
212

C H A P T E R 2 3

The Fibonacci Sequence

If liberty means anything at all, it means the right to tell people what they do not want to hear.

—George Orwell

Subtlety chases the obvious in a never-ending spiral and never quite catches it.

—Nero Wolfe

23.1 Introduction
Those who enjoy mathematical elegance may share my appreciation of the Fibonacci sequence and
its associated relationship, the Golden Ratio. In this chapter we’re going to look at how we might
represent this mathematical sequence as a collection, in the form of an STL sequence class, and
then consider whether it might be better represented as an iterator, before finally coming back to
seeing how a range-limited sequence is the most discoverable representation.

Unlike the other STL extensions described in this book, this one does not derive from any li-
braries. It is entirely pedagogical. As such, I trust you’ll bear with me in some of the less practica-
ble fancies used to illuminate the STL extension issues covered. For those who prefer real
examples, worry not, this is the only such fanciful example in the whole book.

23.2 The Fibonacci Sequence
The Fibonacci sequence is a series of numbers, starting with the pair 0 and 1, where the value of
each element is calculated as the sum of the two preceding it. Hence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,
55, 89, 144, 233, 377, 610, 987, 1,597, 2,584, 4,181, 6,765, and so on, ad infinitum.

The ratio of each entry in the series to its next tends toward an irrational constant, known as
the Golden Ratio, whose value is approximately 1.61803398875. The Golden Ratio appears to
crop up in all kinds of places in the universe, from the ratio of aesthetically pleasing picture frames
to the twirls of conch shells to the dimensions of the Parthenon. If you’ve not come across it be-
fore, I recommend you check it out.

23.3 Fibonacci as an STL Sequence
My first instinct when thinking about how to represent a mathematical sequence was to use an
STL-compliant sequence, as shown in Listing 23.1. As we’ll see, however, this is not as nice a fit
as we might think. Since this is a notional collection—there are no elements in existence any-
where—the enumeration of the values in the sequence is carried out in the iterator, an instance of

ch23.qxd 5/24/07 11:03 AM Page 212

the member class const_iterator, whose element reference category is by-value temporary
(Section 3.3.5).

Listing 23.1 Fibonacci_sequence Version 1 and Its Iterator Class
class Fibonacci_sequence

{

public: // Member Types

typedef uint32_t value_type;

class const_iterator;

. . .

public: // Iteration

const_iterator begin() const

{

return const_iterator(0, 1);

}

const_iterator end() const;

. . .

};

class Fibonacci_sequence::const_iterator

: public std::iterator< std::forward_iterator_tag

, Fibonacci_sequence::value_type, ptrdiff_t

, void, Fibonacci_sequence::value_type // BVT

>

{

public: // Member Types

typedef const_iterator class_type;

typedef Fibonacci_sequence::value_type value_type;

public: // Construction

const_iterator(value_type i0, value_type i1);

public: // Iteration

class_type& operator ++();

class_type operator ++(int);

value_type operator *() const;

public: // Comparison

bool equal(class_type const& rhs) const

{

return m_i0 == rhs.m_i0 && m_i1 == rhs.m_i1;

}

. . .

private: // Member Variables

value_type m_i0;

value_type m_i1;

};

inline bool operator ==(Fibonacci_sequence::const_iterator const& lhs

, Fibonacci_sequence::const_iterator const& rhs)

23.3 Fibonacci as an STL Sequence 213

ch23.qxd 5/24/07 11:03 AM Page 213

{

return lhs.equal(rhs);

}

inline bool operator !=(Fibonacci_sequence::const_iterator const& lhs

, Fibonacci_sequence::const_iterator const& rhs)

{

return !lhs.equal(rhs);

}

Listing 23.2 shows the implementations of the only two nonboilerplate methods of
const_iterator.

