MODERN GRAPHICS Communication

6th Edition

Frederick E. Giesecke 1 Shawna Lockhart Marla Goodman | Cindy M. Johnson

FREE SAMPLE CHAPTER

Decimal and Millimeter Equivalents

Metric measurements may be set off directly on drawings with the metric scale. Decimal measurements may be set off directly on drawings with the engineers' scale or the decimal scale.

Symbols for Instructors' Corrections

C Show construction
D Show dimensions; show given or required data
I Improve form or spacing
H Too heavy
NH: Not heavy enough

ND Not dark enough
$S L \quad$ Sharpen pencil or compass lead
GL Use guidelines
A Improve arrowheads
Error in circled area

Fig. IV Typical Title Block

4	1			HANDLE
3	1			CYLINDER
2	2			GAGE PIN
1	1			BASE
This example is arranged to fit above title block				
FIND NO	QTY REQD	CAGE CODE NO	PART OR IDENTIFYING NO.	NOMENCLATURE

Fig. V Typical Parts List or Materials List

Fig. VI Typical Revision History Block

Fig. VII Inch and Millimeter Tolerance Block Examples. Note that both show third angle projection. Use the symbol for first angle projection when appropriate.

This page intentionally left blank

SIXTH EDITION
 MODERN GRAPHICS COMMUNICATION

FREDERICK E. GIESECKE
Late Professor Emeritus of Drawing Texas A\&M University

SHAWNA LOCKHART

Formerly Adjunct Professor, Engineering Graphics Department of Industrial and Mechanical Engineering Montana State University

MARLA GOODMAN

CINDY M. JOHNSON

Editor in Chief: Mark Taub
Acquisitions Editor: Anshul Sharma
Project Manager: Tracey Croom
Managing Editor: Sandra Schroeder
Operations Specialist: Deidra Skahill
Cover Designer: Chuti Prasertsith
Cover Image: Arleksey/Shutterstock
Full-Service Project Management: Publishing Services
Composition: Publishing Services
Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within the text. Unless otherwise stated, all artwork has been provided by the authors.

The following figures are reprinted with permission from Engineering Design Communication, 2e, by Lockhart and Johnson, © 2012 (Pearson Education, Inc.): (pages 23-27) Reverse Engineering Project 1; Figures 3.11, Tip (page 67), 3.15, 3.16, 3.30, 3.66, 3.67; Figures 4.1, 4.2, 4.3, 4.4, 4.8, 4.9, 4.10, 4.11ab, 4.13, 4.14, 4.15abcd, 4.16, Spotlight (page 132), 4.19, 4.20, 4.38, 4.39, Spotlight (page 141), Spotlight (page 141), 4.41, 4.42, 4.43, 4.44, 4.45, 4.48, 4.49, 4.50, 4.51, 4.52ab, 4.53, 4.54, 4.55, 4.56, 4.57, 4.58, 4.59 (phone illustration), Table 4.1, 4.60, 4.61, 4.62, 4.63, 4.64, 4.65, 4.66, 4.67, 4.70, 4.71, Spotlight (page 151), 4.72, 4.73, 4.74, 4.75, 4.76, 4.77, 4.78, 4.79, 4.80, 4.81abcde, 4.82abcd, 4.83abcdef, Review Question 4.11a-d, Exercise 4.45a-e, Exercise 4.46a-f, Exercise 4.47a-d, Exercise 4.48a-d, Exercise 4.49a-d, Exercise 4.50, Exercise 4.51, Exercise 4.52; Figures 5.1, Tip (page 177), 5.14, 5.15, 5.16, 5.17, 5.19ab, 5.20abc, $5.21,5.25,5.27,5.28,5.30,5.31,5.34,5.35,5.36 \mathrm{ab}, 5.37,5.38,5.39,5.40,5.41$, Spotlight (page 200), Table 5.3, 5.43, 5.44, 5.45ab, 5.46ab, 5.47, 5.48, 5.49, 5.50, 5.54, 5.59, 5.60abc, 5.61, Table 5.4, 5.63, Spotlight (page 214), 5.64, 5.65; Figures 6.38, 6.39, 6.40, Exercise 6.18a-f, Exercise 6.19, Exercise 6.20, Exercise 6.21, Exercise 6.22, Exercise 6.23, Exercise 6.24, Exercise 6.25, Exercise 6.26a-d, Exercise 6.27; Figures 7.1, Table 7.1, 7.2ab, 7.3ab, Exercise 7.60, Exercise 7.61, Exercise 7.62, Exercise 7.63, Exercise 7.64, Exercise 7.65; Figures 10.3, Table 10.1, 10.11ab, 10.25, 10.35, 10.36, 10.37, 10.50, 10.51, $10.52,10.53,10.55,10.56 \mathrm{abcd}, 10.57,10.58 \mathrm{abc}, 10.59,10.60 \mathrm{ab}, 10.61,10.62,10.63 \mathrm{ab}, 10.67,10.68$, $10.69,10.70,10.71,10.72,10.73,10.74,10.75,10.84,10.85,10.86$ abcd, Review Question 10.9ab, Review Question 10.4, Exercise 10.1a-d, Exercise 10.4, Exercise 10.3, Exercise 10.5, Exercise 10.6, Exercise 10.7, Exercise 10.8, Exercise 10.9, Exercise 10.10, Exercise 10.11, Exercise 10.12, Exercise 10.13a-d, Exercise 10.14, Exercise 10.15; Figures 12.19, 12.21; Bracket photo (page 598), Step-by-Step (page 603), Spotlight (page 610), Figure 13.59; Appendix 1.
SolidWorks ${ }^{\circledR}$ is a registered trademark of Dassault Systèmes SolidWorks Corporation.
Certain images and materials contained in this text were reproduced with permission of Autodesk, Inc. © 2023. All rights reserved. Autodesk, AutoCAD, Autodesk Inventor, Civil 3D, DWG, and the DWG logo are registered trademarks of Autodesk, Inc., in the U.S.A. and certain other countries.

PTC, Creo, and Windchill are trademarks or registered trademarks of PTC Inc. or its subsidiaries in the United States and in other countries.

Copyright © 2024 Pearson Education, Inc., Hoboken, New Jersey. All rights reserved. This publication is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights \& Permissions Department, please visit www.pearsoned.com/permissions.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Library of Congress Control Number: 2023945393

SIXTH EDITION

MODERN GRAPHICS COMMUNICATION

Engineers, technicians, and designers need to master a variety of graphical communication techniques, from sketching concepts, such as these backpack designs, to creating detailed three-dimensional models suitable for analysis of design features. (Courtesy of André Cotan.)

ABOUT THIS BOOK

Modern Graphics Communication presents practices and techniques of sketching, visualization, design, and CAD that are important to today's graphics curriculum. Based on the long-standing authoritative text on the subject, Giesecke's Technical Drawing, this text preserves the time-tested graphics techniques that remain fundamental to the class, as it expands on the role that the 3D CAD database plays in design and documentation.

The topics of sketching and visualization skills are this book's primary focus and provide a solid conceptual basis for the CAD instruction most graphics students receive. This edition also illustrates the appli-
cation of both 3D and 2D modeling and technical drawing skills to real-world situations, and includes several in-depth case studies that link chapter content to industry practice. Each chapter lays a conceptual foundation that anchors the detailed sections on technique that follow. A wealth of step-by-step illustrated guides, worksheets, and end-of-chapter exercises help students visualize, practice, and retain those key concepts and techniques. Students who complete Modern Graphics Communication will leave with a full repertoire of skills-plus a lasting reference book-that they will find invaluable both in education and industry.

THE SIXTH EDITION

The sixth edition of Modern Graphics Communication builds on Technical Drawing's long history as an introduction to technical drawing and an easy-to-use reference for techniques and practices.

Updated Content

- Additional hands-on worksheets and grids for sketching and visualization practice.
- Coverage of 3D design and modeling techniques.
- Updates to current ASME standards, particularly for GD\&T and surface finish symbology.
- Updated examples of rapid prototyping and direct printing.
- Updated software examples.
- Thoroughly checked for accuracy.
- Online chapters available for axonometric projection and perspective drawing.

TEACHING/LEARNING FEATURES

Visually-oriented students and busy professionals will quickly locate content by navigating these consistent chapter features.

- Splash Spread An attention-getting chapter opener interests readers and provides context for chapter content.
- References and Web Links Applicable references to standards and links to handy websites are at the beginning of each chapter.
- Foundations Section An introductory section, set off by a topic heading tab at the top of the page for easy navigation, covers the topic's usage and importance, visualization tips, and theory related to the drawing techniques.
- Detail Section This is the "brass tacks" part of the book, where detailed explanations of drawing and modeling techniques, variations, and examples are organized into quick-read sections, each numbered for quick reference in the detailed table of contents.
- CAD at Work These breakout pages include tips related to using the 2 D or 3 D CAD model to generate drawings.
- Industry Case 3D modeling practitioners share their best practices for modeling and documenting design.
- Portfolio Examples of finished drawings wrap up the chapter by showing real-world application of topics presented.
- Key Words Set in bold italics on first reference, key words are summarized at the end of the chapter.
- Chapter Summary
- Review Questions
- Chapter Exercises The excellent Giesecke problem sets feature updated exercises, including plastic and sheet metal parts, modeling exercises, assembly drawings from CAD models, and sketching problems.
- Worksheets Fifty-two worksheets and grids at the end of the text provide additional hands-on practice with chapter topics. Worksheets are also available in PDF format.

ABOUT THE AUTHORS

Frederick E. Giesecke, founder of the first formal architectural education program in Texas at what is today Texas A\&M University, has been described as "a wunderkind of the first magnitude." He joined the A\&M faculty at the age of 17, after graduating in 1886 with a B.S. in Mechanical Engineering. By the age of 19 , was appointed head of A\&M's Department of Mechanical Drawing.

Having studied architectural drawing and design at Cornell University and the Massachusetts Institute of Technology, Giesecke also served as head of the Department of Architecture and the official college architect at Texas A\&M, designing many campus buildings that are still standing today.

A long-time admirer of Giesecke's legacy, Shawna Lockhart was honored to carry on the commitment to clear, engaging, thorough, and well-organized presentation that began with the original author.

Lockhart is known as an early adopter and authority on CAD technologies. She is an instructor noted for outstanding dedication to students and for encouraging a broad spectrum of individuals, particularly women and minorities, to follow careers in engineering-related fields. Lockhart now works full time to ensure that the Giesecke graphics series continually applies to an evolving variety of technical disciplines.

ONLINE RESOURCES

An Instructor's Manual (9780138264659) and Lecture Slides in PowerPoint format (9780138264666) are available on the companion site for this book at https://www.pearson.com/ en-us/subject-catalog/p/modern-graphics-communication/ P200000011547.

Worksheets, additional appendices, and web chapters on axonometric projection and perspective drawing may be downloaded from www.peachpit.com. To access and download the bonus chapters:

1. Visit www.peachpit.com/moderngraphics.
2. Log in with your Peachpit account, or if you don't have one, create an account.
3. Register using this book's ISBN, 9780138271879 , then click the Access Bonus Content link next to this book on your account's Registered Products page.

ACKNOWLEDGMENTS

Sincere thanks to all the individuals and companies who shared their expertise through drawings and advice with the readers of this book:

Robert A. Ackein, Marty Albini, Jacob Baron-Taltre, Albert Brown, Jr., Will Callahan, Ryan Cargo, Jason Cohn, David and Caroline Collett, André Cotan, David Demchenkov, Tim Devries, Jost Diedrichs, Steve Elpel, Joe Evers, Carl Fehres, Mark Gerisch, Joe Graney, Leo Greene, Tom Jungst, Scott Keller, Robert Kincaid, Brandon Larocque, Matt McCune, Stan McLean, Laine McNeil, Rob Mesaros, Cliff Moore, Jeremy Olson, Andrea Orr, Kelly Pavlik, Jeffrey Pentecost, Mark Perkins, David Pinchefsky, Robert Rath, Jake Reis, Erik Renna, Steve Sanford, Chad Schipman, Scott Schwartzenberger, Timothy Seaman, Mark Soares, Ben Staal, Bryan Strobel, Lee Sutherland, Kent Swendseid, Bill Townsend, Michael T. Wheelock, Alex Wilson, Douglas Wintin, Brandon Wold, Rick Zaik, and Jeff Zerr.

We gratefully acknowledge the contributions of reviewers to the development of this series:

Tarek Abdel-Salam, East Carolina University
Robert A. Ackein, Bates Technical College
Fred Brasfield, Tarrant Community College
Charles Richard Cole, Southern Polytechnic State University
Robert Conn, Illinois Eastern Community CollegesWabash Valley College
Steven L. Dulmes, College of Lake County
Jeff Levy, New River Community College
J.D. Mather, Pennsylvania College of Technology

Saeid Motavalli, California State University East Bay
Mostafa A. Tossi, Pennsylvania State
Worthington Scranton
Michael T. Wheelock, Idaho State University
Paige Wyatt, Columbia Basin College
A very special thanks to Robert Conn and J.D. Mather for their constructive comments and suggestions.

PEARSON'S COMMITMENT TO DIVERSITY, EQUITY, AND INCLUSION

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to deliver opportunities that improve lives and enable economic mobility. As we work with authors to create content for every product and service, we acknowledge our responsibility to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve their potential through learning. As the world's leading learning company, we have a duty to help drive change and live up to our purpose to help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

- Everyone has an equitable and lifelong opportunity to succeed through learning.
- Our educational products and services are inclusive and represent the rich diversity of learners.
- Our educational content accurately reflects the histories and experiences of the learners we serve.
- Our educational content prompts deeper discussions with learners and motivates them to expand their own learning (and worldview).
While we work hard to present unbiased content, we want to hear from you about any concerns or needs with this Pearson product so that we can investigate and address them.

Please contact us with concerns about any potential bias at https://www.pearson.com/report-bias.html.

The following features were designed to provide easy navigation and quick reference for students and professionals who look to Giesecke both as a helpfully-organized teaching text and a lasting reference.

"SPOTLIGHT" SECTIONS

These sections add background information for key topics.

"FOUNDATIONS" SECTION

This introductory section covers the chapter topic's usage and importance, visualization tips, and theory related to the drawing and modeling techniques.

"CAD AT WORK"

CAD at Work sections break out examples related to using the 2 D or 3D CAD model to generate drawings.

"INDUSTRY CASE"

Several industry practitioners share their approaches to modeling and documenting design.

"PORTFOLIO"

These pages offer examples of finished drawings showing real-world application of topics presented.

SOLID MODEL VISUALIZATION ART

Solid models bring views to life on the page to help you visualize the drawing.

(a) REGULAR VIEWS

ILLUSTRATIONS

Colored callouts differentiate explanatory text from annotations in technical drawings. Consistent use of color helps differentiate the meaning of projection lines, fold lines, and other drawing elements. A color key is provided for easy reference.

Color Key for Instructional Art

Item	In instructional art	In a technical drawing
Callout arrow	\longrightarrow	*
Dimension line	\longrightarrow	$\longrightarrow \quad$ a thin (0.3 mm) black line
Projection line	\longrightarrow	- a lightly sketched line
Folding line	- - - - - -	_- - _ used in descriptive geometry
Picture plane on edge	\qquad	*
Plane of projection		*
Cutting plane on edge	- - - - - -	\uparrow _ \uparrow (see Chapter 6)
Cutting plane		*
Reference plane on edge		- - - used in descriptive geometry
Reference plane		*
Viewing direction arrow	\longrightarrow	
Horizon + ground line		
Rotation arrow	\sim	$30^{\circ} \sim$

[^0]
CHAPTER REVIEW

Each chapter ends with Key Words, a Chapter Summary, and Review Questions.

CHAPTER EXERCISES

The Giesecke problem sets feature updated exercises including plastic and sheet metal parts, constraint-based modeling, sketching problems, and reverse engineering projects.

Worksheets at the end of the book help students practice and retain information presented in the book.

Review and exercises are tabbed to make them easy to find. The color stripe corresponds to the alternating chapter color.

BRIEF CONTENTS

CHAPTER ONETHE WORLDWIDE LANGUAGE FOR GRAPHIC DESIGN2
CHAPTER TWO
LAYOUTS AND LETTERING 30
CHAPTER THREE
VISUALIZATION AND SKETCHING 62
CHAPTER FOUR
GEOMETRY FOR MODELING AND DESIGN 124
CHAPTER FIVE
MODELING AND DESIGN 170
CHAPTER SIX
ORTHOGRAPHIC PROJECTION 232
CHAPTER SEVEN
2D DRAWING REPRESENTATION 284
CHAPTER EIGHT
SECTION VIEWS 326
CHAPTER NINE
AUXILIARY VIEWS 362
CHAPTER TEN
MODELING FOR MANUFACTURE AND ASSEMBLY 414
CHAPTER ELEVEN
DIMENSIONING 502
CHAPTER TWELVE
TOLERANCING 546
CHAPTER THIRTEEN
THREADS, FASTENERS, AND SPRINGS 592
CHAPTER FOURTEEN
WORKING DRAWINGS 636
GLOSSARYAPPENDICESINDEX

