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Preface

Awk was created in 1977 as a simple programming language for writing short programs

that manipulate text and numbers with equal ease. It was meant as a scripting language to

complement and work well with Unix tools, following the Unix philosophy of having each

program do one thing well and be composable with other programs.

The computing world today is enormously different from what it was in 1977. Computers

are thousands of times faster and have a million times as much memory. Software is different

too, with a rich variety of programming languages and computing environments. The Internet

has given us more data to process, and it comes from all over the world. We’re no longer lim-

ited to the 26 letters of English either; thanks to Unicode, computers process the languages of

the world in their native character sets.

Even though Awk is nearly 50 years old, and in spite of the great changes in computing,

it’s still widely used, a core Unix tool that’s available on any Unix, Linux, or macOS system,

and usually on Windows as well. There’s nothing to download, no libraries or packages to

import — just use it. It’s an easy language to learn and you can do a lot after only a few min-

utes of study.

Scripting languages were rather new in 1977, and Awk was the first such language to be

widely used. Other scripting languages complement or sometimes replace Awk. Perl, which

dates from 1987, was an explicit reaction to some of the limitations of Awk at the time.

Python, four years younger than Perl, is by far the most widely used scripting language today,

and for most users would be the natural next step for larger programs, especially to take

advantage of the huge number of libraries in the Python ecosystem. On the web, and also for

some standalone uses, JavaScript is the scripting language of choice. Other more niche lan-

guages are still highly useful, and ‘‘the shell’’ itself has become a variety of different shells

with significantly enriched programming capabilities.

Programmers and other computer users spend a lot of time doing simple, mechanical data

manipulation — changing the format of data, checking its validity, finding items that have

some property, adding up numbers, printing summaries, and the like. All of these jobs ought

to be mechanized, but it’s a real nuisance to have to write a special-purpose program in a lan-

guage like C or Python each time such a task comes up.
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Awk is a programming language that makes it possible to handle simple computations

with short programs, often only one or two lines long. An Awk program is a sequence of pat-

terns and actions that specify what to look for in the input data and what to do when it’s

found. Awk searches a set of files that contain text (but not non-text formats like Word docu-

ments, spreadsheets, PDFs and so on) for lines that match any of the patterns; when a match-

ing line is found, the corresponding action is performed. A pattern can select lines by combi-

nations of regular expressions and comparison operations on strings, numbers, fields, vari-

ables, and array elements. Actions may perform arbitrary processing on selected lines; the

action language looks like C but there are no declarations, and strings and numbers are built-

in data types.

Awk scans text input files and splits each input line into fields automatically. Because so

many things are automatic — input, field splitting, storage management, initialization — Awk

programs are usually much shorter than they would be in a more conventional language.

Thus one common use of Awk is for the kind of data manipulation suggested above. Pro-

grams, a line or two long, are composed at the keyboard, run once, then discarded. In effect,

Awk is a general-purpose programmable tool that can replace a host of specialized tools or

programs.

The same brevity of expression and convenience of operations make Awk valuable for

prototyping larger programs. Start with a few lines, then refine the program until it does the

desired job, experimenting with designs by trying alternatives quickly. Since programs are

short, it’s easy to get started, and easy to start over when experience suggests a different direc-

tion. And if necessary, it’s straightforward to translate an Awk program into another language

once the design is right.

Organization of the Book

The goal of this book is to teach you what Awk is and how to use it effectively. Chapter 1

is a tutorial on how to get started; after reading even a few pages, you will have enough infor-

mation to begin writing useful programs. The examples in this chapter are short and simple,

typical of the interactive use of Awk.

The rest of the book contains a variety of examples, chosen to show the breadth of appli-

cability of Awk and how to make good use of its facilities. Some of the programs are ones we

use personally; others illustrate ideas but are not intended for production use; a few are

included just because they are fun.

Chapter 2 shows Awk in action, with a number of small programs that are derived from

the way that we use Awk for our own personal programming. The examples are probably too

idiosyncratic to be directly useful, but they illustrate techniques and suggest potential applica-

tions.

Chapter 3 shows how Awk can be used for exploratory data analysis: examining a dataset

to figure out its properties, identify potential (and real) errors, and generally get a grip on

what it contains before expending further effort with other tools.

The emphasis in Chapter 4 is on retrieval, validation, transformation, and summarization

of data — the tasks that Awk was originally designed for. There is also a discussion of how to

handle data like address lists that naturally comes in multiline chunks.

Awk is a good language for managing small, personal databases. Chapter 5 discusses the

generation of reports from databases, and builds a simple relational database system and

query language for data stored in multiple files.
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Chapter 6 describes programs for generating text, and some that help with document

preparation. One of the examples is an indexing program based on the one we used for this

book.