Listing 23.2 Version 1: Preincrement and Dereference Operators
class_type& Fibonacci_sequence::const_iterator::operator ++()

{

value_type res = m_i0 + m_i1;

m_i0 = m_i1;

m_i1 = res;

return *this;

}

value_type Fibonacci_sequence::const_iterator::operator *() const

{

return m_i0;

}

Each time the preincrement operator is called, the next result is calculated and moved into
m_i1, after m_i1 is first moved into m_i0. The current result is held in m_i0. Note that the
const_iterator could just as easily support the bidirectional iterator category, wherein the
predecrement operator would subtract m_i0 from m_i1 to get the previous value in the sequence.
I’ve not done so simply because the Fibonacci is a forward sequence.

Because the sequence is infinite, end() is defined to return an instance of const_
iterator whose value is such that it will never compare equal() to a valid iterator. (The
implementation shown in Listing 23.3 corresponds to Fibonacci_sequence_1.hpp on
the CD.)

Listing 23.3 Version 1: end() Method
class Fibonacci_sequence

{

. . .

const_iterator end() const

{

return const_iterator(0, 0);

}

. . .

Let’s now use this definition of the sequence:

214 Chapter 23 • The Fibonacci Sequence

ch23.qxd 5/24/07 11:03 AM Page 214

Fibonacci_sequence fs;

Fibonacci_sequence::const_iterator b = fs.begin();

for(size_t i = 0; i < 10; ++i, ++b)

{

std::cout << i << ": " << *b << std::endl;

}

This works a treat, giving the first ten elements in the Fibonacci sequence: 0–34. However, as
we well know, iterators like to work with algorithms and usually take them in pairs, for example:

std::copy(fs.begin(), fs.end()

, std::ostream_iterator<Fibonacci_sequence::value_type>(std::cout

, " "));

Unfortunately, there are two problems with this statement. First, it runs forever, which repre-
sents somewhat of an inconvenience when you want to use your computer for something worth-
while, such as updating it with the latest virus definitions and operating system patches to fill up
that last 12GB of disk you were saving for your database of fine European chocolatiers. You might
wonder whether we will be saved when the overflowed arithmetic happens on a result whose value
modulo 0x10000000 is 0. Although this does eventually occur—after 3,221,225,426 iterations, as
it happens—the iterator still does not compare equal to the end() iterator because its m_i1 mem-
ber is nonzero. Since it is not possible for both members to be 0 at one time, the code will loop
forever.

Second, after the forty-seventh iteration, the results returned are no longer members of the Fi-
bonacci sequence but pseudo junk values as a consequence of overflow of our 32-bit value type.
As we know, computers don’t generally like to live in the infinite, and integral types are particu-
larly antipathetic to unconstrained ranges.

23.3.1 Interface of an Infinite Sequence
We’ll deal with the first problem first. Since the Fibonacci sequence is infinite, one option

would be to make the Fibonacci_sequence infinite also. This is easily effected by removing
the end() method. The sequence is now quite literally one without end. Now users of the class
cannot make the mistake, shown earlier, of passing an ostensibly bounded [begin(), end())
range to an algorithm since there is no end.

In my opinion, this is the most appealing form from a conceptual point of view because the
public interface of the sequence is representing its semantics most clearly. However, it’s not terri-
bly practical because, as we’ve already seen, overflow occurs after a soberingly finite number of
steps. For infinite sequences whose values are bound within a representable range, this would be a
good candidate approach, but it’s not suitable for the Fibonacci sequence.

Note that this reasoning also rules out the possible alternative implementations of Fibonacci
sequences as independent iterator classes or as generator functions.

23.3 Fibonacci as an STL Sequence 215

ch23.qxd 5/24/07 11:03 AM Page 215

23.3.2 Put a Contract on It
Let’s now take the sensible step of putting some contract programming protection into the

preincrement operator before we attempt to use the sequence. (The implementation shown in List-
ing 23.4 corresponds to Fibonacci_sequence_2.hpp on the CD.)