This page intentionally left blank

CONTENTS

CHAPTER ONE
THE WORLDWIDE GRAPHIC LANGUAGE FOR DESIGN 2
UNDERSTANDING THE ROLE OF TECHNICALDRAWINGS 4
The Design Process 5
Concurrent Engineering 6
Computer-Aided Design and Product Development 6
Designing Quality into Products 7
The Digital Database 7
1.1 GRAPHICS TOOLS IN ACTION 8
Design Phase: Problem Identification 8Design Phase: Ideation 9Design Phase: Decision Process/Design Selection 9Design Phase: Refinement 10Design Phase: Analysis 11
Design Phase: Decision Process/Design Selection 12
Design Phase: Implementation 13
Design Phase: Documentation 14
1.2 RAPID PROTOTYPING 15
1.3 DRAFTING STANDARDS 16
1.4 CREATIVITY TECHNIQUES 16
Examine Manufactured Products 16
Study the Natural World 16
Watch the Web 16
Research Patent Drawings 17
Design Groups 17
1.5 PRODUCT DEFINITION 18
1.6 SHOWING THE DESIGN PROCESS IN A PORTFOLIO 18
KEY WORDS 20
CHAPTER SUMMARY 20
REVIEW QUESTIONS 20
CHAPTER EXERCISES 21
REVERSE ENGINEERING PROJECTS 22
Can Opener Project 22
Locking Pliers Project 28
CHAPTER TWO
LAYOUTS AND LETTERING 30
UNDERSTANDING PROJECTION 32
Types of Projection 32
Drawing Vocabulary 34
2.1 ALPHABET OF LINES 34
2.2 FREEHAND LINES 36
2.3 MEASUREMENT SYSTEMS 36
U.S. Customary Units 36
The Metric System 36
2.4 DRAWING SCALE 37
2.5 SPECIFYING THE SCALE ON A DRAWING 37
2.6 LETTERING 40
2.7 LETTERING STANDARDS 40
2.8 USING GUIDELINES FOR HAND LETTERING 40
2.9 VERTICAL AND INCLINED LETTERS AND NUMERALS 41
2.10 FRACTIONS 43
2.11 SPACING OF LETTERS AND WORDS 44
2.12 LETTERING FOR TITLES 45
2.13 DRAWING PENCILS 46
2.14 TEMPLATES 47
2.15 CAD TOOLS 47
2.16 SKETCHING AND DRAWING MEDIA 49
2.17 STANDARD SHEETS 49
2.18 STANDARD LAYOUT ELEMENTS 50
Margins and Borders 50
Zones 50
Typical Letter Sizes 50
Title Block 51
2.19 LAYOUTS 52
2.20 PLANNING YOUR DRAWING OR SKETCH 52
Show Details Clearly 52
KEY WORDS 57
CHAPTER SUMMARY 57
REVIEW QUESTIONS 57
CHAPTER EXERCISES 58
Drawing Exercises 58
Lettering Exercises 60
CHAPTER THREE
VISUALIZATION AND SKETCHING 62
UNDERSTANDING SOLID OBJECTS 64
Types of Solids 64
UNDERSTANDING SKETCHING
TECHNIQUES 66
Analyzing Complex Objects 66
Viewpoint 68
Shading 68
Edges and Vertices 69
Points and Lines 69
Angles 70
Drawings and Sketches 70
Freehand Sketching 71
3.1 TECHNIQUE OF LINES 72
Lineweights 72
3.2 SKETCHING STRAIGHT LINES 73
Blocking in a Freehand Drawing 73
3.3 SKETCHING CIRCLES, ARCS, AND ELLIPSES 75
Circles 75
Sketching Arcs 77
Sketching Ellipses 77
3.4 MAINTAINING PROPORTIONS 77
3.5 ONE-VIEW DRAWINGS 79
3.6 PICTORIAL SKETCHING 80
3.7 PROJECTION METHODS 82
3.8 AXONOMETRIC PROJECTION 82
Axonometric Projections and 3D Models 83
3.9 ISOMETRIC PROJECTION 84
Isometric Axes 84
Nonisometric Lines 84
Isometric Scales 84
3.10 ISOMETRIC DRAWINGS 85
3.11 MAKING AN ISOMETRIC DRAWING 86
3.12 OFFSET LOCATION MEASUREMENTS 88
Isometric Drawings of Inclined Surfaces 89
3.13 HIDDEN LINES AND CENTERLINES 89
3.14 ANGLES IN ISOMETRIC 90
3.15 IRREGULAR OBJECTS 91
3.16 CURVES IN ISOMETRIC 91
3.17 TRUE ELLIPSES IN ISOMETRIC 92
3.18 ORIENTING ELLIPSES IN ISOMETRIC DRAWINGS 93
3.19 DRAWING ISOMETRIC CYLINDERS 95
3.20 SCREW THREADS IN ISOMETRIC 95
3.21 ARCS IN ISOMETRIC 95
3.22 SPHERES IN ISOMETRIC 96
3.23 OBLIQUE SKETCHES 98
Appearance of Oblique Drawings 98
Choosing the Front Surface 98
Angle of Receding Lines 98
3.24 LENGTH OF RECEDING LINES 99
Cavalier Projection 99
Cabinet Projection 99
3.25 CHOICE OF POSITION IN OBLIQUE DRAWINGS 100
3.26 ELLIPSES FOR OBLIQUE DRAWINGS 100
3.27 ANGLES IN OBLIQUE PROJECTION 101
3.28 SKETCHING ASSEMBLIES 103
3.29 SKETCHING PERSPECTIVES 104
The Three Types of Perspective 105
Bird's-Eye View Versus Worm's-Eye View 107
3.30 CURVES AND CIRCLES IN PERSPECTIVE 107
3.31 SHADING 108
3.32 COMPUTER GRAPHICS 108
3.33 DRAWING ON DRAWING 109
KEY WORDS 116
CHAPTER SUMMARY 116
REVIEW QUESTIONS 116
SKETCHING EXERCISES 117
CHAPTER FOUR
GEOMETRY FOR MODELING AND DESIGN 124
COORDINATES FOR 3D CAD MODELING 126
Specifying Location 127
GEOMETRIC ENTITIES 130
Points 130
Lines 130
Planes 131
Circles 132
Arcs 33
4.1 MANUALLY BISECTING A LINE OR CIRCULAR ARC 134
4.2 DRAWING TANGENTS TO TWO CIRCLES 135
4.3 DRAWING AN ARC TANGENT TO A LINE OR ARC AND THROUGH A POINT 135
4.4 BISECTING AN ANGLE 137
4.5 DRAWING A LINE THROUGH A POINT AND PARALLEL TO A LINE 137
4.6 DRAWING A TRIANGLE WITH SIDES GIVEN 138
4.7 DRAWING A RIGHT TRIANGLE WITH HYPOTENUSE AND ONE SIDE GIVEN 138
4.8 LAYING OUT AN ANGLE 138
4.9 DRAWING AN EQUILATERAL TRIANGLE 139
4.10 POLYGONS 139
4.11 DRAWING A REGULAR PENTAGON 140
4.12 DRAWING A HEXAGON 140
4.13 ELLIPSES 141
4.14 SPLINE CURVES 142
4.15 GEOMETRIC RELATIONSHIPS 145
4.16 SOLID PRIMITIVES 146
Making Complex Shapes with Boolean Operations 147
4.17 RECOGNIZING SYMMETRY 149
Right- and Left-Hand Parts 149
Parting-Line Symmetry 150
4.18 EXTRUDED FORMS 151
Swept Shapes 151
4.19 REVOLVED FORMS 152
4.20 IRREGULAR SURFACES 152
4.21 USER COORDINATE SYSTEMS 153
4.22 TRANSFORMATIONS 154
Geometric Transformations 154
Viewing Transformations 155
KEY WORDS 161
CHAPTER SUMMARY 161
SKILLS SUMMARY 161
REVIEW QUESTIONS 161
CHAPTER EXERCISES 162
CHAPTER FIVE
MODELING AND DESIGN 170
REFINEMENT AND MODELING 172
KINDS OF MODELS 173
Descriptive Models 173
Analytical Models 174
5.1 2D MODELS 176
Paper Drawings 176
2D CAD Models 176
2D Constraint-Based Modeling 178
5.2 3D MODELS 179
Physical Models 179
3D CAD Models 181
5.3 TYPES OF 3D MODELS 182
Wireframe Models 182
Surface Models 184
Solid Models 190
5.4 CONSTRAINT-BASED MODELING 191
5.5 CONSTRAINTS DEFINE THE GEOMETRY 193
Feature-Based Modeling 196
5.6 PLANNING PARTS FOR DESIGN FLEXIBILITY 197
5.7 SKETCH CONSTRAINTS 199
Overconstrained Sketches 203
Underconstrained Sketches 203
Applying Constraints 203
Setting the Base Point 204
5.8 THE BASE FEATURE 205
Adding Features to the Model 206
Parent-Child Relationships 207
Datum Planes and Surfaces 209
5.9 EDITING THE MODEL 212
Standard Features 213
Working with Built-in Features 213
Complex Shapes 216
5.10 CONSTRAINT-BASED MODELING MODES 216
Assemblies 217
Drawings from the Model 218
5.11 CHOOSING THE RIGHT MODELING METHOD 222
KEY WORDS 228
CHAPTER SUMMARY 228
REVIEW QUESTIONS 228
CHAPTER EXERCISES 229
CHAPTER SIX
ORTHOGRAPHIC PROJECTION 232
UNDERSTANDING PROJECTION 234
Views of Objects 234
The Six Standard Views 235
Principal Dimensions 235
Projection Method 236
The Glass Box 236
Spacing between Views 238
Transferring Depth Dimensions 238
Measuring from a Reference Surface 238
Necessary Views 239
Orientation of the Front View 240
First- and Third-Angle Projection 240
Third-Angle Projection 241
Alternative Arrangements for
Third-Angle Projection 242
First-Angle Projection 242
Projection System Drawing Symbol 242
Hidden Lines 243
Centerlines 244
6.1 HIDDEN LINE TECHNIQUE 244
6.2 PRECEDENCE OF LINES 244
6.3 CENTERLINES 246
6.4 LAYING OUT A DRAWING 246
6.5 DEVELOPING VIEWS FROM 3D MODELS 247
Placing the Views 248
Isometric Views 249
6.6 VISUALIZATION 250
Surfaces, Edges, and Corners 250
6.7 VIEWS OF SURFACES 250
6.8 NORMAL SURFACES 251
6.9 INCLINED SURFACES 251
6.10 OBLIQUE SURFACES 251
6.11 EDGES 252
6.12 NORMAL EDGES 252
6.13 INCLINED EDGES 252
6.14 OBLIQUE EDGES 252
6.15 PARALLEL EDGES 252
6.16 ANGLES 253
6.17 VERTICES 253
6.18 INTERPRETING POINTS 253
6.19 INTERPRETING LINES 253
6.20 SIMILAR SHAPES OF SURFACES 254
6.21 INTERPRETING VIEWS 254
6.22 MODELS 256
Rules for Visualizing from a Drawing: Putting It All Together 256
6.23 PROJECTING A THIRD VIEW 256
6.24 BECOMING A 3D VISUALIZER 258
KEY WORDS 262
CHAPTER SUMMARY 262
REVIEW QUESTIONS 262
CHAPTER EXERCISES 263
CHAPTER SEVEN
2D DRAWING REPRESENTATION 284
PRACTICES FOR 2D DOCUMENTATIONDRAWINGS 286
Common Manufactured Features 286
Conventional Representations 287
Intersections and Tangencies 287
Removed Views 287
7.1 VISUALIZING AND DRAWING COMPLEX CYLINDRICAL SHAPES 288
7.2 CYLINDERS WHEN SLICED 289
7.3 CYLINDERS AND ELLIPSES 290
7.4 INTERSECTIONS AND TANGENCIES 290
Intersections of Cylinders 291
7.5 FILLETS AND ROUNDS 293
7.6 RUNOUTS 294
7.7 CONVENTIONAL EDGES 295
7.8 NECESSARY VIEWS 296
7.9 PARTIAL VIEWS 297
Showing Enlarged Details 298
Conventional Breaks 298
7.10 ALIGNMENT OF VIEWS 299
7.11 REMOVED VIEWS 300
7.12 RIGHT-HAND AND LEFT-HAND PARTS 301
7.13 REVOLUTION CONVENTIONS 302
Common Hole Features Shown inOrthographic Views 303
Common Features Shown inOrthographic Views 304
KEY WORDS 307
CHAPTER SUMMARY 307
REVIEW QUESTIONS 307
CHAPTER EXERCISES 308
CHAPTER EIGHT
SECTION VIEWS 326
UNDERSTANDING SECTIONS 328
Sections of Single Parts 328
Full Sections 328
The Cutting Plane 328
Lines behind the Cutting Plane 328
8.1 PLACEMENT OF SECTION VIEWS 331
8.2 LABELING CUTTING PLANES 332
8.3 LINE PRECEDENCE 332
8.4 RULES FOR LINES IN SECTION VIEWS 333
8.5 CUTTING-PLANE LINE STYLE 334
Visualizing Cutting-Plane Direction 334
8.6 SECTION-LINING TECHNIQUE 335
Section Lining Large Areas 336
Section-Lining Symbols 336
Section Lining in CAD 337
8.7 HALF SECTIONS 337
8.8 BROKEN OUT SECTIONS 338
8.9 REVOLVED SECTIONS 339
8.10 REMOVED SECTIONS 340
8.11 OFFSET SECTIONS 342
8.12 RIBS IN SECTION 343
8.13 ALIGNED SECTIONS 343
8.14 PARTIAL VIEWS 345
8.15 INTERSECTIONS IN SECTIONS 346
8.16 CONVENTIONAL BREAKS AND SECTIONS 346
8.17 ASSEMBLY SECTIONS 346
KEY WORDS 350
CHAPTER SUMMARY 350
REVIEW QUESTIONS 350
CHAPTER EXERCISES 351
CHAPTER NINE
AUXILIARY VIEWS 362
UNDERSTANDING AUXILIARY VIEWS 364
The Auxiliary Plane 364
Primary Auxiliary Views 365
Visualizing an Auxiliary View
as a Revolved Drawing 366
Classification of Auxiliary Views 366
Successive Auxiliary Views 368
Secondary Auxiliary Views 368
Reference Planes 369
9.1 USING TRIANGLES TO SKETCH AUXILIARY VIEWS 371
9.2 USING GRID PAPER TO SKETCH AUXILIARY VIEWS 371
9.3 USING CAD TO CREATE AUXILIARY VIEWS 373
9.4 CIRCLES AND ELLIPSES IN AUXILIARY VIEWS 373
9.5 HIDDEN LINES IN AUXILIARY VIEWS 373
9.6 PARTIAL AUXILIARY VIEWS 375
9.7 HALF AUXILIARY VIEWS 375
9.8 REVERSE CONSTRUCTION 375
9.9 AUXILIARY SECTIONS 376
9.10 VIEWING-PLANE LINES AND ARROWS 377
9.11 USES OF AUXILIARY VIEWS 378
9.12 TRUE LENGTH OF A LINE 378
9.13 POINT VIEW OF A LINE 380
Showing the Point View of a Line 380
9.14 EDGE VIEW OF A PLANE 381
Showing the Edge View of a Plane 381
9.15 TRUE SIZE OF AN OBLIQUE SURFACE 382
Showing the True Size and Shape of an Oblique Surface 382
9.16 DIHEDRAL ANGLES 384
UNDERSTANDING DEVELOPMENTS AND INTERSECTIONS 385
Surface Terminology 385
Developable Surfaces 386
Principles of Intersections 386
9.17 DEVELOPMENTS 387Finding the Intersection of a Plane and a Prism andDeveloping the Prism 387Finding the Intersection of a Planeand a Cylinder and Developingthe Cylinder 389
9.18 HEMS AND JOINTS FOR SHEET METAL AND OTHER MATERIALS 390
9.19 MORE EXAMPLES OF DEVELOPMENTS AND INTERSECTIONS 390
Developing a Plane and an Oblique Prism 390
Developing a Plane and an Oblique Cylinder 391
Developing a Plane and a Pyramid 391
Developing a Plane and a Cone 391
Developing a Hood and Flue 392
9.20 TRANSITION PIECES 393
9.21 TRIANGULATION 393
9.22 DEVELOPING A TRANSITION PIECE CONNECTING RECTANGULAR PIPES ON THE SAME AXIS 394
9.23 DEVELOPING A PLANE AND A SPHERE 394
9.24 REVOLUTION 395
Axis of Revolution 395
Creating a Revolved Drawing 395
9.25 PRIMARY AND SUCCESSIVE REVOLUTIONS 396
9.26 TRUE LENGTH OF A LINE: REVOLUTION METHOD 396
KEY WORDS 398
CHAPTER SUMMARY 398
REVIEW QUESTIONS 398
CHAPTER EXERCISES 399
Design Project 399
Auxiliary View Exercises 399
Revolution Exercises 407
Development Exercises 410
CHAPTER TEN
MODELING FOR MANUFACTURE AND ASSEMBLY 414DESIGN FOR MANUFACTURE, ASSEMBLY,DISASSEMBLY, AND SERVICE 416
10.1 ASSEMBLY MODELS 418
Constraint-Based Assemblies 419
Choosing the Parent Part 420
Assembly Constraints 421
Managing Assembly Files 423
10.2 ASSEMBLIES AND DESIGN 424
Layout Drawings 425
Assembling to a Skeleton 425
Global Parameters 427
Seed Parts 428
Constraint-Based Drawing Elements 429
10.3 ASSEMBLIES AND SIMULATION 429
10.4 PARTS FOR ASSEMBLIES 430
Standard Parts 430
Fastener Libraries 431
10.5 USING YOUR MODEL TO CHECK FITS 432
Interference Checking 432
Accessibility Checking 433
10.6 MANUFACTURING PROCESSES 434
Designing Plastic Parts 434
Cast Parts 437
Modeling Machined Parts 437
Modeling Sheet Metal Parts 438
Other Methods of Production 440
10.7 DOS AND DON'TS OF PRACTICAL DESIGN 441
Casting Design 441
Practical Considerations 441
10.8 MANUFACTURING MATERIALS 443
Material Assignment in Model 444
10.9 APPEARANCE, SERVICE LIFE, AND RECYCLING 445
10.10 DIMENSIONAL ACCURACY AND SURFACE FINISH 445
10.11 NET-SHAPE MANUFACTURING 446
10.12 COMPUTER-INTEGRATED MANUFACTURING 447
10.13 SHARED MANUFACTURING 448
10.14 MANUFACTURING METHODS AND THE DRAWING 448
10.15 MODELING FOR TESTING AND REFINEMENT 451
10.16 DETERMINING MASS PROPERTIES 451
Understanding Mass Property Calculations 454
10.17 EXPORTING DATA FROM THE DATABASE 456
File Formats 456
Common Formats for Export 457
Vector versus Raster Data 459
10.18 DOWNSTREAM APPLICATIONS 460
Spreadsheets 460
Equation Solvers 460
Finite Element Analysis 463
Simulation Software 468
Human Factors 470
Integrated Modeling and Design Software 472
10.19 PROTOTYPING YOUR DESIGN 474
Rapid Prototyping 474
Translating the Model 474
Rapid Prototyping Systems 476 Rapid Tooling 480
KEY WORDS 486
CHAPTER SUMMARY 487
SKILLS SUMMARY 487
REVIEW QUESTIONS 488
CHAPTER EXERCISES 490
Mass Properties Exercises 500
CHAPTER ELEVEN
DIMENSIONING 502
UNDERSTANDING DIMENSIONING 504
Three Aspects of Good Dimensioning 505
Tolerance 505
Geometric Breakdown 506
11.1 LINES USED IN DIMENSIONING 506
11.2 USING DIMENSION AND EXTENSION LINES 508
11.3 ARROWHEADS 508
11.4 LEADERS 509
11.5 DRAWING SCALE AND DIMENSIONING 509
11.6 DIRECTION OF DIMENSION VALUES AND NOTES 510
11.7 DIMENSION UNITS 510
11.8 MILLIMETER VALUES 510
11.9 DECIMAL-INCH VALUES 511
11.10 RULES FOR DIMENSION VALUES 512
11.11 RULES FOR ROUNDING DECIMAL DIMENSION VALUES 512
11.12 DUAL DIMENSIONING 512
11.13 COMBINATION UNITS 513
11.14 DIMENSIONING SYMBOLS 513
11.15 PLACING AND SHOWING DIMENSIONS LEGIBLY 514 Rules for Placing Dimensions Properly 514
11.16 SUPERFLUOUS DIMENSIONS 516
11.17 DIMENSIONING ANGLES 517
11.18 DIMENSIONING ARCS 517
11.19 FILLETS AND ROUNDS 517
11.20 SIZE DIMENSIONING: PRISMS 518
11.21 SIZE DIMENSIONING: CYLINDERS 518
11.22 SIZE DIMENSIONING: HOLES 519
11.23 APPLYING STANDARD DIMENSIONING SYMBOLS 520
11.24 DIMENSIONING COUNTERBORES AND SPOTFACES WITH FILLETS 521
11.25 DIMENSIONING TRIANGULAR PRISMS, PYRAMIDS, AND CONES 522
11.26 DIMENSIONING CURVES 522
11.27 DIMENSIONING CURVED SURFACES 523
11.28 DIMENSIONING ROUNDED-END SHAPES 523
11.29 DIMENSIONING THREADS 524
11.30 DIMENSIONING TAPERS 524
11.31 DIMENSIONING CHAMFERS 524
11.32 SHAFT CENTERS 525
11.33 DIMENSIONING KEYWAYS 525
11.34 DIMENSIONING KNURLS 525
11.35 FINISH MARKS 526
11.36 SURFACE ROUGHNESS 526
Applications of SurfaceRoughness Symbols 527
11.37 LOCATION DIMENSIONS 530
11.38 MATING DIMENSIONS 532
11.39 COORDINATE DIMENSIONING 533
11.40 TABULAR DIMENSIONS 534
11.41 DIMENSIONING FOR NUMERICALLY- CONTROLLED MACHINING 534
11.42 MACHINE, PATTERN, AND FORGING DIMENSIONS 535
11.43 SHEET METAL BENDS 536
11.44 NOTES 536
11.45 STANDARDS 538
11.46 DOS AND DON'TS OF DIMENSIONING 538
KEY WORDS 543
CHAPTER SUMMARY 543
REVIEW QUESTIONS 543
CHAPTER EXERCISES 544
CHAPTER TWELVE
TOLERANCING 546
UNDERSTANDING TOLERANCE 548
Tolerance 548
Quality Control 548
Definitions for Size Designation 548
Variations in Form 549
Tolerance Envelope 549
Implied Right Angles 550
Fits between Mating Parts 551
Selective Assembly 553
Hole System 554
Shaft System 554
12.1 SPECIFYING TOLERANCES 556
12.2 GENERAL TOLERANCE NOTES 556
12.3 LIMIT TOLERANCES 557
Single-Limit Dimensioning 557
12.4 PLUS-OR-MINUS TOLERANCES 558
12.5 TOLERANCE STACKING 559Chained or Continuous Dimensioning 559Baseline Dimensioning 559
12.6 USING AMERICAN NATIONAL STANDARD LIMITS AND FIT TABLES 560
12.7 TOLERANCES AND MACHINING PROCESSES 561
12.8 METRIC SYSTEM OF TOLERANCES AND FITS 562
12.9 PREFERRED SIZES 564
12.10 PREFERRED FITS 564
12.11 GEOMETRIC DIMENSIONING AND TOLERANCING 565
12.12 SYMBOLS FOR TOLERANCES OF POSITION AND FORM 566
12.13 DATUM FEATURES 568Datum Features VersusDatum Feature Simulator 569
Datum Reference Frame 569
Datum Targets 570
12.14 POSITIONAL TOLERANCES 572
12.15 MAXIMUM MATERIAL CONDITION 574
Virtual Condition (VC) 575
12.16 TOLERANCES OF ANGLES 575
12.17 FORM TOLERANCES FOR SINGLE FEATURES 576
12.18 ORIENTATIONS FOR RELATED FEATURES 578
12.19 USING GEOMETRIC DIMENSIONING AND TOLERANCING 580
12.20 TOLERANCES AND DIGITAL PRODUCT DEFINITION 581
12.21 COMPUTER GRAPHICS 582
KEY WORDS 587
CHAPTER SUMMARY 587
REVIEW QUESTIONS 588
CHAPTER EXERCISES 588
Design Project 588
Tolerancing Projects 588
CHAPTER THIRTEEN
THREADS, FASTENERS, AND SPRINGS 592
UNDERSTANDING THREADS AND FASTENERS 594
Screw Thread Terms 595
Screw Thread Forms 596
Thread Pitch 597
Thread Series 598
Right-Hand and Left-Hand Threads 598
Single and Multiple Threads 599
American National Thread Fits 599
Metric and Unified Thread Fits 600
Three Methods for Drawing Thread 600
13.1 THREAD NOTES 604
Acme Thread Notes 605
13.2 EXTERNAL THREAD SYMBOLS 606
13.3 INTERNAL THREAD SYMBOLS 606
13.4 DETAILED REPRESENTATION: METRIC, UNIFIED, AND AMERICAN NATIONAL THREADS 608
Detailed Internal Square Thread 608
Detailed External Square Thread 608
13.5 THREADS IN ASSEMBLY 610
13.6 MODELING THREAD 610
13.7 AMERICAN NATIONAL STANDARD PIPE THREADS 610
13.8 USE OF PHANTOM LINES 612
13.9 TAPPED HOLES 612
13.10 BOLTS, STUDS, AND SCREWS 613
13.11 STANDARD BOLTS AND NUTS 614
13.12 DRAWING STANDARD BOLTS 615
13.13 SPECIFICATIONS FOR BOLTS AND NUTS 615
13.14 LOCKNUTS AND LOCKING DEVICES 617
13.15 STANDARD CAP SCREWS 618
13.16 STANDARD MACHINE SCREWS 619
13.17 STANDARD SET SCREWS 620
13.18 AMERICAN NATIONAL STANDARD WOOD SCREWS 621
13.19 MISCELLANEOUS FASTENERS 621
13.20 KEYS 622
13.21 MACHINE PINS 622
13.22 RIVETS 623
Riveted Joints 623
Rivet Symbols 624
Small Rivets 624
Blind Rivets 624
13.23 SPRINGS 625
Helical Springs 625
13.24 DRAWING HELICAL SPRINGS 626
13.25 MODELING SPRINGS 627
KEY WORDS 631
CHAPTER SUMMARY 631
REVIEW QUESTIONS 631
CHAPTER EXERCISES 631
Design Project 631
Thread and Fastener Projects 631
CHAPTER FOURTEEN
WORKING DRAWINGS 636
WORKING DRAWINGS OR CONSTRUCTIONDRAWINGS638
Assembly Drawings 639
Detail Drawings or Piece Part Drawings 640
14.1 SUBASSEMBLIES 642
14.2 IDENTIFICATION 642
Multidetail Drawings 643
14.3 PARTS LISTS 644
14.4 ASSEMBLY SECTIONS 645
14.5 WORKING DRAWING ASSEMBLY 646
14.6 INSTALLATION ASSEMBLIES 647
14.7 CHECK ASSEMBLIES 647
14.8 WORKING DRAWING FORMATS 648
Number of Details per Sheet 648
Digital Drawing Transmittal 648
Title and Record Strips 649
14.9 DRAWING NUMBERS 650
14.10 ZONING 650
14.11 CHECKING DRAWINGS 650
14.12 DRAWING REVISIONS 650
14.13 SIMPLIFYING DRAWINGS 651
14.14 PATENT DRAWINGS 652
KEY WORDS 657
CHAPTER SUMMARY 657
REVIEW QUESTIONS 657
CHAPTER EXERCISES 658
Design Project 658
Working Drawing Exercises 659
GLOSSARY G-1
APPENDICES A-1
INDEX I-1
WORKSHEETS W-1

This page intentionally left blank

CHAPTER FOUR

GEOMETRY FOR MODELING AND DESIGN

OBJECTIVES

After studying the material in this chapter, you should be able to:

1. Identify and specify basic geometric elements and primitive shapes.
2. Select a 2D profile that best describes the shape of an object.
3. Identify mirrored shapes and sketch their lines of symmetry.
4. Identify shapes that can be formed by extrusion and sketch their cross sections.
5. Identify shapes that can be formed by revolution techniques and sketch their profiles.
6. Define Boolean operations.
7. Specify the Boolean operations to combine primitive shapes into a complex shape.
8. Work with Cartesian coordinates and user coordinate systems in a CAD system.
9. Identify the transformations common to CAD systems.

Many different geometric shapes were used to model this jetboard. The wireframe view of the top cover reveals several regular geometric shapes used to model the interior components. The graceful lines of the outer hull are defined by the irregular curves used to model it. (Courtesy of Leo Greene, www.e-Cognition.net.)

OVERVIEW

Engineering drawings combine basic geometric shapes and relationships to define complex objects. 2D drawings are composed of simple entities such as points, lines, arcs, and circles, as well as more complex entities such as ellipses and curves. Reviewing the basic geometry of these elements helps you define and combine these elements in your drawings and CAD models.

Accurate construction is critical to creating useful drawings. Lines drawn using a CAD system are highly accurate definitions-much greater than you can see on a computer monitor. Good manual drawing technique can typically produce a drawing accurate to about $1 / 40$ th of the drawing scale. For example, a hand-drawn survey created at $1^{\prime \prime}=400^{\prime}$ might be
accurate to a range of plus or minus 10^{\prime}. The internal precision of drawings created using CAD systems is limited by the 64 bits (base-2 places) typically used to represent decimal numbers in a CAD system. This produces a theoretical accuracy of around 1 in 10 quadrillion $\left(10^{16}\right)$. If you drew two beams, each three times the distance from the Sun to Pluto, and made one of the beams just 1 mm longer than the other one, a CAD system could still accurately represent the difference between the two beams. Wow! That's a lot better than the 1 in 40 accuracy of a manual drawing. However, CAD drawings are accurate only if the drawing geometry is defined accurately when the drawing is created.

4.1 Right-Hand Rule

4.2 The Z-Axis. In systems that use the right-hand rule, the positive Z-axis points toward you when the face of the monitor is parallel to the $X-Y$ plane.

4.3 Axis of Rotation. The curl of the fingers indicates the positive direction along the axis of rotation.

COORDINATES FOR 3D CAD MODELING

2D and 3D CAD drawing entities are stored in relationship to a Cartesian coordinate system. No matter what CAD software system you will be using, it is helpful to understand some basic similarities of coordinate systems.

Most CAD systems use the right-hand rule for coordinate systems; if you point the thumb of your right hand in the positive direction for the X -axis and your index finger in the positive direction for the Y -axis, your remaining fingers will curl in the positive direction for the Z -axis (shown in Figure 4.1). When the face of your monitor is the X-Y plane, the Z-axis is pointing toward you (see Figure 4.2).

The right-hand rule is also used to determine the direction of rotation. For rotation using the right-hand rule, point your thumb in the positive direction along the axis of rotation. Your fingers will curl in the positive direction for the rotation, as shown in Figure 4.3.

Though rare, some CAD systems use a left-hand rule. In this case, the curl of the fingers on your left hand gives you the positive direction for the Z-axis. In this case, when the face of your computer monitor is the $\mathrm{X}-\mathrm{Y}$ plane, the positive direction for the Z -axis extends into your computer monitor, not toward you.

A 2D CAD system uses only the X - and Y-coordinates of the Cartesian coordinate system. 3D CAD systems use X , Y , and Z . To represent 2D in a 3D CAD system, the view is straight down the Z-axis. Figure 4.4 shows a drawing created using only the X - and Y - values, leaving the Z-coordinates set to 0 , to produce a 2D drawing.

Recall that each orthographic view shows only two of the three coordinate directions because the view is straight down one axis. 2D CAD drawings are the same: They show only the X - and Y-coordinates because you are looking straight down the Z-axis.

When the $\mathrm{X}-\mathrm{Y}$ plane is aligned with the screen in a CAD system, the Z-axis is oriented horizontally. In machining and many other applications, the Z-axis is considered to be the vertical axis. In all cases, the coordinate axes are mutually perpendicular and oriented according to the right-hand or left-hand rule. Because the view can be rotated to be straight down any axis or any other direction, understanding how to use coordinates in the model is more important than visualizing the direction of the default axes and planes.

4.4 2D CAD Drawing. This drawing was created on the $X-Y$ plane in the CAD system. It appears true shape because the viewing direction is perpendicular to the $X-Y$ plane-straight down the Z-axis.

