
 I
 PHP API Reference

 This appendix describes the application programming interface for writing PHP scripts that
use the PHP Data Objects (PDO) database-access extension to interface with MySQL. The API
consists of a set of classes and methods for communicating with MySQL servers and accessing
databases.

 PDO works with PHP 5.0 and up, but this appendix assumes a minimum of PHP 5.1 because
that is when PDO was first bundled with PHP. See http://www.php.net/pdo for more infor-
mation. If you need to install PHP, see Appendix A , “Software Required to Use This Book.”

 The examples in this appendix are only brief code fragments. For complete scripts and instruc-
tions for writing them, see Chapter 9 , “Writing MySQL Programs Using PHP.” The manual for
PHP itself is available at the PHP Web site, http://www.php.net .

 I.1 Writing PHP Scripts

 PHP scripts are plain text files that contain a mixture of PHP code and non-PHP content such
as HTML. PHP interprets the script to produce a Web page to be sent as output to the client.
The non-PHP content is copied to the output without interpretation. PHP code is interpreted
and replaced by whatever output the code produces.

 PHP begins interpreting a file in text copy mode. To switch into and out of PHP code mode,
use special tags that signify the beginning and end of PHP code. PHP understands four types
of tags, although some of them must be explicitly enabled if you want to use them. One way
to do this is by turning them on in the PHP initialization file, php.ini . The location of this
file is system dependent; on many Unix systems, it’s found in /etc or /usr/local/lib . On
Windows, look in the PHP installation directory.

 PHP understands the following tag styles:

 ■ The default style uses <?php and ?> tags:

 <?php print ("Hello, world."); ?>

24_9780321833877_xi.indd 115724_9780321833877_xi.indd 1157 3/1/13 10:05 AM3/1/13 10:05 AM

1158 Appendix I PHP API Reference

 ■ Short-open-tag style uses <? and ?> tags:

 <? print ("Hello, world."); ?>

 This style also supports <?= and ?> tags as a shortcut for displaying the result of an
expression without using a print statement:

 <?= "Hello, world." ?>

 Short tags can be enabled with a directive in the PHP initialization file:

 short_open_tag = On;

 ■ Active Server Page-compatible style uses <% and %> tags:

 <% print ("Hello, world."); %>

 This style also supports <%= and %> tags as a shortcut for displaying the result of an
expression without using a print statement:

 <%= "Hello, world." %>

 ASP-style tags can be enabled with a directive in the PHP initialization file:

 asp_tags = On;

 ■ If you use an HTML editor that doesn’t understand the other tags, you can use <script>
and </script> tags:

 <script language="php"> print ("Hello, world."); </script>

 Short tags and ASP-style tages are not portable; you cannot assume that a particular PHP instal-
lation will have them enabled.

 I.2 PDO Classes

 This appendix discusses the following classes from the PDO extension:

 ■ PDO is the primary class. The class constructor is used for connecting to the database
server. It returns a database-handle object that has methods for further interaction with
the server.

 ■ PDOStatement is the statement-handle class, returned by the query() and prepare()
methods of PDO objects. A statement handle provides access to a statement result, such as
statement metadata and result set contents.

 ■ PDOException is the PDO error class. Objects of this class support methods for obtaining
diagnostic information when an exception is raised due to occurrence of a PDO error.

24_9780321833877_xi.indd 115824_9780321833877_xi.indd 1158 3/1/13 10:05 AM3/1/13 10:05 AM

1159I.3 PDO Methods

 I.3 PDO Methods

 The following descriptions discuss available PDO methods, organized by the class with which
they are associated. Certain object names recur throughout the method descriptions in this
appendix and have the following conventional meanings:

 ■ Database handle methods are called using a $dbh object, which is obtained by calling the
 PDO class constructor, new PDO() .

 ■ Statement handle methods are called using a $sth object, which is returned by
 $dbh->prepare() or $dbh->query() .

 ■ Exception objects are denoted by $e .

 The method descriptions indicate data types for return values and parameters. A type of mixed
indicates that a value might have different data types depending on how the value is used.

 Many methods return a value that indicates success or failure. This value is relevant if PDO
exceptions are not enabled, and should be tested to determine method outcome. If PDO excep-
tions are enabled, method errors cause PDO to raise a PDOException , which can be caught by
using a try/catch construct. (See Section I.3.3 , “ PDOException Object Methods.”)

