing photos
through social networks such as Facebook and Twitter.

nn Chapter 21, “Web Services”

Adding photos already found on your iPad to PhotoWheel is a nice exercise,
but many people keep their photos stored elsewhere. In this chapter, you learn
how to make an iPad app communicate with a Web server so that you can
search for and download photos from Flickr.

Preface xli

nn Chapter 22, “Syncing with iCloud”

Many people have multiple iOS devices, and it would be great if they could
use PhotoWheel with the same data on all of them. Syncing can be a chal-
lenge, but with iCloud it becomes a lot easier. In this chapter, we add online
syncing of photos and albums.

nn Chapter 23, “Producing a Slideshow with AirPlay”

The iPad has a great screen, but you might want to show photos to a group,
and it’s awkward to gather everyone around a hand-held device. In this chap-
ter, you see how to make use of external wireless displays—a large TV set,
maybe—from an iPad app. You’ll use AirPlay for this purpose, so you don’t
need to run cables across the room.

nn Chapter 24, “Visual Effects with Core Image”

Core Image is an amazingly cool framework for analyzing and changing
images. As if color effects and automatic photo enhancement weren’t enough,
you can also use Core Data Image to locate the faces of any people in the
picture. You add all of these capabilities to PhotoWheel in a convenient user
interface that allows people to preview effects before committing to them.

nn Chapter 25, “Going Universal”

Part II wraps up with a discussion of turning your iPad app into a universal
app. A universal app takes full advantage of the device it’s running on, and it
extends the target audience for your iPad app to include iPhone users.

nn Part III, “The Finishing Touches”

In the final part of the book, you learn tips on debugging your app. Even more
important, you learn how to distribute your app to others.

nn Chapter 26, “Debugging”

At this point you know how to create an iPad application, but what happens
when a problem occurs? This chapter is devoted to application debugging.
It explores the LLDB. and shows you how to turn breakpoints on and off,
and how to use sounds to debug your app. The chapter also introduces you
to more advanced debugging techniques such as using Instruments to track
down memory leaks.

nn Chapter 27, “Distributing Your App”

At this point, the application has been written, debugged, and tested. The
next step is to get the application into the hands of users. This chapter
explores the options for distributing iPad applications, focusing on the two
most commonly used distribution methods: Ad Hoc and App Store.

nn Chapter 28, “The Final Word”

The book ends with some final words of encouragement for the new iPad
programmer.

Prefacexlii

nn Appendix A, “Installing the Developer Tools”

This appendix walks you through the steps needed to start programming for the
iPad. These measures include setting up an iOS developer account, downloading
the iOS SDK, and installing the developer tools on your Mac.

Learning iPad Programming takes you from app design to the App Store. Along the
way, you learn about the developer tools, the programming language, and the frame-
works. But more important, you learn how to build a full-featured iPad app that you
can show off to family and friends.

Audience for This Book
This book is intended for programmers who are new to the iOS platform and want
to learn how to write applications that target the iPad. The book assumes that you
are new to iPad programming and have little to no experience with Xcode and the
Objective-C programming language. At the same time, it assumes that you have some
prior programming experience with other tools and programming languages. Learning
iPad Programming is not intended for individuals with absolutely no prior programming
experience.

This book is targeted to programmers who want to learn how to develop sophis-
ticated applications for the iPad using iOS 6. You are expected to have a Mac on
which you can create programs using Xcode and Interface Builder, as well as an iOS
developer account and an iPad. Some programming experience is helpful, particularly
knowledge of the C programming language, although there is a chapter on object-
oriented programming with Objective-C to give you a head start in this area.

Learning iPad Programming will also appeal to experienced iOS developers—people
who have programmed and submitted apps to the App Store for the iPhone and iPod
touch. If you are an experienced reader, you can skip over the basics, if you so choose,
and quickly get to work on the example projects used throughout the book.

Getting the Source Code for PhotoWheel
The source code from each chapter as well as the source code for PhotoWheel as
presented in this book is available from the book’s Web site.4 Work on PhotoWheel
doesn’t stop at the end of this book, either. There is so much more to do with the app
and so much more to learn. The most up-to-date source code is available on github.5

4. PhotoWheel source code: http://www.learningipadprogramming.com/source-code/

5. PhotoWheel on github: https://github.com/kirbyt/PhotoWheel

http://www.learningipadprogramming.com/source-code/
https://github.com/kirbyt/PhotoWheel

Preface xliii

You will also find more how-to articles and tips for improving PhotoWheel at the
book’s blog site.6

Should you have additional questions, or want to report a bug or contribute a new
feature to PhotoWheel, feel free to send email to kirby@whitepeaksoftware.com
or tph@atomicbird.com, or send a message to @kirbyt or @atomicbird on Twit-
ter and App.net.

There is plenty of code to review throughout the book, along with exercises for
you to try, so it is assumed that you have access to the Apple developer tools such as
Xcode and the iOS SDK. Both of these toolkits can be downloaded from the Mac
App Store as part of the Xcode download.7

Artwork Provided by
Matt McCray is the swell guy who provided the artwork in PhotoWheel. Reach out to Matt if
you’re looking for a designer for your next app. He can be reached at matt@elucidata.net and
his Web site is at www.elucidata.net.

6. Book’s blog site: http://www.learningipadprogramming.com/blog/

7. Xcode download: https://itunes.apple.com/us/app/xcode/id497799835?mt=12

http://www.elucidata.net
http://www.learningipadprogramming.com/blog/
https://itunes.apple.com/us/app/xcode/id497799835?mt=12

This page intentionally left blank

Acknowledgments

As for any book that gets written, there’s an entire cast and crew who remain hidden
from the limelight; please take a moment to hear us out as we thank the supporting
cast. . . .

Acknowledgments from Kirby Turner
I want to first thank my wife, Melanie, and my son, Rowan, for their support and
patience while I focused on completing this book, and their understanding when I said
I want to write a second edition. I want to thank Tom for agreeing to co-author this
book. I want to give a huge THANKS to Chuck Toporek for convincing me to write,
and Trina MacDonald for being an outstanding and patient editor. I also want to
thank the production team for their hard work making this book look good. And, of
course, I want to say thanks to the technical reviewers, Andrew, Michael, and Patrick.
Your feedback is invaluable.

Lastly, I want to thank the amazing team of engineers at Apple for bringing the fun
back to programming for me. And I want to thank the Mac and iOS developer com-
munity. None of this would be possible if not for the passion and spirit of this unique
community.

Acknowledgments from Tom Harrington
I’d like to thank Kirby for inviting me to be part of this book. I’d also like to thank
our technical reviewers and the rest of the production team for all their hard work
making me look good in print. Apple continues to advance its software and tools at a
breakneck pace, which makes it a challenge to write a book and get it into print while
it’s still current. Everyone involved has done a great job dealing with the challenges of
writing a book on a topic that’s constantly in f lux.

On a closely related note, thanks to everyone at Apple for their hard work on iOS
and the iPad. Without them we wouldn’t have such a cool topic to write about.

This page intentionally left blank

About the Authors

This book is brought to you by. . . .

Kirby Turner is an independent software developer and Chief Code Monkey at
White Peak Software Inc., where he focuses on iOS and Mac programming. When
Kirby is not sitting behind the keyboard, he can be found hanging out with his wife
and son, hiking the mountains of New England, kayaking the waters in and around
Salem, Massachusetts, and snowboarding down mountains in search of magic powder.
Follow Kirby on Twitter and App.net: @kirbyt.

Tom Harrington is an independent iOS and Mac software developer and is available
for contract work, technical conferences, and parties. He also organizes iOS developer
events in Colorado. Follow Tom on Twitter and App.net: @atomicbird.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do bet-
ter, what areas you’d like to see us publish in, and any other words of wisdom you’re
willing to pass our way.

You can email or write me directly to let use know what you did or didn’t like
about this book—as well as what we can do to make our books stronger.

Please note that we cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail we receive, we might not be able to reply to every
message.

When you write, please be sure to include this book’s title and author as well as
your name and phone or email address.

Email: trina.macdonald@pearson.com

Mail: Reader Feedback
Addison-Wesley Learning Series
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book informit.com/register for convenient access
to any updates, downloads, or errata that might be available for this book.

This page intentionally left blank

1
Your First App

There is no better way to learn than by actually doing something, so let’s dive in by writing a really
simple iPad app. The first application you will write is a Hello World app. Yes, the Hello World
sample application is overdone, but don’t worry—you will be building more sophisticated applications
later in this book. For now, it’s important to get your hands dirty with some code and the tools.

The goal for this chapter is to give you a sneak peek at the tools you will be using to build
your iPad applications. If you are already familiar with Xcode, you may wish to skip ahead to
Chapter 4, “Getting Started with Objective-C,” or Chapter 6, “Provisioning Your iPad.” If
you are new to Xcode, please continue reading.

The rest of this chapter will guide you through the steps needed to create your first iPad appli-
cation. The chapter does not go into detail about Xcode. Instead, those details are covered in the
following chapters: Chapter 2, “Getting Started with Xcode,” and Chapter 3, “Getting Started
with Interface Builder.”

Note
Before you begin, you must have Xcode and the iOS SDK installed on your Mac computer.
If you do not have these installed, jump to Appendix A, “Installing the Developer Tools,” for
instructions on how to set up your Mac for iPad programming. This book assumes you are
using Xcode 4.5 or newer. And yes, a Mac computer is required.

Creating the Hello World Project
Let’s begin by launching Xcode. If you are running Mountain Lion (Mac OS X 10.8)
and you downloaded Xcode from the Mac App Store, it is available in Launchpad,
shown in Figure 1.1; otherwise, you can find it in your Applications folder. Click the
Xcode icon to launch it.

Note
You may find having Xcode on the Dock more convenient than using Launchpad. Adding Xcode
to the Dock is simple. First, launch Xcode from Launchpad. While Xcode is running, right-click
(or Control-click) on the Xcode icon that appears in the Dock and select Options > Keep in
Dock. This will keep the Xcode icon in the Dock even when the program is not running, making
it easier to launch Xcode the next time you need it.

Chapter 1 Your First App4

The first window you see after launching Xcode is the Welcome to Xcode screen,
shown in Figure 1.2. You can do a number of things from this window, including cre-
ating a new project, connecting to a source code repository, going to the Xcode 4 User
Guide (a tutorial on using Xcode), or visiting Apple’s Developer site.1 If you have cre-
ated or opened Xcode projects in the past, you will also see a list of recent projects on
the right side of this screen. You can open a recent project by selecting it from the list
and clicking Open.

Tucked away in the lower-left corner is the Open Other… button. You can click
this button to open an existing Xcode project found on the file system. Next to this
button is a check box indicating whether the Welcome to Xcode window is displayed
when Xcode launches.

Note
If you are new to Xcode, you should take the time to read through the Xcode 4 User Guide,
which provides complete coverage of the entire Xcode tool set. You will learn about Xcode in
this book; however, reading the official guides from Apple is always a good thing.

You want to create a new iPad application, so click the Create a new Xcode
project button. This opens the new project window, as shown in Figure 1.3. Let’s

1. Apple Developer site: http://developer.apple.com

Figure 1.1 The Xcode icon as seen in Launchpad

http://developer.apple.com

Creating the Hello World Project 5

Figure 1.2 Welcome to Xcode window

Figure 1.3 The new project window in Xcode, with
callouts on sections of Xcode’s user interface

(1: target type; 2: project template; 3: template detail)

Chapter 1 Your First App6

explore this window for a moment before continuing. As you can see in the figure,
the new project has three main sections:

 1. Target type

 2. Project template

 3. Template detail

In section 1, you select the target type: iOS or Mac OS X. iPad applications run on
iOS, so you can ignore the Mac OS X target type for now. Under iOS you can build
two types of targets: Application and Framework & Library. The Application type is
exactly what the name implies; you use it to build iPhone and iPad applications. The
Library target type is for building reusable static libraries, which you can also ignore
for now.

The Hello World application you are building is just that, an application. Thus, in
section 1 under iOS, you select Application. When you do so, you’ll notice that the
content in section 2 changes. Section 2 now displays the list of available templates for
the selected target type. A template is used to generate the initial files needed for an
Xcode project.

If you have spent time playing with your iPad, you may have noticed that there are
some common application types, or styles. The templates listed in section 2 help speed
the process of creating an application of a particular style. For example, if you wanted
to create an application that looks similar to the Mail app on the iPad, you would
select Master-Detail Application.

Application Templates
The application templates you’ll encounter in Xcode after selecting iOS as your target
include the following types:

nn Master-Detail Application: Select this template when you have a master-detail style
of application and wish to leverage the split view controller for display.

nn OpenGL Game: Select this template when you want to create a game using OpenGL
ES. This template provides a view with an OpenGL scene and timer to animate the
view.

nn Page-Based Application: Select this template to create a book- or magazine-style
app that uses the page view controller.

nn Single View Application: Select this template for applications that use a single view.
nn Tabbed Application: Select this template for applications that have separate areas

defined by tabs. This template provides a tab bar controller and view controllers for
two tabs.

nn Utility Application: Select this template for applications that have a main view and
an alternate view.

nn Empty Application: This template provides a starting point for any type of applica-
tion. Select this template when you want to start with a bare-bones project shell.

Creating the Hello World Project 7

The Hello World application will consist of a single view, so select Single View
Application from the list of templates. When you do so, notice that the content of the
template detail section changes. This section shows a brief description of the template
selected in the project template section.

