
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780201563184
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780201563184
https://plusone.google.com/share?url=http://www.informit.com/title/9780201563184
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780201563184
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780201563184/Free-Sample-Chapter

UNIX® System V Network Programming

Stephen A. Rago

ADDISON-WESLEY PUBLISHING COMP ANY
Reading, Massachusetts Menlo Park, California New York Don Mills, Ontario

Wokingham, England Amsterdam Bonn P aris Milan Madrid Sydne y Tokyo
Seoul Taipei Mexico City San Juan

The programs and applications presented in this book have been included for their
instructional value. They hav e been tested with care, but are not guaranteed for
any particular purpose. The publisher does not offer any warranties or representations,
nor does it accept any liabilities with respect to the programs or applications.

The publisher offers discounts on this book when ordered in quantity for special sales.
For more information please contact:

Corporate & Professional Publishing Group
Addison-Wesley Publishing Company
One Jacob Way
Reading, Massachusetts 01867

Library of Congress Cataloging-in-Publication Data

Rago, Stephen A.
UNIX System V Network Programming/Stephen A. Rago.

p. cm. (Addison-Wesley professional computing series)
Includes index.
ISBN 0-201-56318-5 (hard)
1. Operating systems (Computers). 2. UNIX System V (Computer

file). 3. Computer networks. I. Title. II. Series.
QA76.76.063R34 1993
005.7´ 11—dc20 92-45276

CIP

Copyright © 1993 by Addison-Wesley Publishing Company
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form, or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior consent of the publisher.
Printed in the United States of America. Published simultaneously in Canada.

ISBN 0-201-56318-5
Te xt printed on recycled and acid-free paper.
1 2 3 4 5 6 7 8 9 10 MU 96959493
First Printing, June 1993

To Patricia

This page intentionally left blank

Contents

Preface xi

PART 1: Background Material 1

1. Introduction to Networks 3
1.1. Background 3
1.2. Network Characteristics 4
1.3. Networking Models 10
Summary 18
Bibliographic Notes 18

2. UNIX Programming 19
2.1. Overview 19
2.2. Concepts 20
2.3. Conventions 25
2.4. Writing Programs 26
Summary 89
Exercises 90
Bibliographic Notes 90

PART 2: User-level Network Programming 93

3. STREAMS 95
3.1. STREAMS Background 95
3.2. STREAMS Architecture 96
3.3. System Calls 101
3.4. Nonblocking I/O and Polling 113
3.5. Service Interfaces 128

vii

viii Contents

3.6. IPC with STREAMS Pipes 131
3.7. Advanced Topics 143
Summary 147
Exercises 147
Bibliographic Notes 148

4. The Transport Layer Interface 149
4.1. Introduction 149
4.2. Transport Endpoint Management 151
4.3. Connectionless Service 165
4.4. Connection-oriented Service 174
4.5. TLI and Read/Write 207
Summary 214
Exercises 214
Bibliographic Notes 215

5. Selecting Networks and Addresses 217
5.1. Introduction 217
5.2. Network Selection 218
5.3. Name-to-Address Translation 229
5.4. Name-to-Address Library Design 243
Summary 259
Exercises 259
Bibliographic Notes 259

6. The Network Listener Facility 261
6.1. The Service Access Facility 261
6.2. Port Monitors 265
6.3. The Listener Process 267
6.4. One-shot Servers 267
6.5. Standing Servers 274
6.6. The NLPS Server 285
Summary 288
Exercises 288
Bibliographic Notes 289

7. Sockets 291
7.1. Introduction 291
7.2. Socket Management 294
7.3. Connection Establishment 301
7.4. Data Transfer 306
7.5. UNIX Domain Sockets 313
7.6. Advanced Topics 323
7.7. Comparison with the TLI 330
7.8. Name-to-Address Translation 334

Contents ix

Summary 352
Exercises 352
Bibliographic Notes 353

8. Remote Procedure Calls 355
8.1. Introduction 355
8.2. XDR 359
8.3. High-level RPC Programming 373
8.4. Low-level RPC Programming 382
8.5. rpcgen 403
8.6. Advanced RPC Features 412
Summary 421
Exercises 422
Bibliographic Notes 422

PART 3: Kernel-level Network Programming 423

9. The STREAMS Subsystem 425
9.1. The Kernel Environment 425
9.2. The STREAMS Environment 439
9.3. STREAMS Messages 446
9.4. STREAMS Queues 455
9.5. Communicating with Messages 462
9.6. Message Types 464
Summary 477
Exercises 477
Bibliographic Notes 477

10. STREAMS Drivers 479
10.1. Introduction 479
10.2. Driver Entry Points 481
10.3. The Data Link Provider Interface 489
10.4. Ethernet Driver Example 495
Summary 537
Exercises 537
Bibliographic Notes 537

11. STREAMS Modules 539
11.1. Introduction 539
11.2. Module Entry Points 542
11.3. The Terminal Interface 546
11.4. Network TTY Emulator Example 550
Summary 575
Exercises 575

x Contents

Bibliographic Notes 575

12. STREAMS Multiplexors 577
12.1. Introduction 577
12.2. How Multiplexors Work 579
12.3. The Transport Provider Interface 585
12.4. Transport Provider Example 596
Summary 673
Exercises 673
Bibliographic Notes 674

PART 4: Design Project 675

13. Design Project: Implementing SLIP 677
13.1. Introduction to SLIP 677
13.2. Software Architecture 678
13.3. User-level Components 683
13.4. Kernel-level Components 720
Summary 750
Exercises 750
Bibliographic Notes 750

Bibliography 753

Index 761

Preface

This book is for programmers who are interested in learning ho w to use the network-
ing interfaces in UNIX System V Release 4 (SVR4). We use real-life examples to
demonstrate how interfaces are used and techniques are applied. All too often in the
workplace we f ind ourselves faced with new assignments for which we ha ve little
background. In these situations, we must educate ourselves as quickly as possible so
that we can competently undertak e the task at hand. Although technical manuals
usually provide the information necessary to complete a task, the y often lack the
background, motivation, and e xplanation that help us to understand more clearly
what we’re doing and why we’re doing it.

Intended as a practical reference, this book contains v ery little coverage of the-
ory, and details better dealt with through manual pages are omitted, although refer -
ences are used liberally . It could, however, be used to complement a graduate or
advanced undergraduate course in networking.

As a prerequisite to reading this book, you should be f amiliar with the UNIX
environment and the C programming language so that the e xamples can be under -
stood. Some background in data structures and algorithms w ould be helpful, b ut is
not required.

References to SVR4 manual pages are in the running te xt, appearing as the
command name or function name, follo wed by the section of the manual in which
the page is found, as in open(2). Here, we are referring to the open manual page
in Section 2 of the system manuals.

Originally, there was only one manual for the system. With the introduction of
each new release of the system, the manual grew in size until it had to be split up into
separate manuals. In UNIX System V Release 3, there w as one manual for users,
one manual for programmers, and one manual for system administrators.

In SVR4, however, the manual pages were redistributed by functional area. The
user commands are no longer in a single manual, nor can you f ind all the program-
ming interfaces in one place. This new org anization has proven difficult to navigate
by novices and experts alike. The following summary should aid in the process of
locating the desired manual pages.

xi

xii Preface

Programmer’s Reference Manual
(1) Commands relating to source code management, compilation, and loading
(2) System calls
(3, 3C, 3S, 3E, 3G, 3M, 3X) Most library routines
(4) File formats
(5) Miscellany (commonly used constants, data structures, and macros)

Programmer’s Guide: Networking Interfaces
(1, 1M) Networking commands
(3, 3C, 3N) Network-related library routines
(4) Network-related file formats
(5) Miscellany, including network-related environment variables
(7) Networking drivers and modules

Programmer’s Guide: STREAMS
(1, 1M) STREAMS-related commands
(2) STREAMS-specific system calls
(3C) STREAMS-specific library routines
(7) STREAMS modules and drivers

User’s Reference Manual
(1) Commands any user might want to run

System Administrator’s Reference Manual
(1M) Administrative commands
(4) Administrative file formats
(5) Miscellaneous facilities
(7) Special files (devices)
(8) Administrative procedures

You might find it helpful if these manuals are close by when you read this book.

Background

The first standard network interface incorporated in the UNIX system was the socket
mechanism. This mechanism was provided in the 4.2 release of the Berk eley Soft-
ware Distribution (BSD) version of the UNIX operating system from the Uni versity
of California at Berk eley. With it w as an implementation of the Internet protocol
suite (TCP, UDP, IP, et al.). These became available in 1983.

AT&T did not address standard netw orking interfaces in System V until 1985,
when it ported Dennis Ritchie’ s Streams mechanism from the V ersion 8 Research
UNIX System to UNIX System V Release 2.0p, the unreleased predecessor to Sys-
tem V Release 3.0 (SVR3). With the release of SVR3 in 1986, STREAMS, the
framework for networking in System V, became generally available, along with the
Transport Layer Interf ace (TLI) library . Ironically, SVR3 was released without
including any networking protocols.

In 1988, X/OPEN, a consortium dedicated to enhancing application portability
through standards endorsements, specif ied its own transport layer interf ace library,
based on A T&T’s TLI library. The X/OPEN specif ication, called the X/OPEN
Transport Interface (XTI), is ef fectively a superset of TLI. In 1990 the Portable

Preface xiii

Operating System Interf ace (POSIX) committee of the Institute of Electrical and
Electronics Engineers (IEEE) created the 1003.12 w orking group to standardize por-
table networking interfaces for application programs. As of this writing, the 1003.12
working group’s efforts are still underw ay, but it looks as though both sock ets and
XTI will be included in the standard.

SVR4 is unique in that it includes support for man y standards in one operating
system. Unlike other versions of UNIX that support dual-uni verse environments,
SVR4 provides applications with one environment consisting of features from pre vi-
ous versions of the System V, SunOS, BSD, Xenix, SCO, and Research UNIX sys-
tems, as well as some ne w features of its own. Support for POSIX 1003.1 (the sys-
tem application programming interf ace) is also pro vided. The major networking
interfaces provided include STREAMS, TLI, sockets, and remote procedure calls.

Organization

The material covered in this book pertains mainly to SVR4, although some features
were present in earlier releases of UNIX System V . This book is di vided into four
sections: background material, user-level network programming, k ernel-level net-
work programming, and a design example.

Both user-level and kernel-level networking components are described to
present a complete picture of netw ork programming in UNIX System V . Although
not everyone will be interested in both environments, knowledge of one environment
makes programming in the other easier. Instead of just blindly following the instruc-
tions in the manuals, it enables the programmer to understand the effects of his or her
actions and make better design decisions.

The first two chapters provide some background that will mak e the rest of the
book more useful to readers with less experience. More experienced readers can skip
these introductory chapters without much loss of conte xt. Chapter 1 provides a brief
introduction to networking concepts, and Chapter 2 provides an overview of applica-
tion programming in the UNIX System V environment. In particular, Chapter 2 con-
tains example functions that are used throughout the rest of this te xt. If you skip
Chapter 2, you might w ant to refer back to indi vidual examples as you come across
these functions in later chapters.

Chapter 3 is the f irst chapter concerned with netw ork programming per se. It
covers the STREAMS programming environment. Since the STREAMS mechanism
is the basis for most of the communication f acilities in System V, understanding its
services and system call interf ace is a prerequisite to discussing an y System V net-
working facility.

Chapter 4 co vers the T ransport Layer Interf ace library. This is the interf ace
applications use to access the services pro vided by the transport layer of a computer
network. Emphasis is placed on application design to support netw ork indepen-
dence.

Chapter 5 describes the network selection and name-to-address translation facil-
ities, which further e xtend the ability of a programmer to design netw ork-
independent applications. Chapter 6 covers the network listener process. Using the

xiv Preface

listener simplifies the design of serv er processes. The Service Access F acility
(SAF), the administrative framework in which the listener operates, is also discussed.

Chapter 7 gives a brief description of the BSD sock et interface and its corre-
sponding implementation in SVR4. The socket and TLI mechanisms are contrasted
and compared. Chapter 8 discusses remote procedure calls and the external data rep-
resentation used to develop distributed applications. This ends the user-level section
of the text.

The next four chapters are dedicated to k ernel-level network programming.
Chapter 9 describes the k ernel environment, its utility routines, and the interf aces to
the STREAMS environment. Chapter 10 describes how to write STREAMS drivers,
centering around the design of a simple Ethernet driver. Chapter 11 describes how to
write STREAMS modules, centering around the design of a module that can be used
to emulate a terminal over a network connection. Chapter 12 describes how to write
STREAMS multiplexing drivers. It uses a simple connection-oriented transport
provider as a detailed example.

Finally, the last section of the book, Chapter 13, co vers the design of a SLIP
package for SVR4, including both the user -level and kernel-level components. It
illustrates the application of much from the preceding 12 chapters and, in essence,
ties the book together.

Much of the interesting material lies in the e xamples. You are encouraged
to work through each until it is understood. Source code for the e xamples
is available via anon ymous FTP from the host ftp.uu.net in the f ile pub-
lished/books/rago.netprog.tar.Z. If you don’t hav e direct access to the
Internet, you can use uucp to copy the source to your machine as follows:

uucp uunet!˜/published/books/rago.netprog.tar.Z /tmp

(This will place a cop y of rago.netprog.tar.Z in /tmp on your system.) If
you have any comments, questions, or b ug reports, please send electronic mail to
sar@plc.com.

Acknowledgements

This book w as produced on an Intel i386-based system running UNIX System V
Release 4.0, Version 3. The text editor sam was used to create and update the te xt.
The pictures were created with xcip, a newer version of cip, on an AT&T
630MTG terminal. The output for the book w as produced with eqn, tbl, pic,
troff, and dpost from the Documenter’s WorkBench, Version 3.2.

I would like to thank the following reviewers for their invaluable input: Steve
Albert (Unix System Laboratories), Maury Bach (IBM Scientif ic and Technical Cen-
ter), George Bittner (Programmed Logic Corporation), Ste ve Buroff (AT&T Bell
Labs), Jeff Gitlin (AT&T), Ron Gomes (Morgan Stanley & Company), Peter Honey-
man (University of Michig an), Brian Kernighan (AT&T Bell Labs), Da ve Olander
(Unix System Laboratories), Dennis Ritchie (A T&T Bell Labs), Michael Scheer
(Plexus Systems), Douglas Schmidt (Uni versity of California, Irvine), Rich Ste vens
(independent consultant), and Graham Wheeler (Aztec Information Management).
In particular, both Brian Kernighan and Rich Ste vens read every chapter and freely

Preface xv

shared their knowledge, experience, and formatting macros and shell scripts. They
have greatly increased the quality of the book.

Many people helped by answering questions where written history was vague or
incomplete. In addition to the re viewers, this group includes Guy Harris (Auspe x
Systems), Bob Israel (Epoch Systems), Hari Pulijal (Unix System Laboratories),
Usha Pulijal (Unix System Laboratories), Glenn Skinner (SunSoft), K en Thompson
(AT&T Bell Labs), and Larry Wehr (AT&T Bell Labs).

Rich Drechsler (A T&T Bell Labs) pro vided the PostScript program that
increased the width of the constant-width font used throughout this book. Both he
and Len Rago (AT&T Bell Labs) helped in debugging problems with the laser printer
used during the typesetting of this book. Thanks to them both. Thanks to Dick
Hamilton (Unix System Laboratories) for making an early cop y of SVR4.2 docu-
mentation available. Also, thanks to Gus Ame gadzie (Programmed Logic Corpora-
tion), who helped test the SLIP softw are presented in Chapter 13. Special thanks to
John Wait (Addison-Wesley) for his advice and encouragement during the last tw o
years.

Finally, I want to thank my family, without whom this book wouldn’t hav e been
possible. They hav e supported me and helped to pull up the slack created by the
amount of time I de voted to writing this book. My parents instilled in me the w ork
ethic necessary to get it done (as well as pro vided their baby-sitting services), and
my wife worked harder to give me the time to write it.

This page intentionally left blank

3
STREAMS

The STREAMS mechanism in UNIX System V Release 4 pro vides the framework
on which communication services can be b uilt. These services include communica-
tion between terminals and a host computer , between processes on the same com-
puter, and between processes on dif ferent computers. This chapter will describe
what makes up the STREAMS mechanism and ho w applications can use it to b uild
communication services.

3.1 STREAMS BACKGROUND

The STREAMS subsystem [not to be confused with the streams returned by
fopen(3C)] was designed to unify disparate and often ad hoc mechanisms that
previously existed in the UNIX operating system to support dif ferent kinds of char -
acter-based I/O. In particular, it was intended to replace the clist mechanism that
provided support for terminal I/O in previous releases.

In the clist-based terminal subsystem, each terminal line could have one pro-
cessing element, called a line discipline, associated with it. The line discipline han-
dled all special character processing. If a user needed some nonstandard processing
of the terminal data stream, he or she could change the line discipline, b ut only one
line discipline could be associated with a terminal at a time.

STREAMS provides a v ariation on this theme: users can add (‘ ‘push’’) and
remove (‘‘pop’’) intermediate processing elements, called modules, to and from the
data stream at will. The modules can be stacked so that more than one can be used in
the data stream at a time. This fundamental change allows independent modules that
perform simple tasks to be combined in interesting w ays to perform more comple x
tasks, in much the same way as UNIX commands are connected via shell pipelines.

Data transfer in a stream occurs by passing messages between adjacent process-
ing elements. Only pointers to the messages are passed, avoiding the costly overhead
of data copying. Messages are typed and have an associated priority, both indicating
how they should be processed. Using message-passing to perform I/O creates

95

96 STREAMS

another fundamental dif ference between STREAMS and pre vious character-based
subsystems: data transfer in a stream is data-driven rather than demand-driven.

In previous I/O subsystems, when a user w anted to read data from a de vice, the
driver’s read routine was invoked. Similarly, when a user wanted to write data, the
driver’s write routine was invoked. In STREAMS, drivers usually do not kno w
when users are reading from or writing to the stream. A read will block until data
are available, and a write will result in messages being sent to the driver.

The original Streams [sic] mechanism was invented by Dennis Ritchie at AT&T
Bell Laboratories around 1982 to unify and impro ve the character I/O subsystem,
improve performance, and decrease system size. It was included in Version 8 of the
Research UNIX System. Between 1984 and 1985, A T&T’s dev elopment organiza-
tion ‘‘productized’’ Streams, adding a new message structure and support for multi-
plexing, and capitalizing the name. STREAMS was first generally a vailable in
UNIX System V Release 3.0 in 1986. Ironically, full terminal support did not appear
until System V Release 4.0, four years later.

3.2 STREAMS ARCHITECTURE

A simple stream provides a bidirectional data path between a process at user le vel
and a device driver in the kernel (see Figure 3.1). Data written by the user process
travel downstream toward the driver, and data received by the driver from the hard-
ware travel upstream to be retrieved by the user. Even though data tra vel up and
down the stream in messages, dri vers and modules can treat the data flo w as a byte
stream.

downstream upstream

Kernel

Stream Head

Driver

User

process

Fig. 3.1. A Simple Stream

A simple stream consists of tw o processing elements: the stream head and a

SEC. 3.2 STREAMS ARCHITECTURE 97

driver. The stream head consists of a set of routines that pro vide the interf ace
between applications in user space and the rest of the stream in k ernel space. When
an application makes a system call with a STREAMS file descriptor, the stream head
routines are invoked, resulting in data copying, message generation, or control opera-
tions being performed. The stream head is the only component in the stream that can
copy data between user space and k ernel space. All other components ef fect data
transfer solely by passing messages and thus are isolated from direct interaction with
users of the stream.

The second processing element is the dri ver, found at the end, or tail, of the
stream. Its job is to control a peripheral de vice and transfer data between the k ernel
and the device. Since it interacts with hardware, this kind of driver is called a hard-
ware driver. Another kind of driver, called a software driver, or pseudo-driver, is not
associated with any hardware. Instead, it provides a service to applications, such as
emulating a terminal-like interface between communicating processes.

The stream head cannot be replaced in the same w ay that a driver can. Drivers
can be added to the k ernel simply by linking their object f iles with the kernel object
files. The stream head, on the other hand, is pro vided with the kernel proper and is
fixed. The same stream head processing routines are used with e very stream in the
system. Each stream head, however, is customizable to a small e xtent by changing
the processing options it supports.

The fundamental building block in a stream is the queue (see Figure 3.2). It
links one component to the next, thereby forming the stream. Each component in the
stream contains at least one pair of queues: one queue for the read side (upstream)
and one for the write side (do wnstream). The queue serves as a location to store
messages as they flow up and down the stream, contains status information, and acts
as a registry for the routines that will be used to process messages.

write read

queuequeue
write read

Driver

Head

q_nextq_next

Stream

queuequeue

Fig. 3.2. STREAMS Queues

When one component wants to pass a message along in the stream, the queue is
used to identify the ne xt component. Then, the next component’s queue is used to

98 STREAMS

identify the function to call to pass the message to that component. In this manner,
each component’s queue provides an interface between the component and the rest of
the stream.

A module on a stream is shown in Figure 3.3. A module is an intermediate pro-
cessing element that can be dynamically added to, or remo ved from, the stream.
Modules are structurally similar to dri vers, but usually perform some kind of f ilter
processing on the messages passing between the stream head and the dri ver. For
example, a module might perform data encryption or translation between one inter -
face and another.

Stream Head

Kernel

process

Module

Driver

User

Fig. 3.3. A Module on a Stream

Adding and removing modules are not the only w ays a user can customize a
stream. A user can also establish and dismantle multiple xing configurations. Multi-
ple streams can be linked underneath a special kind of software driver called a multi-
plexing driver, or multiplexor (see Figure 3.4). The multiplexing driver will route
messages between upper streams opened to access the dri ver, and lower streams
linked underneath the dri ver. Multiplexing drivers are well suited to implementing
windowing systems and netw orking protocols. Windowing systems multiplex data
between multiple windows and the ph ysical terminal. Networking protocols multi-
plex messages between multiple users and possibly multiple transmission media.

As we have seen, streams can be used to connect processes with de vices, but
this is not their only use. Streams are also used to connect processes with other

SEC. 3.2 STREAMS ARCHITECTURE 99

process

Kernel

Stream Head

User

Multiplexor

Driver2Driver1

Fig. 3.4. A Multiplexing Driver

processes. Pipes are implemented as streams in UNIX System V Release 4. There
are two kinds of pipes: unnamed pipes and named pipes. An unnamed pipe (also
called an ‘‘anonymous pipe’’) is so called because it has no entry in the f ile system
namespace. The pipe system call creates an unnamed pipe by allocating tw o
stream heads and pointing the write queue of each at the read queue of the other (see
Figure 3.5).

Before pipes were implemented using streams, the y could only be used for uni-
directional data transfer. On successful return, pipe would present the user with a
file descriptor for one end of the pipe open for reading and a f ile descriptor for the
other end open for writing. In contrast, pipes in SVR4 are full-duple x connections;
both pipe ends are open for reading and writing.

A named pipe (also called a ‘ ‘FIFO’’ because data are retrie ved in a first-
in–first-out manner) is created via the mknod system call. It has a name in the f ile
system and can be accessed with the open system call. A named pipe is actually
one stream head with its write queue pointing at its read queue (see Figure 3.6). Data
written to a named pipe are available for reading from the same ‘‘end’’ of the pipe.

Tw o processes can use named pipes as rendezvous points, but since communica-
tion is unidirectional, their usefulness is limited. They are retained primarily to sup-
port applications that still use them. The mounted streams facility found in SVR4
makes named pipes obsolete by gi ving users a w ay to associate a name with an

100 STREAMS

Stream HeadStream Head

process

Kernel

User

Fig. 3.5. An Anonymous Pipe

Stream Head

Kernel

process

User

Fig. 3.6. A FIFO

anonymous pipe. Mounted streams are discussed in Section 3.6. Although strictly
speaking, an anonymous pipe is also a FIFO, we will follo w current conventions and
use the term ‘ ‘FIFO’’ to refer to a named pipe and the term ‘ ‘pipe’’ to refer to an
anonymous pipe.

There are se veral advantages to STREAMS-based pipes. First, local inter -
process communication (IPC) no w uses the same mechanisms as remote, or net-
worked, IPC. This allows applications to treat local IPC connections the same as
remote connections. Most operations that can be applied to a stream can no w be
applied to a pipe. For example, modules can be pushed onto pipes to obtain more
functionality. Second, STREAMS-based pipes are full-duple x, allowing bidirec-
tional communication between two processes with one pipe instead of two.

SEC. 3.3 SYSTEM CALLS 101

Now that we have seen the major components that mak e up a stream, we will
briefly look at some of the characteristics of STREAMS messages that are of interest
to user-level applications. All communication within a stream occurs by passing
pointers to STREAMS messages. The messages are typed, and the type indicates
both the purpose of the message and its priority . Based on the type, a message can
be either high-priority or normal-priority . The normal-priority messages are further
subdivided into priority bands for the purposes of flo w control and message queue-
ing.

Any data the user wants to transmit to the other end of the stream are packaged
in M_DATA messages by the stream head. This is the most common message type.
If the user needs to send or recei ve control information, then an M_PROTO message
is used. Control information is intended for a module or driver in the stream, is inter-
preted by that component, and is usually not transmitted past the component. A spe-
cial message type, M_PCPROTO, is reserved for high-priority control information,
such as interface acknowledgements.