Chapter 7 is about ‘‘little languages,’’ that is, specialized languages that focus on a narrow

domain. Awk is convenient for writing small language processors because its basic opera-

tions support many of the lexical and symbol table tasks encountered in translation. The

chapter includes an assembler, a graphics language, and several calculators.

Awk is a good language for expressing certain kinds of algorithms. Because there are no

declarations and because storage management is easy, an Awk program has many of the

advantages of pseudo-code but Awk programs can be run, which is not true of pseudo-code.

Chapter 8 discusses experiments with algorithms, including testing and performance evalua-

tion. It shows several sorting algorithms, and culminates in a version of the Unix make pro-

gram.

Chapter 9 explains some of the historical reasons why Awk is as it is, and contains some

performance measurements, including comparisons with other languages. The chapter also

offers suggestions on what to do when Awk is too slow or too confining.

Appendix A, the reference manual, covers the Awk language in a systematic order.

Although there are plenty of examples in the appendix, like most manuals it’s long and a bit

dry, so you will probably want to skim it on a first reading.

You should begin by reading Chapter 1 and trying some small examples of your own.

Then read as far into each chapter as your interest takes you. The chapters are nearly inde-

pendent of each other, so the order doesn’t matter much. Take a quick look at the reference

manual to get an overview, concentrating on the summaries and tables, but don’t get bogged

down in the details.

The Examples

There are several themes in the examples. The primary one, of course, is to show how to

use Awk well. We hav e tried to include a wide variety of useful constructions, and we have

stressed particular aspects like associative arrays and regular expressions that typify Awk pro-

gramming.

A second theme is to show Awk’s versatility. Awk programs have been used from data-

bases to circuit design, from numerical analysis to graphics, from compilers to system admin-

istration, from a first language for non-programmers to the implementation language for soft-

ware engineering courses. We hope that the diversity of applications illustrated in the book

will suggest new possibilities to you as well.

A third theme is to show how common computing operations are done. The book contains

a relational database system, an assembler and interpreter for a toy computer, a graph-drawing

language, a recursive-descent parser for an Awk subset, a file-update program based on make,

and many other examples. In each case, a short Awk program conveys the essence of how

something works in a form that you can understand and play with.

We hav e also tried to illustrate a spectrum of ways to attack programming problems.

Rapid prototyping is one approach that Awk supports well. A less obvious strategy is divide

and conquer: breaking a big job into small components, each concentrating on one aspect of

the problem. Another is writing programs that create other programs. Little languages define

a good user interface and may suggest a sound implementation. Although these ideas are pre-

sented here in the context of Awk, they are much more generally applicable, and ought to be
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part of every programmer’s repertoire.

The examples have all been tested directly from the text, which is in machine-readable

form. We hav e tried to make the programs error-free, but they do not defend against all possi-

ble invalid inputs, so we can concentrate on conveying the essential ideas.

Evolution of Awk

Awk was originally an experiment in generalizing the Unix tools grep and sed to deal

with numbers as well as text. It was based on our interests in regular expressions and pro-

grammable editors. As an aside, the language is officially AWK (all caps) after the authors’

initials, but that seems visually intrusive, so we’ve used Awk throughout for the name of the

language, and awk for the name of the program. (Naming a language after its creators shows

a certain paucity of imagination. In our defense, we didn’t hav e a better idea, and by coinci-

dence, at some point in the process we were in three adjacent offices in the order Aho, Wein-

berger, and Kernighan.)

Although Awk was meant for writing short programs, its combination of facilities soon

attracted users who wrote significantly larger programs. These larger programs needed fea-

tures that had not been part of the original implementation, so Awk was enhanced in a new

version made available in 1985.

Since then, several independent implementations of Awk have been created, including

Gawk (maintained and extended by Arnold Robbins), Mawk (by Michael Brennan), Busybox

Awk (by Dmitry Zakharov), and a Go version (by Ben Hoyt). These differ in minor ways

from the original and from each other but the core of the language is the same in all. There

are also other books about Awk, notably Effective Awk Programming, by Arnold Robbins,

which includes material on Gawk. The Gawk manual itself is online, and covers that version

very carefully.

The POSIX standard for Awk is meant to define the language completely and precisely. It

is not particularly up to date, however, and different implementations do not follow it exactly.

Awk is available as a standard installed program on Unix, Linux, and macOS, and can be

used on Windows through WSL, the Windows Subsystem for Linux, or a package like Cyg-

win. You can also download it in binary or source form from a variety of web sites. The

source code for the authors’ version is at https://github.com/onetrueawk/awk.

The web site https://www.awk.dev is devoted to Awk; it contains code for all the

examples from the book, answers to selected exercises, further information, updates, and

(inevitably) errata.