 Square brackets ([]) in syntax descriptions indicate optional parameters. When an optional
parameter is followed by = value , it indicates that if the parameter is omitted from a method
call, value is its default value.

 The examples print messages and query results as plain text for the most part. This is done to
make the code easier to read. However, for scripts intended for execution in a Web environ-
ment, you generally should encode output with htmlspecialchars() if it may contain char-
acters that are special in HTML, such as ‘ < ’, ‘ > ’, or ‘ & ’.

 In the descriptions that follow, the term “ SELECT statement” should be taken to mean a
 SELECT statement or any other statement that returns rows, such as DESCRIBE , EXPLAIN ,
or SHOW .

 I.3.1 PDO Class Methods

 The PDO class includes methods for operations such as connecting to the database server,
preparing and executing SQL statements, and setting or getting connection attributes.

 ■ PDO
 __construct (string $dsn
 [, string $username
 [, string $password
 [, array $options]]])

24_9780321833877_xi.indd 115924_9780321833877_xi.indd 1159 3/1/13 10:05 AM3/1/13 10:05 AM

1160 Appendix I PHP API Reference

 This is the PDO constructor, which is executed when you invoke new PDO() . The
constructor attempts to connect to a database server and returns an object representing
a database handle if the attempt is successful. PHP raises a PDOException if an
error occurs:

 try
 {
 $dbh = new PDO("mysql:host=localhost;dbname=sampdb", "sampadm", "secret");
 }
 catch (PDOException $e)
 {
 die ($e->getMessage () . "\n");
 }

 To close the connection, set the database handle to NULL :

 $dbh = NULL;

 The $dsn argument represents the data source name (DSN). The DSN can take several
forms:

 ■ A driver DSN begins with a driver name and a colon, followed by optional driver-
specific parameters. For MySQL, a driver DSN looks like this:

 mysql:host= host_name ;dbname= db_name

 The host and dbname parameters indicate the host where the MySQL server is
running and the database to select as the default database. The default host value
is localhost . No default database is selected if dbname is omitted. Other possible
parameters are port to specify the TCP/IP port number, unix_socket to specify
the Unix socket file pathname, and (as of PHP 5.3.6) charset to specify the
connection character set. If you use unix_socket , do not use host or port .

 ■ A URI DSN begins with uri: followed by a URI that specifies the location of a
file that contains a driver DSN. The URI can be local or remote. A local URI looks
like this:

 uri:file:///usr/local/lib/my-dsn-file

 ■ An alias DSN is a name XXX that associates with a configuration parameter of
 pdo.dsn. XXX in the php.ini file. For example, an alias of sampdb associates with
a configuration parameter of pdo.dsn.sampdb , and the value of that parameter in
 php.ini should be a driver DSN.

 The $username and $password arguments, if given, are the username and password of
the MySQL account to use.

 The $options array, if given, provides additional connection options that are not
specified in the other arguments. Some of the options shown here are specific to the
MySQL driver. Others are generic and may be supported by other drivers. For integer-
valued options that turn behaviors on or off, pass 1 or 0 to enable or disable them.

24_9780321833877_xi.indd 116024_9780321833877_xi.indd 1160 3/1/13 10:05 AM3/1/13 10:05 AM

1161I.3 PDO Methods

 ■ PDO::ATTR_AUTOCOMMIT (integer value; default enabled)

 Enable or disable autocommit mode.

 ■ PDO::ATTR_PERSISTENT (integer value; default disabled)

 Enable or disable use of a persistent connection.

 ■ PDO::ATTR_TIMEOUT (integer value; default 300)

 For MySQL, the connection timeout in seconds. For other database systems, this
attribute may have a different meaning.

 ■ PDO::MYSQL_ATTR_COMPRESS (integer value; default 0)

 Requests use of the compressed client/server communication protocol if the client
and server both support it.

 ■ PDO::MYSQL_ATTR_DIRECT_QUERY , PDO::ATTR_EMULATE_PREPARES (integer value;
default enabled)

 Enable or disable use of direct statements. With direct statements, placeholders are
emulated on the client side before sending queries to the server.

 ■ PDO::MYSQL_ATTR_FOUND_ROWS (integer value; default 0)

 The type of row count to return for UPDATE statements. By default, the server
returns the number of rows changed. Setting this attribute to 1 causes the server to
return the number of rows matched.