Simple messages are composed of one message block. More complex messages
can be created by linking multiple message blocks together . These are then treated
logically as larger messages. The data in one message block are vie wed as being
contiguous with the data in the next message block. The message structure is usually
transparent to user-level applications. One exception to this is when dealing with a
complex message including both control information and user data. In the next sec-
tion, we shall see how messages like these can be generated and received.

Chapter 9 discusses the STREAMS k ernel architecture, including message
structure and types, in detail.

3.3 SYSTEM CALLS

Access to a stream is pro vided via the open and pipe system calls. In the former
case, if a de vice is not already open, the open system call will b uild the stream.
This involves allocating a stream head and allocating tw o pairs of queues, one pair
for the stream head and one pair for the dri ver. The queues are link ed together as
shown in Figure 3.2, and the dri ver’s open routine is called. If the driver open suc-
ceeds, a f ile descriptor referring to the stream is returned to the user . If the driver
open fails, the structures are freed and the system call fails, returning −1 to the user.

Once the stream is constructed and the f irst open has completed successfully ,
another open of the same de vice will create a ne w file descriptor referring to the
same stream. The driver open routine is called again, but there is no need to allocate
the data structures since the y are already set up. Pipes, when created, ha ve their
streams ‘‘opened’’ internally by the operating system. There is no driver to open.

Multiple processes using the same device also use the same stream. A device is
uniquely identified by its device number. The device number is split into a major
number and a minor number. The major number identif ies the actual device and its
associated driver. The minor number identif ies a subdevice. For example, a serial
ports board would be identified by its major device number, but an individual line on

102 STREAMS

the board is identified by its minor device number.
For a network, minor devices are usually virtual entities since the y are multi-

plexed over one communication line. Instead of being limited by the number of
lines, the minor devices are usually limited by tunable conf iguration parameters that
correspond to the maximum number of simultaneous conversations.

Often, applications do not care what particular minor device they use. They just
want one that is not already in use. To relieve the applications of the b urden of
searching for unused minor devices, drivers can be written to support special minors
called clones. When an application opens the clone minor de vice of a particular
driver, the driver selects a different, unused minor device to be used by the applica-
tion. Clones are particularly well suited for network drivers and pseudo-drivers.

After a stream is opened, the user may apply to it almost an y system call that
takes a valid file descriptor. In addition, four system calls work only on file descrip-
tors that refer to streams. These are getmsg(2), getpmsg(2), putmsg(2),
and putpmsg(2). They deal with information that is separated into tw o
classes: user data and control information.

The few system calls that will not work with streams are those that make restric-
tions on the file type, such as getdents(2), which only works with directories, or
those that support a conflicting paradigm, lik e mmap(2). mmap and streams do not
work together, because mapping a STREAMS dri ver into the address space of a
process would enable direct I/O to the de vice through loads from and stores into the
mapped address range, and the entire stream w ould be bypassed. No messages
would be created, and modules would not get a chance to process the data.

Data can be written to the stream using either write or putmsg. With
write, the stream head will cop y the user’s data into (possibly multiple)
STREAMS messages of type M_DATA and send them do wnstream. Data are frag-
mented according to the maximum packet size of the topmost module or driver in the
stream. The maximum packet size is a parameter specif ied by each module and
driver that determines the size of the lar gest STREAMS data message that the com-
ponent can accept.

If there are too man y bytes of data in the messages on the write queues do wn-
stream, a stream is said to be flow-controlled on the write side. When this condition
occurs, writes to the stream will block until flo w-control restrictions are lifted. If,
however, the file descriptor is in nonblocking mode, write will return −1 with
errno set to EAGAIN instead of blocking. Flow control protects the system from
any one stream using too much memory for messages.

Example 3.3.1. Assume the module on the top of the stream has a maximum pack et
size of 4096 bytes. Then the line

write(fd, buf, 4097);

will send two STREAMS messages downstream. The first message will ha ve 4096
bytes of data in it, and the second message will contain the last byte of data. If, on
the other hand, the maximum pack et size is larger than 4097 bytes, the write will
generate only one message.

SEC. 3.3 SYSTEM CALLS 103

Actually, a global tunable parameter , STRMSGSZ, can be set by a system
administrator to limit the lar gest STREAMS message created. By default, STRMS-
GSZ is set to 0 to indicate that the limit is inf inite. In this case, write behaves as
described. If STRMSGSZ is set to a nonzero v alue, however, the size of messages
created by write is limited by the smaller of the maximum pack et size of the mod-
ule on top of the stream and the value of STRMSGSZ.

With putmsg, the stream head will try to create e xactly one message from the
user’s buffers. This system call can be used to send control information, data, or
both. An M DATA, M PROTO, or M PCPROTO message can be generated, depend-
ing on whether the user supplies a control b uffer and what flags the user specifies, as
summarized in Table 3.1.

Table 3.1. putmsg Argument Combinations

Control Buffer Data Buffer Flag Message Type

No Yes 0 M DATA

Yes Don’t care 0 M PROTO

Yes Don’t care RS HIPRI M PCPROTO

The synopsis for putmsg is

#include <stropts.h>

int putmsg(int fd, const struct strbuf *ctlp,
const struct strbuf *datp, int flag);

fd is a file descriptor referring to a stream, ctlp is a pointer to a structure describ-
ing an optional control buffer to be transmitted, and datp is a pointer to an optional
data buffer to be transmitted. If a control b uffer is provided, flag will determine
whether the resulting message is a normal protocol message (M PROTO) or a high-
priority protocol message (M PCPROTO; ‘‘PC’’ stands for Priority Control). The
only valid values for flag are 0 for a normal protocol message and RS HIPRI for
a high-priority protocol message. If no control b uffer is provided, then flag must
be set to 0, or an error will result.

If a data b uffer is pro vided, then there will be one or more M DATA blocks
linked to the protocol message block. If a data b uffer is pro vided, but no control
buffer is provided, then a single M DATA message block is generated.

To describe the control and data portions of the generated message, the str-
buf structure is used, defined in <sys/stropts.h> as:

struct strbuf {
int maxlen;
int len;
char *buf;

};

maxlen is ignored by putmsg. It is used to specify the size of the user’ s buffer in
calls to getmsg. len indicates the amount of control information or data to be

104 STREAMS

transmitted. buf contains the address of the b uffer containing the control informa-
tion or data.

On success, putmsg returns 0; on error, it returns −1. If the size of the data is
either greater than the maximum packet size or less than the minimum pack et size of
the topmost module or driver in the stream, then the system call will fail with errno
set to ERANGE.

Example 3.3.2. Assume you ha ve to communicate with a netw ork driver that
expects user data to be presented to it with control information describing the iden-
tity of the recipient of the data. The recipient is known by its network address. The
control information is stored in an M PROTO message block, and the user data is
stored in M DATA blocks linked to the M PROTO block. The driver expects the
M PROTO message to contain the following structure:

struct data req {
long primitive; /* identifies message */
ushort t addr len; /* destination address */
ushort t addr offset; /* location in message */

};

#define DATA REQUEST 1 /* data request primitive */

The data req structure and the recipient’s address are both stored as control
information. The address location in the b uffer is given by addr offset. To use
the least amount of space, we will choose the address to follow immediately after the
data req structure.

We can use the following function to request that the driver transmit a message:

#include <sys/types.h>
#include <stropts.h>
#include <stdlib.h>
#include <memory.h>

int
senddata(int fd, char *buf, uint t blen, char *addr,

ushort t alen)
{

struct data req *reqp;
struct strbuf ctl, dat;
char *bp;
int size, ret;

/*
* Allocate a memory buffer large enough to hold
* the control information.
*/
size = sizeof(struct data req) + alen;
if ((bp = malloc(size)) == NULL)

return(-1);

/*
* Initialize the data req structure.

SEC. 3.3 SYSTEM CALLS 105

*/
reqp = (struct data req *)bp;
reqp->primitive = DATA REQUEST;
reqp->addr len = alen;
reqp->addr offset = sizeof(struct data req);

/*
* Copy the address to the buffer.
*/
memcpy(bp + reqp->addr offset, addr, alen);
ctl.buf = bp;
ctl.len = size;
dat.buf = buf;
dat.len = blen;

/*
* Send the message downstream, free the memory
* allocated for the control buffer, and return.
*/
ret = putmsg(fd, &ctl, &dat, 0);
free(bp);
return(ret);

}

The arguments to senddata are a file descriptor referring to the stream, the
address of a data buffer, the amount of data in the buffer, the destination address, and
the address length. We allocate enough memory for the control b uffer to hold the
data req structure plus the destination address. We then populate the data req
structure with the necessary information and initialize the strbuf structures
describing the control and data information. After we call putmsg to create the
message and send it do wnstream, we free the memory we allocated and return the
value returned by putmsg.

Early in the implementation of System V STREAMS, putmsg was actually
called send. Similarly, getmsg was called recv. Before released, the names
were changed to their present ones to a void conflicting with the 4BSD system calls
used for data transfer over sockets. Somehow, the definition of the flag for getmsg
and putmsg was nev er changed, hence it retains its original name, RS HIPRI. The
‘‘R’’ stands for ‘‘receive,’’ and the ‘‘S’’ stands for ‘‘send.’’

Data can be obtained from the stream using either the read or getmsg system
call. read treats the data flo w as a byte stream and, by def ault, only operates on
M DATA messages. This means the data returned by read may span message
boundaries. If a read is attempted from a stream with an M PROTO or
M PCPROTO message at the head of its read queue, the read will fail with errno
set to EBADMSG. There are options to change the def ault behavior of read. They
will be discussed later in this chapter.

Since read is byte-stream-oriented, applications have to do something extra to
determine when all the data have been received. Three common methods are

106 STREAMS

1. Use fixed-size messages. Both the writer and the reader agree in advance on the
size of each message passed.

2. Always start each message with a field describing the size of the message.
3. Always end each message with a special character or sequence of characters.

The application determines which method is appropriate.

Example 3.3.3. This example illustrates a function that reads e xactly the amount
asked. It can be used to implement method (1) discussed previously.

#include <unistd.h>
#include <errno.h>

int
mread(int fd, char *buf, int len)
{

int n;

while (len > 0) {
n = read(fd, buf, len);
if (n <= 0) {

if (n == 0) /* unexpected EOF */
errno = EPROTO;

return(-1);
}
len -= n;
buf += n;

}
return(0);

}

Since we have to read exactly len bytes, if we receive less than that, we treat it
as an error. If read returns 0, we treat it as an end-of-f ile condition and return an
error. On success, we return 0 instead of the number of bytes read since the caller
knows we have read as much as we were asked.

getmsg, like putmsg, deals with only one message at a time. It can process
both user data and control information, retrie ving an M DATA, M PROTO, or
M PCPROTO message from the front of the stream head read queue.

#include <stropts.h>

int getmsg(int fd, struct strbuf *ctlp,
struct strbuf *datp, int *flagp);

fd is a file descriptor referring to a stream, ctlp is a pointer to a structure describ-
ing an optional control b uffer to be recei ved, and datp is a pointer to an optional
data buffer to be received. Information in the M PROTO or M PCPROTO portion of
the message is stored in the control buffer described by an strbuf structure, shown
earlier. The maxlen field indicates the size of the b uffer. On return, the len field
indicates the amount of information received and placed in the buffer. Information in
the M DATA portion of the message is processed in a similar manner.

SEC. 3.3 SYSTEM CALLS 107

The flagp field is a pointer to an integer, unlike the flag field in putmsg.
A common mistake is to pass a flag in this f ield, resulting in getmsg failing with
errno set to EFAULT (although the stronger type-checking done by ANSI C com-
pilers has reduced the likelihood of this error).

If the flag pointed to by flagp is set to 0, the first message on the stream head
read queue will be retrieved. If the flag is set to RS HIPRI, then getmsg will wait
until an M PCPROTO message arrives at the stream head and will retrie ve it instead.
On return, the flag will be set to RS HIPRI if an M PCPROTO message has been
received, and 0 otherwise.

On success, if an entire message is retrie ved, getmsg returns 0. If only part of
the message is retrie ved (because the caller’s buffer was too small), then getmsg
will return nonne gative values. If there is more control information, MORECTL is
returned. If there are more data, MOREDATA is returned. If both remain, then
(MORECTL|MOREDATA) is returned. On error, −1 is returned.

Example 3.3.4. Assume the same dri ver used in Example 3.3.2 responds with an
acknowledgement every time it recei ves a request to transmit a message. The
acknowledgement does not contain user data, but it does contain control information.
It can be implemented as an M PCPROTO message containing the following structure
in its data buffer:

struct data ack {
long primitive; /* identifies message */
long status; /* success or failure */

};
#define DATA ACK 2 /* data request acknowledgement */

The primitive field identifies the message as a DATA ACK. The status field
contains an error number if the data request failed, or 0 if it succeeded.

The following routine retrieves the M PCPROTO message from the front of the
stream head read queue. It returns 0 if an ackno wledgement was received and indi-
cates success. If either the ackno wledgement cannot be recei ved or the acknowl-
edgement indicates the request failed, it returns −1.

#include <sys/types.h>
#include <stropts.h>
#include <unistd.h>
#include <errno.h>

int
getack(int fd)
{

struct data ack ack;
struct strbuf ctl;
int fl = RS HIPRI;
int ret;

/*
* Initialize the control buffer and retrieve the
* acknowledgement message.

108 STREAMS

*/
ctl.buf = (caddr t)&ack;
ctl.maxlen = sizeof(struct data ack);
ret = getmsg(fd, &ctl, NULL, &fl);
if (ret != 0) {

/*
* ret shouldn’t be greater than 0, but if it
* is, then the message was improperly formed.
*/
if (ret > 0)

errno = EPROTO;
return(-1);

}
if (ack.primitive != DATA ACK) {

/*
* The message we just obtained was not the
* acknowledgement we expected.
*/
errno = EPROTO;
return(-1);

}

/*
* The status field of the message contains an error
* number if the request failed, or 0 otherwise.
*/
errno = ack.status;
return(errno ? -1 : 0);

}

We start out by setting up the control b uffer. Using getmsg with the
RS HIPRI flag, we block until an M PCPROTO message is received. If we get a
message with more control information than we ask ed for, MORECTL will be
returned. If the message had data in it (i.e., w as linked to an M DATA message),
MOREDATA will be returned since we do not specify a b uffer to be used for data.
Either of these cases is an error in this e xample, so we set errno to EPROTO and
return failure notification.

If the primitive is not a data ackno wledgement, then there has been a protocol
error, so we again set errno to EPROTO and return −1. If the message is a
DATA ACK, we set errno to indicate the status of the pre vious data request and
return 0 on success or −1 on failure.

Why use getmsg and putmsg when read and write will do? The fact is
most people probably will not have to use getmsg or putmsg, at least not directly.
getmsg and putmsg were implemented to enable user -level applications to com-
municate with networking drivers and modules that export message-based interfaces.
These interfaces (called service interfaces) use M PROTO and M PCPROTO mes-
sages to implement their service primitives and events.

With the read and write system calls, applications w ould have to work
harder to distinguish between service parameters and user data because read and

SEC. 3.3 SYSTEM CALLS 109

write provide a byte-stream interface and only one buffer is involved. This means
applications might ha ve to make multiple system calls to send or recei ve a s ingle
message. In addition, read and write provide only one band of data flo w, so
high-priority primitives, such as interf ace acknowledgements and out-of-band data,
which ideally would take precedence over other primitives, will be queued behind
existing data.

The getmsg and putmsg system calls solve these problems. They provide a
message-oriented interface with separate b uffers for control information and user
data. For more information on service interfaces, see Section 3.5.

The ioctl system call is used to perform I/O control operations on the stream.

int ioctl(int fd, int command, ... /* arg */);

The particular control operation is identif ied by command. An optional third argu-
ment whose type and semantics v ary based on the command is usually included.
Almost any file-based operation can be implemented as an ioctl command. For
this reason, ioctl has often been described as the ‘‘garbage can’’ system call.

There are two classes of commands that can be used. One class is a command
directed at a module or driver in the stream. The other class is directed at the stream
head. This latter class is the set of ‘ ‘generic’’ stream head ioctl commands
described in streamio(7).

Example 3.3.5. A module can be ‘ ‘pushed’’ onto the stream with the I PUSH
ioctl command. Even though it appears to the user as if the module is on the top
of the stream, the module is actually inserted between the stream head and the top-
most module or driver in the stream. Even so, the conventions are to say, ‘‘the mod-
ule has been pushed on the stream,’’ and ‘‘the module is on top of the stream.’’

ioctl(fd, I PUSH, "module a");
ioctl(fd, I PUSH, "module b");

After this sequence of calls, the module named module b is on the top of the
stream. After each module is pushed onto the stream, its open routine is called so
that it can allocate any necessary data structures. Each push of a module on a stream
invokes a different instance of the module, analogous to the w ay each minor device
provides access to a different instance of a driver.

The topmost module on the stream can be popped of f with the I POP ioctl
command:

ioctl(fd, I POP, 0);

If this follows the previous two calls, then the module named module a will be left
on the top of the stream. When a module is popped off the stream, its close routine is
called so that it may deallocate an y data structures associated with that instance of
the module.

The stream head ioctl commands are summarized in Table 3.2. The class of
module and dri ver ioctl commands is further subdi vided into tw o cate-
gories: I STR and transparent. The I STR type derives its name from the

110 STREAMS

Table 3.2. Stream Head ioctl Commands

Command Description

I NREAD Get the number of messages and the size of the f irst message on
the stream head read queue.

I PUSH Push a module on a stream.
I POP Remove the top module from a stream.
I LOOK Get the name of the top module on a stream.
I FLUSH Flush (discard) data on queues.
I SRDOPT Set read options.
I GRDOPT Get read options.
I STR Driver/module ioctl commands.
I SETSIG Enable SIGPOLL generation.
I GETSIG Get events that generate SIGPOLL.
I FIND Verify if a module is in a stream.
I LINK Create a multiplexor link.
I UNLINK Remove a multiplexor link.
I PEEK Peek at data in the first message on the stream head read queue.
I FDINSERT Send information about another stream.
I SENDFD Pass a file descriptor.
I RECVFD Receive a file descriptor.
I SWROPT Set write options.
I GWROPT Get write options.
I LIST List the modules and driver in a stream.
I PLINK Create a persistent multiplexor link.
I PUNLINK Remove a persistent multiplexor link.
I FLUSHBAND Flush banded data on queues.
I CKBAND Check if a message with the gi ven band is on the stream head

read queue.
I GETBAND Get the band of the first message on the stream head read queue.
I ATMARK Check if the f irst message on the stream head read queue is

‘‘marked.’’
I SETCLTIME Set the close delay time.
I GETCLTIME Get the close delay time.
I CANPUT Check if the given band is writable.

command used to implement it. The caller packages the real ioctl command and
argument in an strioctl structure and passes the address of the structure as the
third argument to ioctl, as in:

SEC. 3.3 SYSTEM CALLS 111

struct strioctl { /* defined in <sys/stropts.h> */
int ic cmd; /* command */
int ic timout; /* timeout value */
int ic len; /* length of data */
char *ic dp; /* pointer to data */

};
struct strioctl str;
.
.
.
ioctl(fd, I STR, &str);

The strioctl structure allows the user to specify one optional b uffer to contain
data to be sent along with the command. On success, data may be returned to the
buffer.

The stream head translates the strioctl structure into a message sent do wn-
stream. If the command is recognized by a module or dri ver, the request is per -
formed and an ackno wledgement message is sent upstream to complete the system
call. If the command is unrecognized by all processing elements in the stream, the
driver responds by sending a ne gative acknowledgement message upstream, which
causes the system call to fail.

This mechanism did not allo w existing binary applications to use ioctl with
STREAMS-based drivers or modules since the command and data had to be mas-
saged into the strioctl structure. Nor did it support the use of more than one
data buffer during ioctl processing. To solve these problems, transparent ioctls
were added to SVR3.2.

With transparent ioctls, the stream head does not e xpect an I STR com-
mand, nor does it know anything about the format of the data referenced by the third
argument to ioctl. All unrecognized commands are treated as transparent by send-
ing a specially tagged ioctl message downstream. If a module or driver recog-
nizes the command, it will respond with the proper messages to complete the request.
Otherwise, the driver will generate a negative acknowledgement, as with the I STR
type.

Note that users can specify a timeout with an I STR ioctl. The ic timout
field contains the number of seconds to w ait for the ioctl to complete before giv-
ing up. The special symbol INFTIM is used to w ait indefinitely. Transparent
ioctls hav e no way to control the timeout. They will wait indefinitely.

Because modules and drivers stack in a stream, the first component to recognize
an ioctl command will act on it. Modules pass along ioctl messages containing
unrecognized commands. Drivers have the responsibility of f ailing unrecognized
ioctl commands. More information on the details of ioctl processing can be
found in Chapters 9 through 12.

Access to a stream is relinquished by calling the close system call with the
file descriptor referring to the stream. The driver’s close routine is only called on the
last close of the stream. So if more than one process has opened the same stream, or
if a STREAMS file descriptor has been duplicated [see dup(2)], the driver will not
be notified that a close is occurring until the last f ile descriptor referring to the
stream has been closed.

112 STREAMS

On last close, a stream is dismantled. Starting at the top of the stream, the sys-
tem calls the close routine of each module before remo ving the module from the
stream. When no modules are left, the system will call the dri ver’s close routine and
deallocate the data structures representing the stream.

Flushing Data

Since messages can be queued within a stream, applications ha ve the ability to flush
the data in it with the I FLUSH ioctl command. By flush, we do not mean the
ability to force that data to the tail of the stream. In this context, ‘‘flush’’ means to
discard the data by freeing the messages.

The third parameter to the system call is a flag indicating which side of the
stream to flush: FLUSHR for the read side, FLUSHW for the write side, and
FLUSHRW for both sides. [FLUSHRW is equivalent to (FLUSHR|FLUSHW).]

When the I FLUSH ioctl is used, the stream head sends a special message
(of type M FLUSH) containing the flags do wnstream that informs the modules and
driver to flush their queues. As each module recei ves the message, it flushes its
queues and passes the message on to the ne xt component. When the driver receives
the message and flushes its queues, if FLUSHR is set, the dri ver shuts off FLUSHW
and sends the message back upstream. When it reaches the head of the stream, the
stream head flushes its read queue and frees the message. If FLUSHR is not set, the
driver frees the message instead.

Flushing can also occur from within a stream. As the result of an e xternal
ev ent, a module or driver can generate an M FLUSH message to flush the stream. In
this case, the user is una ware that the flushing has occurred. The stream head takes
care of the M FLUSH message much in the same way the driver did, but the sense of
the flags is reversed. If FLUSHW is set, the stream head shuts off FLUSHR and sends
the message downstream. Otherwise, it frees the message. The shutting off of the
FLUSHR flag by the stream head and the FLUSHW flag by the dri ver prevents the
message from circulating in the stream indefinitely.

Error Handling

The separation of module and driver processing from the user’s I/O requests presents
problems for error reporting. This is partially because of the decoupling ef fect of
message-based interfaces, and partially because of the ability of modules and dri vers
to defer processing messages by queueing them. By the time the module or dri ver
detects an error , the application may no longer be performing the system call that
caused the error. Errors can also result from the tail of a stream, unrelated to an y
specific action by the user.

This has led to the use of error semantics that, in most cases, mak e a stream
unusable when an error occurs. Usually when a module or driver detects an unrecov-
erable error, the action taken is to inform the stream head of the error by sending a
message upstream, placing the stream in error mode. Then, from that point on, all
system calls except close and poll will fail with the error code specif ied in the

SEC. 3.4 NONBLOCKING I/O AND POLLING 113

message. The only way for a user to clear the error is to close the stream and reopen
the device.

One exception to this type of error handling is ioctl failures. The processing
of an ioctl in a stream is synchronous; the user w aits until a message arri ves
acknowledging the completion of the ioctl command. Drivers and modules indi-
cate success or f ailure in the completion message. There is no need to place the
stream in error mode, although this can be done in e xtreme cases. Drivers and mod-
ules usually try to a void placing a stream in error mode unless absolutely necessary ,
because of the severe consequences.

Drivers and modules have the option of placing just one side of a stream in error
mode. If only the read side is in error mode, then only read-lik e system calls will
fail. If only the write side is in error mode, then only write-like system calls will fail.
If a system call is neither read-lik e nor write-like, then it will f ail if either side is in
error mode.

Drivers and modules can also put the stream in hangup mode. This might occur
when the dri ver detects a problem with the communication line, for e xample. In
hangup mode, reads will succeed, retrie ving any data on the stream head read
queue, until no more data are left. Then read will return 0. However, write will
fail in hangup mode, setting errno to EIO.

3.4 NONBLOCKING I/O AND POLLING

Normally, a read from a stream will block until data are available. A write will block
if the stream is flow-controlled. An alternative to this form of I/O is called nonblock-
ing I/O. If a stream is opened with the O NDELAY flag or the O NONBLOCK flag,
then read and getmsg will fail with errno set to EAGAIN if there are no data
immediately available, and write and putmsg will fail with errno set to
EAGAIN if the stream is flo w-controlled. For write, if part of the data has been
written before the stream is flo w-controlled, then write will return the number of
bytes written.