For the most part, Awk has not changed greatly over the years. Perhaps the most signifi-

cant new feature is better support for Unicode: newer versions of Awk can now handle data

encoded in UTF-8, the standard Unicode encoding of characters taken from any language.

There is also support for input encoded as comma-separated values, like those produced by

Excel and other programs. The command

$ awk --version

will tell you which version you are running. Regrettably, the default versions in common use

are sometimes elderly, so if you want the latest and greatest, you may have to download and

install your own.

Since Awk was developed under Unix, some of its features reflect capabilities found in

Unix and Linux systems, including macOS; these features are used in some of our examples.

https://github.com/onetrueawk/awk
https://www.awk.dev
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Furthermore, we assume the existence of standard Unix utilities, particularly sort, for which

exact equivalents may not exist elsewhere. Aside from these limitations, however, Awk

should be useful in any environment.

Awk is certainly not perfect; it has its full share of irregularities, omissions, and just plain

bad ideas. But it’s also a rich and versatile language, useful in a remarkable number of cases,

and it’s easy to learn. We hope you’ll find it as valuable as we do.
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Explorator y Data Analysis

The previous chapter described a number of small scripts for personal use, often idiosyn-

cratic or specialized. In this chapter, we’re going to do something that is also typical of how

Awk is used in real life: we’ll use it along with other tools to informally explore some real

data, with the goal of seeing what it looks like. This is called exploratory data analysis or

EDA, a term first used by the pioneering statistician John Tukey.

Tukey inv ented a number of basic data visualization techniques like boxplots, inspired the

statistical programming language S that led to the widely-used R language, co-invented the

Fast Fourier Transform, and coined the words ‘‘bit’’ and ‘‘software.’’ The authors knew John

Tukey as a friend and colleague at Bell Labs in the 1970s and 1980s, where among a large

number of very smart and creative people, he stood out as someone special.

The essence of exploratory data analysis is to play with the data before making hypotheses

or drawing conclusions. As Tukey himself said,

‘‘Finding the question is often more important than finding the answer. Exploratory

data analysis is an attitude, a flexibility, and a reliance on display, NOT a bundle of

techniques.’’

In many cases, that involves counting things, computing simple statistics, arranging data in

different ways, looking for patterns, commonalities, outliers and oddities, and drawing basic

graphs and other visual displays. The emphasis is on small, quick experiments that might

give some insight, rather than polish or refinement; those come later when we have a better

sense of what the data might be telling us.

For EDA, we typically use standard Unix tools like the shell, wc, diff, sort, uniq,

grep, and of course regular expressions. These combine well with Awk, and often with

other languages like Python.

We will also encounter a variety of file formats, including comma- or tab-separated values

(CSV and TSV), JSON, HTML, and XML. Some of these, like CSV and TSV, are easily pro-

cessed in Awk, while others are sometimes better handled with other tools.
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3.1 The Sinking of the Titanic

Our first dataset is based on the sinking of the Titanic on April 15, 1912. This example

was chosen, not entirely by coincidence, by one of the authors, who was at the time on a

trans-Atlantic boat trip, passing not far from the site where the Titanic sank.

Summar y Data: titanic.tsv

The file titanic.tsv, adapted from Wikipedia, contains summary data about the

Titanic’s passengers and crew. As is common with datasets in CSV and TSV format, the first

line is a header that identifies the data in the lines that follow. Columns are separated by tabs.

Type Class Total Lived Died
Male First 175 57 118
Male Second 168 14 154
Male Third 462 75 387
Male Crew 885 192 693
Female First 144 140 4
Female Second 93 80 13
Female Third 165 76 89
Female Crew 23 20 3
Child First 6 5 1
Child Second 24 24 0
Child Third 79 27 52

Many (perhaps all) datasets contain errors. As a quick check here, each line should have

five fields, and the total in the third field should equal field four (lived) plus field five (died).

This program prints any line where those conditions do not hold:

NF != 5 l l $3 != $4 + $5

If the data is in the right format and the numbers are correct, this should produce a single line

of output, the header:

Type Class Total Lived Died

Once we’ve done this minimal check, we can look at other things. For example, how

many people are there in each category?

The categories that we want to count are not identified by numbers, but by words like

Male and Crew. Fortunately, the subscripts or indices of Awk arrays can be arbitrary strings

of characters, so gender["Male"] and class["Crew"] are valid expressions.

Arrays that allow arbitrary strings as subscripts are called associative arrays; other lan-

guages provide the same facility with names like dictionary, map or hashmap. Associative

arrays are remarkably convenient and flexible, and we will use them extensively.