 ■ PDO::MYSQL_ATTR_INIT_COMMAND (string value)

 A statement to execute after connecting to the MySQL server, and after any
automatic reconnect.

 ■ PDO::MYSQL_ATTR_LOCAL_INFILE (integer value; default disabled)

 Enable or disable LOAD DATA LOCAL . Note that the MySQL server might not
support LOCAL , or PHP safe mode might be in effect. In either case, attempts to
enable LOCAL will be ineffective.

 ■ PDO::MYSQL_ATTR_MAX_BUFFER_SIZE (integer value; default 1MB)

 The maximum size in bytes for column values returned by PDO. Truncation occurs
for longer values.

 ■ PDO::MYSQL_ATTR_READ_DEFAULT_FILE (string value)

 An option file from which to read options rather than the default file or files.

 ■ PDO::MYSQL_ATTR_READ_DEFAULT_GROUP (string value)

 The group for which to read options from any option files that are read.

 ■ PDO::MYSQL_ATTR_USE_BUFFERED_QUERY (integer value; default enabled)

 Enable or disable buffering of query result sets on the client side. When disabled,
rows are retrieved from the server one at a time.

24_9780321833877_xi.indd 116124_9780321833877_xi.indd 1161 3/1/13 10:05 AM3/1/13 10:05 AM

1162 Appendix I PHP API Reference

 ■ bool
 beginTransaction (void)

 Disables autocommit mode and starts a transaction. Returns TRUE for success or FALSE
for failure. To end the transaction, call commit() to commit any changes or rollback()
to cancel any changes.

 try
 {
 $dbh->beginTransaction (); # start transaction
 $dbh->exec ($stmt1); # execute statements
 $dbh->exec ($stmt2);
 $dbh->commit (); # commit if successful
 }
 catch (PDOException $e)
 {
 # roll back if unsuccessful, but use empty
 # exception handler to catch rollback failure
 print ($e->getMessage () . "\n");
 try
 {
 $dbh->rollback ();
 }
 catch (PDOException $e) { }
 }

 ■ bool
 commit (void)

 Commits the current transaction and restores the autocommit mode. Returns TRUE for
success, FALSE for failure, or raises an exception if no transaction is active.

 For an example, see the description of beginTransaction() .

 ■ string
 errorCode (void)

 Returns a string containing the five-character SQLSTATE value for the most recent
operation on the database handle. A return value equal to PDO::ERR_NONE ("00000")
means “no error.”

 if (!($sth = $dbh->query ($stmt)))
 {
 print ("The statement failed.\n");
 print ("errorCode: " . $dbh->errorCode () . "\n");
 print ("errorInfo: " . join (", ", $dbh->errorInfo ()) . "\n");
 }

24_9780321833877_xi.indd 116224_9780321833877_xi.indd 1162 3/1/13 10:05 AM3/1/13 10:05 AM

1163I.3 PDO Methods

 ■ array
 errorInfo (void)

 Returns a three-element array containing error information for the most recent operation
on the database handle. The array values are the SQLSTATE value (the same value
returned by errorCode()) and driver-specific error code and error message values. For
MySQL, the driver-specific values are a numeric code and message string.

 If the handle operation succeeds, the return value may be a single-element array
containing the SQLSTATE value PDO::ERR_NONE ("00000").

 For an example, see the description of errorCode() .

 ■ int
 exec (string $stmt)

 Executes the SQL statement passed in the argument and returns the number of affected
rows. Returns FALSE or the empty string if an error occurs.

 $count = $dbh->exec ("DELETE FROM member WHERE member_id = 149");
 printf ("Number of rows deleted: %d\n", $count);

 Use exec() for statements such as INSERT or DELETE that modify database contents. For
statements such as SELECT that produce a result set, use query() instead.

 ■ mixed
 getAttribute (int $attr)

 Returns the value of the specified database-handle attribute, or raises an exception for
failure.

 Section I.3.4 , “PDO Constants,” lists some of the available attributes that can be retrieved
with getAttribute() .

 printf ("Driver name: %s\n",
 $dbh->getAttribute (PDO::ATTR_DRIVER_NAME));
 printf ("Server info: %s\n",
 $dbh->getAttribute (PDO::ATTR_SERVER_INFO));
 printf ("Server version: %s\n",
 $dbh->getAttribute (PDO::ATTR_SERVER_VERSION));

 ■ array
 getAvailableDrivers (void)

 Returns an array containing the names of the available PDO drivers.

