
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780138249731
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780138249731
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780138249731

SOFTWARE ARCHITECTURE AND
DECISION-MAKING

This page intentionally left blank

SOFTWARE ARCHITECTURE AND
DECISION-MAKING

LEVERAGING LEADERSHIP, TECHNOLOGY, AND

PRODUCT MANAGEMENT TO BUILD GREAT PRODUCTS

Srinath Perera

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions;
custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2023946912

Copyright © 2024 Pearson Education, Inc.

Hoboken, NJ

Cover image: wowomnom/Shutterstock; AVA AVA/Shutterstock

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights
& Permissions Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-824973-1
ISBN-10: 0-13-824973-3

$PrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

Pearson’s Commitment to Diversity, Equity, and Inclusion
Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We
embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender,
socioeconomic status, ability, age, sexual orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to deliver
opportunities that improve lives and enable economic mobility. As we work with authors to create
content for every product and service, we acknowledge our responsibility to demonstrate inclusivity
and incorporate diverse scholarship so that everyone can achieve their potential through learning.
As the world’s leading learning company, we have a duty to help drive change and live up to our
purpose to help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

• Everyone has an equitable and lifelong opportunity to succeed through learning.

• Our educational products and services are inclusive and represent the rich diversity of
learners.

• Our educational content accurately reflects the histories and experiences of the learners
we serve.

• Our educational content prompts deeper discussions with learners and motivates them
to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any concerns or
needs with this Pearson product so that we can investigate and address them.

• Please contact us with concerns about any potential bias at https://www.pearson.com/
report-bias.html.

https://www.pearson.com/report-bias.html
https://www.pearson.com/report-bias.html

This page intentionally left blank

vii

This book is dedicated to my family: Miyuru, Basilu, and Nithika. Your presence brings
color and purpose to my life. And to my parents, whose unwavering love and trust continue

to astonish and uplift me.

I also extend my heartfelt gratitude to Frank for your steadfast support
throughout this journey to its realization. Your insights were invaluable in shaping

the core idea of this book.

This page intentionally left blank

ix

Contents
1 Introduction to Software Leadership � 1

Role of Judgment . 1

Goal of This Book . 3

Part I: Introduction . 6

Part II: Essential Background. 7

Part III: System Design . 7

Part IV: Putting Everything Together . 8

2 Understanding Systems, Design, and Architecture � � � � � � � � � � � � � � � � � 9
What Is Software Architecture? . 9

How to Design a System. 11

Five Questions . 12

Question 1: When Is the Best Time to Market? . 12

Question 2: What Is the Skill Level of the Team? . 13

Question 3: What Is Our System’s Performance Sensitivity? 14

Question 4: When Can We Rewrite the System? . 15

Question 5: What Are the Hard Problems? . 15

Seven Principles: The Overarching Concepts . 16

Principle 1: Drive Everything from the User’s Journey 16

Principle 2: Use an Iterative Thin Slice Strategy . 17

Principle 3: On Each Iteration, Add the Most Value for the
Least Effort to Support More Users . 18

Principle 4: Make Decisions and Absorb the Risks . 20

Principle 5: Design Deeply Things That Are Hard to Change but
Implement Them Slowly . 20

Principle 6: Eliminate the Unknowns and Learn from the
Evidence by Working on Hard Problems Early and in Parallel 22

Principle 7: Understand the Trade-offs Between Cohesion and
Flexibility in the Software Architecture . 23

x Contents

Designing for an Online Bookstore . 24

Designing for the Cloud . 27

Summary . 29

3 Mental Models for Understanding and Explaining
System Performance � 31
A Computer System . 32

Models for Performance . 33

Model 1: Cost of Switching to the Kernel Mode
from the User Mode . 34

Model 2: Operations Hierarchy . 34

Model 3: Context Switching Overhead . 35

Model 4: Amdahl’s Law . 35

Model 5: Universal Scalability Law (USL) . 36

Model 6: Latency and Utilization Trade-offs . 37

Model 7: Designing for Throughput with the Maximal Useful
Utilization (MUU) Model . 37

