

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Magennis, Troy, 1970-
LINQ to objects using C# 4.0 : using and extending LINQ to objects and parallel LINQ (PLINQ) /

Troy Magennis.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-321-63700-0 (pbk. : alk. paper) 1. Microsoft LINQ. 2. Query languages (Computer sci-

ence) 3. C#
(Computer program language) 4. Microsoft .NET Framework. I. Title.
QA76.73.L228M345 2010
006.7’882—dc22

2009049530

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-321-63700-0
ISBN-10: 0-321-63700-3

Text printed in the United States on recycled paper at RR Donnelly in Crawfordsville, Indiana.

First printing March 2010

FOREWORD

I have worked in the software industry for more than 15 years, the last four
years as CIO of Sabre Holdings and the prior four as CTO of Travelocity.
At Sabre, on top of our large online presence through Travelocity, we
transact $70 billion in annual gross travel sales through our network and
serve over 200 airline customers worldwide. On a given day, we will
process over 700 million transactions and handle 32,000 transactions per
second at peak. Working with massive streams of data is what we do, and
finding better ways to work with this data and improve throughput is my
role as CIO.

Troy is our VP over Architecture at Travelocity, where I have the pleas-
ure of watching his influence on a daily basis. His perspective on current
and future problems and depth of detail are observed in his architectural
decisions, and you will find this capability very evident in this book on the
subject of LINQ and PLINQ.

Developer productivity is a critical aspect for every IT solution-based
business, and Troy emphasizes this in every chapter of his book. Languages
and language features are a means to an end, and language features like
LINQ offer key advances in developer productivity. By simplifying all
types of data manipulation by adding SQL-style querying within the core
.NET development languages, developers can focus on solving business
problems rather than learning a new query language for every data source
type. Beyond developer productivity, the evolution in technology from
individual processor speed improvements to multi-core processors opened
up a big hole in run-time productivity as much of today’s software lacks
investment in parallelism required to better utilize these new processors.
Microsoft’s investment in Parallel LINQ addresses this hole, enabling
much higher utilization of today’s hardware platforms.

Open-standards and open-frameworks are essential in the software
industry. I’m pleased to see that Microsoft has approached C# and LINQ
in an open and inclusive way, by handing C# over as an ECMA/ISO

x

Foreword xi

standard, allowing everyone to develop new LINQ data-sources and to
extend the LINQ query language operators to suit their needs. This
approach showcases the traits of many successful open-source initiatives
and demonstrates the competitive advantages openness offers.

Decreasing the ramp-up speed for developers to write and exploit the
virtues of many-core processors is extremely important in today’s world
and will have a very big impact in technology companies that operate at the
scale of Sabre. Exposing common concurrent patterns at a language level
offers the best way to allow current applications to scale safely and effi-
ciently as core-count increases. While it was always possible for a small
percentage of developers to reliably code concurrency through OpenMP
or hand-rolled multi-threading frameworks, parallel LINQ allows develop-
ers to take advantage of many-core scalability with far fewer concerns
(thread synchronization, data segmentation, merging results, for example).
This approach will allow companies to scale this capability across a much
higher percentage of developers without losing focus on quality. So roll up
your sleeves and enjoy the read!

—Barry Vandevier
Chief Information Officer, Sabre Holdings

PREFACE

LINQ to Objects Using C# 4.0 takes a different approach to the subject of
Language Integrated Query (LINQ). This book focuses on the LINQ
syntax and working with in-memory collections rather than focusing on
replacing other database technologies. The beauty of LINQ is that once
you master the syntax and concepts behind how to compose clever queries,
the underlying data source is mostly irrelevant. That’s not to say that tech-
nologies such as LINQ to SQL, LINQ to XML, and LINQ to Entities are
un-important; they are just not covered in this book.

Much of the material for this book was written during late 2006 when
Language Integrated Query (LINQ) was in its earliest preview period. I was
lucky enough to have a window of time to learn a new technology when
LINQ came along. It became clear that beyond the clever data access abil-
ities being demonstrated (DLINQ at the time, LINQ to SQL eventually),
LINQ to Objects would have the most impact on the day-to-day develop-
ers’ life. Working with in-memory collections of data is one of the more
common tasks performed, and looking through code in my previous proj-
ects made it clear just how complex my for-loops and nested if-condition
statements had evolved. LINQ and the language enhancements being pro-
posed were going to change the look and feel of the way we programmed,
and from where I was sitting that was fantastic.

The initial exploration was published on the HookedOnLINQ.com
Wiki (120 odd pages at that time), and the traffic grew over the next year
or two to a healthy level. Material could have been pulled together for a
publication at that time (and been first to market with a book on this sub-
ject, something my Addison-Wesley editor will probably never forgive me
for), but I felt knowing the syntax and the raw operators wasn’t a book
worth reading. It was critical to know how LINQ works in the real world
and how to use it on real projects before I put that material into ink. The
first round of books for any new programming technology often go slightly
deeper than the online-documentation, and I wanted to wait and see how

xii

Preface xiii

the LINQ story unfolded in real-world applications and write the first book
of the second-generation—the book that isn’t just reference, but has
integrity that only real-world application can ingrain.

The LINQ story is a lot deeper and has wider impact than most peo-
ple realize at first glance of any TechEd session recording or user-group
presentation. The ability to store and pass code as a data structure and to
control when and how that code is executed builds a powerful platform for
working with all matter of data sources. The few LINQ providers shipped
by Microsoft are just the start, and many more are being built by the com-
munity through the extension points provided. After mastering the LINQ
syntax and understanding the operators’ use (and how to avoid misuse),
any developer can work more effectively and write cleaner code. This is the
purpose of this book: to assist the reader in beginning the journey, to intro-
duce how to use LINQ for more real-world examples and to dive a little
deeper than most books on the subject, to explore the performance bene-
fits of one solution over another, and to deeply look at how to create cus-
tom operators for any specific purpose.

I hope you agree after reading this book that it does offer an insight
into how to use LINQ to Objects on real projects and that the examples go
a step further in explaining the patterns that make LINQ an integral part
of day-to-day programming from this day forward.

Who Should Read This Book

The audience for this book is primarily developers who write their appli-
cations in C# and want to understand how to employ and extend the fea-
tures of LINQ to Objects. LINQ to Objects is a wide set of technology
pieces that work in tandem to make working with in-memory data sources
easier and more powerful. This book covers both the initial C# 3.0 imple-
mentation of LINQ and the updates in C# 4.0. If you are accustomed to
the LINQ syntax, this book goes deeper than most LINQ reference publi-
cation and delves into areas of performance and how to write custom
LINQ operators (either as sequential algorithms or using parallel algo-
rithms to improve performance).

If you are a beginning C# developer (or new to C# 3.0 or 4.0), this book
introduces the code changes and syntax so that you can quickly master
working with objects and collections of objects using LINQ. I’ve tried to

xiv Preface

strike a balance and not jump directly into examples before covering the
basics. You obviously should know how to build a LINQ query statement
before you start to write your own custom sequential or parallel operators
to determine the number of mountain peaks around the world that are
taller than 8,000 meters (26,000 feet approximately). But you will get to
that in the latter chapters.

Overview of the Book

LINQ to Objects Using C# 4.0 starts by introducing the intention and ben-
efits LINQ offers developers in general. Chapter 1, “Introducing LINQ,”
talks to the motivation and basic concepts LINQ introduces to the world of
writing .NET applications. Specifically, this chapter introduces before and
after code makeovers to demonstrate LINQ’s ability to simplify coding
problems. This is the first and only chapter that talks about LINQ to SQL
and LINQ to XML and does this to demonstrate how multiple LINQ data
sources can be used from the one query syntax and how this powerful con-
cept will change application development. This chapter concludes by listing
the wider benefits of embracing LINQ and attempts to build the big picture
view of what LINQ actually is, a more complex task than it might first seem.

Chapter 2, “Introducing LINQ to Objects,” begins exploring the
underlying enabling language features that are necessary to understand
how the LINQ language syntax compiles. A fast-paced, brief overview of
LINQ’s features wraps up this chapter; it doesn’t cover any of them in
depth but just touches on the syntax and capabilities that are covered at
length in future chapters.

Chapter 3, “Writing Basic Queries,” introduces reading and writing
LINQ queries in C# and covers the basics of choosing what data to proj-
ect, in what format to select that data, and in what order the final result
should be placed. By the end of this chapter, each reader should be able to
read the intention behind most queries and be able to write simple queries
that filter, project, and order data from in-memory collections.

Chapter 4, “Grouping and Joining Data,” covers the more advanced
features of grouping data in a collection and combining multiple data
sources. These partitioning and relational style queries can be structured
and built in many ways, and this chapter describes in depth when and why
to use one grouping or joining syntax over another.

Preface xv

Chapter 5, “Standard Query Operators,” lists the many additional stan-
dard operators that can be used in a LINQ query. LINQ has over 50 oper-
ators, and this chapter covers the operators that go beyond those covered
in the previous chapters.