 $drivers = $dbh->getAvailableDrivers ();
 printf ("Number of drivers available: %d\n", count ($drivers));
 print ("Driver names: " . join (" ", $drivers) . "\n");

24_9780321833877_xi.indd 116324_9780321833877_xi.indd 1163 3/1/13 10:05 AM3/1/13 10:05 AM

1164 Appendix I PHP API Reference

 getAvailableDrivers() can also be called as a static method without obtaining a
database handle first:

 $drivers = PDO::getAvailableDrivers ();

 ■ string
 inTransaction (void)

 Returns TRUE if there is a transaction active, FALSE if not.

 ■ string
 lastInsertId ([string $name])

 Returns the most recently generated sequence number for the connection. The behavior
is driver-specific. For MySQL, the value is that returned by the mysql_insert_id()
C API function. For some drivers (not MySQL), the $name argument must be given to
specify the name of the sequence object.

 $dbh->exec ("INSERT INTO grade_event (date, category)
 VALUES('2012-11-01','T')");
 printf ("New grade_event ID: %d\n", $dbh->lastInsertId ());

 ■ PDOStatement
 prepare (string $stmt
 [, array $options])

 Prepares the SQL statement passed in the first argument and returns a PDOStatement
statement handle to use for further operations on the statement, or FALSE if statement
preparation fails. To execute the statement, invoke the statement handle’s execute()
method.

 $sth = $dbh->prepare ("INSERT INTO absence (student_id, date)
 VALUES (?, ?)");
 $sth->execute (array (7, "2012-10-01"));
 $sth->execute (array (18, "2012-10-03"));

 The statement may contain placeholders in either positional or named format. Data
values should be bound to the placeholders before invoking execute() , or else passed as
parameters to execute() . For additional examples, see the descriptions of bindParam()
and bindValue() in Section I.3.2 , “ PDOStatement Object Methods.”

 The $options array, if given, specifies key/value pairs for setting attributes of the
statement handle produced by prepare() .

 ■ PDOStatement
 query (string $stmt
 [, fetch_mode_option] ...)

 Executes the SQL statement passed in the first argument and returns a PDOStatement
statement handle to use for accessing the result set, or FALSE if an error occurs.

24_9780321833877_xi.indd 116424_9780321833877_xi.indd 1164 3/1/13 10:05 AM3/1/13 10:05 AM

1165I.3 PDO Methods

 $sth = $dbh->query ("SELECT last_name, first_name FROM president");
 while ($row = $sth->fetch ())
 printf ("%s %s\n", $row[1], $row[0]);

 Use query() for statements such as SELECT that produce a result set. For statements such
as INSERT or DELETE that modify database contents, use exec() instead.

 Any arguments following the first are treated as arguments to pass to setFetchMode()
for the statement handle returned by query() . See the description of setFetchMode()
for the permitted arguments. Alternatively, specify the fetch mode by calling
 setFetchMode() directly after query() returns, or by passing a mode to fetch() . The
fetch mode determines the type of object returned by fetch() .

 It is also possible to use the PDOStatement object as an iterator without calling fetch() :

 foreach ($sth as $row)
 printf ("%s %s\n", $row[1], $row[0]);

 ■ string
 quote (string $str
 [, int $param_type])

 Escapes any special characters in the string passed as the first argument (using the
conventions required by the current driver), adds surrounding quotes, and returns the
resulting string. Returns FALSE if the driver does not support this method.

 $quoted_val1 = $dbh->quote (13);
 $quoted_val2 = $dbh->quote ("it's a string");

 The second argument may be specified to indicate the data type of the first argument.
The default is PDO::PARAM_STR . See Section I.3.4 , “PDO Constants,” for a list of
parameter type values.

 quote() doesn’t correctly handle NULL values; it returns a quoted empty string rather
than an unquoted word NULL . If your data values might be NULL , you’re probably better
off to take the approach of using placeholders and binding data values to them. Then
PDO properly handles any required special processing.

 ■ bool
 rollback (void)

 Rolls back the current transaction and restores the autocommit mode. Returns TRUE for
success, FALSE for failure, or raises an exception if no transaction is active.

 For an example, see the description of beginTransaction() .