These semantics are useful to applications that do not w ant to wait for data to
either arrive or drain. This might be the case if the application has a lo wer-priority
task it can perform until I/O can be continued. In some cases, an application might
be able to use nonblocking I/O to improve its response time.

Nonblocking I/O alone w ould be tedious to use: an application would have to
check the file descriptors periodically to see if the state had changed. With the use of
the I SETSIG ioctl command, this is not necessary. I SETSIG provides a way
for the application to be signaled when data arri ve or flow-control restrictions are
removed. The application specifies a bitmask of e vents it is interested in, and the
stream head sends the SIGPOLL signal to the process when any of the events occurs.
Then the application can either handle the e vent right away, or note that it occurred
and handle it at its convenience.

Table 3.3 summarizes the e vents of interest that can be re gistered with the
stream head. (Out-of-band data are discussed in Section 3.7.)

114 STREAMS

Table 3.3. Stream Head SIGPOLL Events

Event Description

S INPUT Data (other than high-priority) can be read.
S HIPRI High-priority data can be read.
S OUTPUT Write side is no longer flow-controlled for normal data.
S MSG Signal message is at head of stream head read queue.
S ERROR Stream is in error (M ERROR message received).
S HANGUP Device has hung up stream.
S RDNORM Normal data (band 0) can be read.
S WRNORM Same as S OUTPUT.
S RDBAND Out-of-band data can be read.
S WRBAND Write side is no longer flow-controlled for out-of-band data.
S BANDURG Modifier to S RDBAND to generate SIGURG instead of SIG-

POLL.

Normal data are packaged in M DATA messages and ha ve a p riority band of
zero. S INPUT is equivalent to (S RDNORM|S RDBAND) because read and
getmsg remove the first message from the stream head read queue, regardless of the
message’s band. S WRNORM is the same as S OUTPUT because write and
putmsg (without the RS HIPRI flag) generate messages in band zero. S WRNORM
was added only to maintain a consistent naming scheme. S BANDURG is used by
the socket library described in Chapter 7.

The default action for the SIGPOLL signal is to kill the process. This may
seem severe, but the stream head will ne ver generate SIGPOLL unless the process
explicitly requests it by in voking the I SETSIG ioctl command. Therefore,
applications must be careful to install the signal handler for SIGPOLL before using
the I SETSIG ioctl.

In a w ay, the default disposition of SIGPOLL encourages proper use of
I SETSIG. If you ask for signals to be generated without being prepared to handle
them, then you pay the price. There is one unfortunate side effect, however. If a pro-
gram has arranged for SIGPOLL generation and then execs, the signal dispositions
for signals with handlers are restored to their def ault values. If the process that calls
exec is a descendant of the process that called I SETSIG, then everything is fine
because SIGPOLL is only sent to the process that requested it. On the other hand, if
the process calling exec is the same one that requested SIGPOLL be generated,
then the new program will be killed if it receives SIGPOLL. Thus, before execing,
processes using SIGPOLL should either disable its generation, ignore the signal, or
set the close-on-exec flag for the f ile descriptors associated with the streams that
might generate the signal.

Example 3.4.1. Data transfer to a stream can be illustrated with the cat(1) com-
mand. Since terminals are streams, we can use the standard output as the example of
a STREAMS file descriptor to which data will be written.

SEC. 3.4 NONBLOCKING I/O AND POLLING 115

Consider the simplified implementation of cat from Example 2.4.6. It is fairly
straightforward, reading from the f ile and writing to the standard output until either
there is an error, or the end of the file has been reached.

But what would happen if the standard output flow-controlled? The application
would block in the write until the flow control subsided and the rest of the data
could be written. We could make better use of this time if we were able to read more
of the file until the standard output could accept more data. This version of the pro-
gram employs nonblocking I/O to do just that:

#include <sys/types.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <stropts.h>
#include <signal.h>

#define BUFSIZE (64*1024)
#define RDSIZE (BUFSIZE/8)

char buf[BUFSIZE];
int widx, ridx; /* write and read indices */
int totwr, totrd; /* total amounts read and written */
int flowctl; /* 1 if flow-controlled, 0 if not */
int nfc; /* number of times flow-controlled */

void catreg(int), cattostream(int);
int doread(int);
void dowrite(int), finwrite(void);
void setblock(int), setnonblock(int);

#ifdef FCBUG
void nop(int);
#endif

extern void error(const char *fmt, ...);
extern void fatal(const char *fmt, ...);

void
main(int argc, char *argv[])
{

int i, fd, isoutstr;
#ifdef FCBUG

struct sigaction sa;

/*
* If system contains flow-control bug,
* install a signal handler for SIGALRM.
*/
sa.sa handler = nop;
sigemptyset(&sa.sa mask);
sa.sa flags = 0;

116 STREAMS

if (sigaction(SIGALRM, &sa, NULL) < 0)
fatal("cat: sigaction failed");

#endif

/*
* See if the standard output is a stream. If
* isastream fails, assume stdout is not a stream.
*/
isoutstr = isastream(1);
if (isoutstr == -1)

isoutstr = 0;

/*
* Process each file named on the command line.
*/
for (i = 1; i < argc; i++) {

if ((fd = open(argv[i], O RDONLY)) < 0) {
error("cat: cannot open %s", argv[i]);
continue;

}

/*
* If the standard output is a stream, call
* cattostream to print the file. Otherwise
* call catreg (see Example 2.4.6) to do it.
*/
if (isoutstr)

cattostream(fd);
else

catreg(fd);
close(fd);

}
#ifdef DEBUG

printf("cat: number of flow controls = %d\n", nfc);
#endif

exit(0);
}

#ifdef FCBUG
void
nop(int sig)
{
}
#endif

There are several differences between this version of cat and the one presented
in Example 2.4.6. First, we ha ve added a dummy signal handler , nop, for
SIGALRM. It is only used if the symbol FCBUG is defined. nop is part of a w ork-
around for a b ug in STREAMS flo w control found in v ersions of SVR4. (The bug
has been fixed in SVR4.1 and SVR4.2.) The bug creates a window where the event
that triggers the generation of SIGPOLL can be lost. The same bug can result in
missing the event when using poll, too.

The second dif ference is the call to isastream(3C) to determine if the

SEC. 3.4 NONBLOCKING I/O AND POLLING 117

standard output is a stream. The synopsis for isastream is

int isastream(int fd);

isastream returns 1 if fd is a f ile descriptor associated with a stream, 0 if not,
and −1 on error. If an error occurs, we assume the standard output is not a stream.
We use catreg, from Example 2.4.6, if file descriptor 1 is not a stream. Otherwise,
we call cattostream to copy the contents of the file to the standard output.

Notice that the buffer is larger, but the read size (RDSIZE) will still be the same
as the previous version. This is because we will use the b uffer in a circular f ash-
ion: as we are copying data from one part of it, we will cop y data into another part,
until we reach the end of the buffer, where we will jump back to the beginning of the
buffer again, until no more data are left (see Figure 3.7).

widx ridx

1 2 3 4 5 6 7 8

ridx

1

2

3

4
5

6

7

8

widx

Fig. 3.7. Circular Buffer

Before writing to the stream, cattostream installs a signal handler for
SIGPOLL and registers with the stream to be sent SIGPOLL whenever flow-control
restrictions are removed. Then it places the stream in nonblocking mode by calling
setnonblock (described shortly).

The basic flow is to read some data from the f ile, write the data to the terminal,
and if flow control is asserted, continue reading from the f ile into the circular b uffer
until either there is no room left in the buffer or the read is interrupted by the deliv-
ery of SIGPOLL. We use sigprocmask to manage the critical sections of code
where an error might occur if the e xecution is interrupted by the deli very of

118 STREAMS

SIGPOLL. If there is no room left in the b uffer, we hav e nothing to do but wait for
flow-control restrictions to be lifted, so we use sigsuspend.

void
cattostream(int fd)
{

int n;
struct sigaction sa;
sigset t s, os;

sigemptyset(&s);
sigaddset(&s, SIGPOLL);

/*
* Install a signal handler for SIGPOLL.
*/
sa.sa handler = dowrite;
sigemptyset(&sa.sa mask);
sa.sa flags = 0;
if (sigaction(SIGPOLL, &sa, NULL) < 0)

fatal("cat: sigaction failed");

/*
* Arrange to be notified when the standard output
* is no longer flow-controlled. Then place the file
* descriptor for stdout in nonblocking mode.
*/
if (ioctl(1, I SETSIG, S OUTPUT) < 0)

fatal("cat: I SETSIG ioctl failed");
setnonblock(1);
totrd = totwr = 0;
ridx = widx = 0;
flowctl = 0;
for (;;) {

if ((n = doread(fd)) == 0) {
/*
* End of file; finish writing.
*/
finwrite();
break;

} else if (n < 0) {
/*
* Read was interrupted by SIGPOLL.
*/
continue;

} else {
/*
* Successfully read something.
*/
totrd += n;

}

/*
* Start critical section. Block SIGPOLL.

SEC. 3.4 NONBLOCKING I/O AND POLLING 119

* Then try to write what we’ve just read.
*/
sigprocmask(SIG BLOCK, &s, &os);
dowrite(0);
while (flowctl) {

if (ridx != widx) {
/*
* Allow read to be interrupted.
*/
sigprocmask(SIG UNBLOCK, &s, NULL);
if ((n = doread(fd)) == 0) { /* EOF */

finwrite();
return;

} else if (n > 0) { /* read data */
totrd += n;

}
sigprocmask(SIG BLOCK, &s, NULL);

} else {
#ifdef FCBUG

/*
* Flow control bug -- might miss event.
*/
alarm(1);

#endif
/*
* Atomically unblock SIGPOLL and
* wait to be interrupted. On return,
* SIGPOLL is still blocked.
*/
sigsuspend(&os);

#ifdef FCBUG
alarm(0);
if (ioctl(1, I CANPUT, 0) != 0) {

/*
* Flow control lifted;
* continue writing.
*/
flowctl = 0;
dowrite(0);
break;

}
#endif

}
}

/*
* End critical section. Unblock SIGPOLL.
*/
sigprocmask(SIG UNBLOCK, &s, NULL);

}
}

We use alarm so that we do not block indef initely if FCBUG is defined. To
work around the flow-control bug, we use the I CANPUT ioctl to check if we can

120 STREAMS

write to the stream. If not, we just continue in the loop. If so, we clear the
flowctl flag and call dowrite to continue writing to the stream. On systems
that have fixed the flow-control bug, dowrite is called as the signal handler for
SIGPOLL.

We use setnonblock to place a stream in nonblocking mode and
setblock to restore it back to the def ault blocking behavior. Both functions get
the current copy of the file flags for the stream and then turn the O NONBLOCK flag
either off or on. Modifying a copy of the current flags ensures that we do not change
any of the flags already set; we just w ant to change the status of the O NONBLOCK
flag.

void
setnonblock(int fd)
{

int fl;

/*
* Get the current file flags and turn on
* nonblocking mode.
*/
if ((fl = fcntl(fd, F GETFL, 0)) < 0)

fatal("cat: fcntl F GETFL failed");
if (fcntl(fd, F SETFL, fl|O NONBLOCK) < 0)

fatal("cat: fcntl F SETFL failed");
}

void
setblock(int fd)
{

int fl;

/*
* Get the current file flags and turn off
* nonblocking mode.
*/
if ((fl = fcntl(fd, F GETFL, 0)) < 0)

fatal("cat: fcntl F GETFL failed");
if (fcntl(fd, F SETFL, (fl&˜O NONBLOCK)) < 0)

fatal("cat: fcntl F SETFL failed");
}

When we have reached the end of the input f ile, read will return 0 and we call
finwrite to finish writing the data to the standard output. In it, we attempt to can-
cel the SIGPOLL generation. If that fails, we just ignore SIGPOLL. The I SET-
SIG should not f ail, but we program defensi vely where we can. Then we disable
nonblocking mode for the standard output and f inish writing the data to the terminal.

void
finwrite(void)
{

SEC. 3.4 NONBLOCKING I/O AND POLLING 121

/*
* Cancel SIGPOLL generation for stdout.
*/
if (ioctl(1, I SETSIG, 0) < 0) {

struct sigaction sa;

/*
* I SETSIG shouldn’t have failed, but
* it did, so the next best thing is to
* ignore SIGPOLL.
*/
sa.sa handler = SIG IGN;
sigemptyset(&sa.sa mask);
sa.sa flags = 0;
if (sigaction(SIGPOLL, &sa, NULL) < 0)

fatal("sigaction failed");
}

/*
* Disable nonblocking mode and write last
* portion to the standard output.
*/
setblock(1);
dowrite(0);

}

In the circular buffer, ridx is the index of the next location into which we read
data, and widx is the inde x of the next location from which we write data. The
maximum data read at once is gi ven by RDSIZE. If we are less than ridx bytes
from the end of the buffer, then we read only as many bytes as can fit in the buffer.

After reading, we increment ridx by the number of bytes read and if it reaches
the end of the buffer, we reset it to 0. If SIGPOLL comes in during the middle of the
read, then we can get one of tw o results: either we transferred some data to the
buffer and read will return the number of bytes transferred, or we did not transfer
anything and read fails with errno set to EINTR. Any other failure is a real error.

int
doread(int fd)
{

int n, rcnt;

/*
* Calculate the space left to read.
* Read at most RDSIZE bytes.
*/
rcnt = widx - ridx;
if (rcnt <= 0) {

/*
* The writer is behind the reader
* in the buffer.
*/
rcnt = BUFSIZE - ridx;
if (rcnt > RDSIZE)

122 STREAMS

rcnt = RDSIZE;
}

/*
* Read as much as we can.
*/
n = read(fd, &buf[ridx], rcnt);
if (n >= 0) {

ridx += n;

/*
* If we’ve reached the end of the buffer,
* reset the read index to the beginning.
*/
if (ridx == BUFSIZE)

ridx = 0;
} else if (errno != EINTR) {

fatal("cat: read failed");
}
return(n);

}

The routine that does the writing to the terminal, dowrite, is always called
with SIGPOLL blocked. This is because the write might cause the stream to
become flow-controlled, and we do not w ant the signal to be generated while we are
still in dowrite or we could lose track of whether or not the stream is flo w-con-
trolled.

Consider what would happen if we did not block SIGPOLL and it came in after
write failed because of flow control, but before flowctl was set to 1. dowrite
would again be called, b ut this time as the handler for SIGPOLL. If it is able to
write to the stream, it will set flowctl to 0. Then, when it returns to the original
instance of dowrite, we continue by setting flowctl to 1, which is incorrect. If
cattostream is able to read the remaining part of the file, then the error will be of
no consequence, because cattostream will just call finwrite to write the con-
tents of the buffer to the stream. If, however, the buffer fills without having read the
entire file, then cattostream will call sigsuspend and never return because
the stream is not really flow-controlled.

void
dowrite(int sig)
{

int n, wcnt;

while (widx >= ridx) {

/*
* Stop when the writer has caught up with
* the reader.
*/
if ((widx == ridx) && (totrd == totwr))

break;

SEC. 3.4 NONBLOCKING I/O AND POLLING 123

/*
* The writer is ahead of the reader in the
* buffer. Calculate the amount left to write,
* and write it.
*/
wcnt = BUFSIZE - widx;
n = write(1, &buf[widx], wcnt);
if (n < 0) {

if (errno == EAGAIN) {
/*
* The stream is flow-controlled.
*/
nfc++;
flowctl = 1;
return;

} else {
fatal("cat: write failed");

}
} else {

totwr += n;
}
widx += n;

/*
* If the write index has reached the end
* of the buffer, reset it to 0.
*/
if (widx == BUFSIZE)

widx = 0;
}
while (widx < ridx) {

/*
* The writer is behind the reader in the buffer.
*/
wcnt = ridx - widx;
n = write(1, &buf[widx], wcnt);
if (n < 0) {

if (errno == EAGAIN) {
/*
* The stream is flow-controlled.
*/
nfc++;
flowctl = 1;
return;

} else {
fatal("cat: write failed");

}
} else {

totwr += n;
}
widx += n;

/*
* If the write index has reached the end

124 STREAMS

* of the buffer, reset it to 0.
*/
if (widx == BUFSIZE)

widx = 0;
}

/*
* If we reach this point, write was able to
* transmit everything, so we probably aren’t
* flow-controlled.
*/
flowctl = 0;

}

If widx is greater than ridx, then the most we can write is from widx to the
end of the buffer. Otherwise, the most we can write is from widx to the next place
to read, ridx. If write fails with errno set to EAGAIN, we set the flowctl
flag to indicate flow control has been asserted. If it fails for any other reason, it is a
real error, and we exit. If write succeeds, we increment widx by the number of
bytes written. If widx goes past the end of the buffer, we set it back to 0. Note that
if widx equals ridx, nothing is written (i.e., the ‘ ‘writer’’ has caught up with the
‘‘reader’’).

Although more complex, this version of the program can e xecute several times
faster than the f irst. This is because the program does other useful w ork while the
output is flow-controlled. However, if the output device is fast enough such that it
never flow-controls, there will be no increase in speed.

On a 33 MHz i386, I timed dif ferent versions of cat over three terminal
devices: the console (whose screen contents are essentially mapped into the k ernel
address space), the asynchronous serial line connected to an ASCII terminal running
at 19,200 bps (using the ASY dri ver), and the same serial line with an A T&T
630MTG windowing terminal running layers (using the XT dri ver, with ASY
linked underneath it). The results from printing a 100,000-byte f ile are summarized
in Table 3.4. All times are in seconds.

Table 3.4. Timing Results Writing to Different Devices

Device cat from cat from cat from
/usr/bin Example 2.4.6 This Example

Console 36 36 36
ASY 285 273 122
XT 381 369 247

During the tests, the console stream ne ver flow-controlled, the ASY stream
flow-controlled twice, and the XT stream flo w-controlled three times. Note that no
increase of speed is seen with the console. That is because the console driver merely
has to copy the message contents to the memory location representing the console
screen to display text. This is a good example of the output device being fast enough
to prevent the stream from flow-controlling.

SEC. 3.4 NONBLOCKING I/O AND POLLING 125

Although this example completed faster than the other v ersions when the serial
driver was used, the amount of time actually needed to display the te xt on the screen
was almost equivalent. This is because this version of cat simply wrote its data and
exited. It did not make the display rate an y higher. The stream buffered as much
data as the drivers and modules would allow. The drivers and modules continued to
process data even though the command had e xited because the shell still held the
stream open.

Polling

Applications that need to handle multiple f ile descriptors can use the poll system
call to check pending conditions on multiple f ile descriptors at once. Rather than
blocking in a system call on one of the f ile descriptors while events are occurring on
others, applications can block w aiting for events on any of a number of file descrip-
tors. The synopsis for poll is

#include <sys/types.h>
#include <poll.h>
#include <stropts.h>

int poll(struct pollfd *parray, ulong t nfds, int timeout);

An application supplies an array of pollfd structures, the number of entries in
the array, and a timeout value. If nothing happens within the number of milliseconds
specified by the timeout, the system call returns 0. The special timeout v alue of
INFTIM (−1) causes the system call to block indef initely until an e vent occurs on
one of the f ile descriptors. The special timeout v alue of 0 pre vents the poll from
waiting (i.e., it peeks at the state of things and returns). The pollfd structure is
defined as:

struct pollfd {
int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */

};

An application sets the fd field to the f ile descriptor to be polled and the
events field to the bitmask of events to be checked. On return, the revents field
contains the subset of events that occurred, plus some that the system can set. The
ev ents about which the caller can request notification are listed in Table 3.5.

In addition to those e vents that the caller can request, three other e vents can be
reported (see Table 3.6). The POLLERR, POLLHUP, and POLLNVAL ev ents only
apply to the revents field. An application cannot explicitly poll for these e vents
by setting them in the events field.

Example 3.4.2. Most commands like cu(1) and rlogin(1) are implemented by
forking, using one process to read from the terminal and write to the network, and the
other process to read from the netw ork and write to the terminal. This architecture

126 STREAMS

Table 3.5. Requestable poll Events

Event Description

POLLIN Data (other than high-priority) can be read.
POLLPRI High-priority data can be read.
POLLOUT Write side is no longer flow-controlled for normal data.
POLLRDNORM Normal data (band 0) can be read.
POLLWRNORM Same as POLLOUT.
POLLRDBAND Out-of-band data can be read.
POLLWRBAND Write side is no longer flow-controlled for out-of-band data.

Table 3.6. Nonrequestable poll Events

Event Description

POLLERR Stream is in error (M ERROR message received).
POLLHUP Device has hung up stream.
POLLNVAL The file descriptor is invalid.

can be reimplemented using only one process and using poll to avoid blocking on
either file descriptor. The following function illustrates how this might be done.

#include <poll.h>
#include <unistd.h>

extern void error(const char *fmt, ...);

void
comm(int tfd, int nfd)
{

int n, i;
struct pollfd pfd[2];
char buf[256];

pfd[0].fd = tfd; /* terminal */
pfd[0].events = POLLIN;
pfd[1].fd = nfd; /* network */
pfd[1].events = POLLIN;
for (;;) {

/*
* Wait for events to occur.
*/
if (poll(pfd, 2, -1) < 0) {

error("poll failed");
break;

}

SEC. 3.4 NONBLOCKING I/O AND POLLING 127

/*
* Check each file descriptor.
*/
for (i = 0; i < 2; i++) {

/*
* If an error occurred, just return.
*/
if (pfd[i].revents&(POLLERR|POLLHUP|POLLNVAL))

return;

/*
* If there are data present, read them from
* one file descriptor and write them to the
* other one.
*/
if (pfd[i].revents&POLLIN) {

n = read(pfd[i].fd, buf, sizeof(buf));
if (n > 0) {

write(pfd[1-i].fd, buf, n);
} else {

if (n < 0)
error("read failed");

return;
}

}
}

}
}

The comm function sets up the pollfd array and performs a poll that will
block until data arri ve on either file descriptor. The variable i indicates the f ile
descriptor to check. If there w as an error or hangup on the stream, we return. If
there are data to be read, the POLLIN flag will be set and we read the data from the
stream and write them to the other stream. Since we only have two indices, 0 and 1,
the idiom 1-i gives us the other index. Then we perform the same task with the
other stream. We continue this until there is an error.

Do not be misled by the e xample. Both cu and rlogin are a lot more com-
plex than this example might imply. They are both complicated by signal handling
and local command (‘ ‘escapes’’) processing. rlogin uses out-of-band data to
implement end-to-end flow control and to propag ate interrupts across the netw ork.
cu, on the other hand, transmits all characters in a single band, sometimes resulting
in awkward delays between the time that special characters (such as interrupt and
stop) are typed and the time that the remote computer reacts to them. This is mainly
because other characters that were transmitted before the special ones might still be
buffered, delaying the remote machine from interpreting the special ones. This
behavior is because cu was not designed from the start to w ork over networks. It
was designed to w ork primarily with asynchronous serial communication de vices
and was not converted to use the transport-level network interface until SVR3. Even
now, it does not attempt to use out-of-band transmission services if the underlying
communication facility supports them.

128 STREAMS

3.5 SERVICE INTERFACES

A service interface is the boundary between a user (called the ‘ ‘consumer’’) and the
provider of a service. A service interface consists of the primiti ves that can be
passed across the interf ace and the rules specifying the state transitions that occur
when the primitives are generated and received. The state transitions imply an order-
ing of primiti ves; for e xample, an ackno wledgement being sent in response to a
request. The consumer can generate request primiti ves to obtain service from the
provider. The provider, in turn, may answer a request with a response primiti ve.
External events might cause the provider to notify the consumer with an event primi-
tive (see Figure 3.8).

Event
Primitives

Response
Primitives

Request
Primitives

Provider

Consumer

. Service
Interface

Fig. 3.8. Service Interface

Service interfaces are closely related to the OSI reference model discussed in
Chapter 1. At each layer in the model, an interf ace exists between the upper and
lower layers. Service interfaces are modeled after these interf aces. The layer
beneath the interface provides a service to the layer above the interface.

The purpose of specifying a service interf ace is to allow consumers of services
to be written independent of the providers of the service. This enhances the possibil-
ity for different consumers to be matched up with dif ferent providers, as long as they
share a common service interf ace. The Transport Provider Interface (TPI) is one
example of a service interface. It is discussed in detail in Chapter 12.

Consider an application (the consumer) that lets users remotely log in to dif fer-
ent computers connected to a netw ork. If the application conforms to a published
service interface, then it is possible to ha ve a v ariety of netw ork protocols (the
providers) that support remote login just by conforming to the same interf ace.
Figure 3.9 illustrates this point. In it, TIMOD is a module that helps the transport

SEC. 3.5 SERVICE INTERFACES 129

interface library routines conform to the proper service interface, the TPI. Tw o trans-
port providers are sho wn, each implementing a dif ferent protocol. TCP is the
Internet’s Transmission Control Protocol, and TP4 is ISO’ s class 4 transport proto-
col.

TP4TCP

TPI

TIMODTIMOD

. .

Kernel

transport interface
library

rlogin
transport interface

library

rlogin

User

Fig. 3.9. Service Interfaces Promoting Software Reuse

Service interfaces can e xist at the boundary between an y two processing ele-
ments in a stream. The service interfaces provide the separation and isolation needed
to implement layered protocols.