Chapter 6, “Working with Set Data,” explores working with set-based
operators. There are multiple ways of performing set operations over in-
memory collections, and this chapter explores the merits and pitfalls of
both.

Chapter 7, “Extending LINQ to Objects,” discusses the art of building
custom operators. The examples covered in this chapter demonstrate how
to build any of the four main types of operators and includes the common
coding and error-handling patterns to employ in order to closely match the
built-in operators Microsoft supplies.

Chapter 8, “C# 4.0 Features,” is where the additional C# 4.0 language
features are introduced with particular attention to how they extend the
LINQ to Objects story. This chapter demonstrates how to use the dynamic
language features to make LINQ queries more fluent to read and write and
how to combine LINQ with COM-Interop in order to use other applica-
tions as data sources (for example, Microsoft Excel).

Chapter 9, “Parallel LINQ to Objects,” closely examines the motiva-
tion and art of building application code that can support multi-core
processor machines. Not all queries will see a performance improvement,
and this chapter discusses the expectations and likely improvement most
queries will see. This chapter concludes with an example of writing a cus-
tom parallel operator to demonstrate the thinking process that goes into
correctly coding parallel extensions in addition to those provided.

Conventions

There is significant code listed in this book. It is an unavoidable fact for
books about programming language features that they must demonstrate
those features with code samples. It was always my intention to show lots
of examples, and every chapter has dozens of code listings. To help ease the
burden, I followed some common typography conventions to make them
more readable. References to classes, variables, and other code entities are
distinguished in a monospace font. Short code listings that are to be read

inline with the surrounding text are also presented in a monospace font, but
on their own lines, and they sometimes contain code comments (lines
beginning with // characters) for clarity.

// With line-breaks added for clarity

var result = nums

.Where(n => n < 5)

.OrderBy (n => n);

Longer listings for examples that are too big to be inline with the text
or samples I specifically wanted to provide in the sample download project
are shown using a similar monospace font, but they are denoted by a listing
number and a short description, as in the following example, Listing 3-2.

Listing 3-2 Simple query using the Query Expression syntax

List<Contact> contacts = Contact.SampleData();

var q = from c in contacts

where c.State == ”WA”

orderby c.LastName, c.FirstName

select c;

foreach (Contact c in q)

Console.WriteLine(”{0} {1}”,

c.FirstName, c.LastName);

Each example should be simple and consistent. For simplicity, most
examples write their results out to the Console window. To capture these
results in this book, they are listed in the same font and format as code list-
ings, but identified with an output number, as shown in Output 3-1.

Output 3-1

Stewart Kagel

Chance Lard

Armando Valdes

xvi Preface

Preface xvii

Sample data for the queries is listed in tables, for example, Table 2-2.
Each column maps to an object property of a similar legal name for queries
to operate on.

Words in bold in normal text are defined in the Glossary, and only the
first occurrence of the word gets this treatment. When a bold monospace
font in code is used, it is to draw your attention to a particular key point
being explained at that time and is most often used when an example
evolves over multiple iterations.

Sample Download Code and Updates

All of the samples listed in the book and further reference material can be
found at the companion website, the HookedOnLINQ.com reference wiki
and website at http://hookedonlinq.com/LINQBook.ashx.

Some examples required a large sample data source and the Geonames
database of worldwide geographic place names and data. These data files
can be downloaded from http://www.geonames.org/ and specifically the
http://download.geonames.org/export/dump/allCountries.zip file. This file
should be downloaded and placed in the same folder as the executable
sample application is running from to successfully run those specific sam-
ples that parse and query this source.

Choice of Language

I chose to write the samples in this book using the C# language because
including both C# and VB.Net example code would have bloated the num-
ber of pages beyond what would be acceptable. There is no specific reason
why the examples couldn’t have been in any other .NET language that sup-
ports LINQ.

System Requirements

This book was written with the code base of .NET 4 and Visual Studio 2010
over the course of various beta versions and several community technical
previews. The code presented in this book runs with Beta 2. If the release

http://www.geonames.org/
http://hookedonlinq.com/LINQBook.ashx
http://download.geonames.org/export/dump/allCountries.zip

copy of Visual Studio 2010 and .NET 4 changes between this book publi-
cation and release, errata and updated code examples will be posted on the
companion website at http://hookedonlinq.com/LINQBook.ashx.

To run the samples available from the book’s companion website, you
will need to have Visual Studio 2010 installed on your machine. If you don’t
have access to a commercial copy of Visual Studio 2010, Microsoft has a
freely downloadable version (Visual Studio 2010 Express Edition), which is
capable of running all examples shown in this book. You can download this
edition from http://www.microsoft.com/express/.

xviii Preface

http://www.microsoft.com/express/
http://hookedonlinq.com/LINQBook.ashx

41

C H A P T E R 3

WRITING BASIC QUERIES

Goals of this chapter:
■ Understand the LINQ syntax options.
■ Introduce how to write basic queries.
■ Demonstrate how to filter, project, and order data using LINQ queries.

The main goal of this chapter is to introduce the basics of writing queries.
These basics include the syntax options available for writing queries, how
to filter data, how to order data, and how to return the exact result set you
want. By the end of this chapter, you will understand how to write the most
common query elements and, in the following chapter, you will expand this
understanding into the more advanced query features of grouping and
joining with other sources.

Query Syntax Style Options

Most previous examples in this book have used the query expression syn-
tax, but there are two styles for writing LINQ queries. Not all operators are
available through the query expression syntax built into the C# compiler,
and to use the remaining operators (or to call your own operators), the
extension method query syntax or a combination of the two is necessary.
You will continually need to know both styles of query syntax in order to
read, write, and understand code written using LINQ.

■ Extension method format (also known as the dot notation syn-
tax)—The extension method format is simply where multiple exten-
sion methods are cascaded together, each returning an
IEnumerable<T> result to allow the next extension method to flow on
from the previous result and so on (known as a fluid interface).

42 Chapter 3 Writing Basic Queries

int[] nums = new int[] {0,4,2,6,3,8,3,1};

var result1 = nums.Where(n => n < 5).OrderBy (n => n);

// or with line-breaks added for clarity

var result2 = nums

.Where(n => n < 5)

.OrderBy (n => n);

■ Query Expression format (preferred, especially for joins and
groups)—Although not all standard query operators are supported
by the query expression syntax, the benefit to the clarity of code
when they are is very high. The query expression syntax is much
gentler than the extension method syntax in that it simplifies the
syntax by removing lambda expressions and by introducing a famil-
iar SQL-like representation.

int[] nums = new int[] {0,4,2,6,3,8,3,1};

var result = from n in nums

where n < 5

orderby n

select n;

■ Query Dot syntax (a combination of the two formats)—This for-
mat combines a query expression syntax query surrounded by
parentheses, followed by more operators using the Dot Notation
syntax. As long as the query expression returns an IEnumerable<T>, it
can be followed by an extension method chain.

int[] nums = new int[] {0,4,2,6,3,8,3,1};

var result = (from n in nums

where n < 5

orderby n

select n).Distinct();

WHICH QUERY SYNTAX TO USE? Personal preference will dictate this, but
the goal is to use the syntax that is easiest to read and that will help developers
who come after you to understand your intentions. With this in mind, don’t
unnecessarily mix the syntax styles in one query; mixing the styles makes the
query harder to read by forcing the reader to count brackets and determine

Query Syntax Style Options 43

IEnumerable<T>|T query-expression-identifier =

from identifier in expression

letopt identifier = expression

whereopt boolean-expression

joinopt typeopt identifier in expression on

expression equals expression intoopt identifier

orderbyopt ordering-clause(s) ascending|descending opt

groupopt expression by expression into opt identifier

select expression intoopt identifier

Figure 3-1 The basic query expression syntax form. The C# 3.0 Language Specification
outlines exactly how this form is translated into extension methods for compilation.

which part of a query the extension method syntax applies to. If you do mix
styles, keep them together; for example, use the query expression at the start sur-
rounded by parentheses, then the extension methods at the end for the necessary
operators (as shown in all examples in this book when mixing was needed).

My preference (because of my SQL background perhaps) is to use the query
expression syntax wherever possible and then revert to using the extension
method syntax when using an operator not supported by query expressions (the
Distinct operator, for instance), but I always add these operators at the end of
the query. I’ll sometimes use all expression method syntax but never when the
query has a Join or GroupBy operator.

Each query syntax has its own merits and pitfalls, which the following
sections cover in detail.

Query Expression Syntax
The query expression syntax provided in C# 3.0 and later versions makes
queries clearer and more concise. The compiler converts the query expres-
sion into extension method syntax during compilation, so the choice of
which syntax to use is based solely on code readability.

Figure 3-1 shows the basic form of query expressions built into C# 3.0.

44 Chapter 3 Writing Basic Queries

NOTE The fact that the order of the keywords is different in SQL is unfortunate
for those who are SQL masters; however, one very compelling reason for the dif-
ference was to improve the developer experience. The From-Where-Select order
allows the editing environment (Visual Studio in this case) to provide full
Intellisense support when writing the query. The moment you write the from
clause, the properties of that element appear as you then write the where clause.
This wouldn’t be the case (and isn’t in SQL Server’s query editing tools) if the C#
designers followed the more familiar Select-From-Where keyword ordering.