NR > 1 { gender[$1] += $3; class[$2] += $3 }

END {
for (i in gender) print i, gender[i]
print ""
for (i in class) print i, class[i]

}
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gives

Male 1690
Child 109
Female 425

Crew 908
First 325
Third 706
Second 285

Awk has a special form of the for statement for iterating over the indices of an associa-

tive array:

for (i in array) { statements }

sets the variable i in turn to each index of the array, and the statements are executed with that

value of i. The elements of the array are visited in an unspecified order; you can’t count on

any particular order.

What about survival rates? How did social class, gender and age affect the chance of sur-

vival among passengers? With this summary data we can do some simple experiments, for

example, computing the survival rate for each category.

NR > 1 { printf("%6s %6s %6.1f%%\n", $1, $2, 100 * $4/$3) }

We can sort the output of this test by piping it through the Unix command sort -k3 -nr
(sort by third field in reverse numeric order) to produce

Child Second 100.0%
Female First 97.2%
Female Crew 87.0%
Female Second 86.0%
Child First 83.3%
Female Third 46.1%
Child Third 34.2%
Male First 32.6%
Male Crew 21.7%
Male Third 16.2%
Male Second 8.3%

Evidently women and children did survive better on average.

Note that these examples treat the header line of the dataset as a special case. If you’re

doing a lot of experiments, it may be easier to remove the header from the data file than to

ignore it explicitly in every program.

Passeng er Data: passengers.csv

The file passengers.csv is a larger file that contains detailed information about pas-

sengers, though it does not contain anything about crew members. The original file is a

merger of a widely used machine-learning dataset with another list from Wikipedia. It has 11

columns including home town, lifeboat assignment, and ticket price:
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"row.names","pclass","survived","name","age","embarked",
"home.dest","room","ticket","boat","sex"

...
"11","1st",0,"Astor, Colonel John Jacob",47,"Cherbourg",

"New York, NY","","17754 L224 10s 6d","(124)","male"
...

How big is the file? We can use the Unix wc command to count lines, words and charac-

ters:

$ wc passengers.csv

1314 6794 112466 passengers.csv

or a two-line Awk program like the one we saw in Chapter 1:

{ nc += length($0) + 1; nw += NF }
END { print NR, nw, nc, FILENAME }

Except for spacing, they produce the same results when the input is a single file.

The file format of passengers.csv is comma-separated values. Although CSV is not

rigorously defined, one common definition says that any field that contains a comma or a dou-

ble quote (") must be surrounded by double quotes. Any field may be surrounded by quotes,

whether it contains commas and quotes or not. An empty field is just "", and a quote within

a field is represented by a doubled quote, as in """,""", which represents ",". Input fields

in CSV files may contain newline characters. For more details, see Section A.5.2.

This is more or less the format used by Microsoft Excel and other spreadsheet programs

like Apple Numbers and Google Sheets. It is also the default input format for data frames in

Python’s Pandas library and in R.

In versions of Awk since 2023, the command-line argument --csv causes input lines to

be split into fields according to this rule. Setting the field separator to a comma explicitly

with FS=, does not treat comma field separators specially, so this is useful only for the sim-

plest form of CSV: no quotes. With older versions of Awk it may be easiest to convert the

data to a different form using some other system, like an Excel spreadsheet or a Python CSV

module.

Another useful alternative format is tab-separated values or TSV. The idea is the same,

but simpler: fields are separated by single tabs, and there is no quoting mechanism so fields

may not contain embedded tabs or newlines. This format is easily handled by Awk, by setting

the field separator to a tab with FS="\t" or equivalently with the command-line argument

-F"\t".

As an aside, it’s wise to verify whether a file is in the proper format before relying on its

contents. For example, to check whether all records have the same number of fields, you

could use

awk '{print NF}' file l sort l uniq -c l sort -nr

The first sort command brings all instances of a particular value together; then the com-

mand uniq -c replaces each sequence of identical values by a single line with a count and

the value; and finally sort -nr sorts the result numerically in reverse order, so the largest

values come first.

For passengers.csv, using the --csv option to process CSV input properly, this

produces
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1314 11

Every record has the same number of fields, which is necessary for valid data in this dataset,

though not sufficient. If some lines have different numbers of fields, now use Awk to find

them, for example with NF != 11 in this case.

With a version of Awk that does not handle CSV, the output using -F, will be different:

624 12
517 13
155 14
15 15
3 11

This shows that almost all fields contain embedded commas.

By the way, generating CSV is straightforward. Here’s a function to_csv that converts a

string to a properly quoted string by doubling each quote and surrounding the result with

quotes. It’s an example of a function that could go into a personal library.

# to_csv - convert s to proper "..."

function to_csv(s) {
gsub(/"/, "\"\"", s)
return "\"" s "\""

}

(Note how quotes are quoted with backslashes.)