Clicking the Next button takes you to the project options screen, shown in Fig-
ure 1.4. Project options vary slightly based on the template. Each template has options
for the Product Name, Organization Name, Company Identifier, Bundler Identifier
(which is completed for you based on the Company Identifier and Product Name),
Class Prefix, and Device Family. Additional options that may be found on an applica-
tion template include Use Storyboard, Use Automatic Reference Counting, Use Core
Data, and Include Unit Tests. The application template you select determines which
additional options are made available.

For the Hello World app you are building, enter “Hello World” for the Product
Name. The Organization Name can be any value you like, as it is used only in the
copyright message included in the comment section that is added to the top of each .h
and .m file created by Xcode for the project.

For the Company Identifier, enter your name or company name using the reverse
domain name format. (For example, com.kirbyturner is my individual name and
com.whitepeaksoftware is my company name.) Chapter 6, “Provisioning Your iPad,”
explains the relationship between the company and bundle identifiers and describes
how they are used to form the App ID.

Figure 1.4 Project options for the Single View Application template

Chapter 1 Your First App8

The Class Prefix can be used to append a string value to the beginning of each class
generated by the application template. For the purpose of simplicity, you can leave the
Class Prefix blank for this app.

Next, select iPad as the Device Family. There are three device family types in iOS:
iPad, iPhone, and Universal. The device family iPad indicates that the app is designed
for and runs on the iPad only. The iPhone device family indicates that the app is
designed for the iPhone, and Universal says that the app is designed for and runs on
both the iPad and the iPhone.

You do not need storyboard and unit tests in this Hello World app, so leave those
options unselected. (Storyboarding is covered in Chapter 14, “Storyboarding in
Xcode.”) But do select the Use Automatic Reference Counting option—it determines
how memory of an object is managed, and is explained in the Memory Management
section of Chapter 4, “Getting Started with Objective-C.” Click the Next button,
choose a storage location for the Xcode project, and then click the Create button
(shown in Figure 1.5).

Note
I like to keep all my source code together in a single location, so I created a Source directory
within my home directory. I place all my Xcode projects under Source so I can easily locate
them in the future.

Figure 1.5 Choose the location where your Xcode project is stored.

Creating the Hello World Project 9

Congratulations! You just created your first iPad application. You don’t believe it?
Click the Run button (shown in Figure 1.6), or press Command-R. Be sure the active
schema is set to the iPad Simulator. If it is not, click it and change it to the simulator.

Universal App
iPhone apps can run on the iPad, but they run in an iPhone emulator. Because they do
not take advantage of the iPad’s full screen, this behavior leads to a less than ideal user
experience. A universal app, in contrast, is designed to take full advantage of the screen
real estate provided by both the iPhone and the iPad. When a universal app is run on an
iPhone, it looks as if it was designed for the iPhone. Conversely, when a universal app is
run on an iPad, it looks like an iPad app, not an iPhone app.

A universal app gives the user the best of both worlds—a single app that looks great on
both devices. However, this comes at a cost to you, the developer. Developing a universal
app, in many ways, is like developing two separate apps, one for the iPad and one for the
iPhone, and packaging them into a single app binary.

Universal apps are designed to target both the iPad and the iPhone. The focus of this book,
however, is on writing iPad applications. To keep you focused, and to avoid the additional
complexities of writing universal apps as you start your journey toward becoming an iOS
developer, universal apps are not covered until the end of Part II in this book.

Figure 1.6 Xcode project window for the Hello World app

Chapter 1 Your First App10

Figure 1.7 A “blank” single view app running in the iPad Simulator

Getting Text on the Screen 11

When you click Run, Xcode compiles the project, builds an application package,
installs the application on the iPad Simulator, and finally launches the application
inside the simulator. As you can see in Figure 1.7, the application is nothing more than
a white screen. Guess what? You just built your first f lashlight app for the iPad!

Note
Sometimes you will notice a delay between the time the simulator is launched and the time
your app launches within the simulator. When this delay happens, you see nothing but a black
screen within the simulator. This is normal, and it usually happens only the first time you
launch your app in the simulator.

You can take your newly created f lashlight application and submit it to Apple for
review. However, there is a high level of certainty that Apple will reject your master-
piece because of its lack of functionality. Besides, you are not done with this app. You
want to build a Hello World application, and, as you can see, “Hello World” does not
appear when this application is run. So let’s continue working on it.

First, stop the app, which is running in the simulator. You can do so by clicking
the Stop button at the upper-left side of Xcode or by pressing Command-. in Xcode
(not in the simulator). Now you’re ready to start modifying the app.

Note
When you use a project template, Xcode gives you a valid, runnable iPad application without
your having to write a single line of code. Perhaps it is because I still have memories of being
a teenager building apps 30 years ago, but I always get a little warm, fuzzy feeling when I see
a new application run for the first time. As a matter of fact, the first thing I do when I create a
new Xcode project is to build and run it. Seeing the application run for the first time gives me
a little jolt of excitement.

Getting Text on the Screen
This is a Hello World app, so it should display “Hello World” somewhere on the
screen. This can be accomplished by writing some code, but the easiest approach is
to use Interface Builder. Interface Builder, or IB as it is often called, is the visual user
interface designer built into Xcode. You’ll learn more about IB in Chapter 3, “Getting
Started with Interface Builder,” but for now steps are provided to guide you through
turning this blank application into a not-so-useful Hello World app.

To add “Hello World” to the display, you’ll edit the file ViewController.xib. A .xib
file, pronounced “zib,” is an XML representation of a NIB file. A NIB file, or .nib, is
the binary predecessor of the .xib file. Being text based, a .xib file has the benefit of
working better with version-control systems when compared to the earlier binary .nib
version. That said, .xib files are still compiled down to .nib files when you build the
application.

Chapter 1 Your First App12

What is a NIB file? It is a file created by Interface Builder to archive interface
objects and their relationships. Put another way, a NIB represents the objects that
make up the visual display of a screen. You create and edit NIB files using IB, and
your application uses the NIB files at run time to display the user interface of the app.

Note
iOS developers often refer to a .xib file as a NIB file because it is, after all, just a text-based
representation of a NIB file.

History
The N in NIB is a carryover from the NeXTSTEP days when it was used to indicate the NeXT-
style property list file. The IB indicates that the file is an Interface Builder file.

Begin by opening the file ViewController.xib, available in the Project navigator. This
changes the contents of the Editor area. It displays the NIB file using the IB designer,
as shown in Figure 1.8.

Note
Chapter 3, “Getting Started with Interface Builder,” covers all the utilities available with IB.

IB has a set of available utilities for working with a NIB file. Press Control-
Option-Command-3 to display the Object library. The Object library contains a list
of visual and nonvisual components that are used to construct the user interface. In the
filter bar at the bottom, type “Label” without the quotes. This will filter the object
list, displaying only label-type objects.

Drag and drop the label object onto the view’s canvas area. This creates a new
UILabel instance, which is the type of object representing a label. Next, open the
Attributes inspector (Option-Command-4). At the top of the Attributes inspector
is a property named Text. Change the default value “Label” to “Hello World.” Xcode
should now look similar to Figure 1.8.

You may need to resize the label to view the entire “Hello World” content. To
resize it, move the mouse cursor to the right edge of the label object. The cursor will
change to the resize indicator. Click and drag the mouse to the right to increase the
width of the label.

Build and run the app in the iPad Simulator. Congratulations! You have written
your first Hello World app for the iPad.

Note
Don’t worry if none of this is making sense yet. Remember—the goal of this chapter is to give
you a sneak peek into iPad programming by way of a step-by-step guide. This discussion is
intended to give you a sense of what it is like to program for the iPad. Later chapters will
explain all you need to know in detail, and before you know it, the steps for creating iPad
applications will be second nature to you.

Say Hello 13

Say Hello
Now that the excitement of creating your first application for the iPad has worn off,
let’s extend the application by adding some functionality to it. Instead of having it
always display “Hello World,” let’s change the app to first ask for a name, then display
a “Hello” message in response to the name entered. This exercise is more involved and
requires you to write some Objective-C code. Do not worry if you have never seen
Objective-C code before. You will be told exactly what to type, and you will explore
Objective-C in more detail in Chapter 4, “Getting Started with Objective-C.”

In life there is often more than one way to accomplish a task. The beauty of iPad
programming is that there are many different ways to do something. It is this f lex-
ibility in the development tools that makes many programmers prefer Xcode to other
development tools. But it does take time to learn all the ins and outs, which can be
frustrating for programmers new to Xcode.

One of the goals of this book is to show you the different ways a task can be
accomplished. Armed with this knowledge, you can decide which approaches work
best for you. For example, it is possible to use IB to generate Objective-C code that
declares objects and actions defined in a .xib file. However, this discussion is saved for
a later chapter. Instead, you’re going to write the Objective-C code yourself to extend
functionality in the Hello World app.

Two screen elements are needed: one that accepts user input for the name and the
other to display “Hello.” A third element, a button, is also needed to tell the app when
to display the “Hello” message. The NIB file defines the objects that make up the user

Figure 1.8 Adding “Hello World” to the main view of the app

Chapter 1 Your First App14

interface, but there is no automatic connection between the objects and the source
code. Instead, you must make the connection.

Start by opening the file ViewController.h. You can find this file in the Project navi-
gator. When you click it, the Editor area will display the contents of the file. Modify
the file’s contents so that the source code looks exactly as it does in Listing 1.1.

Listing 1.1 Modified Version of ViewController.h

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController

@property (nonatomic, weak) IBOutlet UILabel *helloLabel;

@property (nonatomic, weak) IBOutlet UITextField *nameField;

- (IBAction)displayHelloName:(id)sender;

@end

Next, open the file ViewController.m. Replace the generated source code found in
the file with the source code in Listing 1.2.

Listing 1.2 Modified Version of ViewController.m

#import "ViewController.h"

@implementation ViewController

@synthesize helloLabel;

@synthesize nameField;

- (IBAction)displayHelloName:(id)sender

{

 NSString *hello = [NSString stringWithFormat:@"Hello %@", [nameField text]];

 [helloLabel setText:hello];

}

@end

The code in Listing 1.1 does a number of things. First, two properties are added
to the class ViewController. These properties are marked with IBOutlet, which
is a hint to IB that the class contains a reference to an object. Next, the method
-displayHelloName: is declared. It is marked with IBAction, another hint to IB,
this time telling IB that an action exists in the class definition. At this point, the inter-
face for the class ViewController has been defined.

Say Hello 15

What Are IBOutlet and IBAction?
IBOutlet and IBAction are special indicators for Interface Builder—hence the IB prefix.
Interface Builder uses these indicators to connect objects and actions to elements in the
user interface.

An IBOutlet is used to connect an object reference defined in Objective-C code to the
object instance used in Interface Builder. For example, earlier in this chapter you placed
a label on the view. That label is actually a UILabel. (UILabel is the class name for
the label.) To access the label in code, you must have a reference to the instance of the
UILabel. You will see later in this chapter how you connect the reference declared in
code to the instance displayed in IB.

An IBAction is used to connect an event sent by an object to a method defined in code.
For example, a button has an event that is fired when a user lifts her finger. This action can
be connected to the IBAction defined in the Objective-C class.

The code in Listing 1.2 represents the implementation for the class ViewController.
This implementation begins by synthesizing the two properties declared in the class
interface, helloLabel and nameField. Property synthesis is an Objective-C compiler
feature that generates the accessor methods for these properties at compile time. You’ll
learn more about this feature in Chapter 4, “Getting Started with Objective-C.”

The property synthesis is followed by the implementation for the method
-displayHelloName:. This method is the action that is called when the user inter-
acts with the app—specifically, when the user taps a button—which you will provide
momentarily. The implementation of this method creates a local string variable con-
taining the name entered by the user with the prefix “Hello.” This string is then dis-
played on the screen as the text value for the helloLabel.

If you were to run the app at this point, you would see no difference from the ear-
lier version. While the code has been updated to do what you want it to do, the user
interface has not been updated and the connections for the outlets and actions have not
been made.

Note
This decoupling of the source code—in this particular case, the controller—and the user inter-
face (also known as the view) is representative of the Model-View-Controller design pattern,
which is discussed in Chapter 5, “Getting Started with Cocoa.”

To complete the app, you need to update the user interface and connect the UI
objects to the properties defined in the controller class. Once again, open the file
ViewController.xib. Double-click the “Hello World” label and change its text value to
“What is your name?” Resize the label as needed to display the entire text.

Chapter 1 Your First App16

Search through the Object library in the Utilities area for the Text Field object.
Alternatively, you can filter the object list by typing “text field” in the filter bar. Drag
and drop a text field to the right of the “What is your name?” label.

Now search through the Object library for the Round Rect Button. Drag and drop
an instance of this button to the right of the text field. In the Attributes inspector,
change the Title property to “Say Hello.”

Finally, search the Object library for Label, and drag and drop a new label onto the
canvas, placing it under the other objects. Be sure to increase the width of the label
to accommodate the string value created in the method -displayHelloName:. The
view should look similar to Figure 1.9.

Now it’s time to connect the objects and events defined in the NIB with the outlets
and actions defined in the view controller source code. One way to connect objects
to outlets and actions is to Control-click an object, and then drag the mouse cur-
sor to another object. When the mouse button is released, IB will display a Heads-Up
Display (HUD) of the connection options. For example, when you Control-click the
File’s Owner object (the translucent cube displayed in the left sidebar in the Editor area)
and drag it to the text field (shown in Figure 1.10), a HUD is displayed, allowing you
to connect the text field to the properties nameField and view. Select nameField to
connect the text field to the property defined in ViewController.h.