Model 8: Adding Latency Limits . 39

Optimization Techniques . 41

CPU Optimization Techniques . 42

I/O Optimization Techniques . 43

Memory Optimization Techniques . 44

Latency Optimization Techniques . 45

Intuitive Feel for Performance . 46

Leadership Considerations . 46

Summary . 47

4 Understanding User Experience (UX) � 49
General UX Concepts for Architects . 49

Principle 1: Understand the Users . 50

Principle 2: Do as Little as Possible . 50

Principle 3: Good Products Do Not Need a Manual:
Its Use Is Self-Evident . 51

Principle 4: Think in Terms of Information Exchange . 51

Contents xi

Principle 5: Make Simple Things Simple . 52

Principle 6: Design UX Before Implementation . 52

UX Design for Configurations . 53

UX Design for APIs . 54

UX Design for Extensions . 56

Leadership Considerations . 57

Summary . 57

5 Macro Architecture: Introduction � 59
History of Macro Architecture . 60

Modern Architectures . 62

Macro Architectural Building Blocks . 63

Leadership Considerations . 66

Summary . 68

6 Macro Architecture: Coordination � 69
Approach 1: Drive Flow from Client . 69

Approach 2: Use Another Service . 70

Approach 3: Use Centralized Middleware . 71

Approach 4: Implement Choreography . 71

Leadership Considerations . 73

Summary . 73

7 Macro Architecture: Preserving Consistency of State� � � � � � � � � � � � � � � 75
Why Transactions? . 75

Why Do We Need to Go Beyond Transactions? . 76

Going Beyond Transactions . 77

Approach 1: Redefining the Problem to Require Lesser
Guarantees . 78

Approach 2: Using Compensations . 78

Best Practices . 80

Leadership Considerations . 81

Summary . 83

xii Contents

8 Macro Architecture: Handling Security � 85
User Management . 86

Interaction Security . 88

Authentication Techniques . 89

Authorization Techniques . 90

Common Interaction Security Scenarios for an App . 93

Storage, GDPR, and Other Regulations . 96

Security Strategy and Advice . 98

Performance and Latency . 99

Zero-Trust Approach . 99

Take Caution When Running User-Provided Code . 100

Blockchain Topics . 100

Other Topics . 100

Leadership Considerations . 101

Summary . 103

9 Macro Architecture: Handling High Availability and Scale � � � � � � � � � 105
Adding High Availability. 105

Replication . 105

Fast Recovery . 107

Understanding Scalability . 109

Scaling for a Modern Architecture: Base Solution . 110

Scaling: The Tools of Trade . 111

Scale Tactic 1: Share Nothing . 112

Scale Tactic 2: Distribution . 112

Scale Tactic 3: Caching . 112

Scale Tactic 4: Async Processing . 113

Building Scalable Systems . 113

Approach 1: Successive Bottleneck Elimination . 114

Approach 2: Shared-Nothing Design . 115

Leadership Considerations . 117

Summary . 118

Contents xiii

10 Macro Architecture: Microservices Considerations� � � � � � � � � � � � � � � � 119
Decision 1: Handling Shared Database(s) . 120