 ■ bool
 setAttribute (int $attr,
 mixed $value)

 Sets an attribute for the database handle. The first argument names the attribute and the
second provides its value. Returns TRUE for success or FALSE for failure.

24_9780321833877_xi.indd 116524_9780321833877_xi.indd 1165 3/1/13 10:05 AM3/1/13 10:05 AM

1166 Appendix I PHP API Reference

 Section I.3.4 , “PDO Constants,” lists some of the attributes that can be set with
 setAttribute() .

 $dbh->setAttribute (PDO::ATTR_ERRMODE, PDO::ERRMODE_WARNING);
 $dbh->setAttribute (PDO::ATTR_AUTOCOMMIT, true);

 I.3.2 PDOStatement Object Methods

 A PDOStatement object represents a statement handle returned by the query() or prepare()
database-handle methods. Statement handles have methods for operations such as execut-
ing statements, accessing statement metadata and result set contents, binding data values to
prepared statements, and binding variables to result sets.

 ■ bool
 bindColumn (mixed $column,

 mixed $var
 [, int $type
 [, int $len
 [, mixed $options]]])

 Binds a column of a result set to a PHP variable, so that fetching a row sets the variable
to the column value for the row. (Fetch the rows using a fetch mode of PDO::FETCH_
BOUND .) Returns TRUE for success or FALSE for failure.

 The $column value can be given as a column number (beginning with 1) or column
name (in the lettercase returned by the driver). $var is the PHP variable to which column
values should be bound for each row fetch operation.

 $type specifies the data type of the column. The default is PDO::PARAM_STR . See Section
 I.3.4 , “PDO Constants,” for a list of parameter type values.

 The $len and $options values are specified the same way as for bindParam() .

 $sth = $dbh->query ("SELECT last_name, first_name FROM president");
 $sth->bindColumn ("last_name", $l_name); # specify column by name
 $sth->bindColumn (2, $f_name); # specify column by position
 while ($sth->fetch (PDO::FETCH_BOUND))
 printf ("%s %s\n", $f_name, $l_name);

 ■ bool
 bindParam (mixed $column,
 mixed $var
 [, int $type
 [, int $len
 [, mixed $options]]])

 Binds a PHP variable to a placeholder in a prepared statement. Returns TRUE for success
or FALSE for failure. To provide a value for the placeholder, assign it to the variable
before calling execute() .

24_9780321833877_xi.indd 116624_9780321833877_xi.indd 1166 3/1/13 10:05 AM3/1/13 10:05 AM

1167I.3 PDO Methods

 The $column value can be given as a placeholder number (beginning with 1) or a
placeholder name in the statement string (a name preceded by a colon). $var is the PHP
variable to be bound to the placeholder.

 $type specifies the data type of the column. The default is PDO::PARAM_STR . See Section
 I.3.4 , “PDO Constants,” for a list of parameter type values. If a placeholder is associated
with an INOUT stored procedure parameter, perform an OR operation on the type with
 PDO::INPUT_OUTPUT (for example, PDO::PARAM_INT|PDO::INPUT_OUTPUT).

 $len indicates the length of the data type. If a placeholder is associated with an OUT
stored procedure parameter, you should provide an explicit length.

 $options provides data for the driver.

 $sth = $dbh->prepare ("INSERT INTO absence (student_id, date)
 VALUES (:id, :date)");
 $sth->bindParam (":id", $student_id);
 $sth->bindParam (":date", $date);
 $student_id = 7;
 $date = "2012-10-01";
 $sth->execute ();
 $student_id = 18;
 $date = "2012-10-03";
 $sth->execute ();

 ■ bool
 bindValue (mixed $column,
 mixed $value
 [, int $type])

 Binds a value to a placeholder in a prepared statement. Returns TRUE for success or FALSE
for failure. The value is used for the next call to execute() .

 The $column and $type values are specified the same way as for bindParam() .

 $sth = $dbh->prepare ("INSERT INTO absence (student_id, date)
 VALUES (?, ?)");
 $sth->bindValue (1, 7);
 $sth->bindValue (2, "2012-10-01");
 $sth->execute ();
 $sth->bindValue (1, 18);
 $sth->bindValue (2, "2012-10-03");
 $sth->execute ();

 ■ bool
 closeCursor (void)

 Releases resources associated with the statement. Returns TRUE for success or FALSE for
failure. This method can be used if you want to execute a statement again but have not

24_9780321833877_xi.indd 116724_9780321833877_xi.indd 1167 3/1/13 10:05 AM3/1/13 10:05 AM

1168 Appendix I PHP API Reference

fetched the entire result set currently associated with the statement handle. (For MySQL,
this should not be necessary because the driver retrieves any unfetched part of the result
set as necessary, but that might not be true for other drivers.)