Do the same thing to connect the label to the property helloLabel. Control-
click the File’s Owner cube and drag to the label where the output of the −display
HelloName: will be displayed.

Figure 1.9 The modified user interface file ViewController.xib

Say Hello 17

Figure 1.10 Connect the nameField property to the text field
defined in the NIB file.

To connect the action to the Say Hello button, you Control-click the button and
drag to the File’s Owner cube. This will assign the action -displayHelloName: to the
button event Touch Up Inside.

With the connections in place, the Hello World app is now functional. Build and
run the app in the simulator. Tap the name field in the simulator to enter a value, and
then tap the Say Hello button to dissplay the “Hello” message. The final app should
look similar to Figure 1.11.

You might be wondering how IB is able to identify the correct Objective-C header
file. It’s simple: The file’s owner is defined as being of type ViewController. This
tells IB which source file to look at for outlets and actions. You can see this by click-
ing the File’s Owner cube, and then typing Option-Command-3. The class name is
set to ViewController. This is how an object defined in IB knows its type.

Note
A common mistake made in Interface Builder is forgetting to associate your outlets and
actions. If you run the application and notice that the display does not update after the Say
Hello button is touched, chances are good that the Touch Up Inside event for the UIButton
is not associated with the -displayHelloName: action.

Chapter 1 Your First App18

Figure 1.11 The new and improved Hello World app

Summary 19

Summary
Congratulations! You have completed your first iPad application—and you just got
a sneak peek into iPad programming. This chapter should leave you itching to learn
more. Before you dive into the meat of iPad programming, however, you need to
learn more about the tools and programming language you will use. Let’s begin by
taking a closer look at Xcode in the next chapter.

This page intentionally left blank

Index

A
About scene

creating, 352–355
rotating, 510
segues, 355–357
view controllers, 359–363

AboutSceneSegue identifier, 355
Above the fold display, 159
Accessorizer tool, 36
accessoryButtonTappedForRowWithIndex

Path method, 225, 228, 330
Action sheets, 289–293
actionButton property, 485
Actions

IBAction. See IBAction macro
slideshow controls, 621

Activity View Controller, 537–540
Ad Hoc distribution, 689

preparing, 691–694
provisioning, 690–691

Add Devices page, 141
addButton method, 211
addButtonsToNavigationBar method

deleting photos, 481–483, 485
filter containers, 638–639
slideshows, 620

addChildViewController method, 364–365
Adding

Core Data entities, 313–316
images, 348–349
photo albums, 408–409, 411, 416
photos to albums, 331–334, 434–439
slideshows, 609–610
table view data, 210–224

addPhoto method
adding photos to albums, 438

Flickr, 548
naming photo albums, 423

addphoto.png file, 548, 574
addPhotoAlbum method, 408–409, 411, 416
addPhotosObject method, 319
Admin role in iTunes Connect, 703
Adobe Photoshop, 167–168
Advanced Collection Views and Building Custom

Layouts video, 248
advanceSlide method, 619
Advancing photos, 617–619
affineTileFilter method, 641
Age calculations, 102
AirPlay. See Slideshows
AirPrint. See Printing
AirServer app, 609
ALAssetsLibrary class, 285
Albums. See Photo albums
Albums View Controller Scene, 407
albumsView property, 500
AlbumsViewController class

container view controllers, 366
iCloud, 595–597, 600
implementing, 408–413
managed object context, 414–415
photo albums, adding, 412, 416
photo albums, displaying, 408
photo albums, selecting, 417–419
scene rotation, 509–510

alertView method, 429
Aligning objects, 53–56
alignScrollViewSubviews method, 512–513
alloc method, 88, 93
Allocations tool, 681–682
Allows External Storage option, 313–314

Index718

Angle brackets (<>)
classes, 185
header files, 79

Angle of spin gesture rotation, 278, 282
angleOffset property, 508
API

external display, 606–607
Flickr, 551–558
GCD, 576–577
Printing, 519

API keys in Flickr, 543–545
App Charters, 151–152, 156–158
App icon, 349–350
App IDs

iCloud service, 582–584
iOS Provisioning Portal, 143–145
overview, 128–129

App Store distribution, 689
assets, 702
information for, 700–702
preparing, 695–697
process, 698–699
provisioning, 695
rejected apps, 699

AppDelegate class
breakpoint example, 667–668
Core Data stack, 309–310, 312
photo albums, 415
PhotoWheel app, 184–188
storyboards, 347–348
table view data, 230–231

AppKit framework, 99
Apple IDs, 712
Application bundles, 108–109
applicationDidBecomeActive method, 189
applicationDidEnterBackground method, 189
applicationFrame property, 616
applicationWillEnterForeground method, 189
applicationWillResignActive method,

188–189
applicationWillTerminate method, 189
applyFilter method, 636, 646
Applying filters, 645–647
applySpecifiedFilter method, 645–647, 649
Apps, 151

competing products, 155–156
defining, 151–152

delegates, 184–189
distributing. See Distribution
feature lists, 153–154
icons, 164
managing, 704
mockup. See Mockup apps
names, 152, 700
prototyping, 171–173
quitting, 182–183
summaries, 152–153
target audience, 154–158
templates, 6
types, 711–712
UI design, 158–164
UIApplication, 113
universal. See Universal apps

ARC (Automatic Reference Counting),
94–95

arc4random function, 76
arc4random_uniform function, 640
Arithmetic, date, 102
Arrays

creating, 106
literals, 89
strings, 203
table views, 203

Ash, Mike, 575
assetForURL method, 285
Assets Library framework, 285–286
assign attribute, 83–84
Assistant editor, 38–39, 68–70
Asterisk character (*)

App IDs, 129, 145, 582
Bundle IDs, 128
pointers, 80

Asynchronous photo downloading, 559–565
At signs (@) for literals, 88–89
Atomic properties, 83
Attaching, external display, 607–609
Attributes. See Properties
Attributes inspector

collection views, 240
opening, 12
scenes, 355
titles, 16
working with, 58

Authentication, 576–577

Index 719

Auto Layout system
overview, 58–59
scene rotation, 496, 502–503, 507
working with, 492–494

autoAdjustmentFiltersWithOptions
method, 631

autoEnhancedVersionOfImage method,
630–631

Autohiding chrome, 468–473
Automatic image enhancement, 630–631, 647
Automatic Reference Counting (ARC), 94–95
Availability by country information for

apps, 700
Availability date information for apps, 700
availableModes property, 607
awakeFromInsert method, 325–326, 601–602

B
Background apps, 182
background-landscape-right-grooved.png

file, 501
background-portrait-grooved.png file, 351, 501
backOnePhoto method, 621–622
Backups of key pairs, 136
Balsamiq Mockups app, 170–171
Bar buttons, 120
Base settings, 40
Base URLs in Flickr, 556
Began state, 275, 278
__block directive, 572–573
.bmp files, 118
Books, recommended, 707
Booleans, 84
Bottom Space to Superview option, 504
Bounce effect, 258
Bounds of frames, 677–678
bounds property, 607
Brackets ([]) in code, 89
Brainstorming technique, 153
Breakpoint navigator, 24
Breakpoints, 666–667

customizing, 668–670
debugging example, 675
hitting, 670–672
setting, 667–668

__bridge syntax, 265

Broadcasting events, 417–418
Buck, Erik M., 121
Bugs. See Debugging
Build Settings, 40
buildFlickrURLWithParameters method,

555, 558
Bumgarner, Bill, 282
bumpDistortionFilter method, 641
Bundle Display Name setting, 338
Bundle IDs, 128, 700
Bundle Seed IDs, 128, 145
Bundles, 108–109
Business of iPhone App Development, 706
buttonIndex property, 291
ButtonMaker application, 115
Buttons, 13

bar, 120
classes for, 114–115
identifiers, 353
table views, 210

buttonTapped method, 64–65

C
C programming language, 71
Caching

cells, 208
images, 565

CALayer class, 263–264
Camera roll, saving photos to, 297–299
Cameras

checking for, 287–288
full-screen, 295

cancel method
filters, 650
Flickr, 546, 568
table view data, 216, 219

cancelChromeDisplayTimer method, 472–473
Cancelled state, 275
canEditRowAtIndexPath method, 224, 228–229
canMoveRowAtIndexPath method, 230
canSendMail method, 529, 531
Carousel view, 256–262
cellAtIndex method

photo album thumbnails, 433–434
photo albums, 410, 413
WheelView, 396, 404, 406

Index720

cellDoubleTapped method, 274
cellForItemAtIndexPath method

collection views, 245
displaying photos, 444
Flickr, 570–571

cellForRowAtIndexPath method
albums, 328
collection views, 240
photos, 332
table views, 207–209, 225, 229–230

cellIndexesToDisplay method, 399–400, 406
cellIndexForIndex method, 399, 406
Cells

collection views, 242–246, 439–440
nonvisible rows, 208
table views, 202

cellTapped method
image picker controller, 287–288
touch gestures, 273

.cer files, 136
Certificate Assistant, 132–133, 136
Certificate Revocation Lists (CRLs), 131
Certificate Signing Requests (CSRs), 131,

134–135
Certificates

CSRs, 134–135
development, 131–134
downloading and installing, 135–137
Provisioning Portal, 690

CFNetwork framework, 559–560
CGGeometry class, 378
CGImage format, 629
CGImageRef structure, 264, 644
CGRectInset setting, 649
CGRectNull setting, 648
CGRectOffset function, 378–379
Changed state, 275, 278
Charters, 151–152, 156–158
Child scenes, 366–369
childViewControllers property, 364
Chrome effects, 468–473
chromeHidden variable, 472, 614
chromeHideTimer property, 472, 614
CIAffineTile filters, 642, 646
CIAffineTransform filters, 642
CIBumpDistortion filters, 642, 644
CICircleSplashDistortion filters, 642, 644
CIColorInvert filters, 627, 642

CIColorPosterize filters, 642
CIContext class, 626, 628
ciContext variable, 634
CICrop filters, 627, 649
CIDetector class, 631–633
CIDetectorTypeFace class, 632
CIFaceFeature class, 631–633
CIFilter class, 625–626

effects, 641–644
image enhancement, 631
overview, 627–628
working with, 628–630

CIHueAdjust filters, 627, 642
CIImage class, 625, 628–631, 647
circleSplashDistortionFilter method, 641
CISepiaTone filters, 627–629
CITwirlDistortion filters, 642, 644
Clair, Robert, 71
Clark, Josh, 158
@class directive, 232
Class Extensions Explained, 282
Class Prefix setting, 8
Classes

collection views, 236
defining, 80
extensions, 281–282
implementing, 85–90
methods, 84–85
overview, 77–80

clickedButtonAtIndex method
action sheets, 291
adding photos, 436, 438
deleting photos, 484–485
email, 533–534, 536
Flickr, 549–550
printing, 520–521
removing photo albums, 429

Clock Radio app, 163
Cocoa Auto Layout

overview, 58–59
scene rotation, 496, 502–503, 507
working with, 492–494

Cocoa Design Patterns, 121
Cocoa framework, 65, 97

design patterns, 121–122
Foundation library. See Foundation

library
RESTful Web services, 542–543

Index 721

stack, 97-99
UIKit, 112–121

Cocoa Samurai, 35
Cocoa Touch layer, 97–98
Code completion feature, 36
Code folding, 30
Code names, 152
Code Pilot tool, 36
Code separation, 656–657
Code signing

assets exporting and importing, 137–138
settings, 697

Code Snippet library, 27
Coding styles, 33
CoinToss project and CoinTosser class, 76–80

algorithm, 75–76
creating, 72–75
declared properties, 82–84
dot syntax, 91–92
implementation, 85–90
instance variables, 81–82
interfaces, 80
methods, 84–85
selectors, 90–91
working with, 92–93

Collection classes
NSArray and NSMutableArray, 106
NSDictionary and NSMutableDictionary,

106–107
NSSet, NSMutableSet, and

NSCountedSet, 107–108
Collection views, 235

classes, 236
custom cells, 242–246
displaying photos, 442–446
f low layout, 236–242
scene rotation, 504–505

Colon characters (:)
class names, 80
methods, 210
parameters, 85

Color settings, 29–30
Combining images, 628
Command Line Tool template, 72–73
Commercial keys in Flickr, 544
commonInit method

spin gesture recognizers, 279, 282
WheelView, 397, 405

Company Identifier setting, 7
Competing products, 155–156
Compilers for Objective-C, 71
Concurrent programming, 576–577
Conditional breakpoints, 667–668
configureExternalScreen method,

615–616, 677
confirmDeletePhotoAlbum method, 428–429
Conf licts

Core Data entities, 317
iCloud service. See iCloud service
names, 87

connection method, 112
connectionDidFinishLoading method

images, 562, 564
SimpleDownloader, 112

Connections
classes, 111–112
NIB files to code, 48, 61–70
objects to outlets, 16–17