Listing 23.4 Version 2: Preincrement Operator
class_type& Fibonacci_sequence::const_iterator::operator ++()

{

STLSOFT_MESSAGE_ASSERT("Exhausted integral type", m_i0 <= m_i1);

value_type res = m_i0 + m_i1;

m_i0 = m_i1;

m_i1 = res;

return *this;

}

In executing the std::copy statement shown previously, we find that the assertion is fired
on the increment after output of the value 2,971,215,073. At this point, the previous value was
1,836,311,903, so we would expect m_i1 to be 4,807,526,976. However, that exceeds the maxi-
mum value representable in a 32-bit unsigned integer (4,294,967,295), so the result is truncated (to
512,559,680), and the assertion fires. Hence, although we’ve managed to iterate 48 items, the last
increment left the iterator in an invalid state, an unincrementable state, so there are only actually 47
viable enumerable values from a 32-bit representation.

I want to stress the distinction between providing a usable interface and guarding against mis-
use, well exemplified in this case. Thus far, our Fibonacci sequence does not have a usable inter-
face—since its failure is a matter of surprise—but now, with the introduction of the assertion, it
does have protection against its misuse.

23.3.3 Changing Value Type?
Perhaps a solution lies in using a different value type. Obviously, using uint64_t is only

going to be a small bandage over the problem, allowing us to enumerate 93 steps and get to
7,540,113,804,746,346,429. And once we’re there, we still precipitate a contract violation, indicat-
ing abuse of the sequence.

Maybe floating point is the way to go? (This implementation corresponds to
Fibonacci_sequence_3.hpp on the CD.) Alas, no—32-bit float enters INF territory at
187 entries, 64-bit double at 1,478. Furthermore, since the entries in the sequence are not nicely
rounded 10N values, rounding errors creep in as soon as the exponent value reaches the extent of
the mantissa.

Conceivably, a BigInt type using coded decimal evaluation would be able to go infinite, but
it would have correspondingly poor performance. (Readers are invited to submit such a solution. In
reward I can promise the unquantifiable fame that will come from having your name on the book’s
Web site.)

216 Chapter 23 • The Fibonacci Sequence

ch23.qxd 5/24/07 11:03 AM Page 216

23.3.4 Constraining Type
To avoid floating-point inaccuracies, we would like to constrain the value type to be integral.

To avail ourselves of the maximum range of the type and to catch overflow, we would like to con-
strain the value type to be unsigned. These constraints are achieved by providing a destructor for
the sequence for this very purpose, as shown in Listing 23.5.

Listing 23.5 Constraints Enforced in the Destructor
Fibonacci_sequence::~Fibonacci_sequence() throw()

{

using stlsoft::is_integral_type; // Using using declarations . . .

using stlsoft::is_signed_type; // . . . to fit in book. ;-)

STLSOFT_STATIC_ASSERT(0 != is_integral_type<value_type>::value);

STLSOFT_STATIC_ASSERT(0 == is_signed_type<value_type>::value);

}

You might think it strange to put in such constraints in a non-template class. The reason is
simple: Maintenance programmers (including those who maintain their own code, hint, hint) are
wont to change things without putting in all the big-picture research (i.e., reading all documenta-
tion). By putting in constraints, you are literally constraining any future changes from violating the
design assumptions, or at least from doing so without extra thought.

Tip: Use constraints even in non-template classes to restrict and inform future mainte-
nance activities.

I prefer to place constraints in the destructor of template classes because it’s the method we
can most rely on being instantiated. In non-template classes, I continue to use it for consistency.

23.3.5 Throw std::overflow_error?
One possible approach is to change the precondition enforcement assertion to be a legitimate

runtime condition and to throw an exception. (The implementation shown in Listing 23.6 corre-
sponds to Fibonacci_sequence_4.hpp on the CD.)

