

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

Cover photograph reused with the permission of Earl A. Everett.

The quotation on page 227 is excerpted from Beck, EXTREME PROGRAMMING
EXPLAINED: EMBRACING CHANGE, © 2000 by Kent Beck. Reproduced by permission of
Pearson Education, Inc.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Sterling, Chris, 1973–

Managing software debt : building for inevitable change / Chris
Sterling ; with contributions from Brent Barton.
 p. cm.
 Includes bibliographical references and index.
 ISBN-13: 978-0-321-55413-0 (hardcover : alk. paper)
 ISBN-10: 0-321-55413-2 (hardcover : alk. paper)
1. Computer software—Quality control. 2. Agile software development.
3. Software reengineering. I. Barton, Brent. II. Title.
 QA76.76.Q35S75 2011
 005.1'4—dc22

2010037879

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding permissions,
write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-55413-0
ISBN-10: 0-321-55413-2
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, December 2010

ix

CONTENTS

Foreword xv

Introduction xxi

Acknowledgments xxxi

About the Author xxxiii

Chapter 1 Managing Software Debt 1
Where Does Software Debt Come From? 1
Software Debt Creeps In 3
Software Asset Depreciation 5

Like-to-Like Migration 6
Limited Expertise Available 8
Expensive Release Stabilization Phases 8
Increased Cost of Regression Testing 11

Business Expectations Do Not Lessen as Software Ages 12
Summary 14

Chapter 2 Technical Debt 15
Origins of Terminology 16

Other Viewpoints on Technical Debt 16
Definition of Technical Debt 18

Patterns of Technical Debt 19
Schedule Pressure 19
Duplication 20
Get It “Right” the First Time 21

Acknowledging Technical Debt 22
Pay Off Technical Debt Immediately 23
Strategically Placed Runtime Exceptions 25
Add Technical Debt to the Product Backlog 28

Summary 30

x CONTENTS

Chapter 3 Sustaining Internal Quality 31
Discipline in Approach 31

Sustainable Pace 32
Early Identification of Internal Quality Problems 34
Close Collaboration 40
Small Batches of Work 41
Refactoring 42
Defining Technically Done 44
Potentially Shippable Product Increments 48
Single Work Queue 50

Summary 52

Chapter 4 Executable Design 55
Principles of Executable Design 55
Executable Design in Practice 59

Test Automation 59
Continuous Unit Test Execution 61
Merciless Refactoring 62
Need-Driven Design 65
Test-Driven Development (or Design?) 68
Modeling Sessions 71
Transparent Code Analysis 77

Summary 79

Chapter 5 Quality Debt 81
Quality as an Afterthought 81

The Break/Fix Mentality 82
Release Stabilization Period 84

Indicators of Quality Debt 85
Lengthening Regression Test Execution 86
Increasing Known Unresolved Defects 87
Maintenance Team for Production Issues 88

Test Automation 93
Acceptance Tests 95
Acceptance Test-Driven Development 95
Automated Acceptance Testing Tools 96
Compliance with Test Automation 102

Summary 104

CONTENTS xi

Chapter 6 Configuration Management Debt 107
Overview of Configuration Management 108
Responsibilities for Configuration Management 109

Transferring Responsibilities to Teams 110
Increase Automated Feedback 111
Continuous Integration 113
Tracking Issues Collaboratively 114

Release Management 115
Version Management 115
Building from Scratch 117
Automated Promotion 118
Rollback Execution 120
Push-Button Release 121

Branching Strategies 123
Single Source Repository 123
Collapsing Branches 124
Spike Branches 125
Choosing a Branching Strategy 126

Documenting Software 126
Incremental Documentation 127
Push Documentation to Later Iterations of the Release 127
Generating Documentation 128
Automated Test Scripts 128

Summary 128

Chapter 7 Design Debt 131
Robustness 131

Modularity 132
Architectural Description 133
Evolve Tools and Infrastructure Continually 134

The Cost of Not Addressing 135
Abuse Stories 136
Abuse Story Writing Session 137

Changeability 138
User Interfaces 139
Services 141
Application Programming Interfaces 144

Review Sessions 146
Design Reviews 147
Pair Programming 147
Retrospectives 149

Summary 150

xii CONTENTS

Chapter 8 Designing Software 153
Application Design 153

Where Design Issues Come From 154
“Good” Design 155
Incremental Design 156
Simplify Design 158
The “Wright Model” of Incremental Design 160

Team Tools for Effective Design 163
Design Tools 164
Common Environment 166
Working Agreement 170

Summary 171

Chapter 9 Communicating Architectures 173
The Three Levels of Architecture Perspective 173

Component Architecture 174
Application Architecture 175
Enterprise Architecture 176
Utility of the Three Levels of Architecture Perspective 177

Architecture Is S.A.I.D. 178
Structure 179
Alignment 180
Integrity 181
Design 183

Modeling 186
Using Models for Communication 187
Generating Artifacts 188

Summary 188

Chapter 10 Technology Evaluation Styles 191
The Need for Technology Evaluation 191

Budgeting for Technology Evaluation 192
Research 193
Spike 194
Tracer Bullet 195

When to Conduct Technology Evaluations 196
In Preparation for the Next Iteration 197
Near or During Iteration Planning 198

Summary 198

CONTENTS xiii

Chapter 11 Platform Experience Debt 199
Defining Platform Experience 199

People Are NOT Resources 200
Extreme Specialization 201

Sharing Knowledge 203
Pairing 203
Training Programs 205
Personal Development 206

Collaborative Team Configurations 206
Integration Team 208
Feature Team 211
Cross-Team Mentor 214
Component Shepherd 214
Virtual Team 215

Importance of Relevant Experience 217
Personal Training 218
Communities of Practice 218
Lunch and Learns 218
Brown-Bag Sessions 219

Summary 219

Appendix What Is Agile? 221
Scrum 221
Extreme Programming 226

Index 229

This page intentionally left blank

xv

FOREWORD

OF FAIRY RINGS, CATHEDRALS, SOFTWARE
ARCHITECTURE, AND THE TALLEST LIVING LIFE FORM
ON EARTH

The imposing, luxuriant, and verdant groves of the coast redwood (Sequoia
sempervirens) are found today mostly in the foggy valleys along the Pacific
Coast of North America from southern Oregon to just south of Monterey,
California, in a strip approximately 450 miles long and 20 or so miles wide
(725 by 32 km). They are the tallest living species on Earth, reaching heights
of 300 to 350 feet (91 to 107 m). The tallest redwood known measures 367
feet (112 m), slightly taller than the Saturn V rocket. Redwood forests possess
the largest biomass per unit area on Earth, in some stands exceeding 1,561
tons/acre (3,500 metric tons/hectare).

They can also be ancient, predating even the earliest FORTRAN program-
mers, with many in the wild exceeding 600 years. The oldest verified tree is at
least 2,200 years of age, and some are thought to be approximately 3,000
years old. Redwoods first appeared on our planet during the Cretaceous era
sometime between 140 and 110 million years ago, grew in all parts of the
world, and survived the KT (Cretaceous–Tertiary) event, which killed off
more than half the Earth’s species 65 million years ago.

Clearly, the coast redwood has been successful. But how? After all, these trees
require large amounts of water (up to 500 gallons or 1,893 liters per day),
with the significant requirement of transporting much of that up to the
height of the tree. Their height turns them into lightning rods, and many
fires are struck at their bases during the dry season, fires that often spread
underground along their root systems to their neighbors, as well. Rabbits and
wild hogs would sneer disdainfully at their reproductive rate, because the
trees produce seeds but once per year, and although a mature tree may pro-
duce as many as 250,000 seeds per year, only a minuscule number (0.23% to
1.01%) will germinate.

As you would guess, the redwoods have developed a number of architectural
features and adaptations to survive and thrive.

xvi FOREWORD

The Pacific Coast region they inhabit provides a water-rich environment,
with seasonal rains of 50 to 100 inches (125 to 250 cm) annually, and a
coastal fog that helps keep the forests consistently damp. Adapting to this
fog, redwoods obtain somewhere between 25% and 50% of their water by
taking it in through their needles, and they have further adapted by sprout-
ing canopy roots on their branches, getting water from lofty spongelike “soil
mats” formed by dust, needles, seeds, and other materials trapped in their
branches. Redwoods also have a very sophisticated pumping capability to
transport water from their roots to their tops. In the tallest trees, the water’s
journey can take several weeks, and the tree’s “pump” overcomes a negative
pressure of 2,000,000 pascals, more than any human pump system is capable
of to date.

This abundant fog and rainfall have a downside, however, creating (along
with several other factors) a soil with insufficient nutrients. The redwoods
have adapted by developing a significant interdependence with the whole
biotic forest community to obtain sufficient nutrients, an interdependence
that is only beginning to be understood.

The redwood has built bark that is tough and thick—up to 1 foot (30.5 cm)
in some places—thickness that, among other things, shields against wood-
peckers. Imbued with a rich cocktail of tannins, it is unappetizing to termites
and ants. The bark also functions as an ablative heat shield, similar to the
heat shields of the Mercury/Gemini/Apollo capsules, and protects the tree
from fire.

Young redwoods use sunlight very efficiently (300% to 400% more so than
pines, for example) and are capable of rapid growth. With optimal condi-
tions, a sapling can grow more than 6 feet (2 m) in height and 1 inch (2.5
cm) or more in diameter in a growing season. Mature trees under optimal
conditions can grow at a rate of 2 to 3 feet (.6 to 1 m), per year, but if the tops
are exposed to full sun and drying winds, they will grow only a few inches/
centimeters per year. They simply out-compete other trees for the sun’s
energy.

A major component in the coast redwoods’ responsiveness to environmental
conditions is their high genetic variability. Like most plants, they can repro-
duce sexually with pollen and seed cones, with seed production generally
beginning at 10 to 15 years of age.

Yet the seeds don’t get very far. While the seeds are winged and designed for
wind dispersal, they are small, and light (around 5,600 to 8,500 seeds per

FOREWORD xvii

ounce [200 to 300 seeds/g]), and are dispersed a distance of only 200 to 400
feet (60 to 120 m) around the parent. When they land, the thick amount of
duff (decaying plant debris on the ground) prevents most seeds from ever
making it to the dirt.

This accounts for a part of the 1% or less seed germination rate, but a much
more significant factor is at work. A large number of the seeds are actually
empty! Scientists speculate this could be an adaptation to discourage seed
predators, which learn that too much time is wasted sorting the “wheat”
(edible seeds) from the “chaff” (empty seeds). It is estimated that only 20%
of redwood reproduction occurs sexually through seeds.

The other 80% comes from their capability to reproduce asexually through
sprouting, even after severe damage, a feature that has likely played a large
part in making the coast redwood such a vibrant and resilient species.

If a redwood is damaged by a fire, lightning strike, or ax, or is dying, a num-
ber of sprouts erupt and develop around the circumference of the tree. This
nearly perfect circle is known colloquially as a “fairy ring.” The sprouts can
use the root system and nutrients of the parent and therefore can grow faster
than seedlings, gaining 8 feet (2.3 m) in a single season. The sprouts are really
“clone trees,” and their genetic information may be thousands of years old,
dating back to the first parent. Surprisingly, genetic analysis has found
diverse gene stocks in the rings, where non-clones (seedlings) have “com-
pleted” the circle.

These fairy rings are found around the parent tree’s stump, or a depression in
the middle of the circle if the stump has decayed completely. They can also be
found circling their still-alive and recovered parent tree. The stump of a par-
ent tree inside a fairy ring is known colloquially as a “cathedral,” and the fairy
rings themselves are also known as “cathedral spires.”

Walking through a redwood grove inspires awe. As one stands within the tall
columnar trees, the canopy vault overhead dappling and chromatically filter-
ing the light, enveloped in the pervasive and meditative quiet, it is not hard to
appreciate the sense of being within a cathedral of nature.

The cathedral analogy is understandable but somewhat ironic, given that
most of these trees existed long before the first cathedrals built by humans.
Cathedrals are one of humans’ archetypal and iconic architectures, with a
unifying and coherent structure designed and built especially to be habitable
by both the people and spirit of their region.

xviii FOREWORD

The concept of architecture has been adapted to include computer and soft-
ware systems. At its mid-twentieth-century beginning, software system
architecture meant algorithms and data structures. As our skills evolved and
allowed increasing software system size and complexity, gotos came to be
considered harmful, and domain-specific systems became mainstream. Just
like the coastal redwoods, our systems are becoming rich and interconnected
ecosystems, and our understanding of the richness and complexities of these
systems and their development continues to evolve.

The Encyclopedia Britannica says this about architecture:

The characteristics that distinguish a work of architecture from other
man-made structures are (1) the suitability of the work to use by
human beings in general and the adaptability of it to particular human
activities, (2) the stability and permanence of the work’s construction,
and (3) the communication of experience and ideas through its form.1

The first two definitions adapt perfectly to software architecture. When
judged successful, our system architectures are usable and adaptable by
humans and offer stability in usage, although the concept of “permanence” is
perhaps considered too lightly at times, as Y2K taught us.

