
542

C H A P T E R 4 2

Filtered Iteration

If you think you’ve arrived, you’re ready to be shown the door.

—Steve Forbes

I can give you my word, but I know what it’s worth and you don’t.

—Nero Wolfe

42.1 Introduction
We saw in Chapter 36 that transforming an iterator is a matter of applying a unary function to the
dereference. Can we do this with a predicate, to filter out items? We might imagine something like
the following:

using recls::stl::search_sequence;

search_sequence files(".", "*", recls::FILES | recls::RECURSIVE);

std::copy(filter(files.begin(), is_readonly())

, filter(files.end(), is_readonly())

, std::ostream_iterator<search_sequence::value_type>(std::cout

, "\n"));

42.2 An Invalid Version
How would this work? Naturally, filter() will be a creator function that returns an instance of
a (suitably specialized) filtering iterator type. We might imagine an iterator class template such as
that shown in Listing 42.1.

Listing 42.1 Invalid Version of filter_iterator
template< typename I // The adapted iterator

, typename P // Unary predicate that will select items

, typename T = adapted_iterator_traits<I>

>

class filter_iterator

{

public: // Member Types

typedef I base_iterator_type;

typedef P filter_predicate_type;

typedef T traits_type;

ch42.qxd 5/24/07 11:14 AM Page 542

typedef filter_iterator<I, P, T> class_type;

typedef typename traits_type::iterator_category iterator_category;

typedef typename traits_type::value_type value_type;

. . . // And so on, for usual members (from adapted_iterator_traits)

public: // Construction

filter_iterator(I it, P pr)

: m_it(it)

, m_pr(pr)

{

for(; !m_pr(*m_it); ++m_it) // Get first "selected" position

{}

}

public: // Forward Iterator Methods

class_type& operator ++()

{

for(++m_it; !m_pr(*m_it); ++m_it) // Advance, then get next pos

{}

return *this;

}

class_type operator ++(int); // Usual implementation

reference operator *(); // Usual implementation

const_reference operator *() const; // Usual implementation

private: // Member Variables

I m_it;

P m_pr;

};

Alas, the statement outputting read-only files shown in Section 42.1 will fail, probably in a
crash. In fact, just about any use of this iterator will fail. There are two problems.

First, in the constructor for the first iterator, the active iterator, it uses the predicate and incre-
ment operator to ensure that the filter_iterator instance has the correct position before it is
used. This correct position is the first one that matches the predicate, and that may be outside the
given range [files.begin(), files.end()).

Second, the constructor for the second iterator, the one that adapts the endpoint iterator, deref-
erences its base iterator instance. It’s a strict part of the STL iterator concept (Section 1.3) that we
can “never [assume] that past-the-end values are dereferenceable” (C++-03: 24.1;5). (This also
means that the implementation of operator *() is not well defined, but that’s moot because
we would have to go through an undefined constructor to get to a point where it could be invoked.)

42.3 Member Iterators Define the Range
It is clear that a filtering iterator instance must have access to a pair of iterators in order to avoid
going outside the valid range. That being the case, our client code will be more verbose, for
example:

42.3 Member Iterators Define the Range 543

ch42.qxd 5/24/07 11:14 AM Page 543

search_sequence files(".", "*", recls::FILES | recls::RECURSIVE);

std::copy(filter(files.begin(), files.end(), is_readonly())

, filter(files.end(), files.end(), is_readonly())

, std::ostream_iterator<search_sequence::value_type>(std::cout

, "\n"));

42.4 So . . . ?
One option might be to default the second endpoint iterator to I(), as follows:

template <. . .>

class filter_iterator

{

. . .

public: // Construction

filter_iterator(I it, P pr, I end = I())

: m_it(it)

, m_end(end)

, m_pr(pr)

{

. . .

private: // Member Variables

I m_it;

I m_end;

P m_pr;

};

However, this relies on the iterator type defining a default-constructed iterator as being equiv-
alent to the endpoint iterator. Though this would work, on a case-by-case basis, for some iterators,
including readdir_sequence::const_iterator (Section 19.3) and findfile_
sequence::const_iterator (Section 20.5), it would not work for others, such as
glob_sequence::const_iterator (Section 17.3). Or, if you prefer, it might work for
std::list, std::deque, std::map, but it can’t work for std::vector and, importantly,
pointers.

Furthermore, providing this facility puts the onus on the user to know whether the assumption
holds for a given iterator, which is both unreasonable and exceedingly likely to lead to failures.
More leaking abstractions! Add the fact that such failures may never exhibit in testing, instead
lurking until your product is out in the field, and this option is totally unacceptable.

“Wait!” you might say doggedly, “We can specialize the creator function to reject pointers.”
And so we can. However, there are plenty of iterators that are not pointers that do not satisfy the
default-constructor/endpoint equivalence. For one, a random access iterator that is not a pointer
will not do so.

Or you might wonder, “Can’t we specialize to reject random access iterators?” Indeed, that
would help, were it not for the fact that many of the iterators fulfilling other categories will also
fail. In short, there’s no getting away from the following rule and tip.