Most of the query expression syntax needs no explanation for develop-
ers experienced with other query syntax, like SQL. Although the order is
different than in traditional query languages, each keyword name gives a
strong indication as to its function, the exception being the let and into

clauses, which are described next.

Let—Create a Local Variable
Queries can often be written with less code duplication by creating a local
variable to hold the value of an intermediate calculation or the result of a
subquery. The let keyword enables you to keep the result of an expression
(a value or a subquery) in scope throughout the rest of the query expres-
sion being written. Once assigned, the variable cannot be reassigned with
another value.

In the following code, a local variable is assigned, called average, that
holds the average value for the entire source sequence, calculated once but
used in the Select projection on each element:

var variance = from element in source

let average = source.Average()

select Math.Pow((element - average), 2);

The let keyword is implemented purely by the compiler, which cre-
ates an anonymous type that contains both the original range variable
(element in the previous example) and the new let variable. The previous
query maps directly to the following (compiler translated) extension
method query:

var variance =

source.Select (

element =>

new

Query Syntax Style Options 45

{

element = element,

average = source.Average ()

}

)

.Select (temp0 =>

Math.Pow (

((double)temp0.element - temp0.average)

, 2));

Each additional let variable introduced will cause the current anony-
mous type to be cascaded within another anonymous type containing itself
and the additional variable—and so on. However, all of this magic is trans-
parent when writing a query expression.

Into—Query Continuation
The group, join, and select query expression keywords allow the resulting
sequence to be captured into a local variable and then used in the rest of
the query. The into keyword allows a query to be continued by using the
result stored into the local variable at any point after its definition.

The most common point into is employed is when capturing the result
of a group operation, which along with the built-in join features is covered
extensively in Chapter 4, “Grouping and Joining Data.” As a quick preview,
the following example groups all elements of the same value and stores the
result in a variable called groups; by using the into keyword (in combina-
tion with the group keyword), the groups variable can participate and be
accessed in the remaining query statement.

var groupings = from element in source

group element by element into groups

select new {

Key = groups.Key,

Count = groups.Count()

};

Comparing the Query Syntax Options
Listing 3-1 uses extension method syntax, and Listing 3-2 uses query
expression syntax, but they are functionally equivalent, with both generat-
ing the identical result shown in Output 3-1. The clarity of the code in the
query expression syntax stems from the removal of the lambda expression
semantics and the SQL style operator semantics. Both syntax styles are

46 Chapter 3 Writing Basic Queries

functionally identical, and for simple queries (like this example), the ben-
efit of code clarity is minimal.

Listing 3-1 Query gets all contacts in the state of “WA” ordered by last name and then
first name using extension method query syntax—see Output 3-1

List<Contact> contacts = Contact.SampleData();

var q = contacts.Where(c => c.State == ”WA”)

.OrderBy(c => c.LastName)

.ThenBy(c => c.FirstName);

foreach (Contact c in q)

Console.WriteLine(”{0} {1}”,

c.FirstName, c.LastName);

Listing 3-2 The same query as in Listing 3-1 except using query expression syntax—see
Output 3-1

List<Contact> contacts = Contact.SampleData();

var q = from c in contacts

where c.State == ”WA”

orderby c.LastName, c.FirstName

select c;

foreach (Contact c in q)

Console.WriteLine(”{0} {1}”,

c.FirstName, c.LastName);

Output 3-1

Stewart Kagel

Chance Lard

Armando Valdes

There are extensive code readability advantages to using the query
expression syntax over the extension method syntax when your query

Query Syntax Style Options 47

contains join and/or group functionality. Although not all joining and
grouping functionality is natively available to you when using the query
expression syntax, the majority of queries you write will not require those
extra features. Listing 3-3 demonstrates the rather clumsy extension
method syntax for Join (clumsy in the fact that it is not clear what each
argument means in the GroupBy extension method just by reading the
code). The functionally equivalent query expression syntax for this same
query is shown in Listing 3-4. Both queries produce the identical result, as
shown in Output 3-2.

If it is not clear already, my personal preference is to use the query
expression syntax whenever a Join or GroupBy operation is required in a
query. When a standard query operator isn’t supported by the query
expression syntax (as is the case for the .Take method for example), you
parenthesize the query and use extension method syntax from that point
forward as Listing 3-4 demonstrates.

Listing 3-3 Joins become particularly complex in extension method syntax. This query
returns the first five call-log details ordered by most recent—see Output 3-2

List<Contact> contacts = Contact.SampleData();

List<CallLog> callLog = CallLog.SampleData();

var q = callLog.Join(contacts,

call => call.Number,

contact => contact.Phone,

(call, contact) => new

{

contact.FirstName,

contact.LastName,

call.When,

call.Duration

})

.OrderByDescending(call => call.When)

.Take(5);

foreach (var call in q)

Console.WriteLine(”{0} - {1} {2} ({3}min)”,

call.When.ToString(”ddMMM HH:m”),

call.FirstName, call.LastName, call.Duration);

48 Chapter 3 Writing Basic Queries

Listing 3-4 Query expression syntax of the query identical to that shown in Listing 3-3—
see Output 3-2

List<Contact> contacts = Contact.SampleData();

List<CallLog> callLog = CallLog.SampleData();

var q = (from call in callLog

join contact in contacts on

call.Number equals contact.Phone

orderby call.When descending

select new

{

contact.FirstName,

contact.LastName,

call.When,

call.Duration

}).Take(5);

foreach (var call in q)

Console.WriteLine(”{0} - {1} {2} ({3}min)”,

call.When.ToString(”ddMMM HH:m”),

call.FirstName, call.LastName, call.Duration);

Output 3-2

07Aug 11:15 - Stewart Kagel (4min)

07Aug 10:35 - Collin Zeeman (2min)

07Aug 10:5 - Mack Kamph (1min)

07Aug 09:23 - Ariel Hazelgrove (15min)

07Aug 08:12 - Barney Gottshall (2min)

EXTENSION METHOD DEVELOPER TIPS
■ Express the most limiting query method first; this reduces the workload

of the successive operators.
■ Split each operator onto a different line (including the period joiner).

This allows you to comment out individual operators when debugging.
■ Be consistent—within an application use the same style throughout.
■ To make it easier to read queries, don’t be afraid to split up the query

into multiple parts and indent to show hierarchy.

How to Filter the Results (Where Clause) 49

QUERY EXPRESSION DEVELOPER TIPS
■ If you need to mix extension methods with query expressions, put them

at the end.
■ Keep each part of the query expression on a separate line to allow

you to individually comment out individual clauses for debugging.

How to Filter the Results (Where Clause)

One of the main tasks of a LINQ query is to restrict the results from a larger
collection based on some criteria. This is achieved using the Where operator,
which tests each element within a source collection and returns only those
elements that return a true result when tested against a given predicate
expression. A predicate is simply an expression that takes an element of the
same type of the items in the source collection and returns true or false.
This predicate is passed to the Where clause using a lambda expression.

The extension method for the Where operator is surprisingly simple; it
iterates the source collection using a foreach loop, testing each element as
it goes, returning those that pass. Here is a close facsimile of the actual
code in the System.Linq library:

public delegate TResult Func<T1, TResult>(T1 arg1);

public static IEnumerable<T> Where<T>(

this IEnumerable<T> source,

Func<T, bool> predicate) {

foreach (T element in source) {

if (predicate(element))

yield return element;

}

}

The LINQ to Objects Where operator seems pretty basic on the surface,
but its implementation is simple due to the powerful yield return state-
ment that first appeared in the .NET Framework 2.0 to make building col-
lection iterators easier. Any code implementing the built-in enumeration
pattern (as codified by any collection that implements the interface

50 Chapter 3 Writing Basic Queries

IEnumerable) natively supports callers asking for the next item in a collec-
tion—at which time the next item for return is computed (supported by
the foreach keyword as an example). Any collection implementing the
IEnumerable<T> pattern (which also implements IEnumerable) will be
extended by the Where operator, which will return a single element at a time
when asked, as long as that element satisfies the predicate expression
(returns true).

Filter predicate expressions are passed to the extension method using
a lambda expression (for a recap on what a lambda expression is see
Chapter 2, “Introducing LINQ to Objects”), although if the query expres-
sion syntax is used, the filter predicate takes an even cleaner form. Both of
these predicate expression styles are explained and covered in detail in the
following sections.

Where Filter Using a Lambda Expression
When forming a predicate for the Where operator, the predicate takes an
input element of the same type as the elements in the source collection
and returns true or false (a Boolean value). To demonstrate using a simple
Where clause predicate, consider the following code:

string[] animals = new string[] { ”Koala”, ”Kangaroo”,

“Spider”, “Wombat”, “Snake”, “Emu”, “Shark”,

“Sting-Ray”, “Jellyfish” };

var q = animals.Where(

a => a.StartsWith(“S”) && a.Length > 5);

foreach (string s in q)

Console.WriteLine(s);

In this code, each string value from the animals array is passed to
the Where extension method in a range variable called a. Each string in a

is evaluated against the predicate function, and only those strings that
pass (return true) are returned in the query results. For this example,
only two strings pass the test and are written to the console window.
They are

Spider

Sting-Ray

How to Filter the Results (Where Clause) 51

The C# compiler behind the scenes converts the lambda expression
into a standard anonymous method call (the following code is functionally
equivalent):

var q = animals.Where(

delegate(string a) {

return a.StartsWith(”S”) && a.Length > 5; });

What Is Deferred Execution?