The vertices of the 3D shape shown in Figure 4.5 are identified by their X-, Y-, and Z-coordinates. Often, it is useful when modeling parts to locate the origin of the coordinate system at the lower left of the part, as shown in Figure 4.5. This location for the $(0,0,0)$ point on a part is useful when the part is being machined, as it then makes all coordinates on the part positive (Figure 4.6). Some older numerically-controlled machinery will not interpret a file correctly if it has negative lengths or coordinates. CAD models are often exported to other systems for manufacturing parts, so try to create them in a common and useful way.

Specifying Location

Even though the model is ultimately stored in a single Cartesian coordinate system, you may usually specify the location of features using other location methods as well. The most typical of these are relative, polar, cylindrical, and spherical coordinates. These coordinate formats are useful for specifying locations to define your CAD drawing geometry.

4.6 This CAD model for a plate with 6 holes has its origin $(0,0,0)$ at the back left of the part when it is set up for numerically-controlled machining. (Courtesy of Matt McCune, Autopilot, Inc.)

4.5 3D Coordinates for Vertices

4.7 The part is clamped in place during machining. The back left corner of the part is the $0,0,0$ location during the machining process. (Courtesy of Matt McCune, Autopilot, Inc.)

SPOTLIGHT

The First Coordinate System

René Descartes (1596-1650) was the French philosopher and mathematician for whom the Cartesian coordinate system is named. Descartes linked algebra and geometry to classify curves by the equations that describe them. His coordinate system remains the most commonly used coordinate system today for identifying points. A 2D coordinate system consists of a pair of lines, called the X - and Y -axes, drawn on a plane so that they intersect at right angles. The point of intersection is called the origin. A 3D coordinate system adds a third axis, referred to as the Z-axis, that is perpendicular to the two other axes. Each point in space can
be described by numbers, called coordinates, that represent its distance from this set of axes. The Cartesian coordinate system made it possible to represent geometric entities by numerical and algebraic expressions. For example, a straight line is represented by a linear equation in the form $a x+b y+c=0$, where the x - and y-variables represent the X - and Y-coordinates for each point on the line. Descartes' work laid the foundation for the problem-solving methods of analytic geometry and was the first significant advance in geometry since those of the ancient Greeks.

4.8 Absolute coordinates define a location in terms of distance from the origin ($0,0,0$), shown here as a star. These directions are useful because they do not change unless the origin changes.

4.9 Relative coordinates describe the location in terms of distance from a starting point. Relative coordinates to the same location differ according to the starting location.

Absolute Coordinates

Absolute coordinates are used to store the locations of points in a CAD database. These coordinates specify location in terms of distance from the origin in each of the three axis directions of the Cartesian coordinate system.

Think of giving someone directions to your house (or to a house in an area where the streets are laid out in rectangular blocks). One way to describe how to get to your house would be to tell the person how many blocks over and how many blocks up it is from two main streets (and how many floors up in the building, for 3D). The two main streets are like the X - and Y -axes of the Cartesian coordinate system, with the intersection as the origin. Figure 4.8 shows how you might locate a house with this type of absolute coordinate system.

Relative Coordinates

Instead of having to specify each location from the origin, you can use relative coordinates to specify a location by giving the number of units from a previous location. In other words, the location is defined relative to your previous location.

To understand relative coordinates, think about giving someone directions from his or her current position, not from two main streets. Figure 4.9 shows the same map again, but this time with the location of the house relative to the location of the person receiving directions.

Polar Coordinates

Polar coordinates are used to locate an object by giving an angle (from the X -axis) and a distance. Polar coordinates can either be absolute, giving the angle and distance from the origin, or relative, giving the angle and distance from the current location.

Picture the same situation of having to give directions. You could tell the person to walk at a specified angle from the crossing of the two main streets, and how far to walk. Figure 4.10 shows the angle and direction for the shortcut across the empty lot using absolute polar coordinates. You could also give directions as an angle and distance relative to a starting point.

4.11 Relative Cylindrical and Spherical Coordinates. The target points in (a) and (b) are described by relative coordinates from the starting point ($3,2,0$). Although the paths to the point differ, the resulting endpoint is the same.

Cylindrical and Spherical Coordinates

Cylindrical and spherical coordinates are similar to polar coordinates except that a 3D location is specified instead of one on a single flat plane (such as a map).

Cylindrical coordinates specify a 3D location based on a radius, angle, and distance (usually in the Z-axis direction). This gives a location as though it were on the edge of a cylinder. The radius tells how far the point is from the center (or origin); the angle is the angle from the X -axis along which the point is located; and the distance provides the height where the point is located on the cylinder. Cylindrical coordinates are similar to polar coordinates, but they add distance in the Z-direction. Figure 4.11a depicts relative cylindrical coordinates used to specify a location, where the starting point serves as the center of the cylinder.

Spherical coordinates specify a 3D location by the radius, an angle from the X -axis, and the angle from the $\mathrm{X}-\mathrm{Y}$ plane. These coordinates locate a point on a sphere, where the origin of the coordinate system is at the center of the sphere. The radius gives the size of the sphere; the angle from the X -axis locates a place on the equator. The second angle gives the location from the plane of the equator to a point on the sphere in line with the location specified on the equator. Figure 4.11b depicts relative spherical coordinates, where the starting point serves as the center of the sphere.

Even though you may use these different systems to enter information into your 3D drawings, the end result is stored using one set of Cartesian coordinates.

Using Existing Geometry to Specify Location

Most CAD packages offer a means of specifying location by specifying the relationship of a point to existing objects in the model or drawing. For example, AutoCAD's "object snap" feature lets you enter a location by "snapping" to the endpoint of a line, the center of a circle, the intersection of two lines, and so on (Figure 4.12). Using existing geometry to locate new entities is faster than entering coordinates. This feature also

4.12 Object snaps are aids for selecting locations on existing CAD drawing geometry. (Autodesk screen shots reprinted courtesy of Autodesk, Inc.)

4.13 Specifying Points. Point 1 was added to the drawing by typing the absolute coordinates 3,4,7. Point 2 was added relative to Point 1 with the relative coordinates @2,2,2.
allows you to capture geometric relationships between objects without calculating the exact location of a point. For example, you can snap to the midpoint of a line or the nearest point of tangency on a circle. The software calculates the exact location.

GEOMETRIC ENTITIES

Points

Points are geometric constructs. Points are considered to have no width, height, or depth. They are used to indicate locations in space. In CAD drawings, a point is located by its coordinates and usually shown with some sort of marker like a cross, circle, or other representation. Many CAD systems allow you to choose the style and size of the mark that is used to represent points.

Most CAD systems offer three ways to specify a point:

- Type in the coordinates (of any kind) for the point (see Figure 4.13).
- Pick a point from the screen with a pointing device (mouse or tablet).
- Specify the location of a point by its relationship to existing geometry (e.g., an endpoint of a line, an intersection of two lines, or a center point).
Picking a point from the screen is a quick way to enter points when the exact location is not important, but the accuracy of the CAD database makes it impossible to enter a location accurately in this way.

Lines

A straight line is defined as the shortest distance between two points. Geometrically, a line has length but no other dimension such as width or thickness. Lines are used in drawings to represent the edge view of a surface, the limiting element of a contoured surface, or the edge formed where two surfaces on an object join. In a CAD database, lines are typically stored by the coordinates of their endpoints.

For the lines shown in Figure 4.14, the table below shows how you can specify the second endpoint for a particular type of coordinate entry. (For either or both endpoints, you can also snap to existing geometry without entering any coordinates.)

The @ sign in AutoCAD indicates relative	(a) Second Endpoint for 2D Line	(b) Second Endpoint for 3D Line	
	Absolute	6,6	$5,4,6$
	Relative	$@ 3,4$	$@ 2,2,6$
	Relative polar	$@ 5<53.13$	n / a
	Relative cylindrical	n / a	$@ 2.8284<45,6$
	Relative spherical	n / a	$@ 6.6332<45<64.7606$

4.14 Specifying Lines. (a) This 2D line was drawn from endpoint $(3,2)$ to $(6,6)$. (b) This 3D line was drawn from endpoint $(3,2,0)$ to $(5,4,6)$.

(a)

(b)

(a) Three points not in a line

(b) Two parallel lines

(c) Two intersecting lines

(d) A point and a line
4.15 Defining a Plane. The highlighted entities in each image define a plane.

Planes

Planes are defined by any of the following (see Figure 4.15):

- Three points not lying in a straight line
- Two parallel lines
- Two intersecting lines
- A point and a line

The last three ways to define a plane are all special cases of the more general casethree points not in a straight line. Knowing what can determine a plane can help you understand the geometry of solid objects and use the geometry as you model in CAD.

For example, a face on an object is a plane that extends between the vertices and edges of the surface. Most CAD programs allow you to align new entities with an existing plane. You can use any face on the object-whether it is normal, inclined, or oblique-to define a plane for aligning a new entity.

Defining planes on the object or in 3D space is an important skill for working in 3D CAD. The software provides tools for defining new planes (see Figure 4.16). The options for these tools are based on the geometry of planes, as defined in the preceding list. Typical choices allow the use of any three points not in a line, two parallel lines, two intersecting lines, a point and a line, or being parallel to, perpendicular to, or at an angle from an existing plane.

A plane may serve as a coordinate-system orientation that shows a surface true shape. You will learn more about orienting work planes to take advantage of the object's geometry later in this chapter.

4.16 Defining a Plane in CAD. A point and a line (the edge between two surfaces in this case) were used to define a plane in this Pro/ENGINEER model.

Circles

A circle is a set of points that are equidistant from a center point. The distance from the center to one of the points is the radius (see Figure 4.17). The distance across the center to any two points on opposite sides is the diameter. The circumference of a circle contains 360° of arc. In a CAD file, a circle is often stored as a center point and a radius.

4.17 The Circle

4.18 AutoCAD Circle Construction Options (Autodesk screen shots reprinted courtesy of Autodesk, Inc.)

SPOTLIGHT

Formulas for Circles and Arcs

$r=$ radius

$C=2 \pi r$, the curved distance around a circle
$A=\pi r^{2}$, the area of a circle
$a=2 \pi r \times \theta / 360$, so the arc length $=0.01745 r \theta$ when you know its radius, r, and the included angle, θ, in degrees $a=r \times \theta$ (when the included angle is measured in radians)

Bolt-Hole Circle Chord Lengths

To determine the distance between centers for equally spaced holes on a bolt-hole circle:
$n=180 /$ number of holes in pattern
$L=\sin n \times$ bolt-hole circle diameter
Example: 8-hole pattern on a 10.00-diameter circle:
$180 / 8=22.5$
\sin of 22.5 is . 383
$.383 \times 10=3.83$ (chord length)
For more useful formulas, see Appendix 1.

Most CAD systems allow you to define a circle by specifying any one of the following:

- The center and a diameter
- The center and a radius
- Two points on the diameter
- Three points on the circle
- A radius and two entities to which the circle is tangent
- Three entities to which the circle is tangent

These methods are illustrated in Figure 4.19.

Tangent
tangent
radius

2 points

4.19 Ways to Define a Circle

Arcs

An arc is a portion of a circle. An arc can be defined by specifying any one of the following (see Figure 4.20):

- A center, radius, and angle measure (sometimes called the included angle or delta angle)
- A center, radius, and chord length
- A center, radius, and arc length
- The endpoints and a radius
- The endpoints and a chord length
- The endpoints and arc length
- The endpoints and one other point on the arc (3 points)

4.20 Defining Arcs. Arcs can be defined many different ways. Like circles, arcs may be located from a center point or an endpoint, making it easy to locate them relative to other entities in the model.

4.21 AutoCAD Arc Construction Options (Autodesk screen shots reprinted courtesy of Autodesk, Inc.)

(a)

(Step 1)

(Step 2)

4.1 MANUALLY BISECTING A LINE OR CIRCULAR ARC

Figure 4.22a shows the given line or $\operatorname{arc} A B$ to be bisected.
Step 1. From A and B draw equal arcs with their centers at the endpoints and a with radius greater than half $A B$.
Step 2. Join intersections D and E with a straight line to locate center C.
4.22 Bisecting a Line or a Circular Arc

TIP

Accurate Geometry with AutoCAD

Using object snaps (Figure A) to locate drawing geometry, such as the midpoint of the arc shown in Figure B, is a quick and easy way to draw a line bisecting an arc or another line.
(A) The AutoCAD Drafting Settings dialog box can be used to turn on objects snaps, a method of selecting locations on drawing geometry. (Autodesk screen shots reprinted courtesy of Autodesk Inc.)

Drafting Settings
Snap and Grid Polar Tracking Object Snap 3D Object Snap Dynamic Input Quic $\boldsymbol{1}^{-}$
Object Snap On (F3)
\square Object Snap Tracking On (F11)

Object Snap modes	
$\square \square$ Endpoint	... Extension
\triangle Midpoint	B. Oinsertion
- DCenter	b. Perpendicular
\bigcirc Geometric Center	$\bar{\square}$ Tangent
\# \square Node	又 \square Nearest
$\diamond \square$ Quadrant	\ \square Apparent intersection
$\times \square$ intersection	/ \square Parallel

To track from an Osnap point. pause over the point while in a command. A tracking vector appears when you move the cursor. To stop tracking. pause over the point again.

(B) Bisecting a Line or a Circular Arc Using AutoCAD's Midpoint Object Snap

4.2 DRAWING TANGENTS TO TWO CIRCLES

When drawing entities tangent to a circle, there are two locations that satisfy the condition of tangency. When using a CAD system, select a point close to the tangent location you intend.

4.23 Drawing Tangents to Two Circles

4.24 Tangency constraints for two identical sets of circles are shown in AutoCAD.

4.3 DRAWING AN ARC TANGENT TO A LINE OR ARC AND THROUGH A POINT

Given line $A B$, point P, and radius R (Figure 4.25a), draw line $D E$ parallel to the given line and distance R from it. From P draw an arc with radius R, cutting line $D E$ at C, the center of the required tangent arc.

Given line $A B$, with tangent point Q on the line and point P (Figure 4.25b), draw $P Q$, which will be a chord of the required arc. Draw perpendicular bisector $D E$, and at Q draw a
line perpendicular to the line to intersect $D E$ at C, the center of the required tangent arc.

Given an arc with center Q, point P, and radius R (Figure 4.25 c), from P, draw an arc with radius R. From Q, draw an arc with radius equal to that of the given arc plus R. The intersection C of the arcs is the center of the required tangent arc.

(c)
4.25 Tangents. These are often easy constructions using CAD and object snaps.

DRAWING AN ARC TANGENT TO TWO ARCS

Creating Construction Geometry

CAD software typically provides a command option to draw a circle or arc tangent to two entities (any combination of arcs, circles, or lines) given the radius. For example, the AutoCAD Circle command has an option called Ttr (tangent, tangent, radius). When you use this command, you first select the two drawing objects to which the new circle will be tangent and then enter the radius.

Take a look at the shift lever drawing. To draw this figure you must use a geometric construction to find the center of the 1.00 -radius tangent arc. Before the lower 4.20 -radius arc can be drawn, the smaller 1.00 -radius arc must be constructed tangent to the 1.50 diameter circle. When an arc is tangent to a circle, its center must be the radius distance away from that circle.

1
Use basic CAD commands to draw the portions shown.

2 Construct circle B with a radius 1.00 larger than circle A. You can use the AutoCAD Offset command to do this quickly. The desired tangent arc must have its center somewhere on circle B. The vertical dimension of 1.25 is given between the two centers in the drawing. Construct line C at this distance. The only point that is on both the circle and the line is the center of the desired tangent arc.

3 Draw the 1.00 -radius circle tangent to the 1.50-diameter circle and centered on the point just found.

4 Next, construct the lower 4.20-radius arc to be tangent to the lower curve at the left and to the 1.00 -radius circle. Then, trim the circles at their intersections to form the desired arcs.

Geometric Constraints

Using geometric constraints is another way to create this CAD geometry. When geometric constraints are used, a general-case arc can be drawn that is not perfectly tangent. Then, a tangent constraint, the vertical dimension between the arc center and the circle, and the required radius can be applied to the arc as drawn. The software will then calculate the correct arc based on these constraints.

If the desired distance changes, the dimensional constraint values can be updated, and the software will recalculate the new arc. Not all software provides constraintbased modeling, especially in a 2D drafting context. The AutoCAD software has had this feature since release 2010.

When using constraint-based modeling, you still must understand the drawing geometry clearly to create a consistent set of geometric and dimensional constraints.

TIP

Two different tangent circles with the same radius are possible-one as shown and one that includes both circles. To get the desired arc using AutoCAD, select near the tangent location for the correctly positioned arc.

4.4 BISECTING AN ANGLE

Figure 4.26a shows the given angle $B A C$ to be bisected.
Step 1. Lightly draw large arc with center at A to intersect lines $A C$ and $A B$.
Step 2. Lightly draw equal arcs r with radius slightly larger than half $B C$, to intersect at D.
Step 3. Draw line $A D$, which bisects the angle.

4.26 Bisecting an Angle

4.5 DRAWING A LINE THROUGH A POINT AND PARALLEL TO A LINE

With given point P as center, and any convenient radius R, draw arc $C D$ to intersect the given line $A B$ at E (Figure 4.27). With E as center and the same radius, strike arc R^{\prime} to intersect the given line at G. With $P G$ as radius and E as center, strike arc r to locate point H. The line $P H$ is the required parallel line.

Using AutoCAD, you can quickly draw a new line parallel to a given line and through a given point using the Offset command with the Through option. Another method is to use the Parallel object snap while drawing the line as shown in Figure 4.28. You can also copy the original line and place the copy through the point.

4.27 Drawing a Line
through a Point

4.28 Drawing a Line through a Point

4.6 DRAWING A TRIANGLE WITH SIDES GIVEN

Given the sides A, B, and C, as shown in Figure 4.29a,
Step 1. Draw one side, as C, in the desired position, and draw an arc with radius equal to side A.
Step 2. Lightly draw an arc with radius equal to side B.
Step 3. Draw sides A and B from the intersection of the arcs, as shown.

TIP
Using AutoCAD, you can enter the relative length and angle from the previous endpoint using the format:
@lengthvalue<anglevalue

4.29 Drawing a Triangle with Sides Given

4.7 DRAWING A RIGHT TRIANGLE WITH HYPOTENUSE AND ONE SIDE GIVEN

Given sides S and R (Figure 4.30), with $A B$ as a diameter equal to S, draw a semicircle. With A as center and R as radius, draw an arc intersecting the semicircle at C. Draw $A C$ and $C B$ to complete the right triangle.

4.30 Drawing a Right Triangle

4.8 LAYING OUT AN ANGLE

Many angles can be laid out directly with the triangle or protractor. For more accuracy, use one of the methods shown in Figure 4.31 .

Tangent Method The tangent of angle θ is y / x, and $y=x \tan \theta$. Use a convenient value for x, preferably 10 units (Figure 4.31a). (The larger the unit, the more accurate will be the construction.) Look up the tangent of angle θ and multiply by 10 , and measure $y=10 \tan \theta$.

Example To set off $31-1 / 2^{\circ}$, find the natural tangent of $31-1 / 2^{\circ}$, which is 0.6128 . Then, $y=10$ units $\times 0.6128=$ 6.128 units.

Sine Method Draw line x to any convenient length, preferably 10 units (Figure 4.31 b). Find the sine of angle θ, multiply by 10 , and draw arc with radius $R=10 \sin \theta$. Draw the other side of the angle tangent to the arc, as shown.

Example To set off $25-1 / 2^{\circ}$, find the natural sine of $25-1 / 2^{\circ}$, which is 0.4305 . Then $R=10$ units $\times 0.4305=4.305$ units.

Chord Method Draw line x of any convenient length, and draw an arc with any convenient radius R-say 10 units (Figure 4.31 c). Find the chordal length C using the formula $C=2 \sin \theta / 2$. Machinists' handbooks have chord tables. These tables are made using a radius of 1 unit, so it is easy to scale by multiplying the table values by the actual radius used.

Example Half of $43^{\circ} 20^{\prime}=21^{\circ} 40^{\prime}$. The sine of $21^{\circ} 40^{\prime}=$ 0.3692 . $\mathrm{C}=2 \times 0.3692=0.7384$ for a 1 unit radius. For a 10 unit radius, $\mathrm{C}=7.384$ units.

Example To set off $43^{\circ} 20^{\prime}$, the chordal length C for 1 unit radius, as given in a table of chords, equals 0.7384 . If $R=$ 10 units, then $C=7.384$ units.
4.31 Laying Out Angles

4.9 DRAWING AN EQUILATERAL TRIANGLE

Side $A B$ is given. With A and B as centers and $A B$ as radius, lightly construct arcs to intersect at C (Figure 4.32a). Draw lines $A C$ and $B C$ to complete the triangle.

Alternative Method Draw lines through points A and B, making angles of 60° with the given line and intersecting C (Figure 4.32b).

(1)

(a)
(2)
4.32 Drawing an Equilateral Triangle

(b)

4.10 POLYGONS

A polygon is any plane figure bounded by straight lines (Figure 4.33). If the polygon has equal angles and equal sides, it can be inscribed in or circumscribed around a circle and is called a regular polygon.

4.33 Regular Polygons

Polygon
Creates an equilateral closed polyline
You can specify the different parameters of the polygon including the number of sides. The difference between the inscribed and circumscribed options is shown.

POLYGON

Press F1 for more help

TIP

The AutoCAD Polygon command is used to draw regular polygons with any number of sides. The polygon can be based on the radius of an inscribed or circumscribed circle. The length of an edge of the polygon can also be used to define the size. Figure 4.34 shows the quick help for the Polygon command. The Rectangle command is another quick way to make a square in AutoCAD.
4.34 Polygons can be defined by the number of sides and whether they are inscribed in or circumscribed around a circle. (Autodesk screen shots reprinted courtesy of Autodesk, Inc.)

4.11 DRAWING A REGULAR PENTAGON

Dividers Method: Divide the circumference of the circumscribed circle into five equal parts with the dividers, and join the points with straight lines (Figure 4.35a).

Geometric Method:

Step 1. Bisect radius $O D$ at C (Figure 4.35b).
Step 2. Use C as the center and $C A$ as the radius to lightly draw $\operatorname{arc} A E$. With A as center and $A E$ as radius, draw arc $E B$ (Figure 4.35c).
Step 3. Draw line $A B$, then measure off distances $A B$ around the circumference of the circle. Draw the sides of the pentagon through these points (Figure 4.35d).

4.35 Drawing a Pentagon

4.12 DRAWING A HEXAGON

Each side of a hexagon is equal to the radius of the circumscribed circle (Figure 4.36a). To use a compass or dividers, use the radius of the circle to mark the six points of the hexagon around the circle. Connect the points with straight lines. Check your accuracy by making sure the opposite sides of the hexagon are parallel.

4.36 Drawing a Hexagon

Centerline Variation Draw vertical and horizontal centerlines (Figure 4.36b). With A and B as centers and radius equal to that of the circle, draw arcs to intersect the circle at C, D, E, and F, and complete the hexagon as shown.

Hexagons, especially when drawn to create bolt heads, are usually dimensioned by the distance across the flat sides (not across the corners). When creating a hexagon using CAD, it is typical to draw it as circumscribed about a circle, so that the circle diameter is defining the distance across the flat sides of the hexagon (see Figure 4.37).

4.37 Across Flats vs. Across Corners

4.38 Major and Minor Axes of Some Ellipses

4.13 ELLIPSES

An ellipse can be defined by its major and minor axis distances. The major axis is the longer axis of the ellipse; the minor axis is the shorter axis. Some ellipses are shown and labeled in Figure 4.38.

An ellipse is created by a point moving along a path where the sum of its distances from two points, each called a focus of an ellipse (foci is the plural form), is equal to the major diameter. As an aid in understanding the shape of an ellipse, imagine pinning the ends of a string in the locations of the foci, then sliding a pencil along inside the string, keeping it tightly stretched, as in Figure 4.39. You would not use this technique when sketching, but it serves as a good illustration of the definition of an ellipse.

Most CAD systems provide an Ellipse command that lets you enter the major and minor axis lengths, center, or the angle of rotation for a circle that is to appear elliptical.

SPOTLIGHT

Locating the Foci of an Ellipse

To locate the foci of an ellipse, draw arcs with their centers at the ends of the minor axis and their radii equal to half the major axis. The intersection of each pair of arcs is a focus of the ellipse.

SPOTLIGHT

The Perimeter of an Ellipse

The perimeter, P, of an ellipse is a set of points defined by their distance from the two foci. The sum of the distances from any point on the ellipse to the two foci must be equal to the length of the major diameter. The perimeter of an ellipse may be approximated in different ways. Many CAD packages use infinite series to most closely approximate the perimeter. The mathematical relationship of each point on the ellipse to the major and minor axes may be seen in the approximation of the perimeter at right:

$P=2 \pi \sqrt{\frac{x^{2}+y^{2}}{2}}$

4.39 Pencil and String Method. When an ellipse is created with the pencil-and-string method, the length of the string between the foci is equal to the length of the major axis of the ellipse. Any point that can be reached by a pencil inside the string when it is pulled taut meets the condition that its distances from the two foci sum to the length of the major diameter.