In System V, service interface primitives are implemented as STREAMS mes-
sages. Usually, primitives are constructed by creating M PROTO message blocks
containing control information, such as the primiti ve type and addressing informa-
tion, and linking these to M DATA message blocks containing the associated user
data. By separating user data from control parameters, protocol-independent filtering
modules can be used in the stream (the y process only the M DATA portions of mes-
sages). For example, you could write a module that encrypts data in M DATA mes-
sages and push it on a netw ork connection’s stream. Both sides of the connection
would have to push the same module and then inform the module of the correct k ey
to use to encrypt and decrypt the data. The module could then operate by processing
all M DATA messages it recei ves, including the ones link ed to M PROTO and
M PCPROTO messages. The module would not ha ve to know anything about the
protocol used, because the module operates on user data only . Thus, the module
could be used with different protocols.

The reason that the getmsg and putmsg system calls e xist is to pro vide a
means for user -level applications to communicate across service interf aces. The

130 STREAMS

message-based service interface used in the kernel between processing elements in a
stream is extended to applications running at user level by the ability of getmsg and
putmsg to process both control information and user data.

A less obvious benefit of service interf aces is the ability to migrate protocols
from the kernel to intelligent peripheral devices. Since applications deal with a fixed
service interface, all that need be done is to pro vide a driver that presents the same
service interface to users while communicating the primiti ves to the peripheral
device where the real work is done. The system calls are unaffected by changes like
this because they know nothing about the communication in volved; they merely act
as a message-transfer mechanism. Protocol processing can e ven migrate between
user level and kernel level as long as the same service interf aces are provided for
existing applications.

An example of a service primiti ve is a request to send data. The primitive type
and addressing information w ould be contained in the control b uffer, and the user
data would be contained in the data buffer.

Example 3.5.1. A hypothetical (and inefficient) protocol might require that a posi-
tive or neg ative acknowledgement be sent to the consumer for e very data request
generated. Combining the routines from tw o previous examples (3.3.2 and 3.3.4),
we can write a routine that implements this service interface.

#include <sys/types.h>
#include <unistd.h>
#include <signal.h>
#include <stropts.h>

int
send(int fd, char *buf, uint t blen, char *addr,

uint t alen)
{

sigset t set, oset;

/*
* Block SIGPOLL.
*/
sigemptyset(&set);
sigaddset(&set, SIGPOLL);
sigprocmask(SIG BLOCK, &set, &oset);

/*
* Send the message.
*/
if (senddata(fd, buf, blen, addr, alen) < 0) {

sigprocmask(SIG SETMASK, &oset, NULL);
return(-1);

}

/*
* Receive the acknowledgement.
*/

SEC. 3.6 IPC WITH STREAMS PIPES 131

if (getack(fd) < 0) {
sigprocmask(SIG SETMASK, &oset, NULL);
return(-1);

}

/*
* Restore the original signal mask.
*/
sigprocmask(SIG SETMASK, &oset, NULL);
return(0);

}

This is a simple e xample, but it illustrates a problem with library routines used
to implement service interface primitives that require a response. The response mes-
sage might generate SIGPOLL if the caller had previously called I SETSIG and the
message type of the response corresponds to an input e vent in which the caller w as
interested. If we ignore SIGPOLL in the library routine, the caller might miss the
arrival of data. If we block (hold) SIGPOLL, then we might generate an e vent
because of the arri val of the response message when there is really nothing for the
caller to read.

Luckily, response primitives are usually M PCPROTO messages, and applica-
tions are usually only interested in the arri val of normal and out-of-band data. This
is because only one high-priority message is enqueued at one time on a stream head’s
read queue, so it is unlik ely that M PCPROTO messages are used for an ything other
than interface acknowledgements. (Otherwise, primitives would be lost when addi-
tional M PCPROTO messages arrived.) In the event that the caller w ants to be sig-
naled when high-priority messages arri ve, it is probably better that we generate a
false event than to remain silent, so we choose to hold SIGPOLL instead of ignoring
it.

Examples of more realistic service interfaces are discussed in later chapters.

3.6 IPC WITH STREAMS PIPES

We briefly introduced STREAMS-based pipes in Section 3.2. In this section we will
explore the architecture of pipes, along with some of the side ef fects of this architec-
ture. Then we will see how STREAMS pipes are used for interprocess communica-
tion.

A pipe is created with the pipe system call:

#include <unistd.h>

int pfd[2];

if (pipe(pfd) < 0) {
perror("pipe failed");
exit(1);

}

132 STREAMS

Figure 3.10 sho ws the structure of a pipe. Each file descriptor has its o wn
stream head, with the write queue pointing at the other’ s read queue. Data written
using one f ile descriptor will be packaged into messages by the stream head and
placed on the read queue of the stream head at the other end of the pipe. These data
are then available to be read using the other file descriptor.

pipe
midpoint

Stream
Head

Stream
Head

RQ
.

..

..

...............

.
..
..
...............

WQ WQ

RQ
.

..

..

...............

.
..
..
...............

pfd[0] pfd[1]

Fig. 3.10. Queue Linkage in a Pipe

If a module is pushed on one end of the pipe, it cannot be popped from the other
end (see Figure 3.11). To be removed, it must be popped from the same end on
which it was pushed. This is because the pipe is really tw o separate streams linked
together. The point where the streams ‘ ‘twist’’ (where the write queues point to the
read queues) is the midpoint of the pipe. Operations that are local to a stream will
end here, such as searching for modules to pop, or listing the modules in the stream.

Recall that multiple processes that open the same de vice share the same stream.
This is also true for pipes. Since a pipe is a stream, when more than one process is
writing to the same end of a pipe at the same time, the data from one process will be
interleaved with the data from the other processes.

pfd[1]pfd[0]

WQWQ
.

..

..

...............

.
..
..
...............

RQ

Stream
Head

pipe
midpoint

ModuleStream
Head

RQ

WQ
.

..

..

...............

.
..
..
...............

.
..
..
...............

.
..
..
...............

RQ

Fig. 3.11. A Module Pushed on a Pipe

Historically, pipe semantics have guaranteed that if a process writes no more
than PIPE BUF bytes, the data will not be fragmented and interlea ved with data

SEC. 3.6 IPC WITH STREAMS PIPES 133

from other processes. In other words, if a process writes at most PIPE BUF bytes in
one system call, the process reading from the other end of the pipe (assuming it reads
the same amount) will recei ve all the data written by the writer , without the data
being intermixed with data from other writers. If, however, the writer sends the data
with more than one write system call, data from other writers might be interlea ved
with the data from the separate system calls.

Different UNIX systems support different values for PIPE BUF. Two common
values are 4096 and 5120 bytes. POSIX PIPE BUF defines the minimum v alue
that any POSIX-conforming system must support. Both constants are def ined in
<limits.h>. Portable applications should not assume that the v alue for
PIPE BUF is greater than POSIX PIPE BUF. A portable way does e xist, how-
ev er, to find the v alue of PIPE BUF for a gi ven system: use pathconf(2) or
fpathconf(2).

For example, assume two processes, A and B, are writing to the same end of a
pipe, and that 100 < PIPE BUF < 10,000. If process A writes 100 bytes and process
B writes 100 bytes, then the reader will receive 100 bytes from one process, followed
by 100 bytes from the other process, depending on who wrote f irst. Now, if process
A decides to write 10,000 bytes, b ut process B only writes 100 bytes, the reader
could receive the first PIPE BUF from process A, then the 100 bytes from process
B, followed by the remaining data (10,000 − PIPE BUF) from process A. The order
depends on a number of f actors, such as process scheduling priority and a vailability
of buffers for STREAMS messages.

If a module is pushed on one end of the pipe, these semantics are maintained as
long as the module’s maximum packet size is at least PIPE BUF bytes. The maxi-
mum packet size determines how the data are fragmented when written. Of course,
with modules on the pipe, the order of arri val might change depending on ho w the
modules process the data.

Even though pipes are streams, the y exhibit slightly dif ferent behavior during
nonblocking I/O, because of older pipe semantics. For compatibility, if a pipe’s
stream is placed in nonblocking mode with the O NDELAY flag, read will return 0
when no data are a vailable, and write will block when the stream is flo w-con-
trolled. If the stream is placed in nonblocking mode with the O NONBLOCK flag,
read will return −1 with errno set to EAGAIN when no data are a vailable, and
write will return −1 with errno set to EAGAIN when the stream is flo w-con-
trolled.

If one end of a pipe is closed, then the other end is placed in hangup mode.
Thus, processes cannot write to the open end, b ut they can still read from it. Pro-
cesses will be sent SIGPIPE when they try to write to a pipe when the other end is
not in use. The default action for SIGPIPE is to kill the process, so processes that
do not w ant to be killed in this manner when using pipes should either catch or
ignore SIGPIPE if there is a chance that one end will go away abruptly.

134 STREAMS

Flushing Data in a Pipe

An interesting problem occurs with flushing data in a pipe. Recall that flushing
occurs by passing an M FLUSH message through the stream. The message contains
flags that specify the queues to flush (read-side, write-side, or both). At the point
where the two streams forming the pipe meet, the read side of one stream becomes
the write side of the other , and vice v ersa. So if only one side of the stream is
flushed, the flag will refer to the opposite side after passing the midpoint of the pipe.

Referring back to Figure 3.10, let’ s look at what happens when we try to flush
the stream using

ioctl(pfd[0], I FLUSH, flag);

If flag is FLUSHR, then the stream head read queue referred to by pfd[0] will be
flushed. If flag is FLUSHW, then the stream head read queue referred to by
pfd[1] will be flushed, since data written to pfd[0] are placed on the read queue
of pfd[1]. If flag is FLUSHRW, then both read queues are flushed. The stream
head never enqueues messages on its write queue, so there is no need to flush it.
Note that no message is generated to flush the pipe when no modules are present.

If there are modules on the stream pipe (see Figure 3.11), however, a message is
used instead, in the same way as if there were a driver at the end of the stream. Now
let’s see what happens in this case. If only FLUSHR is set in the M FLUSH message,
the module would flush its read queue and pass the message to the stream head of
pfd[1]. Then that stream head w ould flush its read queue, which is not what we
intended. Since the read queue of pfd[1] holds messages we write to pfd[0],
flushing the read queue of pfd[1] would only mak e sense if we had specif ied
FLUSHW.

If only FLUSHW is set, the module w ould flush its write queue and pass the
message to the stream head of pfd[1]. The stream head would then route the mes-
sage down its write side, passing the message back to the module. The module
would again flush its write queue and pass the message back to where it originated,
the stream head of pfd[0]. This time, however, the stream head will not route the
message back down the write side of the stream. It is smart enough to pre vent the
flush message from circulating more than once in the pipe.

The problem of flushing the wrong queues in a pipe e xists because, at the mid-
point, the side of the stream where processing is taking place changes, b ut the sense
of the flags in the M FLUSH message does not. To flush one side of a pipe correctly,
we need to flip the sense of the flags. For example, to flush the write side, we should
flush all the write queues from the stream head do wn to the midpoint, then switch
and flush all the read queues on the other side from the midpoint up to the other
stream head.

To solve this problem, a module (called PIPEMOD) is a vailable to switch the
sense of the flush flags. PIPEMOD performs no other function. If an application
requires modules on the pipe and the ability to flush data, then PIPEMOD should be
the first module pushed on the stream, closest to the midpoint. (It only needs to be
on one side of the pipe.) Otherwise, it can be left of f the stream. In addition to

SEC. 3.6 IPC WITH STREAMS PIPES 135

PIPEMOD, other modules intended for use in pipes may incorporate the necessary
logic to switch the sense of the flush flags.

Mounted Streams

When a process needs to communicate with one of its children, it usually does so
through a pipe. The parent enables communication by creating a pipe before forking
off the child. After the child is created, the parent will write to and read from one of
the two file descriptors returned from the pipe system call. The child will use the
other end of the pipe.

More interesting, however, is the use of pipes for communication between unre-
lated processes. By giving one end of a pipe a name in the f ile system, a process
offers a way for other processes to communicate with it. FIFOs provide this capabil-
ity, but communication is unidirectional. Mounted streams overcome this problem.
Here’s how: a process creates a pipe and mounts one end of it o ver an existing file
using fattach(3). Then, when other processes open the f ile, they gain access to
the mounted end of the pipe instead of the pree xisting file. Communication can
occur as in the parent/child case, with the original process reading from and writing
to the unmounted end of the pipe, and the other processes reading from and writing
to the mounted end of the pipe.

The fattach library routine uses the mount system call and a special f ile
system called NAMEFS to support mounted streams (also called ‘ ‘named streams’’).
The synopsis for fattach is

int fattach(int fd, const char *path);

The process must own and have write permission on the file represented by path, or
have super-user privileges. After the stream is attached, processes opening the f ile
will gain access to the pipe. Any processes that have the file open before the call to
fattach will still access the original f ile after the attach is made, b ut if they open
the file again, they will access the pipe instead.

Example 3.6.1. One problem that arises with windo w systems is that they may ren-
der your login terminal de vice useless. Others cannot write to your terminal unless
the windowing software has replaced the login terminal’ s entry in
/var/adm/utmp with the name of the ne w device to which messages can be sent.
Even though library routines e xist to mak e this change easier [see getut(3C)],
they can cause problems because the y do not serialize access to the data f iles being
changed.

Instead of changing the utmp entry, a windowing system can elect to display
messages written to your terminal in the current windo w or in a reserved window by
monitoring the end of the pipe returned by this function:

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

#define TTYMODE (S IRUSR|S IWUSR|S IWGRP)

136 STREAMS

int
chgterm()
{

int pfd[2];
char *tty;

/*
* Get the name of the controlling terminal.
*/
if ((tty = ttyname(0)) == NULL)

return(-1);

/*
* Create a pipe and mount one end on top of
* the terminal’s device node. Then change
* the mode of the pipe to give it the same
* permissions as terminals.
*/
if (pipe(pfd) < 0)

return(-1);
if ((fattach(pfd[1], tty) < 0) ||

(chmod(tty, TTYMODE) < 0)) {
close(pfd[0]);
close(pfd[1]);
return(-1);

}

/*
* Close the end of the pipe just mounted and
* return the other end to the caller.
*/
close(pfd[1]);
return(pfd[0]);

}

On success, the function returns a f ile descriptor to be monitored, or −1 if it
fails. It obtains the name of the terminal that w as used to log in, creates a pipe, and
mounts one end of the pipe o ver the name. Then it mak es the name publicly
writable. This does not change the mode of the on-disk file representing the terminal
name, as you might e xpect. Instead, it changes the mode of the pipe while it is
attached to the name, leaving the mode of the on-disk file unaltered. From the output
of ls -l /dev/ttyXX, it will appear as if the terminal name is a pipe with per -
mission 0620, but as soon as the pipe is unmounted, things will re vert to the actual
device mode and permissions.

One catch with using this method is that the terminal device will not act as a ter-
minal when opened by other processes. Since many programs behave differently
when they are writing to a terminal, it might be prudent for the windo wing system to
push a special module on the pipe to mak e the pipe appear as a terminal. Such a
module is easy to write, as we shall see in Chapter 11.

SEC. 3.6 IPC WITH STREAMS PIPES 137

A process can unmount a stream that has been attached to the f ile system
namespace with fdetach(3):

int fdetach(const char *path);

Unless both ends of a pipe are mounted, if one end of a pipe is closed while the other
end is mounted, then the mounted end is automatically unmounted. This is why we
do not have to call fdetach if chmod fails in the previous example.

Sharing and Passing File Descriptors

When two processes want to share file descriptors, they usually have to be related in
some way. When a process forks, the child process has access to all f ile descriptors
in use by the parent before the fork. Any files opened after the fork are private to the
process that opened them. This is useful when the parent needs to fork of f a child to
perform some task.

Passing file descriptors between unrelated processes can be accomplished in this
manner by having the child exec the program that is to recei ve the file descriptors.
This approach is incon venient because it restricts the types of programs that can
make use of it. For example, processes already running would not be able to receive
file descriptors since the passing can only be done at the creation of the process.
Additionally, the file descriptors to be shared are limited to only those file descriptors
in use before the fork.

The I SENDFD and I RECVFD ioctl commands improve this situation by
allowing unrelated processes to pass f ile descriptors to each other . When a process
wants to send a f ile descriptor to another process, it can use the I SENDFD ioctl
command in conjunction with a mounted pipe:

#include <stropts.h>

if (ioctl(pipefd, I SENDFD, otherfd) < 0)
perror("Cannot send file descriptor");

The first parameter, pipefd, must be a f ile descriptor of a stream pipe or a loop-
back driver. The third parameter, otherfd, is the file descriptor to be sent. The
only requirement is that it be a valid open file descriptor.

After sending otherfd, the process can close it if the f ile descriptor is not
needed. The system will keep it open until the receiving process closes it. To pass a
file descriptor, the stream head creates an M PASSFP message, obtains a reference to
the file pointer, places the file pointer and identification of the sender in the message,
and enqueues the message on the stream head read queue at the other end of the pipe.

A process can then receive the file descriptor with the I RECVFD ioctl com-
mand:

#include <stropts.h>

struct strrecvfd recv;

if (ioctl(pipefd, I RECVFD, &recv) < 0)
perror("Cannot receive file descriptor");

138 STREAMS

The third argument is a pointer to a strrecvfd structure that describes the new file
descriptor:

struct strrecvfd {
int fd;
uid t uid;
gid t gid;

};

The fd field contains the ne w file descriptor. The uid field contains the ef fective
user ID of the sending process. Similarly, the gid field contains the effective group
ID of the sending process.

If an M PASSFP message is at the front of the stream head read queue, an y
attempts to use read or getmsg on that stream will f ail with errno set to
EBADMSG.

Example 3.6.2. Suppose client applications must authenticate their network connec-
tions so the y can obtain service. Instead of ha ving every client application call a
function to do the authentication, we can dele gate a separate process on each
machine to handle the authentication. Separating the authentication from the clients
has the advantage that we can change the authentication scheme at an y time without
having to change all of the applications; we just replace the authenticator process
instead. (A similar technique can be applied to server processes as well.)

One way to implement the interf ace to the authenticator process is to pass the
network connection to the process, let it do the w ork, and then ha ve it pass the file
descriptor back to the client. For example, the authenticator might use the user ID
found in the strrecvfd structure as an index into a database containing public and
private keys (passwords) to be used in authentication. A function similar to the fol-
lowing can be used to exchange file descriptors with the authenticator:

#include <fcntl.h>
#include <unistd.h>
#include <stropts.h>
#include <errno.h>

int
auth(int netfd)
{

int afd;
struct strrecvfd recv;

/*
* Open a mounted stream pipe to the authenticator.
*/
if ((afd = open("/var/.authpipe", O RDWR)) < 0) {

close(netfd);
return(-1);

}

/*
* Send the network connection to be authenticated.

SEC. 3.6 IPC WITH STREAMS PIPES 139

*/
if (ioctl(afd, I SENDFD, netfd) < 0) {

close(afd);
close(netfd);
return(-1);

}

/*
* We don’t need the network file descriptor.
* The authenticator will pass us back the
* file descriptor to use.
*/
close(netfd);
if (ioctl(afd, I RECVFD, &recv) < 0) {

recv.fd = -1;
} else if (recv.uid != 0) { /* impostor */

close(recv.fd);
errno = EACCES;
recv.fd = -1;

}
close(afd);
return(recv.fd);

}

The first step is to open the mounted pipe (/var/.authpipe) that the
authentication server is using. It is usually a good idea to start pipe names with a
period so people grepping around will not indef initely block reading from the pipe.
If the open f ails, we close the netw ork file descriptor since we cannot authenticate
the connection, and we return failure.

If we can open the named pipe, we send the f ile descriptor to the authentication
process. Then we close the network file descriptor since we do not need it an ymore
and receive the authenticated file descriptor from the authentication process. If the
authenticator is not running with super -user privileges, we discard the f ile descriptor
and set errno to EACCES to indicate a permissions problem. This limits the ability
of someone being able to spoof the authentication facility.

If everything checks out, we close the pipe’ s file descriptor and return the f ile
descriptor associated with the authenticated network connection.

Unique Connections

There is a bug in the previous example. If more than one process is trying to authen-
ticate a connection at the same time, then we might end up with the authenticated file
descriptors going to the wrong processes. With more than one process trying to
receive a file descriptor from the same end of a pipe, the f irst process to run will get
the file descriptor. This is the same problem that e xists with both FIFOs and
mounted streams: the reader cannot distinguish data from multiple writers, and mul-
tiple readers cannot contend for data from the same end of a pipe without some sort
of synchronization.

This problem can be solv ed by using a special module called CONNLD. The

140 STREAMS

server process can push CONNLD on the mounted end of the pipe. Then, whenever
a process opens the pipe, it will get a unique connection to the serv er. The way this
works is that CONNLD creates a second pipe and sends one end to the serv er
process. Then it arranges to have the other end returned to the client process as the
returned file descriptor from open. The client process will block until the serv er
receives the file descriptor with the I RECVFD ioctl command. Then both pro-
cesses can communicate over the unique connection without interference from other
processes.

stream
head

stream
head

client

/var/.spipe

/var/.spipe

. .

............

server

(a)
kernel

user

CONNLD

CONNLDpipe

pipe

server

kernel

user

pipe

(b)

client

stream
head

stream
head

stream
head

stream
head

Fig. 3.12. Unique Connections with CONNLD

Figure 3.12 shows a process opening a pipe (with CONNLD on it) mounted on
the file named /var/.spipe. In part (a), the client process attempts to open the
pipe and goes to sleep. After CONNLD creates a new pipe and sends one end to the
server process, the serv er receives it, waking up the client. Part (b) of the f igure
shows the end result. The server process has a ne w file descriptor that refers to one
end of a pipe that goes directly to the client process. The client process does not gain
access to the mounted pipe. Instead, the mounted pipe is replaced by the ne wly cre-
ated pipe before open returns.

SEC. 3.6 IPC WITH STREAMS PIPES 141

Example 3.6.3. The following two routines can be used by a serv er process to pro-
vide unique connections on a mounted pipe. The first routine creates the pipe,
pushes CONNLD on one end, and then mounts that end in the file system. This is all
the initialization needed to enable unique connections. The second routine is a stub
for the authentication process discussed in the previous example.

#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
#include <stropts.h>

#define PIPEPATH "/var/.authpipe"
#define ALLRD (S IRUSR|S IRGRP|S IROTH)
#define ALLWR (S IWUSR|S IWGRP|S IWOTH)
#define PIPEMODE (ALLRD|ALLWR)

int pfd[2];

extern void fatal(const char *fmt, ...);

void
initialize()
{

/*
* Create a pipe.
*/
if (pipe(pfd) < 0)

fatal("cannot create pipe");

/*
* Push CONNLD on one end to enable unique
* connections.
*/
if (ioctl(pfd[1], I PUSH, "connld") < 0)

fatal("cannot push CONNLD");

/*
* Create a place to mount the pipe.
*/
close(creat(PIPEPATH, PIPEMODE));

/*
* Mount the end of the pipe containing
* CONNLD on PIPEPATH.
*/
if (fattach(pfd[1], PIPEPATH) < 0)

fatal("cannot attach pipe to file system");
}

void
serve()
{

struct strrecvfd recv;

142 STREAMS

struct strrecvfd conn;
int okay;

for (;;) {
/*
* Get the file descriptor of the pipe
* connected to the local client process.
*/
if (ioctl(pfd[0], I RECVFD, &conn) < 0)

continue;

/*
* Get the file descriptor to be authenticated.
*/
if (ioctl(conn.fd, I RECVFD, &recv) < 0) {

close(conn.fd);
continue;

}

/*
* Authenticate the connection.
*/
okay = doauth(recv.fd);

/*
* Send authenticated file descriptor back to
* the client process.
*/
if (okay)

ioctl(conn.fd, I SENDFD, recv.fd);

/*
* Close the file descriptors we no longer need.
*/
close(conn.fd);
close(recv.fd);

}
}

The second routine implements a sample service loop. The first I RECVFD
obtains the f ile descriptor for one end of the unique pipe connection to the client.
The second I RECVFD obtains the file descriptor of the netw ork connection that is
to be authenticated. If authentication succeeds, the authenticated f ile descriptor is
passed back to the client. If authentication fails, the pipe is closed, resulting in the
client’s I RECVFD ioctl request failing.

Another interesting problem occurs with using pipes for communication
between unrelated processes. By placing a pipe in the f ile system namespace, appli-
cations can expose themselves to unwanted communication, through either error or
mischief. If the access permissions of a mounted pipe are unrestrictive, as they often
must be, processes other than those intended can attempt communication. Since they
might not follow the proper protocol, server applications have to be less trusting.

SEC. 3.7 ADVANCED TOPICS 143

For example, suppose an application were written to e xpect a message follo w-
ing a f ixed format, and a client only wrote half of the message. Then the ne xt
process to write to the pipe would have the first part of its message interpreted as the
second half of the previous (incomplete) message.

Applications can be made less susceptible to these types of errors by follo wing
a few simple rules:

1. If you read less than you expect to, discard the data.
2. Validate the data received, if possible.
3. If you are using read and get EBADMSG, there might be a protocol message or

file-descriptor message on the stream head read queue. If it is a protocol mes-
sage, retrieve it using getmsg and discard the information. If it is a f ile-
descriptor message, use I RECVFD to get the f ile descriptor and then close it
right away. If you are using getmsg and get EBADMSG, then there is a f ile-
descriptor message on the stream head read queue. As in the read case, recei ve
it and close it.