Connections inspector, 60–61
Console

apps, 73
debugger messages, 672

constraints in Cocoa Auto Layout, 492–494
constraintsWithVisualFormat method,

493–494
constraintWithItem method, 494, 500
Contact information for apps, 701
Container IDs, 594
Container view controllers

child scenes, 366–369
creating, 365–366
overview, 364–365

Containers, iCloud, 585, 594
contentSizeForViewInPopover property,

198–199
Contexts, managed objects. See Managed

object contexts
Continuous gestures, 270
Continuous recognizers, 275
Control-Click

connections, 16–17, 64–65, 408
Finder, 388
projects, 342, 346
segues, 355
views, 338, 407

controllerDidChangeContent method, 444

Index722

Controls
slideshows, 620–622
UI design, 162–163

Converting
radians to degrees, 282–283
strings to dates, 109

Coordinate systems for photos, 462
copy attribute, 83–84
Copying

files, 388–390
methods, 191
objects, 53

Copyrights, 701
Core Animation, 258
Core Animation for MacOS X and the

iPhone, 258
Core Animation framework, 258
Core Data for iOS, 302
Core Data framework, 302

adding, 306–307
changing models, 587
iCloud, 581
managed object contexts, 305–306
managed objects and entity descriptions,

303–305
model editor, 312–313
NSManagedObject subclasses, 317–321
overview, 302–303
persistent stores and persistent store

coordinators, 306, 311–312
photo albums, adding, 415
photo albums, displaying, 334–335
photo albums, reading and saving,

327–331
photos, adding, 331–334
photos, entities, 313–316
PhotoWheel, 312–321
PhotoWheelPrototype, 306
prototype code, 390–393
stack setup, 308–312
transient attributes, 586–587

Core Data Model Versioning and Data
Migration, 587

Core Foundation, 100
Core Image effects

applying filters, 645–647
auto-enhance, 647

CIFilter, 627–630, 641–644
concepts, 625–626
face zoom, 647–649
image analysis, 630–633
instance variables, 633–634
interface additions for, 634–640
utility methods, 649–651

Core OS layer, 98
Core Services layer, 98
Cox, Brad, 85
CPUs for images, 626
Crashing apps, 699
Create a new Xcode project option, 4
Create App ID page, 143–145
Create iOS Development Provisioning

Profile page, 145–146
createCGImage method, 630
createScaledImagesForImage method,

323–324, 392–393, 591
CRLs (Certificate Revocation Lists), 131
Cropping images, 649
CSRs (Certificate Signing Requests), 131,

134–135
.cur files, 118
Curly braces ({}) for local variables, 80
Current line with breakpoints, 670
currentAlbumIndex property, 327
currentAngle property, 281–282
currentCalendar method, 101
currentIndex property

external displays, 618
PhotoBrowserViewController, 452, 454
slideshows, 612–613, 619, 622–623

currentPhotoView property, 611–613
Custom breakpoints, 668–670
Custom cells, 242–246
Custom layouts, 242
Custom queues, 575
Custom touch gestures, 275–283
Custom views, 246–248

carousel, 256–262
photo wheel view cell, 263–267
wheel, 248–256

CustomNavigationController class
photo browser, 460, 466–468
pop transitions, 382–383
slideshows, 623–624

Index 723

CustomPushSegue class
implementing, 375–381
photo browser, 457–458, 460, 464–466

D
Dalrymple, Mark, 89
Data persistence, 301

Core Data. See Core Data framework
custom code to model objects, 321–327
data model, 301–302
SQLite, 335

Data stores, 303
Data types, 80, 85, 100–101

NSCalendar, 101
NSData and NSMutableData, 101
NSDate, 102
NSDateComponents, 102
NSDecimalNumber, 102–103
NSInteger and NSUInteger, 103–104
NSNull, 104–105
NSNumber, 104
NSObject, 105
NSString and NSMutableString, 105

dataSource property
GridView, 547
photo albums, 407
table view, 203
UITableView, 206
UITableViewDataSource, 202
wheel view, 249, 253

dateAdded property, 314
Dates

arithmetic, 102
formatting, 109
pick lists, 117

DDEBUG compiler option, 680
dealloc method, 420–421, 595
Debug area, 28
Debug build configurations, 692
DEBUG compiler option, 679–680
Debug navigator, 24, 670–672
Debugging

breakpoints, 666–667
concepts, 666–667
external display code example, 675–679
NSLog, 679–680

overview, 665
problem reproduction, 665–666
profiling codes, 681–686
tools, 666
variable inspection, 672–674
Xcode, 667–674

Declared properties, 82–84
Dedicated development devices, 130
Default.png file, 515
Default-landscape.png file, 515
defaultNameText property, 227
defaultPhoto.png file, 265, 413, 431
Defensive programming, 660–661
Degrees, converting, 282–283
delegate property, 271
Delegates

apps, 184–189
split view controllers, 192–194
table view data, 214

Deleted iCloud documents and data, 602–603
deletePhoto method, 484–485
deletePhotoConfirmed method, 483–485
Deleting

objects, 53
photos, 480–487
table view data, 228–229

Demo information for apps, 701
dequeueReusableCell method, 395, 403, 406
dequeueReusableCellWithIdentifier

method, 209
description method, 673
Descriptions for apps, 701
Deserialization, 48
Design patterns, 121–122
Designers, hiring, 164
Destination controllers, 379, 457
Destination frames, 466
Destination image view, 379
Detail view controllers, 179
detailNavigationController, 187
DetailView.xib field, 252
DetailViewController class, 184

action sheets, 289–293
Carousel view, 260–262
collections, 237–241, 245–246
image picker controllers, 287–288,

293–295

Index724

DetailViewController class (cont’d)
master detail apps, 187, 194
photos, 331–334
PhotoWheelViewCell, 265–266
table view data, 230–232
titles, 200
touch gesture recognizers, 271–273
wheel view, 252–255

Detection, face, 631–633
Dev Center, 135, 714
Developer documentation, 37
Development machines, 130–131

certificates, 131–137
CSRs, 134–135

Development provisioning profiles, 129–130,
146–149

Development setup, 139–141
Device family types, 8
Device IDs

iOS Provisioning Portal, 141–143
overview, 127–128

.deviceids file, 141
Devices

managing, 43–44
provisioning. See Provisioning
rotating. See Rotation
schemes, 42
setup, 138–141

DIB (Windows Bitmap Format) format, 118
Dictionaries

classes, 106–107
face detection, 632
Flickr, 557–558
literals, 89
variables, 673–674
views, 499, 507
WheelView, 405

didAccessValueForKey method, 591
didChangeObject method, 410
didChangeValueForKey method, 590
didDeselectItemAtIndex method, 571
didDismissWithButtonIndex method, 291–292
didFailWithError method, 562, 564
didFinishLaunchingWithOptions method

AppDelegate, 186–188
Core Data stack, 312
NIB-based projects, 339

rotation, 492
storyboards, 347
table view data, 231

didFinishPickingMediaWithInfo method,
296–299, 333

didFinishWithResult method, 532
didMoveToParentViewController method,

364–365
didReceiveData method, 562, 564
didReceiveMemoryWarning method, 218
didReceiveResponse method, 562, 564
didRotateFromInterfaceOrientation method,

490, 512–513
didSelectAlbum method, 420–421
didSelectCellAtIndex method

photo albums, 411, 413, 417, 419
WheelView, 395

didSelectItemAtIndexPath method
collections, 238–240
displaying photos, 444
Flickr, 571
photo browser, 457, 459–460, 462

didSelectRowAtIndexPath method
photos, 332
table view data, 230, 233

disablesAutomaticKeyboardDismissal
method, 566, 572

Discounts for apps, 700
Discrete gestures, 270–271
dismissAbout method, 361–363
dispatch_async function, 576, 594–595
dispatch_get_global_queue function, 576
Dispatch queues, 575
Display area, 113
Display buttons in table views, 210
displayHelloName method, 14–15
Displaying

external. See External display
Flickr, 548–551
photo albums, 406–416
photos, 334–335, 439–446
slideshows, 610–613
table view data, 206–210

distantFuture method, 621
Distribution

Ad Hoc, 691–694
App Store. See App Store distribution

Index 725

extra steps, 706
iTunes Connect, 703–706
methods, 689–690
provisioning profiles, 130
submitting apps, 705–706

DLog macro, 679–680
Dock

IB, 51
Xcode in, 3

Document Outline, 504
Documentation, developer, 37
Done bug, 384–385
done method

table view data, 216, 219–220
view controllers, 361–362

Don’t Repeat Yourself (DRY) principle, 247
Dot syntax, 91–92
Double quotation marks (“) for strings, 105
Double tap gesture, 273–274, 478
doubleTapped method, 477
downloaders property, 572–573
downloadImageAtURL method, 561–563
Downloading

certificates, 135–137
development provisioning profiles,

146–147
images, 348
photos, 559–565
Xcode, 714

Downloading Images for a Table without Threads
blog post, 560

downloadWithURL method, 111–112
Dragging, 270
DRY (Don’t Repeat Yourself) principle, 247
Dudney, Bill, 258
Duplicate detection in iCloud service, 601
Dynamic arrays, 106
@dynamic directive, 320
Dynamic sets, 107

E
editButtonItem property, 224
Editing

breakpoints, 669
table view data, 224–228

Editor area, 25

Editor gutters, 667
Editors, 38–40
Educational discounts for apps, 700
Email

MFMailComposeViewController,
526–527

operation, 525–527
SendEmailController, 527–537

Email addresses for apps, 701
emailCurrentPhoto method, 534–535
emailPhotos method, 536–537
Embedded seques, 368
Empty Application template, 6, 342, 344
Encapsulation, 82
@end directive, 80, 86, 185
End state, 275
End User License Agreement (EULA), 702
enhancedCIImage property, 631
enhanceImage method, 647
Enhancement of images, 630–631, 647
Enterprise program type, 710
Entitlements in iCloud, 585
Entity descriptions, 303–305
enumerateGroupsWithTypes method,

285–286
EULA (End User License Agreement), 702
Events

broadcasting, 417–418
touch, 269–270

Exception breakpoints, 667
Exceptions, 66
Exponents, 102
Exporting code signing assets, 137–138
Extensions, classes, 281–282
External display

API, 606–607
attaching, 607–609
debugging example, 675–679
managing, 613–617
options, 605
requirements, 606

externalDisplaySlideShowController variable,
614, 617

externalScreenWindow variable, 614, 617
ExternalSlideShowViewController class,

609–613
externalViewFrame, 678

Index726

F
Face down orientation, 491
Face up orientation, 491
Faces

detecting, 631–633
zooming, 647–649

faceZoomRect property, 648–649
Failed state, 275
Fault objects, 305
Feature lists for apps, 153–154
featuresInImage method, 632
fetchedResultsController method

displaying photos, 443
method, 411–412
syncing photos, 595

fetchFlickrPhotoWithSearchString method,
569, 573, 575–576

fetchRequestWithEntityName method, 412
fetchResponseWithURL method, 554–555,

557–558
Fielding, Roy, 542
File coordinators in iCloud, 580–581
File Inspector, 41
File Template library, 27
Files

copying, 388–390
header, 79, 184, 187, 191–192
owners, 61

fileURLForAttributeNamed method, 591
filteredCenterFactor variable, 634, 644
filteredLargeImage variable, 634
filteredRadiusFactor variable, 634, 644
filteredThumbnailImage variable, 634, 638,

644
filteredThumbnailPreviewImages variable,

634, 636, 647
Filters, 109

applying, 645–647
CIFilter. See CIFilter class
face zoom, 647–649
hiding, 650–651
image analysis, 630–633, 646–647
instance variables, 633–634
interface additions for, 634–640
types, 626–629
utility methods, 649–651

filterViewContainer property, 635

Finance role in iTunes Connect, 704
Fixed space bar buttons, 120
Flashlight app, 11
Flexible space bar buttons, 120
Flickr, 543–545

displaying, 548–551
downloading photos, 559–565
FlickrViewController class, 565–574
PhotoWheel, 545–547
view controller scene, 547–548
wrapping API, 551–558

f lickrJSONSWithParameters method, 555–558
f lickrPhotos property, 572–573
FlickrViewController class, 545–548, 551

arrays, 560
implementing, 565–574

f lip method, 85, 88–90, 93
Floating-point number format specifiers, 108
Flow layout for collection views, 236–242
FMDB project, 335
Fonts

labels, 355
scenes, 354–355
settings, 29–30

forCellWithReuseIdentifier method, 239
Foreground apps, 182
Format specifiers, 108
forRowAtIndexPath method, 224, 228–229
Forwarding messages, 364–365
forwardOnePhoto method, 621–622
Foundation.h file, 79
Foundation library, 99–100

collection classes, 106–108
data types, 100–105
utility classes and functions, 108–112

frameForPageAtIndex method, 451, 454
frameForPagingScrollView method, 451, 454
Frames, 677–678
Framework & Library target, 6
Framework bundles, 109
Freeform table views, 220
Full-screen cameras, 295
Future Proofing Your Applications, 661

G
Garbage collection, 93–94
GCD (Grand Central Dispatch) API, 576–577

Index 727

GeoJSON files, 702
Gestures. See Touch gestures
getExternalScreen method, 614–615, 617
getter attribute, 83–84
Getter methods, 64, 82
GIF (Graphic Interchange Format) format,

118
Git source code repositories, 40, 74, 181
Github repository, 602
Global queues, 575
Glyphish icon set, 168
Google Objective-C Style Guide, 33
GPUs for images, 626
Gradient buttons, 115
Grand Central Dispatch (GCD) API, 576–577
Graphic Interchange Format (GIF) format,

118
Grids

IB, 51
photos, 439–446

Grouped tables, 202
GUI PSD template, 167
Guidelines for Cocoa Auto Layout, 492–493
Guides for object alignment, 53–54