4.14 SPLINE CURVES

Splines are used to describe complex, or freeform, curves. Many surfaces cannot be easily defined using simple curves such as circles, arcs, or ellipses. For example, the flowing curves used in automobile design blend many different curves into a smooth surface. Creating lifelike shapes and aerodynamic forms may require spline curves (Figure 4.40).

The word spline originally described a flexible piece of plastic or rubber used to draw irregular curves between points. Mathematical methods generate the points on the curve for CAD applications.

One way to create an irregular curve is to draw curves between each set of points. The points and the tangencies at each point are used in a polynomial equation that determines the shape of the curve. This type of curve is useful in the design of a ship's hull or an aircraft wing. Because this kind of irregular curve passes through all the points used to define the curve, it is sometimes called an interpolated spline or a cubic spline. An example and its vertices are shown in Figure 4.41.

Other spline curves are approximated: they are defined by a set of vertices. The resulting curve does not pass through all the vertices. Instead, the vertices "pull" the curve in the direction of the vertex. Complex curves can be created with relatively few vertices using approximation methods. Figure 4.42 shows a 3D approximated spline curve and its vertices.

The mathematical definition for this type of spline curve uses the X - and Y - (and Z- for a 3D shape) coordinates and a parameter, generally referred to as u. A polynomial equation is used to generate functions in u for each point used to specify the curve. The resulting functions are then blended to generate a curve that is influenced by each point specified but not necessarily coincident with any of them.

4.41 Interpolated Spline. An interpolated spline curve passes through all the points used to define the curve.
4.40 Complex Curves. The organic shape of this flowerlike bowl was created using SolidWorks splines. Splines can be controlled in a variety of ways. The enlarged view shows the curvature combs used to view the effect of the controlling curves that make up the spline. Dragging a control handle changes the direction of the curve at the control vertex. (Courtesy of Robert Kincaid.)

4.42 Approximated Spline. Except for the beginning and endpoints, the fit points for the spline curve stored in the database do not always lie on the curve. They are used to derive the curve mathematically.

SPOTLIGHT

B-Splines

The Bezier curve was one of the first methods to use spline approximation to create flowing curves in CAD applications. The first and last vertices are on the curve, but the rest of the vertices contribute to a blended curve between them. The Bezier method uses a polynomial curve to approximate the shape of a polygon formed by the specified vertices. The order of the polynomial is 1 degree less than the number of vertices in the polygon (see Figure 4.43).

The Bezier method is named for Pierre Bezier, a pioneer in computer-generated surface modeling at Renault, the French automobile manufacturer. Bezier sought an easier way of controlling complex curves, such as those defined in automobile surfaces. His technique allowed designers to shape natural-looking curves more easily than they could by specifying points that had to lie on the resulting curve, yet the technique also provided control over the shape of the curve. Changing the slope of each line segment defined by a set of vertices adjusts the slope of the resulting curve (see Figure 4.44). One disadvantage of the Bezier formula is that the polynomial curve is defined by the combined influence of every vertex: a change to any vertex redraws the entire curve between the start point and endpoint.

A \boldsymbol{B}-spline approximation is a special case of the Bezier curve that is more commonly used in engineering to give the designer more control when editing the curve. A B-spline is a blended piecewise polynomial curve passing near a set of control points. The spline is referred to as piecewise because the blending functions used to combine the polynomial curves can vary over the different segments of the curve. Thus, when a control point changes, only the piece of the curve defined by the new point and the vertices near it change, not the whole curve (see Figure 4.45). B-splines may or may not pass through the first and last points in the vertex set. Another difference is that for the B-spline the order of the polynomial can be set independently of the number of vertices or control points defining the curve.

In addition to being able to locally modify the curve, many modelers allow sets of vertices to be weighted differently. The weighting, sometimes called tolerance, determines how closely the curve should fit the set of vertices. Curves can range from fitting all the points to being loosely controlled by the vertices. This type of curve is called a nonuniform rational B-spline, or NURBS curve. A rational curve (or surface) is one that has a weight associated with each control point.

4.43 Bezier Curve. A Bezier curve passes through the first and last vertex but uses the other vertices as control points to generate a blended curve.

4.44 Editing a Bezier Curve. Every vertex contributes to the shape of a Bezier curve. Changing the location of a single vertex redraws the entire curve.

4.45 B-Spline Approximation. The B-spline is constructed piecewise, so changing a vertex affects the shape of the curve near only that vertex and its neighbors.

Splines are drawn in CAD systems based on the mathematical relationships defining their geometry. Figure 4.46 shows an approximated spline drawn using AutoCAD. Figure 4.47 shows an interpolated spline drawn using SolidWorks. Both curves are drawn with a spline command, and both provide a dialog box that allows you to change properties defining the curve; however, the properties that are controlled vary by the type of spline being created by the software package. You should be familiar with the terms used by your modeling software for creating different types of spline curves.

4.47 Interpolated Spline. This SolidWorks spline passes through each control point. Software tools allow you to control spline properties. (Image courtesy of ©2016 Dassault Systèmes SolidWorks Corporation.)
4.46 Approximated Spline. This spline drawn in AutoCAD is pulled toward the defined control points. The Properties dialog box at the right allows you to change the weighting factor for each control point.
(Autodesk screen shots reprinted courtesy of Autodesk, Inc.)

4.15 GEOMETRIC RELATIONSHIPS

When you are sketching, you often imply a relationship, such as being parallel or perpendicular, by the appearance of the lines or through notes or dimensions. When you are creating a CAD model you use drawing aids to specify these relationships between geometric entities.

Two lines or planes are parallel when they are an equal distance apart at every point. Parallel entities never intersect, even if extended to infinity. Figure 4.48 shows an example of parallel lines.

Two lines or planes are perpendicular when they intersect at right angles (or when the intersection that would be formed if they were extended would be a right angle), as in Figure 4.49.

Two entities intersect if they have at least one point in common. Two straight lines intersect at only a single point. A circle and a straight line intersect at two points, as shown in Figure 4.50.

When two lines intersect, they define an angle as shown in Figure 4.51.
The term apparent intersection refers to lines that appear to intersect in a 2D view or on a computer monitor but actually do not touch, as shown in Figure 4.52. When you look at a wireframe view of a model, the 2D view may show lines crossing each other when, in fact, the lines do not intersect in 3D space. Changing the view of the model can help you determine whether an intersection is actual or apparent.

Two entities are tangent if they touch each other but do not intersect, even if extended to infinity, as shown in Figure 4.53. A line that is tangent to a circle will have only one point in common with the circle.

4.52 Apparent Intersection. From the shaded view of this model in (a), it is clear that the back lines do not intersect the half-circular shape. In the wireframe front view in (b), the lines appear to intersect.

4.48 The highlighted lines are parallel.

4.49 The highlighted lines are perpendicular.

4.50 The highlighted circle intersects the highlighted line at two different points.

4.51 An angle is defined by the space between two lines (such as those highlighted here) or planes that intersect.
4.53 Tangency. Lines that are tangent to an entity have one point in common but never intersect. 3D objects may be tangent at a single point or along a line.

When a line is tangent to a circle, a radial line from the center of the circle is perpendicular at the point of tangency, as shown in Figure 4.54. Knowing this can be useful in creating sketches and models.

The regular geometry of points, lines, circles, arcs, and ellipses is the foundation for many CAD drawings that are created from these types of entities alone. Figure 4.55 shows a 2D CAD drawing that uses only lines, circles, and arcs to create the shapes shown. Figure 4.56 shows a 3D wireframe model that is also made entirely of lines, circles, and arcs. Many complex-looking 2D and 3D images are made solely from combinations of these shapes. Recognizing these shapes and understanding the many ways you can specify them in the CAD environment are key modeling skills.

4.55 A 2D Drawing Made of Only Lines, Circles, and Arcs

4.56 A 3D Model Made of Only Lines, Circles, and Arcs

4.54 A radial line from the point where a line is tangent to a circle will always be perpendicular to that line.

4.16 SOLID PRIMITIVES

Many 3D objects can be visualized, sketched, and modeled in a CAD system by combining simple 3D shapes or primitives. They are the building blocks for many solid objects. You should become familiar with these common shapes and their geometry. The same primitives that are useful when sketching objects are also used to create 3D models of those objects.

A common set of primitive solids used to build more complex objects is shown in Figure 4.57. Which of these objects are polyhedra? Which are bounded by singlecurved surfaces? Which are bounded by double-curved surfaces? How many vertices do you see on the cone? How many on the wedge? How many edges do you see on the box? Familiarity with the appearance of these primitive shapes when shown in orthographic views can help you in interpreting drawings and in recognizing features that make up objects. Figure 4.58 shows the primitives in two orthographic views.

4.57 Solid Primitives. The most common solid primitives are (a) box, (b) sphere, (c) cylinder, (d) cone, (e) torus, (f) wedge, and (g) pyramid.

4.58 Match the top and front views shown here with the primitives shown in Figure 4.57.

Review the orthographic views and match each to the isometric of the same primitive shown in Figure 4.57.

Look around and identify some solid primitives that make up the shapes you see. The ability to identify the primitive shapes can help you model features of the objects using a CAD system (see Figure 4.59). Also, knowing how primitive shapes appear in orthographic views can help you sketch these features correctly and read drawings that others have created.

Making Complex Shapes with Boolean Operations

Boolean operations, common to most 3D modelers, allow you to join, subtract, and intersect solids. Boolean operations are named for the English mathematician George Boole, who developed them to describe how sets can be combined. Applied to solid modeling, Boolean operations describe how volumes can be combined to create new solids.

The three Boolean operations, defined in Table 4.1, are

- Union (join/add)
- Difference (subtract)
- Intersection

4.59 Complex Shapes. The 3D solid primitives in this illustration show basic shapes that make up a telephone handset. (Photo copyright Everything/Shutterstock.)

Table 4.1 Boolean Operations

Name	Definition
Union (join/add)	The volume in both sets is combined or added. Overlap is eliminated. Order does not matter: A union B is the same as B union A.
Difference (subtract)	The volume from one set is subtracted or eliminated from the volume in another set. The eliminated set is completely eliminated-even the portion that does not overlap the other volume. The order of the sets selected when using difference does matter (see Figure 4.60). A sub- tract B is not the same as B subtract A.
Intersection	The volume common to both sets is retained. Order does not matter: B intersect A is the same as A intersect B.

4.60 Order Matters in Subtraction. The models here illustrate how A - B differs significantly from $B-A$.

4.61 Boolean Operations. The three sets of models at left produce the results shown at right when the two solids are (a) unioned, (b) subtracted, and (c) intersected.

Figure 4.61 illustrates the result of the Boolean operations on three pairs of solid models. Look at some everyday objects around you and make a list of the primitive solid shapes and Boolean operations needed to make them.

Figure 4.62 shows a bookend and a list of the primitives available in the CAD system used to create it, along with the Boolean operations used to make the part.

4.62 Shapes in a Bookend. This diagram shows how basic shapes were combined to make a bookend. The box and cylinder at the top were unioned, then the resulting end piece and another box were unioned. To form the cutout in the end piece, another cylinder and box were unioned, then the resulting shape was subtracted from the end piece.

4.17 RECOGNIZING SYMMETRY

An object is symmetrical when it has the same exact shape on opposite sides of a dividing line (or plane) or about a center or axis. Recognizing the symmetry of objects can help you in your design work and when you are sketching or using CAD to represent an object. Figure 4.63 shows a shape that is symmetrical about several axes of symmetry (of which two are shown) as well as about the center point of the circle.

Mirrored shapes have symmetry where points on opposite sides of the dividing line (or mirror line) are the same distance away from the mirror line. For a 2D mirrored shape, the axis of symmetry is the mirror line. For a 3D mirrored shape, the symmetry is about a plane. Examples of 3D mirrored shapes are shown in Figure 4.64.

4.64 3D Mirrored Shapes. Each of these symmetrical shapes has two mirror lines, indicated by the thin axis lines. To create one of these parts, you could model one quarter of it, mirror it across one of the mirror lines, then mirror the resulting half across the perpendicular mirror line.

To simplify sketching, you need to show only half the object if it is symmetrical (Figure 4.65). A centerline line pattern provides a visual reference for the mirror line on the part.

Most CAD systems have a command available to mirror existing features to create new features. You can save a lot of modeling time by noticing the symmetry of the object and copying or mirroring the existing geometry to create new features.

Right- and Left-Hand Parts

Many parts function in pairs for the right and left sides of a device. A brake lever for the left side of a mountain bike is a mirror image of the brake lever for the right side of the bike (Figure 4.66). Using CAD, you can create the part for the left side by mirroring the entire part. On sketches you can indicate a note such as RIGHT-HAND PART IS SHOWN. LEFT-HAND PART IS OPPOSITE. Right-hand and left-hand are often abbreviated as RH and LH in drawing notes.

4.66 Right- and Left-hand Brake Levers

4.63 Symmetrical Part. Symmetrical parts can have symmetry about a line or point, or both.

4.65 Orthographic sketches of symmetrical parts may show only half of the object.

TIP
Using symmetry when you model can be important when the design requires it. When the design calls for symmetrical features to be the same, mirroring the feature ensures that the two resulting features will be the same.

Parting-Line Symmetry

Molded symmetrical parts are often made using a mold with two halves, one on each side of the axis of symmetry. The axis or line where two mold parts join is called a parting line. When items are removed from a mold, sometimes a small ridge of material is left on the object. See if you can notice a parting line on a molded object such as your toothbrush or a screwdriver handle such as the one shown in Figure 4.67. Does the parting line define a plane about which the object is symmetrical? Can you determine why that plane was chosen? Does it make it easier to remove the part from the mold? As you are developing your sketching and modeling skills think about the axis of symmetry for parts and how it could affect their manufacture.

4.67 Parting Line. The parting line on a molded part is often visible as a ridge of material.

4.69 Extruded Shape. Symmetry and several common geometric shapes were used to create this linear guide system. The rail in (a) was created by forcing aluminum through an opening with the shape of its cross section. The extruded length was then cut to the required length. The solid model in (c) was created by defining the 2D cross-sectional shape (b) and specifying a length for the extrusion. (Integrated configuration of Integral $V^{T M}$ linear guides courtesy of PBCLinear.)

4.18 EXTRUDED FORMS

Extrusion is the manufacturing process of forcing material through a shaped opening (Figure 4.69). Extrusion in CAD modeling creates a 3 D shape in a way similar to the extrusion manufacturing process. This modeling method is common even when the part will not be manufactured as an extrusion.

To create as shape by extrusion, sketch the 2D outline of the basic shape of the object (usually called a profile), and then specify the length for the extrusion. Most 3D CAD systems provide an Extrude command. Some CAD systems allow a taper (or draft) angle to be specified to narrow the shape over its length (Figure 4.70).

4.71 Swept Shapes. These shapes started as an octagon, a circle, and an ellipse, then were swept along a curved path.

4.70 These CAD models were formed by extruding a 2D outline. Two of the models were extruded with a taper.

Swept Shapes

A swept form is a special case of an extruded form. Sweeping describes extruding a shape along a curved path. To sweep a shape in CAD, create the 2D profile and a 2D or 3D curve to serve as the path. Some swept shapes are shown in Figure 4.71.

SPOTLIGHT

Sketching Extruded Shapes

Shapes that can be created using extrusion are often easily sketched as oblique projections. To sketch extruded shapes, show the shape (or profile) that will be extruded parallel to the front viewing plane in the sketch. Copy this same shape over and up in the sketch based on the angle and distance you want to use to represent the depth. Then, sketch in the lines for the receding edges.

4.72 Revolved Shapes. Each of the solids shown here was created by revolving a 2D shape around an axis.

4.19 REVOLVED FORMS

Revolution creates 3D forms from basic shapes by revolving a 2D profile around an axis to create a closed solid object. To create a revolved solid, create the 2D shape to be revolved, specify an axis about which to revolve it, then indicate the number of degrees of revolution. Figure 4.72 shows some shapes created by revolution.

Often, a 2D sketch is used to create 3D CAD models. Look at the examples shown in Figure 4.73 and match them to the 2D profile used to create the part. For each part, decide whether extrusion, revolution, or sweeping was used to create it.

(a)
(b)

4.73 What operation would you choose to transform the profiles shown in (a) into the models in (b)?

4.20 IRREGULAR SURFACES

Not every object can be modeled using the basic geometric shapes explored in this chapter. Irregular surfaces are those that cannot be unfolded or unrolled to lie in a flat plane. Solids that have irregular or warped surfaces cannot be created merely by extrusion or revolution. These irregular surfaces are created using surface modeling techniques. Spline curves are frequently the building blocks of the irregular surfaces found on car and snowmobile bodies, molded exterior parts, aircraft, and other (usually exterior) surfaces of common objects, such as an ergonomic mouse. An example of an irregular surface is shown in Figure 4.74. You will learn more about modeling irregular surfaces in Chapter 5.

4.74 Irregular Surfaces

4.21 USER COORDINATE SYSTEMS

Most CAD systems allow you to create your own coordinate systems to aid in creating drawing geometry. These are often termed user coordinate systems (in AutoCAD, for example) or local coordinate systems, in contrast with the default coordinate system (sometimes called the world coordinate system or absolute coordinate system) that is used to store the model in the drawing database. To use many CAD commands effectively, you must know how to orient a user coordinate system.

Most CAD systems create primitive shapes the same way each time with respect to the current X-, Y-, and Z-directions. For example the circular shape of the cylinder is always in the current $\mathrm{X}-\mathrm{Y}$ plane, as shown in Figure 4.75.

To create a cylinder oriented differently, create a user coordinate system in the desired orientation (Figure 4.76).

4.75 Cylinder Construction. The cylinder is created with the circular base on the $X-Y$ plane and the height in Z.

To create the hole perpendicular to the oblique surface shown in Figure 4.77, create a new local coordinate system aligned with the inclined surface. After you have specified the location of the hole using the more convenient local coordinate system, the CAD software translates the location of the hole to the world (default) coordinate system.

4.77 Drawing on an Inclined Plane. A new coordinate system is defined relative to the slanted surface to make it easy to create the hole.

Many CAD systems have a command to define the plane for a user coordinate system by specifying three points. This is often an easy way to orient a new coordinate system-especially when it needs to align with an oblique or inclined surface. Other solid modeling systems allow the user to select an existing part surface on which to draw the new shape. This is analogous to setting the $\mathrm{X}-\mathrm{Y}$ plane of the user coordinate system to coincide with the selected surface. With constraint-based modelers a "sketch plane" often is selected on which a basic shape is drawn that will be used to form a part feature. This defines a coordinate system for the sketch plane.

A user or local coordinate system is useful for creating geometry in a model. Changing the local coordinate system does not change the default coordinate system where the model data are stored.

4.22 TRANSFORMATIONS

A 3D CAD package uses the default Cartesian coordinate system to store information about the model. One way it may be stored is as a matrix (rows and columns of numbers) representing the vertices of the object. Once the object is defined, the software uses mathematical methods to transform the matrix (and the object) in various ways. There are two basic kinds of transformations: those that transform the model itself (called geometric transformations) and those that merely change the view of the model (called viewing transformations).

Geometric Transformations

The model stored in the computer is changed using three basic transformations (or changes): moving (sometimes called translation), rotating, and scaling. When you select a CAD command that uses one of these transformations, the CAD data stored in your model are converted mathematically to produce the result. Commands such as Move (or Translate), Rotate, and Scale transform the object on the coordinate system and change the coordinates stored in the 3D model database.

Figure 4.78 shows a part after translation. The model was moved over 2 units in the X -direction and 3 units in the Y-direction. The corner of the object is no longer located at the origin of the coordinate system.

Figure 4.79 illustrates the effect of rotation. The rotated object is situated at a different location in the coordinate system. Figure 4.80 shows the effect of scaling. The scaled object is larger dimensionally than the previous object.

4.78 Translation. This model has been moved 2 units in the X-direction and 3 units in the Y-direction.

4.79 Rotation. This model has been rotated in the $X-Y$ plane.

4.80 Scaling. This model has been scaled to 1.5 times its previous size.
4.81 Changing the View. Note that the location of the model relative to the coordinate axes does not change in any of the different views. Changing the view does not transform the model itself.

(a) Top view

(b) Right-side view

(e) Bottom isometric view

Viewing Transformations

A viewing transformation does not change the coordinate system or the location of the model on the coordinate system; it simply changes your view of the model. The model's vertices are stored in the computer at the same coordinate locations no matter the direction from which the model is viewed on the monitor (Figure 4.81).

Although the model's coordinates do not change when the view does, the software does mathematically transform the model database to produce the new appearance of the model on the screen. This viewing transformation is stored as a separate

part of the model file (or a separate file) and does not affect the coordinates of the stored model. Viewing transformations change the view on the screen but do not change the model relative to the coordinate system.

Common viewing transformations are illustrated in Figure 4.82. Panning moves the location of the view on the screen. If the monitor were a hole through which you were viewing a piece of paper, panning would be analogous to sliding the piece of paper to expose a different portion of it through the hole. Zooming enlarges or reduces the view of the objects and operates similar to a telephoto lens on a camera. A view rotation is actually a change of viewpoint; the object appears to be rotated, but it is your point of view that is changing. The object itself remains in the same location on the coordinate system.

Viewing controls transform only the viewing transformation file, changing just your view. Commands to scale the object on the coordinate system transform the object's coordinates in the database.

Examine the six models and their coordinates in Figure 4.83. Which are views that look different because of changes in viewing controls? Which look different because the objects were rotated, moved, or scaled on the coordinate system?

You will use the basic geometric shapes and concepts outlined in this chapter to build CAD models and create accurate freehand sketches. The ability to visualize geometric entities on the Cartesian coordinate system will help you manipulate the coordinate system when modeling in CAD.

TIP
The following are typical command names for view transformations:

- Pan
- Spin (or Rotate View)
- Zoom

4.83 Geometric or Viewing Transformation? Three of these models are the same, but the viewing location, zoom, or rotation has changed. Three have been transformed to different locations on the coordinate system.

THE GEOMETRY OF 3D MODELING: USE THE SYMMETRY

Strategix ID used magnets to create a clean, quiet, zero maintenance brake for the exercise bike it designed for Park City Entertainment. When copper rings on the bike's iron flywheel spin past four rare-earth magnets, they create current in circular flow (an eddy current) that sets up a magnetic field.

This opposing magnetic field dissipates power and slows the wheel. Moving the magnets onto and off the copper rings varies the amount of resistance delivered. When Marty Albini, Senior Mechanical Engineer, modeled the plastic magnet carrier for the brake, he started with the magnets and their behavior as the carrier moved them onto and off the copper rings (see Figure 4.84). "There is no one way to think about modeling a part," Albini said. "The key is to design for the use of the part and the process that will be used to manufacture it." To make the magnet carrier symmetrical, Albini started by modeling half of it.

The magnet carrier was designed as a part in the larger flywheel assembly, parts of which were already completed.

Each pair of magnets was attached to a backing bar that kept them a fixed distance apart. To begin, Albini started with the geometry he was sure of: the diameter of the magnets, the space between them, and the geometry of the conductor ring. He sketched an arc sized to form a pocket around one of the magnets so that its center point would be located on the centerline of the conductor ring (see Figure 4.85). He then sketched another similar arc but with its center point positioned to match the distance between the centers of the two magnets. He connected the two arcs with parallel lines to complete the sketch of the inside of the carrier. This outline was offset to the outside by the thickness of the wall of the holder. (Because this is an injection-molded plastic part, a uniform wall thickness was used throughout.) One final constraint was added to position

4.84 Flywheel Assembly. The magnet carrier for the brake was designed to move onto and off the conductor ring by sliding along an elliptical guide tube, pulled by a cable attached to the small tab in the middle of the carrier.
the carrier against the rail on the elliptical tube along which it would slide: the outside of the inner arc is tangent to this rail. With the sketch geometry fully defined, Albini extruded the sketch up to the top of the guide tube and down to the running clearance from the copper ring.

To add a lid to the holder, Albini used the SolidWorks Offset command to trace the outline of the holder. First, he clicked on the top of the holder to make its surface the active sketch plane. This is equivalent to changing the user coordinate system in other packages: it signals to SolidWorks that points picked from the screen lie on this plane. He then selected the
4.85 Extruding the Carrier. The magnet carrier was extruded up and down from the sketch, shown here as an outline in the middle of the extruded part. Notice that the sketch is tangent to the guide tube rail, and the centers of the arcs in the sketch are located on the centerline of the conductor ring.

top edges of the holder and used the Offset command with a 0 offset to "trace" the outline as a new sketch. To form the lid, he extruded the sketch up (in the positive Z-direction) the distance of the uniform wall thickness.

SolidWorks joined this lid to the magnet holder automatically because both features are in the same part and have surfaces that are coincident. This built-in operation is similar to a Boolean join in that the two shapes are combined to be one.