The Where clause will only begin testing the predicate when somebody
(you through a foreach statement or one of the other standard query oper-
ators that have an internal foreach statement) tries to iterate through the
results; until then, the iterator framework just remembers exactly where it
was the last time it was asked for an element. This is called deferred exe-
cution, and it allows you some predictability and control over when and
how a query is executed. If you want results immediately you can call
ToList(), ToArray() or one of the other standard operators that cause
immediate actualization of the results to another form; otherwise, the query
will begin evaluation only when you begin iterating over it.

Where Filter Query Expressions (Preferred)
The query expression where clause syntax drops the explicit range variable
definition and the lambda expression operator (=>), making it more concise
and more familiar to the SQL-style clauses that many developers under-
stand. It is the preferred syntax for these reasons. Rewriting the previous
example using query expression syntax demonstrates these differences, as
follows:

string[] animals = new string[] { ”Koala”, ”Kangaroo”,

“Spider”, “Wombat”, “Snake”, “Emu”, “Shark”,

“Sting-Ray”, “Jellyfish” };

var q = from a in animals

where a.StartsWith(“S”) && a.Length > 5

select a;

foreach (string s in q)

Console.WriteLine(s);

52 Chapter 3 Writing Basic Queries

Using an External Method for Evaluation
Although you can write queries and inline the code for the filter predicate,
you don’t have to. If the predicate is lengthy and might be used in more
than one query expression, you should consider putting it in its own
method body (good practice for any duplicated code). Rewriting the pre-
vious examples using an external predicate function shows the technique:

string[] animals = new string[] { ”Koala”, ”Kangaroo”,

“Spider”, “Wombat”, “Snake”, “Emu”, “Shark”,

“Sting-Ray”, “Jellyfish” };

var q = from a in animals

where MyPredicate(a)

select a;

foreach (string s in q)

Console.WriteLine(s);

public bool MyPredicate(string a)

{

if (a.StartsWith(”S”) && a.Length > 5)

return true;

else

return false;

}

To further demonstrate this technique with a slightly more complex
scenario, the code shown in Listing 3-5 creates a predicate method that
encapsulates the logic for determining “a deadly animal.” By encapsulating
this logic in one method, it doesn’t have to be duplicated in multiple places
in an application.

Listing 3-5 Where clause using external method—see Output 3-3

string[] animals = new string[] { ”Koala”, ”Kangaroo”,

”Spider”, “Wombat”, “Snake”, “Emu”, “Shark”,

”Sting-Ray”, “Jellyfish” };

var q = from a in animals

where IsAnimalDeadly(a)

select a;

How to Filter the Results (Where Clause) 53

foreach (string s in q)

Console.WriteLine(“A {0} can be deadly.”, s);

public static bool IsAnimalDeadly(string s)

{

string[] deadly = new string[] {“Spider”, “Snake”,

”Shark”, “Sting-Ray”, “Jellyfish”};

return deadly.Contains(s);

}

Output 3-3

A Spider can be deadly.

A Snake can be deadly.

A Shark can be deadly.

A Sting-Ray can be deadly.

A Jellyfish can be deadly.

Filtering by Index Position
The standard query operators expose a variation of the Where operator that
surfaces the index position of each collection element as it progresses. The
zero-based index position can be passed into a lambda expression predi-
cate by assigning a variable name as the second argument (after the ele-
ment range variable). To surface the index position, a lambda expression
must be used, and this can only be achieved using the extension method
syntax. Listing 3-6 demonstrates the simplest usage, in this case simply
returning the first and only even-index positioned elements from the
source collection, as shown in Output 3-4.

Listing 3-6 The index position can be used as part of the Where clause predicate
expression when using lambda expressions—see Output 3-4

string[] animals = new string[] { ”Koala”, ”Kangaroo”,

”Spider”, “Wombat”, “Snake”, “Emu”, “Shark”,

”Sting-Ray”, “Jellyfish” };

// get the first then every other animal (index is odd)

var q = animals.Where((a, index) => index % 2 == 0);

54 Chapter 3 Writing Basic Queries

foreach (string s in q)

Console.WriteLine(s);

Output 3-4

Koala

Spider

Snake

Shark

Jellyfish

How to Change the Return Type (Select Projection)

When you write queries against a database system in SQL, specifying a set
of columns to return is second nature. The goal is to limit the columns
returned to only those necessary for the query in order to improve per-
formance and limit network traffic (the less data transferred, the better).
This is achieved by listing the column names after the Select clause in the
following format. In most cases, only the columns of interest are returned
using the SQL syntax form:

Select * from Contacts

Select ContactId, FirstName, LastName from Contacts

The first query will return every column (and row) of the contacts
table; the second will return only the three columns explicitly listed (for
every row), saving server and network resources. The point is that the SQL
language syntax allows a different set of rows that does not match any exist-
ing database table, view, or schema to be the structure used in returning
data. Select projections in LINQ query expressions allow us to achieve the
same task. If only few property values are needed in the result set, those
properties or fields are the only ones returned.

LINQ selection projections allow varied and powerful control over
how and what data shape is returned from a query expression.

How to Change the Return Type (Select Projection) 55

Table 3-1 Sample Set of Operators that Return a Specific Result Value Type (covered
in Chapters 5 and 6)

Return
Type

Standard Query Operator

Numeric Aggregate, Average, Max, Min, Sum, Count, LongCount

Boolean All, Any, Contains, SequenceEqual

Type <T> ElementAt, ElementAtOrDefault, First, FirstOrDefault, Last,

LastOrDefault, Single, SingleOrDefault, DefaultIfEmpty

The different ways a select projection can return results are

■ As a single result value or element
■ In an IEnumerable<T> where T is of the same type as the source items
■ In an IEnumerable<T> where T is any existing type constructed in the

select projection
■ In an IEnumerable<T> where T is an anonymous type created in the

select projection
■ In an IEnumberable<IGrouping<TKey, TElement>>, which is a collection

of grouped objects that share a common key

Each projection style has its use, and each style is explained by exam-
ple in the following sections.

HOW MUCH DATA ARE YOU PROJECTING IN A SELECT
PROJECTION? As with all good data-access paradigms, the goal should be
to return the fewest properties as possible when defining a query result shape.
This reduces the memory footprint and makes the result set easier to code
against because there are fewer properties to wade through.

Return a Single Result Value or Element
Some of the standard query operators return a single value as the result, or
a single element from the source collection; these operators are listed in
Table 3-1. Each of these operators end any cascading of results into anoth-
er query, and instead return a single result value or source element.

56 Chapter 3 Writing Basic Queries

As an example, the following simple query returns the last element in
the integer array, writing the number 2 to the Console window:

int[] nums = new int[] { 5, 3, 4, 2 };

int last = nums.Last();

ConsoleWriteLine(last);

Return the Same Type as the Source—
IEnumerable<TSource>
The most basic projection type returns a filtered and ordered subset of the
original source items. This projection is achieved by specifying the range
variable as the argument after the select keyword. The following example
returns an IEnumerable<Contact>, with the type Contact being inferred from
the element type of the source collection:

List<Contact> contacts = Contact.SampleData();

IEnumerable<Contact> q = from c in contacts

select c;

A more appropriate query would filter the results and order them in
some convenient fashion. You are still returning a collection of the same
type, but the number of elements and their order will be different.

List<Contact> contacts = Contact.SampleData();

IEnumerable<Contact> q = from c in contacts

where c.State == “WA”

orderby c.LastName,

c.FirstName ascending

select c;

Return a Different Type Than the Source—
IEnumerable<TAny>
Any type can be projected as part of the select clause, not just the source
type. The target type can be any available type that could otherwise be

How to Change the Return Type (Select Projection) 57

manually constructed with a plain new statement from the scope of code
being written.

If the type being constructed has a parameterized constructor
containing all of the parameters you specifically need, then you simply call
that constructor. If no constructor matches the parameter’s needed for this
projection, either create one or consider using the C# 3.0 type initializer
syntax (as covered in Chapter 2). The benefit of using the new type
initializer semantics is that it frees you from having to define a specific
constructor each time a new projection signature is needed to cater for
different query shapes. Listing 3-7 demonstrates how to project an
IEnumerable<ContactName> using both constructor semantics.

NOTE Resist the temptation to overuse the type initializer syntax. It requires
that all properties being initialized through this syntax be read and write (have a
getter and setter). If a property should be read-only, don’t make it read/write
just for this feature. Consider making those constructor parameters optional using
the C# 4.0 Optional Parameter syntax described in Chapter 8, “C# 4.0
Features.”