Applied to software, the third definition may be the richest. Obviously, our
system architectures communicate our experience and ideas, but they also
reflect and embed the organizational structures that build them. Conway’s
Law states:

. . . organizations which design systems . . . are constrained to produce
designs which are copies of the communication structures of these orga-
nizations.2

Ultimately system architecture is a human activity, perhaps the most human
activity. Perhaps Agile’s biggest contribution is the recognition of the
humanness of systems development. Agile organizations connect software
and the business, and Agile processes provide communication patterns con-
necting the system-building teams, and the teams with the business, as well
as role definitions. Like the forest architecture of the redwoods, Agile organi-
zations evolve ecosystems in which experience and ideas live and grow and

1. www.britannica.com/EBchecked/topic/32876/architecture
2. Melvin E. Conway, “How Do Committees Invent?” Datamation 14, no. 5 (April, 1968):

28–31, www.melconway.com/research/committees.html.

www.britannica.com/EBchecked/topic/32876/architecture
www.melconway.com/research/committees.html

FOREWORD xix

enable shared understanding of the problems we’re trying to solve, and
thereby provide the foundation to architect, design, and build solutions to
the problems we’re addressing.

Good architecture and Agile organizations help us build systems that provide
fitting, innovative, and exceptional solutions to functional and nonfunc-
tional requirements and a sense of accomplishment and joy to the system’s
builders, maintainers, and users, and they represent, in the very best sense,
the culture that designed, built, and lives in and around the system. They
help our evolution beyond the observation that Sam Redwine made in 1988:

Software and cathedrals are much the same—first we build them, then
we pray.3

—Earl Everett

3. Sam Redwine, Proceedings of the 4th International Software Process Workshop, Moreton-
hampstead, Devon, UK, May 11–13, 1988 (IEEE Computer Society).

This page intentionally left blank

xxi

INTRODUCTION

The best architectures, requirements, and designs emerge from self-organizing
teams.

—From “Principles behind the Agile Manifesto”1

WHY THIS BOOK?
Just as Agile software development methods have become mainstream to
solve modern, complex problems, practices of software architecture must
change to meet the challenges of the ever-changing technology ecosystem.
Good Agile teams have undergone a mind-set shift that enables them to deal
with changing requirements and incremental delivery. A similar mind-set
shift to manage larger software architecture concerns is needed to keep sys-
tems robust. Software architecture is as important as ever. Modern product
requirements, such as scaling to Internet usage, extending the enterprise
beyond the firewall, the need for massive data management, polyglot appli-
cations, and the availability of personal computing devices, continue to chal-
lenge organizations. To keep up with this ever-changing landscape, modern
practices, processes, and solutions must evolve.

To set the foundation for architectural agility, we explore how architecture is
accomplished. In any significant enterprise, and certainly on the Internet,
architecture functions as a federated system of infrastructure, applications,
and components. Thus, many people contribute to the architectures involved
in providing a solution to users. Agile software development teams are an
excellent example of where sharing architectural responsibilities is essential.
To address multiple people collaborating and producing high-quality, inte-
grated software effectively, we must understand how cross-functional, self-
organizing teams are involved with and support effective software architectures.

Teams should have “just enough” initial design to get started. A team should also
understand what aspects of the software architecture are not well understood
yet and what risk that poses to a solution. In Agile, the sequence of delivery is

1. “Principles behind the Agile Manifesto,” www.agilemanifesto.org/principles.html, 2001.

www.agilemanifesto.org/principles.html

xxii INTRODUCTION

ordered by business priority, one of the main reasons Agile is now main-
stream. Elements of the software architecture are built and proven early to
support the business priorities, and other parts are delayed until they rise in
priority. In this way, software architecture is reviewed, updated, and
improved in an evolutionary way. Learning how to cope with this process
and produce high-quality, highly valued, and integrated software is the focus
of this book. To illustrate, the “Manifesto of Agile Software Development”
values describe its biases by contrasting two attributes of software develop-
ment. Either extreme is bad. For example, “responding to change” is valued
over “following a plan.” Both are important, but the bias is toward the ability
to respond to changes as they come. Another example is valuing “working
software over comprehensive documentation.” It is OK to document an ini-
tial architecture and subsequent changes to a level of detail needed for deliv-
ering valuable software. This balance could be affected by operational
constraints such as compliance and regulatory concerns.

While “everything” is important to consider in software architecture, the
ability of architecture to accommodate change is most important. Architec-
ture must define an appropriately open system considering its continued
evolution beyond the first release. If it is closed, every change becomes pro-
gressively more expensive. At some point the cost per feature added becomes
too expensive, and people start to talk about rewriting or replacing the soft-
ware. This should rarely happen if the architecture establishes an open sys-
tem that supports an adequate level of changeability. Agile approaches to
software development promote this kind of open architecture, provided the
team members are equipped with the knowledge and authority to build qual-
ity in throughout development and maintenance of the software.

Evolutionary Design

Rather than supporting the design of significant portions of the software
architecture before the software is built, Agile methods identify and support
practices, processes, and tools to enable evolutionary design. This is not syn-
onymous with undisciplined or “cowboy” coding of software. Agile methods
are highly disciplined. One principle behind the “Manifesto for Agile Soft-
ware Development” in particular identifies the importance of design:

Continuous attention to technical excellence and good design enhances
agility.2

2. Ibid.

INTRODUCTION xxiii

Because design is continuously discussed while implementing features, there
is less focus on documentation and handoffs to capture design. People who
have traditionally provided designs to project teams are expected to work
more closely with the teams. The best way to do this is to be part of the team.
When documentation is necessary or supports the continued maintenance of
the software, it is created alongside the implementation of the features that
made the need visible. Designers may also take on other responsibilities
within the team when necessary to deliver working software.

Agile teams are asked to think more broadly than in terms of a single compo-
nent or application when planning, implementing, and testing features. It is
important that they include any integration with external applications in
their incremental designs. The team is also asked to continually incorporate
enhancements to quality attributes of the software, such as

� Suitability: Functionality is suitable to all end users.
� Interoperability: Functionality interoperates with other software

easily.
� Compliance: Functionality is compliant with applicable regulatory

guidelines.
� Security: The application is secure: confidentiality, integrity, avail-

ability, accountability, and assurance.
� Maturity: Software components are proven to be stable by others.
� Fault tolerance: The software continues operating properly in the

event of failure by one or more of its components.
� Recoverability: The software recovers from failures in the surround-

ing environment.
� Understandability: People are able to use the software with little

training.
� Learnability: Functionality is learned with little external interfacing.
� Operability: The software is kept in a functioning and operating

condition.
� Performance: Perceived response is immediate.
� Scalability: The software is able to handle increased usage with the

appropriate amount of resources.
� Analyzability: It is easy to figure out how the software functions.
� Changeability: Software components can be changed to meet new

business needs.
� Testability: Repeatable and specific tests of the software can be cre-

ated, and there is potential for some to be automated.
� Adaptability: Software component functionality can be changed

quickly.

xxiv INTRODUCTION

� Installability: Installation and reinstallation are easy.
� Conformance: The software conforms to industry and operational

standards.
� Replaceability: The software is replaceable in the future.

Taking into consideration external integrations, software quality attributes,
and the internal design of components and their interactions is a lot of work.
Agile teams look for clarity about what aspects of these areas they should
focus more of their effort on. For external integrations, find out who in the
organization can support your application integrations and coordinate
efforts between teams.

In the case of software quality attributes, work with your business owner to
decide which quality attributes are most important for your application. As
for the software’s internal design, decide how large design changes will be
undertaken. Also, figure out how these design decisions will be communi-
cated inside and, if needed, outside the team to external dependents. In all
cases, an Agile team looks for ways to consolidate its efforts into practical
focus areas that are manageable from iteration to iteration as the application
and its design evolve.

In a phase-gate approach, all of the design effort that occurs before construc-
tion begins is sometimes referred to as “big design up front” (BDUF). The
reason for specifying business requirements and technical design before con-
struction is to reduce risk. I often hear the phrase “We have to get it right”
from teams using this phased approach. The BDUF approach to software
development, however, creates problems:

� Customers don’t know all of the requirements up front, and therefore
requirements emerge during implementation. When customers touch
and feel the software after implementation, they have feedback for the
development team. This feedback is essential to developing software
that meets the actual needs of the customer and can be in conflict
with the original requirements.

� The people who create business requirements and design specifica-
tions are not easily accessible once construction of the software
begins. They are often busy specifying and designing other software at
that time.

� Development teams, who read requirements and design specifications
well after they were created, often interpret business requirements
incorrectly. It is common for testers and programmers to have con-
flicting understandings of requirement details as they interact with
existing components and application logic.

INTRODUCTION xxv

� Business needs change frequently, and therefore the requirement
details specified weeks or months ago are not necessarily valuable
today. Any changes to the requirements must be reflected in the tech-
nical design specifications so that the “correct” solution is developed.
An adversarial relationship develops between business and technol-
ogy groups because of these changes. Scope must be managed, or
fixed so that the business is not able to make any more changes. Any
modifications that the business wants must go through a costly
change control process to detail the changes and estimate the impact
on the current design, construction, and testing efforts.

Generally, these problems with BDUF are symptoms of feedback cycles that
are too long in duration. The time needed to analyze, specify, and design
software before constructing it allows requirements and designs to grow stale
before they are implemented. One important aspect of an Agile approach is
shortening the feedback cycle between customers, the development team,
and working software that can be validated. Agile teams manage their devel-
opment efforts to get working software into the hands of their customers so
they can touch it, feel it, and provide feedback. Short iterations and feedback
from customers increase the possibility that the software will align with cus-
tomer desires and expectations as development progresses. This shorter feed-
back cycle is established using self-organizing, cross-functional, and highly
collaborative project teams delivering working software to their customers
incrementally using evolutionary design.

Self-organizing, Cross-functional Teams

In the seminal paper that profoundly influenced the development of Scrum,
“The New New Product Development Game,”3 Takeuchi and Nonaka pro-
vided three characteristics exhibited by self-organizing project teams, which I
summarize here:

� Autonomy: External involvement is limited to guidance, money, and
moral support, and top management rarely intervenes in the team’s
work. The team is able to set its own direction on day-to-day activities.

� Self-transcendence: Teams seem to be continually striving for perfec-
tion. Teams set their own goals that align with top management
objectives and devise ways to change the status quo.

3. Hirotaka Takeuchi and Ikujiro Nonaka, “The New New Product Development Game,”
Harvard Business Review, January–February 1986.

xxvi INTRODUCTION

� Cross-fertilization: The team members’ different functional special-
izations, thought processes, and behavior patterns enhance product
development once team members start interacting effectively.

In Scrum, the entire team is a self-contained unit, including the Product
Owner and the ScrumMaster. The Scrum team members are expected to
make incremental improvements to transcend their existing software deliv-
ery process capabilities, resulting in better quality and faster throughput of
feature delivery over time. Multiple functional roles are represented on a
Scrum team. Their cross-fertilizing tendencies and knowledge sharing about
different aspects of the delivery process each iteration enable them to figure
out how to optimize their interactions over time.

Teams (as opposed to teamwork) self-organize in response to significant
challenges—audacious goals—because it energizes them. Leaders help by
building a strong performance ethic. Individual responsibility and individual
differences become sources of collective strength rather than barriers to team
self-organization.

Software development involves the work of multiple functional disciplines:
design, testing, programming, analysis, user experience, database, and more,
depending upon the project. Agile team members are able to carry out all the
work to deliver what is necessary for the project. Instead of optimizing func-
tional disciplines, the team looks for ways to optimize the delivery of a fea-
ture from user experience to testing to code to database.

Continuous interaction among team members taking on different functional
roles makes good things happen. Team members find ways to interact better,
so they are neither overloaded nor starving for work items to take on. When
someone on the team is overwhelmed with work items, another team mem-
ber can look for ways to help that person finish the work. This person could
have additional work cycles, depending on the type of work the team took
on, and will learn how to execute the easier aspects of a functional discipline
with which they help.

Agile teams look for ways to implement features that are verified and vali-
dated every iteration. This entails a high degree of collaboration among peo-
ple across functional roles during the iteration. When the appropriate
functional roles for the project are not represented on the team, or are lim-
ited, software delivery slows down. Team members have to either cover the
work conducted in this functional area or let the work pile up to be done

INTRODUCTION xxvii

later. When work is left for later, it becomes more complicated, overwhelm-
ing, and error-prone.

Organizations taking an Agile approach must find ways for teams to increase
collaboration across functional disciplines. Let’s take the situation where a
project has testers and programmers, but now they are on the same team.
When both functional roles are represented on the team and are working
together, a defect can be found much closer to the time that it was injected
into the software. This reduces the amount of code created around the defect,
puts the defect more into the context of current development efforts, and
reduces the risk of unpredictability inherent in finding most defects at the
end of a release. Highly collaborative teams enhance delivery, shorten feed-
back cycles, and improve quality.

Architectures should evolve toward simplicity. This is also true in a scaled
environment that has many cross-functional teams. Simplicity emerges when
teams spend time finding ways to deliver a complete feature, including the
user interface and supporting infrastructure. If the architecture is too com-
plicated, Agile teams make many small changes that lead to removal of
unnecessary architectural components over time. This sort of simplification
cannot be done in a vacuum by a single team because oversimplification can
reduce business options too early and reduce the organization’s ability to
leverage existing assets for lower-cost solutions. Therefore, teams must work
cross-organizationally to make architecture decisions that encompass diverse
needs for similar assets. Also, there is a need in larger organizations to facili-
tate these cross-organizational interactions and communications to a larger
audience.