For the next feature, Albini created a "shelf" at the height of the rail on which the holder will slide. Using Offset again, he traced the outline of the holder on the sketch plane, then added parallel and perpendicular lines to sketch the outline of the bottom of the shelf. The outline was then extruded up by the wall thickness. The distance from the outside of the magnet holder to the edge of the shelf created a surface that would sit on the rail (see Figure 4.86).

Two walls were added by offsetting the edge of the shelf toward the magnet holder by the wall thickness, then offsetting the edge again by 0 . Lines were added to connect the endpoints into an enclosed shape to be extruded. (In SolidWorks, an extrusion can be specified to extend in one or both directions, and to extend to a vertex, a known distance, the next surface, or the last surface encountered.) For the walls, Albini extruded them to the top surface of the magnet holder "lid."

The connecting web between the magnet holders needed to match the shape of the elliptical tube in the flywheel assembly (see Figure 4.87). To make it, Albini sketched an ellipse on the newly created wall. An ellipse is a sketching primitive that can be specified by entering the length of the major and minor axes. Albini used the dimensions from the tube for the first ellipse sketch, then drew a second one with the same center point but with longer axes so that a gap equal to the wall thickness between them would be formed. The two ellipses were trimmed off at the bottom surface of the shelf and at the midpoint, and lines were drawn to make a closed outline. The finished sketch was extruded to the outside surface of the opposite wall.

More walls were sketched and extruded from the bottom surface of the shelf. Then, the wall over the connecting web was sketched and extruded down to the web.

4.86 Changing the Sketch Plane. The surface of the rail was used as the sketch plane for the "shelf" on which the magnet carrier will slide.

4.87 This view of the magnet carrier shows the elliptical shape of the connecting web and the rectangular shape of the tab. The parting line for the part, shown here as a dotted white line, is located at the edge of the fillet on the top of the magnet chambers.

The next step was to add the rounded edges for the top of the magnet holder. Albini invoked the Fillet command and selected to round all the edges of the top surface at once. As it created the fillet, SolidWorks maintained the relationship between the wall surfaces that intersected the top edge of the holder and extended them to the new location of the edge.

Next, Albini created a tab at the end of the part that would rest on the plastic collar in the assembly that went all the way around the magnet carrier. He first extruded a rectangular shape up from the top of the collar to form the "floor" of the tab. The walls of the tab required two additional extrusions.

The fillet at the top of the magnet holder provided the location for the parting line-the line where the two halves of the mold would come apart and release the part. Albini added a parting plane and used the built-in Draft option to add taper to the part so it would come out of the mold. After selecting all the surfaces below the parting plane, he specified a draft angle, and SolidWorks adjusted all the surfaces. This feature of SolidWorks makes it easy to add the draft angle after a part is finished. When draft is added, the geometry of the part becomes more complex and harder to work with. A cylinder with draft added becomes a truncated cone, for example, and the angles at which its edges intersect other edges vary along its length.

The next step was to add the bosses at the top of the magnet chambers that would support the bolts controlling the depth of the magnets. As it was a design goal to make the top of the chamber as stiff as possible to limit flex caused by the attraction of the magnets to the flywheel, the bosses were placed as far apart as possible, and ribs were added for rigidity. The bosses were sketched as circles on the top surface of the magnet holder with their centers concentric with the holes in the bar connecting the magnets below. Both bosses were extruded up in the same operation.

4.88 Bosses and Ribs. Sketched circles were extruded to form the bosses on the top of the magnet chamber. The dotted lines shown here on the top of the chamber pass through the center point of the bosses and were used to locate the center rib and radial ribs.

Ribs in SolidWorks are built-in features. To create a rib, you simply draw a line and specify a width, and SolidWorks creates the rib and ends it at the first surface it encounters. To create the center rib, Albini sketched a line on the plane at the top of the bosses and specified a width (ribs on a plastic part are usually two thirds of the thickness of the walls). The rib was formed down to the top surface of the holder lid. For the ribs around the bosses, Albini did as Obi Wan Kenobi might have advised: "Use the symmetry, Luke." He sketched the lines for ribs radially from the center points of the bosses (see Figure 4.88). To create the ribs, Albini created four of them on one boss, then mirrored them once to complete the set for one boss, then mirrored all the ribs from one boss to the other boss. Once all the ribs were formed, he cut the tops off the ribs and bosses to achieve the shape shown in Figure 4.89.

4.89 This view of the magnet carrier shows the symmetry of the ribs and the shape that resulted from "slicing off" the top of the bosses after the ribs were formed.

The result was a stiffer rib and a shape that could not be achieved with a single rib operation. To complete the part, circles were drawn concentric to the bosses and extruded to form holes that go through the part (see Figure 4.90). Draft was added to the ribs and walls to make the part release from the mold easily. Fillets were added to round all the edges, reducing stresses and eliminating hot spots in the mold. Then, the part was mirrored to create the other half. The center rib and tab for attaching the cable were added and more edges filleted. Draft was added to the inside of the holder, and the part was complete.

4.90 Circles concentric with the bosses were extruded to form the holes before the part was mirrored and remaining features added to finish the magnet carrier.

[^1]
CAD at WORK

DEFINING DRAWING GEOMETRY

2D CAD programs may allow drawing geometry to be controlled through constraints or parametric definitions. AutoCAD is one software platform that now provides this tool. In AutoCAD, constraints are associations that can be applied to 2 D geometry to restrict how the drawing behaves when a change is made.

Constraints are of two types:

- Geometric constraints create geometric relationships between drawing objects, such as requiring that a circle remain tangent to a line, even when its radius is updated.
- Dimensional constraints define distances, angles, and radii for drawing objects. These dimensional constraints typically can also be defined by equations, making them a powerful tool.

Usually, it is best to define the geometric constraints first and then apply dimensional constraints. This way the essential geometry of the shape is defined, and the dimensions can be changed as the size requirements vary.

Figure A shows an AutoCAD drawing that uses fixed and tangent constraints. The fixed constraint allows you to force a drawing object to stay in a permanent location on the coordinate system. The tangent constraint defines a relationship between two drawing objects, such as circles, arcs, and lines.

Understanding geometric relationships is a key skill for creating drawings that use parametric constraints. When geometric constraints are applied awkwardly or when the software does not provide a robust tool for constraining the shape, it can be difficult to get good results when updating drawings.

(A) AutoCAD provides tools for defining geometric and dimensional constraints to control drawing geometry. (Autodesk screen shots reprinted courtesy of Autodesk, Inc.)

KEY WORDS

Absolute Coordinate
System
Absolute Coordinates
Angle
Apparent Intersection
Bezier Curve
B-Spline
Cubic Spline
Cylindrical Coordinates
Default Coordinate
System
Diameter
Extrusion
Focus of an Ellipse
Freeform
Interpolated Spline
Local Coordinate System
Mirrored

NURBS Curve

CHAPTER SUMMARY

- Understanding how to produce accurate geometry is required for technical drawings whether constructed by hand or using a CAD system.
- All drawings are made up of points, lines, arcs, circles, and other basic elements in relation to each other. Whether you are drawing manually or using CAD, the techniques are based on the relationships between basic geometric elements.
- CAD systems often produce the same result as a complicated hand construction technique in a single step. A good understanding of drawing geometry helps you produce quick and accurate CAD drawings as well as manual drawings.

SKILLS SUMMARY

You should be able to convert and interpret different coordinate formats used to describe point locations and be familiar with some of the basic geometry useful in creating CAD drawings. You should also be able to identify and sketch primitive shapes joined by Boolean operations. In addition, you should be able to visualize and sketch revolved and extruded shapes.

WORKSHEETS

Use the following worksheet at the end of the book to practice skills for this chapter:

- Worksheet 18

REVIEW QUESTIONS

1. What tools are useful for drawing straight lines?
2. What tools are used for drawing arcs and circles?
3. How many ways can an arc be tangent to one line? To two lines? To a line and an arc? To two arcs? Draw examples of each.
4. Draw an approximate ellipse with a major diameter of 6 " and a minor diameter of $3^{\prime \prime}$. Draw a second approximate ellipse with a major diameter of 200 mm and a minor diameter of 100 mm .
5. Give one example of a construction technique for CAD that requires a good understanding of drawing geometry.
6. What is typical accuracy for manually created drawings?
7. What accuracies may be possible using a CAD system?
8. Sketch some objects that you use or would design that have right-hand and left-hand parts, such as a pair of in-line skates or side-mounted stereo computer speakers.
9. In solid modeling, simple 3D shapes are often used to create more complex objects. These are called primitives. Using an isometric grid, draw seven primitives.
10. What is a Boolean operation? Define two Boolean operations by sketching an example of each in isometric view.
11. Consider primitives and Boolean operations that could be used to create a "rough" model of each of the items shown below. Using the photos as underlays, sketch primitives that could be used to create items a-d.
a. Handlebar-mount gun rack

b. ACME Corporation reduction gear

c. Ashcroft Model 1305D deadweight pressure tester

d. Davis Instruments solar-powered digital thermometer

12. Use nothing but solid primitives to create a model of a steam locomotive. Sketch the shapes and note the Boolean operations that would be used to union, difference, or intersect them, or create the model using Boolean operations with your modeling software. Use at least one box, sphere, cylinder, cone, torus, wedge, and pyramid in your design.

CHAPTER EXERCISES

Exercise 4.1 Draw inclined line $A B 65 \mathrm{~mm}$ long. Bisect it with line $C D$.
Exercise 4.2 Draw any angle. Label its vertex C. Bisect the angle and transfer half the angle to place its vertex at arbitrary point D.
Exercise 4.3 Draw an inclined line $E F$. Use distance $G H$ equal to 42 mm . Draw a new line parallel to $E F$ and distance GH away.

Exercise 4.4 Draw line $J K 95 \mathrm{~mm}$ long. Draw a second line $L M 58 \mathrm{~mm}$ long. Divide $J K$ into five equal parts. Use a different method than you selected to divide line $J K$ to divide line $L M$ into three equal parts.

Exercise 4.5 Draw line $O P 92 \mathrm{~mm}$ long. Divide it into three proportional parts with the ratio 3:5:9.
Exercise 4.6 Draw a line 87 mm long. Divide it into parts proportional to the square of x, where $x=1,2,3$, and 4 .

Exercise 4.7 Draw a triangle with the sides $76 \mathrm{~mm}, 85 \mathrm{~mm}$, and 65 mm . Bisect the three interior angles. The bisectors should meet at a point. Draw a circle inscribed in the triangle, with the point where the bisectors meet as its center.

Exercise 4.8 Draw a right triangle that has a hypotenuse of 65 mm and one leg 40 mm . Draw a circle through the three vertices.

Exercise 4.9 Draw inclined line $Q R 84 \mathrm{~mm}$ long. Mark point P on the line 32 mm from Q. Draw a line perpendicular to $Q R$ at point P. Select any point $S 45.5 \mathrm{~mm}$ from line $Q R$. Draw a line perpendicular from S to line $Q R$.
Exercise 4.10 Draw two lines forming an angle of 35.5°.
Exercise 4.11 Draw two lines forming an angle of 33.16°.
Exercise 4.12 Draw an equilateral triangle with sides of 63.5 mm . Bisect the interior angles. Draw a circle inscribed in the triangle.

Exercise 4.13 Draw an inclined line TJ 55 mm long. Using line $T J$ as one of the sides, construct a square.

Exercise 4.14 Create a 54-mm-diameter circle. Inscribe a square in the circle, and circumscribe a square around the circle.

Exercise 4.15 Create a $65-\mathrm{mm}$-diameter circle. Find the vertices of an inscribed regular pentagon. Join these vertices to form a five-pointed star.

Exercise 4.16 Create a $65-\mathrm{mm}$-diameter circle. Inscribe a hexagon, and circumscribe a hexagon.

Exercise 4.17 Create a square with 63.5 mm sides. Inscribe an octagon.
Exercise 4.18 Draw a triangle with sides $50 \mathrm{~mm}, 38 \mathrm{~mm}$, and 73 mm . Copy the triangle to a new location and rotate it 180°.

Exercise 4.19 Make a rectangle 88 mm wide and 61 mm high. Scale copies of this rectangle, first to 70 mm wide and then to 58 mm wide.

Exercise 4.20 Draw three points spaced apart randomly. Create a circle through the three points.

Exercise 4.21 Draw a 58-mm-diameter circle. From any point S on the left side of the circle, draw a line tangent to the circle at point S. Create a point T, to the right of the circle and 50 mm from its center. Draw two tangents to the circle from point T.
Exercise 4.22 Open-Belt Tangents. Draw a horizontal centerline near the center of the drawing area. On this centerline, draw two circles spaced 54 mm apart, one with a diameter of 50 mm , the other with a diameter of 38 mm . Draw "open-belt"style tangents to the circles.

Exercise 4.23 Crossed-Belt Tangents. Use the same instructions as Exercise 4.22, but for "crossed-belt"-style tangents.

Crossed belt
Exercise 4.24 Draw a vertical line $V W$. Mark point $P 44$ mm to the right of line $V W$. Draw a $56-\mathrm{mm}$-diameter circle through point P and tangent to line $V W$.

Exercise 4.25 Draw a vertical line $X Y$. Mark point $P 44 \mathrm{~mm}$ to the right of line $X Y$. Mark point Q on line $X Y$ and 50 mm from P. Draw a circle through P and tangent to $X Y$ at point Q.
Exercise 4.26 Draw a 64-mm-diameter circle with center C. Create point P to the lower right and 60 mm from C. Draw a $25-\mathrm{mm}$-radius arc through P and tangent to the circle.
Exercise 4.27 Draw intersecting vertical and horizontal lines, each 65 mm long. Draw a $38-\mathrm{mm}$-radius arc tangent to the two lines.

Exercise 4.28 Draw a horizontal line. Create a point on the line. Through this point, draw a line upward to the right at 60° from horizontal. Draw $35-\mathrm{mm}$-radius arcs in an obtuse and an acute angle tangent to the two lines.
Exercise 4.29 Draw two intersecting lines to form a 60° angle. Create point P on one line a distance of 45 mm from
the intersection. Draw an arc tangent to both lines with one point of tangency at P.

Exercise 4.30 Draw a vertical line $A B$. In the lower right of the drawing, create a $42-\mathrm{mm}$-radius arc with its center 75 mm to the right of the line. Draw a $25-\mathrm{mm}$-radius arc tangent to the first arc and to line $A B$.

Exercise 4.31 With centers 86 mm apart, draw arcs of radii 44 mm and 24 mm . Draw a $32-\mathrm{mm}$-radius arc tangent to the two arcs.
Exercise 4.32 Draw a horizontal centerline near the center of the drawing area. On this centerline, draw two circles spaced 54 mm apart, one with a diameter of 50 mm , the other with a diameter of 38 mm . Draw a $50-\mathrm{mm}$-radius arc tangent to the circles and enclosing only the smaller one.
Exercise 4.33 Draw two parallel inclined lines 45 mm apart. Mark a point on each line. Connect the two points with an ogee curve tangent to the two parallel lines. (An ogee curve is a curve tangent to both lines.)
Exercise 4.34 Draw a $54-\mathrm{mm}$-radius arc that subtends an angle of 90°. Find the length of the arc.
Exercise 4.35 Draw a horizontal major axis 10 mm long and a minor axis 64 mm long to intersect near the center of the drawing space. Draw an ellipse using these axes.

Exercise 4.36 Create six equal rectangles and draw visible lines, as shown. Omit dimensions and instructional notes.

Exercise 4.37 Create six equal rectangles and draw lines as shown. In the first two spaces, draw examples of the standard line patterns used in technical drawings: visible, hidden, construction, centerlines, cutting-plane lines, and phantom. In the remaining spaces, locate centers C by diagonals, and then work constructions out from them. Omit the metric dimensions and instructional notes.

Exercise 4.38 Draw the figures as shown. Omit all dimensions.

Exercise 4.39 Draw the friction plate. Omit dimensions and notes.

Exercise 4.40 Draw the Geneva cam. Omit dimensions and notes.

Exercise 4.41 Draw accurately in pencil the shear plate. Give the length of $K A$. Omit the other dimensions and notes.

Exercise 4.42 Draw the ratchet wheel using pencil. Omit the dimensions and notes.

Exercise 4.43 Draw the latch plate using pencil. Omit the dimensions and notes.

Exercise 4.44 Draw the parabolic floodlight reflector shown.

Exercise 4.45 Identify the solid primitives and Boolean operations you could use to create the following objects.

Exercise 4.46 Use an isometric grid to help sketch the solids formed by revolving the following shapes about the axis shown. Coordinates are defined by the $\mathrm{X}-\mathrm{Y}-\mathrm{Z}$ icon, with positive X to the right, positive Y up, and positive Z out of the page.
a.

b.

c.

d.

e.

f.

Exercise 4.47 Use an isometric grid to help sketch the solids formed by extruding the following shapes along the axis specified. Coordinates are defined by the X-Y-Z icon, with positive X to the right, positive Y up, and positive Z out of the page.
a. Extrude 6 inches in the positive Z-direction.
b. Extrude 4 inches in the positive Z-direction.
c. Extrude 6 inches in the positive Z-direction.

d. Extrude 4 inches in the positive Z-direction.

Exercise 4.48 Starting at point A in each of the figures, list the coordinates for each point in order as relative coordinates from the previous point.

Exercise 4.49 Plot the coordinates in each of the lists on grid paper. Each point represents the endpoint of a line from the previous point, unless otherwise indicated. Relative coordinates are preceded by @.
a. X, Y
1.00, 1.00
4.00, 1.00 4.00, 2.00 6.00, 2.00 6.00, 1.00 8.00, 1.00 8.00, 4.00 5.00, 4.00 4.00, 5.00 1.00, 5.00 $1.00,1.00$
b. $0.00,0.00$
3.00, 0.00 4.00, 1.00 5.00, 0.00 6.00, 1.00 7.00, 0.00 8.00, 1.00 9.00, 0.00 10.00, 1.00 10.00, 3.00 9.00, 4.00
8.00, 3.00 7.00, 4.00
6.00, 3.00
5.00, 4.00
4.00, 3.00
c. 0,0 @2<0 @ $3<30$ @3<-30 @2<0 @4<90 0,4 @4<-90
d. 2,2
@-1<0 @3<90 @4<-30 @3<30 @1<0 @3.24<230 @4<180

Exercise 4.50 Using the information provided on the drawing, determine the coordinates you would use (absolute, relative, or polar) and the order in which you would enter them to create the figure.

Exercise 4.51 Using the information provided on the drawing, determine the coordinates you would use (absolute, relative, or polar) and the order in which you would enter them to create the figure.

Exercise 4.52 Using the information provided on the drawing, determine the coordinates you would use (absolute, relative, or polar) and the order in which you would enter them to create the figure.

INDEX

2D CAD models, 176-177

2D drawings. See also drawings. aligned sections, 302
aligning views, 299-300
break lines, 297-298
common manufactured features, 286, 304
complex cylindrical shapes, 288
conventional breaks, 298-299
conventional edges, 295
conventions, 287
cylinders, 289-290
cylinders when sliced, 289
ellipses, 290
enlarged details, 298
fillets, 293-294
hole features, in orthographic views, 303
intersections, 287, 290-291
left-hand parts, 301-302
necessary views, 296-297
partial views, 297-298
plotting curves by hand, 289
portfolio, 305-306
removed views, 287, 299-301
revolution conventions, 302
revolved sectional views, 302
right-hand parts, 301-302
rounds, 293-294
runouts, 294
tangencies, 287, 290-291
tangent surfaces, hiding, 292
2D models
constraint-based modeling, 178
paper drawings, 176
wireframe, 222
3D CAD modeling
assembly drawings, example, 654-656
case study: exercise bike brake, 157-159
combining shapes. See solid primitives.
coordinates, 126-130
creating auxiliary views, 397
projections and, 83
vertices, 127
virtual prototypes, 181
VR (virtual reality), 181
3D models
developing views from, 247-248
isometric projection, 83
physical models, 179-180
prototypes, 179-180
solid models, 190, 223
surface models, 184-189
types of, 182-183, 223
visualizing, 258
wireframe modeling, 182-183, 223
3D printing, as prototyping tool, 479
3D shapes, formulas for, A-6-A-7
8-pitch thread, 598
12-pitch thread, 598
16-pitch thread, 598
30° angles, estimating, 90
45° miter line, 238, 259

A

abbreviations, dimensioning, 537
Ability Fabricators, Inc., case study, 449-450
absolute coordinates, 128, 153
AC (adaptive control), 447
accessibility, checking fits, 433
accuracy
checking working drawings, 650
dimensional, 445-446
importance of, 70
isometric drawings, 94
surface models, 188
verifying, 455
working drawings, 650
Acme threads
detailed description, 607
fits, 605
forms, 596
notes, 605
specifications, A-29
actual local feature, 548
actual mating envelope, 549
actual minimal material envelope, 549
actual size, 548
adaptive control (AC), 447
adjacent views, 369
AI (artificial intelligence), 448
aircraft, assembling, 445-446
Albini, Marty, 157
align (coincident) constraint, 422
align offset, 422
aligned sections, 302, 343-345
Allen, Chris, 115
Allen key screw drivers, 619
allowance, 450, 548
alloys and their characteristics, 443
alternate views, 369
aluminum, as drawing medium, 49
American National screw threads, A-25-A-27

American National Standard cap screws, 618
American National Standard Drafting Manual - Y14, 16
American National Standard pipe thread, 610-611
American National Standard Unified screw threads, A-25-A-27
American National Standards Institute (ANSI) standards, 16
bolts, 614-615, A-30 to A-32
cap screws, 618, A-33 to A-34
clearance locational fits, A-10-A-11
cotter pins, A-44
dimensions, 520-521, 538
force and shrink fits, A-14-A-15
locational interference fits, A-13
machine screws, A-35-A-36
metric hole basis clearance fits,
A-17-A-18
metric hole basis transition and
interference fits, A-21-A-22
metric shaft basis clearance fits,
A-21-A-22
metric shaft basis transition and
interference fits, A-23-A-24
nuts, $614-615, \mathrm{~A}-30-\mathrm{A}-32$
rivets, 623-624
running and sliding fits, A-8-A-9
screw threads, 598-599, 604-605, A-25
sheets, 49
slotted and socket head cap screws, 618 ,
A-33-A-34
springs, 625
taper pins, A-43
tolerance, 560, 566
transition locational fits, A-12
twist drill sizes, A-28
washers, A-40 to A-41
wood screws, 621
Woodruff keys, A-38
American National thread, 594, 596
American National thread fits, 599
American Society for Engineering Education (ASEE), 16
analysis stage, design process, 5, 11-12
analytical models, 174-175
analyzing complex objects, 66-67
angle of thread, 595
angles
bisecting, 137
dihedral, 384
angles, continued
dimensioning, 517
implied right, 550
isometric drawings, 90
oblique projection, 101
sketching techniques, 70
tolerance, 575
views of, 253
angles, laying out
chord method, 138
sine method, 138
tangent method, 138
angular perspective. See two-point perspective.
angular tolerance, 558
angularity, specifying, 578-579
annotation scaling, 54
ANSI (American National Standards Institute), 16
ANSI B4.1 Preferred Limits for Fits for Cylindrical Parts, 560
ANSI B4.2 standard, 562
ANSI/ASME Y14.5 standard, 565-567
apparent intersection, 145
appearance, manufacturing materials, 445
approval block, 51
approximated curves, 142,144
Archimedes, history of the screw principle, 595
architects' scale, 39
arcs
bisecting manually, 134
defining, 132-133
delta angles, 133
dimensioning, 517
drawing tangents to, 135-136
formulas for, 132-133
included angles, 133
isometric, 95
sketching, 76-77, 95
arrowheads, dimensioning, 508
artificial intelligence (AI), 448
ASCII file formats, 456-457
ASEE (American Society for Engineering Education), 16
ASME Y14.41 Digital Product Definition Data Practices, 540
ASME Y14.43 standard, 569
ASME/ANSI Y14.6 Screw Thread Representation, 598, 604
ASME Y14.5 standard, 580
assemblies
constraint-based modeling, 217-218
DFA (design for assembly), 416
simulation, 429
sketching techniques, 103
assemblies, and design
assembling to a skeleton, 425-426
bottom-up design, 424, 449-450
constraint-based drawing elements, 428-429
global parameters, 427-428
layout drawings, 425
middle-out design, 424
overview, 424
seed parts, 428-429
top-down design, 424, 449-450
assemblies, checking fits
accessibility, 433
ergonomics, 433
interference, 432-433
assembly constraints, 421-422
assembly drawings
3D CAD, example, 654-656
assembly sections, 640, 645-646
check assemblies, 647
dimensions, 640
exploded views, 639-640
hidden lines, 640
installation assemblies, 647
outline assemblies, 647
overview, 639-640
poche, 645
section lining, 645
views, 639
working drawings, 638
assembly files, managing, 423
assembly mode, constraint-based modeling, 216
assembly models
constraint-based assemblies, 419
dynamic assemblies, 418, 421
parent parts, choosing, 420
static assemblies, 418
subassemblies, 418
assembly parts
fastener libraries, 431
standard parts, 430-431, 646
assembly sections, 346, 640, 645-646
associativity, constraint-based modeling, 218
AutoCAD
2D CAD models, 176-177
2D constraints, 178
annotation scaling, 54
constraint defaults, changing, 201
constraints, 136, 160
geometric construction geometry, 136
isometric drawings, 97
mass properties, 455
object snap, 129, 134, 137
perspective views, 111
scaling text, 54
automated assembly, 447
automated materials handling, 447
auxiliary plane, 364
auxiliary sections, 376
auxiliary views
adjacent views, 369
alternate views, 369
circles and ellipses, 372, 373
classification of, 366
creating with CAD, 373, 397
depth, 366-367
descriptive geometry, 378
developments and intersections, 385-395
front adjacent, 366
half, 375
height, 366-367
hidden lines, 373
partial, 375
plotting curves manually, 374-375
primary, 365
projecting, 370-371
purpose of, 364,378
reference planes, 369
reverse construction, 375
secondary, 368
showing true size, 364,372
sketching, 371
successive, 368
third, 368
top adjacent, 366
visualizing as revolved drawing, 366
width, 366-367
auxiliary views, developments
definition, 385
equator, 395
great circle, 394-395
hems and joints, 390
a hood and a flue, 392-393
laying out a surface, 387
meridian, 395
a plane and a cone, 391-392
a plane and a pyramid, 391
a plane and a sphere, 394-395
a plane and an oblique cylinder, 391
a plane and an oblique prism, 390
polyconic method for developing a sphere, 395
polycylindric method for developing a sphere, 395
transition pieces, 393-394
triangulation, 393
auxiliary views, intersections
a plane and a cylinder, 389
a plane and a prism, 387-388
principles of, 386
axes, positioning in isometric drawings, 85
axes method for sketching ellipses, 76
axis of revolution, 395
axis of screw, 595
axonometric projection, 32, 82-83
axonometric sketches, 81