We can use this function within a loop to insert commas between elements of an array to

create a properly formatted CSV record for an associative array, or for an indexed array like

the fields of a line, as illustrated in the functions rec_to_csv and arr_to_csv:

# rec_to_csv - convert a record to csv

function rec_to_csv( s, i) {
for (i = 1; i < NF; i++)

s = s to_csv($i) ","
s = s to_csv($NF)
return s

}

# arr_to_csv - convert an indexed array to csv

function arr_to_csv(arr, s, i, n) {
n = length(arr)
for (i = 1; i <= n; i++)

s = s to_csv(arr[i]) ","
return substr(s, 1, length(s)-1) # remove trailing comma

}

The following program selects the five attributes class, survival, name, age, and gender,

from the original file, and converts the output to tab-separated values.

NR > 1 { OFS="\t"; print $2, $3, $4, $5, $11 }

It produces output like this:
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1st 0 Allison, Miss Helen Loraine 2 female
1st 0 Allison, Mr Hudson Joshua Creighton 30 male
1st 0 Allison, Mrs Hudson J.C. (Bessie Waldo Daniels) 25 female
1st 1 Allison, Master Hudson Trevor 0.9167 male

Most ages are integers, but a handful are fractions, like the last line above. Helen Allison was

two years old; Master Hudson Allison appears to have been 11 months old, and was the only

survivor in his family. (From other sources, we know that the Allison’s chauffeur, George

Swane, age 18, also died, but the family’s maid and cook both survived.)

How many infants were there? Running the command

$4 < 1

with tab as the field separator produces eight lines:

1st 1 Allison, Master Hudson Trevor 0.9167 male
2nd 1 Caldwell, Master Alden Gates 0.8333 male
2nd 1 Richards, Master George Sidney 0.8333 male
3rd 1 Aks, Master Philip 0.8333 male
3rd 0 Danbom, Master Gilbert Sigvard Emanuel 0.3333 male
3rd 1 Dean, Miss Elizabeth Gladys (Millvena) 0.1667 female
3rd 0 Peacock, Master Alfred Edward 0.5833 male
3rd 0 Thomas, Master Assad Alexander 0.4167 male

Exercise 3-1. Modify the word count program to produce a separate count for each of its input files, as

the Unix wc command does.

Some Further Checking

Another set of questions to explore is how well the two data sources agree. They both

come from Wikipedia, but it is not always a perfectly accurate source. Suppose we check

something absolutely basic, like how many passengers there were in the passengers file:

$ awk 'END {print NR}' passengers.csv

1314

This count includes one header line, so there were 1313 passengers. On the other hand, this

program adds up the counts for non-crew members from the third field of the summary file:

$ awk '!/Crew/ { s += $3 }; END { print s }' titanic.tsv

1316

That’s a discrepancy of three people, so something is wrong.

As another example, how many children were there?

awk --csv '$5 <= 12' passengers.csv

produces 100 lines, which doesn’t match the 109 children in titanic.tsv. Perhaps chil-

dren are those 13 or younger? That gives 105. Younger than 14? That’s 112. We can guess

what age is being used by counting passengers who are called ‘‘Master’’:

awk --csv '/Master/ {print $5}' passengers.csv l sort -n

The largest age in this population is 13, so that’s perhaps the best guess, though not definitive.

In both of these cases, numbers that ought to be the same are in fact different, which sug-

gests that the data is still flaky. When exploring data, you should always be prepared for
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errors and inconsistencies in form and content. A big part of the job is to be sure that you

have identified and dealt with potential problems before starting to draw conclusions.

In this section, we’ve tried to show how simple computations can help identify such prob-

lems. If you collect a set of tools for common operations, like isolating fields, grouping by

category, printing the most common and least common entries, and so on, you’ll be better

able to perform such checks.

Exercise 3-2. Write some of these tools for yourself, according to your own needs and tastes.

3.2 Beer Ratings

Our second dataset is a collection of nearly 1.6 million ratings of beer, originally from

RateBeer.com, a site for beer enthusiasts. This dataset is so large that it’s not feasible to study

ev ery line to be sure of its properties, so we have to rely on tools like Awk to explore and vali-

date the data.

The data comes from Kaggle, a site for experimenting with machine-learning algorithms.

You can find the original at https://www.kaggle.com/datasets/rdoume/-
beerreviews; we are grateful to RateBeer, Kaggle, and the creator of the dataset itself for

providing such an interesting collection of data.

Let’s start with some of the basic parameters: how big is the file and what does it look

like? For a raw count, nothing beats the wc command:

$ time wc reviews.csv

1586615 12171013 180174429 reviews.csv
real 0m0.629s
user 0m0.585s
sys 0m0.037s

Not surprisingly, wc is fast but as we’ve seen before, it’s easy to write a wc equivalent in

Awk:

$ time awk '{ nc += length($0) + 1; nw += NF }

END { print NR, nw, nc, FILENAME }' reviews.csv

1586615 12170527 179963813 reviews.csv
real 0m9.402s
user 0m9.159s
sys 0m0.125s

Awk is an order of magnitude slower for this specific test. Awk is fast enough for most pur-

poses, but there are times when other programs are more appropriate. Somewhat surprisingly,

Gawk is five times faster, taking only 1.9 seconds.