 ■ int
 columnCount (void)

 Returns the number of columns in the result set produced by executing a statement. This
value is 0 if the statement has not been executed or did not produce a result set.

 $sth = $dbh->query ("SELECT * FROM president");
 printf ("Number of columns in result set: %d\n", $sth->columnCount ());

 ■ string
 errorCode (void)

 This is similar to errorCode() for PDO objects but applies to operations on
 PDOStatement objects.

 if (!$sth->execute ())
 {
 print ("Could not execute statement.\n");
 print ("errorCode: " . $sth->errorCode () . "\n");
 print ("errorInfo: " . join (", ", $sth->errorInfo ()) . "\n");
 }

 ■ array
 errorInfo (void)

 This is similar to errorInfo() for PDO objects but applies to operations on
 PDOStatement objects.

 For an example, see the description of errorCode() .

 ■ bool
 execute ([array $params])

 Executes a prepared statement and returns TRUE for success or FALSE for failure.

 If the statement contains placeholders, either bind data values to them before invoking
 execute() , or else pass the data values as parameters to execute() . For examples, see
the descriptions of prepare() , bindParam() , and bindValue() .

 ■ mixed
 fetch ([int $fetch_mode
 [, int $cursor_orientation
 [, int $cursor_offset]]])

 Returns the next row of the result set, or FALSE if there are no more rows. The row has
the format determined by the statement handle’s fetch mode, or by the $fetch_mode
argument if present. The default fetch mode is PDO::FETCH_BOTH unless it has been

24_9780321833877_xi.indd 116824_9780321833877_xi.indd 1168 3/1/13 10:05 AM3/1/13 10:05 AM

1169I.3 PDO Methods

changed by calling setFetchMode() or the statement handle was obtained by a call to
 $dbh->query() for which a fetch mode was passed. Section I.3.4 , “PDO Constants,” lists
some of the permitted fetch modes.

 $sth = $dbh->query ("SELECT last_name, first_name FROM president");
 while ($row = $sth->fetch ())
 printf ("%s %s\n", $row[1], $row[0]);

 The $cursor_orientation and $cursor_offset arguments are used to control
scrollable cursors. These two arguments do not apply to MySQL, which does not support
scrollable cursors.

 ■ array
 fetchAll ([int $fetch_mode
 [, int $col_num = 0
 [, array $constructor_args]]])

 Returns any remaining rows of the result set as an array of rows. The fetch mode for the
rows is determined the same way as for fetch() .

 $sth = $dbh->query ("SELECT last_name, first_name FROM president");
 $rows = $sth->fetchAll ();
 foreach ($rows as $row)
 printf ("%s %s\n", $row[1], $row[0]);

 If the fetch mode is PDO::FETCH_COLUMN, fetchAll() returns an array containing the
values from the column of the result set specified by $col_num . Column numbers begin
with 0.

 $sth = $dbh->query ("SELECT last_name, first_name FROM president");
 $first_names = $sth->fetchAll (PDO::FETCH_COLUMN, 1);
 print (join (", ", $first_names) . "\n");

 The $constructor_args argument is used for a custom class constructor. See the PHP
manual for details.

 ■ string
 fetchColumn ([int $col_num = 0])

 Returns one column from the next row of the result set, or FALSE if there are no more
rows. $col_num specifies which column to return. Column numbers begin with 0. If you
need to fetch multiple columns from each row, do not use this method.

 $sth = $dbh->query ("SELECT COUNT(*) FROM member");
 printf ("Number of members: %d\n", $sth->fetchColumn (0));

 ■ mixed
 fetchObject ([string $class_name
 [, array $constructor_args]])

24_9780321833877_xi.indd 116924_9780321833877_xi.indd 1169 3/1/13 10:05 AM3/1/13 10:05 AM

1170 Appendix I PHP API Reference

 Returns the next row of the result set as a class instance, or FALSE if there are no more
rows or an error occurs.