B

BA (bend allowance), 536
ball tags, 642-643
balloon numbers, 642-643
Baron-Taltre, Jacob, 109
barreled parts, tolerance, 549
Barrett Technology, 219-221
BarrettHand, 219-221
base features, 205-206
base points, setting, 204-205
baseline dimensioning, 531, 559
basic angle tolerancing method, 575
basic dimension symbols, 567
basic hole system, 554-555, 563
basic shaft system, 554-555, 563
basic size, metric tolerances, 562
batter, 517
bend allowance, 450, 536
Bezier, Pierre, 143
Bezier curves, 143-144
bidirectional associativity, constraint-based modeling, 218
bilateral system of tolerances, 558
bilateral tolerance, 548
bill of material (BOM), 642, 644-645
bird's-eye view, 107
bisecting
angles, 137
arcs, 134
lines, 74, 134
blind holes, 213
blind rivets, 624
blocking, freehand, 73
blocking irregular objects, sketching techniques, 78
bolts and nuts
bolt lengths, 615
clearance holes, 613
definition, 613
drawing standard bolts, 615
finish, 614
hex head bolt grades, 617
lock nuts, 617
overview of bolts, 614
proportions, 614
SAE grades, 617
sketching, 616
specifications, A-30-A-32
thread lengths, 614
threads, 614
bolts and nuts, lock nuts and locking devices
cotter pins, 617, A-44
lock washers, 617, A-41
overview, 617
set screws, 617, 620
BOM (bill of material), 642, 644-645
Boole, George, 147
Boolean operations, 147-148
border blocking, 73
borders, 50
boss, 214, 286
bottom views, 234-235
bottom-up design, 424, 449-450
bowed parts, tolerance, 549
box construction
isometric drawings, 86
oblique drawings, 101
box primitive, 146
bracket method for dual dimensioning, 512
brake press, 438
break lines, 297-298
breaks, in 2D drawings, 298-299
BREP (boundary representation), 184
Briggs, Robert, 610
Briggs standard threads, 610-611
broken out sections, 338
B-splines, 143-144
built-in features, 213
bushing, 214, 286
buttress thread, 597

C

C (centralizing) thread fits, 605
cabinet projection, 99
CAD (computer-aided design). See also 3D
CAD modeling; AutoCAD.
advantages of, 47
creating auxiliary views, 373
database, 540
definition, 7
lettering examples, 40
model space, 48
paper space, 48
in product development, 6-7
CAE (computer-aided engineering), 7
calibration and inspection of tolerances, 555
CAM (computer-aided manufacturing),
7, 458
cap screws
American National Standard, 618
sketching, 616
specifications, A-30-A-32
CAPP (computer-aided process planning), 447
case studies
Ability Fabricators, Inc., 449-450
bicycle frame, 653
brake assembly, 465-467
coffee brewer, 418, 421
exercise bike brake, 157-159
floating bridge, 191-192
furniture design, 109
graphics and design process, Santa Cruz Bicycles, 8-15
heart model, 186
modeling sheet metal parts, 449-450
Oral-B toothbrush design, 112-115
patent application, 653
robot hand, 219-221
Santa Cruz Bicycles, 8-15
sheet metal modeling, 449-450
sketching techniques, 109, 112-115
Smart Tourniquet, 224-227
surface modeling, 224-227
symmetry, 157-159
vibration analysis, Quantel USA, 481-482
Zuma coffee brewer, 418, 421
case studies, Santa Cruz Bicycles analysis, 11-12
constraint-based modeling, 11
design intent, 11
design selection, 9-10, 12-13
development, 10-11
documentation, 14-15
ideation, 9
implementation, 3
mules, 10
parametric modeling, 11
problem identification, 8
prototypes, 10, 15
rapid prototyping, 15
refinement, 10-11
universal possibilities, 9
casting
design tips, 441-442
metal parts, 437
overview, 437
sand casting, 437, 448
cavalier projection, 99
cavities, 480
cellular manufacturing, 447-448
center of gravity, 453
centering words in title blocks, 45
centerline method
for four-center ellipses, 94
for sketching circles, 75
centerlines
dimensioning, 506
isometric drawings, 89
uses for, 244, 246
centralizing (C) thread fits, 605
centroid, 453
ceramic manufacturing materials, 443
cgs (centimeter-gram-second) system, 456
chained dimensions, 559
chamfers
definition, 214, 286, 524
dimensioning, 524
checking assemblies, 647
chord method for laying out angles, 138
chordal dimensions, 523
circled numbers in drawings, 642-643
circles
in auxiliary views, 373
Circle command, 136
circumference, 132
defining, 132-133
description, 132
diameter, 132
drawing tangents to, 135
formulas for, 132-133, A-2
great, 394-395
oblique, 98, 100
radius, 132
circles, sketching
centerline method, 75
enclosing square method, 75
freehand compass, 75
paper method, 75
in perspectives, 107
circularity (roundness), tolerances, 576
circumference, 132
Class 1 thread fits, 599
Class 2 thread fits, 599
Class 3 thread fits, 599
clearances
fits, 551, A-10, A-17
holes, 612-613
CLIP (continuous liquid interface production), 477
close running fits, A-8
close sliding fits, A-8

CMM (coordinate measuring machine), 16
CNC (computer numerical control), 447
coarse threads, 598
coffee brewer, case study, 418, 421
coincident (align) constraint, 422
combination screw drivers, 619
combination units, dimensioning, 513
combined tolerance symbols, 567
combining surfaces, 187
comma-delimited text format, 457
common manufactured features, 286, 304
company name, in title blocks, 51
complex cylindrical shapes, in 2D drawings, 288
complex surfaces, 187, 216
composite materials, 443
compression springs, 625
computer graphics, sketching techniques, 108
computer numerical control (CNC), 447
computer-aided design (CAD). See CAD.
computer-aided engineering (CAE), 7
computer-aided manufacturing (CAM), 7, 458
computer-aided process planning (CAPP), 447
computer-integrated manufacturing
AC (adaptive control), 447
AI (artificial intelligence), 448
automated assembly, 447
automated materials handling, 447
CAPP (computer-aided process planning), 447
cellular manufacturing, 447-448
CNC (computer numerical control), 447
expert systems, 448
FMS (flexible manufacturing systems), 448
GT (group technology), 447
industrial robots, 447
JIT (just-in-time) production, 447
concentric (insert) constraint, 422
concentricity tolerance, 579-580
concurrent design process, 6
concurrent engineering, 6 cones
definition, 65
developments, 391-392
dimensioning, 522
examples, 65
formulas for, A-6
primitive, 146
conic sections, 386
constraining
degrees of freedom, 570
sketches, 110
constraint-based modeling
2D models, 178
advantages of, 191
assemblies, 217-218, 419
case studies, 11, 157-159, 191-192,
219-221
cosmetic dimensions, 195
definition, 178
design intent, 197-198, 219-221
drawing elements, 428-429
driven dimensions, 194, 195
driving dimensions, 194
feature dimensions, 194
feature-based modeling, 196-197
formulas in dimensions, 194-195
global parameters, 195
parameters, 193
reference dimensions, 195
variables, 193
constraint-based modeling, features
adding, 206
base features, 205-206
built-in, 213
datums, 209-211
editing, 212
existing, specifying an edge for, 206
hole properties, 213
parent-child relationships, 207-209
placed, 213
standard, 213
constraint-based modeling, software for
applying constraints, 203
base points, setting, 204-205
constraint defaults, changing, 201
constraint relationships, table of, 202
design intent, 197-198
overconstrained sketches, 203
sketch constraints, 199-202
underconstrained sketches, 203
constraint-based modeling modes
assembly mode, 216
associativity, 218
bidirectional associativity, 218
drawing mode, 216
drawings from the model, 218-221
part mode, 216
subassemblies, 216
constraints
applying, 203
base points, setting, 204-205
AutoCAD, 160
defaults, changing, 201
design intent, 197-198
geometric, 193
overconstrained sketches, 203
sketch constraints, 110, 199-202
underconstrained sketches, 203
relationships, table of, 202
size, 193
SolidWorks, 202
types of, 193
construction drawings. See working drawings.
construction lines, 36, 66
continuous dimensioning, 559
continuous liquid interface production (CLIP), 477
contours, sketching techniques, 67
conventions for 2D drawings, 287
breaks, 298-299, 346
edges, 295
Coon's patch, 187
coordinate dimensions, 531, 533
coordinate measuring machine (CMM), 16
coordinate systems
for 3D CAD modeling, 126-130, 153
invention of, 127
left-hand rule, 126
local, 153
origins (point of intersection), 127
right-hand rule, 126
specifying location, 126, 129-130
user-created, 153-154
world, 153
X- and Y-axes, 127
coordinates
absolute, 128
cylindrical, 129
definition, 127
polar, 128
relative, 128
spherical, 129
cores, 480
corner views, 250. See also vertices.
corners, rounding on plastic parts, 436
cosmetic dimensions, 195
cost estimates, modeling, 461-462
cotter pins, 617, A-44
counterbored holes
definition, 213-214, 286
dimensioning, 521
countersunk holes, 213, 286, 521
creativity techniques
examining manufactured products, 16
following engineering design websites, 16
forming teams, 17
functional decomposition, 16
researching patent drawings, 17
reverse engineering existing products, 16
studying the natural world, 16
crest (of thread), 595
cross section. See section views.
cubes, formulas for, A-6
cubic splines, 142
curved surfaces, dimensioning, 523
curves
dimensioning, 522
freeform. See spline curves.
isometric drawings, 91
perspectives, 107
plotting by hand in 2D drawings, 289
cutaway views. See section views.
cutting planes
choosing, 331
description, 328
direction, visualizing, 334
half sections, 337
labeling, 332
cutting-plane lines
definition, 328
illustration, 329
line style, 334
cylinder primitive, 146
cylinders
in 2D drawings, 290
complex shapes in 2D drawings, 288
definition, 65
elements of, 65
examples, 65
formulas for, A-7
intersection with a plane, 389
isometric drawings, 95
size dimensioning, 518-519
sliced, 289
cylindrical coordinates, 129
cylindricity tolerance, 576, 577

D

da Vinci, Leonardo, 17, 595
DAI (Design Activity Identification), in title blocks, 51
databases, 7
datum
description, 209-211
identifying, 567
targets, 570
tolerance symbols, 567, A-45
datum features, 568-571
versus datum feature simulator, 569, 571
datum planes, 209-211
datum reference frame, 569
datum targets, 570
daylight polymer printing (DPP), 477
decimal dimension values, rounding, 512
decimal-inch values, dimensioning, 511
default coordinate system, 153
Define, Measure, Analyze, Improve, and Control (DMAIC), 7
degrees of freedom, constraining, 570
delta angles, 133
depth
auxiliary views, 366-367
thread, 595
in orthographic views, 235
depth dimensions, transferring, 238
derived surfaces, 187
Descartes, René, 127
descriptive geometry, 177, 378
descriptive models, 173
Design Activity Identification (DAI), in title blocks, 51
design for assembly (DFA), 416
design for manufacture (DFM), 416
Design for Six Sigma (DFSS), 7
design intent
capturing, 219-221
case study: Santa Cruz Bicycles, 11 constraint-based modeling, 197-198 planning for, 197-198
design process
case study: Santa Cruz bicycles, 8-15
concurrent, 6
critical design review, 12
definition, 5
design intent, 11
life cycle design, 6
in a portfolio, 18-19
stages of, 5-6, 8-15
designing quality into products, 7
detail drawings, 638, 640-641
detailed thread drawings, 600-601, 603
developable surfaces, 386
development of a surface, 385
developments
definition, 385
equator, 395
generatrix, 385
great circle, 394-395
hems and joints, 390
hood and flue, 392-393
hyperboloids, 385
intersections, 385-389
laying out a surface, 387
meridian, 395
plane and a cone, 391-392
plane and a pyramid, 391
plane and a sphere, 394-395
plane and an oblique cylinder, 391
plane and an oblique prism, 390
polyconic method, 395
polycylindric method, 395
surface types, 385
transition pieces, 393-394
triangulation, 393
deviation, metric tolerances, 562
DFA (design for assembly), 416
DFM (design for manufacture), 416
DFSS (Design for Six Sigma), 7
diameter, 132
difference (subtract) operation, 147-148
digital databases, 7
digital product definition, 581-584
digitizing, surface models, 187
dihedral angles, 384
dimension lines, 506, 508
dimension values, rules for, 512
dimensional accuracy, 445-446
dimensional constraints, 160
dimensioning
abbreviations, 537
angles, 517
arcs, 517
arrowheads, 508
BA (bend allowance), 536
centerlines, 506
chamfers, 524
choosing dimensions, 505
cones, 522
coordinate, 533
counterbores, 521
curved surfaces, 523
curves, 522
cylinders, 518-519
direction of values and notes, 510
dos and don'ts, 538-539
drawing scale, indicating, 509
extension lines, 506, 508
fillets, 517
finish marks, 526
general notes, 536
geometric breakdown, 506-507
holes, 519-520
IML (inside mold line), 536
isometric drawings, 86
keyways, 525
knurls, 525
lay symbols, 529
leaders, 509
legibility, 510, 514-515
lines used in, 506
local notes, 536-537
mold line, 536
neutral axis, 536
for numerically-controlled
machining, 534
OML (outside mold line), 536
overview, 504-506
placing dimensions, 505, 514-515
portfolio, 541-542
prisms, 518
pyramids, 522
roughness values, 528
rounded-end shapes, 523
rounds, 517
shaft centers, 525
sheet metal bends, 536
spotfaces, 521
standards, 538
stretchout, 536
supplementary notes, 536-537
surface roughness, 526-527
surface texture symbols, 527-528, 529
symbols, 513, 520-521
tabular, 534
tapers, 524
technique, 505
in terms of material removal, 515
threads, 524
tolerance, 505
triangular prisms, 522
units, 510-512
waviness values, 528
dimensioning units
bracket method, dual dimensioning, 512
combination units, 513
decimal-inch values, 511
dimension values, rules for, 512
dual dimensioning, 512
millimeter values, 510-511
overview, 510
position method, dual dimensioning, 512
rounding decimal dimension values, 512
unidirectional dimensioning, 512
dimensions
assembly drawings, 640
baseline, 531
chordal, 523
coordinate, 531
forging, 535
holes about a common center, 530-531
location, 506, 530-531
dimensions, continued
machine, 535
mating, 532
pattern, 535
size, 506-507
superfluous, 516
units of measure, 505
dimetric projection, 83
direct light processing (DLP), 477
digital light synthesis (DLS), 477
Dividers Method for drawing pentagons, 140
dividing lines equally or proportionally, 74
DLP (direct light processing), 477
DLS (digital light synthesis), 477
DMAIC (Define, Measure, Analyze, Improve, and Control), 7
documentation
design process, 5
purpose of technical drawing, 4
dos and don'ts, dimensioning, 538-539
double-curved surfaces, 64, 385
double-square screw drivers, 619
doughnut-shaped solids. See tori.
downloading, fasteners, 628
downstream applications. See modeling, downstream applications.
DPP (daylight polymer printing), 477
draft, plastic parts, 434, 436
drafting standards. See standards.
Drawing Exchange Format (DXF), 458
drawing media, 49
drawing mode, constraint-based modeling, 216
drawing number, in title blocks, 51
drawing pencils, 45-46
drawing scales, 37-39, 74
dividing lines equally or proportionally, 74
laying out a scale drawing, 38
drawings. See also 2D drawings; sketching.
ball tags, 642-643
balloon numbers, 642-643
BOM (bill of material), 642, 644-645
circled numbers, 642-643
detail, 640-641
identification, 642-643
of individual parts, 640-641
laying out, 246
multidetail, 643
part, 640-641
piece part, 640-641
reading, 255
sheet metal, 448, 483, 484
size, in title blocks, 51
standard bolts, 615
subassemblies, 642
title, in title blocks, 51
welding, 448, 484
drawings, assembly
3D CAD, example, 654-656
assembly sections, 640, 645-646
checking assemblies, 647
dimensions, 640
exploded views, 639-640
filling sectioned areas, 645
hatching sectioned areas, 645
hidden lines, 640
installation assemblies, 647
outline assemblies, 647
overview, 639-640
poche, 645
views, 639
working drawing assembly, 638, 646-647
drawings, lines. See also lines.
definition, 34
freehand technique, 34,36
types of, 34-35
drawings, scale. See also scale.
architect's scale, 39
definition, 37
indicating, 509
laying out a drawing, 38
specifying on a drawing, 37
driven dimensions, 194, 195
driving dimensions, 194
dual dimensioning, 512
Dview, AutoCAD command, 111
DXF (Drawing Exchange Format), 458
dynamic assemblies, 418, 421

E

ECOs (engineering change orders), 7
edges
in 2D drawings, 295
sketching techniques, 69
in views, 250-252
editing
features, 212
surface models, 188
EDM (enterprise data management), 7
egg-shaped solids. See ellipsoids.
8-pitch thread, 598
eight-point method for sketching ellipses, 92
ejector pins, plastic parts, 434-435
elasticity, 464
elements
cylinders, 65
standard layouts, 50-51
surface, 385
ellipses
in 2D drawings, 290
approximating perimeter of, 141
in auxiliary views, 373
double-curved surface, 385
drawing, 141
ellipsoids, 65, 385
formulas for, A-5
locating the foci of, 141
orienting in isometric drawings, 93
pencil and string method for
drawing, 141
sketching, 76
ellipsoids, 65,385
elliptical cylinder, formulas for, A-7
embryo heart model, 186
enclosing square method for sketching circles, 75
enclosing-rectangle method for four-center ellipses, 94
engineering change orders (ECOs), 7
engineering design Web sites, as design aids, 16
engineers' drawing scale, 37
enlarging shapes with a grid of squares, 78
enterprise data management (EDM), 7
equation solvers, 460
equator, 395
erasers, 46
ergonomics, 433, 470-471
essential shapes, 66
examining manufactured products, as design aid, 16
expert systems, 448
exploded views, assembly drawings, 639-640
export formats, 457-459
extension lines, 506, 508
extension springs, 625-626
external square thread, 608
external threads
defined, 595
dimensioning, 524
forms, 596-597
notes, 604-605
symbols, 606
extruded forms, 151
extruded surfaces, 184-185
extrusion, definition, 151

F

factor of safety, 451
fasteners
downloading, 628
overview, 594, 621
portfolio, 629-630
FDM (fused deposition modeling), 478
FEA (finite element analysis), 174, 190, 463-467
feather keys, 622
features. See also constraint-based modeling, features.
datum, 568-571
definition, 196
first created. See base feature.
size designation, 548
tolerance, 548
feature control frame, 566
feature dimensions, 194
feature of size, 548
feature-based modeling, 196-197. See also constraint-based modeling.
ferrous metals, manufacturing materials, 443
field rivets, 624
file formats, 456-457
fillets
in 2D drawings, 293-294
definition, 214, 286
description, 215
dimensioning, 517
example, 214-215, 286
shading, 293
filling sectioned areas, assembly drawings, 645
fillister head cap screws, 618
fine thread, 598
finish, bolts, 614
finish marks, dimensioning, 526
finishing operations, 448
finite element analysis (FEA), 174, 190, 463-467
finite elements, 463
first-angle projection, 240-241, 242-243
fit. See also tolerance.
allowance, 548-549, 551
assemblies. See assemblies, checking fits.
case study, 583
clearance locational, A-10-A-11
force and shrink, A-14-A-15
interference, 551, 554-555, A-13, A-19
line, 552
locational interference, A-13
mating parts, 551
metric hole basis clearance, A-17-A-18
metric hole basis transition and interference, A-19-A-20
metric shaft basis clearance, A-21-A-22
metric shaft basis transition and interference, A-23-A-24
metric system, 562-563
running and sliding, A-8-A-9
specifying, 552
study, 583
thread, 599-600
transition locational, 552, A-12
types and subtypes, 560
fit, threads
Acme thread notes, 605
American National thread fits, 599
C (centralizing), 605
definition and classes, 599
G (general purpose), 605
metric, 600
unified, 600
flag notes, 537
flanges, 214, 286
flat head cap screws, 618
flat keys, 622, A-37
flat patterns. See also developments. definition, 385
modeling sheet metal parts, 438-439
flat springs, 625-626
flatness, tolerance, 576
flip constraint, 422
floating bridge, case study, 191-192
FMS (flexible manufacturing systems), 448
foci of an ellipse, locating, 141
folding lines, 237, 364
fonts (lettering), 40
force fits, A14-A15
foreshortening, 83
forging, 448, 535
form tolerance
for single features, 576-577
tolerance symbols, 566-568
variations, 549
forming metal, principal methods, 448
formulas
circles and arcs, 132
in dimensions, 194-195
for geometric entities, A-2-A-7
operators, table of, 195
formulas for
3D shapes, A-6-A-7
circles, A-2
cones, A-6
cubes, A-6
cylinders, A-7
ellipses, A-5
elliptical cylinder, A-7
four-sided polygons, A-4
frustum of a cylinder, A-7
geometric entities, A-2-A-7
operators, table of, 195
parabolas, A-5
prisms, A-7
pyramids, A-6
rectangular prisms, A-6
regular polygons, A-5
triangles, A-4
45° miter line, 238, 259
four-center ellipses, sketching, 93-94
fps (foot-pound-second) system, 456
fractions, lettering, 43
freeform curves. See spline curves.
freehand compass, 75
freehand sketching
arcs, 77
blocking in borders, 71
construction lines, 36
ellipses, 76
finding the midpoint on a line, 71
lines, $34,36,71$
long freehand lines, 73
front adjacent, 366
front orientation, 240
front views, 234-236
frontal plane projection, 236
frustum, 65, A-7
full sections
definition, 328-329
visualizing, 330-331
functional decomposition, as design aid, 16
fundamental deviation, metric tolerances, 562-563
fused deposition modeling (FDM), 478

G

G (general purpose) notes for thread fits, 605
gage
line thickness, 34
thread pitch, 597
wire, standards, A-42
gage blocks, 555
gauge, sheet metal, 450
GDT (geometric dimensioning and
tolerancing), 565-582, A-45-A-48
general notes, dimensioning, 536
general purpose (G) notes for thread fits, 605
generatrix, 385
Genesis space capsule crash, 70
geometric breakdown, dimensioning, 506-507
geometric characteristic symbols, 566, A-45
geometric constraints, 136, 160, 193
geometric constructions
angle layout, 138
arcs, 133
arcs tangent to arcs, 136
bisecting angles, 137
bisecting lines and circular arcs, 134
circles, 132-133,
conic sections, 386
ellipses, 141, 143-47
equilateral triangles, 139
geometric entities, 130-133
hexagons, 139
parallel lines, 137
pentagons, 140
polygons, 139-140
spline curves, 142-144
tangents with arcs, 135-136
tangents with circles, 135
triangles, 138, 139
geometric continuity, 215
geometric dimensioning and tolerancing (GDT), 565-582, A-45-A-48
geometric entities, formulas for, A-2-A-7
geometric method for drawing pentagons, 140
geometric methods for plane figures, 78
geometric tolerances. See GDT (geometric
dimensioning and tolerancing).
geometric transformations, 154
gib head keys, 622, A-37
glass box, 236-238
global parameters
assemblies and design, 427-428
definition, 195
grade (slope), 517
graphics exchange format, 457-458
great circle, 394-395
grid paper
sketching auxiliary views, 371
grids, W-97-W-105. See also worksheets.
GT (group technology), 447
guidelines, for lettering, 40, 42