Listing 23.6 Version 4: Preincrement Operator
class_type& Fibonacci_sequence::const_iterator::operator ++()

{

if(m_i1 < m_i0)

{

throw std::overflow_error("Exhausted integral type");

}

value_type res = m_i0 + m_i1;

. . . // Same as Version 2

Although, in strict terms, this is a legitimate approach, it really doesn’t appeal. The so-called
exceptional condition is not an unpredictable emergent characteristic of the system at a particular
state and time but an entirely predictable and logical consequence of the relationship between the

23.3 Fibonacci as an STL Sequence 217

ch23.qxd 5/24/07 11:03 AM Page 217

modeled concept and the type used to hold its values. Using an exception in this case just smacks
of Java hackery.

I think it’s clear at this point that we should either decide to represent the Fibonacci sequence
as something that is genuinely infinite, with suitable indicators, or provide a mechanism for pro-
viding finite endpoints.

23.4 Discoverability Failure
Although the limit of a Fibonacci sequence for a given unsigned integral type is predictable and
constant, requiring users of a type to know this either a priori or a posteriori is a bit rich, to say the
least. Quite simply, people would not use such a component.

Our three current candidate implementations present unappealing alternatives.

1. Define the sequence without end(). This precludes any use of (begin(), end()) argu-
ments to algorithms, but it does not preclude two iterators derived from begin() being used
with algorithms. Further, there’s nothing stopping users from gaily advancing their
begin()-derived iterator past the point of overflow, and nothing to guide them in avoiding
this.

2. Define the sequence with end() and rely on users’ common sense not to use end() for any-
thing at all. If they go into overflow, their program will die in a contract violation.

3. Throw an exception when overflow occurs. Despite this giving a tepid feeling of robustness,
it’s just as much a discoverability transgression as the other two options, and it also encour-
ages a style of programming that is rightly confined to the world of virtual machines and
seven-figure installation and deployment consultancy contracts.

Tip: Avoid using exceptions for failures that are a predictable result of the normal use of a
component.

So, either the Fibonacci sequence is not something we should attempt to play with in an STL
kind of way, or we need to apply some “finity” to it.

23.5 Defining Finite Bounds
There are two clear and related solutions to this problem.

1. Have end() return an iterator in the range [begin(), ∞) whose value does not overflow the
value type.

2. Allow the user to specify an upper limit for the effective range provided by the sequence, rep-
resented in the value returned by end(). This value would have to be within the valid range.

A good implementation would provide both, where solution 1 is merely the default form of so-
lution 2. We’ll examine this by looking at the user-specified limits first.

218 Chapter 23 • The Fibonacci Sequence

ch23.qxd 5/24/07 11:03 AM Page 218

23.5.1 Iterators Rule After All?
Before we proceed, I must cover an issue that some readers may now be considering. Earlier I

ruled out the representation of Fibonacci sequences as independent iterators. The cunning linguists
among you may be considering a form that does exactly that, as in:

std::copy(Fibonacci_iterator(), Fibonacci_iterator() + 40

, std::ostream_iterator<Fibonacci_sequence::value_type>(std::cout

, " "));

In this case, the putative Fibonacci_iterator would implement the addition operator,
such that the expression Fibonacci_iterator() + 40 would evaluate to an instance that
would terminate the iteration of a default-constructed iterator on its fortieth increment. At first
blush this seems like an adequate solution to the problem.

However, the problem is that use of the addition operator on an iterator indicates that the itera-
tor type is a random access iterator. Further, random access iterators have constant time complex-
ity. To be sure, we’re perforce violating pure STL requirements here and there in STL extension.
But such violations are never done without due care and particular attention to the effects on dis-
coverability and the Principle of Least Surprise. For example, it’s hard to imagine that users of the
InetSTL findfile_sequence class (Section 21.1), an STL collection that provides iteration
of remote FTP host directory contents, will assume any particular complexity guarantees, given the
vagaries of Internet retrieval. However, I suggest that it’s far more likely that someone would as-
sume constant time seeing pointer arithmetic syntax on an iterator.