 $sth = $dbh->query ("SELECT last_name, first_name FROM president");
 while ($row = $sth->fetchObject ())
 printf ("%s %s\n", $row->first_name, $row->last_name);

 $class_name is the name of the resulting class (stdClass if none is given). The
 $constructor_args argument is used for a custom class constructor. See the PHP
manual for details.

 ■ mixed
 getAttribute (int $attr)

 Returns the value of the specified statement-handle attribute, or raises an exception for
failure. There are no MySQL-specific statement attributes, so the MySQL driver does not
support getAttribute() as a statement method.

 ■ mixed
 getColumnMeta (int $col_num)

 Returns an associative array containing metadata for the specified column of the result
set, or FALSE if no such column exists. $col_num specifies which column to return.
Column numbers begin with 0.

 $sth = $dbh->query ("SELECT last_name, first_name FROM president");
 var_dump ($sth->getColumnMeta (0));
 var_dump ($sth->getColumnMeta (1));

 The information returned by this method is driver dependent. At the time of writing, the
array returned by the MySQL driver contains the values shown in the following table.

 Name Value

 native_type The PHP native type for the column value

 flags Flags describing the column attributes

 table The table containing the column (empty string for expressions)

 name The column name

 len The column length

 precision The column precision

 pdo_type The column type (corresponds to a PDO::PARAM_ XXX value)

 ■ bool
 nextRowset (void)

 Advances to the next rowset for a statement handle that has multiple rowsets. Returns
 TRUE for success or FALSE for failure.

24_9780321833877_xi.indd 117024_9780321833877_xi.indd 1170 3/1/13 10:05 AM3/1/13 10:05 AM

1171I.3 PDO Methods

 Multiple rowsets can be produced by calling a stored procedure that produces multiple
result sets, or by executing a statement string that contains multiple statements separated
by semicolons. This is similar to processing multiple result sets using the C API (see
 Section 7.7 , “Using Multiple-Statement Execution”).

 $sth = $dbh->query ("SELECT last_name, first_name FROM president LIMIT 5;
 SELECT 1, 2, 3;
 SHOW TABLES");
 do
 {
 $rowset = $sth->fetchAll (PDO::FETCH_NUM);
 if ($rowset)
 {
 $count = 0;
 foreach ($rowset as $row)
 {
 for ($i = 0; $i < sizeof ($row); $i++)
 print ($row[$i] . ($i < sizeof ($row) - 1 ? "," : "\n"));
 $count++;
 }
 printf ("Number of rows returned: %d\n\n", $count);
 }
 } while ($sth->nextRowset ());

 ■ int
 rowCount (void)

 Returns the rows-affected count for the statement. Use this only with statements such as
 INSERT or DELETE that modify rows. To get a row count for statements such as SELECT
that produce a result set, fetch the rows and count them because rowCount() is not
guaranteed to be meaningful.

 ■ bool
 setAttribute (int $attr,
 mixed $value)

 Sets an attribute for the statement handle. The first argument names the attribute
and the second provides its value. Returns TRUE for success or FALSE for failure. There
are no MySQL-specific statement attributes, so the MySQL driver does not support
 setAttribute() as a statement method.

 ■ bool
 setFetchMode (int $fetch_mode
 [, fetch_mode_option] ...)

 Sets the row-fetching mode for the statement. Returns TRUE for success or FALSE for
failure. The fetch mode affects how methods such as fetch() and fetchAll() return
rows when invoked with no explicit fetch-mode argument.

24_9780321833877_xi.indd 117124_9780321833877_xi.indd 1171 3/1/13 10:05 AM3/1/13 10:05 AM

1172 Appendix I PHP API Reference

 $sth = $dbh->query ("SELECT last_name, first_name FROM president");
 $sth->setFetchMode (PDO::FETCH_OBJ);
 while ($row = $sth->fetch ())
 printf ("%s %s\n", $row->last_name, $row->first_name);

 Section I.3.4 , “PDO Constants,” describes several of the fetch modes that may be passed
for the $fetch_mode argument.

 For some values of $fetch_mode , additional arguments may be passed to
 setFetchMode() to affect how row-fetching methods work:

 ■ setFetchMode (PDO::FETCH_COLUMN, int $col_num)

 Return a single column from rows of the result set. See the description for
 fetchColumn() .

 ■ setFetchMode (PDO::FETCH_CLASS, string $class_name, array
$constructor_args)

 Return rows of the result set as a new class instance. See the description for
 fetchObject() .