H

half auxiliary views, 375
half sections, 337
haptic devices, 181
hatching
description, 68
section lining, 335
sectioned areas, assembly drawings, 645
heart model, 186
height, in views, 235
height auxiliary views, 366-367
helical springs, 625-627
hems, 390, 439
hex head bolts
grades, 617
sketching, 616
hex screw drivers, 619
hexagon head cap screws, 618
hexagon socket cap screws, 618
hexagons
centerline variation, 140
drawing, 140
hexalobular screw drivers, 619
hidden lines
assembly drawings, 640
in auxiliary views, 373
correct and incorrect practices, 245
description, 243
intersecting, 243
isometric drawings, 89
techniques for drawing, 244
hole features, in orthographic views, 303
hole properties, 213
hole system
metric tolerances, 563
tolerances, 554-555
holes
blind, 213
counterbored, 213
countersunk, 213
locating about a common center, 530-531
size dimensioning, 519-520
spotface, 213
through, 213
hood and a flue, developing, 392-393
horizon line, 107
horizontal plane projection, 236
human factors, 433, 470-471
HumanCAD software models, 471
hyperboloids, double-curved surface, 385

I

ideation, design process, 5 case study: Santa Cruz Bicycles, 9
universal possibilities, 9
identifying drawings, 642-643
IGES (Initial Graphics Exchange Specification), 458
IML (inside mold line), dimensioning, 536
implementation, design process, 3, 5
implied right angles, tolerances, 550
inch-pound-second (ips) system, 456
inclined edges, in views, 252
inclined (italic) fonts, 40-42
inclined surfaces
isometric drawings, 89
in views, 250-251
included angles, 133
industrial robots, 447
injection-molding, plastic parts, 434, 436
insert (concentric) constraint, 422
installation assemblies, assembly drawings, 647
integrated modeling and design, 472-473
interference, checking fits, 432-433
Interference Detection command, 583
interference fit
locational, A-13
metric tolerances, 563
preferred metric hole basis, A-19-A-20
preferred metric shaft basis, A-23-A-24
tolerances, 551, 554-555
internal square thread, 608
internal thread, 595
internal thread symbols, 606
international drafting standards, 16
International Organization for Standards (ISO), 16
international tolerance grade (IT), 562
international tolerance grades, A-16
interpolated patches, 187
interpolated splines, 142, 144
interpolating polynomials, 467
interpreting
lines, 253
points, 253
views, 254
intersecting hidden lines, 243
intersection operation, 147-148
intersections
in 2D drawings, 287, 290-291
apparent intersection, 145
definition, 145, 385
plane and a cylinder, 389
plane and a prism, 387-388
principles of, 386
in sections, 346
investment casting, 480
ips (inch-pound-second) system, 456
irregular objects, isometric drawings, 91
irregular surfaces, 152
ISO (International Organization for Standards), 16
isometric axes, 84
isometric drawings
30° angles, estimating, 90
angles, 90
arcs, 95
with AutoCAD software, 97
box construction, 86
centerlines, 89
curves, 91
cylinders, 95
definition, 85
dimensioning, 86
ellipses, 92-95
hidden lines, 89
inclined surfaces, 89
irregular objects, 91
nonisometric lines, 88
normal surfaces, 86-87
from an object, 96
oblique surfaces, 89
offset location measurements, 88
overview, 85
positioning the axes, 85
of rectangular objects, 86
screw threads, 95
spheres, 96
isometric ellipses
accuracy, 94
centerline method for four-center ellipses, 94
eight-point method, 92
enclosing-rectangle method for fourcenter ellipses, 94
four-center ellipses, 93-94
with nonisometric lines, 92
for oblique drawings, 100
orienting ellipses in isometric drawings, 93
Orth method for four-center ellipses, 94
random-line method, 92
with templates, 95
true ellipses, 92
isometric projection, 83-84
isometric scales, 84
isometric views, 249
IT (international tolerance grade), 562
italic (inclined) fonts, 40-42

J

JIT (just-in-time) production, 447
Jo blocks, 555
join/add (union) operation, 147-148
joints
riveted, 623
sheet metal, 390

K

kerned pairs of letters, 44
keys
feather, 622
flat, 622, A-37
gib head, 622, A-37
plain taper, A-37
Pratt \& Whitney, 622, A-39
square, 622, A-37
Woodruff, 622, A-38
keyway/keyseat
definition, 214, 286
dimensioning, 525
example, 214, 286
K-factor, 450
knuckle thread, 597
knurls
definition, 214, 286
dimensioning, 525

L

labeling cutting planes, 332
laminated object manufacturing (LOM), 478
landscape orientation, 49
Larocque, Brandon, 219
lay symbols, 528-529
layers, 2D CAD models, 176
laying out a drawing, 38
layout drawings, assemblies, and
design, 425
layouts
borders, 50
definition, 52
letter sizes, 50
margins, 50
planning, 52-53
portfolio, 55-56
title block, 51
zone numbers, 50
zones, 50
lead (of a screw thread), 595
lead grades for drawing pencils, 46
leaders, dimensioning, 509
least material condition (LMC), tolerance symbols, 567
left- and right-hand parts, 149, 301-302
left-hand rule of coordinate systems, 126
left-hand screw threads, 598
left-handed lettering, 45
left-side views, 234-235
legibility, dimensioning, 510, 514-515
length, in views, 235
letter sizes, on page layout, 50
lettering
CAD examples, 40
centering words in the title block, 45
consistent letter height, 40
definition, 34
fractions, 43
guidelines, 40, 42
by hand, 40
inclined (italic), 41-42
kerned pairs of letters, 44
for left-handers, 45
with a pencil, 45
spacing, 40, 44
stability, 44
standards, 40
template for, 42
for titles, 45
vertical, 41
lettering (fonts), 40
library of standard punches, 439
life cycle design, 6
life-cycle analysis, 473
limit dimensions, 552
limit tolerances, 557
line fit, 552
line gage, 34
line patterns, 72
lines
bisecting manually, 74, 134
break, 297
center. See centerlines.
description, 130
dividing equally or proportionally, 74
drawing through points, 137
folding, 237
freehand construction, 36
hidden. See hidden lines.
interpreting, 253
parallel. See parallel lines.
perpendicular. See perpendicular lines.
point view, 380
precedence, 244
sketching techniques, 69
specifying, 130
styles, 34-35
thick, 34
thin, 34
true length, in CAD, 378-379
used in dimensioning, 506
lines, cutting-plane
definition, 328
illustration, 329
line style, 334
lines, section views
behind the cutting plane, 328
general rules for, 333
lines, sketching
blocking, freehand, 73
border blocking, 73
calculating proportions, 74
dividing lines, 74
equal parts, 74
finding a midpoint, 73
line patterns, 72
lineweights, 72
long freehand lines, 73
parallel, exaggerating closely spaced, 74
proportional parts, 74
straight lines, 73
techniques for, 72
lines of sight. See projectors.
lineweights, 72
LMC (least material condition), tolerance symbols, 567
local coordinate systems, 153
local notes, dimensioning, 536-537
location, specifying with coordinate systems, 126, 129-130
location dimensions, 506, 530-531
lock nuts and locking devices
cotter pins, 617, A-44
lock washers, 617, A-41
overview, 617
set screws, 617, 620
lock washers, 617, A-41
lofting, 185-186
LOM (laminated object manufacturing), 478
long freehand lines, 73
lower deviation, metric tolerances, 562
lugs, 214, 286
LUNAR, 112-115

M

machine dimensions, 535
machine pins, 622
machine screws, 613, A-35-A-36. See also cap screws.
machined parts, modeling, 437-438
machining parts, 448
machining processes, tolerances, 561
major diameter (of a screw thread), 595
manufacturing materials
alloys and their characteristics, 443
appearance, 445
ceramics, 443
composite materials, 443
ferrous metals, 443
materials assignment, 444
nanomaterials, 443
nonferrous metals, 443
plastics, 443
product failure, definition, 443
recycling, 445
service life, 445
manufacturing processes
assembling an aircraft, 445-446
brake press, 438
cast parts, 437, 441-442, 448
computer integrated. See computerintegrated manufacturing.
common production methods, 440
DFM (design for manufacture), 416
dimensional accuracy, 445-446
forging, 448
library of standard punches, 439
machined parts, modeling, 437-438
machining, 448
metal forming, principal methods, 448
molds, 437, 480
nanofabrication, 446
nanotechnology, 446
net-shape manufacturing, 446
permanent molds, 437
sand casting, 437, 448
shared manufacturing, 448
Standard for Aluminum Sand and Permanent Mold Castings, 437
surface finish, 445-446
welding drawings, 448, 484
manufacturing processes, plastic parts
constant wall thickness, 436
draft, 434
draft angle, 436
drawings, portfolio, 483
ejector pins, 434-435
injection-molding characteristics, 434
injection-molding guidelines, 436
parting line, 434-435
projections, 436
rounding corners, 436
taper, 434
manufacturing processes, sheet metal
bend allowance, 450
case study: Ability Fabricators, Inc., 449-450
gauge, 450
hems, 439
K-factor, 450
manufacturing processes, sheet metal, continued
modeling, 438-440, 449-450
sheet metal drawings, 448, 483, 484
thickness, 450
margins, 50
mass, 452
mass density, 453
mass properties, determining. See modeling, determining mass properties.
master, creating, 480
mate constraint, 422
mate offset, 422
material files, 444
material jetting, as prototyping tool, 479
materials assignment, 444
mating dimensions, 532
maximum material condition (MMC), tolerance symbols, 567, 574-575
McLean, Stan, 449-450
McNeil, Laine, 481-482
measurement systems, definition, 34
measuring, from a reference surface, 238
media for drawing, 49
meridian, 395
meshes, 185, 463-464
metal forming, principal methods, 448
metal parts, casting, 437
metric fastener standard, 594
metric fits, tolerance symbols, 563
metric screw threads, A-25-A-27
metric system
description, 36-37
dual dimensioning systems, 36-37
preferred scale ratios, 37
unit conversion, 37
metric thread, 596
metric thread fits, 600
metric tolerances, 562-563
middle-out design, 424
midpoint of a line, finding, 73
millimeter values, dimensioning, 510-511
milling machines, tolerances, 561
minor diameter (of a screw thread), 595
mirrored shapes, 149
MMC (maximum material condition), tolerance symbols, 567, 574-575
model space, 48
modeling
case study: brake assembly, 465-467
case study: robot hand, 219-221
case study: surface modeling, 224-227
factors of safety, 451
interpolating polynomials, 467
machined parts, 437-438
P-elements, interpolating, 467
sheet metal parts, 438-440, 449-450
sheet metal parts, case study, 449-450
springs, 627
threads, 610
visible embryo heart model,
example, 186
modeling, determining mass properties
accuracy, verifying, 455
calculations, 454-456
center of gravity, 453
centroid, 453
cgs (centimeter-gram-second)
system, 456
fps (foot-pound-second) system, 456
ips (inch-pound-second) system, 456
mass, 452
mass density, 453
moment of inertia, 453
overview, 451
portfolio, 485
pounds force, 456
pounds mass, 456
radii of gyration, 453
right cylinder, 452
SI (Système International), 456
surface area, 452
units and assumptions, 455-456
volume, 452
modeling, downstream applications
elasticity, 464
equation solvers, 460
FEA (finite element analysis), 463-467
finite elements, 463
going green, 473
human factors, 470-471
HumanCAD software models, 471
integrated modeling and design, 472-473
meshes, 463-464
ROBOGUIDE software, 469-470
simulation software, 468-470
spreadsheets, 460
virtual prototypes, 469
what-if analysis, 460
modeling, exporting data from the database
ASCII file formats, 456-457
comma-delimited text format, 457
common export formats, 457-459
for cost estimates, 461-462
DXF (Drawing Exchange Format), 458
file formats, 456-457
graphics exchange format, 457-458
IGES (Initial Graphics Exchange Specification), 458
native file formats, 456-457
native formats, 459
neutral formats, 459
overview, 456
space-delimited text format, 457
STEP (Standard for the Exchange of Product model data), 458
STL (STereo Lithography) format, 458
tab-delimited text format, 457
vector versus raster data, 459
modeling, for testing and refinement
case study: testing vibration analysis, 481-482
overview, 451
models
2D. See 2D models.

3D. See 3D models.
choosing a method, 222-223
creating, 256
definition, 172
machined parts, 437-438
materials assignment, 444
molded parts, 434-437
qualities of, 175
sheet metal parts, 438-440
models, types of
analytical, 174-175
comparison of characteristics, 222-223
descriptive, 173
FEA (finite element analysis) model, 174, 190
motion analysis, 175
scale, example, 173
solid, 190
surface, 184-189
constraint-based, 191-192
mold line, dimensioning, 536
molds
casting metal parts, 437
plastic parts, 434-436
cavities and cores, 480
permanent, 437
moment of inertia, 453
motion analysis, 175
Mountz, John, 19
mules, 10
multidetail drawings, 643
multiple threads, 599
multiview projections
definition, 32
description, 234
illustration, 82

N

name, in title bocks, 51
nanofabrication, 446
nanomaterials, 443
nanotechnology, 446
NASA space capsule crash, 70
native file formats, 456-457, 459
necessary views, 239-240, 296-297
neck, 214, 286
negative space, 67
Neptune Seatech Oy, 191-192
net-shape manufacturing, 446
neutral axis, dimensioning, 536
neutral formats, 459
nominal size
metric tolerances, 562
tolerances, 548
nonferrous metals, 443
nonisometric lines
isometric drawings, 88
isometric projection, 84
sketching ellipses, 92
normal edges, in views, 252
normal surfaces
isometric drawings, 86-87
in views, 250-251
notes, dimensioning
direction of values and notes, 510
general notes, 536
local notes, 536-537
supplementary notes, 536-537
thread, 604-605
tolerance, 556
numbering, working drawings, 650
numerically-controlled machining, dimensioning, 534
NURBS (nonuniform rational B-spline) curves, 143
NURBS-based surfaces, 185-186, 188
nuts. See bolts and nuts.

0

object snap feature
definition, 129
drawing parallel lines, 137
enabling, 134
locating drawing geometry, 134
oblique cylinder, development with a plane, 391
oblique drawings. See sketching techniques, oblique sketches.
oblique edges, in views, 252
oblique prism, development with a plane, 390
oblique projection
angles, 101
cabinet projection, 99
cavalier projection, 99
definition, 32
receding lines, 99
oblique projectors, 99
oblique surfaces
isometric drawings, 89
showing true size and shape, 382-383
in views, 250-251
Offset command, 137, 157-159
offset constraint, 422
offset measurements
creating irregular shapes, 78
isometric drawings, 88
offset sections, 342
OML (outside mold line), dimensioning, 536
one-point perspective, 105
one-view drawings, 79
opposite views, 239-240
orient (parallel) constraint, 422
origins (point of intersection), 127
Orr, Andrea, 115
Orth method for four-center ellipses, 94
orthographic, definition, 236
orthographic projection
axonometric projection, 82
centerlines, 244, 246
definition, 32, 236
hidden lines, 243, 244, 245
indicating symmetrical axes of objects. See centerlines.
laying out a drawing, 246
line precedence, 244
multiview projection, 82
versus photographs, 243
portfolio, 260-261
outline assemblies, assembly drawings, 647
outside mold line (OML), dimensioning, 536
overconstrained sketches, 203

P

paper
conservation, 648
for drawing and drafting, 49
landscape orientation, 49
for sketching, 49
standard sheet sizes, 49
paper drawings
2D models, 176-177
versus other models, 222-223
paper method for sketching circles, 75
paper space, 48
parabolas, formulas for, A-5
parallel (orient) constraint, 422
parallel edges, in views, 252
parallel lines
closely spaced, exaggerating, 74
definition, 145
drawing, 137
receding lines, 99
symbol for, 69
parallel perspective. See one-point perspective.
parallel projections, 32
parallelepiped, 65
parallelism tolerance, 578-579
parameters, 193
parametric modeling, 110 See also constraint-based modeling.
floating bridge example, 191-192
Santa Cruz Bicycles, 11
parent parts, choosing, 420
parent-child relationships, features, 207-209
part mode, constraint-based modeling, 216
partial auxiliary views, 375
partial sections, 341
partial views, 297-298, 345
parting line, plastic parts, 434-435
parting-line symmetry, 150
parts drawings, 640-641
parts list. See BOM (bill of material).
patches
Coon's, 187
interpolated, 187
surface, 187
patent applications, working drawings, 652
patent drawings, as design aids, 17
pattern dimensions, 535
PDM (product data management), 7
P-elements, interpolating, 467
pencil and string method for drawing ellipses, 141
pencils, for drawing. See drawing pencils.
pentagons, drawing, 140
Pentecost, Jeffrey, 186
perfect form envelope, 549
permanent molds, 437
perpendicular constraint, 422
perpendicular lines
definition, 145
symbol for, 69
perpendicularity tolerance, 578-579
perspective projections, 32
perspective sketches, 81
perspectives
angular. See two-point perspective.
in AutoCAD, 111
bird's-eye view, 107
circles, 107
curves, 107
horizon line, 107
one-point, 105
parallel. See one-point perspective.
pictorial sketching, 80-82
three-point, 105, 106
two-point, 105, 106
types of, 104-105. See also specific types.
vanishing point, 104
worm's-eye view, 107
phantom lines, 612
Phillips, Henry F., 619
Phillips screw drivers, 619
photographs versus orthographic projections, 243
physical datum feature simulators, 569
physical models
description, 179-180
versus other models, 222-223
pictorial sketching, 80-82
piece part drawings, 640-641
piecewise splines, 143
piercing points, 32
pipe threads, 610-611
pitch diameter, 595
placed features, 213
placing, section views, 331-332
placing dimensions, 505, 514-515
plain taper keys, A-37
plan. See top view.
planar surfaces, 64
plane figures, geometric methods for sketching, 78
plane of projection, 32, 236
planes
angles between. See dihedral angles.
auxiliary, 364
cutting. See cutting planes.
defining, 131
definition, 131, 385
edge view, 381
intersecting with a prism, 387-388
intersection with a cylinder, 389
planes, developments with a cone, 391-392
an oblique cylinder, 391
an oblique prism, 390
a pyramid, 391
a sphere, 394-395
plastic parts, manufacturing. See manufacturing processes, plastic parts.
plastics, manufacturing materials, 443
plotting curves manually, in auxiliary views, 374-375
plus-or-minus tolerances, 558
poche, 645
points
description, 130
drawing arcs through, 135
drawing lines through, 137
interpreting, 253
sketching techniques, 69
specifying, 130
polar coordinates, 128
polyconic method for developing a sphere, 395
polycylindric method for developing a sphere, 395
polyester film, as drawing medium, 49
Polygon command, 139
polygons
drawing, 139
formulas for, A-3-A-5
rectangle method for sketching, 78
sketching techniques, 78
triangle method for sketching, 78
polyhedra, 64
pop rivets, 624
portfolios (examples)
2D drawings, 305-306
determining mass properties, 485
dimensioning, 541-542
fasteners, 629-630
layouts, 55-56
molded plastic parts drawings, 483
orthographic projection, 260-261
section views, 348-349
sheet metal drawings, 483, 484
showing your design process, 18-19
threads, drawing, 629
tolerances, 584-586
welded assembly drawings, 484
welding drawings, 484
position, tolerance symbols, 566-568
position method for dual dimensioning, 512
positional tolerance, 572-574
pounds force, 456
pounds mass, 456
pozidriv screw drivers, 619
Pratt \& Whitney keys, 622, A-39
preferred fits, metric tolerances, 564-565, A-17-A-24
preferred sizes, metric tolerances, 564
primary auxiliary view, 365
primary datum, 569
primary revolution, 396
primitives. See solid primitives.
principal dimensions, 235
principal views, 234-235
prisms
definition and examples, 65
formulas for, A-7
intersecting with a plane, 387-388
size dimensioning, 518
triangular, dimensioning, 522
truncated, 65
types of, 65
problem identification, design process case study: Santa Cruz Bicycles, 8 definition, 5
product data management (PDM), 7
product definition, 18
product failure, 443
product life cycle, 6
profile plane projection, 236
profile tolerance, 576-577
projecting, 370-371
projection methods
first angle, 240-241, 242-243
frontal plane, 236
horizontal plane, 236
orthographic, 236
plane of projection, 236
profile plane, 236
projecting at right angles. See orthographic projection.
third angle, 240-242
projection symbols, 241
projections
cabinet, 99
cavalier, 99
definition, 233
length of receding lines, 99
multiview, 234
piercing points, 32
plane of projection, 32
plastic parts, 436
principal dimensions, 235
principal views, 234-235
projectors, 32
station point, 32
of a third view, 256-258
types of, 32-33
views of objects, 234
projectors
definition, 32
oblique, 99
perspective, 104
proportion
bolts, 614
definition, 77
sketching techniques, 77
prototype drawings. See seed parts.
prototypes
3D models, 179-180
case study: Santa Cruz Bicycles, 10, 15
virtual prototypes, 469
prototypes, in the design process
case study: Santa Cruz bicycles, 10, 15
definition, 10
rapid prototyping, 15
prototyping
overview, 474
translating the model, 474-476
rapid prototypes, 476-479
virtual prototypes, 469
prototyping, RP (rapid prototyping)
3D printing, 479
case study, 15
CLIP (continuous liquid interface production), 477
DLP (direct light processing), 477
DLS (digital light synthesis), 477
DPP (daylight polymer printing), 477
DMP (direct metal printing), 477
DMLS (direct metal laser sintering), 477
EBM (electron beam melting), 477
FDM (fused deposition modeling), 478
investment casting, 480
LOM (laminated object manufacturing), 478
master, creating, 480
material jetting, 479
overview, 474
rapid tooling, 480
SGC (solid ground curing), 476-477
SLA (stereolithography apparatus), 476
SLS (selective laser sintering), 477-478
systems for, 476-479
TSF (topographic shell fabrication), 478
pyramid primitive, 146
pyramids
definition and examples, 65
development with a plane, 391
dimensioning, 522
formulas for, A-6

Q

QC (quality certify)
calibration and inspection, tolerance, 555
gage blocks, 555
Jo blocks, 555
tolerances, 548
QFD (Quality Function Deployment), 7
quality, 7
Quality Function Deployment (QFD), 7
Quantel USA, case study, 481-482

R

radial leader line, 519-520
radii of gyration, 453
radius, 132
arcs, 517
dimension symbols, 513
isometric spheres, 96
radius method for sketching arcs, 76
random-line method for sketching
ellipses, 92
rapid prototyping. See prototyping, RP (rapid prototyping).
rapid tooling, 480
raster versus vector data, 459
rational curves, 143
reading drawings, 255
rear views, 234-235
receding lines
angle, 98
length, 99
oblique projection, 99
sketching techniques, 103
recess for a bolt head. See counterbore.
Rectangle command, 139
rectangle method for sketching ellipses, 76
rectangular objects, isometric drawings, 86
rectangular prisms, formulas for, A-6
recycling, manufacturing materials, 445
reference dimensions, 195, 559
reference planes, 369
reference surface, measuring from, 238
reference to a datum, tolerance symbols, 567
refinement
case study: Santa Cruz Bicycles, 10-11
definition, 5
and modeling, 172
regular polygons, formulas for, A-5
regular polyhedra, 64
regular views, 239-240
relative coordinates, 128
removed sections, section views, 340-342
removed views, 2D drawings, 287, 299-301
reverse construction, 375
reverse engineering
existing products, 16
surface models, 187
revision blocks, 51
revision numbers, working drawings, 650-651
revision tracking, in title blocks, 51
revolution conventions, 2D drawings, 302
revolutions
axis of, 395
creating revolved drawings, 395
definition, 395
primary, 396
successive, 396
true length of a line, 396
revolved sections
2D drawings, 302
section views, 339-340
revolved shapes, 152
revolved surfaces, 184-185
revolving objects, to create views, 235
ribs in section, 343
right- and left-hand parts, 149, 301-302
right angles, implied, 550
right cylinder, determining mass
properties, 452
right-hand parts, 2D drawings, 301-302
right-hand rule of coordinate systems, 126
right-hand screw threads, 598
right-side views, 234-235
rivet symbols, 624
riveted joints, 623
rivets, 623-624
ROBOGUIDE software, 469-470
robot hand, case study, 219-221
robotic assembly, 447
robots, industrial, 447
Roman fonts, 40
root (of a screw thread), 595
rotation arrows, 340
rotation transformation, 154
rough sketches, 110
roughness values, dimensioning, 528-529
round head cap screws, 618
rounded-end shapes, dimensioning, 523
rounding
corners on plastic parts, 436
decimal dimension values, 512
roundness (circularity), tolerances, 576
rounds
2D drawings, 293-294
definition, 214, 286
dimensioning, 517
example, 214-215, 286
shading, 293
RP (rapid prototyping). See prototyping, RP. ruled surfaces, 385
running fits, A-8-A9
runouts, 294. See also fillets.
Ryschkewitsch, Michael, 70