WHY IS THIS TOPIC IMPORTANT?
Most books on Agile software development focus on either practices of the
software development process, such as testing and programming techniques,
or methods for project management. This book discusses how Agile software
organizations can use these practices and methods with a holistic view of
software development from team configurations to deployment and mainte-
nance. Some might discuss parts of this book in terms of software or enter-
prise architecture, but this book is about how teams can take more
responsibility for these aspects, taking software from vision to delivery and
beyond. In this way, businesses can better understand the path to delivering
valuable tools to users, and teams can build more integrity into what they
deliver.

xxviii INTRODUCTION

THIS BOOK’S TARGET AUDIENCE

This book is for everyone who is involved in delivering and maintaining soft-
ware for users. Senior software leadership can find better ways to support
and manage delivery of value to stakeholders. Software management can find
ways to organize and support the work of development teams. Teams can
find out more about how they can build integrity into the full software devel-
opment life cycle. And team members can take away specific techniques,
heuristics, and ideas that can help them improve their own capabilities.

HOW THIS BOOK IS ORGANIZED

This book is made up of 11 chapters and an appendix.

Chapter 1, “Managing Software Debt,” is a primer on the types of software
debt that can impede software changes with age. The topic of software debt is
prevalent throughout the book as the main focus for attaining more architec-
tural agility. Five areas of software debt are described in the chapter: techni-
cal, quality, configuration management, design, and platform experience.
These five areas of software debt are detailed further in the rest of the book.

Chapter 2, “Technical Debt,” Chapter 3, “Sustaining Internal Quality,” and
Chapter 4, “Executable Design,” focus on how the internals of software,
mostly the code, can be delivered in a way that reduces the friction of future
changes.

Chapter 5, “Quality Debt,” discusses the problem inherent in the break/fix
mentality common in software development organizations. This chapter dis-
cusses the use of automation and putting tests toward the front of software
delivery to progress toward zero bug tolerance.

Chapter 6, “Configuration Management Debt,” presents the need for teams
to take care of their software’s configuration management needs. The point
of this chapter is that teams should have two scripts that do the heavy lifting:
deploy and roll back. To do this, many aspects of configuration management
must be attended to along the way.

Chapter 7, “Design Debt,” Chapter 8, “Designing Software,” Chapter 9,
“Communicating Architectures,” and Chapter 10, “Technology Evaluation
Styles,” focus on how software is designed for changeability, including its
structure, alignment to current business needs, integrity, and design com-
munication.

INTRODUCTION xxix

Chapter 11, “Platform Experience Debt,” looks at how people fit into soft-
ware development and provides team configuration patterns and knowledge-
sharing approaches to enable teams to be more effective.

This book is heavily focused on Agile software development, and therefore
the expectation is that the reader has experience using an Agile approach
such as Scrum or Extreme Programming (XP). For those who want a primer,
Appendix A discusses the history of Agile software development along with
Scrum and XP in more detail.

I hope that you enjoy this book and that it gives you tools, techniques, and
heuristics to improve your daily work life in software development.

This page intentionally left blank

55

Chapter 4

EXECUTABLE DESIGN

If we are not enhancing the design then we are just writing a bunch of tests.

—An anonymous developer in a meeting about a Test-First
development implementation

PRINCIPLES OF EXECUTABLE DESIGN

Executable Design is an approach involving existing well-known practices,
helpful principles, and a mind-set shift from traditional views on software

Executable
Design

Executable Design in Practice Need-Driven Design

Test-Driven Development (or Design?)

N d D i D i

Merciless RefractoringM il R f t i

Continuous Unit Test ExecutationC ti U it T t E

Test Automation

Modeling Sessions

Transparent Code Analysis

Principles of Executable Design We’re more likely to get it “right” the third time

Design and construct for change rather than longevity

W ’ lik l t t it “ i ht” th thi d ti

We will not get it “right” the first timeW ill t t it “ i ht” th fi t ti

The way we design can always be improved

Lower the threshold of pain

56 CHAPTER 4 � EXECUTABLE DESIGN

design. There have been many projects, conversations, and mistakes involved
in defining Executable Design as described in this chapter. There is always
room for improvement and perspective. Please take what you can from this
chapter and apply it to your own context. In fact, this is an essential principle
of Executable Design:

The way we design can always be improved.

This particular principle is not all that controversial. There is a continuous
flow of writing about design methods and ideas in our industry. It does,
however, suggest the notion that following a single design method is not rec-
ommended. By trying multiple methods of design, teams continue to learn
and innovate for the sake of their applications.

People in our industry strive for the “best” design methods for software. This
has led to many innovations that are in common use today, such as UML and
Inversion of Control. In the development of these design methods many
ideas were considered and changes were made along the way. In application
development, teams also consider ideas and make changes based on their
current understanding of the application’s design. It is easy sometimes to
choose an architectural design style such as Model-View-Controller (MVC),
peer-to-peer, and service-oriented. But when these architectural design styles
are put into practice to implement a solution of any size, many decisions
must be made about specifics in the design. This has led to the following
principle of Executable Design:

We will not get it “right” the first time.

This has been shown to be true in my career in the following situations:

� Abstracting web design from application behavior
� Creating a text formatting library for portable devices
� Using model-driven development on a project

Although we will not usually get the design “right” on the first attempt, the
design does tend to settle out for most applications. It has come to my atten-
tion over the years that

We’re more likely to get it “right” the third time.

I am positive that it is not always the third time, but that is not the point of
this statement at all. The point is for team members to construct software so

PRINCIPLES OF EXECUTABLE DESIGN 57

that changes can be incorporated at any point in time. If we accept that we’re
more likely to get the design “right” closer to the third attempt, we will build soft-
ware to support change. This gets us to our next principle of Executable Design:

Design and construct for change rather than longevity.

If software is designed and constructed for change, it will be technically and
economically feasible to change the software for new needs rather than
rewriting it. Designing and constructing with such discipline that changes
are easily supported at any time is quite difficult. It takes tremendous disci-
pline when patterns of technical debt, such as schedule pressure as discussed
in Chapter 2, are introduced to a team. It is my opinion that we cannot rely
on disciplined design over a long period of time by every team member.
Therefore, our last principle of Executable Design is

Lower the threshold of pain.

At a workshop in Grand Rapids, Michigan, on technical debt, Matt Heusser
proposed that technical debt could be an outcome of individual developers
not having to deal with the consequences of their actions. The decisions that
we make each day in developing software lead to technical debt because of a
“moral hazard.”

Moral hazard is the view that parties insulated from risk may behave
differently from the way they would behave if they were fully exposed to
the risk.

This does not mean that team members act in a malicious or dishonest way.
It means that if individual team members are insulated from the long-term
effects of a decision, they will not take as much care in the short term. Matt’s
example was that a person may take a shortcut in developing a feature
because that person is not going to be working on the code one year from
now when it must be changed to support a new feature.

Immediately following Matt’s discussion on moral hazard, Chet Hendrickson
pointed out that a good way to minimize the moral hazard problem is by
“lowering the threshold of pain.” For instance, Chet brought up how many
people approach doing their taxes in the United States. They could incremen-
tally update their tax information for two hours each month. Instead, many
of us wait until two weeks prior to the deadline to complete our tax forms.
We push to complete our taxes by the deadline because the potential head-
ache of tax evasion is strong enough that a pain threshold would be crossed.

58 CHAPTER 4 � EXECUTABLE DESIGN

Teams can agree to a threshold of pain they are willing to tolerate and put in
feedback mechanisms to let them know when that threshold is crossed. In
XP, there are multiple frequencies of feedback provided. Pair programming
enables team members to provide feedback within seconds. Test-Driven
Development (TDD) and acceptance testing provide feedback within minutes
of the changes. By using continuous integration teams are provided feedback
within tens of minutes on how all of their code works together. Having an
on-site customer representative in close proximity can support getting feed-
back on an implementation detail within hours of starting work on it. Teams
working in time-boxed iterations get feedback from stakeholders within
weeks. Getting feedback as close to when an action has been taken is critical
to the evolutionary nature of software development using XP.

Identifying a threshold for providing feedback to the team is also a critical
aspect of Executable Design. Automating the feedback, when possible,
enforces the team’s threshold. The feedback could be automated in each team
member’s development environment, the continuous integration server, and
promotion of software to servers exposed to stakeholders.

On some legacy development platforms there could be costs that make fre-
quent feedback difficult or even seemingly impractical. Teams should work
toward the shortest frequency of feedback at all levels of the software devel-
opment process that is practical and feasible in their context. The frequency
of feedback that a team can attain is probably more than initially thought.

To recap the principles that drive Executable Design:

� The way we design can always be improved.
� We’ll get it “right” the third time.
� We will not get it “right” the first time.
� Design and construct for change rather than longevity.
� Lower the threshold of pain.

Taking on the Executable Design mind-set is not easy. I continually use these
principles in design discussions for products, technology, code, tests, busi-
ness models, management, and life. It has been helpful for me to reflect on
situations where these principles have caused me to change my position or
perspective. From these reflections I have found more success in setting
proper expectations, learning from others in the design process, and design-
ing better solutions for the situation.

Teams can tailor their practices and tools and still be in alignment with the
Executable Design principles. The rest of this chapter will provide a set of

EXECUTABLE DESIGN IN PRACTICE 59

suggestions about practices and tools to support an Executable Design
approach. By no means are these suggestions the only ways to apply the prin-
ciples or the only ways that I have seen them applied. These suggestions are
only examples to help clarify their application to the software development
process. If they work for your current context, your team has a place to start.
But please do not stop once you apply them successfully. Remember the first
principle:

The way we design can always be improved.

EXECUTABLE DESIGN IN PRACTICE

Executable Design involves the following practices:

� Test automation
� Continuous unit test execution
� Merciless refactoring
� Need-driven design
� Test-Driven Development (or Design?)
� Modeling sessions
� Transparent code analysis

The rest of this chapter will provide detailed information about all of these
practices in terms of Executable Design.

Test Automation

This practice may seem implied by Executable Design, but the approach used
for test automation is important to sustainable delivery. Also, teams and
organizations sometimes think that automating tests is a job for the test
group and not for programmers. The approach to test automation in Execut-
able Design is based on the approach to testing in XP. Taking a whole team
approach to testing is essential to having a successful and sustainable test
automation strategy. This does not mean that all team members are the best
test case developers and therefore are generalists. It does mean that all team
members are able to understand the test strategy, execute the tests, and con-
tribute to their development when needed, which is quite often. The follow-
ing principle for automated test accessibility sums up the Executable Design
suggested approach:

Everyone on the team should be able to execute any and all automated
and manual test cases.

60 CHAPTER 4 � EXECUTABLE DESIGN

This is an extremely important statement because it expresses the impor-
tance of feedback over isolation in teams. If any team member can run the
tests, the team member can ensure the integrity of changes closer to the time
of implementation. This lessens the amount of time between introducing a
defect and when it gets fixed. Defects will exist in the software for a shorter
duration on average, thus reducing the defect deficit inherent in traditional
test-after approaches.

The focus on how automated tests are used is also important. Automated
tests at all levels of execution, such as unit, acceptance, system, and perfor-
mance, should provide feedback on whether the software meets the needs of
users. The focus is not on whether there is coverage, although this may be an
outcome of automation, but to ensure that functionality is behaving as
expected. This focus is similar to that of Behaviour-Driven Development
(BDD), where tests validate that each application change adds value through
an expected behavior. An approach to automating tests for Executable
Design could be the use of BDD.

In addition to the automating test development approach, understanding
how the test infrastructure scales to larger projects is essential for many proj-
ects. Structure and feedback cycles for each higher layer of test infrastructure
can make or break the effective use of automated tests for frequent feedback.
Over time, the number of tests will increase dramatically. This can cause
teams to slow down delivery of valuable features if the tests are not continu-
ally maintained.

The most frequent reason for this slowdown is that unit tests are intermin-
gled with slower integration test executions. Unit tests should run fast and
should not depend on special configurations, installations, or slow-running
dependencies. When unit tests are executed alongside integration tests, they
run much slower and cause their feedback to be available less frequently. This
usually starts with team members no longer running the unit tests in their
own environment before integrating a change into source control.

A way to segregate unit tests from integration tests is to create an automated
test structure. In 2003, while working on an IBM WebSphere J2EE applica-
tion with a DB2 on OS/390 database, our team came up with the following
naming convention to structure our automated tests:

� *UnitTest.java: These tests executed fast and did not have dependen-
cies on a relational database, JNDI (Java Naming and Directory Inter-
face), EJB, IBM WebSphere container configuration, or any other

EXECUTABLE DESIGN IN PRACTICE 61

external connectivity or configurations. In order to support this ideal
unit test definition, we needed to isolate business logic from “glue”
code that enabled its execution inside the J2EE container.

� *PersistanceTest.java: These tests depended on a running and config-
ured relational database instance to test integration of EJB entity
beans and the database. Because our new architecture would be
replacing stored procedure calls with an in-memory data cache, we
would need these integration test cases for functional, load, perfor-
mance, and stress testing.

� *ContainerTest.java: These tests were dependent on integrating busi-
ness logic into a configured IBM WebSphere J2EE container. The tests
ran inside the container using a framework called JUnitEE (extension
of JUnit for J2EE applications) and would test the container map-
pings for application controller access to EJB session beans and JNDI.

In our development environments we could run all of the tests whose names
ended with “UnitTest.java”. Team members would execute these tests each
time they saved their code in the IDE. These tests had to run fast or we would
be distracted from our work. We kept the full unit test execution time within
three to five seconds. The persistence and container tests were executed in a
team member’s environment before larger code changes—meaning more
than a couple of hours of work—were checked in.

The full suite of automated programmer tests was executed on our continu-
ous integration server each time code was checked into our source control
management system. These took anywhere from 5 to 12 minutes to run. The
build server was configured with a WebSphere Application Server instance
and DB2 relational database. After the build and automated unit tests ran
successfully, the application was automatically deployed into the container,
and the database was dropped and re-created from scratch. Then the auto-
mated persistence and container tests were executed. The results of the full
build and test execution were reported to the team.