Solution 1: One Microservice Updating the Database 121

Solution 2: Two Microservices Updating the Database 122

Decision 2: Securing Microservices . 122

Decision 3: Coordinating Microservices . 122

Decision 4: Avoiding Dependency Hell . 122

Backward Compatibility . 123

Forward Compatibility . 123

Dependency Graphs . 124

Loosely Coupled, Repository-Based Teams as an
Alternative to Microservices . 125

Leadership Considerations . 126

Summary . 127

11 Server Architectures � 129
Writing a Service . 129

Understanding Best Practices for Writing a Service . 130

Understanding Advanced Techniques . 132

Using Alternative I/O and Thread Models . 132

Understanding Coordination Overhead . 138

Efficiently Saving Local State . 139

Choosing a Transport System . 140

Handling Latency . 140

Separating Reads and Writes . 141

Using Locks (and Signaling) in Applications . 141

Using Queues and Pools . 142

Handling Service Calls . 143

Using These Techniques in Practice . 143

CPU-Bound Applications (CPU >> Memory and No I/O) 144

Memory-Bound Applications (CPU + Bound Memory and No I/O) 144

Balanced Applications (CPU + Memory + I/O) . 144

I/O-Bound Applications (I/O + Memory > CPU) . 145

xiv Contents

Other Application Categorizations . 145

Leadership Considerations . 146

Summary . 147

12 Building Stable Systems � 149
Why Do Systems Fail, and What Can We Do About Them? 149

How to Handle Known Errors . 151

Handling Unexpected Load . 151

Handling Resource Failures . 154

Handling Dependencies . 157

Handling Human Changes . 158

Common Bugs . 159

Resource Leaks . 159

Deadlocks and Slow Operations . 160

How to Handle Unknown Errors . 161

Observability . 161

Bugs and Testing . 161

Graceful Degradation . 163

Leadership Considerations . 163

Summary . 164

13 Building and Evolving the Systems � 165
Getting Your Hands Dirty . 165

Get the Basics Right . 165

Understand the Design Process . 167

Make Decisions and Absorb Risks . 169

Demand Excellence . 170

Communicating the Design . 172

Evolving the System: How to Learn from Your Users and
Improve the System . 172

Leadership Considerations . 175

Summary . 176

Index . 179

xv

About the Author
I started my architecting journey as an Apache open-source developer and have continued that for
20 years. I learned a lot by watching and later participating in architecture discussions in developer
lists for those open-source projects, which is a great place for an aspiring architect to start.

I have played a major role in the architecture of Apache Axis2, Apache Airavata, WSO2 CEP (Siddhi),
and WSO2 Choreo. I have designed two SOAP engines and worked closely with four. I was (and
continue to be) a committer (a developer who can commit to a code base) for Apache Axis, Axis2,
Apache Geronimo, and Apache Airavata.

I joined WSO2 in 2009. WSO2 products are used by many Fortune 500 companies such as airlines,
banks, governments, and so on. At WSO2, I played an architecture review role for 10+ projects and
100+ releases. I reviewed hundreds of customer-solution architectures and deployments and sat in
on thousands of architecture reviews.

At WSO2, when we faced a problem that could not be resolved by the immediate team, we set up
a war room, where a hand-picked team restlessly attacked the problem. I have been in many war
rooms and have led several, which have made me painfully aware of mistakes made in the software
architecture. I’ve had a front row seat to world-class technical leadership and have also built many
systems and learned from mistakes.

Later switching to analytics and AI-related topics, I co-designed WSO2 Siddhi and envisioned and
shaped the AI features in WSO2 Choreo. Throughout this time, I published 40+ peer-reviewed
research articles, which have been referenced by thousands of other research
publications.

I hope you enjoy this book. Given the central role software plays in the world today, I will be content
if this book helps make you a better software architect, knowing that I have contributed to better
software that will be the lifeblood of the world for many years.

Register your copy of Software Architecture and Decision-Making on the InformIT site
for convenient access to updates and/or corrections as they become available. To start the
registration process, go to informit.com/register and log in or create an account. Enter the
product ISBN (9780138249731) and click Submit. Look on the Registered Products tab for an
Access Bonus Content link next to this product, and follow that link to access any available bonus
materials. If you would like to be notified of exclusive offers on new editions and updates, please
check the box to receive email from us.

http://informit.com/register

This page intentionally left blank

Understanding Systems, Design, and
Architecture

What Is Software Architecture?
Software architecture is a plan to build a software system. This plan usually involves two things:
defining a system as a set of components and specifying how those components work together. In
complex systems, this decomposition happens recursively, where the architect breaks down each
component into smaller components and defines their behaviors.