H
handleCloudUpdate method, 595–596
Hard-coding universal apps, 659–660
Harrington, Tom, 302
Hashes for URI strings, 588
Header (.h) files, 79, 184, 187, 191–192
Heads-Up Display (HUD), 16
Hello World project

creating, 3–11
functionality, 13–18
text, 11–13

Help
online, 252
provisioning, 134
Quick Help, 37

Hide System Libraries option, 684–685
hideChrome method, 471, 473
hideFilters method, 638
hideOverlay method, 568–569, 573
Hiding filters, 650–651
HIG guideline, 158

Hillegass, Aaron, 71
Hiring designers, 164
Home button, 491
home.png file, 101
Horizontal guides, 53–54
HUD (Heads-Up Display), 16
hueAdjustFilter method, 640

I
IBAction macro

connections, 48
description, 14–15
NIB code, 61–66
PhotoBrowserViewController, 635
table view data, 220

iBooks, 161–162
IBOutlet macro

connections, 48
description, 14–15
NIB code, 61–66
PhotoBrowserViewController, 635–637
table view data, 219–220

IBOutletCollection macro, 639
IBPlaygroundViewController class, 62–67
IBPlaygroundViewController.xib f ile,

50–51
iCloud service

awakeFromInsert calls, 601–602
changes from, 598–600
concepts, 580
deleted documents and data, 602–603
device provisioning, 582–585
duplicate detection, 601
entitlements, 585
file coordinators and presenters, 580–581
limitations, 586
monitoring data, 597–598
overview, 579–580
PhotoWheel, 586–591
preexisting data stores, 600–601
ubiquitous persistent stores, 581–582
UIDocument and UIManagedDocument,

581
.ico files, 118
Icon*.png files, 349
Icon72x72.png file, 355

Index728

Icons
apps, 164
sets, 168

IDE (Integrated Development Environment),
21–22

Identity inspector, 57, 362
Image picker controllers

action sheets, 289–293
saving photos to camera roll, 297–299
working with, 286–289, 293–297

Image View class
Document Outline, 504
scene rotation, 504–505

imageAtIndex method, 449
imageDataForAttributeNamed method,

590–591
ImageDownloader class, 561–564
imageFilters variable, 634
imagePickerController method, 296, 435,

437–438
imagePickerPopoverController property, 295
Images

caching, 565
child scenes, 367–368
classes for, 117–118
collection view cells, 440–441
Core Image. See Core Image effects
downloading, 348–349
enhancement, 630–631, 647
face detection, 631–633
Mockup apps, 168
photo album thumbnails, 430–434
rotating, 513–515
scaling, 589–590
segues, 377–379
storyboards, 348–349

imageTapped method, 473
Immutable classes, 100
iMockups app, 169
@implementation directive, 86, 187
Implementation of classes, 85–90
#import statements, 79, 92
Importing code signing assets, 137–138
Indentation preferences, 30, 32
Index cards, 153
Index paths, 208, 226
index property, 477

indexInWheelView property, 404
indexPath property, 226
Indistinct objects, 107
Industrial design, 160
info.plist f ile

Bundle IDs, 129
launch images, 515
PhotoWheel app, 184
rotation support, 489–490
storyboards, 338
universal apps, 656

Info settings, 40
Information hiding, 82
Inheritance, 185
init method

CoinTosser, 87–88, 93
prototype code, 397, 405
SimpleDownloader, 111
spin gesture recognizers, 279, 282

Initial view controllers, 350–352
initPhotoViewCache method, 449–450, 453
initWithCalendarIdentifier method, 101
initWithCoder method

prototype code, 397
spin gesture recognizers, 279, 282

initWithDefaultNib method, 216–218, 222
initWithFrame method

prototype code, 397
spin gesture recognizers, 279, 282
zooming, 475, 478

initWithNibName method, 197–198, 261,
293–294

initWithViewController method, 529–531
insertNewObject method, 210–211, 221
Inspectors area, 27
Inspectors overview, 57–61
Installing

certificates, 135–137
development provisioning profiles,

147–149
Xcode, 714–715

Instance methods, 85
Instance variables (ivars), 49

Objective-C, 81–82
renaming, 86–87

Instruments tool, 44, 681–686
int data type, 80

Index 729

Integrated Development Environment (IDE),
21–22

Interface Builder (IB), 11–12, 47–48
aligning objects, 53–56
collection views, 242–245
hands-on practice, 49-53
layout rectangles, 56
NIB connections to code, 61–70
operation, 48–49
selecting and copying objects, 53
states, 57–61
storyboards, 70, 341
working with, 49–50

@interface directive, 80, 185
Interfaces

Objective-C, 80
user. See User interface (UI)

Intro to Grand Central Dispatch, 575
invalidatingBarButtonItem method, 191
invertColorFilter method, 640–641
iOS

device family types, 8
targets, 6
touch gestures, 269–270

iOS Configuration Utility, 141
iOS Dev Center, 135, 714
iOS Developer Program, 125, 709

joining, 710
membership privileges, 709–710
registration requirements, 712–713
team roles, 126

iOS Developer Program Agreement, 699
iOS Human Interface Guidelines, 158
iOS Provisioning Portal, 134, 141

App IDs, 143–145
certificates, 690
development provisioning profile,

146–149
device IDs, 141–143
iCloud, 584–585
overview, 125–127

iOS Simulator
external display, 675
Printer Simulator, 522–523

.ipa files, 693
iPad, universal apps for. See Universal apps
iPad device family, 8

iPad Simulator, 11
iCloud, 584
limitations, 44
working with, 181–182

_ipad suffix, 657
iPhone, universal apps for. See Universal apps
iPhone device family, 8, 431
iPhone emulator, 9
_iphone suffix, 657
isCameraDeviceAvailable method, 288
isIndexVisible method, 398–399, 405
isSelectedItemForAngle method, 398, 405
isSourceTypeAvailable method, 288
Issue navigator, 24
Isted, Tim, 302
isZoomed method, 476, 478
iTunes Connect, 703–706
ivars (instance variables), 49

Objective-C, 81–82
renaming, 86–87

J
Joint Photographic Experts Group (JPEG)

format, 118
JSON Framework, 543, 556–558
Jump bar, 25

K
kCICategoryStillImage category, 627
kCIContextUseSoftwareRenderer setting,

630
kCIImageAutoAdjustRed Eye setting, 631
Key bindings, 34–35
Key Pair Information window, 133
Key pairs for certificates, 133, 136
Key-value coding (KVC), 304, 629
Key-value pairs for dictionaries, 106–107
Key windows, 188
Keyboards, virtual, 162
Keychain Access application, 131–134, 136
Keychain data, 129
Keynote Kung-Fu toolkit, 168
Keys, Flickr, 543–545
Keywords for apps, 701
KissXML parser, 110

Index730

Kochan, Stephen G., 71
kPhotoWheelDidDeletePhotoAtIndex

notification, 486
kPhotoWheelDidSelectAlbum notification,

419–421
kRefetchAllDataNotification notification,

595–596
KVC (key-value coding), 304, 629

L
Label class, 12, 16
Labels

copying, 51–52
creating, 12
scenes, 355
text property, 209

Labor Mate app icon, 166
LaMarche, Jeff, 115, 560
Landscape orientation

landscape left and landscape right, 491
launch images, 514
photo browser, 466
split view controllers, 179

Large app icon, 702
largeImage attribute, 589
largeImageData attribute, 314, 586–587, 591
Launch images, 513–515
Launch options, 188
Launchpad, 3–4
Layout rectangles, 56
Layouts, custom, 242
layoutSubviews method

scene rotation, 509
spin gesture recognizers, 281–282
WheelView, 251–252, 403, 406

Leading Space to Superview option, 504
Leaks tool, 681
Learning Objective-C 2.0, 71
Lee, Mike, 513
Left-right design, 28–29
Legal role in iTunes Connect, 703
Libraries, 26

Foundation. See Foundation library
Library area, 27
Object, 12

Library target type, 6

libxml2 parser, 110
Line wrapping, 32–33
Literals

Objective-C, 89
string, 88

loadPage method
chrome effects, 470
PhotoBrowserViewController, 451, 454
zooming, 479–480

loadSubviewsWithFrame method, 475, 478
Local variables, 49

Objective-C, 81–82
renaming, 86–87

Location Services for photos, 285
Log Message actions, 669
Log navigator, 24
Logical conditions in searching and filtering

data, 109
Long, Matt, 258
Long presses, 270

M
.m files, 79, 85
Magic Piano app, 159
Magical Record framework, 303
Mail app, 179, 525–526
Mail composition view, 526
mailComposeController method, 532
main.m file, 75

CoinTosser, 92–93
PhotoWheel, 184

Main queue, 575
Main screen, 387–388

copying files, 388–390
Core Data model, 390–393
photo albums, adding, 416
photo albums, displaying, 406–416
photo albums, managing, 417
photo albums, naming, 421–426
photo albums, removing, 428–429
photo albums, selecting, 417–421
photo albums, thumbnails, 430–434
photos, adding, 434–439
photos, displaying, 439–446
toolbar display, 426–427
WheelView, 394–406

Index 731

Main storyboards, 344–345
MainScreenSlideShowViewController class,

616–620, 622–624
MainSlideShowViewController class,

609–611, 613–617
MainStoryboard.ipad.storyboard file, 656
MainStoryboard.iphone.storyboard file, 656
MainStoryboard.storyboard file, 656

container view controllers, 366
displaying photos, 439
done bug, 385
Flickr, 547
naming photo albums, 422
navigation, 371
PhotoBrowserViewController, 635, 651
pop transitions, 383
rotation, 496
scene rotation, 503, 507
scenes, 371
scroll view, 455
View Controller setting, 361–362

MainViewController class
container view controllers, 365
photo albums, 414–415, 417
photo browser, 457–458, 461–463, 466
rotation, 495–502
storyboards, 360–363

makeKeyAndVisible method, 188, 616
Making Apps That Don’t Suck, 513
Manage schemes window, 42
Managed object contexts

creating, 311–312
iCloud, 598–599
overview, 305–306
photo albums, 325–327, 414–415

Managed objects
overview, 303–305
path attributes, 588

managedObjectContext property
iCloud, 598–599
photo albums, 325, 408, 414–415

managedObjectModel method, 667, 669,
672

Mantissas, 102
Master-Detail Application template, 6
Master-Detail apps

app delegates, 184–189

creating, 180–181
detail view controller, 194
launch options, 188
master view controller, 195
navigation controller, 194–195
project structure, 184–188
prototype, 177–183
split view controller delegates, 192–194
split view controllers, 178–179, 189–194

Master view controllers, 179, 194–195
masterNavigation Controller, 187
MasterViewController class, 184

Core Data stack, 312
displaying data, 206–207
managed objects, 312
master detail apps, 187, 194–195
photo albums, 327–332
table view data, 210, 221–222, 228–233
table views, 203–206
titles, 197–200

Media layer, 98
Media library, 27
Memory management, 84, 93–95

Allocations tool, 681
leaks, 91, 93, 439

Menu items, classes for, 117
mergeChangesFromCloud method,

599–600
mergeChangesFromContextDidSave

Notification method, 600
Merging iCloud changes, 598–599
Message UI Framework, 525–529
Messages

debugger, 672
forwarding, 364–365
to nil objects, 219
sending, 108
SMS, 525

Metaphors in UI design, 160–162
Methods

copying, 191
Objective-C, 84–85

MFMailComposeViewController class,
526–527, 532

MFMailComposeViewControllerDelegate
protocol, 527

migratePersistentStore method, 601

Index732

Mini toolbar, 25, 27
.mobileprovision files, 147–148
MockApp template, 168
Mockup apps, 164

necessity, 166
overview, 164–165
PhotoWheel, 177–178
tools, 166–167
wireframes, 169–171

Model editor, 312–313
Model objects, custom code for, 321–327
Model-View-Controller (MVC) design

pattern, 15, 121–122
mogenerator tool, 321
.momd files, 309–310
monitoring iCloud data, 597–598
Motion events, 269
motionBegan method, 269
motionCancelled method, 269
motionEnded method, 269
Mouse clicks in design, 159
moveRowAtIndexPath method, 229–230
Moving guides, 54
Multitasking, 182
Multithreaded applications, 83
Mutable classes, 100–101
MVC (Model-View-Controller) design

pattern, 15, 121–122
myBalsamiq app, 171

N
Name editor for albums, 330–331
NameEditorViewController class

albums, 330–331
table view data, 212–217, 220–227

NameEditorViewControllerDelegate
protocol, 214–215

nameEditorViewControllerDidCancel
method, 215, 218–219, 222–223

nameEditorViewControllerDidFinish method
albums, 331
table view data, 215, 218–219, 221–225

Names
albums, 330–331
apps, 152, 700
ivars, 86–87

organization, 41–42
parameters, 215
photo albums, 421–426
registered devices, 141