544 Chapter 42 • Filtered Iteration

ch42.qxd 5/24/07 11:14 AM Page 544

Rule: Never assume that a default-constructed instance of an iterator is equivalent to the
endpoint iterator for the sequence or notional range for which the iterator acts.

Tip: Never use a filtering iterator adaptor that assumes, or allows the user to assume, that
a default-constructed instance of the adapted iterator type is equivalent to the endpoint
iterator.

With this in mind, let’s see how to define a robust filtering iterator component.

42.5 stlsoft::filter_iterator

There’s a fair bit to do in this class, so we’ll tackle iterator refinements in a stepwise fashion. We’ll
start with input and forward iterators.

42.5.1 Forward Iterator Semantics
The handling of forward iterator semantics is shown in Listing 42.2.

Listing 42.2 Definition of filter_iterator Supporting Forward Iteration
template< typename I // The underlying iterator

, typename P // The unary predicate that will select the items

, typename T = adapted_iterator_traits<I>

>

class filter_iterator

{

public: // Member Types

. . . // All usual member types, most via T (adapted_iterator_traits)

public: // Construction

filter_iterator(I begin, I end, P pr)

: m_it(begin)

, m_end(end)

, m_pr(pr)

{

for(; m_it != m_end; ++m_it)

{

if(m_pr(*m_it))

{

break;

}

}

}

public: // Forward Iterator Methods

class_type& operator ++()

{

STLSOFT_MESSAGE_ASSERT("Attempting to increment an endpoint

iterator", m_it != m_end);

42.5 stlsoft::filter_iterator 545

ch42.qxd 5/24/07 11:14 AM Page 545

for(++m_it; m_it != m_end; ++m_it)

{

if(m_pr(*m_it))

{

break;

}

}

return *this;

}

class_type& operator ++(int); // Canonical implementation

effective_reference operator *()

{

return *m_it;

}

effective_const_reference operator *() const; // Same as operator *()

effective_pointer operator ->()

{

enum { is_iterator_pointer_type

= is_pointer_type<base_iterator_type>::value };

typedef typename

value_to_yesno_type<is_iterator_pointer_type>::type yesno_t;

return invoke_member_selection_operator_(yesno_t());

}

effective_const_pointer operator ->() const; // Same as operator ->()

. . .

private: // Member Variables

I m_it;

I m_end;

P m_pr;

};

All member types are defined in terms of those provided by adapted_iterator_traits
(just as is the case with index_iterator, described on the CD). The constructor takes the
[begin, end) iterator pair defining the iterable range, followed by the predicate used for filtering.
Note that the predicate comes last, as a reminder that defaulting the endpoint iterator is a crazy
thing to attempt.

The constructor has to assume that the given base iterator instance specifying the start of the
iterable range may not be one acceptable to the filter predicate and so tests it, possibly increment-
ing until finding one that is. Contrast this with the implementation of operator ++(), which
knows that the current iteration point is acceptable to the filter and increments before it starts the
loop. This is because the user must have previously tested it against the known endpoint filtered in-
stance. This follows the basic idiom in STL that an iterator is determined to be viable by testing its
equality against one that is known to not be.

The necessity to move to an acceptable point in the iteration implies the curious relationship
whereby different start point iterators evaluate, in their filtered form, to be the same. Consider the

546 Chapter 42 • Filtered Iteration

ch42.qxd 5/24/07 11:14 AM Page 546

sequence of integers 0, 2, 4, 5, 6, 7, 8, 9. Using a filter, is_odd, which selects odd numbers, there
are several ways to specify equivalent iterators:

int ints[] = { 0, 2, 4, 5, 6, 7, 8, 9 };

stlsoft::filter(&ints[0], &ints[0] + 8, is_odd()); // Is equivalent to:

stlsoft::filter(&ints[1], &ints[0] + 8, is_odd()); // this

stlsoft::filter(&ints[2], &ints[0] + 8, is_odd()); // and this

stlsoft::filter(&ints[3], &ints[0] + 8, is_odd()); // and this

Each of the iterators in that case actually refers to the element at index 3, whose value is 5,
since that’s the first one in the series that has an odd value.

The remainder of the implementation shown is entirely normal, given what we learned in Sec-
tion 36.4.5 about handling the member selection operator. So far, so good.

42.5.2 Bidirectional Iterator Semantics
I expect you’re ahead of me here. Given the current member variables, we cannot implement

bidirectional iterator semantics because we stand the same risk of stepping outside the iterable
range as discussed in Section 42.2, only this time we would step out of the beginning rather than
the end. The remedy in this case is to remember the starting point. Hence, we add another member
variable of the base iterator type, m_begin, and adjust the implementation of the constructor ac-
cordingly, as shown in Listing 42.3.

Listing 42.3 Member Variables Supporting Bidirectional Iteration
template <typename I, typename P, typename T>

class filter_iterator

{

. . .

public: // Construction

filter_iterator(I begin, I end, P pr)

: m_it(begin)

, m_begin(begin)

, m_end(end)

, m_pr(pr)

{

. . .