Continuous Unit Test Execution

Automated programmer tests aren’t as effective if they are not executed on a
regular basis. If there is an extra step or more just to execute programmer
tests in your development environment, you will be less likely to run them.
Continuous programmer test execution is focused on running fast unit tests
for the entire module with each change made in a team member’s develop-
ment environment without adding a step to the development process. Auto-
mating unit test execution each time a file is modified in a background
process will help team members identify issues quickly before more software

62 CHAPTER 4 � EXECUTABLE DESIGN

debt is created. This goes beyond the execution of a single unit test that tests
behavior of the code under development. Team members are continually
regressing the entire module at the unit level.

Many platforms can be configured to support continuous unit test execution:

� In Eclipse IDE, a “launcher,” similar to a script that can be executed,
can be created that runs all of the unit tests for the module. A
“launcher” configuration can be saved and added to source control
for sharing with the entire team. Another construct in Eclipse IDE
called “builders” can then be configured to execute the “launcher”
each time a file is saved.

� If you are into programming with Ruby, a gem is available called
ZenTest with a component named autotest for continuous unit test
execution. It also continuously executes unit tests when a file is
changed. Autotest is smart about which tests to execute based on
changes that were made since the last save.

� Python also has a continuous unit test execution tool named tdaemon
that provides similar functionality to ZenTest for Ruby.

As you can see, continuous testing works in multiple programming lan-
guages. Automating unit test execution with each change lessens the need for
adding a manual step to a team member’s development process. It is now just
part of the environment. Teams should look for ways to make essential ele-
ments of their software development process easy and automatic so it does
not become or appear to be a burden for team members.

Merciless Refactoring

Refactoring is an essential practice for teams developing solid software and
continually evolving the design to meet new customer needs. The web site
managed by Martin Fowler, who wrote the original book conveniently called
Refactoring, says:

Refactoring is a disciplined technique for restructuring an existing body
of code, altering its internal structure without changing its external
behavior.1

It is important to understand that refactoring is not just restructuring code.
Refactoring involves taking small, disciplined steps, many of which are docu-

1. Martin Fowler, “Refactoring Home Page,” www.refactoring.com/.

www.refactoring.com/

EXECUTABLE DESIGN IN PRACTICE 63

mented in books and online resources on refactoring, to alter the internal
structure of the software. (If you haven’t done so already, please read the
books and online resources on refactoring to learn how it is applied more
effectively. This book will not describe specific refactorings in detail.)

When taking an iterative and incremental approach such as Scrum, it is
imperative that the software continue to be changeable. Merciless refactoring
is an approach that teams should adopt whether they are working on new or
legacy software.

merciless—adj.: having or showing no [mercy—show of kindness
toward the distressed]

To refactor mercilessly means that the team will

Relieve distressed code through kindness and disciplined restructuring.

Some teams wonder if they will be allowed to apply merciless refactoring in
their project. It is important to understand that teams are not asked to
develop software that does not allow for new changes to be easily added.
Stakeholders do tend to want features quickly, but that is their role. Teams
should understand that their role is to create quality software that does not
accrue abnormal costs with each change. Robert C. Martin wrote in his book
Clean Code: A Handbook of Agile Software Craftsmanship about a simple rule
that the Boy Scouts of America have:

Leave the campground cleaner than you found it.2

Teams that I work with use a variant of this simple rule in their own working
agreements:

Always leave the code in better shape than when you started.

Teams demonstrating this mind-set will continually improve the software’s
design. This leads to acceleration in feature delivery because the code will be
easier to work with and express its intent more concisely. On a project that is
well tended in terms of its design and structure, the act of refactoring can be
elegant and liberating. It allows teams to continually inspect and adapt their
understanding of the code to meet the customer’s current needs.

2. Robert C. Martin, Clean Code: A Handbook for Agile Software Craftsmanship (Prentice
Hall, 2009); www.informit.com/articles/article.aspx?p=1235624&seqNum=6.

www.informit.com/articles/article.aspx?p=1235624&seqNum=6

64 CHAPTER 4 � EXECUTABLE DESIGN

On a legacy application or component, the act of refactoring can seem over-
whelming. Although refactoring involves making small, incremental improve-
ments that will lead to improvement in the software’s design, figuring out
where to start and stop in a legacy system is often unclear. How much refactoring
is sufficient in this piece of code? The following questions should help you
decide whether to start refactoring when you see an opportunity for it:

1. Does this change directly affect the feature I am working on?
2. Would the change add clarity for the feature implementation?
3. Will the change provide automated tests where there currently are none?
4. Does the refactoring look like a large endeavor involving significant

portions of the application components?

If the answer to the first three questions is yes, I lean toward refactoring the
code. The only caveat to this answer is when the answer to the fourth ques-
tion, Does the refactoring look like a large endeavor?, is yes. Then I use expe-
rience as a guide to help me produce a relative size estimate of the effort
involved in this refactoring compared to the initial estimate of size for the
feature implementation. If the size of the refactoring is significantly larger
than the original estimate given to the Product Owner, I will bring the refac-
toring up to the team for discussion. Bringing up a large refactoring to the
rest of the team will result in one of the following general outcomes:

� The team thinks it is good idea to start the large refactoring because
its estimated size does not adversely affect delivery of what the team
committed to during this iteration.

� The team decides that the refactoring is large enough that it should be
brought up to the Product Owner. The Product Owner could add it to
the Product Backlog or decide to drop scope for the current iteration
to accommodate the refactoring.

� Another team member has information that will make this refactor-
ing smaller or not necessary. Sometimes other team members have
worked in this area of code or on a similar situation in the past and
have knowledge of other ways to implement the changes needed.

After starting a refactoring, how do we know when to stop? When working
on legacy code, it is difficult to know when we have refactored enough. Here
are some questions to ask yourself to figure out when you have refactored
enough:

� Is the code I am refactoring a crucial part of the feature I was working on?
� Will refactoring the code result in crucial improvements?

EXECUTABLE DESIGN IN PRACTICE 65

Adopting a merciless refactoring mind-set will lead to small, incremental soft-
ware design improvements. Refactoring should be identified in the course of
implementing a feature. Once the need for a refactoring is identified, decide
if it is valuable enough to do at this point in time, considering its potential
cost in effort. If it meets the criteria for starting a refactoring, use disciplined
refactoring steps to make incremental improvements to the design without
affecting the software’s external behavior.

Need-Driven Design

A common approach to designing application integrations is to first identify
what the provider will present through its interface. If the application inte-
gration provider already exists, consumers tend to focus on how they can use
all that the provider presents. This happens when integrating services, librar-
ies, storage, appliances, containers, and more.

In contrast, Need-Driven Design approaches integration based on emergence
and need. The approach can be summarized in the following statement:

Ask not what the integration provider gives us; ask what the consumer
needs.

Need-Driven Design, in its basic form, is based on the Adapter design pat-
tern3 as shown in Figure 4.1. There are two perspectives for integration in
Need-Driven Design:

� Consumer: Ask what the consumer needs from the interface contract.
� Provider: A provider’s interface emerges from needs expressed by

more than one consumer.

From the consumer perspective, the idea is to depend only on what the soft-
ware actually needs and no more. Instead of coupling the application to a
web service directly, create an interface in between that defines only what the
software needs, then implement the interface to integrate with the web ser-
vice. This way, dependency on the web service is limited to the implementa-
tion of the interface and can be modified or replaced if the need arises in a
single place. In the case of integrating a library, creating too much depen-
dence on the library could make the application less changeable for new user
needs. Wrapping the specific aspects of a library that the application uses
could be an approach worth pursuing.

3. Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software (Addison-Wesley, 1994).

66 CHAPTER 4 � EXECUTABLE DESIGN

From a provider perspective, generalizing an interface should be done only
after there is more than one consumer of the provider’s capabilities. This con-
trasts with how many organizations approach application integration. They
might have a governance program that identifies services before construction
of software begins. The Need-Driven Design approach is to wait for more
than one consumer to need access to a particular capability. Once the need to
create a provider interface is identified, it is promoted to a reusable asset.

The Need-Driven Design approach is best applied in conjunction with auto-
mated unit tests. The automated unit tests describe what each side of the
adapter, the consumer interface and provider interface, will be responsible
for. The application using the adapter should handle general usage of the cli-
ent interface and should not care about specialized concerns of the provider
interface. This can be explained with the following real-world example where
Need-Driven Design was applied.

Instead of designing software toward what an external dependency can pro-
vide, decide what the application needs. This need-driven approach focuses
on adding only what is necessary rather than creating dependence on the
external component. Need-Driven Design has the following steps:

1. Assess the need: Add external dependencies to your project only
when the value outweighs the integration costs.

2. Define the interface: Create an interface that will provide your appli-
cation with the capabilities that it needs.

Figure 4.1 Example implementation of the Need-Driven Design approach for exploiting an
external component using the Adapter design pattern

EXECUTABLE DESIGN IN PRACTICE 67

Container Trucks and RFID
The application we were working on tracked containers on trucks being
loaded on and off of ships in the port. Radio-frequency identification device
(RFID) was becoming the way containers were tracked coming in and out of
port. Ports in the United States were finding ways to support reading these
RFID tags on the containers.

Our team was employed to implement the software that would take an RFID
tag identified on a container and relay that information to port workers. A
separate vendor was hired to create the RFID-reading hardware since none
existed to our knowledge that could handle the corrosive nature of being
near salt water.

Since the hardware did not exist, we asked the other vendor for an example
of what the message would look like so that we could implement a parser for
it. When we got the example message, we found that the XML it contained
was malformed. This was mentioned to the hardware vendor, but we still had
to make progress because of our contractual obligations. We were all sup-
posed to be finished with our application changes, integrated with the RFID
hardware, in three months.

Our team decided to figure out what the application needed rather than
what it would receive from the other vendor’s hardware. In one of the inte-
gration scenarios, the application needed an RFID tag and a timestamp, so we
created an interface to access these pieces of information. To ensure that the
application was able to handle implementations of this interface, we wrote
automated unit tests that used mock objects to run scenarios through the
interface. For instance, what if the RFID could not be read?

After understanding how the application would use the interface, we cre-
ated an initial implementation of the interface for the vendor’s hardware
based on what we thought would be close to the actual message. Since the
hardware was providing the XML through a web service, the interface imple-
mentation caught any web-service-specific errors and exceptions so that the
application did not have to be coupled to even the technical aspects of it.
Automated unit tests validated that the interface implementation handled
such conditions.

It turned out that the hardware vendor was more than three months late.
Our team created a simulator that would send multiple versions of an exam-
ple XML message with random RFID tags and random exception conditions.
One item was still needed for release when we finished our work: integration
with the actual hardware through the interface implementation.

As an epilogue, our clients sent us a note on the day they got the hardware.
They modified the interface implementation to accommodate the actual XML
message from the working hardware in only one hour and ran all of the auto-
mated tests. It worked! They put it into production that same day.

68 CHAPTER 4 � EXECUTABLE DESIGN

3. Develop executable criteria: Write automated unit tests for expected
scenarios your application should handle through the defined inter-
face; mock up and/or simulate the various scenarios.

4. Develop the interface implementation: Create automated unit tests
and the interface implementation to integrate external components,
and make sure to handle conditions that the application does not
need to be aware of.

By driving integration strategies through the steps defined in Need-Driven
Design, we can decrease integration costs, reduce coupling to external depen-
dencies, and implement business-driven intentions in our applications.

Test-Driven Development (or Design?)

Test-Driven Development (TDD) is a disciplined practice in which a team
member writes a failing test, writes the code that makes the test pass, and
then refactors the code to an acceptable design. Effective use of TDD has
been shown to reduce defects and increase confidence in the quality of code.
This increase in confidence enables teams to make necessary changes faster,
thus accelerating feature implementation throughput.

It is unfortunate that TDD has not been adopted by the software develop-
ment industry more broadly. The TDD technique has been widely misunder-
stood by teams and management. Many programmers hear the name and are
instantly turned off because it contains the word test. Teams that start using
TDD sometimes misinterpret the basics or have difficulty making the mind-
set shift inherent in its use. Using tests to drive software design in an execut-
able fashion is not easy to grasp. It takes tremendous discipline to make the
change in approach to design through micro-sized tests.

The following statement summarizes how I describe TDD to teams that are
having difficulty adopting the approach in their development process:

TDD is about creating a supportable structure for imminent change.

Applications and their components change to meet new business needs.
These changes are effected by modifying the implementation, improving the
design, replacing aspects of the design, or adding more functionality to it.
Taking a TDD approach enables teams to create the structure to support the
changes that occur as an application changes. Teams using a TDD approach
should maintain this structure of unit tests, keeping the unit tests support-
able as the application grows in size and complexity. Focusing on TDD in

EXECUTABLE DESIGN IN PRACTICE 69

this manner helps teams understand how they can apply it to start practicing
a design-through-tests approach.

Automated unit tests are added through a test-driven approach and tell us if
aspects of each component within an application are behaving as expected.
These tests should be repeatable and specific so they can be executed with the
same expected results each time. Although the tests are important, teams
should not lose focus on how these tests drive the software design incrementally.

A basic way to think about TDD is through a popular phrase in the TDD
community:

Red, Green, Refactor.

This simple phrase describes the basic steps of TDD. First, write a failing test
that describes the scenario that should work at a micro level of the applica-
tion component. Then write just enough code to make it pass, and no more.
Finally, refactor the implementation code and tests to an acceptable design so
they can be maintained over time. It is important to emphasize once again to
write only enough code to make the current failing test pass so no untested
code is written. Untested code is less safe to change when it’s time to make
necessary refactorings. Figure 4.2 shows the basic steps involved in the TDD
approach.