Navigation area, 24–25
Navigation bar

classes for, 119
scenes, 371, 374–375
segues, 379

Navigation controller, 194–195
navigationItem property, 211
Navigator

debug, 670–672
descriptions, 24

New project window, 4–5
NIB files, 11–12

connections to code, 61–70
overview, 48
vs. storyboards, 338–339

nibWithNibName method, 431
nil objects, messages to, 219
nil value for properties, 94–95
No Access role, 126
nonatomic attribute, 83
Nonvisible rows, 208
Notifications

broadcasting events, 417–418
iCloud, 595–596

NSArray class
description, 106
literals, 89
table views, 203

NSBundle class, 108–109
NSCalendar class, 101
NSClassFromString method, 661
NSConferenceiPhoneCoreDataRecipes

scheme, 602
NSConfinementConcurrencyType setting, 599
NSCountedSet class, 107–108
NSData class, 101
NSDate class, 102, 302
NSDateComponents class, 102
NSDateFormatter class, 109
NSDecimalNumber class, 102–103
NSDefaultRunLoopMode mode, 564
NSDictionary class

description, 106–107

Index 733

Flickr, 557
image picker controllers, 296
literals, 89
variables, 673–674

NSDictionaryOfVariableBindings function,
494, 499, 507

NSEntityDescription class, 304
NSError class, 557
NSFetchedResultsController protocol, 411, 600
NSFetchedResultsControllerDelegate

protocol, 408, 445
NSFetchRequest class, 412
NSFileCoordinator class, 580
NSFileManager class, 109
NSFilePresenter protocol, 580–581
NSIndexPath class, 202, 226, 419
NSInteger class, 103–104
NSJSONSerialization class, 111, 543, 556–558
NSLocale keys, 101
NSLocalizedString function, 193–194
NSLog function

breakpoints, 669
CoinTosser, 93
debugging, 679–680
description, 64, 108
output, 76

NSMainNibFile setting, 338
NSMainQueueConcurrencyType setting, 599
NSManagedObject class, 303–305

photos, 322–324
subclasses, 317–321

NSManagedObjectContext class, 305–306, 601
NSMergeByPropertyObjectTrumpMerge

Policy setting, 599
NSMutableArray class, 106
NSMutableData class, 101
NSMutableDictionary class, 106–107
NSMutableOrderedSet class, 209
NSMutableSet class, 107–108
NSMutableString class, 105
NSNotificationCenter class, 418, 595
NSNull class, 104–105
NSNumber class, 89, 104
NSNumberFormatter class, 109
NSObject class, 80, 105
NSOrderedSet class, 203
NSPersistentStoreCoordinator class, 306

NSPersistentStoreDidImportUbiquitous
ContentChangesNotification
notification, 598–600

NSPersistentStoreUbiquitousContentName
Key setting, 592

NSPersistentStoreUbiquitousContentURL
Key setting, 592, 594

NSPredicate class, 109
NSPrivateQueueConcurrencyType setting, 599
NSRegularExpression class, 110
NSRunLoopCommonModes mode, 564
NSSet class, 107–108
NSString class, 105

description, 80
literals, 89
notifications, 418

NSStringFromClass function, 411
NSTimer class, 110, 469, 559, 619
NSUInteger class, 103–104
NSURL class, 519, 543
NSURLConnection class

description, 111, 543
Flickr, 558
photos, 559–564

NSURLConnectionDelegate protocol,
543, 564

NSURLRequest class, 111, 543
NSURLResponse class, 557
NSXMLParser class, 110, 543
NSXMLParserDelegate protocol, 110
Null-terminated char array format

specifiers, 108
NULL value, 104–105
Number literals, 89
numberOfCells method, 398, 405
numberOfItemsInSelection method, 570
numberOfPhotos method, 449
numberOfRowsInSection method, 207, 240
numberOfSectionsInTableView method, 207
numberOfTapsRequired property, 271
numberOfTouchesRequired property, 271
numberOfVisibleCells method, 398, 405

O
Object library, 12, 27
objectAtIndex method, 255

Index734

objectID property, 589
Objective-C, 13, 21–22, 71

classes, 77–80
declared properties, 82–84
dot syntax, 91–92
implementation, 85–90
instance variables, 81–82
interfaces, 80
literals, 89
memory management, 93–95
methods, 85
objects, 76–80
overview, 71–72
selectors, 90–91
working with, 72–75

Objective-C Programming, 71
ObjectiveFlickr framework, 552
Objects

aligning, 53–56
managed, 303–305. See also Managed

object contexts
model, 321–327
overview, 76–80
selecting and copying, 53
size, 58–59

OCSP (Online Certificate Status Protocol),
131

OmniGraff le app, 169–171
On/Off button, classes for, 117
Online Certificate Status Protocol (OCSP),

131
Online help, 252
OpenGL Game template, 6
Opening header files, 191
Optimization, 681–686
Option-Click

copying objects, 53
documentation popover, 191
Quick Help popup, 37

@Option key for objects, 54–55
@optional directive, 219
Organization name, 41–42
Organizational Name setting, 7
Organizer window

app submissions, 705
code signing assets, 137–138
description, 43–44

device setup, 139–141
UUIDs, 143

Orientation. See also Rotation
launch images, 514
photo browser, 466
split view controllers, 179
supported, 490–492

originalImageData property, 313
Outlets, 61

checking, 66–67
connecting objects to, 16–17
defining, 62–66
IBOutlet. See IBOutlet macro

overlayView property, 547
overlayViewTapped method, 569, 573
Owners of files, 61

P
PADDING macro, 454
Page-Based Application template, 6
Page control, 116
Panning, 270
Paper and pencil for Mockup apps, 167
Parameters

Flickr, 556–558
methods, 85
names, 215

Parsers, 110
Passwords for code signing assets, 137–138
Paths

attributes, 589
index, 208, 226

pause method, 621, 683–686
Penultimate app, 167
perform method for segues

custom, 370
CustomPushSegue, 464–466
implementing, 375–381

Performance, 681–686
performBlock method, 599
performBlockAndWait method, 599
performSegueWithIdentifier method, 456
performSelector method, 90, 438–439
Persistence. See Data persistence
Persistent stores and persistent store

coordinators, 306

Index 735

creating, 311–312
iCloud, 581–582
ubiquitous, 592–596

persistentStoreCoordinator method,
592–594, 667

Person interface, 82–83
Photo albums, 302

adding, 408–409, 416
adding photos to, 331–334, 434–439
displaying, 406–416
displaying photos in, 334–335
managed object contexts, 325–327
managing, 417
naming, 421–426
reading and saving, 327–331
removing, 428–429
scene rotation, 508–510
selecting, 417–421
thumbnails, 430–434
toolbars, 426–427

Photo browser
chrome effects, 468–473
deleting photos, 480–487
launching, 456–460
push and pop, 460–468
rotating, 510–513
scroll view, 447–456
slideshows, 622–623
user interface, 455–456
zooming, 474–480

Photo class, 321
email, 531
iCloud, 590–591
prototype code, 391–393

Photo entity, 390
PhotoAlbum class, 319–320, 325–327
PhotoAlbum entity, 314–317, 390
PhotoBrowserPhotoView class, 474–478,

510–513
PhotoBrowserViewController class, 447–458

chrome effects, 468–473
Core Image effects, 633, 637–638
deleting photos, 481–487
email, 527, 532–535
printing, 520–523
sharing content, 537–540
slideshows, 610, 614, 622–624

user interface additions, 634–640
zooming, 473, 478–480

Photos, 285
adding to albums, 331–334, 434–439
advancing, 617–619
Assets Library framework, 285–286
custom code for, 321–327
data model, 301
deleting, 480–487
displaying, 334–335, 439–446
downloading, 559–565
iCloud, 592–600
image picker controller. See Image picker

controllers
saving to camera roll, 297–299
scene rotation, 502–508

photos method, 459–460
photos property, 528
photoSetListWithUserId method, 554
Photoshop, 167–168
PhotosViewCollector class, 442–446
PhotosViewController class

child scenes, 367
container view controllers, 366
email, 527, 532, 535–537
Flickr, 549–551
iCloud, 600
photo albums, naming, 423–426
photo albums, removing, 428–429
photo albums, selecting, 420–421
photo browser, 456–461
photos, adding, 435–439
photos, deleting, 486–487
scene rotation, 505–508

photosWithPhotoSetId method, 554
photosWithSearchString method, 553, 556
photoTapped method, 618
photoViewCache property, 452
PhotoWheel app, 177

app delegates, 184–189
charter, 156–158
collections. See Collection views
Core Image effects. See Core Image effects
custom views. See Custom views
data persistence. See Data persistence
debugging. See Debugging
detail view controller, 194

Index736

PhotoWheel app (cont’d)
device rotation. See Rotation
distributing. See Distribution
email, 527–537
iCloud. See iCloud service
launch options, 188
main screen. See Main screen
master view controller, 195
photo browser. See Photo browser
photos. See Photo albums; Photos
printing, 519–523
project structure, 183–184
prototype, 177–183
sharing content, 537–540
slideshows. See Slideshows
split view controller, 189–195
storyboarding. See Storyboarding
table views. See Table views
target audience, 156–158
touch gestures. See Touch gestures
universal apps. See Universal apps
utility methods, 649–651
view controllers. See View controllers
Web services. See Web services

PhotoWheel-Info.plist f ile, 346, 349
PhotoWheel-Prefix.pch file, 418, 486, 495, 595
PhotoWheel.xcdatamodeld file, 390
PhotoWheelPrototype app, 181–182, 306
PhotoWheelPrototype-Info.plist f ile, 184
PhotoWheelPrototype-Prefix.pch file, 184, 308
PhotoWheelPrototype.xcdatamodeld file,

308, 312, 390
PhotoWheelViewCell class, 263

header files, 263–264
implementation, 264–265
photo album thumbnails, 430–434
touch gestures, 271–273
working with, 265–267

photoWheelViewCell method, 430–431
Pick lists, 116–117
Pinch gesture, 270
Pipe character, 500
placeholder property, 114, 422
Placeholders

code completion, 36
fault objects, 305
File’s Owner, 61

text, 114
Plain tables, 202
play method, 683–686
PLDatabase project, 335
plist f iles, 338
Plug-ins, 109
PNG (Portable Network Graphic) format, 118
Pointer address format specifiers, 108
Pointers, 80
Pop segues

customizing, 381–385
improving, 460–468

Popover segues, 370
popoverControllerDidDismissPopover

method, 538
popToRootViewControllerAnimated

method, 371
popToViewController method, 371
popViewControllerAnimated method, 371,

382–383, 466–467, 624
Portable Network Graphic (PNG) format, 118
Portal Resources, 134–135
Portrait orientation, 491

launch images, 514
portrait upside down, 491
split view controllers, 179

Position guides, 53–54
Possible memory leaks, 439
Possible state, 275, 278
Post-It Notes, 153
posterizeFilter method, 641
#pragma mark statements, 192
Pragmatic Programmer: From Journeyman to

Master, 247
Predefined touch gestures, 270
Preexisting iCloud data stores, 600–601
Preferences, 29

code completion, 36
coding style, 33
development certificates, 131–132
fonts and colors, 29–30
key bindings, 34–35
text, 30–32

preferredMode property, 607
Premature optimization, 681
prepareForSegue event, 414–415

Flickr, 551

Index 737

photo albums, 417
photo browser, 457–458, 463
scenes, 341
slideshows, 622

Presentation property, 370
presentCamera method, 290, 293, 295, 436
Presenters in iCloud, 580–581
presentFlickr method, 550–551
presentPhotoLibrary method

adding photos, 436–437
camera checking, 287–288
image picker controllers, 293, 295

presentPhotoPickerMenu method, 550–551
action sheets, 290–291
adding photos, 437
camera checking, 287–288
Flickr, 548

__PRETTY_FUNCTION__ macro, 222,
271

Price of apps, 700
Primary app categories, 701
Primitive data types, 80
primitiveValueForKey method, 591
Print Center, 518
Print jobs, 518
printCurrentPhoto method, 520, 522
Printer Options view, 517
Printer Simulator, 522–523
printFormatter property, 519
printInfo property, 522
Printing

API, 519
operation, 517–518
PhotoWheel, 519–523
requirements, 519

printingItem property, 519, 522
Private key pairs, 133
Private keys, 136
Product Name setting, 7
Profiling code with Instruments, 681–686
Programming in Objective-C 2.0, 71
Project navigator, 24
Project options screen, 7
Project Summary for universal apps, 656
Project template, 5–6
Projects

creating, 3–11, 180–181

settings, 40–42
Properties

declared, 82–84
dot syntax, 91–92
objects, 76
transient, 586–587
values, 58

@property directive, 63–64, 81–84, 185, 214
Property synthesis, 15
Prototype apps and code, 171–173, 177–178

copying files, 388–390
Core Data model, 390–393
project creation for, 180–181
reusing, 388
simulators, 181–182
split view controllers, 178–179
WheelView, 394–406

Provisioning, 125
Ad Hoc distribution, 690–691
App IDs, 128–129
App Store distribution, 695
development machine setup, 130–138
development provisioning profiles,

129–130
device IDs, 127–128
device setup, 139–141
iCloud service, 582–585
iOS Provisioning Portal. See iOS

Provisioning Portal
overview, 127

Public key pairs, 133
Public keys, 136
Push segues

description, 370
improving, 460–468

PushPhotoBrowser segue, 456–457
pushViewController method, 371
PW-Default.jpg file, 515
pw_imageSnapshot method, 381
PWDefault-landscape.png file, 515

Q
QuartzCore.h file, 264
queueNonVisibleCells method, 399, 406
queueReusableCells method, 403, 406
Queues, dispatch, 575

Index738

Quick Help popup, 37
Quitting apps, 182–183
Quotation marks (“) for strings, 105

R
Radians, converting, 282–283
RAND_IN_RANGE macro, 640
Random CIFilter effects, 641–644
Random numbers, 76, 88
randomizeFilters method, 638, 642–643
Rating apps, 701
Reachability, 576–577
Reading photo albums, 327–331
readonly attribute, 83–84
readwrite attribute, 83–84
receivedData property, 563–564
Receivers in Objective-C, 72
Recipes in Core Image, 625–626
Recognized state, 275
Recognizers

spin gesture, 276–283
touch gesture, 270–275

Recommended books, 707
Red-eye correction, 631
Reference counting, 8, 74, 94–95, 181
Ref lector app, 609
Registering devices, 127
Regular expressions, 110
Rejected apps, 699
Relationships with Core Data entities,