 ■ setFetchMode (PDO::FETCH_INTO, object $object)

 Return rows of the result set into an existing class instance, mapping result set
columns onto properties of the object’s class.

 I.3.3 PDOException Object Methods

 By default, PDO raises an exception only for the PDO constructor (that is, when you call new
PDO() to connect to a database server), and other PDO methods indicate failure by their return
value. If you enable PDO exceptions after connecting, the PDO extension instead raises excep-
tions when its methods fail. PDOException objects contain the error information provided as a
result of such exceptions.

 To enable PDO exceptions, use the database handle:

 $dbh->setAttribute (PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 PDO supports three error modes:

 ■ PDO::ERRMODE_SILENT : PDO does nothing other than set the error information. This is
the default error mode.

 ■ PDO::ERRMODE_WARNING : This is similar to silent mode, but PDO emits a warning
message in addition to setting the error information.

 ■ PDO::ERRMODE_EXCEPTION : PDO raises an exception after setting the error information.

 If exceptions are enabled, information about errors becomes available that you can get using
the getCode() and getMessage() methods of the exception object.

24_9780321833877_xi.indd 117224_9780321833877_xi.indd 1172 3/1/13 10:05 AM3/1/13 10:05 AM

1173I.3 PDO Methods

 Exceptions terminate your script by default. To handle them yourself, use try and catch . In
the catch block, you can access the exception’s methods that return error information:

 try
 {
 $sth = $dbh->query ("SELECT * FROM no_such_table");
 }
 catch (PDOException $e)
 {
 print ("getCode value: " . $e->getCode() . "\n");
 print ("getMessage value: " . $e->getMessage() . "\n");
 }

 ■ integer
 getCode (void)

 Returns a five-character SQLSTATE value containing the error code. A return value equal
to PDO::ERR_NONE ("00000") means “no error.”

 ■ string
 getMessage (void)

 Returns a string containing the error message.

 I.3.4 PDO Constants

 This section describes some of the constants that can be used with PDO methods, such as the
 getAttribute() and setAttribute() methods for database handles. The values shown are
representative only. For a complete list, see the PDO section of the PHP manual.

 General database-handle attributes:

 ■ PDO::ATTR_AUTOCOMMIT

 The current autocommit mode.

 ■ PDO::ATTR_CLIENT_VERSION

 A string describing the client library version.

 ■ PDO::ATTR_CONNECTION_STATUS

 For MySQL, this indicates how the connection was made.

 ■ PDO::ATTR_DEFAULT_FETCH_MODE

 The row-fetching mode. (Available as a database-handle attribute as of PHP 5.2.4.)

 ■ PDO::ATTR_DRIVER_NAME

 The PDO driver name.

24_9780321833877_xi.indd 117324_9780321833877_xi.indd 1173 3/1/13 10:05 AM3/1/13 10:05 AM

1174 Appendix I PHP API Reference

 ■ PDO::ATTR_ERRMODE

 The error-handling mode. For descriptions of the permitted values, see Section I.3.3 ,
“ PDOException Object Methods.”

 ■ PDO::ATTR_SERVER_INFO

 A string providing some server activity information.

 ■ PDO::ATTR_SERVER_VERSION

 A string describing the server version.

 Fetch-mode values that control the form in which result set rows are fetched:

 ■ PDO::FETCH_ASSOC

 Return an array with elements accessed by associative index.

 ■ PDO::FETCH_BOTH

 Return an array with elements accessed by associative or numeric index.

 ■ PDO::FETCH_BOUND

 Return row elements bound to PHP variables by preceding bindColumn() calls.

 ■ PDO::FETCH_CLASS

 Return row elements into properties of a new class instance.

 ■ PDO::FETCH_INTO

 Return row elements into properties of an existing class instance.

 ■ PDO::FETCH_NUM

 Return an array with elements accessed by numeric index.

 ■ PDO::FETCH_OBJ

 Return an object with elements accessed as properties.

 Parameter-type values:

 ■ PDO::PARAM_BOOL

 A boolean parameter.

 ■ PDO::PARAM_INT

 An integer parameter.

 ■ PDO::PARAM_NULL

 Indicates a SQL NULL value.

 ■ PDO::PARAM_STR

 A string parameter.

24_9780321833877_xi.indd 117424_9780321833877_xi.indd 1174 3/1/13 10:05 AM3/1/13 10:05 AM