Something else is more surprising, however: wc and Awk differ in the number of words

and characters they count. We’ll dig into this later, but as a preview, wc is counting bytes

(and thus implicitly assuming that the input is entirely ASCII), while Awk is counting Uni-

code UTF-8 characters. Here’s an example rating where the two programs come up with

legitimately different answers:

95,Löwenbräu AG,1257106630,4,4,3,atis,Munich Helles Lager,4,4,
Löwenbräu Urtyp,5.4,33038

UTF-8 is a variable-length encoding: ASCII characters are a single byte, and other languages

use two or three bytes per character. The characters with umlauts are two bytes long in

UTF-8. There are also some records with Asian characters, which are three bytes long. In

http://RateBeer.com
https://www.kaggle.com/datasets/rdoume/-beerreviews
https://www.kaggle.com/datasets/rdoume/-beerreviews
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such cases, wc will report more characters than Awk will.

The original data has 13 attributes but we will only use five of them here: brewery name,

overall review, beer style, beer name, and alcohol content (percentage of alcohol by volume,

or ABV). We created a new file with these attributes, and also converted the format from its

original CSV to TSV by setting the output field separator OFS. This produces lines like this.

(Long lines have been split into two, marked by a backslash at the end.)

Amstel Brouwerij B. V. 3.5 Light Lager Amstel Light 3.5
Bluegrass Brewing Co. 4 American Pale Ale (APA) American \

Pale Ale 5.79
Hoppin' Frog Brewery 2.5 Winter Warmer Frosted Frog \

Christmas Ale 8.6

This shrinks the file from 180 megabytes to 113 megabytes, still large but more manageable.

We can see a wide range of ABV values in these sample lines, which suggests a question:

What’s the maximum value, the strongest beer that has been reviewed? This is easily

answered with this program:

NR > 1 && $5 > maxabv { maxabv = $5; brewery = $1; name = $4 }
END { print maxabv, brewery, name }

which produces

57.7 Schorschbräu Schorschbräu Schorschbock 57%

This value is stunningly high, about 10 times the content of normal beer, so on the surface it

looks like a data error. But a trip to the web confirms its legitimacy. That raises a follow-up

question, whether this value is a real outlier, or merely the tip of a substantial alcoholic ice-

berg. If we look for brews of say 10 percent or more:

$5 >= 10 { print $1, $4, $5 }

we get over 195,000 reviews, which suggests that high-alcohol beer is popular, at least among

people who contribute to RateBeer.

Of course that raises yet more questions, this time about low-alcohol beer. What about

beer with less than say 0.5 percent, which is the legal definition of alcohol-free, at least in

parts of the USA?

$5 <= 0.5 { print $1, $4, $5 }

This produces only 68,800 reviews, which suggests that low-alcohol beer is significantly less

popular.

What ratings are associated with high and low alcohol?

$ awk -F'\t' '$5 >= 10 {rate += $2; nrate++}

END {print rate/nrate, nrate}' rev.tsv

3.93702 194359

$ awk -F'\t' '$5 <= 0.5 {rate += $2; nrate++}

END {print rate/nrate, nrate}' rev.tsv

3.61408 68808
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$ awk -F'\t' '{rate += $2; nrate++}

END {print rate/nrate, nrate}' rev.tsv

3.81558 1586615

This may or may not be statistically significant, but the average rating of high-alcohol beers is

higher than the overall average rating, which in turn is higher than low-alcohol beers. (This is

consistent with the personal preferences of at least one of the authors.)

But wait! Further checking reveals that there are 67,800 reviews that don’t list an ABV at

all; the field is empty! Let’s re-run the low-alcohol computation with a proper test:

$ awk -F'\t' '$5 != "" && $5 <= 0.5 {rate += $2; nrate++}

END {print rate/nrate, nrate}' rev.tsv

2.58895 1023

One doesn’t hav e to be a beer aficionado to guess that beer without alcohol isn’t going to be

popular or highly rated.

The moral of these examples is that one has to look at all the data carefully. How many

fields are empty or have an explicitly non-useful value like ‘‘N/A’’? What is the range of val-

ues in a column? What are the distinct values? Answering such questions should be part of

the initial exploration, and creating some simple scripts to automate the process can be a good

investment.