There are good plans and bad plans. The same goes for software architecture. What are the goals of
good software architecture?

The overarching goal of software systems (hence, for software architecture) is to build systems that
meet quality standards and that provide the highest return on investment (ROI) in the long run or
within a defined period of time. Long run is the operative ideal here. For example, if we do not invest
long term and build a crappy product, we end up with unhappy users, ultimately losing their
revenue or spending too much money trying to make them happy. Cheaper in the short run is often
more expensive in the long run. You pay now, or you pay later. On the other hand, adding a critical
new feature, thus spending more money, can give us more revenue, improving the ROI.

Three kinds of uncertainty complicate architecting. First, we have a partial understanding of
our users and what they want. Second, we have a limited comprehension of how our systems
behave, especially in complicated and new situations. Third, we fail to recognize that as use

2

9

10 Chapter 2 Understanding Systems, Design, and Architec ture

cases and users evolve, their requirements change. Therefore, we want our architectures to be easy
to understand and flexible, enabling us to handle surprises.

When reaching for the best architecture, we can employ several best practices or tactics:

• Making decisions as late as possible. For example, when we start the design, we know the
least about a system and the problems we are supposed to solve. If we can postpone solv-
ing some problems, we have an opportunity to learn more. This approach lets us make better
design decisions.

• Envisioning a design that is easy to understand and to change. Problems change over time,
and we may face a few surprises. Because a system goes through frequent changes over its
lifetime, good architecture makes those changes easier.

• Saying no to features as much as possible. Many system features are rarely used, although
they were often deemed important at design time. Knowing the audience, implementing only
necessary features, and communicating why not may save us money in the long run.

Many argue that these tactics are always good, even considering them to be goals of the architec-
ture. I disagree. To me, even those tactics incur costs; thus, everything is relative, and these tactics
are useful only if they help us achieve the overarching goal. Let’s look at a few examples.

If we know that a use case will significantly change in the future, forcing us to rewrite the
system from scratch, we should not invest in making the current design extensible.

When writing a cloud app, we have two choices: We can choose a single cloud, taking advantage
of its unique strengths for our application, or we can make the application portable across several
cloud providers. Choosing only one cloud vendor makes development easier, but there is a chance
that we may have to rewrite the system or parts of the system if porting to a different cloud. The
cost of making the current version portable may be much higher than rewriting it, only if required.

You may have a great architecture that makes the system easy to change; however, it involves com-
plicated concepts that will be hard for the current team to handle. (It may have been an adverse
call forcing us to choose this architecture.) You fight with the army you have, at least until you have
resources to enlist a better army.

You may be a startup trying to get your MVP out. Then, chances are you will rewrite everything once
you are successful. You would not care for scale or even ease of change at this stage.

Uncertainties create risks, but the remedies have their costs too, which also create risks. Architecting
is balancing those risks. Context is king, and it is hard to architect with evergreen rules and to get
them right. To quote a Star Trek: Discovery episode:

Universal law is for lackeys. Context is for kings.

11How to Design a System

Understanding all types of risks, planning around those uncertainties, communicating the plan,
enlisting people, and managing risk along the way define leadership. This book discusses the leader-
ship process in software architecting.

How to Design a System
As discussed, design requires holistic decisions that keep the big picture and final goal in focus.
Although there are many good tactics such as creating designs that are easy to change, we need to
ensure the medicine is not worse than the problem. Gregor Hohpe explains that architecture cre-
ates options, just like financing alternatives, which is an apt analogy because having options also
incurs costs. Sometimes, it makes sense to have options, and sometimes it does not. An architect
must have options and the wisdom to recognize when not to use them.