Further, since a user will reasonably expect to be able to type *(Fibonacci_iterator()
+ 40) if he or she can type Fibonacci_iterator() + 40, we’d have to implement full
random access semantics. But, as far as I know, there’s no constant-time function integral formula
with which you can determine the N th value of the Fibonacci sequence. (There are a couple of for-
mulas that may be used, but they rely on the square root of five, which would rely on floating-point
calculation. One of them is ((1 + sqrt(5)) / 2) - ((1 - sqrt(5)) / 2) ^ n. I’m
just enough of a computer numerist to know that I know far too little about floating point to be
confident of writing a 100% correct sequence using floating-point calculations.)

Thus we would have to perform a number of forward or backward calculations to arrive at the
required value, which is a linear-time operation. This would be a very unobvious violation of a
user’s expectations and is, in my opinion, unacceptable.

Tip: Beware of changing the complexity of built-in operators, particularly for random ac-
cess iterators.

(Of course, we could provide amortized constant time by storing the calculated values in an
array. We could go further and provide a static member array with precalculated values. We could
even use template metaprogramming and effect compile-time calculation. But the purpose of this
chapter is pedagogical. Feel free to do any of these, and let me know how it goes. I’ll gladly post
interesting solutions on the book’s Web site.)

23.5 Defining Finite Bounds 219

ch23.qxd 5/24/07 11:03 AM Page 219

23.5.2 Constructor-Bound Range
One use case of a sequence might be to retrieve the first N elements in the sequence. It would

be straightforward to implement the sequence and iterator classes such that you would specify the
number of elements in the sequence constructor, which would then return a bounding iterator in-
stance via its end() method, as shown in Listing 23.7. (This corresponds to Fibonacci_
sequence_5.hpp on the CD.)

Listing 23.7 Version 5: Constructor and end() Method
public: // Construction

explicit Fibonacci_sequence(size_t n) // Max # entries to enumerate

: m_numEntries(n)

{}

. . .

public: // Iteration

const_iterator begin();

const_iterator end()

{

return const_iterator(m_numEntries); // Define end of sequence

}

. . .

You could use this as follows:

Fibonacci_sequence fs(25);

std::copy(fs.begin(), fs.end()

, std::ostream_iterator<Fibonacci_sequence::value_type>(std::cout));

This could be implemented by adding an additional m_stepIndex member to const_
iterator, which would be incremented each time operator ++() is called, and by evaluat-
ing equality (in equal()) by comparing the m_stepIndex members of the comparands (List-
ing 23.8).

Listing 23.8 Version 5: const_iterator
class Fibonacci_sequence::const_iterator

: . . . // As shown previously

{

public: // Construction

const_iterator(value_type i0, value_type i1)

: m_i0(i0)

, m_i1(i1)

, m_stepIndex(0)

{}

const_iterator(size_t stepIndex)

: m_i0(0)

, m_i1(0)

220 Chapter 23 • The Fibonacci Sequence

ch23.qxd 5/24/07 11:03 AM Page 220

, m_stepIndex(stepIndex)

{}

public: // Iteration

class_type& operator ++()

{

. . . // Perform the advancement summations as before

++m_stepIndex;

return *this;

}

public: // Comparison

bool equal(class_type const& rhs) const

{

return m_stepIndex == rhs.m_stepIndex;

}

. . .

This is a nice solution, and it also allows us to meaningfully support the empty() method.
However, there’s an equally valid use case, that of constraining the enumeration within a given in-
tegral range, for example, to enumerate all entries less than the value 1,000,000,000. The sequence
might look like that shown in Listing 23.9. (This implementation corresponds to
Fibonacci_sequence_6.hpp on the CD.)

Listing 23.9 Version 6: Constructor and end() Method
class Fibonacci_sequence

{

. . .

public: // Construction

explicit Fibonacci_sequence(value_type limit); // Value ceiling

: m_limit(limit)

{}

. . .

public: // Iteration

const_iterator begin();

const_iterator end()

{

return const_iterator(m_limit); // Define sequence ceiling

}

. . .