}

. . .

private: // Member Variables

I m_it;

I m_begin;

I m_end;

P m_pr;

};

42.5 stlsoft::filter_iterator 547

ch42.qxd 5/24/07 11:14 AM Page 547

Using this member, the implementation of the bidirectional iterator methods is surprisingly
simple, as shown in Listing 42.4.

Listing 42.4 Predecrement Operators
. . .

public: // Bidirectional Iterator Methods

class_type& operator --()

{

STLSOFT_MESSAGE_ASSERT("Attempting to increment an endpoint

iterator", m_it != m_begin);

for(--m_it; m_it != m_begin; --m_it)

{

if(m_pr(*m_it))

{

break;

}

}

return *this;

}

class_type& operator --(int); // Canonical implementation

. . .

Now we can enumerate forwards as well as backwards:

template <typename I>

void fn(I from, I to)

{

++it;

--it;

}

struct is_odd;

int ints[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

fn(stlsoft::filter(&ints[0], &ints[0] + 8, is_odd())); // Well-formed

42.5.3 Random Access Iterator Semantics
This one is very simple. There’s no reasonable way to implement random access iterator se-

mantics in a filtering iterator, so we don’t do it. The only conceivable way would be extremely ex-
pensive since each apparent random access operation would involve an element-by-element
iteration to identify which elements match the predicate. Even if this weren’t the case, I simply
can’t conceive of a scenario in which random access filtering is meaningful. I may be wrong, of
course, in which case please write to me and disabuse me of my erroneous assumptions.

548 Chapter 42 • Filtered Iteration

ch42.qxd 5/24/07 11:14 AM Page 548

Recommendation: Eschew support for random access (and higher) iterators in filtering
iterators.

42.6 Constraining the Iterator Category
Given that we’ve chosen to eschew random access iterator semantics, we actually have a problem
on our hands. If we adapt a random access iterator, the adapted form will think it’s a random access
iterator—the iterator_category member type of the adapted type will be std::
random_access_iterator_tag—even though we’ve supplied it only with bidirectional it-
erator semantics. This is a problem. As soon as we try to pass this off to an algorithm that has a
specialized form for handling random access iterators, things are going to get ugly. What you tend
to see in this case is an enormous list of error messages, and ensconced within, if you’re lucky
enough to spot it, will be some mention of a missing operator -(), or operator +(), or
some other operation specific to random access iterators.

You might wonder why we’ve not come across this with the other adaptors. Well,
transform_iterator (Chapter 36), member_selector_iterator (Chapter 38), and
index_iterator (extra chapter on the CD) are all able to exhibit the iterator category of their
base type; filter_iterator, by its very nature, cannot.

Thus, the final act of cunning is to use the min_iterator_category template and its 16
full specializations, each of which corresponds to a permutation of two standard iterator categories.
The primary template and several of the specializations are shown in Listing 42.5. In each permu-
tation, the member type iterator_category is defined as the lesser refinement of the two
specializing types.

Listing 42.5 Primary Template and Some Specializations of min_iterator_category
template< typename C1 // First category

, typename C2 // Second category

>

struct min_iterator_category;

template <>

struct min_iterator_category< std::input_iterator_tag

, std::input_iterator_tag

>

{

typedef std::input_iterator_tag iterator_category;

};

template <>

struct min_iterator_category< std::forward_iterator_tag

, std::input_iterator_tag

>

{

typedef std::input_iterator_tag iterator_category;

};

. . .

42.6 Constraining the Iterator Category 549

ch42.qxd 5/24/07 11:14 AM Page 549

template <>

struct min_iterator_category< std::bidirectional_iterator_tag

, std::random_access_iterator_tag

>

{

typedef std::bidirectional_iterator_tag iterator_category;

};

template <>

struct min_iterator_category< std::random_access_iterator_tag

, std::random_access_iterator_tag

>

{

typedef std::random_access_iterator_tag iterator_category;

};

The traits class is used to limit the iterator_category member type to the maximum
sensible refinement that is supportable (Listing 42.6).

Listing 42.6 Definition of filter_iterator
template< typename I // The underlying iterator

, typename P // The unary predicate that will select the items

, typename T = adapted_iterator_traits<I>

>

class filter_iterator

{

public: // Member Types

. . .

typedef filter_iterator<I, P, T> class_type;

typedef typename min_iterator_category<

typename traits_type::iterator_category

, std::bidirectional_iterator_tag

>::iterator_category iterator_category;

. . .

42.7 Summary
We’ve seen that a filtering iterator adaptor must be instantiated from an iterator pair defining the
viable range of the adapted range. It’s slightly inconvenient to the user but is the only workable so-
lution. We’ve also seen that by applying the adapted_iterator_traits traits class, we can
achieve a simple definition for what is a sophisticated iterator adaptation.

42.8 On the CD
The CD contains a preview of how filtering can be more simply achieved using the ranges con-
cept, which will be described in Volume 2.

550 Chapter 42 • Filtered Iteration

ch42.qxd 5/24/07 11:14 AM Page 550