System design is like war: You must know your enemy (the problem, how often it changes, etc.) and
your strengths and weaknesses of the team and yourself. Also, you must play the odds. For example,
if the cost of being portable is 50% more, but there is only a 10% chance that you will have to move
to a different cloud, then the expected cost of being portable early is 150%. However, if we choose
to not be portable, then there is a 10% chance that we will have to port later. Let’s assume that to
port later we have to do 250% more work. Then, the expected cost of not being portable is (100% +
250 * 10%) = 125%, which suggests that we should go with the nonportable choice.

Chapter 1 discussed the concept of business context, which includes not only TOGAF’s business
architecture but also other factors like project timelines, team skills, and competitive threats. It’s
this business context along with user experience that add complexity to software architecture. Any
given situation will present various trade-offs in terms of costs, which could include time, complex-
ity, required skills, and benefits like performance, stability, and speed to market. The relative impor-
tance of these costs and benefits varies depending on the business context and user experience.
Making these trade-offs and arriving at the right technical decision require sound judgment.

This book proposes five questions and seven principles that help us understand the context, acting
as guideposts for good judgment. Part II and Part III discuss knowledge and explain how it relates to
judgment.

As a reminder, the five questions include

• When is the best time to market?

• What is the skill level of the team?

• What is our system’s performance sensitivity?

• When can we rewrite the system?

• What are the hard problems?

12 Chapter 2 Understanding Systems, Design, and Architec ture

The seven principles are

• Drive everything from the user’s journey.

• Use an iterative thin slice strategy.

• On each iteration, add the most value for the least effort to support more users.

• Make decisions and absorb the risks.

• Design deeply things that are hard to change but implement them slowly.

• Eliminate the unknowns and learn from the evidence by working on hard problems early and
in parallel.

• Understand the trade-offs between cohesion and flexibility in the software architecture.

The five questions are designed to help us understand the terrain (or the business context). Starting
with time, team, and performance requirements, the effects of the first two questions are well
understood. Performance comes next because it determines how much precision we need in the
design. Many find the fourth question regarding rewrites odd, but I believe there is a natural second
phase to all projects, where we can rewrite the system. This question is crucial because it defines the
first phase and lets us defer some hard but not immediate problems uncovered by the fifth ques-
tion to the second phase. I believe this question significantly clarifies our scope.

Once we understand the terrain, the seven principles are about what to implement, when, and
how. The first principle tells us we should look at everything from the vantage point of the user
and choose only things that are useful for their journey. The second and third principles say that
we should iterate, starting with a thin slide, exploring the design space, and getting user feedback.
Next is the most important takeaway, making decisions and absorbing the risks. The fifth and sixth
principles are about going into depth, and the seventh principle reminds us that most good archi-
tectural practices come with a cost, and this principle balances advantages and costs.

Five Questions
Good questions make us think, uncover details, and transform our understanding. I have found
them to be a great tool when designing. These questions have helped me scope a system and dig
into it. They are designed to ground us in concrete situations and to avoid grasping for ideals that
often cause projects to fail.

Question 1: When Is the Best Time to Market?

The business, not the architect, decides the project timing. However, this is the first question that
we, as architects, need to ask. Time can be our enemy because, often, even skills and money can’t
change the timeline of the product.

13Five Quest ions

Time to market is everything, and our designs must incorporate these realities. When the deadlines
are strict, we can design with the knowledge that we will be able to rewrite the system beyond the
deadline.

My usual experience is that although the time-to-market deadlines are often not negotiable, fea-
tures that should go into that version are often flexible. My recommendation is to work with a UX
designer and product manager to understand the minimal features you must incorporate into the
design and do it as fast as possible, using the most straightforward approach.

Question 2: What Is the Skill Level of the Team?

Leadership is about working with your team. Some teams are so good they might handle the
system without any help from you at all. However, leadership is needed when we work with less-
than-perfect teams.