Listing 3-7 Projecting to a collection of a new type—constructed using either a specific
constructor or by using type initializer syntax

List<Contact> contacts = Contact.SampleData();

// using a parameterized constructor

IEnumerable<ContactName> q1 =

from c in contacts

select new ContactName(

c.LastName + ”, “ + c.FirstName,

(DateTime.Now - c.DateOfBirth).Days / 365);

// using Type Initializer semantics

// note: The type requires a parameterless constructor

IEnumerable<ContactName> q2 =

from c in contacts

select new ContactName

{

FullName = c.LastName + ”, “ + c.FirstName,

YearsOfAge =

58 Chapter 3 Writing Basic Queries

(DateTime.Now - c.DateOfBirth).Days / 365

};

// ContactName class definition

public class ContactName

{

public string FullName { get; set; }

public int YearsOfAge { get; set; }

// constructor needed for

// object initialization example

public ContactName() {

}

// constructor required for

// type projection example

public ContactName(string name, int age)

{

this.FullName = name;

this.YearsOfAge = age;

}

}

Return an Anonymous Type—
IEnumerable<TAnonymous>
Anonymous types is a new language feature introduced in C# 3.0 where
the compiler creates a type on-the-fly based on the object initialization
expression (the expression on the right side of the initial = sign). Discussed
in detail in Chapter 2, this new type is given an uncallable name by the
compiler, and without the var keyword (implicitly typed local variables),
there would be no way to compile the query. The following query demon-
strates projecting to an IEnumerable<T> collection where T is an anonymous
type:

List<Contact> contacts = Contact.SampleData();

var q = from c in contacts

select new

{

How to Return Elements When the Result Is a Sequence 59

FullName = c.LastName + ”, “ + c.FirstName,

YearsOfAge =

(DateTime.Now - c.DateOfBirth).Days / 365

};

The anonymous type created in the previous example is composed of
two properties, FullName and YearsOfAge.

Anonymous types free us from having to write and maintain a specific
type definition for every different return result collection needed. The only
drawback is that these types are method-scoped and cannot be used out-
side of the method they are declared by (unless passed as a System.Object
type, but this is not recommended because property access to this object
subsequently will need to use reflection).

Return a Set of Grouped Objects—
IEnumerable<IGrouping<TKey,TElement>>
It is possible for LINQ to Objects to group results that share common
source values or any given characteristic that can be equated with an
expression using the group by query expression keyword or the GroupBy
extension method. This topic is covered in great detail in Chapter 4.

How to Return Elements When the Result Is a Sequence
(Select Many)

The SelectMany standard query operator flattens out any IEnumerable<T>
result elements, returning each element individually from those enumer-
able sources before moving onto the next element in the result sequence.
In contrast, the Select extension method would stop at the first level and
return the IEnumerable<T> element itself.

Listing 3-8 demonstrates how SelectMany differs from Select, with
each variation aiming to retrieve each individual word within a set of
phrase strings. To retrieve the words in Option 1, a sub for loop is
required, but SelectMany automatically performs this subiteration of the
original result collection, as shown in Option 2. Option 3 demonstrates that
the same result can be achieved using multiple from statements in a query
expression (which maps the query to use SelectMany operator behind the
scenes). The Console output is shown in Output 3-5.

60 Chapter 3 Writing Basic Queries

Listing 3-8 Select versus SelectMany—SelectMany drills into an IEnumerable
result, returning its elements—see Output 3-5

string[] sentence = new string[] { ”The quick brown”,

“fox jumps over”, ”the lazy dog.”};

Console.WriteLine(”option 1:”); Console.WriteLine(”————-”);

// option 1: Select returns three string[]’s with

// three strings in each.

IEnumerable<string[]> words1 =

sentence.Select(w => w.Split(‘ ‘));

// to get each word, we have to use two foreach loops

foreach (string[] segment in words1)

foreach (string word in segment)

Console.WriteLine(word);

Console.WriteLine();

Console.WriteLine(”option 2:”); Console.WriteLine(”————-”);

// option 2: SelectMany returns nine strings

// (sub-iterates the Select result)

IEnumerable<string> words2 =

sentence.SelectMany(segment => segment.Split(‘ ‘));

// with SelectMany we have every string individually

foreach (var word in words2)

Console.WriteLine(word);

// option 3: identical to Opt 2 above written using

// the Query Expression syntax (multiple froms)

IEnumerable<string> words3 =

from segment in sentence

from word in segment.Split(‘ ‘)

select word;

Output 3-5

option 1:

————-

The

quick

brown

How to Get the Index Position of the Results 61

fox

jumps

over

the

lazy

dog.

option 2:

————-

The

quick

brown

fox

jumps

over

the

lazy

dog.

How does the SelectMany extension method work? It creates a nested
foreach loop over the original result, returning each subelement using
yield return statements. A close facsimile of the code behind SelectMany
takes the following form:

static IEnumerable<S> SelectManyIterator<T, S>(

this IEnumerable<T> source,

Func<T, IEnumerable<S>> selector)

{

foreach (T element in source)

{

foreach (S subElement in selector(element))

{

yield return subElement;

}

}

}

How to Get the Index Position of the Results

Select and SelectMany expose an overload that surfaces the index position
(starting at zero) for each returned element in the Select projection. It is
surfaced as an overloaded parameter argument of the selector lambda

62 Chapter 3 Writing Basic Queries

expression and is only accessible using the extension method query syntax.
Listing 3-9 demonstrates how to access and use the index position value in
a Select projection. As shown in Output 3-6, this example simply adds a
ranking number for each select result string.

Listing 3-9 A zero-based index number is exposed by the Select and SelectMany
operators—see Output 3-6

List<CallLog> callLog = CallLog.SampleData();

var q = callLog.GroupBy(g => g.Number)

.OrderByDescending(g => g.Count())

.Select((g, index) => new

{

number = g.Key,

rank = index + 1,

count = g.Count()

});

foreach (var c in q)

Console.WriteLine(

”Rank {0} - {1}, called {2} times.”,

c.rank, c.number, c.count);

Output 3-6

Rank 1 - 885 983 8858, called 6 times.

Rank 2 - 546 607 5462, called 6 times.

Rank 3 - 364 202 3644, called 4 times.

Rank 4 - 603 303 6030, called 4 times.

Rank 5 - 848 553 8487, called 4 times.

Rank 6 - 165 737 1656, called 2 times.

Rank 7 - 278 918 2789, called 2 times.

How to Remove Duplicate Results

The Distinct standard query operator performs the role of returning only
unique instances in a sequence. The operator internally keeps track of the
elements it has returned and skips the second and subsequent duplicate

How to Sort the Results 63

elements as it returns resulting elements. This operator is covered in more
detail in Chapter 6, “Working with Set Data,” when its use in set operations
is explored.

The Distinct operator is not supported in the query expression syntax,
so it is often appended to the end of a query using extension method syn-
tax. To demonstrate how it is used, the following code removes duplicate
strings. The Console output from this code is

Peter

Paul

Mary

Janet

string[] names = new string[] { ”Peter”, ”Paul”,

“Mary”, “Peter”, “Paul”, “Mary”, “Janet” };

var q = (from s in names

where s.Length > 3

select s).Distinct();

foreach (var name in q)

Console.WriteLine(name);

How to Sort the Results

LINQ to Objects has comprehensive support for ordering and sorting
results. Whether you need to sort in ascending order, descending order
using different property values in any sequence, or all the way to writing a
specific ordering algorithm of your own, LINQ’s sorting features can
accommodate the full range of ordering requirements.

Basic Sorting Syntax
The resulting collection of results from a query can be sorted in any
desired fashion, considering culture and case sensitivity. When querying
using extension method syntax, the OrderBy, OrderByDescending, ThenBy, and
ThenByDescending standard query operators manage this process. The
OrderBy and ThenBy operators sort in an ascending order (for example, a
to z), and the OrderByDescending and ThenByDescending operators sort in
descending order (z to a). Only the first sorting extension can use the
OrderBy operators, and each subsequent sorting expression must use the

64 Chapter 3 Writing Basic Queries

ThenBy operators, of which there can be zero or many depending on how
much control you want over the subsorting when multiple elements share
equal order after the previous expressions.

The following samples demonstrate sorting a source sequence first by
the [w] key, then in descending order by the [x] key, and then in ascend-
ing order by the [y] key:

[source].OrderBy([w])

.ThenByDescending([x])

.ThenBy([y]);

When using the query expression syntax, each sorting key and the
optional direction keyword needs to be separated by a comma character. If
the descending or ascending direction keywords are not specified, LINQ
assumes ascending order.

from [v] in [source]

orderBy [w], [x] descending, [y]

select [z];

The result from ordering a collection will be an IOrderedEnumerable<T>,
which implements IEnumerable<T> to allow further query operations to be
cascaded end-to-end.