4. Put the stream in message discard mode so any data remaining in the message
after you ha ve read what you needed are discarded (see the ne xt section for
more details).

3.7 ADVANCED TOPICS

This section will co ver some less commonly used aspects of STREAMS, including
read modes, write modes, and priority bands.

Read Modes

By default, read(2) treats data on the stream head read queue as a byte stream.
This means it ignores message boundaries. If the user issues a read large enough,
data will be retrieved from multiple messages on the queue until either the queue is
empty or the read request size is satisf ied. As discussed earlier, read only works
if the message on the front of the stream head read queue is of type M DATA.

These characteristics can be changed with the I SRDOPT ioctl command.
Of the six modes, three control ho w read processes data in messages on the queue
and three control ho w read treats nondata messages. The current read modes in
effect for a stream can be obtained with the I GRDOPT ioctl command.

Usually, byte stream mode (RNORM, the default) will suffice for most applica-
tions, but there are tw o other mutually e xclusive modes that applications can use.
The first, message discard mode (RMSGD), will prevent read from returning data in
more than one message if the amount requested is greater than the amount of data in
the first message on the stream head read queue. If the application requests less, then
the remainder of the message is discarded. This is useful when an application
employs a protocol that uses f ixed-size messages. If a process sends more data than
required, the e xcess will be discarded when read by the application. If a process

144 STREAMS

writes less than required, the read will not consume successive messages to satisfy
the amount of data missing from the first message.

The second mode is message nondiscard mode (RMSGN). Like RMSGD mode,
this mode will pre vent read from returning data in more than one message if the
amount requested is greater than the amount of data in the f irst message on the
stream head read queue. Unlike RMSGD mode, however, if the application reads less
than the amount of data in the f irst message, the remainder of the message is placed
back on the front of the stream head read queue, to be obtained by the ne xt read.
This mode is useful when an application does not kno w how much data to e xpect,
wants to do large reads for performance, and e xpects data to be written in one mes-
sage. It is equivalent to getmsg without control information.

Three mutually e xclusive modes control the treatment of protocol messages
(M PROTO and M PCPROTO) by the read system call. The default mode,
RPROTNORM, causes read to fail with errno set to EBADMSG when a protocol
message is at the front of the stream head read queue. Applications can use this
mode to recognize when protocol messages arrive.

The second mode is RPROTDIS, protocol discard mode. If an M PROTO or
M PCPROTO message is at the front of the stream head read queue and a process
tries to read it in this mode, the control portion is discarded and an y data that were
contained in M DATA blocks linked to the protocol message are deli vered to the
process as the data that are read. This mode might be set by an application preparing
a stream for reading by another application that has no kno wledge of the service
interface being used, as long as only data-transfer primitives are used.

The third mode is protocol data mode, RPROTDAT. In it, the protocol messages
are converted to data messages and their contents are returned to the user as data
when read is used. It has no immediate use, but was added to the system because it
was a logical extension of the other modes, easily fell out of the design of read
modes, and might pro ve useful in the future in implementing some applications
found in other UNIX variants.

Write Modes

The two write(2) modes can be set with the I SWROPT ioctl command and
obtained with the I GWROPT ioctl command.

The first mode only applies to pipes. For compatibility, a write of zero bytes
to a pipe will ha ve no effect. The SNDZERO option enables zero-length message
generation. Applications usually use zero-length data messages to represent end-of-
file, but some e xisting programs write zero bytes to their standard output. When
used in a pipeline, these applications might not w ork as expected. So if an applica-
tion wants to generate zero-length data messages on a pipe, it needs to enable the
SNDZERO option explicitly.

The second write mode applies to both write and putmsg on any stream.
If a stream is in either error mode or hangup mode, the SNDPIPE option will cause
SIGPIPE to be sent to processes that try to use write or putmsg on the stream.
This is used to support 4BSD socket semantics over STREAMS.

SEC. 3.7 ADVANCED TOPICS 145

Priority Bands

Each STREAMS message belongs to a particular priority band for the purposes of
flow control and message queueing. The priority band of a message determines
where it is placed on a queue with respect to other messages. In addition, each prior-
ity band has a separate set of flo w-control parameters. Users usually do not ha ve to
concern themselves with priority bands unless the service interf ace they are using
requires it.

Priority bands are used for features lik e expedited data (out-of-band data),
where one class of data message has a higher priority than another . The OSI defini-
tion of e xpedited data specif ies that the y are unaffected by the flo w-control con-
straints of normal data. This was the primary motivation for the addition of priority
bands. Rather than add a f acility to support only e xpedited data (one out-of-band
data path), a more general f acility was implemented, supporting up to 256 bands of
data flow. Normal data belong in band 0. Expedited data are implemented in band
1. It is not expected that many more bands than this will be used, but if the need ever
arises, the operating system will not have to be changed again.

High-priority messages are always first in a queue. These are followed, in order
of decreasing band number , by the other message types. Normal-priority (band 0)
messages are found at the end of the queue.

Tw o system calls were added to deal with priority bands at the service interf ace
between the user and the kernel. An application can use putpmsg(2) to generate a
message in a particular priority band:

#include <stropts.h>

int putpmsg(int fd, const struct strbuf *ctlp,
const struct strbuf *datp, int band, int flags);

The first three arguments are the same as in putmsg. The band argument specifies
the priority band between 0 and 255, inclusi ve. If flags is set to MSG BAND, then
a message is generated in the priority band specified by band. Otherwise, if flags
is set to MSG HIPRI, band must be set to 0 and an M PCPROTO message is gener-
ated. The call

putmsg(fd, ctlp, datp, 0);

is equivalent to the call

putpmsg(fd, ctlp, datp, 0, MSG BAND);

An application can use getpmsg(2) to retrieve a m essage from a particular
priority band:

#include <stropts.h>

int getpmsg(int fd, struct strbuf *ctlp,
struct strbuf *datp, int *bandp, int *flagsp);

The integer referenced by flagsp can be one of MSG HIPRI, MSG BAND, or
MSG ANY, to retrieve a h igh-priority message, a message from at least the band
specified by the inte ger referenced by bandp, or any message, respectively. If

146 STREAMS

MSG BAND is set, it is possible to obtain a message from a band greater than
requested, and it is possible to obtain a high-priority message. (This behavior is
analogous to the w ay getmsg works if the RS HIPRI flag is not used. Note that
the flags are dif ferent between the original system calls and their priority band v er-
sions.) On return, bandp points to an inte ger containing the priority band of the
message, and flagsp points to an inte ger indicating the message recei ved was
high-priority (MSG HIPRI) or not (MSG BAND). The call

int flags = 0;

getmsg(fd, ctlp, datp, &flags);

is equivalent to the call

int flags = MSG ANY;
int band = 0;

getpmsg(fd, ctlp, datp, &band, &flags);

In addition to getpmsg and putpmsg, four ioctl commands were added to
support priority band processing [see streamio(7) for more details]. Priority
bands also became visible in the STREAMS e vent mechanisms, namely poll and
signal generation.

Autopush

Usually when a stream is opened and the de vice is not already open, no modules are
present in the stream. Applications have to push the modules the y want explicitly.
When the terminal subsystem w as ported to STREAMS, this became a problem. In
the clist-based implementation, when a terminal de vice was opened, a line disci-
pline was already associated with the terminal line. Originally, this was not true with
STREAMS-based TTY dri vers. To avoid having to modify all applications that
opened terminal devices, the autopush feature was developed.

The autopush feature allo ws administrators to specify a list of modules to be
automatically pushed whenever a device is opened. The autopush(1M) command
provides the administrative interface to configure devices for autopush. For a partic-
ular device, administrators have the choice of conf iguring all the minors, a range of
minors, or individual minors.

If a device is configured for autopush, when it is opened the stream head will
take care of pushing the modules on the stream before returning from the open sys-
tem call. This way, applications can open terminal devices and automatically have a
line discipline associated with the terminal line, maintaining compatibility.

However, there is a dra wback to the autopush mechanism. After opening a
driver, applications have no way of knowing a priori whether or not there are mod-
ules on the stream. If it matters to the applications, they must check explicitly for the
presence of modules.

EXERCISES 147

Example 3.7.1. This example illustrates how applications can check for the pres-
ence of modules on a stream. The function returns the number of modules on the
stream on success, or a negative number on failure.

#include <sys/types.h>
#include <unistd.h>
#include <stropts.h>

int
nmod(int fd)
{

int n;

n = ioctl(fd, I LIST, NULL);
return(n - 1);

}

The I LIST ioctl command is used to return a list of names of all the mod-
ules and the dri ver in the stream. With a NULL argument, however, it returns the
number of names so that the caller can allocate the necessary space for the list. We
use this to see if an y modules are pushed on the stream. Since the driver is included
in the list, we return one less than the number returned by I LIST. If the ioctl
fails, then we just return a ne gative number. The I LIST ioctl should never return
0, so that case is treated as an error as well.

Summary

We hav e briefly covered the user-level interface to the STREAMS subsystem in Sys-
tem V. Those interested in more details of ho w the STREAMS mechanism w orks
can refer to Chapter 9. Each of the ne xt fiv e chapters covers networking-related
facilities that are built on top of the STREAMS subsystem.

Exercises

3.1 Write a routine that reads a message that al ways starts with an indication of
the message’s size.

3.2 Modify Example 3.4.2 to use nonblocking I/O in conjunction with polling.

3.3 Describe how to determine whether the message at the front of the stream
head read queue is a protocol message or a f ile-descriptor message
[hint: see streamio(7)].

3.4 Assume processes send you the following message over a pipe:

148 STREAMS

struct msg {
uid t uid;
pid t pid;
char text[256];

};

Write a routine that reads messages with this format, taking into account the
four rules from Section 3.6 for guarding ag ainst corrupt and ille gitimate
data.

Bibliographic Notes

The Streams mechanism, in vented by Dennis Ritchie, w as introduced in the Eighth
Edition Research UNIX System [Ritchie 1984]. STREAMS was first commercially
available in UNIX System V Release 3.0 [AT&T 1986]. Presotto and Ritchie [1985,
1990] present Stream pipes, mounted streams, and CONNLD as the y appeared in the
Ninth Edition Research UNIX System.

Olander, McGrath, and Israel [1986] discuss the w ork done to pro vide support for
service interfaces in System V STREAMS. Rago [1989] describes changes made to
the STREAMS subsystem to provide support for multiple bands of data flow.

To contrast the clist mechanism with the STREAMS mechanism that replaced it,
refer to Bach [1986].

This page intentionally left blank

Index

Most functions and constants necessary for UNIX System V netw ork programming
are listed in this inde x. The ‘‘definition of’’ entries for functions listed here refer to
places in the book where the function prototypes can be found. Similar entries are
provided to identify structure def initions. References have been omitted to places
where common functions, such as exit, are used. Page numbers printed in bold-
face refer to the location in the book where the source code implementing the corre-
sponding function can be found.

abortive release, 157, 200, 594
absolute pathname, 23
abstract syntax, 17
accept library routine, 304, 325, 333, 344

definition of, 303
access method, 6, 8
access rights, 308, 317
address

DLSAP, 490, 500, 514–515, 517, 519–520,
529, 603, 629

Ethernet, 497, 504, 535
Ethernet broadcast, 497, 504, 516
Example 5.3.3, universal, 238–240
format, 218
multicast, 497
physical, 428, 497
private, 267, 274, 285
shared, 267, 285
structure, socket, 291
universal, 238–240, 252, 375
virtual, 428

address family, 294–295
Address Resolution Protocol, see ARP
AF_INET constant, 342, 348–349
AF_UNIX constant, 295, 317, 319
alarm system call, 119, 170, 199, 202, 280, 282,

311, 409, 411, 696, 702, 707, 712–713
Albert, S., xiv
alias
anyhost, 345
host name, 231
localhost, 345

allocb kernel function, 514, 519–520,
525–526, 528, 533, 557, 564–565, 567, 572,
607, 612, 617, 621, 624, 627, 632, 636,
640–642, 644, 647, 656, 660–661, 664–665,
671–672, 727, 736, 739–740, 742–743, 746

definition of, 448–449

Amegadzie, G., xv
application layer, 12, 18
APP module, 679
architecture, STREAMS, 96–101
argument processing, 27–39

Example 2.4.1, 27–29
arm of a discriminated union, 368
ARP (Address Resolution Protocol), 679
ASSERT kernel function, 510, 514
asynchronous I/O, see nonblocking I/O
atoi library routine, 35, 64, 71

definition of, 37
authdes_getucred library routine, definition

of, 417
authdes_seccreate library routine,

definition of, 417
auth_destroy library routine, 414

definition of, 412
authentication, 412–417

DES, 412, 416
null, 412
RPC, 383
UNIX-style, 412, 414, 421

AUTH_NONE constant, 412
authnone_create library routine, definition

of, 412–413
AUTH_REJECTEDCRED constant, 416
AUTH_REJECTEDVERF constant, 416
AUTH_SHORT constant, 412
AUTH_SYS constant, 413, 415
authsys_create_default library routine,

414
definition of, 413

authsys_create library routine, definition of,
413

authsys_parms structure, definition of, 415
autopush command, 264, 543
autopush mechanism, 146, 539

761

762 Index

B0 constant, 548, 562–563
B9600 constant, 548, 558
Bach, M., xiv
backenabling, 461–462, 584, 648

definition of, 443
background, 26

process group, 21
backlog, see queue length
backoff, exponential, 176
band, see priority band
bandwidth, 7
baseband transmission, 7
basename, 31
baud rate flags, 548
bcanput kernel function, 487

definition of, 463
bcopy kernel function, 523, 629, 637, 656, 662,

664
definition of, 438–439

Berkeley Software Distribution, see BSD
big-endian byte order, 360
binding addresses to UNIX domain sockets,

Example 7.5.1, 315–317
bind library routine, 297, 317, 331, 342

definition of, 295
Bittner, G., xiv
blocking, 16
block-special file, 22, 479
bounded media, 4
BPRI_HI constant, 449, 453
BPRI_LO constant, 448, 453
BPRI_MED constant, 448, 453
break condition, definition of, 549
broadband transmission, 7
broadcast, 4

address, Ethernet, 497, 504, 516
RPC, 420–421

broadcast RPC, response function, 421
BSD (Berkeley Software Distribution), xii, 291
BSD compatibility library, libucb, 293
btop kernel function, definition of, 436
btopr kernel function, definition of, 436
bufcall ID, 454, 503
bufcall kernel function, 524, 557–558, 619,

651, 738, 749
definition of, 453

bufcall routine, 484
buffers, externally supplied, 454
bug, flow control, 115–116
Buroff, S., xiv
bus topology, 4–5
busy-wait, definition of, 437
byte order, 252, 359, 602, 622–623, 630

big-endian, 360
Ethernet, 498
little-endian, 360

byte stream mode, read modes, 143, 471
bzero kernel function, 564–565, 608, 638

definition of, 438

callback RPC, 418–420
Example 8.6.3, 419–420

calloc library routine, 190, 686
CALL structure, definition of, 680–681
canonical mode, see cooked mode
canput kernel function, 462, 486, 514, 530,

533, 565, 627, 631, 636, 639, 641, 645, 648,
654, 668, 741, 746

definition of, 463
Carrier Sense Multiple Access with Collision

Detection, see CSMA/CD
catching, signals, 60
catmap function, 48–49
catreg function, 45, 46, 48, 116
cattostream function, 116, 118–119
CBAUD constant, 547, 562–563
CCITT (International Telegraph & Telephone

Consultative Committee), 14
CE_CONT constant, 439
CE_NOTE constant, 439
CE_PANIC constant, 439
CE_WARN constant, 439, 511, 513, 521, 617, 736
channel, definition of, 4
character-special file, 22, 479
chat function, 694, 699
chat script, 681–683, 689–690, 699–701

special characters, 683
chdir system call, 22, 86, 340

definition of, 85
checking for modules, Example 3.7.1, 147
child process, 73
chmod system call, 136, 272
chown system call, 272

definition of, 53
chroot system call, 22
circuit-switched network, 9
cleanup function, 696, 698
CLGET_FD constant, 385
CLGET_RETRY_TIMEOUT constant, 385
CLGET_SVC_ADDR constant, 385
CLGET_TIMEOUT constant, 385
client–server networking model, 11
client-side authentication, Example 8.6.1,

413–414
client-side connection establishment, Example

4.4.1, 176–179
client-side connection establishment (socket

version), Example 7.3.1, 301–302
client-side of datagram-based application,

Example 7.4.1, 310–313
CLIENT type, see RPC client handle
clist mechanism, 95, 146, 555
clnt_call library routine, 388, 402, 406, 418

definition of, 386
clnt_control library routine, definition of,

385
clnt_create library routine, 388, 401, 406,

413
definition of, 383–384

Index 763

clnt_dg_create library routine, definition of,
383–384

clnt_freeres library routine, definition of,
387

clnt_pcreateerror library routine,
definition of, 384

clnt_perrno library routine, definition of,
377

clnt_perror library routine, 389
definition of, 386

clnt_spcreateerror library routine, 388,
401, 406, 414

definition of, 384
clnt_sperrno library routine, 379, 402

definition of, 377
clnt_sperror library routine, 407

definition of, 386
clnt_tli_create library routine, definition

of, 383–384
clnt_tp_create library routine, definition of,

383–384
clnt_vc_create library routine, definition of,

383–384
CLOCAL constant, 547, 694
clone, 102

driver, 488
open, 431, 488–489, 507, 607–608

CLONEOPEN constant, 483, 488, 507, 607–608
closedir library routine, 347
close-on-exec flag, 52, 77, 89, 114
close routine

driver, 480, 483–484
module, 543

close system call, definition of, 45
CLSET_FD_CLOSE constant, 385
CLSET_FD_NCLOSE constant, 385
CLSET_RETRY_TIMEOUT constant, 385
CLSET_TIMEOUT constant, 385
cmn_err kernel function, 442, 511, 513, 521,

617, 736
definition of, 439

collision, 8
command-line options processing, 33–39

Example 2.4.4, 34–39
commands, 26
common header files, 26
common kernel header files, 428
common typedefs, 429
communication, peer-to-peer, 13
communication domain, 294

Internet, 294
UNIX, 294, 308, 313–322

complex message, 447, 449
diagram of, 450

composite filter, XDR, 372
concatenating messages, see pulling up messages
concatenation, 17
concrete syntax, see transfer syntax
configuration script, 262–264
connect function, 177–178, 198, 233

connectionless client, Example 4.3.1, 169–172
connectionless mode state diagram, 165
connectionless server, Example 4.3.2, 172–174
connectionless service, 10
connectionless transport primitives, diagram, 168
connection-oriented data transfer

Example 4.4.5, 197–200
Example 4.4.6, 200–203

connection-oriented mode state diagram, 206
connection-oriented service, 10
connection-oriented state machine, 205–207
connection server, 235, 681
connect library routine, 302, 308, 325,

332–333, 349
definition of, 301

connect queue length, definition of, 178
conn function, 232–234, 287
CONNLD module, 139–140, 710, 712
context, process, 426, 436–437, 442, 483–484,

487, 542–543, 545
controlling

stream, 582
terminal, 22, 84, 472–473, 557

control message, 463–464
conventions, RPC, 375–376, 403, 405
cooked mode, 546
copyb kernel function, 451

definition of, 452
copymsg kernel function, definition of, 452
copyreq structure, definition of, 468
copyresp structure, 468

definition of, 469
crash command, 506
CREAD constant, 547, 558, 694
creation mask, file, 43, 87
creat system call, 141, 277, 341, 351, 710
credentials, definition of, 412
critical regions, 63, 117, 432, 442, 511, 562–563,

620, 662
critical sections, see critical regions
CS8 constant, 547–548, 558, 694
CSIZE constant, 547, 694
CSMA/CD (Carrier Sense Multiple Access with

Collision Detection), 8, 496
CSTOPB constant, 547, 694
ctime library routine, 56

definition of, 57
cu command, 268–269, 318, 551, 689
current working directory, 22, 84–85

daemonize function, 85–87, 276, 340, 381,
395, 398, 709

daemons, 26, 84
DARPA (Defense Advanced Research Projects

Agency), 294
datab structure, 446

definition of, 447
Data Encryption Standard, see DES
datagram, see connectionless service

764 Index

datagram socket, see SOCK_DGRAM socket type
data link layer, 12, 15, 496
Data Link Provider Interface, see DLPI
Data Link Service Access Point, see DLSAP
Data Link Service Data Unit, see DLSDU
data message, 464
data types, XDR, 364–365
DDI/DKI (Device Driver Interface/Driver-Kernel

Interface), 427, 458
debugging, 502, 506, 510, 554, 723
Defense Advanced Research Projects Agency, see

DARPA
delay kernel function, definition of, 437
dequeueing messages, 460–461
DES authentication, 412, 416
DES (Data Encryption Standard), 412
deserializing, 361
DES key, 416–417
Device Driver Interface/Driver-Kernel Interface,

see DDI/DKI
device number, 101, 273, 429–431, 542

external, 429–430
internal, 429–430
major, 101, 429
minor, 101, 429

devices, minor, 102
/dev/kmem, 276–277
/dev/null, 86–87, 89, 213, 692
/dev/slip, 720
/dev/tty, 22
dialerr function, 693, 697–698
dial library routine, 693

definition of, 680
Diffie-Hellman encryption, 416–417
Direct Memory Access, see DMA
directory, 22

current working, 22, 84–85
root, 22

directory server, 243
directory service, 218
_discon function, 717, 719
disconnect, see abortive release
discriminant, 368
discriminated union, 368
dispatching, definition of, 389
disposition, signals, 59
distance, operating, 8–9
DL_BADADDR DLPI error, 522
DL_BADDATA DLPI error, 523
DL_BADPRIM DLPI error, 513, 735
DL_BIND_ACK constant, 490, 492, 519, 739
dl_bind_ack_t structure, definition of, 492
DL_BIND_REQ constant, 490, 492, 512,

517–518, 735
dl_bind_req_t structure, definition of, 492
DL_CLDLS constant, 515, 518, 657, 737
DL_ERROR_ACK constant, 490, 493, 525, 743
dl_error_ack_t structure, definition of, 493
DL_ETHER constant, 515, 736

DL_IDLE DLPI state, 516, 519–520, 522,
527–528, 530, 533, 657, 737, 740–741

DL_INFO_ACK constant, 490–491, 515, 652,
736

dl_info_ack_t structure, definition of, 491
DL_INFO_REQ constant, 490, 511, 613, 735
dl_info_req_t structure, definition of, 490
DL_NOADDR DLPI error, 518, 739
DL_NOAUTO DLPI error, 518
DL_NOTSUPPORTED DLPI error, 512
DL_OK_ACK constant, 490, 493, 521, 741
dl_ok_ack_t structure, definition of, 493
DL_OTHER constant, 736
DL_OUTSTATE DLPI error, 517, 520, 522,

739–740
DLPI connectionless state diagram, 496
DLPI (Data Link Provider Interface), 479,

489–495, 585, 678, 722
DLSAP (Data Link Service Access Point), 490

address, 490, 500, 514–515, 517, 519–520,
529, 603, 629

DLSDU (Data Link Service Data Unit), 15, 494,
599

DL_STYLE1 constant, 515, 737
DL_UDERROR_IND constant, 490, 494, 526
dl_uderror_ind_t structure, definition of,

495
DL_UNBIND_REQ constant, 490, 493, 512, 520,

735, 741
dl_unbind_req_t structure, definition of,

493
DL_UNBOUND DLPI state, 507–508, 517, 521,

531, 727, 739, 741
DL_UNITDATA_IND constant, 490, 494, 529,

534, 652, 747
dl_unitdata_ind_t structure, definition of,

494
DL_UNITDATA_REQ constant, 490, 494, 511,

628, 735
dl_unitdata_req_t structure, definition of,

494
DL_UNSUPPORTED DLPI error, 518
DL_VERSION_2 constant, 516, 737
DMAC (DMA Controller), 435
DMA (Direct Memory Access), 428–429, 435,

535
doconfig library routine, 274

definition of, 264
doconn function, 712, 713–715
dodiscon function, 558, 562–563, 572, 712,

717
doexpect function, 699, 701–702
dosend function, 699, 703–705
dowinch function, 569–570, 571
Drechsler, R., xv
driver, 439

clone, 488
close routine, 480, 483–484
definition of, 19

Index 765

hardware, 97, 479
init routine, 480
open routine, 480–481, 483
processing rules, 485–486
put procedure, 484
service procedure, 486
software, 97, 479
start routine, 480

driver canonical
flushing algorithm, 485
service procedure algorithm, 486–487

drv_getparm kernel function, 647, 670
definition of, 433

drv_hztousec kernel function, definition of,
434

drv_priv kernel function, 531
definition of, 437

drv_usectohz kernel function, 524, 556–558,
620, 624, 637, 641, 651, 662, 670–671, 738,
749

definition of, 434
drv_usecwait kernel function, definition of,

437
dupb kernel function, 450, 662, 673

definition of, 451
duplicating messages, 450

diagram of, 451
dupmsg kernel function, 646

definition of, 451
dup system call, 87, 213, 272, 319, 692

definition of, 89
dynamic kernel memory allocator, 438
dynamic shared library, 219