Comparison would be conducted by the somewhat abstruse implementation of equal()
shown in Listing 23.10. (There’s an overflow bug in here, which I’ve left since this is a pedagogi-
cal class. Try setting the limit to 1,836,311,904 for a 32-bit unsigned value type. If readers want to
implement the full testing for overflow, I’ll be happy to post any correct solutions on the book’s
Web site.)

23.5 Defining Finite Bounds 221

ch23.qxd 5/24/07 11:03 AM Page 221

Listing 23.10 Version 6: const_iterator::equal() Method
bool

Fibonacci_sequence::const_iterator::equal(class_type const& rhs)

const

{

if(0 != m_i1 &&

0 != rhs.m_i1)

{

// Both definitely normal iterable instances

return m_i0 == rhs.m_i0 && m_i1 == rhs.m_i1;

}

else if(0 != m_threshold &&

0 != rhs.m_threshold)

{

// Both definitely threshold sentinel instances

return m_threshold == rhs.m_threshold;

}

else

{

// Heterogeneous mix of the two types

if(0 == m_threshold)

{

return m_i0 >= rhs.m_threshold;

}

else

{

return rhs.m_i0 >= m_threshold;

}

}

}

A more flexible class would accommodate both these usage models. But doing so presents the
sticky problem of how to unambiguously construct an instance of the sequence for either use case.
One solution would be to use a two-parameter constructor, as follows:

. . .

public: // Construction

Fibonacci_sequence(size_t n, value_type limit);

. . .

The parameter for the end-marker type not used would be given a stock value, for example:

Fibonacci_sequence(0, 10000); // This uses a limit of 10,000

Fibonacci_sequence(20, 0); // This gives a sequence of 20 entries

222 Chapter 23 • The Fibonacci Sequence

ch23.qxd 5/24/07 11:03 AM Page 222

Obviously, this is an inelegant and highly error-prone approach. A slightly less revolting alter-
native would be to use an enumeration to indicate the type of end marker required and use a
value_type parameter for both the threshold and the number of entries:

. . .

public: // Member Constants

enum LimitType { thresholdLimit, countLimit };

public: // Construction

Fibonacci_sequence(value_type limit, LimitType type);

. . .

23.5.3 True Typedefs
The best solution uses true typedefs (Section 12.3), which facilitate the unambiguous over-

loading of essentially similar or even identical types. The final implementation of the
Fibonacci_sequence does this, as shown in Listing 23.11. (This corresponds to
Fibonacci_sequence_7.hpp on the CD.) Note the use of precondition enforcements in both
constructors. A valid design alternative would be to throw std::out_of_range (since the
user’s value is not predictable).

Listing 23.11 Version 7: Class Declaration and Traits Class
template <typename T>

struct Fibonacci_traits;

template <>

struct Fibonacci_traits<uint32_t>

{

static const uint32_t maxThreshold = 2971215073;

static const size_t maxLimit = 47;

};

template <>

struct Fibonacci_traits<uint64_t>

{

static const uint64_t maxThreshold = 12200160415121876738;

static const size_t maxLimit = 93;

};

class Fibonacci_sequence

{

public: // Member Types

typedef ?? uint32_t or uint64_t ?? value_type;

typedef Fibonacci_traits<value_type> traits_type;

typedef true_typedef<size_t, unsigned> limit;

typedef true_typedef<value_type, signed> threshold;

class const_iterator;

23.5 Defining Finite Bounds 223

ch23.qxd 5/24/07 11:03 AM Page 223

public: // Construction

explicit Fibonacci_sequence(limit l = limit(traits_type::maxLimit))

: m_limit(l.base_type_value())

, m_threshold(0)

{

STLSOFT_MESSAGE_ASSERT("Sequence limit exceeded"

, l <= traits_type::maxLimit());

}

explicit Fibonacci_sequence(threshold t)

: m_limit(0)

, m_threshold(t.base_type_value())

{

STLSOFT_MESSAGE_ASSERT("Sequence threshold exceeded"

, t <= traits_type::maxThreshold());

}

public: // Iteration

const_iterator begin() const;

const_iterator end() const

{

return (0 == m_limit)