3.3 Grouping Data

Let’s take a look at the question of how many distinct values there are in a dataset. The

sequence we showed above with sort and uniq -c is run so frequently that it probably

ought to be a script, though at this point we’ve used it so many times that we can type it

quickly and accurately. Here are some ‘‘distinct value’’ questions for the Titanic data, which

we’ll use because it’s smaller.

How many male passengers and female passengers are there?

$ awk --csv '{g[$11]++}

END {for (i in g) print i, g[i]}' passengers.csv

female 463
sex 1
male 850

That seems right — ‘‘sex’’ is the column header, and all the other values are either male or

female, as expected. Very similar programs could check passenger classes, survival status,

and age. For instance, checking ages reveals that no age is given for 258 of the 1313 passen-

gers.

If we count the number of different ages with

$ awk --csv '{g[$5]++}

END {for (i in g) print i, g[i]}' passengers.csv l sort -n

we see a sequence of lines like this:
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...
1 4
1 4
2 6
2 7
3 6
3 2
...

About half of the age fields contain a spurious space! That could easily throw off some future

computation if it’s not corrected.

More generally, sorting is a powerful technique for spotting anomalies in data, because it

brings together pieces of text that share a common prefix but differ thereafter. We can see an

example if we try to count honorifics, like Mr or Colonel. A quick list can be produced by

printing the second word of the name field; this catches most of the obvious ones:

$ awk --csv '{split($4, name, " ")

print name[2]}' passengers.csv l sort l uniq -c l sort -nr

728 Mr
229 Miss
191 Mrs
56 Master
16 Ms
7 Dr
6 Rev
...

$

This produces a long tail of spurious non-honorifics, but also suggests places where the pro-

gram could be improved; for example, removing punctuation would eliminate these differ-

ences:

6 Rev
1 Rev.
1 Mlle.
1 Mlle

This experiment also reveals one Colonel and one Col, presumably both referring to the

same rank.

It’s also interesting that Ms was in use more than 50 years before it became common in

modern times, though we don’t know what social status or condition it was meant to indicate.

In a similar vein, we can answer questions like how many breweries, beer styles, and

reviewers are in the beer dataset:

{ brewery[$2]++; style[$8]++; reviewer[$7]++ }
END { print length(brewery), "breweries," length(style), "styles,"

length(reviewer), "reviewers" }

produces

5744 breweries, 105 styles, 33389 reviewers

When applied to an array, the function length returns the number of elements.
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Variations of this code can answer questions like how popular the various styles are:

{ style[$8]++ }
END { for (i in style) print style[i], i }

yields (when sorted and run through the head and tail program of Section 2.2)

117586 American IPA
85977 American Double / Imperial IPA
63469 American Pale Ale (APA)
54129 Russian Imperial Stout
50705 American Double / Imperial Stout

...

686 Gose
609 Faro
466 Roggenbier
297 Kvass
241 Happoshu

If you’re going to do much of this kind of selecting fields and computing their statistics, it

might be worth writing a handful of short scripts, rather like those we talked about in Chap-

ter 2. One script could select a particular field, while a separate script could do the sorting

and uniquing.

3.4 Unicode Data

As befits a drink that knows no national boundaries, the names of beers use many non-

ASCII characters. The Awk program charfreq counts the number of times each distinct

Unicode code point occurs in the input. (A code point is often a character, but some charac-

ters are made up of multiple code points.)

# charfreq - count frequency of characters in input

awk '
{ n = split($0, ch, "")

for (i = 1; i <= n; i++)
tab[ch[i]]++

}

END {
for (i in tab)

print i "\t" tab[i]
} ' $* l sort -k2 -nr

Splitting each line with an empty string as the field separator puts each character into a sepa-

rate element of an array ch, and those characters are counted in tab; the accumulated counts

are displayed at the end, sorted into decreasing frequency order.

This program is not very fast on this data, taking 250 seconds on a 2015 MacBook Air.

Here’s an alternate version that’s more than twice as fast, just under 105 seconds:
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# charfreq2 - alternate version of charfreq

awk '
{ n = length($0)

for (i = 1; i <= n; i++)
tab[substr($0, i, 1)]++

}

END {
for (i in tab)

print i "\t" tab[i]
} ' $* l sort -k2 -nr

Rather than using split, it extracts the characters one at a time with substr. The sub-

string function substr(s,m,n) returns the substring of s of length n that begins at position

m (starting at 1), or the empty string if the range implied by m and n is outside the string. If n

is omitted, the substring extends to the end of s. Full details are in Section A.2.1 of the refer-

ence manual.

Gawk, the GNU version of Awk, is again much faster: 72 seconds for the first version and

42 seconds for the second.