EACCES error, 139
EAGAIN error, 73–74, 102, 113, 123, 178, 305,

328, 558, 564–565, 567, 572, 607, 612, 627,
632, 636, 713, 719, 727

EBADMSG error, 105, 143
EBUSY error, 317, 531, 612, 727
ECHILD error, 74
ECHO constant, 694
EDESTADDRREQ error, 308
EEXIST error, 315
EFAULT error, 107
EIA (Electronic Industry Association), 14
EINPROGRESS error, 325, 328
EINTR error, 83, 121–122, 211, 320, 556–557,

702, 705
EINVAL error, 51, 287, 507, 556, 582, 607, 688,

712, 717, 726
EIO error, 113, 473
EISCONN error, 308
Electronic Industry Association, see EIA
enableok kernel function, definition of, 462
enabling a queue, 462
enabling asynchronous I/O on a socket, Example

7.6.2, 329–330

enabling nonblocking I/O on a socket, Example
7.6.1, 327–328

ENAMETOOLONG error, 316, 657
encoding an array using XDR, Example 8.2.1,

367
encoding a structure using XDR, Example 8.2.2,

370–372
encryption

Diffie-Hellman, 416–417
public key, 416–417

endhostent library routine, 345
definition of, 335

endnetconfig library routine, 236
definition of, 220–221

endnetent library routine, definition of, 336
endnetpath library routine, 233–234

definition of, 225
endprotoent library routine, definition of,

337
endservent library routine, definition of, 337
enet_bind function, 512, 517–520
enetclose function, 508
enet_errorack function, 517–518, 520,

525–526
enet_free function, 534
enet_info function, 514–517
enetinit function, 506
enetintr function, 527–530
enet_ioctl function, 509, 531–532
enet_loop function, 523–524, 533–534
enetopen function, 507
enetrsrv function, 513–514
enet_send function, 511, 521–524
enet_uderr function, 522–523, 526–527
enet_unbind function, 512, 520–521
enet_wcont function, 524, 525
enetwput function, 509
enet_wsched function, 519–520, 524, 525
enetwsrv function, 510–513
ENOBUFS error, 306
ENODEV error, 305
ENOENT error, 316, 341
ENOMEM error, 306
ENONET error, 614
ENOSPC error, 208, 305
ENOSR error, 178, 305
ENOTCONN error, 308
enqueueing messages, 459–460
environment variable
HOME, 268
ISTATE, 265
L0, 689, 692
MPREFIX, 268, 271–272
NETPATH, 225, 227–229, 234, 374, 377, 379,

382
NLSADDR, 268
NLSOPT, 268
NLSUDATA, 268
PATH, 77

766 Index

PMTAG, 266
environment variables, shell, 32
environ variable, 25, 77
ENXIO error, 306, 473, 507, 607, 727
EPERM error, 437
EPROTO error, 106, 108, 166, 208, 320, 574,

645, 657, 716, 718
errno variable, 36, 38, 49, 86, 108, 152, 271,

275, 278, 302, 304–305, 340–344, 346–351,
712–714, 716–719

error function, 40, 45–46, 48–49, 78, 82, 116,
126–127

error handling, 40–41
error logging, 50

Example 2.4.8, 50–53
Example 2.4.9, 55–58

error mode, of a stream, 112–113, 473, 639
error-reporting functions, Example 2.4.5, 40–41
errors

permanent, 306
temporary, 306

esballoc kernel function, 528, 535
definition of, 454

esbbcall kernel function, 454
definition of, 455

ESRCH error, 66
/etc/hosts, 334–335, 338–339, 344–345
/etc/inittab, 262, 274
/etc/netconfig, 218, 220, 228–230, 234,

314, 335, 379, 382
and interaction with RPC, 374
format of, 218–219

/etc/networks, 334–336
/etc/protocols, 334, 336–337
/etc/services, 334, 337–338
/etc/slipsys, 682, 685–686, 693, 707
/etc/ttysrch, 273
/etc/uucp, 680
/etc/uucp/Devconfig, 270
/etc/uucp/Devices, 270, 680
/etc/uucp/Systems, 270, 680–681
Ethernet, 496–498

address, 497, 504, 535
broadcast address, 497, 504, 516
byte order, 498
packet format, 497
packet header, 500

ETIME error, 178, 302
etoimajor kernel function, definition of, 431
E2BIG error, 658
EUC (Extended Unix Code), 550
EUC ioctl commands, 554, 566
EUC_IXLOFF ioctl command, 549, 566
EUC_IXLON ioctl command, 549, 566
EUC_MREST ioctl command, 549, 566
EUC_MSAVE ioctl command, 549, 566
EUC_OXLOFF ioctl command, 549, 566
EUC_OXLON ioctl command, 549, 566
EWOULDBLOCK error, 328
execle system call, definition of, 76

execlp system call, definition of, 76
execl system call, 78, 83, 272, 716, 718

definition of, 76
exec system call, 74, 76, 318
execution semantics, 357–359

at-least-once, 357–358
at-most-once, 357–358
exactly-once, 357
simulated at-most-once, 402

execve system call, definition of, 76
execvp system call, 213, 320

definition of, 76
execv system call, definition of, 76
exit library routine, definition of, 29
_exit system call, definition of, 29
exit values, 25
expect string, 682, 699–702
expedited data, 145, 196
expiration window, timestamp, 416
exponential backoff, 176
extended socket example, Example 7.8.1,

338–352
Extended Unix Code, see EUC
external device number, 429–430
externally supplied buffers, 454

FASYNC constant, 328–329
fatal function, 41, 78, 81–83, 85–86, 116, 118,

120, 122–123, 141, 162–163, 297, 310–311,
322, 372, 693–696, 698, 707–708

fattach library routine, 136, 141, 278, 710
definition of, 135

fchown system call, 51
definition of, 53

fclose library routine, 36, 256–258, 363, 688
definition of, 38

fcntl operations, 52
fcntl system call, 51, 120, 279, 324, 327–329,

472, 710
definition of, 52

FD_CLOEXEC constant, 51
FD_CLR macro, definition of, 325
fdetach library routine, definition of, 137
FD_ISSET macro, 343, 411

definition of, 325
FD_SET macro, 343

definition of, 325
FD_SETSIZE constant, 325
F_DUPFD constant, 52, 89
FD_ZERO macro, 343

definition of, 325
ferror library routine, 38
FEXCL constant, 481–482
fflush library routine, 81, 363

definition of, 82
F_GETFD constant, 51–52
F_GETFL constant, 52, 120, 279, 327–329, 710
fgets library routine, 78, 81, 173, 255, 257, 686

definition of, 78–79

Index 767

FIFO, 99
diagram of, 100

file, 20
creation mask, 43, 87
locking, 23
mapping, 46–50
ownership, 43
permissions, 23

file descriptor, 25
file descriptor passing, 137–143, 274

Example 3.6.2, 138–139
file descriptor passing using sockets, 317–322

Example 7.5.2, 318–322
file mapping, Example 2.4.7, 47–50
files, interpreter (#!), 76
file system, 22

identifier, 273
filter, XDR, 363, 386, 389, 393–394, 396, 403,

405
FIOASYNC ioctl command, 328, 330
FIONBIO ioctl command, 327–328
FIOSETOWN ioctl command, 324, 328, 330
flow control, 102, 113, 117, 314–315, 443–444,

457–458, 460, 462–463, 487, 514, 584, 601,
615, 627, 636, 639, 645, 648, 650, 653–654,
668, 674, 726, 735, 741

bug, 115–116
flow-controlled, definition of, 443
FLUSHALL constant, 461, 509, 611, 615, 654,

667, 730, 744–746
FLUSHBAND constant, 474–475, 485, 545
flushband kernel function, 485, 545

definition of, 461
FLUSHDATA constant, 461, 485, 544–545, 579
flushing algorithm

driver canonical, 485
module canonical, 544
multiplexor (lower half) canonical, 579

flushing data, 112
in a pipe, 134–135, 545
in a stream, 474–476

flushq kernel function, 485, 509, 544–545,
579, 611, 615, 667, 730, 744–746

definition of, 461
FLUSHR constant, 112, 134, 279, 474–476, 485,

509, 544–545, 579, 611, 654, 730, 745
FLUSHRW constant, 112, 134, 474, 476, 521,

545, 624, 637, 655, 667, 671–672, 740
FLUSHW constant, 112, 134, 474–476, 485, 509,

544–545, 579, 611, 654, 730, 745
FNDELAY constant, 327–328, 481–482, 484, 543
FNONBLOCK constant, 481–482, 484, 543
fopen library routine, 36, 255, 257, 371, 686

definition of, 37–38
foreground, 26

process group, 21, 472–473
fork system call, 78, 82, 86, 186, 192, 209, 305,

318–319, 409, 716, 718
definition of, 73

fpathconf system call, 133
definition of, 54

fprintf library routine, 30, 35–36, 41, 80, 169,
171, 178, 198–199, 302, 310, 312, 322, 371,
378–379, 388, 401–402, 406–407, 410,
413–414, 692, 697–698, 706

definition of, 31
framing, 7, 15, 496, 677, 742
FREAD constant, 481–482
fread library routine, 202
freeb kernel function, 523, 528, 567, 609, 614,

623, 628, 633–634, 637–638, 640–642, 646,
656, 661–662, 666–667, 742, 744, 746

definition of, 449
freecinfo function, 688, 689
free library routine, 105, 247–248, 250–251,

254–255, 689, 715, 717
freemsg kernel function, 449, 485, 509, 511,

513, 517–520, 523–524, 530, 533, 559–565,
569–570, 573–574, 579, 608–611, 617,
623–625, 627–628, 633–634, 638–639,
643–644, 647, 649, 653–655, 658–665, 668,
672–673, 730, 736, 739, 741, 743–745,
748–749

definition of, 450
freenetconfigent library routine, 408

definition of, 221
free_rtn structure, 454, 505
F_SETFD constant, 51–52
F_SETFL constant, 52, 120, 279, 327–329, 710
F_SETOWN constant, 324, 328–329
fstat system call, 48, 56, 271, 713

definition of, 49
ftruncate system call, 56

definition of, 58
full-duplex transmission, 7
FWRITE constant, 481–482

getack function, 107–108, 131
getcinfo function, 686–688, 693, 707, 713
getc library routine, 39

definition of, 39
getdents system call, 102
getemajor kernel function, 507, 608

definition of, 430
geteminor kernel function, 607, 727

definition of, 430
getenv library routine, 33, 271, 408, 692
getgrnam library routine, 51

definition of, 53
gethostbyaddr library routine, definition of,

335
gethostbyname library routine, definition of,

335
gethostent library routine, 345

definition of, 335
getmajor kernel function, definition of, 430
getminor kernel function, 507

definition of, 430

768 Index

getmsg system call, 102, 105, 108, 163, 473
definition of, 106

getmsg usage, Example 3.3.4, 107–108
getnetbyaddr library routine, definition of,

336
getnetbyname library routine, definition of,

336
getnetconfigent library routine, 239, 241,

408
definition of, 221

getnetconfig library routine, 222, 236
definition of, 221

getnetent library routine, definition of, 336
getnetpath library routine, 226, 233

definition of, 225–226
getopt library routine, 35

definition of, 34
getpeername library routine, 165

definition of, 323
getpid system call, 65, 67–68, 72, 329–330

definition of, 66
getpmsg system call, 102

definition of, 145
getprotobyname library routine, definition of,

337
getprotobynumber library routine, definition

of, 337
getprotoent library routine, definition of,

337
getq kernel function, 461–462, 486–487, 510,

514, 615, 648, 668, 735, 746
definition of, 460

getrlimit system call, 25, 86, 411
definition of, 87–88

getservbyname library routine, 342
definition of, 337–338

getservbyport library routine, definition of,
337–338

getservent library routine, definition of, 337
getsockname library routine, 165

definition of, 323
getsockopt library routine, 308, 332–333

definition of, 300–301
getutent library routine, 372
Gitlin, J., xiv
Gomes, R., xiv
group ID, 21

effective, 21
real, 21
saved-set, 21
supplementary, 21

group structure, definition of, 53

half-duplex transmission, 6
Hamilton, D., xv
handle, XDR, 362
handler, signal, 60
hangup mode, of a stream, 113, 473, 719
hard links, 24

hardware driver, 97, 479
Harris, G., xiv, 584
header files

common, 26
common kernel, 428

h_errno variable, definition of, 335
high-level client RPC functions, Example 8.3.1,

377–379
high-level server RPC functions, Example 8.3.2,

380–382
high-water mark, 444, 471–472, 505, 555,

557–558, 606, 608, 726
definition of, 443

HOME environment variable, 268
Honeyman, P., xiv
HOST_ANY constant, 231, 246
HOST_BROADCAST constant, 231, 246
hostent structure, definition of, 334
host name alias, see alias, host name
HOST_NOT_FOUND constant, 335
HOST_SELF constant, 231, 236, 246
htons macro, 623, 630, 647
HUPCL constant, 547, 558, 694

I_ATMARK ioctl command, 110, 446
I_CANPUT ioctl command, 110, 119
I_CKBAND ioctl command, 110
ICMP (Internet Control Message Protocol), 294
idempotent procedures, 358
identifier, file system, 273
idinstall command, 720
IEEE (Institute of Electrical and Electronics

Engineers), xiii
ifconfig command, 684, 716, 718
I_FDINSERT ioctl command, 110
ifdown function, 717, 718
IFF_POINTOPOINT constant, 723, 727
IFF_RUNNING constant, 723, 733
I_FIND ioctl command, 110
I_FLUSHBAND ioctl command, 110, 474
I_FLUSH ioctl command, 110, 112, 134, 279,

474
IFNAMSIZ constant, 716, 732
ifstats global kernel list, 725, 728–729
ifup function, 714, 716
I_GETBAND ioctl command, 110
I_GETCLTIME ioctl command, 110
I_GETSIG ioctl command, 110
I_GRDOPT ioctl command, 110, 143
I_GWROPT ioctl command, 110, 143
I_LINK ioctl command, 110, 579–580, 582,

612, 657
I_LIST ioctl command, 110, 147, 444, 694
I_LOOK ioctl command, 110, 408
INADDR_ANY constant, 342–343
in_addr structure, definition of, 238, 297–298
inetd daemon, 421
INFPSZ constant, 555
INFTIM constant, 111, 711, 715

Index 769

initclient function, 154–155, 169, 198, 233
initlog function, 50–51, 85, 271
init routine

driver, 480
module, 542

initserver function, 159–160, 155–156,
158–159, 172

inode, 22
number, 22, 273

I_NREAD ioctl command, 110
insq kernel function, 462

definition of, 460
installation of kernel-level software, 720
Institute of Electrical and Electronics Engineers,

see IEEE
interactive programs

and signals, 79
Example 2.4.15, 80–84

internal device number, 429–430
International Organization for Standardization,

see ISO
International Telegraph & Telephone Consultative

Committee, see CCITT
Internet address, see in_addr structure
Internet communication domain, 294
Internet Control Message Protocol, see ICMP
Internet Protocol, see IP
interpreter (#!) files, 76
interrupt, spurious, 506, 530
interrupt handler, 426, 431–432, 480–481
interrupt priority mask, see processor priority

level
interrupts, 431–433
interrupt service routine, see interrupt handler
interrupt stack, 441–442
interrupt vector, 432, 480–481
I/O

I/O-mapped, 435
memory-mapped, 435
multiplexing, 325
nonblocking, 113–125, 280, 326–330, 472
timing results, nonblocking, 124

iocblk_in structure, 734
iocblk structure, 465, 657

definition of, 466
ioctl
I_STR, 109–111, 467, 469, 566, 715
processing, 465–469
transparent, 109–111, 467, 469, 566, 569–570

ioctl system call, 118–119, 121, 139, 141–142,
147, 211, 213, 278–279, 328, 330, 407, 473,
546, 694, 696, 710, 712–715, 717

definition of, 109
I/O-mapped I/O, 435
iovec structure, definition of, 307–308
I_PEEK ioctl command, 110
IP (Internet Protocol), 294, 577–578, 679
I_PLINK ioctl command, 110, 585, 612–613,

657, 714
I_POP ioctl command, 109–110, 211, 408,

539–540, 543, 558, 695
IPPROTO_ICMP constant, 295
IPPROTO_TCP constant, 295
IPPROTO_UDP constant, 295
I_PUNLINK ioctl command, 110, 585, 613,

714, 717
I_PUSH ioctl command, 109–110, 141, 213,

408, 539, 710, 714
I_RECVFD ioctl command, 110, 137–139,

142, 279, 476, 712–713
isastream library routine, 116

definition of, 117
isdigit library routine, 687–688, 690
I_SENDFD ioctl command, 110, 137, 139,

142, 476, 696
I_SETCLTIME ioctl command, 110
I_SETSIG ioctl command, 110, 113–114,

118, 121, 278–279, 474
isgroupaddr function, 529, 535
ISO (International Organization for

Standardization), 11
isprint library routine, 39

definition of, 39
Israel, R., xiv
I_SRDOPT ioctl command, 110, 143, 470
isspace library routine, 687–688, 700–701
ISTATE environment variable, 265
I_STR ioctl, 109–111, 467, 469, 566, 715
I_SWROPT ioctl command, 110, 143
itoemajor kernel function, definition of, 431
I_UNLINK ioctl command, 110, 581, 585,

613

job control, 22

kernel
definition of, 19
stack, 426

kernel-level software, installation of, 720
_KERNEL symbol, 498
Kernighan, B., xiv
keyserv daemon, 416
keywords, RPC, 403–404
kill system call, 65, 67–68, 72

definition of, 66
kmem_alloc kernel function, definition of, 438
kmem_free kernel function, 557, 559, 729

definition of, 438
kmem_zalloc kernel function, 556, 727

definition of, 438
KM_NOSLEEP constant, 438, 556
KM_SLEEP constant, 438, 727

L0 environment variable, 689, 692
LAN (Local Area Network), 9
LBOLT constant, 434, 647, 670
lchown system call, definition of, 53

770 Index

LDTERM module, 268–270, 476, 539, 544,
546–551, 559–560, 578, 695, 745

libnls, network listener service library, 273
libnsl, network services library, 151
library

dynamic shared, 219
libnls, network listener service, 273
libnsl, network services, 151
libsocket socket, 293
libucb, BSD compatibility, 293
RPC, 359
XDR, 359–373

libsocket socket library, 293
libucb, BSD compatibility library, 293
limits, resource, 88
line discipline, 95, 539, 546
linkb kernel function, 640, 647, 660
linkblk structure, 585, 603, 612–613, 657–658

definition of, 580
link ID, see multiplexor ID
links

hard, 24
symbolic, 24

listen daemon, see listener process
listener process, 261, 265, 267, 421
listen library routine, 297, 331, 342

definition of, 302
little-endian byte order, 360
LLC (Logical Link Control), 15
LLCLOOP driver, 479
Local Area Network, see LAN
LOCALNAME constant, 164
locking

file, 23
record, 23

LOG driver, 479
log function, 56–57, 86–87, 155–156, 158–160,

172–173, 181, 185, 190, 192, 195, 201–202,
210, 213, 271, 275, 277–278, 283, 304,
340–351, 381, 395, 398–399, 710–719

Logical Link Control, see LLC
login command, 261, 273, 689
longjmp library routine, 79
low-level client RPC functions, Example 8.4.1,

387–389
low-level I/O, Example 2.4.6, 45–46
low-level server RPC functions, Example 8.4.2,

394–396
low-water mark, 444, 461, 471–472, 505, 555,

557–558, 606, 608, 726
definition of, 443

lseek system call, 276, 283, 348
definition of, 44

lstat system call, definition of, 49

MAC (Medium Access Control), 15
major device number, 101, 429
makedevice kernel function, 488, 507, 608

definition of, 431

making daemons, Example 2.4.16, 85–89
malloc library routine, 104, 244, 247–248, 250,

253–254, 256–257, 277, 319, 345, 714
MAN (Metropolitan Area Network), 9
MAP_FIXED constant, 47
mapping, file, 46–50
MAP_PRIVATE constant, 47–48
MAP_SHARED constant, 47
master file, 720
maximum packet size, 102, 444, 455, 471, 505,

555, 606, 726
M_BREAK message type, 448, 474, 575
MC_CANONQUERY constant, 560
MC_DO_CANON constant, 560
MC_NO_CANON constant, 560
M_COPYIN message type, 448, 467–468, 568
M_COPYOUT message type, 448, 467–468, 567
MC_PART_CANON constant, 560
M_CTL message type, 448, 476, 554, 560, 745
M_DATA message type, 101, 103, 105–108, 114,

129, 144, 448, 464–465, 585, 593, 610–611,
615, 730, 745

M_DELAY message type, 448, 464, 474, 561
media

bounded, 4
transmission, 4
unbounded, 4

Medium Access Control, see MAC
memcmp library routine, 156, 159–160, 237
memcpy library routine, 105, 156, 158, 170
Memory Management Unit, see MMU
memory-mapped I/O, 435
memset library routine, 406, 410
M_ERROR message type, 448, 473, 645, 655,

745–746
mesh topology, 5
message

control, 463–464
data, 464
priority, 101, 456, 459
TEST, 518
types, 101
XID, 518

message block, 101, 447
message coalescing, 472
message discard mode, read modes, 143, 471
message nondiscard mode, read modes, 144, 471
message priority, and ordering, 457
messages on a queue, diagram of, 457
message-switched network, 9
message type, 447
Metropolitan Area Network, see MAN
M_FLUSH message type, 112, 134, 448,

473–476, 509, 521, 611, 624, 637, 654–655,
667, 671–672, 730, 740, 745

M_HANGUP message type, 448, 473, 574, 680,
744–746

midpoint, pipe, 132
minimum packet size, 444, 455, 471, 555, 606,

726

Index 771

min kernel function, 536
minor

device number, 101, 429
devices, 102

minor macro, 271
M_IOCACK message type, 448, 466, 532,

563–566, 568, 570–573, 614, 731–734
M_IOCDATA message type, 448, 469, 559, 571
M_IOCNAK message type, 448, 467, 486, 532,

562–569, 574, 614, 658, 730–733
M_IOCTL message type, 448, 465, 485–486,

509, 544, 559, 575, 611, 730–731
mknod system call, 271
mmap system call, 48, 102

definition of, 47
MMU (Memory Management Unit), 428
modes of service, 10

connectionless, 10
connection-oriented, 10

MODOPEN constant, 483, 507, 542, 556, 607, 727
module, 439

close routine, 543
definition of, 98
init routine, 542
open routine, 542
processing rules, 544
put procedure, 544
service procedure, 545
start routine, 542

module canonical flushing algorithm, 544
module_info structure, 505, 541, 555, 606,

726
definition of, 444

module on a stream, diagram of, 98
module prefix, 445, 480, 542, 720
modules on pipes, 132–133
MORECTL constant, 107
MOREDATA constant, 107
mounted streams, 135

Example 3.6.1, 135–137
mounted streams facility, 99
M_PASSFP message type, 137–138, 448, 476,

712–713
M_PCPROTO message type, 101, 103, 105–108,

129, 131, 144, 448, 464–465, 509–510, 514,
519, 521, 525, 573, 585, 610, 613, 618, 623,
625, 643–644, 652, 730, 736, 739, 741, 743

M_PCRSE message type, 448, 476–477
M_PCSIG message type, 448, 474
MPREFIX environment variable, 268, 271–272
M_PROTO message type, 101, 103, 105–108,

129, 144, 448, 464–465, 509–510, 514, 526,
529, 534, 572, 574, 585, 610, 628, 640, 652,
660, 662, 664–665, 671–672, 730, 747

M_READ message type, 448, 476
M_RSE message type, 448, 476–477
M_SETOPTS message type, 448, 469, 557, 608
MSG_ANY constant, 145–146
MSG_BAND constant, 145–146
msgb structure, definition of, 446

MSGDELIM constant, 446, 472
MSG_DONTROUTE constant, 307
msgdsize kernel function, 522, 639, 647, 741,

748
msghdr structure, definition of, 307
MSG_HIPRI constant, 145–146
MSGMARK constant, 446
MSG_MAXIOVLEN constant, 308
MSG_OOB constant, 307–308, 324
MSG_PEEK constant, 308, 351–352
M_SIG message type, 448, 473, 571
M_STARTI message type, 448, 474
M_START message type, 448, 474
M_STOPI message type, 448, 474
M_STOP message type, 448, 474
multibyte processing, 550
multicast address, 497
multiple processes, Example 2.4.14, 77–79
multiple versions of an RPC function, Example

8.4.3, 397–402
multiplexing driver, see multiplexor
multiplexing, I/O, 325
multiplexor, 98, 440, 679

diagram of, 99
routing criteria, 582

multiplexor ID, 580–581, 585
multiplexor (lower half) canonical flushing

algorithm, 579
multipoint connection, 4

and switching style, 9
munmap system call, 49

definition of, 47
MUXID_ALL constant, 581–582, 585

named pipe, see FIFO
named streams, see mounted streams
NAMEFS file system, 135
name server, see directory server
name-to-address mapping, see name-to-address

translation
name-to-address translation, 218, 229–243,

334–352
library design, 243–259

name-to-address translation library design,
Example 5.4.1, 245–259

NC_NOFLAG constant, 220
nc_perror library routine, 222, 226

definition of, 223
nc_sperror library routine, definition of, 223
NC_TPI_CLTS constant, 220
NC_TPI_COTS constant, 220, 233, 236
NC_TPI_COTS_ORD constant, 220, 233, 236
NC_TPI_RAW constant, 220
NC_VISIBLE flag, 220
ND_ADDRLIST constant, 232–234, 236
nd_addrlist structure, 234, 248

definition of, 231
ND_BADARG network directory error, 249,

252–253

772 Index

ND_CHECK_RESERVEDPORT constant, 240
_nderror variable, 245–254
ND_HOSTSERVLIST constant, 232
nd_hostservlist structure, definition of,