S

SAE (Society of Automotive Engineers), 16
SAE grades for bolts, 617
Salazar, Jeff, 112
sand casting, 437, 448
sans serif fonts, 40
Santa Cruz Bicycles. See case studies, Santa Cruz bicycles.
scale
definition, 34
of drawings, indicating, 509
measuring instrument. See scales.
in title blocks, 51
scale models, example, 173
scales, 37-39
scaling text, 54
scaling transformations, 154
schematic thread drawings, 600, 602-603, 611
screw drivers, types of, 619
screw principle, history of the, 595
screw threads. See also threads.
8-pitch, 598
12-pitch, 598
16-pitch, 598
American National, A-25-A-27
definition, 595
isometric drawings, 95
metric, A-25-A-27
square, A-37
screw threads, Acme
detailed description, 607
forms, 596
notes, 605
specifications, A-29
screws
cap, 618
American National Standard, 618
fillister head screws, 618
flat head screws, 618
heads, 618-619, A-33-A-34
hexagon head screws, 618
hexagon socket screws, 618
machine, 619, A-35-A-36
miscellaneous, 621
round head screws, 618
set, 620
sketching, 475
slotted head screws, 618
thread. See threads.
wood, 621
secondary auxiliary view, 368
secondary datum, 569
section lining. See also section views.
in CAD, 337
correct and incorrect techniques, 335
definition and illustration, 328
hatching, 335
large areas, 336
symbols, 336
section views
aligned sections, 343-345
assembly sections, 346
auxiliary, 376
broken out sections, 338
CAD techniques for, 347
conventional breaks, 346
cutting-plane lines, 328-329, 334
cutting planes, $328,334,332$
full sections, 328-329, 330
half sections, 337
intersections in sections, 346
lines behind the cutting plane, 328
line rules, 333
offset sections, 342
partial sections, 341
partial views, 345
placing, 331-332
portfolio, 348-349
purposes of, 328
removed sections, 340-342
revolved sections, 339-340
ribs in section, 343
rotation arrows, 340
section lining, 328
shortening objects. See conventional breaks.
of single parts, 328
security T screw drivers, 619
seed parts, 428-429
selective assembly, 552
selective laser sintering (SLS), 477-478
Sellers, William, 594
series of thread, 595, 598
serif fonts, 40
service life, manufacturing materials, 445
set screws
definition, 613
as locking device, 617
standard, 620
SGC (solid ground curing), 476-477
shading, sketching techniques, 68, 108
shaft centers, dimensioning, 525
shafts
basic shaft system, 554-555, 563
shaft basis clearance fits, A-21-A-22
shaft basis transition and interference fits, A-23-A-24
metric tolerances, 563
tolerancing, 554
shared manufacturing, 448
sharp-V thread, 596
sheet metal, manufacturing. See manufactur-
ing processes, sheet metal.
sheet metal bends, dimensioning
BA (bend allowance), 536
general notes, 536
IML (inside mold line), 536
local notes, 536-537
mold line, 536
neutral axis, 536
OML (outside mold line), 536
sheet metal bends, 536
stretchout, 536
supplementary notes, 536-537
sheet metal parts, modeling, 438-440,

$$
449-450
$$

sheet number, in title blocks, 51
sheet revision block, 51
sheet size, in title blocks, 51
shop rivets, 624
shortening identical features, 612
showing an inclined elliptical surface in true size, 372
showing true size, 364
shrink fits, A14-A15
SI (Système International), 456
side of a screw thread, 595
side views, 234-236
simplified thread drawings, 600, 602-603, 611
simplifying, working drawings, 651
simulation software, 468-470
sine method for laying out angles, 138
single thread, 599
single-curved surfaces, 64,385
single-limit dimensioning, 557
single-view drawings. See one-view drawings.
Six Sigma, 7
16-pitch thread, 598
size constraints, 193
size designation for tolerance, 548
size dimensioning
cylinders, 518-519
holes, 519-520
prisms, 518
skeleton
assembling to, 425-426
modeling, 210-211
sketch constraints, 199-202
sketching. See also drawings. assemblies, 103
auxiliary views, 371
bolts and nuts, 616
cap screws, 616
circles, arcs, ellipses, 75-77
hex head bolts, 616
nuts, 616
pictorials, 80-82
perspectives, 104
plane figures, 78
straight lines, 73
thread, 603
sketching techniques. See also isometric drawings, sketching.
accuracy, importance of, 70
analyzing complex objects, 66-67
angles, 70
arcs, 76
assemblies, 103
blocking irregular objects, 78
box construction, 86, 101
case study: Oral-B toothbrush, 112-115
circles, 75
with computer graphics, 108
constraining sketches, 110
construction lines, 66
contours, 67
edges, 69
ellipses, 76
enlarging shapes with a grid of squares, 78
essential shapes, 66
extruded shapes, 151
freehand, 71, 109
freehand compass, 75
geometric methods for plane figures, 78
hatching, 68
important skills, 70
irregular shapes using offset measurements, 78
lines, 69. See also lines, sketching.
maintaining proportions, 77
negative space, 67
one-view drawings, 79
parametric modeling, 110
points, 69
polygons, 78
receding lines, 103
rectangle method for sketching polygons, 78
rough sketches, 110
shading, 68, 108
stippling, 68
triangle method for sketching polygons, 78
vanishing point, 103
vertices, 69
viewpoint, 68
sketching techniques, oblique sketches
angles, 101
angle of receding lines, 98
appearance of, 98
box construction, 101
choice of position, 100
choosing the front surface, 98
definition, 81, 98
ellipses for, 100
length of receding lines, 99
overview, 98
pictorial sketches, 80-82
projection methods, 82
skeleton construction, 102
sketching techniques, perspectives
angular. See two-point perspective.
in AutoCAD, 111
bird's-eye view, 107
circles, 107
curves, 107
horizon line, 107
one-point, 105
parallel. See one-point perspective.
pictorial sketching, 80-82
three-point, 105, 106
two-point, 105, 106
types of, 104-105. See also specific types.
worm's-eye view, 107
sketching techniques, pictorial sketching.
See also sketching techniques, oblique
sketches.
axonometric sketches, 81
definition, 80
overview, 80-82
perspective sketches, 81
sketching techniques, projection methods
for 3D CAD models, 83
axonometric, 82-83
dimetric, 83
foreshortening, 83
isometric, 83
multiview, 82
orthographic, 82
overview, 82
trimetric, 83
types of, 82. See also specific types.
SLA (stereolithography apparatus), 476
sliding fits, A-8-A-9
slope (grade), 517
slotted head screws, 618, A-33-A-34
slotted screw drivers, 619
SLS (selective laser sintering), 477-478
small rivets, 624
Smart Tourniquet, case study, 224-227
Society of Automotive Engineers (SAE), 16
socket head screws, A-33-A-34
solid ground curing (SGC), 476-477
solid models
description, 190
versus other models, 223
solid objects, 64-65. See also specific types.
definition, 64
double curved surfaces, 64
planar surfaces, 64
single curved surfaces, 64
surfaces, 64
types of, 64-65
warped surfaces, 64
solid primitives
Boolean operations, 147-148
box, 146
cone, 146
cylinder, 146
difference (subtract) operation, 147-148
drawing complex shapes with Boolean operations, 147-148
intersection operation, 147-148
overview, 146-147
pyramid, 146
sphere, 146
torus, 146
union (join/add) operation, 147-148
wedge, 146
SolidWorks
assembly file management, 423
constraint relationships, table of, 202
drag-and-drop fasteners, 431
fit study, 583
operators, table of, 195
Pack and Go feature, 423
space-delimited text format, 457
spacing
lettering. See lettering, spacing.
parallel lines, 74
section lining, 335
between views, 238
specific gravity, 444
sphere primitive, 146
spheres
definition, 65
developments, 394-395
double-curved surfaces, 385
examples, 65
isometric drawings, 96
spherical coordinates, 129
spline, definition, 142
spline curves
approximated curves, 142, 144
Bezier curves, 143-144
B-spline approximation, 143
B-splines, 143-144
cubic splines, 142
drawing, 142-144
interpolated splines, 142, 144
NURBS (nonuniform rational B-spline) curves, 143
overview, 142
piecewise splines, 143
rational curves, 143
spotfaces, 213, 214, 286
dimensioning, 521
spreadsheets, 460
springs
flat, 625-626
helical, 625-627
modeling, 627
portfolio, 629
springs, helical
compression springs, 625
definition, 625
drawing, 626-627
extension springs, 625-626
torsion springs, 625-626
types of, 625
square keys, 622, A-37
square threads, 596, 609, A-37
squares, drawing, 139
stability, of lettering, 44
standard features, 213
Standard for Aluminum Sand and Permanent Mold Castings, 437
Standard for the Exchange of Product model data (STEP), 458
standard punches, library of, 439
standard worm thread, 596
standards. See also specific standards.
ANSI, See American National Standards Institute standards.
dimensioning, 538
international, 16
lettering, 40
wire gage, A-42
standards organizations
ANSI (American National Standards Institute), 16
ISO (International Organization for Standards), 16
SAE (Society of Automotive Engineers), 16
United States, 16
standards publications
American National Standard Drafting Manual-Y14, 16
ANSI B4.1 Preferred Limits for Fits for Cylindrical Parts, 560
ANSI B4.2, 562
ANSI/ASME Y14.5 standard, 565-566, 580
ANSI/ASME Y14.5M-2009 standard, 567
ASEE (American Society for Engineering Education), 16
ASME Y14.41 Digital Product Definition Data Practices, 540
ASME Y14.43, 569
ASME/ANSI Y14.6 Screw Thread Representation, 598, 604
Standard for Aluminum Sand and Permanent Mold Castings, 437
static assemblies, 418
station point, 32
STEP (Standard for the Exchange of Product model data), 458
stereolithography apparatus (SLA), 476
stippling, sketching techniques, 68
STL (STereo Lithography) format, 458
straight lines, 73
straightness tolerances, 576
Strategix Vision, 224
stretchout, dimensioning, 536
Stryker SmartPump tourniquet system, 224-227
studs, definition, 613
studying the natural world, as a design aid, 16
subassemblies
constraint-based modeling, 216
definition, 418
drawing, 642
subtract (difference) operation, 147-148
successive auxiliary views, 368
successive revolutions, 396
superfluous dimensions, 516
supplementary, tolerance symbols, 567
surface area, determining mass properties, 452
surface continuity, 215
surface finish, 445-446
surface models
accuracy, 188
BREP (boundary representation), 184
case studies, Smart Tourniquet, 224-227
choosing a method for, 224-227
combining surfaces, 187
complex surfaces, 187, 216
Coon's patches, 187
definition, 184
derived surfaces, 187
digitizing, 187
editing, 188
extruded surfaces, 184-185
interpolated patches, 187
lofting, 185-186
meshes, 185
NURBS-based surfaces, 185-186
versus other model types, 223
patches, 187
reverse engineering, 187
revolved surfaces, 184-185
surface information in the database, 184
surface normal, 184
sweeping, 185-186
tessellation lines, 189
TINs (triangulated irregular networks), 185
trimming, 187
tweaking, 188
uses for, 189
surface normal vector, 184
surface patches, 187
surface roughness, dimensioning, 526-527
surface texture symbols, 527-528, 529
surfaces
ellipsoids, 385
generatrix, 385
hyperboloids, 385
intersections, definition, 385
plane, 385
ruled surfaces, 385
single-curved surface, 385
spheres, 385
tori, 385
types of, 64. See also specific types.
in views. See views, surfaces.
warped, 385
sweeping, 185-186
Swendseid, Kurt, 224
swept shapes, 151
symbols
comparison of, A-48
symbols, continued
dimensioning, 513, 520-521, 527-529, 529
projection, 241
section lining, 336
surface texture, 527-529
tolerance, 567, 571
symbols, form and proportion of
datum, A-45
dimensioning symbols and letters, A-47
geometric characteristics, A-45
geometric dimensioning, A-46
modifying symbols, A-46
symmetry
case study: exercise bike brake, 157-159
definition, 149
mirrored shapes, 149
parting line, 150
right- and left-hand parts, 149
Système International (SI), 456

T

tab-delimited text format, 457
tabular dimensioning, 534
tabulated tolerances, 579-580
tangencies, 2D drawings, 287, 290-291
tangency, definition, 145
tangent constraint, 422
tangent method for
laying out angles, 138
sketching arcs, 76
tangent surfaces, hiding in 2D drawings, 292
tangents
drawing to arcs, 135-136
drawing to circles, 135
tap breakage, 612
tap drills, 612
taper, plastic parts, 434
taper pins, specifications, A-43
tapered parts, tolerance, 549
tapers, 524
tapped holes, 612
teams, as design aids, 17
technical drawing, 4-5. See also specific forms.
template files, saving settings, 429
templates for
drawing, 47
lettering, 42
seed parts, 428-429
sketching arcs, 77
sketching ellipses, 95
tertiary datum, 569
tessellation lines, 189
theoretically exact datum feature
simulators, 569
thick lines, 34
thickness
sheet metal, 450
in views, 235
thin lines, 34
third auxiliary view, 368
third-angle projection, 240-242
30° angles, estimating, 90
Thornburg, Kent, 186
thread fits, 599-600, 605
thread forms
Acme thread, 596
American national thread, 596
buttress thread, 597
knuckle thread, 597
metric thread, 596
sharp-V, 596
square thread, 596
standard worm thread, 596
UNEF (unified extra fine thread series), 596
Unified thread, 594
Whitworth thread, 594, 596
thread lengths, bolts, 614
thread notes, 604-605
thread pitch, 595, 597
thread pitch gage, 597
thread series, 595, 598
thread symbols, 606
threads. See also screw threads.
Acme, 596, A-29
American national thread, 594
angle of thread, 595
in assembly, 620
axis of screw, 595
basic applications, 594
bolts, 614
clearance holes, 612
crest, 595
depth of thread, 595
dimensioning, 524
external threads, 595
history of the screw principle, 595
internal thread, 595
isometric drawings, 95
lead, 595
major diameter, 595
metric fastener standard, 594
minor diameter, 595
multiple threads, 599
pitch diameter, 595
right-hand/left-left hand, 598
root, 595
series of thread, 595, 598
side, 595
single thread, 599
tap breakage, 612
tap drills, 612
tapped holes, 612
threads, drawing
Acme thread notes, 605
Acme threads, detailed description, 607
American National Standard pipe thread, 610-611
Briggs standard threads, 610-611
detailed, 600-601, 603
external square thread, 608
internal square thread, 608
modeling thread, 610
phantom lines, 612
pipe threads, 610-611
portfolio, 629
schematic, 600, 602-603, 611
shortening identical features, 612
simplified, 600, 602-603, 611
square threads, 609
tapped holes, 612
thread notes, 604-605
threads in assembly, 620
three dimensional. See 3D.
3D figures. See solid objects.
three-point perspective, 105, 106
through holes, 213
Through option, 137
TINs (triangulated irregular networks), 185
title blocks
centering words in, 45
components of, 51
definition, 34
general notes in, 550, 556
lettering for, 45
tolerance
actual local feature, 548
actual mating envelope, 549
actual minimal material envelope, 549
actual size, 548
allowance, 548
angular, 558, 575
ANSI standard, 560, 565, 580
applying with computer graphics, 582
barreled parts, 549
baseline dimensioning, 559
basic angle tolerancing method, 575
bilateral, 548
bilateral system, 558
bowed parts, 549
calibration and inspection, 555
case study, 583
chained dimensions, 559
circularity (roundness), 576
clearance fit, 551
continuous dimensions, 559
cylindricity, 576, 577
definition, 548
digital product definition, 581-584
dimensioning, 505
feature, 548
feature of size, 548
fit, specifying, 552
fit types and subtypes, 560
fits between mating parts, 551
flatness, 576
form tolerances for single features, 576-577
gage blocks, 555
GDT (geometric dimensioning and
tolerancing), 565-582
general notes, 556
hole system, 554-555
implied right angles, 550
interference fit, 551, 554-555
international tolerance grades, A-16
Jo blocks, 555
limit, 557
limit dimensions, 552
line fit, 552
and machining processes, 561
metric tolerances, 562
milling machines, 561
nominal size, 548
overview, 548
perfect form envelope, 549
plus-or-minus, 558
portfolio, 584-586
positional, 572-574
profile, 576-577
QC (quality certify), 548
reference dimensions, 559
selective assembly, 552
shaft system, 554
single-limit dimensioning, 557
size designation, 548
specifying, 556
straightness, 576
tabulated, 579-580
tapered parts, 549
transition fit, 552
true-position dimensioning, 572-574
unilateral system, 558
variations in form, 549
waisted parts, 549
tolerance, datum features
ASME Y14.43, 569
constraining degrees of freedom, 570
datum features versus datum feature simulator, 569
datum reference frame, 569
datum targets, 570
overview, 568
physical datum feature simulators, 569
primary datum, 569
secondary datum, 569
tertiary datum, 569
theoretically exact datum feature
simulators, 569
tolerance, metric fits
ANSI B4.2 standard, 562
basic size, 562
deviation, 562
fundamental deviation, 562-563
hole system, 563
interference fit, 563
IT (international tolerance grade), 562
lower deviation, 562
nominal size, 562
overview, 562
preferred fits, 564-565
preferred sizes, 564
shaft system, 563
tolerance, 562
tolerance symbols, 563
tolerance zone, 562-563
transition fit, 563
upper deviation, 562
tolerance, orientations for related features angularity, 578-579
concentricity, 579
parallelism, 578-579
perpendicularity, 578-579
tolerance envelope, 549
tolerance grades, A-16
tolerance stacking, 559
tolerance symbols
ANSI/ASME Y14.5 standard, 566-567
basic dimensions, 567
combined, 567
datum feature simulator, 571
datum features, 571
datum identifying, 567
feature control frame, 566
form, 566-568
form tolerance, 567
geometric characteristics, 566
LMC (least material condition), 567
metric fits, 563
metric tolerances, 563
MMC (maximum material condition), 567, 574-575
position, 566-568
reference to a datum, 567
supplementary, 567
tolerance zone, metric tolerances, 562-563
top adjacent, 366
top views, 234-236
top-down design, 424, 449-450
topographic shell fabrication (TSF), 478
tori, $65,146,385$
torsion springs, 625-626
tourniquet, case study, 224-227
Townsend, William, 219
trammel method for sketching arcs and ellipses, 76
transformations
geometric, 154
viewing, 155-156
transition fits
definition, 552
metric tolerances, 563
hole basis, 554, A-23-24
shaft basis, 554, A-23-A-24
locational, A-12
transition pieces, developing, 393-394
translation, 154
triangles
drawing, 138-139
formulas for, A-4
sketching auxiliary views with, 371
triangular prisms, dimensioning, 522
triangulated irregular networks (TINs), 185
triangulation, finding the development of an oblique cone, 393
trimetric projection, 83
trimming surface models, 187
true ellipses, 92
true size, showing
in auxiliary views, 364
inclined elliptical surface, 372
line length, with revolutions, 396
lines, true length in CAD, 378-379
oblique surfaces, 382-383
true-position dimensioning,
tolerances, 572-574
truncated prisms, 65
TSF (topographic shell fabrication), 478
tweaking surface models, 188
12-pitch thread, 598
twist bits, sizes, A-28-A-29
two-point perspective, 105, 106

U

UN threads, 598
underconstrained sketches, 203
UNEF (unified extra fine thread series), 596
unidirectional dimensioning, 512
unified thread, 594
fits, 600
unilateral system of tolerances, 558
union (join/add) operation, 147-148
United States, drafting standards, 16
units of measure, for dimensions, 505
universal possibilities, case study: Santa
Cruz Bicycles, 9
UNJ threads, 598
UNR threads, 598
upper deviation, metric tolerances, 562
U.S. customary units. See also metric system.
definition, 36
dual dimensioning systems, 36-37
unit conversion, 37
user coordinate systems, 153-154

V

vanishing point, 103
variables, versus parameters, 193
variations in form, tolerances, 549
vector versus raster data, 459
vertical lettering, 41
vertices. See also points.
3D CAD modeling, 127
identifying with numbers, 250
sketching techniques, 69
viewing direction arrow, 377
viewing transformations, 155-156
viewing-plane lines, definition, 377
viewpoint, sketching techniques, 68
views. See also auxiliary views; ortho-
graphic projection; section views.
45° miter line, 238, 259
alignment, 299-300
angles, 253
arranging on paper, 235. See also glass box.
assembly drawings, 639
bottom, 234-235
corners, 250. See also vertices.
creating by revolving objects, 235
depth, 235
developing from 3D models, 247-248
edges, 250, 252
folding lines, 237
front, 234-236
views, continued
front, orientation, 240
glass box, 236-238
height, 235
interpreting, 254
isometric, 249
left side, 234-235
length, 235
lines, interpreting, 253
measuring from a reference surface, 238
necessary, 239-240, 296-297
opposites, 239-240
partial, 297-298, 345
placing, 248-249
planes, definition, 250
points, interpreting, 253
principal, 234-235
principal dimensions, 235
rear, 234-235
regular, 239-240
removed, 287, 299-301
revolved sections, 302
right side, 234-235
showing height. See elevation.
side, 234-236
spacing between, 238
thickness, 235
top, 234-236
transferring depth dimensions, 238
vertices, 250,253
visualizing, 250
width, 235
views, surfaces
definition, 250
inclined, 250-251
normal, 250-251
oblique, 250-251
orientation to the plane of projection, 250-251
similar shapes, 254
using numbers to identify vertices, 250
virtual condition, 575
virtual prototypes, 181, 469
visual rays. See projectors.
visualization
from a drawing, 256
purpose of technical drawing, 4
visualizing
2D complex cylindrical shapes, 288
in 3D, 258
edges, 250
full sections, 330-331
with models, 256
as revolved drawing, 366
views, 250
volume, determining mass properties, 452
VR (virtual reality), 3D CAD models, 181

W

waisted parts, tolerance, 549
wall thickness, plastic parts, 436
warped surfaces, 64,385
washers
lock, 617, A-41
plain, A-40
waviness values, dimensioning, 529
wedge primitive, 146
weight of the part, in title blocks, 51
welding drawings
metal forming, 448
portfolio, 484
what-if analysis, 460
Whitworth, Joseph, 594
Whitworth thread, 594, 596
width, in views, 235
width auxiliary views, 366-367
wire gage standards, A-42
wireframe, 2D models, 222
wireframe modeler versus wireframe display, 183
wireframe modeling, 3D models, 182-183, 223
wireframe skeleton, 425-426
Woodruff keys, 622, A-38
working drawing assembly, 638, 646-647
working drawings
checking accuracy, 650
definition, 638
detail drawings, 638
numbering, 650
paper conservation, 648
for patent applications, 652-653
revision numbers, 650-651
simplifying, 651
zoning, 650
working drawings, formats
digital drawing transmittal, 648
number of details per sheet, 648
PDF (Portable Document Format), 648
title and record strips, 649
worksheets
blocking, W-13, W-19, W-27, W-29, W-33, W-43
Boolean operators, W-37
circles and ellipses, W-15
concept sketching, W-31, W-33, W-35
developments, W-71, W-73
dimensioning, W-75-W-83
glass box, W-39, W-41, W-67
grids, W-97-W-1049
hatching, W-95
hidden lines, W-45
inclined surfaces, W-47
lettering, W-7, W-9, W-11
lines and curves, W-3, W-17, W-25,
W-45, W-49, W-69
measurements and scale, W-5, W-21
negative space, W-13, W-33
orthographic sketches, W-29, W-43,
W-47, W-49
pictorials, W-23, W-25, W-27, W-31, W-33, W-35
sections, W-57-W-65
surfaces, W-47, W-51-W-55
thread symbols, W-93
tolerances, W-85-W-91
transferring dimensions, W-41, W-43
world coordinate system, 153
worm's-eye view, 107

X

X- and Y-axes, coordinate systems, 127

Z

zone numbers, 50
zones, 50
zoning, working drawings, 650
Zuma coffee brewer, case study, 418, 421

[^0]: * Not a typical feature of technical drawings. (Shown in this book for instructional purposes.)

[^1]: (Images courtesy of Marty Albini. This case study is provided as a courtesy by the owner of the intellectual property rights, Park City Entertainment. All rights reserved.)