You go to war with the army you have, not the army you might want or wish to have at a later time.
—Donald Rumsfeld

Take a hard, realistic look at your team. Your team may be veteran superstars, handpicked and
employed by you over the years, fresh hires, or some mix of these. You must pick an architecture
your team can manage. For example, do not pick an event-driven architecture or CQRS (Command
and Query Responsibility Segregation)-based server unless you have a few people who have done
this before. Those kinds of architectures have high costs in understandability and debugging
challenges, and they most likely will cost much more in the long run unless the team understands
their finer details.

What if you feel in your gut that CQRS is the right solution, but you do not have experts on board to
achieve that architecture? I recommend designing the current version using a simple architecture
and starting a proof of concept (PoC). That way, you can try out the CQRS in the background with
the person who is most likely to handle it and with the hope that, in the second version, you will
undertake CQRS.

You might be thinking, “Can’t I train the team?” Yes, in some cases. For example, you might hire an
expert who works shoulder to shoulder with the team for a few months. However, a deeper
understanding of most complex systems takes time. My experience is giving someone a fingertip
feel for performance, keeping in mind that the ability to handle details like concurrency or an LMAX
disrupter takes at least a year, maybe two.1

Similarly, you should pick the programming language also based on the team. Programmers have
many skills acquired around a given programming language, and it is often tough to change.

1. https://lmax-exchange.github.io/disruptor/

https://lmax-exchange.github.io/disruptor/

14 Chapter 2 Understanding Systems, Design, and Architec ture

Certain abilities, like security and user experience, are essential. So, the leader must find a way to
cover these areas. Doing so could involve hiring a consultant or the leader personally stepping in to
support the team and provide guidance.

Rarely, the right choice could be to refuse to build certain software with a novice team. Instead,
sometimes (in a startup, for instance) you can build a limited version (e.g., that scales less), which
can then be used to justify more investment later. Even then, you need to make things very clear for
people who are making the investment and make sure they know the risks.

Question 3: What Is Our System’s Performance Sensitivity?

If a system operates close to the performance limits of a naive architecture, we say that the system
is performance sensitive. Architectural considerations change significantly between systems that are
sensitive and insensitive to performance.

The performance sensitivity of the system tells how much leeway you have and how much preci-
sion you need. Achieving a higher precision is like walking a tightrope; it is exponentially hard and
needs experienced developers. Thus, performance-sensitive systems need exotic techniques, careful
design, greater creativity, continuous performance measurements, and a feedback cycle. We need
to test and identify unknowns through experiments as soon as possible. We must have a thin slice
working end to end and invest early on in the system to collect detailed metrics on its mechanics.
We discuss this style of design in Chapter 3. All this adds complexity and cost.

We can design performance-insensitive systems using a fingertip feel for the performance and sim-
ple architectural choices. We discuss this approach in detail in Chapter 3. Hence, the answer to this
question significantly affects our architectural choices.

Note that many systems are performance insensitive. For example, using open-source service frame-
works such as a Spring Boot and a database, you can easily implement a service that handles a few
hundred requests per second. Even 50 requests per second are 4.32 million requests per day. With
most businesses, if you are getting that many requests, chances are that you are already successful
and can afford to write the second and third versions of the system. Most systems never need to
exceed this limit.

Here’s a second follow-up question: When we go beyond the limit of trivial implementation (e.g.,
50 requests per second), will we have enough money to rewrite the system? Always ask this ques-
tion: If we have that many requests, will we have enough money to rewrite the system? If the
answer is yes, you can start with a simpler design and wait.

A much trickier scenario is if use cases require operating with latency bounds. We discuss this topic
in Chapter 3. However, naive architecture can support (in most cases) expectations of latency of less
than a few seconds (e.g., 1–10 seconds).

15Five Quest ions

Question 4: When Can We Rewrite the System?