What about another language? For comparison, we wrote a simple Python version of

charfreq:

# charfreq - count frequency of characters in input

freq = {}
with open('../beer/reviews.csv', encoding='utf-8') as f:

for ch in f.read():
if ch == '\n':

continue
if ch in freq:

freq[ch] += 1
else:

freq[ch] = 1
for ch in freq:

print(ch, freq[ch])

The Python version takes 45 seconds, so it’s about the same as Gawk, at the price of having to

write explicit file-handling code. (The authors are not Pythonistas, so this program can surely

be improved.)

There are 195 distinct characters in the file, excluding the newline at the end of each line.

The most frequent character is a space, followed by printable characters:

10586176
, 19094985
e 12308925
r 8311408
4 7269630
a 7014111
5 6993858
...

There are quite a few characters from European languages, like umlauts from German, and a

modest number of Japanese and Chinese characters:
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1 1
r 1
a 1
[ 1
1 1
2 1
5 229

The final character is 5 (h0i, black), which appears in the name of a potent Imperial stout called

simply ‘‘Black,’’ with the Chinese character as its alternate name:

Mikkeller ApS,2,American Double / Imperial Stout,Black (5),17.5

3.5 Basic Graphs and Charts

Visualization is an important component of exploratory data analysis, and fortunately

there are really good plotting libraries that make graphs and charts remarkably easy. This is

especially true of Python, with packages like Matplotlib and Seaborn, but Gnuplot, which is

available on Unix and macOS, is also good for quick plotting. And of course Excel and other

spreadsheet programs create good charts. We’re not going to do much more here than to sug-

gest minimal ways to plot data; after that, you should do your own experiments.

Is there a correlation between ABV and rating? Do reviewers prefer higher-alcohol beer?

A scatter plot is one way to get a quick impression, but it’s hard to plot 1.5 million points.

Let’s use Awk to grab a 0.1% sample (about 1,500 points), and plot that:

$ awk -F'\t' 'NR%1000 == 500 {print $2, $5}' rev.tsv >temp

$ gnuplot

plot 'temp'

$

This produces the graph in Figure 3-1. There appears to be at most a weak correlation

between rating and ABV.

Tukey’s boxplot visualization shows the median, quartiles, and other properties of a

dataset. A boxplot is sometimes called a box and whiskers plot because the ‘‘whiskers’’ at

each end of the box extend from the box typically by one and a half times the range between

the lower and upper quartile. Points beyond the whiskers are outliers.

This short Python program generates a boxplot of beer ratings for the sample described

above. The file temp contains the ratings and ABV, one pair per line, separated by a space,

with no heading.

import matplotlib.pyplot as plt
import pandas as pd
df = pd.read_csv('temp', sep=' ', header=None)
plt.boxplot(df[0])
plt.show()

It produces the boxplot of Figure 3-2, which shows that the median rating is 4, and half the

ratings are between the quartiles of 3.5 and 4.5. The whiskers extend to at most 1.5 times the

inter-quartile range, and there are outliers at 1.5 and 1.0.

It’s also possible to see how well any particular beer or brewery does, perhaps in compari-

son to mass-market American beers:
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Figure 3-1: Beer rating as a function of ABV

Figure 3-2: Boxplot of beer ratings sample.



SECTION 3.6: SUMMARY 49

$ awk -F'\t' '/Budweiser/ { s += $2; n++ }

END {print s/n, n }' rev.tsv

3.15159 3958

$ awk -F'\t' '/Coors/ { s += $2; n++ }

END {print s/n, n }' rev.tsv

3.1044 9291

$ awk -F'\t' '/Hill Farmstead/ { s += $2; n++ }

END {print s/n, n }' rev.tsv

4.29486 1555

This suggests a significant ratings gap between mass-produced beers and small-scale craft

brews.

3.6 Summary

The purpose of exploratory data analysis is to get a sense of what the data is, looking for

both patterns and anomalies, before hypothesizing about results. As John Tukey said,

The combination of some data and an aching desire for an answer does not ensure that

a reasonable answer can be extracted from a given body of data.

Be approximately right rather than exactly wrong.

Far better an approximate answer to the right question, which is often vague, than the

exact answer to the wrong question, which can always be made precise.

Awk is well worth learning as a core tool for exploratory data analysis, because you can use it

for quick counting, summarization, and searching. It certainly won’t handle everything, but in

conjunction with other tools, especially spreadsheets and plotting libraries, it’s excellent for

getting a quick understanding of what a dataset contains.

A big part of this is to identify anomalies and weirdnesses. As a colleague at Bell Labs

once told us long ago, ‘‘a third of all data is bad.’’ Although he perhaps exaggerated for

rhetorical effect, we have seen plenty of examples of datasets where a significant part really

was flaky and untrustworthy. If you build a set of tools and techniques for looking at your

data, you’ll be better able to find the places where it needs to be cleaned up or at least treated

cautiously.
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