? const_iterator(m_threshold)

: const_iterator(m_limit, 0);

}

public: // Size

bool empty() const

{

return 0 == m_limit && 0 == m_threshold;

}

size_t max_size() const

{

return traits_type::maxLimit;

}

private: // Member Variables

const size_t m_limit;

const value_type m_threshold;

};

Note the use of the traits. Although they’re not required by the definition of the sequence as it
stands, they serve two important purposes. First, they provide a clear and obvious place for the
limit and threshold magic numbers to reside, as well as making them largely self-documenting.
Second, should you choose to use a 32- or 64-bit value type, the change involves just a single line.

The iterator class can now be defined as shown in Listing 23.12.

224 Chapter 23 • The Fibonacci Sequence

ch23.qxd 5/24/07 11:03 AM Page 224

Listing 23.12 Version 7: const_iterator
class Fibonacci_sequence::const_iterator

: . . . // As shown previously

{

public: // Member Types

typedef Fibonacci_sequence::value_type value_type;

typedef Fibonacci_sequence::const_iterator class_type;

private: // Construction

friend class Fibonacci_sequence;

const_iterator();

const_iterator(Fibonacci_sequence::limit lim);

const_iterator(Fibonacci_sequence::threshold t);

. . . // Iteration and Comparison methods as before

};

With this definition, all the following are well defined (and thereby value constrained):

typedef Fibonacci_sequence fibseq_t;

fibseq_t fs(fibseq_t::limit(0)); // Empty sequence

fibseq_t fs(fibseq_t::limit(1)); // 1 value

fibseq_t fs(fibseq_t::limit(10)); // 10 values

fibseq_t fs(fibseq_t::limit(47)); // 47 values

fibseq_t fs; // 47 values

fibseq_t fs(fibseq_t::threshold(0)); // Empty sequence

fibseq_t fs(fibseq_t::threshold(1)); // 1 value

fibseq_t fs(fibseq_t::threshold(2)); // 3 values

fibseq_t fs(fibseq_t::threshold(47)); // 10 values

fibseq_t fs(fibseq_t::threshold(100)); // 12 values

fibseq_t fs(fibseq_t::threshold(1000000000)); // 45 values

Equally important, the following are not well defined, and the user knows this because he or
she can evaluate them against the member constants Fibonacci_sequence::traits_
type::maxLimit and Fibonacci_sequence::traits_type::maxThreshold. Fur-
thermore, because of the enforcements placed in the constructor bodies, the user finds out immedi-
ately when something is wrong, rather than at a later point during enumeration when the values
overflow.

fibseq_t fs(fibseq_t::limit(50)); // Breaks ctor precond

fibseq_t fs(fibseq_t::threshold(2971215075)); // Breaks ctor precond

23.6 Summary
This chapter has covered the issues related to implementing an unbounded (infinite) notional col-
lection. It has highlighted the imperfect fit between such collections and the strict finitude of C++’s
integral types and the assumed boundedness of STL iterator pairs. Primarily, we’ve encountered,
and eventually avoided, violations of the Goose Rule (Section 10.1.3).

23.6 Summary 225

ch23.qxd 5/24/07 11:03 AM Page 225

We’ve seen that contracts—a mechanism for ensuring program adherence to design—are a
thoroughly inappropriate mechanism for dealing with the conflict between conceptual infinity and
the finitude of the language’s types. We considered exceptions, but this was discounted because
the exception point not only was not exceptional but also was entirely predictable. The requirement
that users provide the limit to the range was unavoidable.

We determined two equally valid and desirable ways of limiting the range. Each was unam-
biguous, and providing a discoverable implementation was straightforward. But supporting both
led to ambiguous and undiscoverable syntax, with unattractive compromises. Applying true type-
defs saved the day, providing a class interface that is clear and discoverable, with the positive side
effect that client code is itself more transparent.

226 Chapter 23 • The Fibonacci Sequence

ch23.qxd 5/24/07 11:03 AM Page 226