The ordering extension methods are implemented using a basic but
efficient Quicksort algorithm (see http://en.wikipedia.org/wiki/Quicksort
for further explanation of how this algorithm works). The implementation
LINQ to Objects uses is a sorting type called unstable, which simply means
that elements that compare to equal key values may not retain their rela-
tive positions to the source collections (although this is simply solved by
cascading the result into a ThenBy or ThenByDescending operator). The algo-
rithm is fairly fast, and it lends itself to parallelization, which is certainly
leveraged by Microsoft’s investment in Parallel LINQ.

What Is Parallelization?

Parallelization refers to improving performance of applications by fully
leveraging multiple processors and multiple-cores on those processors run-
ning code. Parallelization is covered in detail in Chapter 9, “Parallel LINQ
to Objects,” which also demonstrates how LINQ queries can fully benefit
from multicore and multiprocessor hardware improvements.

http://en.wikipedia.org/wiki/Quicksort

How to Sort the Results 65

Table 3-2 The Built-in StringComparer Functions to Control String Case Sensitivity and
Culture-aware String Ordering

Comparer Description

CurrentCulture Performs a case-sensitive string comparison using the
word comparison rules of the current culture.

CurrentCultureIgnoreCase Performs case-insensitive string comparisons using the
word comparison rules of the current culture.

Reversing the Order of a Result Sequence (Reverse)
Another ordering extension method that reverses an entire sequence is the
Reverse operator. It is simply called in the form: [source].Reverse();. An
important point to note when using the Reverse operator is that it doesn’t
test the equality of the elements or carry out any sorting; it simply returns
elements starting from the last element, back to the first element. The
order returned will be the exact reciprocal of the order that would have
been returned from the result sequence. The following example demon-
strates the Reverse operator, returning T A C in the Console window:

string[] letters = new string[] { ”C”, ”A”, ”T” };

var q = letters.Reverse();

foreach (string s in q)

Console.Write(” “ + s);

Case Insensitive and Cultural-specific String
Ordering
Any standard query operator that involves sorting has an overload that
allows a specific comparer function to be supplied (when written using
extension method syntax). The .NET class libraries contain a handy helper
class called StringComparer, which has a set of predefined static comparers
ready for use. The comparers allow us to alter string sorting behavior, con-
trolling case-sensitivity and current culture (the language setting for the
current thread). Table 3-2 lists the static Comparer instances that can be
used in any OrderBy or ThenBy ascending or descending query operator. (In
addition, see the “Custom EqualityComparers When Using LINQ Set
Operators” section in Chapter 6, which is specifically about the built-in
string comparers and custom comparers.)

66 Chapter 3 Writing Basic Queries

Table 3-2 The Built-in StringComparer Functions to Control String Case Sensitivity and
Culture-aware String Ordering

Comparer Description

InvariantCulture Performs a case-sensitive string comparison using the
word comparison rules of the invariant culture.

InvariantCultureIgnoreCase Performs a case-insensitive string comparison using
the word comparison rules of the invariant culture.

Ordinal Performs a case-sensitive ordinal string comparison.

OrdinalIgnoreCase Performs a case-insensitive ordinal string comparison.

Listing 3-10 demonstrates the syntax and effect of using the built-in
string comparer instances offered by the .NET Framework. The Console
output is shown in Output 3-7, where the default case-sensitive result can
be forced to case-insensitive.

Listing 3-10 Case and culture sensitive/insensitive ordering using StringComparer
functions—see Output 3-7

string[] words = new string[] {

”jAnet”, “JAnet”, “janet”, “Janet” };

var cs = words.OrderBy(w => w);

var ci = words.OrderBy(w => w,

StringComparer.CurrentCultureIgnoreCase);

Console.WriteLine(“Original:”);

foreach (string s in words)

Console.WriteLine(“ “ + s);

Console.WriteLine(“Case Sensitive (default):”);

foreach (string s in cs)

Console.WriteLine(“ “ + s);

Console.WriteLine(“Case Insensitive:”);

foreach (string s in ci)

Console.WriteLine(” “ + s);

How to Sort the Results 67

Output 3-7

Original:

jAnet

JAnet

janet

Janet

Case Sensitive (default):

janet

jAnet

Janet

JAnet

Case Insensitive:

jAnet

JAnet

janet

Janet

Specifying Your Own Custom Sort Comparison
Function
To support any sorting order that might be required, custom sort comparison
classes are easy to specify. A custom compare class is a class based on a stan-
dard .NET Interface called IComparer<T>, which exposes a single method:
Compare. This interface is not specifically for LINQ; it is the basis for all .NET
Framework classes that require sorting (or custom sorting) capabilities.

Comparer functions work by returning an integer result, indicating the
relationship between a pair of instance types. If the two types are deemed
equal, the function returns zero. If the first instance is less than the second
instance, a negative value is returned, or if the first instance is larger than
the second instance, the function returns a positive value. How you equate
the integer result value is entirely up to you.

To demonstrate a custom IComparer<T>, Listing 3-11 demonstrates a
comparison function that simply shuffles (in a random fashion) the input
source. The algorithm simply makes a random choice as to whether two
elements are less than or greater than each other. Output 3-8 shows the
Console output from a simple sort of a source of strings in an array,
although this result will be different (potentially) each time this code is
executed.

68 Chapter 3 Writing Basic Queries

Listing 3-11 Ordering using our custom IComparer<T> implementation to shuffle the
results—see Output 3-8

public class RandomShuffleStringSort<T> : IComparer<T>

{

internal Random random = new Random();

public int Compare(T x, T y)

{

// get a random number: 0 or 1

int i = random.Next(2);

if (i == 0)

return -1;

else

return 1;

}

}

string[] strings = new string[] { ”1-one”, ”2-two”,

”3-three”, ”4-four”, ”5-five” };

var normal = strings.OrderBy(s => s);

var custom = strings.OrderBy(s => s,

new RandomShuffleStringSort<string>());

Console.WriteLine(”Normal Sort Order:”);

foreach (string s in normal) {

Console.WriteLine(” “ + s);

}

Console.WriteLine(”Custom Sort Order:”);

foreach (string s1 in custom) {

Console.WriteLine(” “ + s1);

}

Output 3-8

Normal Sort Order:

1-one

2-two

3-three

4-four

5-five

How to Sort the Results 69

Custom Sort Order:

1-one

2-two

5-five

4-four

3-three

A common scenario that has always caused me trouble is where
straight alphabetical sorting doesn’t properly represent alpha-numeric
strings. The most common example is alphabetic sorting strings such as
File1, File10, File2. Naturally, the desired sorting order would be File1,
File2, File10, but that’s not alphabetical. A custom IComparer that will sort
the alphabetic part and then the numeric part separately is needed to
achieve this common scenario. This is called natural sorting.

Listing 3-12 and Output 3-9 demonstrate a custom sort class that cor-
rectly orders alpha strings that end with numbers. Anywhere this sort order
is required, the class name can be passed into any of the OrderBy or ThenBy

extension methods in the following way:

string[] partNumbers = new string[] { ”SCW10”, ”SCW1”,

”SCW2”, “SCW11”, “NUT10”, “NUT1”, “NUT2”, “NUT11” };

var custom = partNumbers.OrderBy(s => s,

new AlphaNumberSort());

The code in Listing 3-12 first checks if either input string is null or
empty. If either string is empty, it calls and returns the result from the
default comparer (no specific alpha-numeric string to check). Having
determined that there are two actual strings to compare, the numeric
trailing section of each string is extracted into the variables numericX and
numericY. If either string doesn’t have a trailing numeric section, the result
of the default comparer is returned (if no trailing numeric section exists
for one of the strings, then a straight string compare is adequate). If both
strings have a trailing numeric section, the alpha part of the strings is
compared. If the strings are different, the result of the default comparer
is returned (if the strings are different, the numeric part of the string is
irrelevant). If both alpha parts are the same, the numeric values in
numericX and numericY are compared, and that result is returned. The final
result is that all strings are sorted alphabetically, and where the string part
is the same between elements, the numeric section controls the final
order.