These three basic steps are not always sufficient to do TDD effectively. Uncle
Bob Martin wrote “The Three Laws” of TDD as follows:

Figure 4.2 The basic steps of Test-Driven Development are to write a failing
test, write only the code that makes the test pass, and refactor to
an acceptable design.

Write Failing
Test

Make
Test Pass

Refactor
to Acceptable

Design

Integrate
with

Rest of Team

70 CHAPTER 4 � EXECUTABLE DESIGN

Test-Driven Development is defined by three simple laws.

� You must write a failing unit test before you write production code.
� You must stop writing that unit test as soon as it fails; and not

compiling is failing.
� You must stop writing production code as soon as the currently

failing test passes.4

He goes on to say that software developers should do TDD as a matter of
professionalism. If, as software developers, we do TDD effectively, we will get
better at our craft. Uncle Bob Martin provides an initial list of things we
could improve by doing TDD:

If you follow the three laws that seem so silly, you will:

� Reduce your debug time dramatically.
� Significantly increase the flexibility of your system, allowing

you to keep it clean.
� Create a suite of documents that fully describe the low level

behavior of the system.
� Create a system design that has extremely low coupling.5

4. Robert C. Martin, “Are You a Professional?” NDC Magazine, Norwegian Developers
Conference 2009, Telenor Arena, Oslo, June 17–19, p. 14. Reprinted with permission.

Difficulty in Introducing Test-Driven Development
TDD is a highly disciplined approach. The discipline involved is difficult for
some people to apply each day. Following is a list of team environmental
issues that lower the chances for effective use or adoption of TDD:

• Pressure from management and stakeholders to release based on an
unreasonable plan: Integrity of the software is always sacrificed when
the plan is inflexible and does not incorporate reality.

• When there is a lack of passion for learning and implementing effective
TDD practices on the team: The high degree of discipline required in
TDD makes passion for working in this way extremely helpful.

• Not enough people on the team with experience doing TDD in prac-
tice: Without any experience on the team, success in adoption is lower.

• On an existing code base, if the software’s design is poor, low cohe-
sion, and high coupling, or is implemented in a way that is difficult to
test, then finding a starting point could seem nearly impossible.

5. Ibid.

EXECUTABLE DESIGN IN PRACTICE 71

Modeling Sessions

When team members get together and discuss software design elements, they
sometimes use visual modeling approaches. This usually happens at a white-
board for collocated team members. While the team names model elements
and their interactions, the conversation revolves around how the model
enables desired functionality. The points discussed can be thought of as sce-
narios that the solution should support. These scenarios are validated against
the model throughout the design conversation and can be easily translated
into one or more test cases.

As the modeling session continues, it becomes more difficult to verify the
number of scenarios, or test cases, that have already been discussed. When an
interesting scenario emerges in conversation and causes the model to change,
the group must verify the model against all the scenarios again. This is a vol-
atile and error-prone approach to modeling because it involves manual veri-
fication and memorization. Even so, modeling is a valuable step since it helps
team members arrive at a common understanding of a solution for the
desired functionality. Minimizing the volatile and error-prone aspects of this
technique improves the activity and provides more predictable results. Using
TDD to capture the test cases in these scenarios will eventually make them
repeatable, specific, and executable. It also helps to ensure that the test cases
providing structure to the solution’s design are not lost. Without the test
cases it is difficult to verify the implementation and demonstrate correct and
complete functionality.

By no means would I prescribe that teams eliminate quick modeling sessions.
Modeling sessions can provide a holistic view of a feature or module. Model-
ing only becomes an issue when it lasts too long and delays implementation.
The act of designing should not only be theoretical in nature. It is good to time-
box modeling sessions. I have found that 30 minutes is sufficient for con-
ducting a modeling session. If a team finds this amount of time insufficient,
they should take a slice of a potential solution(s) and attempt to implement it

• If the existing code base is large and contains no or minimal test cover-
age, disciplined TDD will not show valuable results for some time.

• Managers tell team members they don’t believe TDD is effective or
directly prohibit its use on projects.

To successfully adopt a TDD approach, it is important to manage these envi-
ronmental issues for the team. This could include managing expectations,
providing the team with support from a coach, and allowing sufficient learn-
ing time to understand the tools and techniques.

72 CHAPTER 4 � EXECUTABLE DESIGN

before discussing the rest of the design. The act of implementing a portion of
the design provides a solid foundation for further exploration and modeling.

Modeling Constraints with Unit Tests

To reduce duplication and rigidity of the unit test structure’s relationship to
implementation code, teams should change the way they define a “unit.”
Instead of class and method defined as the only types of “unit,” use the fol-
lowing question to drive the scenario and test cases:

What should the software do next for the intended user?

The approach for writing unit tests I follow is that of Behaviour-Driven
Development (BDD).6 Thinking in terms of the following BDD template
about how to model constraints in unit tests helps me stay closer to creating
only the code that supports the desired functionality:

Given <some initial context>
When <an event occurs>
Then <ensure some outcomes>.

By filling in this template I can generate a list of tests that should be imple-
mented to supply the structure that ensures the desired functionality. The
following coding session provides an example of applying this approach. The
fictitious application is a micro-blogging tool named “Jitter.” The functional-
ity I am working on is this:

So that it is easier to keep up with their child’s messages, parents want
shorthand in the messages to be automatically expanded.

The acceptance criteria for this functionality are:

� LOL, AFAIK, and TTYL are expanded for a parent.
� It should be able to expand lower- and uppercase versions of the

shorthand.

The existing code is written in Java and already includes a JitterSession
class that users obtain when they authenticate into Jitter. Parents can see their
child’s messages in their session. The following unit test expects to expand
“LOL” to “laughing out loud”:

6. An introduction to Behaviour-Driven Development (BDD) can be found at http://
blog.dannorth.net/introducing-bdd/, and the Given, When, Then template is shown
in the article in a section named “BDD Provides a ‘Ubiquitous Language’ for Analysis.”

http://blog.dannorth.net/introducing-bdd/
http://blog.dannorth.net/introducing-bdd/

EXECUTABLE DESIGN IN PRACTICE 73

public class WhenParentsWantToExpandMessagesWithShorthandTest {

 @Test
 public void shouldExpandLOLToLaughingOutLoud() {
 JitterSession session = mock(JitterSession.class);
 when(session.getNextMessage()).thenReturn("Expand LOL");
 MessageExpander expander = new MessageExpander(session);
 assertThat(expander.getNextMessage(),
 equalTo("Expand laughing out loud"));
 }

}

Before we continue with the unit test code example, let’s look more closely
at how it is written. Notice the name of the programmer test class:
WhenParentsWantToExpandMessagesWithShorthandTest.

For some programmers, this long name might seem foreign. It has been my
experience that it is easier to understand what a programmer test has been
created for when the name is descriptive. An initial reaction that program-
mers have to long names for classes and methods is the fear they will have to
type them into their editor. There are two reasons why this is not an issue:

� Because this is a unit test, other classes should not be using this class.
� Modern integrated development environments have code expansion

built in.

Also notice that the name of the test method is shouldExpandLOLToLaughing-
OutLoud. This naming convention supports how we drive design through our
unit tests by answering the question “What should the software do next for
the intended user?” By starting the method name with the word should, we
are focusing on what the software should do for the user identified in the
unit test class name. This is not the only way to write unit tests. People have a
wide variety of preferences about how to write their tests, so please find the
way that fits your team’s intended design strategy best.

The MessageExpander class does not exist, so I create a skeleton of this class to
make the code compile. Once the assertion at the end of the unit test is fail-
ing, I make the test pass with the following implementation code inside the
MessageExpander class:

public String getNextMessage() {
 String msg = session.getNextMessage();
 return msg.replaceAll("LOL", "laughing out loud");
}

74 CHAPTER 4 � EXECUTABLE DESIGN

This is the most basic message expansion I could do for only one instance of
shorthand text. I notice that there are different variations of the message that
I want to handle. What if LOL is written in lowercase? What if it is written as
“Lol”? Should it be expanded? Also, what if some variation of LOL is inside a
word? The shorthand probably should not be expanded in that case except if
the characters surrounding it are symbols, not letters. I write all of this down
in the unit test class as comments so I don’t forget about it:

// shouldExpandLOLIfLowerCase
// shouldNotExpandLOLIfMixedCase
// shouldNotExpandLOLIfInsideWord
// shouldExpandIfSurroundingCharactersAreNotLetters

I then start working through this list of test cases to enhance the message
expansion capabilities in Jitter:

@Test
public void shouldExpandLOLIfLowerCase() {
 when(session.getNextMessage()).thenReturn("Expand lol please");
 MessageExpander expander = new MessageExpander(session);
 assertThat(expander.getNextMessage(),
 equalTo("Expand laughing out loud please"));
}

At this point, I find the need for a minor design change. The java.lang
.String class does not have a method to match case insensitivity. The unit
te s t forces me to f ind an a l te r nat ive , and I dec ide to use the
java.util.regex.Pattern class:

public String getNextMessage() {
 String msg = session.getNextMessage();
 Pattern p = Pattern.compile("LOL", Pattern.CASE_INSENSITIVE);
 Return p.matcher(msg).replaceAll("laughing out loud");
}

Now I make it so that mixed-case versions of “LOL” are not expanded:

@Test
public void shouldNotExpandLOLIfMixedCase() {
 String msg = "Do not expand Lol please";
 when(session.getNextMessage()).thenReturn(msg);
 MessageExpander expander = new MessageExpander(session);
 assertThat(expander.getNextMessage(), equalTo(msg));
}

This forces me to use the Pattern.CASE_INSENSITIVE flag in the pattern com-
pilation. To ensure that only the code necessary to make the test pass is cre-
ated, I match only “LOL” or “lol” for replacement:

EXECUTABLE DESIGN IN PRACTICE 75

public String getNextMessage() {
 String msg = session.getNextMessage();
 Pattern p = Pattern.compile("LOL|lol");
 return p.matcher(msg).replaceAll("laughing out loud");
}

Next, I make sure that if “LOL” is inside a word it is not expanded:

@Test
public void shouldNotExpandLOLIfInsideWord() {
 String msg = "Do not expand PLOL or LOLP or PLOLP please";
 when(session.getNextMessage()).thenReturn(msg);
 MessageExpander expander = new MessageExpander(session);
 assertThat(expander.getNextMessage(), equalTo(msg));
}

The pattern matching is now modified to use spaces around each variation of
valid “LOL” shorthand:

return Pattern.compile("\\sLOL\\s|\\slol\\s").matcher(msg)
 .replaceAll("laughing out loud");

Finally, it is important that if the characters around LOL are not letters, such
as a space, it still expands:

@Test
public void shouldExpandIfSurroundingCharactersAreNotLetters() {
 when(session.getNextMessage()).thenReturn("Expand .lol!
please");
 MessageExpander expander = new MessageExpander(session);
 assertThat(expander.getNextMessage(),
 equalTo("Expand .laughing out loud! please"));
}

The final implementation of the pattern-matching code looks like this:

return Pattern.compile("\\bLOL\\b|\\blol\\b").matcher(msg)
 .replaceAll("laughing out loud");

I will not continue with more of the implementation that would expand
other shorthand instances. However, I do want to discuss how the focus on
“What should the software do next?” drove the design of this functionality.
Driving the code using TDD guides us to implement only what is needed. It
also helps us approach 100% code coverage for all lines of code. For pro-
grammers who have experience writing object-oriented code, the modules
will likely have high cohesion, focused on specific responsibilities, and main-
tain low coupling to other code. The failing unit test represents something

76 CHAPTER 4 � EXECUTABLE DESIGN

that the software does not do yet. We focus on modifying the software with
the simplest implementation we can think of that will make the unit test
pass. Then we focus on enhancing the software’s design with the refactoring
step. It has been my experience that refactoring takes most of the effort when
applying TDD effectively. This does not mean refactoring is used with each
TDD cycle. It means that overall, programmers spend more time refactoring
to enhance the design.

Software Design beyond TDD

Most software design approaches are concerned with documenting design
artifacts. Agile teams look for ways to reduce documentation to only what is
necessary. Because of this statement, many teams and organizations mistak-
enly think Agile means no documentation. This is an inappropriate interpre-
tation of Agile software development and is not corroborated by thought
leaders and books from the Agile community.

To better enable cost-effective and high levels of support for applications
deployed in production, teams ought to be aware of artifacts that assist ongo-
ing maintenance. Software development goes beyond just writing code. It
also includes demonstrating the integrity of component integration, align-
ment to business objectives, and communication of the software’s structure
for continued maintenance. Some of these aspects can be validated through
integration tests. As pointed out in the section on test automation earlier in
this chapter, integration tests are not executed as frequently as fast unit tests,
such as in each team member’s environment. Instead, they are executed in an
integration environment when changes are integrated into a common stream
of work in source control.

Teams that must consider some or all of the aspects listed above should have
processes and tools that support effective maintenance. On top of automated
integration testing, they might also benefit from

� Frequent and enhanced compliance auditing
� A team member with specific knowledge or appropriate training and

practice
� Push-button deployment and rollback capability to all associated

environments
� Production-like staging and test environments for more realistic inte-

gration testing

As a team, think about which aspects of software design you should be con-
cerned with and then figure out how you will manage them in the software
development process.