315–316
Release build configurations, 691
reload method, 424–426
reloadData method, 420

photo albums, 412
table view data, 224
WheelView, 395, 404, 406

removeConstraints method, 499
removeFromParentViewController method,

364–365
removePhotosObject method, 319
Removing

breakpoints, 667
guides, 54
photo albums, 428–429

Renaming ivars, 86–87

Rentzsch, Jonathan “Wolf,” 321
repositionNavigationBar method, 512–513
Requesting development certificates,

131–134
requireGestureRecognizerToFail method,

273–274
resignFirstResponder method, 426
Resizing

Cocoa Auto Layout, 492
labels, 12
scenes, 367

Resolving conf licts. See iCloud service
respondsToSelector method, 219, 661
RESTful Web services

Cocoa, 542–543
description, 542
Flickr, 551

restoreAfterRotation method, 511
resume method, 621
retain attribute, 83–84
Retina display, 346, 349
reusableCells property, 405
Reverse domain name style, 128
revertToOriginal method, 635, 649–650
Review notes, 701
Roles

iOS Developer Program, 126
iTunes, 703–704

Root view controllers, 119
rootViewController property, 187–188, 339
rotateToInterfaceOrientation method,

498–501, 506, 509–510
Rotation

About screen, 510
customized, 495–502
gesture type, 270
launch images, 513–515
MainViewController, 495–502
photo browser, 466, 510–513
scenes, albums, 508–510
scenes, photos, 502–508
spin gesture recognizers, 278, 282–283
split view controllers, 179
supporting, 489–494

Round Rect Button, 16
Rounding calculations, 103
Routing app coverage files, 702

Index 739

row property, 202
Run button, 9
Runtime loops, 559, 564

S
Sales role in iTunes Connect, 704
save method in Flickr, 545, 567–568, 573
saveChanges method, 425–426
saveContext method, 309
saveContextAndExit method, 566
saveImage method

filters, 649–650
Photo class, 391
PhotoBrowserViewController, 635
photos, 322, 324, 333

saveSelectedPhotos method, 566–567, 573
Saving

photo albums, 327–331
photos to camera roll, 297–299

scaleAndCropToMaxSize method, 322–323
scaleAspectToMaxSize method, 322
Scaling images, 589–590
Scenes, 339–340

child, 366–369
creating, 352–355
navigating, 371, 374–375
resizing, 367
rotation, albums, 508–510
rotation, photos, 502–508
setting, 370–375

Scheme manager window, 696
Schemes, 42–43, 696–697
Schneider, Michael, 706
Scope depth of code, 30
Screen

classes for, 113
main. See Main screen

Screen shots of apps, 702
screenDidConnect method, 617
screenDidDisconnect method, 617
screens array, 606
Scroll view, 447–456
Scrollable views, 115
Scrolling in design, 160
scrollToIndex method, 450, 454
scrollViewDidScroll method, 452, 455

scrollViewWillBeginDragging method,
470–471, 473

Search navigator, 24
searchBarCancelButtonClicked method,

570
searchBarSearchButtonClicked method, 570,

574
searchBarShouldBeginEditing method, 569
searchBarTextDidEndEditing method, 570
Searches

for data, 109
text-based, 547

Secondary app categories, 701
section property, 202
Security, 576–577
segmentedControlValueChanged method,

262
Segments, 120–121
Segues, 340–341

creating, 355–357, 370
description, 369–370
implementing, 375–381
improving, 460–468
photo browser, 456–457
scene setting, 370–375

selectedCellFrame method, 466
selectedIndex property, 395
selectedPhotoFrame property, 461
selectedPhotoImage method, 461–462
selectedPhotoIndex property, 460
selectedPhotoWheelViewCell property, 287
selectedWheelViewCellIndex property, 334
Selecting

objects, 53
photo albums, 417–421
table view data, 230–233

@selector directive, 90, 210
Selectors, 90–91
self variable, 88, 90–91
Semicolon characters (;) for declared

properties, 83
sendAction method, 457
sendEmail method, 529–531
SendEmailController class

overview, 527–532
working with, 532–537

sendEmailController property, 534

Index740

SendEmailControllerDelegate protocol,
528–529, 532

sendEmailControllerDidFinish method, 529,
534–535, 537

sender method
adding photos, 436
table views, 213

Senders in Objective-C, 72
Sending messages, 108
sepiaImageFromImage method, 629
Seques

embedded, 368
unwind, 359–363, 384–385

Serial numbers, 143
Serialization, 48
Session 120 - Simplifying Touch Event Handling

with Gesture Recognizers video, 275
setAngle method

Carousel view, 258–260
scene rotation, 509
spin gesture recognizers, 279–280, 282–283
WheelView, 251, 400, 406

setAngleOffset method, 509
setBounds method, 677
setCurrentIndex method

external displays, 618
filters, 650–651
PhotoBrowserViewController, 452,

454–455
slideshows, 611–612

setFilterButtons method, 640
setFrame method, 678
setHeadsCount method, 91
setImage method

photo album thumbnails, 434
PhotoWheelViewCell, 263–264
zooming, 475, 477–478

setImageData method, 589
setLargeImageData method, 589
setLastResult method, 90–91
setManagedObjectContext method, 312
setPhotoAlbum method, 332, 334–335
setPrimitiveValue method, 590–591
sets, 107–108
setScrollViewContentSize method, 450, 453
setSmallImageData method, 589
setStyle method

Carousel view, 258

spin gesture recognizers, 281
WheelView, 403, 406

setter attribute, 83–84
Setter methods, 64, 82
setText method, 434
setThumbnailImageData method, 589
setTitleWithCurrentIndex method, 450, 454
sharedApplication method, 415
Sharing schemes, 42
Shortcut keys

key bindings, 34–35
navigator, 25

shouldAutomaticallyForwardAppearance
Methods method, 365

shouldAutomaticallyForwardRotation
Methods method, 365

shouldAutorotate method, 613
shouldAutorotateToInterfaceOrientation

method
autosizing, 492
overriding, 489

Show Obj-C Only option, 685
showActionMenu method, 423

deleting photos, 484
email, 532–533, 535–536
printing, 520, 522
removing photo albums, 428
sharing content, 538–539

showFilters method, 637–638, 642
showFromBarButtonItem method, 292
showFromRect method, 292
showFromTabBar method, 292
showFromToolbar method, 292
showOverlay method, 568, 573
showOverlayCount property, 572
Shows Navigation Bar property, 375
Signed integer format specifiers, 108
SimpleFlickrAPI class, 552–558
Simulators, 44

iOS Simulator, 522–523, 675
iPad Simulator. See iPad Simulator
Printer Simulator, 522–523
schemes, 42

Single inheritance, 185
Single View Application template, 6–7
Size and Size Inspector

Cocoa Auto Layout, 492
collection view cells, 439–440

Index 741

collection views, 242
description, 58–59
labels, 12
objects, 58–59
photo display, 439
scenes, 355, 367
text fields, 220
wheel view, 252–253

SKU numbers, 700
slideAdvanceTimer variable, 614
Sliders, 163
slideshow method, 484
Slideshows

adding, 609–610
displaying, 610–613
external display. See External display
finishing, 623–624
photo advancing, 617–619
photo browser, 622–623
profiling example, 683–686
storyboards, 610
user interface controls, 620–622,

683–686
SlideShowViewController class, 609–611,

675, 677
Slow motion animation, 379
smallImage attribute, 589
smallImage method, 392–393
smallImageData attribute, 391, 586, 591
Smalltalk language, 72
SMS messages, 525
Snapshot feature, 503
SOAP-based Web services, 541–542
Sort descriptor for photo albums, 412
Sorting filter buttons, 639–640
Sound effects, 162
Source code repositories, 8, 40, 74, 181
Source image view for segues, 379
sourceViewController property, 460
Spaces vs. tabs, 32
Spin gesture recognizers

creating, 276–278
working with, 278–283

spin method
spin gesture recognizers, 281–283
WheelView, 403, 406

SpinGestureRecognizer class, 276–278,
281–283

Split view controllers
delegates, 192–194
overview, 178–179
working with, 189–192

SQLite, 303, 306, 311, 335
stack-add.png file, 351, 368
stack-add-down.png file, 351
stack-bg.png file, 351, 368
stack-overlay.png file, 432
stack-viewer-bg-portrait.png file, 351–352,

366–367
stack-viewer-shadow.png image, 442
Stacks

Cocoa, 97
Core Data, 308–312

Standard Company program type, 710
Standard editor, 38, 51
Standard Individual program type, 710
startAtIndex property, 447, 458–459
startChromeDisplayTimer method, 471–473
startImmediately property, 563
startIndex property, 623
States

gesture recognizers, 275–276
objects, 57–61

Static sets, 107
statusBarHeight property, 472
Stencils, 171
Step into button, 672
Step out button, 672
Step over button, 672
Stopping apps, 11
Storyboarding, 8, 70

app icon, 349–350
AppDelegate, 347–348
Flickr, 547–549
images, 348–349
main, 344–345
overview, 337–338
scenes, 339–340, 352–355
segues, 340–341, 355–357
slideshows, 610
UIMainStoryboardFile setting,

346–347
universal apps, 655–656
view controllers. See View controllers
working with, 338–339
workspace, 341–344

Index742

stringByRemovingFlickrJavaScript method,
555, 558

Strings
arrays, 203
classes, 105
converting to dates, 109
format specifiers, 108
literals, 88–89

stringWithData method, 555, 558
strong attribute, 83, 94
Style property

bar buttons, 120
Carousel view, 256–257
segues, 370

Styles, coding, 33
Subclass generation, 321–322
Submitting apps, 11, 705–706
Subversion source code repositories, 40, 74
Summaries for apps, 152–153
super keyword, 88
supportedInterfaceOrientations method, 489
Swipe gesture, 270
Symbol navigator, 24
Syncing. See iCloud service
@synthesize directive, 86–87, 91

AppDelegate, 187
data instances, 204
description, 64

T
Tab bar classes, 120
Tab key, 32
Tabbed Application template, 6
Table views, 197-200

adding data, 210–224
classes, 115–116, 201–202
deleting data, 228–229
displaying data, 206–210
editing data, 224–228
freeform, 220
reordering data, 229–230
selecting data, 230–233
simple models, 203–206
working with, 203

Tagged Image File Format (TIFF) format, 118
Tap gestures, 270

Flickr, 573
PhotoWheelViewCell, 271–273
zooming, 478

tapped method, 477
Tapworthy apps, 158–159
Tapworthy: Designing Great iPhone Apps, 158
Target-Action pattern, 122
Target audience for apps, 154–158
Targeted Device Family setting, 655
Targets

settings, 40–41
types, 5–6

Team Admins, 126, 135, 141
Team Agents, 126, 141, 144–145
Team Members, 126, 141
Team roles in iOS Developer Program, 126
Technical role in iTunes Connect, 704
Templates, 5–6
Text

classes for, 113–114
labels. See Labels
preferences, 30–32
on screen, 11–13

Text-based searches, 547
textFieldDidEndEditing method, 425–426
textFieldShouldBeginEditing method, 425–426
textFieldShouldReturn method, 425–426
Third-party apps for photos, 285
Threads

atomic properties, 83
GCD, 575

ThumbnailCell class, 440–441
thumbnailImage property, 589
thumbnailImageData property, 314, 586, 591
Thumbnails for photo albums, 430–434
TIFF (Tagged Image File Format) format,

118
Tilde (~) naming convention, 657–658
Time

classes, 101–102
formatting, 109
pick lists, 117

Time Machine, 136
Time Profiler tool, 681
Timers

chrome effects, 469
classes, 110

Index 743

slideshow photos, 619
Titles, 197–200
titleView property, 261
toggleChrome method, 471, 473
toggleChromeDisplay method

chrome effects, 471, 473
zooming, 478–480

Toll-free bridging, 100
Toolbars

classes for, 119
photo albums, 426–427
PhotoWheel, 636, 639
scenes, 352
slideshows, 621
workspace window, 22–24

Top Space to Superview option, 504
Touch gestures

custom, 275–283
in design, 159
events, 269
overview, 269–270
predefined, 270
recognizers, 271–275
types, 270–271
zooming, 478

Touch Up Inside events, 64
touchesBegan method, 269–270, 275–277
touchesCancelled method, 275–277
touchesEnd method, 276–278
touchesEnded method, 269–270, 275, 277–278
touchesMoved method, 269, 275–278
TouchJSON library, 543
TouchXML parser, 110
Trailing Space to Superview option, 504
Transient Core Data attributes, 586–587
Transition property for segues, 370
transitionFromViewController method, 364
Transitions

pop, 381–385, 460–468
scenes, 371, 374–375
segues, 340–341

turnOffZoom method, 476–477
twirlFilter method, 641

U
Ubiquitous content. See iCloud service

Ubiquitous persistent store coordinators,
592–596

Ubiquitous persistent stores, 581–582
ubiquityIdentityToken method, 602
UDIDs (Unique Device Identifiers),