232
nd_hostserv structure, definition of, 230
ND_MERGEADDR constant, 240–241, 243, 251
nd_mergearg structure, definition of, 241
ND_NOCTRL network directory error, 252
ND_NOHOST network directory error, 246–247,

250
ND_NOMEM network directory error, 247–248,

250–251, 253–254
ND_NOSERV network directory error, 247, 249
ND_OK constant, 246, 249, 251–253
ND_SET_BROADCAST constant, 240
ND_SET_RESERVEDPORT constant, 240
ND_SYSTEM network directory error, 246–247,

249
netbuf structure, definition of, 153, 385
netconfig structure, definition of, 219–220
netdir_free library routine, 233–234, 236

definition of, 232
netdir_getbyaddr library routine, definition

of, 231–232
_netdir_getbyaddr library routine,

249–251
definition of, 244

netdir_getbyname library routine, 231,
233–234, 236

definition of, 230
_netdir_getbyname library routine,

246–248
definition of, 244

netdir_options library routine, 243
_netdir_options library routine, 251–252
netdir_options library routine, definition of,

240
_netdir_options library routine, definition

of, 244
netdir_options ND_MERGEADDR

command, Example 5.3.4, 241–243
netdir_perror library routine, 242–243

definition of, 231
netdir_sperror library routine, definition of,

231
netent structure, definition of, 336
netname, 416
NETPATH environment variable, 225, 227–229,

234, 374, 377, 379, 382
NETPATH library routines, 219, 225–229

Example 5.2.2, 226–229
netstat command, 724
netty program, 270–272
network

circuit-switched, 9
definition of, 3
message-switched, 9
packet-switched, 9
topology, 4–6

network configuration library routines, 219–225
Example 5.2.1, 222–225

network identifier
tpi_clts, 219
tpi_cots, 219
tpi_cots_ord, 219
tpi_raw, 219

network-independent, client-side connection
establishment, Example 5.3.1, 232–234

network-independent, server-side connection
establishment, Example 5.3.2, 235–238

networking model
client–server, 11
transparency, 11

network layer, 12, 15–16
network listener process, see listener process
Network Listener Protocol Service, see NLPS
network listener service library, libnls, 273
Network Provider Interface, see NPI
network selection, 217
network services library, libnsl, 151
Network Time Protocol, see NTP
news command, 338
nickname, 416
nlist library routine, 276
NLPS (Network Listener Protocol Service), 267

protocol message, 285
protocol strings, 286

NLPS client, Example 6.6.1, 286–287
NLPS server, 285–288
NLSADDR environment variable, 268
nlsadmin command, 267, 274, 285

example of, 275
NLSDISABLED constant, 286
NLSFORMAT constant, 286
nlsgetcall library routine, definition of, 273
_nlslog variable, 286
NLSOPT environment variable, 268
NLSPROVIDER environment variable, 268, 408
nlsprovider library routine, definition of,

273
nlsrequest library routine, definition of, 286
_nlsrmsg variable, 286
NLSSTART constant, 286
NLSUDATA environment variable, 268
NLSUNKNOWN constant, 286
NOASSIGN constant, 264, 274
NO_DATA constant, 335
node, definition of, 4
NODEV constant, 431
noenable kernel function, definition of, 462
NOERROR constant, 473
nonblocking I/O, Example 3.4.1, 114–125
nonblocking

I/O, 113–125, 280, 326–330, 472
I/O timing results, 124
RPC, 417–418

nonidempotent procedures, 358
nop function, 699, 705
NO_RECOVERY constant, 335

Index 773

normal protocol mode, read modes, 144, 471
NORUN constant, 264, 274
NPI (Network Provider Interface), 596
NSTRPUSH tunable parameter, 540
nteclose function, 558–559
nteioccont function, 559, 569–570
nteioctl function, 559, 561–569
NTE module, 268–269, 550–551
nteopen function, 556–558
nterput function, 572–574
ntewput function, 559–561
ntohl macro, 652, 656
ntohs macro, 622, 645, 660
NTP (Network Time Protocol), 416
null authentication, 412
null procedure, 376, 380
number

device, 101, 273, 429–431, 542
external device, 429–430
inode, 22, 273
internal device, 429–430
major device, 101, 429
minor device, 101, 429
sequence, 596, 653

O_APPEND constant, 42, 51
O_CREAT constant, 42–43, 51
octet, definition of, 238
O_EXCL constant, 42–43
Olander, D., xiv
O_NDELAY constant, 42, 113, 279, 327, 472
one-shot server, 267–274

Example 6.4.1, 268–273
O_NOCTTY constant, 42–43, 84
O_NONBLOCK constant, 42, 113, 120, 279, 472,

710
opaque_auth structure, definition of, 414
open, clone, 431, 488–489, 507, 607–608
opendir library routine, 346
open routine

driver, 480–481, 483
module, 542

open system call, 45, 48, 51, 86, 101, 116, 138,
213, 272, 276, 322, 348, 472, 692, 695, 707,
710

definition of, 42
operating distance, 8–9
optarg variable, definition of, 34
opterr variable, 35

definition of, 34
optind variable, 36

definition of, 34
options processing, command-line, see command-

line options processing
optopt variable, definition of, 34
orderly release, 157, 200, 594
O_RDONLY constant, 42, 45, 48, 116, 213, 276,

348, 692
O_RDWR constant, 42, 86, 138, 154–155,

158–159, 162, 185, 237, 242, 272, 322, 695,
707, 710

OSI reference model, 11–18
O_SYNC constant, 42–43
OTHERQ kernel function, 464

definition of, 456
O_TRUNC constant, 42–43
out-of-band data, 145, 307–308, 324
ownership, file, 43
O_WRONLY constant, 42, 51

packet format, Ethernet, 497
packet header

Ethernet, 500
simple transport protocol, 599

packet header format, simple transport protocol,
597

packet size
maximum, 102, 444, 455, 471, 505, 555, 606,

726
minimum, 444, 455, 471, 555, 606, 726

packet-switched network, 9
PARENB constant, 547, 694
parent process, 73
PARODD constant, 547, 694
parse function, 699, 700
pathconf system call, 133

definition of, 54
PATH environment variable, 77
pathname

absolute, 23
relative, 23

pause system call, 60, 62, 278
definition of, 61

PCATCH constant, 437, 483–484, 542, 556–557
_PC_CHOWN_RESTRICTED constant, 54
_PC_LINK_MAX constant, 54
pclose library routine, 173, 202
_PC_MAX_CANON constant, 54
_PC_MAX_INPUT constant, 54
_PC_NAME_MAX constant, 54
_PC_NO_TRUNC constant, 54
_PC_PATH_MAX constant, 54
_PC_PIPE_BUF constant, 54
_PC_VDISABLE constant, 54
peer-to-peer communication, 13
permanent errors, 306
permissions, file, 23
perror library routine, 40, 332, 409
persistent links, 582, 584–585, 613
PF_INET constant, 295
PF_UNIX constant, 295
physical address, 428, 497
physical layer, 12, 14, 496
Physical Point of Attachment, see PPA
pipe

anonymous, 99
diagram of, 100, 132
midpoint, 132

774 Index

nonblocking semantics, 133
structure, 132

PIPE_BUF constant, 132–133
PIPEMOD module, 134, 545
pipe-special file, 22
pipe system call, 101, 136, 141, 277, 313, 710

definition of, 131
pmadm command, 266

example of, 269, 275
PMTAG environment variable, 266
point-to-point connection, 4, 678

and switching style, 9
Point-to-Point Protocol, see PPP
POLLERR constant, 125–127, 711
pollfd structure, definition of, 125
POLLHUP constant, 125–127, 711
POLLIN constant, 126–127, 237, 280, 282, 333,

711
polling, 125, 431

Example 3.4.2, 125–127
POLLNVAL constant, 125–127, 711
POLLOUT constant, 126
POLLPRI constant, 126
POLLRDBAND constant, 126
POLLRDNORM constant, 126, 333
poll system call, 126, 279, 282–283, 325, 704,

711
definition of, 125
used as a high resolution timer, 704

POLLWRBAND constant, 126
POLLWRNORM constant, 126
popen library routine, 173, 201
Portable Operating System Interfaces, see POSIX
port monitor, 261, 265–266
POSIX_PIPE_BUF constant, 133
POSIX (Portable Operating System Interfaces),

xii–xiii, 546
PPA (Physical Point of Attachment), 489–490,

737
PPP (Point-to-Point Protocol), 678
precedence rules, 673
prefix, see module prefix
presentation layer, 12, 17–18
Presotto, D., 318
primitives, service interface, 129
printf library routine, 28, 33, 61–62, 65,

67–68, 72, 78, 80–81, 163, 222–223,
226–227, 239, 242–243, 379, 388, 402, 407,
696, 708

definition of, 28–29
priocntl system call, 79
priority, message, 101, 456, 459
priority band, 145–146, 446, 456–459, 461, 463,

472, 485, 487, 545
private address, 267, 274, 285
procedure number, RPC, 359, 375, 380, 404
process, 20–22

child, 73
context, 426, 436–437, 442, 483–484, 487,

542–543, 545

parent, 73
termination status, 74

process attributes, and exec, 77
process exit status, see process termination status
process group, 21

background, 21
foreground, 21, 472–473

process ID, 21
processing rules

driver, 485–486
module, 544

processor priority level, 432–434, 481, 542
program interface, 25
program number, RPC, 359, 375, 380, 384, 391,

404, 418–420
PROT_EXEC constant, 47
PROT_NONE constant, 47
protocol, definition of, 12
protocol data mode, read modes, 144, 471
protocol data unit, 13
protocol discard mode, read modes, 144, 471
protocol family, 294–295

table of IDs, 296
protocol message, NLPS, 285
protocol migration, 130
protocol replacement, 129
protocol specification, RPC, 403
protocol strings, NLPS, 286
protoent structure, definition of, 336
PROT_READ constant, 47–48
PROT_WRITE constant, 47
pseudo-driver, see software driver
PTM driver, 479
ptob kernel function, 435, 536

definition of, 436
PTS driver, 479
public key encryption, 416–417
Pulijal, H., xiv
Pulijal, U., xiv
pulling up messages, 452–453

diagram of, 453
pullupmsg kernel function, 652

definition of, 452
pushing and popping modules using ioctl,

Example 3.3.5, 109
putbq kernel function, 459, 462, 486–487,

511–514, 617, 648–649, 668, 736, 746, 748
definition of, 460

putbuf kernel variable, 439
putchar library routine, 39

definition of, 39
putc library routine, 41
putctl kernel function, 463

definition of, 464
putctl1 kernel function, 463, 521, 571, 624,

637, 655, 667, 671–672, 740
definition of, 464

putmsg system call, 102, 105, 162, 473
definition of, 103

putmsg usage, Example 3.3.2, 104–105

Index 775

putnext kernel function, 464, 486–487, 514,
517, 520–521, 526–527, 544–545, 558, 561,
569–570, 572–574, 583, 608, 613, 647, 656,
661, 663–664, 667, 671, 673, 730–731, 734,
737, 740–741, 743–746, 748

definition of, 463
putpmsg system call, 102

definition of, 145
put procedure, 441, 445

driver, 484
module, 544

putq kernel function, 462, 485, 509, 530, 534,
583, 611, 654, 668, 730, 745

definition of, 459
PZERO constant, 437, 558

QCOUNT constant, 458
qenable kernel function, 525, 527–528, 620,

649–651, 653, 668–669, 738, 750
definition of, 462

QFIRST constant, 458
QFLAG constant, 458
QFULL constant, 455
QHIWAT constant, 458–459
qinit structure, 444, 455, 485, 505–506, 555,

606, 726
definition of, 445

QLAST constant, 458
QLOWAT constant, 458–459
QMAXPSZ constant, 458–459
QMINPSZ constant, 458–459
QPCTL constant, 464, 486–487
QREADR constant, 455
qreply kernel function, 485, 509, 532, 560,

562–571, 579, 611, 619, 623, 625, 628, 634,
643–644, 654, 658, 730, 734

definition of, 464
queue length, 297, 302
queue scheduling, 461–462
queue structure, definition of, 455
quoting conventions, shell, 28

Rago, L., xv
raw mode, 546
raw socket, see SOCK_RAW socket type
RD kernel function, 485, 544, 565, 571, 650, 730

definition of, 456
readdir library routine, 346
reading from a stream, Example 3.3.3, 106
read modes, 143–144, 470–471

byte stream mode, 143, 471
message discard mode, 143, 471
message nondiscard mode, 144, 471
normal protocol mode, 144, 471
protocol data mode, 144, 471
protocol discard mode, 144, 471

read system call, 46, 105–106, 122, 127, 277,
283, 306, 333, 349, 472–473, 696, 702, 707,

712, 719
definition of, 44

read/write over a transport connection, Example
4.5.1, 208–214

realloc library routine, 281
reassembling, 16, 601, 660
record locking, 23
recvfrom library routine, 311, 333

definition of, 309
recv library routine, 333, 351–352

definition of, 308
recvmsg library routine, 321, 333

definition of, 309
relative pathname, 23
relay nodes, 14
release

abortive, 157, 200, 594
orderly, 157, 200, 594

reliably delivered message socket, see SOCK_RDM
socket type

REMOTENAME constant, 164
remote procedure call, definition of, 356
remote program interface specification, see RPC

protocol specification
reserved ports, 323
resource limits, 88
response function, broadcast RPC, 421
results, nonblocking I/O timing, 124
retransmission, 601, 615, 653, 656, 670
ring topology, 5
Ritchie, D., xii, xiv, 96, 318
RLIMIT_INFINITY constant, 86
RLIMIT_NOFILE constant, 86, 88, 411
RMSGD, see message discard mode
RMSGN, see message nondiscard mode
rmvq kernel function, 462, 610–611

definition of, 461
RNORM, see byte stream mode
root directory, 22
routing criteria, multiplexor, 582
RPC

authentication, 383
broadcast, 420–421
callback, 418–420
client handle, 382
conventions, 375–376, 403, 405
Example 8.6.3, callback, 419–420
keywords, 403–404
library, 359
nonblocking, 417–418
procedure number, 359, 375, 380, 404
program number, 359, 375, 380, 384, 391, 404,

418–420
protocol specification, 403
server dispatching function, 391–393
server handle, 389
version number, 359, 375, 380, 384, 391, 404,

419–420
RPC and port monitors, 421
RPC_ANYFD constant, 384, 391, 419

776 Index

RPC_AUTHERROR constant, 416
rpcb_getaddr library routine, definition of,

384–385
rpcbinder, see rpcbind server
rpcbind server, 359, 375, 379, 385, 389–392,

418, 420–421
rpc_broadcast library routine, definition of,

420–421
rpcb_set library routine, 419

definition of, 418
rpcb_unset library routine, 395, 398–399, 419

definition of, 392
rpc_call library routine, 378

definition of, 376–377
RPC_CLNT symbol, 411
rpc_createerr variable, 401–402
rpcgen comments, 411
rpcgen output, Example 8.5.1, 405–411
rpcgen pass-through mode, 411
rpcgen translator, 359, 403–412
RPC_HDR symbol, 411
rpc_reg library routine, 381

definition of, 379–380
RPC_SUCCESS constant, 377, 386, 402, 406
RPC_SVC symbol, 411
RPC_TBL symbol, 411
RPC_TIMEDOUT constant, 418, 421
RPC_VERSMISMATCH constant, 400–401
RPC_XDR symbol, 411
RPROTDAT, see protocol data mode
RPROTDIS, see protocol discard mode
RPROTNORM, see normal protocol mode
RS_HIPRI constant, 103, 105, 107, 114, 146,

162

sacadm command, 262
SAC (Service Access Controller), 262, 265–266
SAD driver, 479
SAF (Service Access Facility), 261
sameaddr function, 524, 535
SAMESTR kernel function, 545
SA_NOCLDSTOP constant, 70, 209
SA_NOCLDWAIT constant, 70
SA_NODEFER constant, 70
SA_ONSTACK constant, 70
SAP identifier, 490, 516, 519, 529, 629, 737,

739–741
SA_RESETHAND constant, 70
SA_RESTART constant, 70
SA_SIGINFO constant, 70
S_BANDURG constant, 114
_SC_ARG_MAX constant, 55
_SC_CHILD_MAX constant, 55
_SC_CLK_TCK constant, 55
Scheer, M., xiv
Schmidt, D., xiv
_SC_JOB_CONTROL constant, 55
_SC_LOGNAME_MAX constant, 55
_SC_NGROUPS_MAX constant, 55

_SC_OPEN_MAX constant, 55
_SC_PAGESIZE constant, 55
_SC_PASS_MAX constant, 55
_SC_SAVED_IDS constant, 55
_SC_VERSION constant, 55
_SC_XOPEN_VERSION constant, 55
secure rpc, see DES authentication
SEEK_CUR constant, 44
SEEK_END constant, 44
SEEK_SET constant, 44–45, 276, 283, 348
segmenting, 16
select library routine, 333, 343

definition of, 325
senddata function, 104–105, 130
send library routine, 308, 333, 349–350

definition of, 306
sendmsg library routine, 322, 333

definition of, 307
send string, 682, 699–701, 703
sendto library routine, 311, 333

definition of, 307
separation, 17
sequenced packet socket, see SOCK_SEQPACKET

socket type
sequence number, 596, 653
serializing, 361
Serial Line IP, see SLIP
S_ERROR constant, 114
servent structure, definition of, 337
server

connection, 235, 681
Example 6.4.1, one-shot, 268–273
Example 6.5.1, standing, 275–285
one-shot, 267–274
standing, 267, 274–285

server dispatching function, RPC, 391–393
server-side authentication use, Example 8.6.2,

415–416
server-side connection establishment

Example 4.4.2, 181–183
Example 4.4.3, 183–187
Example 4.4.4, 188–195

server-side connection establishment (socket
version), Example 7.3.2, 304–306

Service Access Controller, see SAC
Service Access Facility, see SAF
service data unit, 13
service interface, 108, 128–131

diagram of, 128
definition of, 128
Example 3.5.1, 130–131
primitives, 129

service procedure, 441, 443, 445, 459, 463
driver, 486
module, 545

service procedure algorithm, driver canonical,
486–487

session, 21, 84
session layer, 12, 17
session leader, 22, 88, 472

Index 777

setgid system call, 21
set-group-ID, 21
sethostent library routine, definition of, 335
setifname function, 714, 715
setjmp library routine, 79
setnetconfig library routine, 222, 236

definition of, 220–221
setnetent library routine, definition of, 336
setnetpath library routine, 226, 233–234

definition of, 225
setprotoent library routine, definition of,

337
setrlimit system call, 25, 88
setservent library routine, definition of,

337–338
setsid system call, 86, 409

definition of, 84
setsockopt library routine, 301, 332

definition of, 299–300
setuid system call, 21
set-user-ID, 21, 681
S_HANGUP constant, 114
shared address, 267, 285
shell, 20

environment variables, 32
quoting conventions, 28

shell environment variables, Example 2.4.3,
32–33

S_HIPRI constant, 114
shutdown library routine, 334

definition of, 298–299
S_IFCHR constant, 271
S_IFIFO constant, 315
S_IFSOCK constant, 315
sigaction structure, definition of, 70
sigaction system call, 71, 81–83, 116, 118,

121, 170, 199, 202, 209–210, 278, 311, 693,
696, 699, 707, 711

definition of, 69
sigaddset library routine, 72, 81, 118, 130,

209, 278
definition of, 69

SIGALRM signal, 59, 170–171, 199, 202, 278,
280, 311, 409, 696, 699, 707, 711

SIG_BLOCK constant, 70, 72, 119, 130, 209
SIGCHLD signal, 59, 209–211

ignoring, 76
sigdelset library routine, definition of, 69
SIG_DFL constant, 60, 210
sigemptyset library routine, 71–72, 81–82,

115, 118, 121, 130, 170, 199, 202, 209–210,
278, 311, 693, 699, 707, 711

definition of, 69
SIG_ERR constant, 60
sigfillset library routine, definition of, 69
SIG_HOLD constant, 62
sighold system call, 68

definition of, 63
SIGHUP signal, 59, 86, 88
SIG_IGN constant, 60, 67, 86

sigignore system call, definition of, 63
SIGINT signal, 59–62, 64–65, 67–68, 71–72, 79,

81–83, 693
SIGIO signal, 326
sigismember library routine, definition of, 69
SIGKILL signal, 59, 698
siglongjmp library routine, 81

definition of, 79
signal handler, 60
signal handling

Example 2.4.10, 60–61
Example 2.4.11, 62–63

signal mask, 62, 70
signals, 58–73, 77

and interactive programs, 79
catching, 60
disposition, 59
terminology, 58–59
timing windows, 60–62

signals and critical regions
Example 2.4.12, 63–69
Example 2.4.13, 71–73

signal system call, 60–61, 409
definition of, 60

signal-to-noise ratio, 8
sigpause system call, definition of, 63
sigpending system call, definition of, 71
SIGPIPE signal, 59, 133, 144
SIGPOLL signal, 59, 113–114, 116–118,

121–122, 130, 278–279, 326, 473–474
sigprocmask system call, 72, 119, 130–131,

209–210
definition of, 70

SIGQUIT signal, 59, 79, 81–83, 693
sigrelse system call, 68

definition of, 63
sigsetjmp library routine, 80–81

definition of, 79
SIG_SETMASK constant, 70, 72, 130–131
sigset system call, 61–62, 64, 67

definition of, 62
sigsuspend system call, 119, 122

definition of, 71
SIGTERM signal, 59, 693
SIG_UNBLOCK constant, 70, 119, 210
SIGURG signal, 324
SIGUSR1 signal, 59
SIGUSR2 signal, 59
SIGWINCH signal, 571
simple error handling, Example 2.4.2, 30–32
simple message, 101, 447

diagram of, 449
simple stream, diagram of, 96
simple transport protocol

packet header, 599
packet header format, 597

simplex transmission, 6
simplified DLPI connectionless state diagram,

497
S_INPUT constant, 114, 278–279

778 Index

SIOCATMARK ioctl command, 324
SIOCGIFADDR ioctl command, 734
SIOCGIFDSTADDR ioctl command, 734
SIOCGIFFLAGS ioctl command, 731
SIOCGIFMETRIC ioctl command, 734
SIOCGIFNETMASK ioctl command, 734
SIOCSIFADDR ioctl command, 733
SIOCSIFDSTADDR ioctl command, 733
SIOCSIFFLAGS ioctl command, 732
SIOCSIFNAME ioctl command, 715, 732
SIOCSIFNETMASK ioctl command, 734
SIOCSPGRP ioctl command, 324, 328
S_IRGRP constant, 43, 50, 141, 339, 684
S_IROTH constant, 43, 141, 339, 684
S_IRUSR constant, 43, 50, 135, 141, 271, 339,

684
S_ISFIFO macro, 277
S_ISGID constant, 43
S_ISREG macro, 347
S_ISUID constant, 43
S_IWGRP constant, 43, 50, 135, 141, 684
S_IWOTH constant, 43, 141, 684
S_IWUSR constant, 43, 50, 135, 141, 271, 339,

684
S_IXGRP constant, 43
S_IXOTH constant, 43
S_IXUSR constant, 43
Skinner, G., xiv, 584
slconnect command, 680, 689–705
SL_CONSOLE constant, 443
sldisconnect command, 680, 706–708
sleep kernel function, 483, 556–558

definition of, 436–437
sleep library routine, 61, 63, 178, 302, 703

definition of, 61
SL_ERROR constant, 443
SL_FATAL constant, 443
slip_bind function, 735, 738–740
slipclose function, 728–729
slipd daemon, 680, 708–719
slip_errorack function, 735, 739–740, 743
slip_hangup function, 728, 744, 746
SLIP header file, 721
slip_info function, 735, 736
slip_ioctl function, 731, 731–734
SLIP module, 714
slipopen function, 726–728
slip_rcont function, 749, 750
sliprput function, 744–745
slip_rsched function, 746, 749
sliprsrv function, 745–749
slip_send function, 735, 741–743
SLIP (Serial Line IP), 677
slip_unbind function, 735, 740–741
slip_wcont function, 738
slipwput function, 729–731
slip_wsched function, 738, 739–740,

742–743
slipwsrv function, 735–736
SL_NOTE constant, 443

SL_NOTIFY constant, 443
SL_TRACE constant, 443
SL_WARN constant, 443
S_MSG constant, 114
SNAcP (Subnet Access Protocol), 16
SNDCP (Subnet Dependent Convergence

Protocol), 16
SNDPIPE write mode, 144
SNDZERO write mode, 144
SNICP (Subnet Independent Convergence