EXECUTABLE DESIGN IN PRACTICE 77

Transparent Code Analysis

Code coverage tools measure whether all discernible paths through the code
have been tested. It is impossible, except in the most basic instances of code,
to validate that all paths through the code have been tested with every poten-
tial input. On the other hand, it is possible to ascertain whether each line of
code in a module has been tested. This involves measuring test coverage by
some basic metrics:

� Statement coverage checks how many lines of code have been executed.
� Decision coverage checks if each path through a control structure is

executed (i.e., “if/else if/else” structures).
� Condition coverage checks if each Boolean expression is evaluated to

both true and false.
� Path coverage checks if combinations of logical code constructs are

covered, including sufficient loop evaluation (i.e., executing a loop 0, 1,
and more than 1 time).

� Relational operator coverage checks if inputs in relational operator
evaluation are sufficiently verified (i.e., executing a < 2 with a = 1,
a = 2, a = 3).

Executing code coverage tools inside each development and continuous inte-
gration environment can be helpful feedback to identify lapses in test-driven
discipline. As a programmer gains more experience with TDD, it becomes
practical to approach 100% coverage in most instances. Tools can provide
feedback about code coverage, as shown in Figure 4.3.

It is a common belief that striving for 100% code coverage is too expensive
and does not provide enough value to offset its costs. In my experience,
approaching 100% code coverage increases confidence and accelerates delivery

Figure 4.3 The Eclipse IDE plug-in, EclEmma, showing a view of the project’s code coverage
inside the Eclipse IDE

78 CHAPTER 4 � EXECUTABLE DESIGN

of working software. There are some factors that inhibit teams from approach-
ing 100% code coverage:

� Working with an existing code base that has significantly less than
100% code coverage: If this is the case, track increases in code cover-
age rather than whether it approaches 100%.

� A brittle component or application where finding a place to put a
valid unit test is difficult, or nearly impossible: In this case, using a
black-box testing tool that executes the code in its packaged or install-
able form could be a better option until the code is less tangled. The
packaged or installed application could be instrumented sometimes
so that code coverage is evaluated during the black-box test execution.

� When code is generated: Teams should look for ways to isolate gener-
ated code from code implemented by team members and evaluate
code coverage only for the latter. In some circumstances, our team has
been able to generate the unit and integration tests for generated code
when we had access to the code generation templates.

� When code integrates with third-party components: Although the
third-party component probably will not have 100% code coverage,
integration tests can be developed that verify how the code is expected
to integrate. Evaluate code coverage on only code that your team cre-
ated. See the Need-Driven Design section earlier in this chapter.

When working with an existing code base, approachiìng 100% is probably
not attainable. In this case, make sure that the current code coverage does not
deteriorate. Teams should look for ways to slowly increase code coverage of
the existing software over time.

Tools to determine code coverage are not the only code analysis tools avail-
able. There are many tools in the static code analysis arena as well. Static code
analysis tools can provide feedback through a dashboard, such as in Figure 4.4,
on aspects of the software such as

� Team’s preferred coding rules
� Lines of code
� Cyclomatic complexity
� Duplicated code
� Lack of cohesion
� Maintainability
� Dependencies
� Design
� Architecture
� Technical debt

SUMMARY 79

I do not suggest that the metrics generated for all of these aspects of the soft-
ware are exact. They do provide feedback about our software internals and
can help guide our development efforts. Also, it is sometimes easier to drill
down into the static code analysis dashboard for an area of code that will be
involved in changes for the next feature. Looking at higher-level metrics for
the code can provide useful information to guide implementation and
opportunities for code improvement.7

SUMMARY

Executable Design is a method for driving the implementation of software
functionality. It focuses on the following principles:

� The way we design can always be improved.
� We’ll get it “right” the third time.
� We will not get it “right” the first time.
� Design and construct for change rather than longevity.
� Lower the threshold of pain.

Going beyond how we write automated tests, Executable Design also involves
how they are structured inside projects, how they are executed in different

Figure 4.4 The Sonar dashboard showing metrics for lines of code, technical debt ratio, code
coverage, duplicated lines of code, and build time7

7. Sonar is an open platform to manage code quality available at www.sonarsource.org/.
The picture is from their demo web site at http://nemo.sonarsource.org/.

www.sonarsource.org/
http://nemo.sonarsource.org/

80 CHAPTER 4 � EXECUTABLE DESIGN

environments, and a way to think about what the next test should be. When
we answer the question “What should the software do next for the intended
user?” our programmer tests will be more directly focused on delivery of value
to the user. Using transparent code analysis, team members can get feedback
on the health of the code as they implement in an incremental fashion.

229

INDEX

Numbers
40-hour week, XP practices, 227

A
Abuse stories

emphasizing cost of not addressing issues,
136–137

writing, 137–138
Abusers, 137
Acceptance Test-Driven Development (ATDD)

Behaviour-Driven Development (BDD) tools,
98–99

keyword-based tools supporting, 98
modularity tools supporting, 97
overview of, 95–96
visual playback tools supporting, 99

Acceptance tests
automated, 96–99
case study using Fit tool, 101–102
feedback mechanisms in, 58
overview of, 95
techniques for writing automated, 99–101
UI tests, 140

Adapter design pattern, 65
Adaptive maintenance, of software, 135
Agile development

application design principles, 154
branching strategies in, 124, 126
changeability principle, 138–139
collaboration needs in, 171
continuous design and, 148, 164
continuous transfer of knowledge via review

sessions, 146

delivering potentially shippable product
increments, 158–159

documentation in, 76, 126–127, 130
early identification of quality problems, 34
evolutionary design in, xxii–xxv
Extreme Programming (XP) and, 226–228
feature team configuration in, 212
frequent delivery in, 109–110
getting it right on the third time, 22
guidelines for working with stakeholders, 201
incremental or batch approach in, 42, 156–158
IV&V and, 104
misconception regarding design activities in,

183–184
open architecture promoted, xxi–xxii
pair programming. See Pair programming
retrospectives, 149–150
Scrum and, 221–226
sharing knowledge and, 203
single point of failure in, 114
spreading knowledge across project team, 178
sustainable development principle, 32
technology evaluation styles, 191–192
what it is, 221

Aging applications, debt accrual and, 3–5
Alexander, Christopher, 144
Alignment, S.A.I.D.

causes of deterioration of software assets,
180–181

definition of, 178
Ambler, Scott, 138
APIs. See Application programming interfaces

(APIs)

230 INDEX

Application architecture, 174–176
Application design principles. See also Designing

software, 153–154
Application programming interfaces (APIs)

creating, 145–146
overview of, 144
visual charts, 166

Application under test (AUT), 100
Architecture

architectural description, 133–134
communicating. See Communicating

architectures
definition of, xviii
promotion of open architecture in Agile

development, xxi–xxii
Artifacts

aging software and, 143
architectural description, 132–133
back up, 120
changeability of, 138
collocating team members resulting in

frequent integration, 169
compliance artifacts, 127
as deliverable, 44–46
design artifacts, 183, 187
documentation artifacts, 126–128
documenting, 76
generating, 188
habitability of, 145–146
integration of, 40, 208
keeping up-to-date, 157–158
listing modified in test automation, 103
pair programming supporting, 162, 203, 227
for software delivery, 166
test automation, 140
unit testing, 34
writing software artifacts with text, 144

Assets
depreciation of software assets. See Software

asset depreciation
software as business asset, 83

ATDD. See Acceptance Test-Driven
Development (ATDD)

Audits, in configuration management, 111

AUT (application under test), 100
Automation

automated promotion as means of getting
customer feedback, 118–119

of configuration management activities,
111–113

lack of automation as factor in design decay,
154

test scripts in, 128
of tests. See Test automation

Autonomy, of self-organizing teams, xxv
Autotest component, of ZenTest, 62

B
Batches, small batch approach to work. See also

Incremental development, 41–42
BDD. See Behaviour-Driven Development

(BDD)
BDUF (“big design up front”), xxiv–xxv
Beck, Kent, 35, 226
Behaviour-Driven Development (BDD)

automating tests, 60
tools supporting ATDD, 98–99
writing unit tests, 72

Belshee, Arlo, 204
Benefield, Robert, 107
Big Ball of Mud architecture, 28–29
“Big design up front” (BDUF), xxiv–xxv
Block diagrams, for representing application

structure, 179
BPMN (Business Process Modeling Notation),

188
Branching strategies, in configuration

management
choosing, 126
collapsing branches, 124–125
overview of, 123
single source repository, 123–124
spike branches, 125–126

Break/fix mentality, 82–84
Brown-bag sessions, 219
Budgeting, for technology evaluation, 192–193
Bug database. See also Product Backlog, 51–52
Bug tracker, 82

INDEX 231

Build
profiles, 167
from scratch vs. copy-and-paste, 117–118

Business expectations, not lessening as software
ages, 12–13

Business Process Modeling Notation (BPMN),
188

C
C2.com, 16
Change/Changeability

application design principles, 154
balancing delivery for business gain with

changeability, 13
designing for, 57, 138–139
neglecting results in software debt, 2
principles of Agile development, 138–139
quick transfer of knowledge accompanying

change, 146
role of component shepherd in, 214–215
software evolution and, 134

Charts, generating visual models of software
design, 166

Checks, unit test patterns, 36
Chief Product Owner. See Product Owner
Clean Code: A Handbook of Agile Software

Craftsmanship (Martin), 63
Cleanup comments, ineffectiveness of, 25–26
CM. See Configuration management (CM)
Cockburn, Alistair, 40, 203
Code

completion dates, 9
coverage. See Transparent code analysis
disposing of code written for spikes, 194
guidelines for how long to design without

writing, 165
transparent analysis of, 77–79

Coding standards
common environment, 167
teams and, 38
XP practices, 227

Cohn, Mike, 135–136, 162
Collaboration

ability of team to work together, 170

Agile teams and, xxvi–xxvii
close collaboration sustaining internal quality,

40–41
collaborative team configurations, 206–208
list of tools for, 168–169
tracking issues collaboratively, 114

Collective ownership, XP practices, 227
Collocation of team members

to stimulate collaboration, 40
team tools for effective design, 169

Commercial off-the-shelf (COTS) products, 8
Common environment

what is included in, 166–167
work area configuration, 167–170

Communicating architectures
alignment aspect of SAID, 180–181
application architecture, 175–176
component architecture, 174–175
design aspect of SAID, 183–186
enterprise architecture, 176–177
generating artifacts, 188
integrity aspect of SAID, 181–182
levels of architecture perspective, 171–172
SAID acronym aiding in focusing on different

stakeholder perspectives, 178–179
structure aspect of SAID, 179–180
summary, 188–189
utility of using levels of architecture

perspective, 177–178
via models, 186–188

Communication
issues in software debt, 2
using models for, 187–188
values in XP, 226
visual models for, 186

Communities of practice (CoPs), 218
Competitive advantage, cutting quality and, 83
Complexity

of integration strategies, 9
software evolution and, 134

Compliance artifacts, 127
Compliance, with test automation, 102–104
Component shepherds, 214–215
Component teams, 208–211

232 INDEX

Components
architectural description of, 133–134
architectural perspective of, 174–175
communicating conceptual structure of, 183
modularity of, 133
structure impacting interaction with other

components, 179
Compression, succinctness in software

development, 144
Condition coverage, test coverage metrics, 77
Configuration management (CM)

automated promotion, 118–119
automated test scripts, 128
automation of configuration management

activities, 111–113
branching strategies, 123
building from scratch, 117–118
collapsing branches, 124–125
competing priorities in, 109
continuous integration and, 113–114
department focused on, 108
dependencies and, 9
documenting software, 126–127
generating documentation, 128
incremental documentation, 127
overview of, 107–108
push-button release, 121–123
pushing documentation to later iterations of

release, 127–128
release management, 115
responsibilities for, 109–110
rollback execution, 120
single source repository, 123–124
sources of software debt, 3
spike branches, 125–126
summary, 128–130
tracking issue collaboratively, 114
transferring responsibilities to team,

110–113
version management, 115–117

Consumers, isolating from direct consumption
of services, 142

Continuous deployment, 122–123

Continuous design
as alternative to up-front design, 183–185
tools supporting, 164–165

Continuous integration (CI)
feedback mechanisms in, 58
incremental design and, 162
overview of, 113–114
release stabilization phase and, 39–40
whiteboard design sessions, 165
XP practices, 227

Continuous transfer of knowledge. See
Knowledge, continuous transfer

Conway, Melvin, xviii
Conway’s Law, xviii
CoPs (Communities of practice), 218
Copy-and-paste

avoiding duplication of code, 21
building from scratch vs., 117–118

Corrective maintenance, of software
maintenance, 135

Costs of technical debt, increasing over time,
23–24

COTS (Commercial off-the-shelf) products, 8
Courage, XP values, 227
Create, retrieve, update, and delete (CRUD),

component capabilities and, 175
Cross-fertilization, characteristics of self-

organizing teams, xxvi
Cross-functional teams

collaborative team configurations, 206–208
component shepherds, 214–215
creating, 44, 201
cross-team mentors, 214
feature team, 211–214
integration team, 208–211
self-organizing, xxv–xxvii
virtual teams, 215–217

Cross-team mentors, sharing knowledge across
teams, 214

CRUD (create, retrieve, update, and delete),
component capabilities and, 175

CruiseControl, for continuous integration, 113
Crystal, 226–228

INDEX 233

Cubicles, impact on collaboration, 170
Cunningham & Cunningham, Inc., 16
Cunningham, Ward, 15–16, 18, 145, 148, 226
Customers

getting feedback from, 118–119
on-site customers as XP practice, 227

Cutting corners, as reaction to schedule
pressure, 20

D
Database schemas, generating visual models of

software design, 166
Deadlines. See also Schedule pressure, 154
Decay, free of, 182
Decision coverage, test coverage metrics, 77
Decision making

application design and, 154
by development managers, 89–90
as factor in design decay, 155