70 Chapter 3 Writing Basic Queries

Listing 3-12 Sorting using a custom comparer. This comparer properly sorts strings that
end with a number—see Output 3-9

public class AlphaNumberSort : IComparer<string>

{

public int Compare(string a, string b)

{

StringComparer sc =

StringComparer.CurrentCultureIgnoreCase;

// if either input is null or empty,

// do a straight string comparison

if (string.IsNullOrEmpty(a) ||

string.IsNullOrEmpty(b))

return sc.Compare(a, b);

// find the last numeric sections

string numericX = FindTrailingNumber(a);

string numericY = FindTrailingNumber(b);

// if there is a numeric end to both strings,

// we need to investigate further

if (numericX != string.Empty &&

numericY != string.Empty)

{

// first, compare the string prefix only

int stringPartCompareResult =

sc.Compare(

a.Remove(a.Length - numericX.Length),

b.Remove(b.Length - numericY.Length));

// the strings prefix are different,

// return the comparison result for the strings

if (stringPartCompareResult != 0)

return stringPartCompareResult;

// the strings prefix is the same,

// need to test the numeric sections as well

double nX = double.Parse(numericX);

double nY = double.Parse(numericY);

return nX.CompareTo(nY);

}

else

return sc.Compare(a, b);

}

How to Sort the Results 71

private static string FindTrailingNumber(string s)

{

string numeric = string.Empty;

for (int i = s.Length - 1; i > -1; i—)

{

if (char.IsNumber(s[i]))

numeric = s[i] + numeric;

else

break;

}

return numeric;

}

}

string[] partNumbers = new string[] { ”SCW10”, ”SCW1”,

”SCW2”, ”SCW11”, ”NUT10”, ”NUT1”, ”NUT2”, ”NUT11” };

var normal = partNumbers.OrderBy(s => s);

var custom = partNumbers.OrderBy(s => s,

new AlphaNumberSort());

Console.WriteLine(”Normal Sort Order:”);

foreach (string s in normal)

Console.WriteLine(” “ + s);

Console.WriteLine(”Custom Sort Order:”);

foreach (string s in custom)

Console.WriteLine(” “ + s);

Output 3-9

Normal Sort Order:

NUT1

NUT10

NUT11

NUT2

SCW1

SCW10

SCW11

SCW2

72 Chapter 3 Writing Basic Queries

Custom Sort Order:

NUT1

NUT2

NUT10

NUT11

SCW1

SCW2

SCW10

SCW11

NOTE To achieve the same result in most Windows operating systems (not
Windows 2000, but ME, XP, 2003, Vista, and Windows 7) and without guaran-
tee that it won’t change over time (it bears the following warning “Note
Behavior of this function, and therefore the results it returns, can change from
release to release. It should not be used for canonical sorting applications”),
Microsoft has an API that it uses to sort files in Explorer (and presumably other
places).

internal static class Shlwapi

{

// http://msdn.microsoft.com/

// en-us/library/bb759947(VS.85).aspx

[DllImport(”shlwapi.dll”,

CharSet = CharSet.Unicode)]

public static extern int StrCmpLogicalW(

string a,

string b);

}

public sealed class

NaturalStringComparer: IComparer<string>

{

public int Compare(string a, string b)

{

return Shlwapi.StrCmpLogicalW(a, b);

}

}

Summary 73

Summary

This chapter has covered the essential query functionality of filtering,
ordering, and projecting the results into any resulting form you might
require. Once you have understood and mastered these basic query essen-
tials, you can confidently experiment with the more advanced query fea-
tures offered by the other 40-odd standard query operators and begin writ-
ing your own operators if necessary.

INDEX

307

A
adding COM-Interop interfaces,

253-256
advantages of LINQ, 13-15
aggregation operators, 123-125

Aggregate, 123-125
Average, 126-129
Count, 129-131
LongCount, 129-131
LongSum, building, 219-222
Max, 126-129
Min, 126-129, 216-219
Sum, 126-129
writing, 216-222

Amdahl’s law, 268
All operator, 164-166
anonymous types, 24-26

returning, 58-59
Any operator, 166-169
arguments for extension

methods, 18
AsEnumerable operator, 133
AsSequential operator, 285-287
Average operator, 126-129

B
benefits of LINQ, 13-15
bindings, 244
Box, Don, 2
building

custom EqualityComparers,
184-185

LongSum Operator, 219-222
row iterator in Microsoft

Excel, 256-260
Segment operator, 226-232

Soundex equality operator,
84-87

TakeRange operator, 210-216
built-in performance

optimization (LINQ to
Objects), 200

built-in string comparers,
183-185

C
C# 2.0

contract records, grouping and
sorting versus LINQ
approach, 5, 7

data, summarizing from two
collections versus LINQ
approach, 8-12

evolution of, 233-234
Callahan, David, 262
Cartesian Product, 94
case in-sensitive string ordering,

65-67
Cast operator, 133-134
choosing query syntax, 42
chunk partitioning, 277
classes, Hashset, 185-186,

191-192
code parallelism

Amdahl’s law, 268
exceptions, 270
overhead, 269
synchronization, 269
versus multi-threading,

264-267
Collection Initializers, 22
COM-Interop programming, 234

combining with LINQ,
251-260

references, adding, 253-256
versus optional parameters,

235-237
combining LINQ and

COM-Interop, 251-260
comparing

LINQ Set operators and
HashTable type methods,
186-192

query syntax options, 45-49
composite keys

grouping by, 80-83
joining elements, 102

Concat operator, 174-176
Contains operator, 169-171
contract records, comparing

LINQ and C# 2.0
grouping and sorting
approaches, 5-7

conversion operators
AsEnumerable, 133
Cast, 133-134
OfType, 134-136
ToArray, 136
ToDictionary, 136-139
ToList, 140
ToLookup, 140-143

cores, 264
Count operator, 129-131
CPUs

cores, 264
multi-threading versus code

parallelism, 264-267
overhead, 269
processor speed, 263-264
synchronization, 269

cross joins, 94-97
cultural-specific string ordering,

65-67

custom comparers, 83-87
custom EqualityComparers

building, 184-185
built-in string comparers,

183-185
customizing query result sort

comparison functions,
67-72

D
data ordering, 270
declaring

anonymous types, 24-26
extension methods, 18-21

DefaultlfEmpty operator,
144-145

deferred execution, 51
delegate keyword, 26
Distinct operator, 177-178
dot notation syntax. See exten-

sion method format, 41
drivers for parallel programming,

261-262
duplicate results, removing, 62
dynamic typing, 243-245

bindings, 244
in LINQ queries, 246-251
when to use, 246

E
ECMA, 233
Element operators

DefaultlfEmpty, 144-145
ElementAt, 145-147
ElementAtOrDefault, 145-147
First, 147-149
FirstOrDefault, 147-149
Last, 149-151
LastOrDefault, 149-151
Single, 151-153
SingleOrDefault, 151-153

ElementAt operator, 145-147
ElementAtOrDefault operator,

145-147
Empty operator, 155-156
Equality operators,

SequenceEqual, 154-155

308 Index

EqualityComparers
built-in string comparers,

183-185
custom, 183-185

error handling, adding to parallel
operators, 298-301

evolution of C#, 233-234
examples of LINQ to Objects

query syntax, 30-38
Except operator, 178-179
exceptions, 270
expression trees, 3
extension method format, 41
extension methods, 18

F
features of C#

dynamic typing, 243
bindings, 244
in LINQ queries, 246-251
when to use, 246

named arguments, 240-243
optional parameters, 237-239,

241-243
filtering query results, 49

by index position, 53-54
deferred execution, 51
Where filter

with external methods for
evaluation, 52-53

with Lambda Expression, 50
with query expressions, 51

First operator, 147-149
FirstOrDefault operator, 147-149
fluent interfaces, 247

G–H
Generation operators

Empty, 155-156
Range, 156-158
Repeat, 158-159

Geonames example of Parallel
LINQ queries, 271-275

GroupBy extension method,
76-77

grouped objects, returning, 59

grouping collection
implementation of
grouping operators,
223-225

grouping elements, 75
composite keys, grouping by,

80-83
custom comparers, specifying,

83-87
GroupBy extension method,

76-77
into new type, 88-90
keySelector expression,

77-80
query continuation, 90-93

grouping operators
grouping collection implemen-

tation, 223-225
Segment operator, building,

226-232
writing, 222-232

Gustafson, John L., 268

hash partitioning, 278
Hejlsberg, Anders, 2

I
implicitly typed local variables,

23-24
index position

obtaining from query results,
61-62

query results, filtering, 53-54
inner joins, 100
integers, nullable type, 128
interfaces (COM-Interop),

adding, 253-256
Intersect operator, 180
Into keyword for query

expression format, 45
invoking Parallel LINQ

queries, 280

J

join operator, 99-104
join/into keyword combination,

performing one-to-many
joins, 112-115

joins, 93
cross joins, 94-97
Join operator, 103-104
one-to-many, 111-112

join/into keyword
combination, 112-115

performance comparisons,
117-119

subqueries, 115-116
ToLookup operator, 116-117

one-to-one, 97
join operator, 99-101
performance comparisons,

107-111
using cross joins, 106-107
using SingleOrDefault

operator, 105-106
using subqueries, 104-105

outer joins, 101

K–L
keySelector expressions,

handling null values,
77-80

Lambda Expressions, 26-28
delegates, 27
Where filters, 50

Last operator, 149-151
building, 196-201

LastOrDefault operator, 149-151
LINQ

combining with COM-Interop,
251-260

queries
dynamic typing, 246-251
named arguments, 241-243
optional parameters,

241-243
LINQ Language Compiler

Enhancements, 3
“LINQ Project Overview”

whitepaper, 2
LINQ set operators

Concat, 174, 176
Distinct, 177-178
EqualityComparers

built-in string comparers,
183-185

custom, 183-185

Index 309

Except, 178-179
Intersect, 180
Union, 181-183

LINQ to Datasets, 4
LINQ to Entities, 4
LINQ to Objects, 4

anonymous types, 24-26
built-in performance

optimizations, 200
Collection Initializers, 22
contract records, grouping and

sorting versus C# 2.0
approach, 5, 7

data, summarizing from two
collections versus C# 2.0
approach, 8-12

extension methods
arguments, 18
declaring, 18-21

implicity typed local variables,
23-24

Lambda Expressions, 26-28
Object Initializers, 21-22
queries, syntax examples,

30-38
Query Expressions, 29-30

LINQ to SQL, 4
LINQ to XML, 4
local variables

implicit typing, 23-24
query expression format,

creating, 44-45
LongCount operator, 129-131
LongSum operator, building,

219-222

M
Max operator, 126-129
Merging operators, Zip, 159-160
Microsoft Excel, building row