Protocol), 16
SO_ALL constant, 470
SO_BAND constant, 470, 472
SO_BROADCAST socket option, 300
sockaddr_in structure, 238, 298

definition of, 239
sockaddr structure, definition of, 295
sockaddr_un structure, definition of, 315
SOCK_DGRAM socket type, 294, 308, 310, 314
socket

address structure, 291
definition of, 294
library, libsocket, 293
mechanism, 291–353

socket architecture
diagram of BSD, 292
diagram of SVR4, 293

socket implementation, differences between
4BSD and SVR4, 295–296, 299, 303, 308,
312–317, 325–326, 329, 333

socket interface, compared to the TLI, 302–303,
306, 312, 330–334, 338

socket library routine, 297, 311, 317, 331, 342,
349

definition of, 294
socketpair library routine, 319

definition of, 313
socket version of initserver function,

Example 7.2.1, 296–298
SOCKMOD module, 292, 303, 314, 324, 578,

585, 679
SOCK_RAW socket type, 294
SOCK_RDM socket type, 294
SOCK_SEQPACKET socket type, 294, 303, 333
SOCK_STREAM socket type, 294, 303, 308, 310,

314, 319, 342, 349–350
SO_DEBUG socket option, 300
SO_DELIM constant, 470, 472
SO_DONTROUTE socket option, 300
SO_ERROR socket option, 301, 308, 333
software driver, 97, 479
SO_HIWAT constant, 470–471, 557, 608
SO_ISNTTY constant, 470, 472
SO_ISTTY constant, 470, 472, 557
SO_KEEPALIVE socket option, 300
SO_LINGER socket option, 299–300
SO_LOWAT constant, 470–471, 557, 608
SOL_SOCKET constant, 300
SOMAXCONN constant, 303, 343
SO_MAXPSZ constant, 470–471

Index 779

SO_MINPSZ constant, 470–471
SO_MREADOFF constant, 470, 472
SO_MREADON constant, 470, 472
SO_NDELOFF constant, 470, 472
SO_NDELON constant, 470, 472
SO_NODELIM constant, 470, 472
SO_OOBINLINE socket option, 300
SO_PROTOTYPE socket option, 300
SO_RCVBUF socket option, 300, 312
SO_RCVLOWAT socket option, 300
SO_RCVTIMEO socket option, 300
SO_READOPT constant, 470–471
SO_REUSEADDR socket option, 300
SO_SNDBUF socket option, 300
SO_SNDLOWAT socket option, 300
SO_SNDTIMEO socket option, 300
SO_STRHOLD constant, 470, 472
SO_TONSTOP constant, 470, 472
SO_TOSTOP constant, 470, 472
SO_TYPE socket option, 301
source code, availability, xiv
SO_USELOOPBACK socket option, 300
S_OUTPUT constant, 114, 118
SO_WROFF constant, 470–471
speed, transmission, 7–8
splhi kernel function, 432

definition of, 433
spl kernel functions, 432
splstr kernel function, 511, 562–563, 620,

624–625, 639, 641, 645, 648–651, 662
definition of, 442

splx kernel function, 511, 562–563, 620,
624–625, 639, 641, 645–646, 648–651, 662

definition of, 433
sprintf library routine, 40, 85, 195, 253, 271,

287, 388, 716, 718
spurious interrupt, 506, 530
S_RDBAND constant, 114
S_RDNORM constant, 114
sscanf library routine, 253, 256–257, 687
stack, kernel, 426
standard error, 25
standard input, 25
standard output, 25
standing server, 267, 274–285

Example 6.5.1, 275–285
star topology, 5–6
start routine

driver, 480
module, 542

state diagram
connectionless mode, 165
connection-oriented mode, 206
DLPI connectionless, 496
simplified DLPI connectionless, 497

stat system call, 271, 277, 316, 341, 346–347
definition of, 49

Stevens, R., xiv
stp_accept function, 616, 630–634
stp_bind function, 616, 620–623

stp_buildaddr function, 655, 656, 660–661,
663, 665

stp_buildheader function, 627, 630, 633,
638, 640, 642, 656

stp_buildokack function, 625, 627, 633, 638
stp_buildunitdata function, 627,

628–629, 633, 638, 640, 642, 656
stpclose function, 608–609
stp_connect function, 616, 626–628
stp_discon1 function, 670, 671–672
stp_disconall function, 614, 672–673
stp_discon function, 609, 616, 635–638
stp_errorack function, 623–624, 628, 634,

638, 643, 644
stp_fatal function, 617, 639, 644–645
stp_findport function, 622, 652, 668, 669
stp_getuport function, 669
stp_info function, 616, 617–619
stpinit function, 606
stp_ioctl function, 611, 612–614
stplrput function, 651–655
stplrsrv function, 667–668
stplwsrv function, 668–669
stpopen function, 607–608
stp_optmgmt function, 616, 642–643
stp_qinuse function, 655, 659
stp_rcont function, 651, 662
stp_rcvaccept function, 649, 663–664
stp_rcvconnect function, 649, 661–663
stp_rcvdata function, 648, 659–661
stp_rcvdiscon function, 649, 665–667
stp_rcvinfo function, 652, 657–658
stp_restart function, 615, 641–642, 650
stp_retransmit function, 658, 670–671
stp_rsched function, 650–651, 660–661,

664–665
stp_sameaddr function, 635, 666
stp_samenetaddr function, 659, 660, 663,

667
stp_sendack function, 653–654, 655–656
stp_send function, 615, 638–641
stp_unbind function, 616, 624–625
stpursrv function, 648–650
stpuwput function, 610–611
stpuwsrv function, 614–617
stp_wcont function, 619, 620, 624, 637, 641
stp_wsched function, 619–620, 621, 624, 627,

632, 636, 640, 644
stp_xmit function, 615, 627, 633, 638, 640,

642, 645–647, 670
strbuf structure, definition of, 103
strcat library routine, 56, 170, 198, 311

definition of, 58
strcmp library routine, 246, 258, 345–346, 408,

687, 717
strcpy library routine, 57, 170, 198, 208,

256–257, 311, 317, 396, 399, 695, 707, 714
strdup library routine, 250–251, 253, 687–688
stream

controlling, 582

780 Index

definition of, 96
XDR, 361–362

stream head, 96
definition of, 97

STREAMS, xii, 95–148
architecture, 96–101

STREAMS drivers, 479–537
STREAMS messages, 95, 446–455
STREAMS modules, 95, 539–576
STREAMS multiplexors, 577–674
stream socket, see SOCK_STREAM socket type
STREAMS pipes, 98–100, 131–143
STREAMS queues, 97, 440, 455–462
STREAMS scheduler, 441
streamtab structure, 506, 555, 606, 726

definition of, 445
strerror library routine, 36, 41, 86, 271, 275,

278, 304–305, 340–344, 346–351, 708, 710,
712–714, 716–719

definition of, 38
strioctl structure, 110

definition of, 111
strlen library routine, 57, 170, 173, 198, 208,

212, 287, 316–317, 349, 687, 702
definition of, 58

strlog kernel function, 442
definition of, 443

STRMSGSZ tunable parameter, 103
strncmp library routine, 702
strncpy library routine, 56, 351

definition of, 57
stroptions structure, 469

definition of, 470
strqget kernel function, definition of, 458
strqset kernel function, 458

definition of, 459
strrchr library routine, 30, 212, 319, 692, 706

definition of, 31
strrecvfd structure, definition of, 138
structure, socket address, 291
subexpect string, 682, 699–701
subnet, 14
subsend string, 682, 699–701, 703
supplementary group ID, 21
svc_create library routine, 395, 398, 409

definition of, 390
svc_destroy library routine, 419

definition of, 394
svc_dg_create library routine, definition of,

390
svc_dg_enablecache library routine,

definition of, 402
svc_driver function, 711, 718–719
svcerr_auth library routine, 394, 415
svcerr_decode library routine, 394, 410
svcerr_noproc library routine, 394, 410
svcerr_systemerr library routine, 394, 396,

400, 410
svcerr_weakauth library routine, 394, 415
svc_fd_create library routine, 421

svc_freeargs library routine, definition of,
393

svc_getargs library routine, 410
definition of, 393

svc_noproc library routine, 396, 399
svc_pipe function, 711, 711–713
svc_reg library routine, 391, 408, 418–419,

421
definition of, 392

svc_req structure, 414
definition of, 393

svc_run library routine, 381, 393, 395, 398,
409, 421

definition of, 380
svc_sendreply library routine, 396,

399–400, 409–410, 415, 418
definition of, 394

svc_tli_create library routine, 408, 419,
421

definition of, 390
svc_tp_create library routine, definition of,

390
svc_unreg library routine, definition of, 392
svc_vc_create library routine, definition of,

390
SVCXPRT type, see RPC server handle
switching style, 9

circuit-switched, 9
message-switched, 9
packet-switched, 9

S_WRBAND constant, 114
S_WRNORM constant, 114
symbolic links, 24
sysconf system call, 54

definition of, 55
sysinfo structure, 276
syslog library routine, 380, 391, 410
system clock, 433–434
system file, 721
system options and limits, 54–55

t_accept library routine, 182, 186, 191, 331,
333, 630

definition of, 179
taddr2uaddr library routine, 239, 242

definition of, 238
_taddr2uaddr library routine, 252–253

definition of, 244–245
T_ADDR constant, 154, 156, 158–159, 237, 242
T_ALL constant, 154, 156, 170, 172, 182, 185,

190
t_alloc library routine, 156, 158–159, 166,

170, 172, 177, 182, 185, 190, 237, 242, 312,
332

definition of, 153
TBADADDR TLI error, 621–622, 626
TBADDATA TLI error, 196, 626, 631, 635
TBADFLAG TLI error, 643
TBADF TLI error, 631–633

Index 781

TBADOPT TLI error, 626, 631, 642
TBADSEQ TLI error, 632, 636
T_BIND_ACK constant, 586, 588, 623
T_bind_ack structure, definition of, 588
T_BIND constant, 154, 156, 158–160, 237, 242
t_bind library routine, 155–156, 158, 160, 185,

237, 242, 331
definition of, 152

T_BIND_REQ constant, 586–587, 616, 623
T_bind_req structure, definition of, 587
t_bind structure, 302

definition of, 153
TBUFOVFLW TLI error, 167
T_CALL constant, 154, 177–178, 182, 185, 190
t_call structure, 273

definition of, 175
TCGETA ioctl command, 548–549, 564
tcgetattr library routine, 694
TCGETS ioctl command, 548–549, 565
T_CHECK constant, 164, 643
t_close library routine, 155, 185, 187, 192,

194, 211, 234, 237, 242, 281, 287, 334
definition of, 156–157

T_CLTS constant, 161, 411
T_CONN_CON constant, 586, 591, 664
T_conn_con structure, definition of, 592
t_connect library routine, 177, 332

definition of, 174–175
T_CONNECT TLI event, 188
T_CONN_IND constant, 586, 590, 662
T_conn_ind structure, definition of, 590
T_CONN_REQ constant, 586, 589, 610–611, 616,

627–628
T_conn_req structure, definition of, 590
T_CONN_RES constant, 586, 591, 616, 633–634
T_conn_res structure, definition of, 591
T_COTS constant, 161, 197, 619
T_COTS_ORD constant, 161, 197
TCP address, see sockaddr_in structure
TCP (Transmission Control Protocol), 129, 161,

294, 324, 577–578, 679
TCSBRK ioctl command, 549, 566
tcsendbreak library routine, 703
TCSETAF ioctl command, 548–549, 563, 573
TCSETA ioctl command, 548–549, 563, 573
tcsetattr library routine, 694–695
TCSETAW ioctl command, 548–549, 563, 573
TCSETSF ioctl command, 548–549, 561
TCSETS ioctl command, 548–549, 561
TCSETSW ioctl command, 548–549, 561
T_DATA_IND constant, 586, 593, 660
T_data_ind structure, definition of, 593
T_DATA_REQ constant, 585–586, 592, 610, 615
T_data_req structure, definition of, 592
T_DATA TLI event, 188
T_DATAXFER TLI state, 205, 408
T_DEFAULT constant, 164, 643
T_DISCON_IND constant, 552, 574, 586,

593–594, 665, 671–672
T_discon_ind structure, definition of, 552,

594
T_DISCONNECT TLI event, 188, 194
T_DISCON_REQ constant, 552, 572–574, 586,

593–594, 610, 616, 638
T_discon_req structure, definition of, 552,

594
T_DIS constant, 154, 190
t_discon structure, definition of, 176
TE_BIND_ACK TPI event, 623
TE_BIND_REQ TPI event, 621, 623
TE_CONN_CON TPI event, 663–664
TE_CONN_IND TPI event, 661, 663
TE_CONN_REQ TPI event, 626, 628
TE_CONN_RES TPI event, 631, 634
TE_DATA_REQ TPI event, 639
TE_DISCON_IND1 TPI event, 667, 671, 673
TE_DISCON_IND2 TPI event, 666
TE_DISCON_IND3 TPI event, 666
TE_DISCON_REQ TPI event, 637
TE_DISCON_RES TPI event, 635
temporary errors, 306
TE_OK_ACK1 TPI event, 628, 637
TE_OK_ACK2 TPI event, 634, 637
TE_OK_ACK3 TPI event, 634
TE_OK_ACK4 TPI event, 634, 637
TE_OPTMGMT_REQ TPI event, 642
TE_PASS_CONN TPI event, 633
terminal, controlling, 22, 84, 472–473, 557
terminal interface, 546–550
termination status, process, 74
terminology, signals, 58–59
termios structure, definition of, 546–547
termio structure, definition of, 548
t_errlist array, 152
t_errno variable, 152, 170, 173, 177–178, 182,

186, 191
T_ERROR_ACK constant, 553, 574, 586, 588,

590, 593, 644
T_error_ack structure, definition of, 553, 588
T_ERROR constant, 188, 195
t_error library routine, 154–155, 170–171,

177, 199, 209, 242, 332
definition of, 152

TEST message, 518
TE_UNBIND_REQ TPI event, 624
T_EXDATA TLI event, 188
T_EXPEDITED constant, 196
TFLOW TLI error, 166, 196, 203
t_free library routine, 159–160, 177–178, 237,

254, 332
definition of, 157

t_getinfo library routine, 332, 411
definition of, 160

t_getname library routine, definition of, 164
t_getstate library routine, 332, 408

definition of, 205
Thompson, K., xiv
TICLTS driver, 313–314, 479
TICOTS driver, 314–315, 322, 479
TICOTSORD driver, 314, 322, 479

782 Index

T_IDLE TLI state, 205
TIDU size, 161, 196, 600, 619
TIDU (Transport Interface Data Unit), 592–593
TIME constant, 434
timeout function, 696, 698, 707, 708, 711, 719
timeout ID, 503
timeout kernel function, 524, 556–558, 620,

624, 637, 641, 650–651, 658, 662, 671, 738,
749

definition of, 434
timeout routine, 433, 484
timestamp expiration window, 416
time system call, 56

definition of, 57
timeval structure, definition of, 326, 386
timing results, nonblocking I/O, 124
timing windows, signals, 60–62
TIMOD module, 128–129, 150, 164, 264, 268,

274, 550–551, 578, 679
T_INCON TLI state, 205
T_INFO_ACK constant, 586, 618
T_info_ack structure, definition of, 586
T_INFO constant, 154
T_INFO_REQ constant, 162, 586, 594, 616
T_info_req structure, definition of, 586
T_INREL TLI state, 205
TIOCGWINSZ ioctl command, 549, 566, 569
TIOCSTI ioctl command, 549, 565
TIOCSWINSZ ioctl command, 549, 568, 570
TIRDWR module, 207–208, 214, 268–269, 282,

331, 333, 539, 550–551, 559–560
ti_statetbl kernel variable, 604
t_listen library routine, 182, 186, 191, 194,

273, 333
definition of, 179

T_LISTEN TLI event, 188, 194
TLI (Transport Layer Interface), xii, 149–215

architecture, 150
t_look library routine, 194, 332

definition of, 188
TLOOK TLI error, 167, 170, 173, 177, 182, 186,

188, 191, 331
T_MORE constant, 167, 196–197
T_NEGOTIATE constant, 164, 643
t_nerr variable, 152
TNOADDR TLI error, 622
TNODATA TLI error, 167, 175, 179, 197
T_OK_ACK constant, 552, 573, 586, 588–590,

593–594, 625
T_ok_ack structure, definition of, 552, 589
t_open library routine, 154–155, 158–159, 185,

219, 237, 242, 331
definition of, 151

topology
bus, 4–5
mesh, 5
network, 4–6
ring, 5
star, 5–6
tree, 5–6

T_OPT constant, 154
T_OPTMGMT_ACK constant, 643
T_OPTMGMT constant, 154
t_optmgmt library routine, 332

definition of, 163–164
T_OPTMGMT_REQ constant, 616, 643
t_optmgmt structure, definition of, 163–164
T_ORDREL TLI event, 188, 204
T_OUTCON TLI state, 205
T_OUTREL TLI state, 205
TOUTSTATE TLI error, 205, 588, 621, 624, 626,

631, 635, 642
TPDU (Transport Protocol Data Unit), 17
TP_EXPINLINE constant, 619
TPI (Transport Provider Interface), 128, 150, 550,

552–553, 585–596
precedence rules, 610
state diagram, 595
states, 596

tpi_clts network identifier, 219
tpi_cots network identifier, 219
tpi_cots_ord network identifier, 219
tpi_raw network identifier, 219
TP_SNDZERO constant, 619
transfer syntax, 17
transmission

baseband, 7
broadband, 7
full-duplex, 7
half-duplex, 6
media, 4
method, 6–7
simplex, 6
speed, 7–8

Transmission Control Protocol, see TCP
transparency networking model, 11
TRANSPARENT constant, 466–467, 531,

567–568, 731–733
transparent ioctl, 109–111, 467, 469, 566,

569–570
transport connection

connection release, 203–204
data transfer, 195–203
establishment, 174–195

transport endpoint
definition of, 151
initialization of, 151

transport endpoint initialization
Example 4.2.1, 154–156
Example 4.2.2, 157–160

Transport Interface Data Unit, see TIDU
transport layer, 12, 17
Transport Layer Interface, see TLI
transport provider, 150, 160–161
Transport Provider Interface, see TPI
Transport Service Data Unit, see TSDU
t_rcvconnect library routine, 333

definition of, 175–176
t_rcvdis library routine, 182, 186, 194, 334

definition of, 176–177

Index 783

t_rcv library routine, 199, 201, 209, 212, 333
definition of, 197

t_rcvrel library routine, 334
definition of, 204

t_rcvudata library routine, 170, 173, 333
definition of, 166–167

t_rcvuderr library routine, 171, 173, 312, 333
definition of, 167

tree topology, 5–6
truncate system call, definition of, 58
TRY_AGAIN constant, 335
TS_DATA_XFER TPI state, 609, 637, 653, 659,

671–672
TSDU size, 161, 196–197, 618

zero-length, 174, 619
TSDU size and TIDU size, Example 4.2.3,

162–163
TSDU (Transport Service Data Unit), 592–593,

599, 660
TS_IDLE TPI state, 633, 639
t_snddis library routine, 186, 191–192, 209,

211, 281, 333–334
definition of, 183

t_snd library routine, 199, 202, 287, 333, 585
definition of, 196

t_sndrel library routine, 334
definition of, 203

t_sndudata library routine, 170, 173, 333
definition of, 166

T_STATECHNG TLI error, 205–206
T_SUCCESS constant, 643
TS_UNBND TPI state, 608
TS_WCON_CREQ TPI state, 671–672
TS_WRES_CIND TPI state, 636, 666
t_sync library routine, definition of, 205–206
TSYSERR TLI error, 152, 166, 178, 211, 553,

588, 627, 632, 636
TTCOMPAT module, 264, 541
TTIPRI constant, 556–557
ttyadm command, 266
TTYHOG constant, 555
ttymon command, 261, 265
ttyname library routine, 136, 272–273
T_UDATA constant, 154
T_UDERROR constant, 154
t_uderr structure, definition of, 167
T_UDERR TLI event, 188
tunable parameter
NSTRPUSH, 540
STRMSGSZ, 103

t_unbind library routine, 331
definition of, 157

T_UNBIND_REQ constant, 586, 588, 616,
624–625

T_unbind_req structure, definition of, 588
T_UNBND TLI state, 205
T_UNITDATA constant, 154, 170, 172
t_unitdata structure, definition of, 165
type-ahead, 197
types, message, 101

uaddr2taddr library routine, definition of,
238

_uaddr2taddr library routine, 253–254
definition of, 244–245

UCRED constant, 434
UDP address, see sockaddr_in structure
UDP (User Datagram Protocol), 294, 577–578,

679
umask system call, 85

definition of, 87
uname system call, 246, 341, 381, 396, 399, 407
unblocking, 16
unbounded media, 4
unbufcall kernel function, 455, 508, 557, 609,

728
definition of, 454

undial library routine, 694–696, 698
definition of, 681

unique pipe connections, 139–142
diagram of, 140
Example 3.6.3, 141–142

universal address, 238–240, 252, 375
definition of, 238
Example 5.3.3, 238–240

UNIX, communication domain, 294, 308,
313–322

UNIX-style authentication, 412, 414, 421
UNIX system architecture, diagram of, 20
unlink system call, 317
unnamed pipe, see pipe, anonymous
untimeout kernel function, 508, 556–557, 609,

728
definition of, 434

UPROCP constant, 434
urgent data, 324
urgent mark, 196, 324
User Datagram Protocol, see UDP
user ID, 21

effective, 21
real, 21
saved-set, 21

using configuration scripts, Example 6.1.1,
263–264

utime system call, 347
utmpname library routine, 371
utmp structure, definition of, 370
utsname structure, definition of, 382
uucp, 681–682

administrative files, 270
command, 318
lock files, 681, 693, 698

va_end library routine, 40–41, 56
va_list type, 40–41
/var/adm/utmp, 262, 370
va_start library routine, 40–41, 56
verifier, definition of, 412
version number, RPC, 359, 375, 380, 384, 391,

404, 419–420

784 Index

vfprintf library routine, 41
definition of, 41

virtual address, 428
virtual circuit, see connection-oriented service
vsprintf library routine, 56
vtop kernel function, 536

definition of, 429

waitid system call, 74
Wait, J., xv
waitpid system call, 78, 83, 320, 716, 718

definition of, 74
wait system call, definition of, 74
wakeup kernel function, 556–558

definition of, 437
WAN (Wide Area Network), 9
WCONTINUED constant, 75
WCOREDUMP macro, 75
Wehr, L., xiv
Wheeler, G., xiv
Wide Area Network, see WAN
WIFCONTINUED macro, 75
WIFEXITED macro, 75, 320, 716, 718
WIFEXITSTATUS macro, 75, 320, 716, 718
WIFSIGNALED macro, 75, 320
WIFSTOPPED macro, 75
WIFTERMSIG macro, 75
window, timestamp expiration, 416
winsize structure, definition of, 550
WNOHANG constant, 75
WNOWAIT constant, 75
write modes, 144
write offset, 471
write system call, 46, 49, 57, 123, 127, 171,

199, 209, 282, 306, 308, 312, 333, 352,
472–473, 585, 695, 703–705, 707, 712

definition of, 44
on a transport endpoint, 207–208, 282

writing to a stream, Example 3.3.1, 102–103
WR kernel function, 508, 527–528, 544, 558, 579,

608–609, 620, 649, 653, 655, 668–669, 727,
729, 741, 743–745

definition of, 456
WSTOPSIG macro, 75
WUNTRACED constant, 75

XDR
composite filter, 372
data types, 364–365
filter, 363, 386, 389, 393–394, 396, 403, 405
handle, 362
library, 359–373
stream, 361–362

xdr_array library routine, definition of, 367
xdr_bool library routine, definition of, 363
xdr_bytes library routine, 368

definition of, 366
xdr_char library routine, 397

definition of, 363
XDR_DECODE XDR operation, 362
xdr_destroy library routine, definition of,

363
xdr_discrim structure, definition of, 368
xdr_double library routine, definition of, 363
XDR_ENCODE XDR operation, 362, 371
xdr_enum library routine, definition of, 363
xdr_float library routine, definition of, 363
xdr_free library routine, definition of, 369
XDR_FREE XDR operation, 362
xdr_int library routine, definition of, 363
xdr_long library routine, 372–373

definition of, 363
xdr_opaque library routine, 368

definition of, 366
xdr_pointer library routine, definition of,

369
xdrproc_t type, 367
xdr_reference library routine, definition of,

369
xdr_short library routine, 372–373

definition of, 363
xdrstdio_create library routine, 371

definition of, 363
xdr_string library routine, 367–369, 378,

381, 397, 400
definition of, 366

xdr_u_char library routine, definition of, 363
xdr_u_int library routine, definition of, 363
xdr_u_long library routine, definition of, 363
xdr_union library routine, definition of, 368
xdr_u_short library routine, definition of,

363
xdr_utmp function, 373
xdr_vector library routine, 368, 372–373,

389, 397
definition of, 366–367

xdr_void library routine, 378, 381, 388–389,
396, 399, 402, 406, 409–410

definition of, 366
xdr_wrapstring library routine, 406, 410

definition of, 369
XID message, 518
X/OPEN, xii
XTI (X/OPEN Transport Interface), xii
XT multiplexor, 578

zombies, 76

	Contents
	Preface
	3. STREAMS
	3.1. STREAMS Background
	3.2. STREAMS Architecture
	3.3. System Calls
	3.4. Nonblocking I/O and Polling
	3.5. Service Interfaces
	3.6. IPC with STREAMS Pipes
	3.7. Advanced Topics
	Summary
	Exercises
	Bibliographic Notes

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