128–129, 143
UI. See User interface (UI)
UI_USER_INTERFACE_IDIOM macro,

656–657, 661
UIActionSheet class, 289, 292
UIActionSheetDelegate protocol, 291
UIActivityIndicatorView class, 547
UIActivityViewController class

email, 525
sharing content, 537–540

UIAlertView view, 428
UIApplication class, 113, 415
UIApplicationDelegate protocol, 185–188
UIApplicationMain function, 184
UIBarButtonItem class, 120, 190, 422

profiling example, 686
slideshows, 620–621

UIBarButtonSystemItemAdd button, 210
UIButton class, 27, 114–115
UICollectionDataSource protocol, 445
UICollectionReusableView class, 236
UICollectionView class, 236, 439
UICollectionViewCell class, 236, 239, 242–243
UICollectionViewController class, 236–237
UICollectionViewDataSource class, 236,

240–241
UICollectionViewDelegate protocol,

236–237, 445
UICollectionViewDelegateFlowLayout class,

236, 240–241
UICollectionViewFlowLayout class, 236
UICollectionViewLayout class, 236
UICollectionViewLayoutAttributes class, 236
UICollectionViewUpdateItem class, 236
UIDatePicker class, 117
UIDocument class, 581
UIGestureRecognizer class, 270–271,

275–276
UIGestureRecognizerDelegate protocol, 271
UIGestureRecognizerStateBegan state, 275
UIGestureRecognizerStateCancelled state,

275

Index744

UIGestureRecognizerStateChanged state,
275

UIGestureRecognizerStateEnd state, 275
UIGestureRecognizerStateFailed state, 275
UIGestureRecognizerStatePossible state, 275
UIGestureRecognizerStateRecognized

state, 275
UIGestureRecognizerSubclass.h file, 275–276
UIImage class

conversions with, 324–325
email, 531
with filters, 628–631
format support, 117
model objects, 321–322
slideshows, 613

UIImagePickerController class
adding photos, 438
working with, 286–289, 293–297

UIImagePickerControllerDelegate protocol
adding photos, 286, 333, 435
image picker controllers, 293, 296

UIImagePickerControllerSourceTypePhoto
Library source type, 295

UIImagePickerControllerSourceTypeSaved
PhotoAlbum source type, 295

UIImageView class
description, 118
photo album thumbnails, 431–432
PhotoWheelViewCell, 263
storyboards, 350–352
wheel view, 248
zooming, 474, 480

UIImageWriteToSavedPhotosAlbum
function, 297–298

UIInterfaceOrientationIsLandscape macro,
500, 502

UIInterfaceOrientationIsPortrait macro, 502
UIKit classes, 99, 112–121

importing, 250
Printing API, 519

UIKit Framework document, 37
UILabel class, 12, 15

collection views, 243, 245
description, 113
photo album thumbnails, 432–433

UILongPressGestureRecognizer gesture,
270–271

UIMainStoryboardFile setting, 346–347
UIManagedDocument class, 581
UIMarkupTextPrintFormatter class, 519
UIMenuController class, 117
UIMenuItem class, 117
UINavigationBar class, 119
UINavigationController class

description, 119
master detail apps, 187, 194–195
pop transitions, 381–383
view controllers, 364, 371

UINavigationControllerDelegate protocol,
293, 435

UIPageControl class, 116
UIPanGestureRecognizer gesture, 270–271
UIPickerView class, 116
UIPinchGestureRecognizer gesture, 270
UIPopoverController class, 190–191, 199,

661
UIPrintFormatter class, 519
UIPrintInfo class, 519, 522
UIPrintInfoOutputPhoto setting, 522
UIPrintInteractionController class, 519, 522
UIPrintInteractionControllerDelegate

protocol, 519
UIPrintPageRenderer class, 519
UIPrintPaper class, 519
UIResponder class, 269
UIRotationGestureRecognizer gesture,

270–271, 276, 283
UIScreen class, 113, 606–607
UIScreenDidConnectNotification

notification, 607–608, 617
UIScreenDidDisconnectNotification

notification, 607–608, 617
UIScrollView class, 201

description, 115
photo browser, 447
zooming, 474

UIScrollViewDelegate protocol, 447
UISearchBar class, 547
UISegmentedControl class, 120–121
UISimpleTextPrintFormatter class, 519
UISlider class, 117, 163
UISplitViewController class

container view controllers, 364
iPad Simulator, 182

Index 745

master-detail apps, 178–179, 187
methods implementation, 192
overview, 189–192

UISplitViewControllerDelegate protocol, 190
UIStoryboardSegue class, 370, 376
UISwipeGestureRecognizer gesture, 270
UISwitch class, 117
UITabBar class, 120
UITabBarController class, 364
UITableView class

description, 115–116
displaying data, 206
editing data, 224
overview, 201–202
reordering data, 229

UITableViewCell class
description, 115, 202
styles, 208–209

UITableViewCellStyleDefault style, 208–209
UITableViewCellStyleSubtitle style, 208
UITableViewCellStyleValue1 style, 208
UITableViewCellStyleValue2 style, 208
UITableViewController class, 195, 202,

224–225
UITableViewDataSource class, 203

description, 202
displaying data, 206–207
editing data, 224
moving rows, 230

UITableViewDelegate protocol, 202–203,
214

UITableViewRowAnimationFade class, 228
UITapGestureRecognizer gesture, 270–271
UITextField class

description, 114
photo albums, 422
table view data, 212–213, 220

UITextFieldDelegate protocol, 424–426
UITextView class, 114
UIToolbar class

description, 119
photo albums, 422

UIUserInterfaceIdiomPad value, 656
UIUserInterfaceIdiomPhone value, 656
UIView class

custom views, 246
description, 113

events, 269
Flickr, 548
photo albums, 407
slideshows, 612
wheel view, 248, 252

UIViewController class
container view controllers, 364–366
description, 113
storyboards, 359–360

UIViewPrintFormatter class, 519
UIView+PWCategory class, 380–381
UIWebView class, 113
UIWindow class, 607

debugging example, 677
description, 113
external displays, 616
master-detail apps, 187

“Unable to initiate item download” message,
582

Underscores (_) for ivars, 187
Unicode characters, 105
Unique Device Identifiers (UDIDs),

128–129, 143
Unique value propositions, 152–153
Universal apps, 9, 653

benefits, 653–654
code separation, 656–657
disadvantages, 654–655
pitfalls, 659–661
storyboards, 655–656
target setting, 655
tilde naming convention, 657–658

Universal device family, 8
University program type, 710
unloadPage method, 451–452, 454, 479–480
Unsigned integer format specifiers, 108
Unwind seques, 359–363, 384–385
updateNavBarButtonsForPlayingState

method, 620–621, 684–685
updateviewConstraints method

rotation, 497, 499
scene rotation, 505–507

updateviewConstraintsForInterface
Orientation method

rotation, 497–498, 501
scene rotation, 506

URI string hashes, 589

Index746

URLForUbiquityContainerIdentifier
method, 594

URLs
apps, 702
Flickr, 556–558

Use Automatic Reference Counting option,
8, 74, 181

Use for Development option, 139
Use Storyboard option, 339
User input, 13
User interface (UI)

controls, 162–163
designers for, 164
device design, 159–160
HIG, 158
industrial design, 160
metaphors, 160–162
Photo browser, 455–456
PhotoWheel, 634–640
rotation, 501–502
slideshow controls, 620–622
sound effects, 162
tapworthy apps, 158–159

User roles in iTunes Connect, 704
userIdForUsername method, 553–554
userInteractionEnabled f lag, 473
Utility Application template, 6
Utility area, 26–27
Utility classes and functions, 108–112

V
Variables, 49

inspecting, 667, 672–674
Objective-C, 81–82
renaming, 86–87

Version editor, 40
Versions

apps, 701
Xcode, 714

Vertical guides, 53–54
View controllers

container. See Container view controllers
detail, 179. See also DetailViewController

class
Flickr, 547–548
iCloud, 595–596, 600

implementing, 359–363
initial, 350–352
master, 179, 195. See also

MasterViewController class
pop transitions, 381–385
segues, 369–381
split, 178–179, 189–195

ViewController class, 12, 14–15
viewController property, 528
viewDidAppear event, 365, 623
viewDidDisappear event, 365
viewDidLoad method

Carousel view, 261–262
chrome effects, 469, 472
collections, 238
data instances, 204–205
deleting photos, 481–483, 485–486
external displays, 616–617
Flickr, 566
iCloud, 595
photo albums, 327–328, 330, 332,

420–421, 427
PhotoBrowserViewController, 448–449,

453
PhotoWheelViewCell, 265–266
table view data, 216–218, 224–225, 227
titles, 197–198
touch gestures, 272–274
wheel view, 254, 394

viewForZoomingInScrollView method, 477
Views

carousel, 256–262
collection. See Collection views
custom, 246–248
dictionaries, 499, 507
photo wheel view cell, 263–267
table. See Table views
wheel. See WheelView class

viewWillAppear event
chrome effects, 469–470, 472
container view controllers, 365
customized rotation, 497, 499–500
navigation bar, 375
PhotoBrowserViewController, 449, 453,

623
PhotoWheel, 637
scene rotation, 505, 507, 509

Index 747

slideshows, 618–619
viewWillDisappear event, 365, 470, 473,

619
viewWithTag method, 574
Virtual keyboards, 162
visibleCellIndexes property, 405
Visual effects. See Core Image effects
Visual Format Language, 493–494

W
wantsFullScreenLayout f lag, 453
Watchpoints, 667
weak attribute, 83, 94
Web services, 541

basics, 541–542
concurrent programming, 576–577
Flickr. See Flickr
RESTful, 542–543

WebKit Coding Style Guidelines, 33
Welcome to Xcode screen, 4–5, 72–73
Wenderlich, Ray, 110
Wheeler, Colin, 35
WheelView class

Carousel view, 256–262
creating, 249
declaring, 250
defining, 250
header file, 249–250
implementation, 251–256
photo albums, 407
prototype code, 394–406
spin gesture recognizers, 278

WheelViewCell class, 250, 263
defining, 250
prototype code, 394, 404

WheelViewDataSource protocol, 250,
253–255, 395

WheelViewDelegate protocol, 395
wheelViewNumberOfCells method, 255,

413
wheelViewNumberOfVisibleCells method,

395, 410, 412
Wildcard characters (*)

App IDs, 129, 139, 145, 582
Bundle Identifiers, 128

willAccessValueForKey method, 591

willAnimateRotationToInterfaceOrientation
method

overriding, 491
PhotoBrowserViewController, 511–513

willChangeValueForKey method, 590
willHideViewController method, 190
willMoveToParentViewController method,

364–365
willPresentViewController method, 191
willRotateToInterfaceOrientation method

action sheets, 290, 292
overriding, 490–491
PhotoBrowserViewController, 511–512
rotation, 498, 500
scene rotation, 506–507, 509–510

willShowViewController method, 191
Windows, classes for, 113
Windows Bitmap Format (DIB) format, 118
Windows Cursor format, 118
Windows Icon Format, 118
Wireframe mockups, 164–165, 169–171
Wooldridge, Dave, 706
Workspace window, 24, 52

Debug area, 28
design, 28–29
Editor area, 25
Navigation area, 24–25
Toolbar area, 22–24
Utility area, 26–27

Workspaces, creating, 341–344
Wrapping feature, 394
Wrapping Flickr API, 551–558
WWDR intermediate certificates, 136

X
.xbm files, 118
.xcdatamodeld extension, 308–310
Xcode, 21

debugging, 667–674
developer documentation, 37
editors, 38–40
IDE, 21–22
installing, 714–715
in Launchpad, 3–4
organizer, 43–44
Preferences, 29–36

Index748

Xcode (cont’d)
project settings, 40–42
schemes, 42
tools, 44–45
Workspace window, 22–29

Xcode 4 User Guide, 4
.xib files, 11–12, 48
XML with Flickr, 556
XWindow bitmap format, 118

Y
Yacktman, Donald A., 121

Z
Zarra, Marcus, 103, 258
Zarra Studios Coding Style Guide, 33
Zooming

faces, 647–649
photos, 474–480

zoomRectForScale method, 476, 478
zoomToFaces method, 647–649
zoomToLocation method, 476, 478

ESSENTIAL REFERENCES FOR
PROGRAMMING PROFESSIONALS

Developer’s Library

Developer’s Library books are available at most retail and online
bookstores. For more information or to order direct, visit our
online bookstore at informit.com/store.

Online editions of all Developer’s Library titles are available by
subscription from Safari Books Online at safari.informit.com.

informit.com/devlibrary

Developer’s
Library

Programming in
Objective-C,
Fifth Edition

Stephen G. Kochan
ISBN-13: 978-0-321-88728-3

The Core iOS 6 Developer's
Cookbook, Fourth Edition

Erica Sadun
ISBN-13: 978-0-321-88421-3

The Advanced iOS 6
Developer's Cookbook

Erica Sadun
ISBN-13: 978-0-321-88422-0

Other Developer’s Library Titles

TITLE AUTHOR ISBN-13

Objective-C Phrasebook, David Chisnall 978-0-321-81375-6
Second Edition

Test-Driven iOS Graham Lee 978-0-321-77418-7
Development

Cocoa® Programming David Chisnall 978-0-321-63963-9
Developer’s Handbook

Cocoa Design Patterns Erik M. Buck / Donald A. Yacktman 978-0-321-53502-3
Applications for the iPhone

informit.com/devlibrary

9780321885715_DevLib_ad.qxd 3/22/13 10:19 AM Page 1

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors
	1 Your First App
	Creating the Hello World Project
	Getting Text on the Screen
	Say Hello
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