iterators, 256-260
Min operator, 126-129

writing, 216-219
Moore’s Law, 261
multi-core processors, 263-264
multi-threading, versus code

parallelism, 264-267

N
named arguments, 234-243
natural sorting, 69
normalization, 94, 97
null values, handling in

keySelector expressions,
78-80

null-coalescing operators, 79
nullable type, 128

O
Object Initializers, 21-22
obtaining index position from

query results, 61-62
OfType operator, 134-136
one-to-many joins, 94, 111-112

join/into keyword
combination, 112-115

performance comparisons,
117-119

subqueries, 115-116
ToLookup operator, 116-117

one-to-one inner joins, 94
one-to-one joins, 97

join operator, 99-101
performance comparisons,

107-111
using cross joins, 106-107
using SingleOrDefault

operator, 105-106
using subqueries, 104-105

operators
Equality operators,

SequenceEqual, 154-155
Generation operators

Empty, 155-156
Range, 156-158
Repeat, 158-159

Merging operators, Zip,
159-160

Parallel LINQ operators
error handling, 298-301
testing, 295-297
writing, 289-294

Partitioning operators
Skip, 161-162
SkipWhile, 163-164
Take, 161-162
TakeWhile, 163-164

Quantifier operators
All, 164-166
Any, 166-169
Contains, 169-171

single element operators
Last, building, 196-201
RandomElement, building,

201-208
optional parameters, 234,

237-239
in LINQ queries, 241-243
versus COM-Interop

programming, 235-237
ordering Parallel LINQ query

results, 281-284
outer joins, 101

P
Parallel LINQ queries, 270

AsSequential operator,
285-287

data ordering, 281-284
data partitioning, 276

chunk partitioning, 277
hash partitioning, 278
range partitioning, 277
striped partitioning, 278

Geonames example, 271-275
invoking, 280
operators

error handling, 298-301
testing, 295-297
writing, 289-294

parallel execution, 279
parallel results, merging, 279
query analysis, 275-276
two-source operators, 287-289

parallel programming
Amdahl’s law, 268
drivers, 261-262
exceptions, 270
overhead, 269
synchronization, 269
versus multi-threading,

264-267
parallelization, 64

310 Index

parameters
optional, 234, 237-239

in LINQ queries, 241-243
versus COM-Interop

programming, 235-237
Partitioning operators

Skip, 161-162
SkipWhile, 163-164
Take, 161-162
TakeWhile, 163-164

partitioning schemes, 276
chunk partitioning, 277
hash partitioning, 278
range partitioning, 277
striped partitioning, 278

performance, Amdahl’s
law, 268

PLINQ (Parallel Extensions
to .NET and Parallel
LINQ), 4

predicates, 49
Primary Interop Assemblies, 256
processors, multi-core, 263-264
projecting grouped elements into

new type, 88-90
projections, 25

Q
Quantifier operators

All, 164-166
Any, 166-169
Contains, 169-171

queries
case in-sensitive string

ordering, 65-67
cultural-specific string

ordering, 65-67
duplicate results, removing, 62
extension method format, 41
index position of results,

obtaining, 61-62
LINQ to Objects, syntax

examples, 30-38
Parallel LINQ queries

AsSequential operator,
285-287

chunk partitioning, 277

data ordering, 281-284
data partitioning, 276-277
Geonames example,

271-275
hash partitioning, 278
invoking, 280
operators, error handling,

298-301
operators, testing, 295-297
operators, writing, 289-294
parallel execution, 279
parallel results,

merging, 279
query analysis, 275-276
striped partitioning, 278
two-source operators,

287-289
query dot format, 42
query expression format, 42-44

Into keyword, 45
local variables, creating,

44-45
results

custom sort function,
specifying, 67-72

reversing order, 65
sorting, 63-64

return type, changing, 54-59
SelectMany operator, 59-61
Standard Query Operators, 14
syntax

choosing, 42
comparing methods, 45-49

Where clause, 49-50
deferred execution, 51
filtering by index position,

53-54
query expressions, 51
with external methods,

52-53
with Lambda Expression, 50

query continuation, 90-93
query dot format, 42
query expression format, 42-44

Into keyword, 45
local variables, creating, 44-45
Where filters, 51

Query Expressions, 29-30
query operators, 121

aggregation operators
Aggregate operator, 123-125
Average operator, 126-129
Count operator, 129-131
LongCount operator,

129-131
Max operator, 126-129
Min operator, 126-129
Sum operator, 126-129
writing, 216-222

conversion operators
AsEnumerable, 133
Cast, 133-134
OfType, 134-136
ToArray, 136
ToDictionary, 136-139
ToList, 140
ToLookup, 140-143

element operators
DefaultlfEmpty, 144-145
ElementAt, 145-147
ElementAtOrDefault,

145-147
First, 147-149
FirstOrDefault, 147-149
Last, 149-151
LastOrDefault, 149-151
Single, 151-153
SingleOrDefault, 151-153

grouping operators, writing,
222-232

sequence operators
TakeRange, building,

210-216
writing, 208-216

single element operators,
writing, 196-208

R
race conditions, 265-266
RandomElement operator,

building, 201-208
Range operator, 156-158
range partitioning, 277
Repeat operator, 158-159

Index 311

return type, changing, 54
anonymous type, returning,

58-59
different type as source,

returning, 56-58
grouped objects, returning, 59
same type as source,

returning, 56
single result value,

returning, 55
returning sequenced elements

with SelectMany
operator, 59-61

reversing query result order, 65
row iterator, building in

Microsoft Excel, 256-260
Rusina, Alexandra, 200

S
Segment operator, building,

226-232
selecting query syntax, 42
selection projections

query return type, changing,
54-55

anonymous type, returning,
58-59

different type as source,
returning, 56-58

grouped objects,
returning, 59

same type as source,
returning, 56

single result value,
returning, 55

SelectMany operator, 59-61
sequence operators

TakeRange, building, 210-216
writing, 208-216

SequenceEqual operator,
154-155

sequences returning, 59-61
single element operators

Last, building, 196-201
RandomElement, building,

201-208
writing, 196-208

Single operator, 151-153
SingleOrDefault operator,

151-153
one-to-one joins, 105-106

Skip operator, 161-162
SkipWhile operator, 163-164
sorting query results

case in-sensitive string
ordering, 65-67

cultural-specific string
ordering, 65-67

custom sort comparison
functions, specifying,
67-72

reversing result sequence, 65
syntax, 63-64

Soundex equality operator,
building, 84-87

Standard Query Operators, 14
striped partitioning, 278
subqueries

one-to-many joins, performing,
115-116

one-to-one joins, performing,
104-105

Sum operator, 126, 128-129
summarizing data from two

collections, comparing
LINQ and C# 2.0
approaches, 8-12

synchronization, 269
syntax

LINQ to Objects query
examples, 30-38

queries
choosing, 42
methods, comparing, 45-49
query expression format,

43-45
results, sorting, 63-64

T
Take operator, 161-162
TakeRange operator, building,

210-216
TakeWhile operator, 163-164
ternary operators, 79

testing Parallel LINQ operators,
295-297

this modifier, 18
thread-level parallelism, 264
threading, 264
ToArray operator, 136
ToDictionary operator, 136-139
ToList operator, 140
ToLookup operator, 140-143

one-to-many joins, performing,
116-117

Toub, Stephen, 278
two-source operators, 287-289

U–V
Union operator, 181-183
unstable sorting types, 64

Visual Studio, adding
COM-Interop interfaces,
255-256

W
Where clause

query expression syntax, 51
query results, filtering, 49-50

by index position, 53-54
deferred execution, 51

with external method for
evaluation, 52-53

writing
grouping operators, 222-232
Min Operator, 216-219
Parallel LINQ operators,

289-294
query operators, grouping

operators, 222-232
sequence operators, 208-216
single element operators,

196-208
XML, comparing LINQ and

C# 2.0 and 3.0
approaches, 8-12

312 Index

X–Y–Z
XML, comparing LINQ

and C# 2.0 writing
approaches, 8-12

Zip operator, 159-160

	Foreword
	Preface
	Chapter 3: Writing Basic Queries
	Query Syntax Style Options
	How to Filter the Results (Where Clause)
	How to Change the Return Type (Select Projection)
	How to Return Elements When the Result Is a Sequence (Select Many)
	How to Get the Index Position of the Results
	How to Remove Duplicate Results
	How to Sort the Results
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G–H
	I
	J
	K–L
	M
	N
	O
	P
	Q
	R
	S
	T
	U–V
	W
	X–Y–Z