Defects/bugs
automating tests of defect fixes, 90–91
free of, 182
maintenance teams used for production

issues, 88
quality debt and, 82–83, 87–88
risk-based testing vs. regression testing, 9
software issues, 50–51
stabilization periods and, 10

Deliverables, iterations and, 44
Delivery

Agile focus on frequent delivery, 109
balancing delivery for business gain with

changeability, 13
factors impacting decline in delivery results, 12
increased costs of delivery overtaking value of

implementing new features, 5
rapid delivery at expense of software debt, 2–4
test automation and, 94–95

Dependencies, configuration management and, 9
Deployment

profiles, 167
requests, 109

Depreciation, of software assets. See Software
asset depreciation

Design
in Agile development, xxii–xxv
automating, 38
continually evolution of, 21
decay, 154–155
executable. See Executable Design
review, 147
in S.A.I.D., 178, 183–186
of software. See Designing software
tools for, 164–166

Design debt
abuse stories emphasizing need for new

functions, 136–138
application programming interfaces (APIs),

144–146
architectural description, 133–134
changeability, 138–139
cost of not addressing, 135–136
design review, 147
evolving tools and infrastructure

simultaneously, 134–135
modularity, 132–133
pair programming, 147–149
retrospectives, 149–150
review sessions, 146–147
robustness, 131–132
services, 141–144
sources of software debt, 3
summary, 150–151
user interfaces, 139–141

Design patterns
Adapter design pattern, 65
Gang of Four (GOF), 21

Design Patterns: Elements of Reusable Object-
Oriented Software (Gamma, Helm, Johnson,
Vlissides), 65

Designing software
application design, 153–154
assessing “good”-ness of, 155–156
common environment supporting, 166–167
design tools, 164–166
incremental approach, 156–158
reasons for design decay, 154–155
simplicity in, 158–160

234 INDEX

Designing software (continued)
summary, 171–172
team tools for effective design, 163–164
work area configuration, 167–170
working agreements, 170–171
Wright model for incremental design,

160–162
Deutsch, Peter, 143
Developers, dealing with bad code, 1–2
Development. See Agile development; Software

development
Development managers, decision making by,

89–90
Diagrams

for application structure, 179–180
choosing format for, 187–188
in enterprise architecture, 177
in modeling, 186

Distributed computing, fallacies of, 143
Documentation

forms of, 127
generating, 128
incremental, 127
overview of, 126–127
pushing to later iterations of release, 127–128
reducing, 76

Done, definition of
ramifications of, 48
teams creating own definition, 45–47
teams having visible display of, 44–48

Driver, in pair programming, 203
DSDM (Dynamic Systems Development

Model), 226–228
Duplication, of code

practices countering, 20–21
reasons for, 20

Dupuy, Paul J., 191
Dynamic Systems Development Model

(DSDM), 226–228

E
Eclipse IDE, platforms supporting continuous

unit test execution, 62
Email, as collaboration tool, 168–169
Enhancements, as software issue, 50–51

Enterprise architecture, 174, 176–177
Errors

rolling back on, 120
unit tests in notification of, 35

Estimation, allowing for variability in, 19
Evert, Earl, xv–xix
Exact Method, in refactoring, 42
Exceptions, runtime, 26–28
Executable Design

continuous unit test execution, 61–62
modeling constraints with unit tests, 72–76
modeling sessions and, 71–72
Need-Driven Design, 65–68
practices of, 59
principles of, 55–59
refactoring in, 62–65
software design beyond TDD, 76
summary, 79–80
test automation, 59–61
Test-Driven Development (TDD), 68–70
transparent code analysis, 77–79

Experience/Expertise
impact on technical debt, 17–18
importance of relevant experience, 217–218
lack of experience as factor in design decay,

154
limitations in available expertise impacting

software debt, 8
Extreme Programming Installed (Jeffries), 164
Extreme Programming (XP)

based on values of communication, simplicity,
feedback, and courage, 226–227

collocation of team members, 40
continuous integration in, 113
development of, 226
effective use of, 228
feedback mechanisms in, 58
pair programming in. See Pair programming
practices, 227
Scrum teams using, 162
simple design in, 158
Test-Driven Development (TDD), 37
testing approach in, 59
up-front design needed in incremental

approach, 156–158

INDEX 235

F
Failures

single point, 114
unit tests in notification of, 35

Familiarity, conserving over system lifetime, 134
FDD (Feature-Driven Development), 226–228
Feathers, Michael, 37
Feature development

gradually increasing feature throughput, 25
quality debt hampering, 82
reducing velocity of feature delivery, 89–90
small batch approach to, 42
software debt impacting implementation of,

4–5
testing difficulties result in design decay, 155

Feature-Driven Development (FDD), 226–228
Feature team

common issues with, 212
compared with integration team, 210–211
effectiveness in Agile development, 212
overview of, 211–214

Feedback
automated in configuration management,

111–113
automated promotion as tool for getting

customer feedback, 118–119
cycles in test infrastructure, 60
from evolution processes, 134
identifying thresholds for providing, 58
performance, stress, and load tests for, 86–87
in small batch approach to development, 42
XP values, 226

Fires
competing priorities in configuration

management, 109
defining, 92
handling, 91
software issues, 50–51

Fit acceptance testing tool, 101–102
Fixtures, unit test patterns, 36
Flaws, free of, 182
Flor, N. V., 149
Foote, Brian, 28
Fowler, Martin, 16, 62

Functional requirements
approach to uncertainty in, 41–42
as factor in design decay, 155

Functional tests
automated promotion aiding, 118
unit tests compared with, 93

G
Gabriel, Richard, 144–145
Gamma, Eric, 65
Gang of Four (GOF), 21
Get it “right” the first time

patterns of technical debt, 21–22
principles of Executable Design and, 56

Get it “right” the third time
patterns of technical debt and, 22, 30
principles of Executable Design and, 56–57

Global systems, evolution of, 134
GOF (Gang of Four), 21
Golden, Jonathon, 191
Graphical user interface (GUI), 96
Growth, continuing over system lifetime, 134
GUI (graphical user interface), 96

H
Habitability

ability of software to change, 145
quick transfer of knowledge accompanying

change, 146
Helm, Richard, 65
Hendrickson, Chet, 57
Heusser, Matt, 57
HTML, generating documentation, 128
Hudson application, for continuous integration,

113
Hunt, Andy, 195
Hutchins, E. L., 149

I
IDEs, in common environment, 167
IM (Instant Messaging)

alternative to collocation of team members,
169

as collaboration tool, 168

236 INDEX

Implementation, of software
software debt impacting, 4–5
trade off between implementation and

maintenance and, 8
Incident management, 114
Incremental development

Acceptance Test-Driven Development
(ATDD) and, 96

approach to software design, 156–158
Wright model for incremental design, 160–162

Independent Verification and Validation
(IV&V), 102–104

Information radiators, 41
Infrastructure, evolving, 134–135
Install procedures, 111
Instant Messaging (IM)

alternative to collocation of team members,
169

as collaboration tool, 168
Integration

complexity of integration strategies, 9
continuous. See Continuous integration (CI)
late integration impacting schedule, 19

Integration team
compared with feature team, 210–211
component team on, 208–211
product definition team on, 208
product owners on, 208

Integration tests
automated promotion aiding, 118
unit tests compared with, 93

Integrity, S.A.I.D., 178, 181–182
Interface controls, referencing in acceptance

tests, 100–101
Internal quality, sustaining

close collaboration in, 40–41
continuous integration for, 39–40
creating potentially shippable product

increments, 48–50
defining “done,” 44–48
discipline in approach to, 31–32
early identification of problems, 34
refactoring, 42–43
single work queues, 50–52

small batch approach to work, 41–42
static code analysis tools for, 37–39
summary, 52–53
sustainable pace, 32–34
unit tests for, 34–37

International Organization for Standardization
(ISO), 135

Internet Relay Chat (IRC)
alternative to collocation of team members, 169
as collaboration tool, 168

Inversion of control, in software design, 56
ISO (International Organization for

Standardization), 135
Iterations

deliverables and, 44
documentation and, 127–128
when to conduct technology evaluations,

197–198
IV&V (Independent Verification and

Validation), 102–104

J
Javadoc, 128
Jeffries, Ron, 148, 164, 226
Jitter, 72–75
Johnson, Ralph, 65

K
Kerth, Norman L., 149
Kessler, Robert R., 148
Keyword-based tools, supporting ATDD, 98
Knowledge, continuous gathering, 154
Knowledge, continuous transfer

design review, 147
pair programming, 147–149
practices supporting, 146
retrospectives, 149–150

Knowledge, sharing. See Sharing knowledge

L
Lacey, Mitch, 204
Larman, Craig, 211
“Laws of Software Evolution” (Lehman), 134
Learning, transfer of. See also training, 223

INDEX 237

Legacy code/software
Big Ball of Mud architecture and, 28
difficult of working with, 13
limitations in expertise available to work on, 8

Lehman, Meir Manny, 134
Lewis, Robert O., 102
Like-to-like migration, 6–7
List of work, principle of maintaining only one,

26, 92–93
Liu, Charles, 191
Load tests, 86–87
Lunch and learn, 218

M
Maintenance, of software

break/fix mentality and, 83–84
competing priorities in configuration

management, 109
ISO categories of, 135
tools supporting, 76
trade off between implementation and, 8

Maintenance teams, using for production issues, 88
Management

abuse of static code analysis, 39
configuration management. See

Configuration management (CM)
difficulty in quantifying costs of technical debt

for, 17
freedom and self control, 222–223
incident management, 114
release management. See Release management
source control management, 40
version management. See Version

management
Marick, Brian, 94
Martin, Robert C., 63, 69–70
Maven, for version management, 112–113
McConnell, Steve, 17
Mentors, cross-team, 214
Metaphors, XP practices, 227
Metrics, test coverage, 77
Modeling

constraints with unit tests, 72–76
generating artifacts, 188

overview of, 186
pros and cons of modeling sessions, 71–72
using models for communication, 187–188

Modularity
application structure and, 180
of software design, 132–133
tools supporting ATDD, 97

Monitoring, instrumentation for, 143
Moral hazard, risk exposure and, 57
Multilearning, 223

N
Naming conventions, in test automation, 60–61
Navigator, in pair programming, 203
NDoc, generating documentation with, 128
Need-Driven Design

combining with automated unit tests, 66
consumer and provider perspectives on

integration, 65–66
definition of, 65
steps in, 66, 68

“The New New Product Development Game”
(Takeuchi and Nonaka), xxv, 203, 222–223

Nonaka, Ikujiro, xxv, 203, 222

O
Object Management Group (OMG), 186
Ogunnaike, Babatunde A., 223
OMG (Object Management Group), 186
On-site customers, XP practices, 227

P
Pain threshold, lowering in Executable Design,

57–58
Pair nets (Belshee), 204
Pair programming

benefits of, 149
configurations of, 148
counteracting duplication of code, 20–21
feedback mechanisms in, 58
incremental design and, 162
as means of sharing knowledge, 203–205
overview of, 147–148
XP practices, 227

238 INDEX

Path coverage, test coverage metrics, 77
Patterns of Software (Gabriel), 144
People, are not resources, 200–201
Perfective maintenance, of software, 135
Performance tests, for frequent feedback, 86–87
Personal development, 206
Personal Development Day, 206
Personal training, 218
Phoenix, Mickey, 191
Piecemeal growth, in software development, 145
Ping Pong Pattern, 204
The Planning Game, XP practices, 227
Plans, change and, 20
Platform experience debt

collaborative team configurations, 206–208
communities of practice, 218
component shepherds, 214–215
cross-team mentors, 214
extreme specialization and, 201–202
feature team, 211–214
importance of relevant experience, 217
integration team, 208–211
lunch and learn and brown-bag sessions,

218–219
overview of, 199–200
pair programming as means of sharing

knowledge, 203
people are not resources, 200–201
personal development, 206
personal training, 218
sharing knowledge, 203
sources of software debt, 3
summary, 219–220
training programs, 205
virtual teams, 215–217

Plug-ins, supporting static code analysis, 39
Potentially shippable product increments

creating, 48–50
iterations and, 44
software design and, 158–159

Pressure. See Schedule pressure
Preventive maintenance, of software, 135
Principles of Executable Design, 55–59
Prioritization

of Product Backlog, 50, 52, 208

of production issues, 91
use of abuse stories in, 136–137

Problem identification, benefit of early
identification, 34

Product Backlog
adding technical debt to, 28–30
defects incorporated into, 51–52
feature team and, 211–214
integration team and, 208
prioritization of, 50, 92
in Scrum, 223–225
value in maintaining one list, 93

Product definition team, 208
Product Owner

benefits of Product Backlog to, 52
feature team and, 212
integration team and, 208
prioritization of Product Backlog by, 50,

52, 93
Scrum roles, xxvi, 223

Production issues
creating workflow of, 91–92
tracking collaboratively, 114

Productivity, impact of technical debt on, 17
Products, creating potentially shippable. See

Potentially shippable product increments
Project Team, in Scrum, 223–224
Promiscuous pairing, sharing knowledge and,

204–205
Push-button release

continuous deployment, 122–123
deploy and rollback command, 121–122

Python, supporting continuous unit test
execution, 62

Q
Quality

as an afterthought, 81–82
decisions during release stabilization

phase, 10
declining over system lifetime, 134
enhancing software quality attributes,

xxiii–xxiv
impact on development time, 16
internal. See Internal quality, sustaining

INDEX 239

Quality debt
Acceptance Test-Driven Development

(ATDD), 95–96
acceptance tests, 95
automating acceptance testing, 96–101
automating tests of defect fixes, 90–91
break/fix mentality and, 82–84
compliance with test automation, 102–104
creating production issue workflow, 91–92
increase in unresolved defects as indicator of,

87–88
indicators of, 85
length of regression test execution as indicator

of, 86–87
limitation of using maintenance teams for

production issues, 88
maintaining one list of work, 92–93
quality as an afterthought, 81–82
reducing velocity of feature delivery, 89–90
release stabilization period, 84–85
sample AUT (application under test), 100
sources of software debt, 3
summary, 104–105
test automation, 93–95

R
Ray, W. Harmon, 223
RDoc, 128
Red, Green, Refactor, steps in TDD, 69
Refactoring

alternative to like-to-like migration, 7
deferral as technical debt, 15
incremental design and, 162
mercilous approach to, 62–63
as supplement to unit tests, 42–43
vs. copy-and-paste, 21
when to stop, 64–65
when to use, 64
XP practices, 227

Refactoring (Fowler), 62
Regression testing

length of execution as indicator of quality
debt, 86–87

software debt impacting cost of, 11

Relational operator coverage, test coverage
metrics, 77

Release management
automated promotion and, 118–119
building from scratch, 117–118
configuration management debt and, 115–123
push-button release, 121–123
rollback execution, 120
version management, 115–117

Release stabilization
feature delivery and, 10
integration issues during, 39–40
overview of, 84–85
software debt impacting expense of, 8–10
unpredictability of, 85

Repositories, single source, 123–124
Requirements

ambiguity as factor in design decay, 155
approach to uncertainty in software

requirements, 41–42
Research

budgeting for technology evaluation, 192
overview of, 193–194

Resources, people are not resources, 200
Responsibilities, for configuration management

install and rollback procedures, 111
non-production-related activities, 110–111
overview of, 109–110
transferring to team, 110

Retrospectives, design debt and, 149–150
Return on investment (ROI), impact of software

debt on, 4
Review sessions

design review, 147
overview of, 146–147
pair programming, 147–149
retrospectives, 149–150

Risk-based testing, 9
Risks, moral hazard of insulation from, 57
Roadmaps, as tool for architectural description,

134
Robustness, as measure of design quality, 131–132
ROI (Return on investment), impact of software

debt on, 4

240 INDEX

Roles
continuous interaction among team

members, xxvi
Scrum, 223–224

Rollback
creating strategy for, 120
transferring responsibilities to configuration

management team, 111
Royce, Winston, 84
Ruby, supporting continuous unit test

execution, 62
Runtime exceptions, strategic use in dealing

with technical debt, 25–28

S
S.A.I.D. (structure, alignment, integrity, and

design)
alignment aspect, 180–181
design aspect, 183–186
focusing on different stakeholder perspectives,

178–179
integrity aspect, 181–182
structure aspect, 179–180

Scaling Lean and Agile Development (Larman
and Vodde), 211

Schedule pressure
assumptions and, 19–20
cutting corners as reaction to, 20
factors in design decay, 154
factors in unreasonable commitments, 19
understanding effects of, 33–34

Schwaber, Ken, 83, 223
Scope creep, 19
Scripts

automating test scripts, 128
executing test scripts often, 101
extracting test data from, 100
test scripts in UI testing, 140–141

Scrum
collocating team members, 40
creating working agreements, 171
cross-functional teams in, 44
delivering potentially shippable product

increments, 48, 158–159

development of, 221
effective use of, 226
empirical process control influencing, 223
framework, 223–225
incident management in, 114
integration teams in, 210
as iterative and incremental approach, 51
Product Backlog. See Product Backlog
product development teams in, 222–223
refactoring in, 63
self-organizing teams in, xxv–xxvii
up-front design needed in incremental

approach, 156–158
whiteboard design sessions in, 165
workflow in, 92
XP practices in, 162

ScrumMaster, xxvi, 114, 223
ScrumSprint, 49, 224
“The Second Law of Consulting” (Weinberg), 163
Self-organizing cross-functional teams,

xxv–xxvii
Self-transcendence, characteristics of self-

organizing teams, xxv
Sequential development

release stabilization phase and, 84
vs. creating potentially shippable product

increments, 48–50
Service interfaces, 142
Service-oriented architecture (SOA), 141
Services

APIs for delivering, 144
direct consumption by consumers vs.

isolation, 142
how design debt accumulates in, 141–142
insufficient instrumentation for monitoring, 143
not removing unneeded, 143–144
that do too much, 142

Sharing knowledge
collaborative team configurations, 206–208
component shepherds, 214–215
cross-team mentors, 214
feature team, 211–214
integration team, 208–211
overview of, 203

INDEX 241

pair programming as means of sharing
knowledge, 203–205

personal development, 206
training programs, 205
transfer of learning, 223
virtual teams, 215–217

Simple design, XP practices, 227
“Simple Smalltalk Testing: With Patterns”

(Beck), 35
Simplicity

architectures evolving toward, xxvii
in designing software, 158–160
principles of Agile development, 138–139
values in Extreme Programming, 226

Single list of work, 26, 92–93
Single point of failure, in Agile, 114
Single source repository, in configuration

management, 123–124
Single work queue, in Scrum, 50–52
Skills. See Platform experience debt
Small releases, XP practices, 227
SOA (Service-oriented architecture), 141
Software

as business asset, 83
communicating architecture of. See

Communicating architectures
designing. See Designing software
difficulty of measuring value of, 33
evolution of, 134

Software asset depreciation
business expectations not lessening as

software ages, 12–13
causes of, 181
expertise limitations impacting, 8
like-to-like migration and, 6–7
overview of, 5
regression testing costs increased by, 11
release stabilization phase impacted by, 8–10

Software debt, introduction
accruing as application ages, 3–4
business expectations not lessening as

software ages, 12–13
expertise limitations impacting, 8
feature development impacted by, 4–5

how it accumulates, 1–2
like-to-like migration, 6–7
regression testing costs increased by, 11
release stabilization phase impacted by, 8–10
software asset depreciation and, 5
summary, 14
types of, 3

Software development
Agile development. See Agile development
automating aspects of software design, 38
“big design up front” (BDUF) approach,

xxiv–xxv
changeability and, 138
multiple disciplines in, xxvi
overlapping phases of, 222
relationships of quality to development

time, 16
sequential development. See Sequential

development
sustainable development, 32

Source control management, 40
Specialists

extreme specialization, 201–202
trade off between implementation and

maintenance and, 8
Spikes

branching strategies in configuration
management, 125–126

budgeting for, 192
overview of, 194–195
technology evaluation styles in Agile

development, 192
Stabilization phases/periods. See Release

stabilization
Stakeholders

Agile guidelines for working with, 201
focusing on architectural perspectives of,

178–179
getting feedback from, 118
potentially shippable product increments

aligning, 49–50
quantifying technical debt for, 17
understanding effects of schedule pressure,

33–34

242 INDEX

State, capturing current state in rollback
execution, 120

Statement coverage, test coverage metrics, 77
Static code analysis, 37–39
Sterling, Chris, xxxiii, 131, 173
Stress tests, for frequent feedback, 86–87
Structure, S.A.I.D., 178–180
Sustainable pace, 32–34
Sustaining internal quality. See Internal quality,

sustaining
Sutherland, Jeff, 221, 226

T
Takeuchi, Hirotaka, xxv, 203, 222
tdaemon, unit test execution tool, 62
TDD. See Test-Driven Development (TDD)
Team tools, for software design

common environment, 166–170
design tools, 164–166
location of, 167
overview of, 163–164
working agreements, 170–171

Teams
Agile, xxiii
benefits of close collaboration, 40–41
changes in makeup impacting schedule

pressure, 19
collaborative configurations. See Cross-

functional teams
participation in design review, 147
proximity of team members, 169
self-organizing in Scrum, 222
static code analysis, 37–39
sustaining internal quality, 48–50
whole team approach to testing, 59–60

Technical debt
acknowledging and addressing, 22–23
adding to Product Backlog, 28–30
definition of, 18, 30
origin of term, 16
overview of, 15
patterns of, 19–22
paying off immediately, 23–25
sources of software debt, 3

strategic use of runtime exceptions in dealing
with, 25–28

summary, 30
viewpoints on, 16–18

Technology evaluation
budgeting for, 192–193
need for, 191–192
research, 193–194
spikes, 194–195
summary, 198
tracer bullets, 195–196
when to conduct, 196–198

Technology, updating during like-to-like
migration, 7

Telephone conferencing, as collaboration tool,
168

Test automation
acceptance testing, 96–101
alternative to like-to-like migration, 7
compliance with, 102–104
of defect fixes, 90–91
Executable Design practices, 59–61
functional and integration tests compared

with unit tests, 93
IV&V and, 103
naming conventions, 60–61
regression testing, 11, 86
test scripts, 128
tools supporting maintenance, 76
UI tests, 140–141
unit tests, 36–37
when to automate, 94

Test cases, unit test patterns, 36
Test components, techniques for writing

automated acceptance tests, 99–100
Test-Driven Development (TDD)

benefits of, 37
definition of, 68
difficulties in introducing, 70–71
feedback mechanisms in, 58
incremental design and, 162
laws of, 70
modeling sessions, 71–72
software design beyond TDD, 76

INDEX 243

steps in, 69
whiteboard design sessions, 165

Test scripts
automating, 128
executing often, 101
for UI tests, 140–141

Test suites, unit test constructs, 36
Testing

infrastructure for, 109
“test first” in ATDD, 96
XP practices, 227

Textual formats, for modeling, 186
Third-party estimates, schedule pressure

resulting from, 19
Thomas, Dave, 195
“The Three Laws of TDD” (Martin), 69–70
Tools

for acceptance testing, 101–102
for collaboration, 168–169
for continuous design, 164–165
evolving tools and infrastructure

simultaneously, 134–135
for maintenance, 76
for software design. See Team tools, for

software design
for static code analysis, 37–39
for unit tests, 62

Tools, supporting ATDD
Behaviour-Driven Development (BDD) tools,

98–99
keyword-based tools, 98
modularity tools, 97
visual playback tools, 99

Tracer bullets
budgeting for, 193
overview of, 195–196
technology evaluation styles in Agile

development, 192
Tracking issues collaboratively, 114
Training

personal training, 218
sharing knowledge via, 205

Transparent code analysis
factors inhibiting 100% code coverage, 78
metrics for, 77
static code analysis via dashboard, 78–79

Travel Light principle, in Agile development,
138–139

Trust, facilitating among team members, 41
Turn on/turn off features, in UI frameworks,

139

U
Uncertainty, in software requirements, 41–42
Unified Modeling Language (UML)

approaches to modeling, 186
best methods for software design, 56
diagrams showing application structure,

179–180
generating documentation, 128

Unit tests
combining with Need-Driven Design, 66
constructs of, 35–36
continuous execution of, 61–62
frequent execution of, 36–37
functional and integration tests compared

with, 93
modeling constraints with, 72–76
overview of, 34
patterns, 36
refactoring supplementing, 42–43
what is not a unit test, 37
xUnit frameworks, 35

Up-front design
Agile using continuous design as alternative

to, 183–185
how much needed in incremental approach,

156–158
when to use, 185

Usability, test automation overlooking, 94
User interfaces

acceptance tests, 140
automated UI tests, 140–141
duplicate UI flows, 141

244 INDEX

User interfaces (continued)
GUI (graphical user interface), 96
turn on/turn off features, 139

User stories, abuse stories, 136

V
Validation

of code formatting rules, 37
Independent Verification and Validation

(IV&V), 102–104
of installations, 120

Venners, Bill, 195
Verification, Independent Verification and

Validation (IV&V), 102–104
Version management

basic principle of, 116
with Maven, 112–113
overview of, 115–116
pros and cons of versioning components,

116–117
Video, collaboration tools, 168
Virtual network computer (VNC), 168
Virtual teams

creating, 216
issues with, 216–217
overview of, 215

Visibility flags, in UI frameworks, 139
Visual aids/models

for communication, 186
supporting collaboration, 41
tools supporting ATDD, 99

Vlissides, John M., 65
VNC (Virtual network computer), 168
Vodde, Bas, 211

W
Wall height, impacting team collaboration,

170
War rooms, 167
Waterfall approach

documentation and, 126
sequential development and, 84

Weinberg, Gerald, 163
Whiteboards

access to, 167–168
continuous design and, 164
designing outside code and, 165–166
online, 168

Williams, Laurie, 148, 203
Work area configuration, 167–170
Work, list of, 26, 92–93
Work queues, single in Scrum, 50–52
Work-rate, invariant over system lifetime,

134
Workflow, creating in Scrum, 91–92
Working agreements, team interaction and,

170–171
Wright, David, 160–162

X
XML, API documentation in, 128
XP. See Extreme Programming (XP)
xUnit, 35

Y
Yoder, Joseph, 28

Z
ZenTest, 62

	Contents
	Foreword
	Introduction
	Chapter 4 Executable Design
	Principles of Executable Design
	Executable Design in Practice
	Test Automation
	Continuous Unit Test Execution
	Merciless Refactoring
	Need-Driven Design
	Test-Driven Development (or Design?)
	Modeling Sessions
	Transparent Code Analysis

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