The fourth question helps us accept that we will rewrite the system eventually. For example, if you
are a startup, do not try to build the architecture that you will need when you have a few billion
users and hundreds of millions of dollars in revenue. When you get there, you will have enough
money to rewrite the system several times over. Most successful systems have been rewritten many
times over.

The common objection is that it would waste money to redo the system. Yes, it will cost, but to
believe that you can think through all the details of a system as it will be in three to five years down
the line is arrogance. There is so much uncertainty along the way. Chances are your system will not
work for the first few moderate trials and will take longer to deliver.

Instead, be humble. Make the system work for the first 10,000 to 50,000 users, learn from them, and
rewrite when the time is appropriate. Often, that time is not that far into the future. This approach
helps us to be lean and simple, focusing on a few key problems, yet solving those systems properly.
Do Things that Don’t Scale!!.

Also, with the new IDEs, it is comparatively easy to refactor and redesign logic into a new structure.
My belief is that we should plan to rewrite beyond key milestones (e.g., startup PoC to first serious
funding round or beyond a million users). Having accepted that we will rewrite, we often realize that
many features or guarantees can be done in the next rewrite.

Question 5: What Are the Hard Problems?

With the line of thinking I am proposing, it is easy to forget hard problems or push them out to the
future. This question guards against such procrastination. But, sometimes, the hard problem is unre-
lated to the software, which is someone else’s problem.

Most systems are part of a competitive landscape. We must, therefore, ask this question: What is our
competitive advantage? If the competitive advantage is in the software, we have to work hard to
achieve that. By definition, good competitive advantages are difficult. Otherwise, your competition
would have already accomplished that or will do it once they figure it out. We can’t achieve sustain-
able competitive advantages by doing as little as possible.

If your hard problems do not give you competitive advantages, then there is a good chance you can
learn about hard problems from others. Likely, others have done it before, which can save you a lot
of time and money. If a hard problem provides a competitive advantage, you must invest your time
and energy in solving it. You need to invest in those as PoCs, independently of the system’s design.

You need to start this process as early as possible. To do so, we should first ask the question: What is
the minimal implementation that tests the idea? Then we should conduct a PoC to test it. We should
bring the PoCs into the system after eliminating uncertainties in the simplest way possible.

16 Chapter 2 Understanding Systems, Design, and Architec ture

In summary, we need to identify hard problems and handle them differently. Postponing them is
not advantageous. We should identify problems that need long-term work and start fixing them
early on, giving us time to get them right.

Seven Principles: The Overarching Concepts
Several overarching concepts (tactics) will help us achieve good software architecture. However,
they may not always help, so we must evaluate them against the end goal of the system and use
what is helpful.

Principle 1: Drive Everything from the User’s Journey

The user journey defines what they can and will do with the system. It is not what is written down in
the requirement specification. It is everything that can happen. The user journey, however, is never
fully defined. It evolves as the user evolves and includes almost unlimited possibilities. For example,
if we consider a bookstore, the user journey is what people do when they come in, and that is never
fully defined. Do users want to search by the number of pages in the book? Do they want a specific
author, or are they looking for a specific topic? Perhaps the user journey in this instance is to look
only at journals.

We must strive to understand the user journey in as much detail as possible, covering the most
important scenarios. Doing so provides a basis for building great UX and stops us from building
unnecessary features.

UX makes or breaks a system. To provide a vivid example, “The Secret Startup That Saved the Worst
Website in America,” by Robinson Meyer explains how bad user experiences at Healthcare.gov
almost broke the Affordable Care Act (ACA).2 Many users gave up when registering, even though
the alternative was not being able to go to a hospital when needed—the UX stopped even desper-
ate users! UX alone does not make our systems successful, but without a good UX, our users won’t
have a chance.

The greatest source of errors in our architectures is unused or rarely used features, wasting time and
money spent on them. The first step in reducing such features is to understand the user journey and
evaluate everything in terms of the feature’s utility to the user and the cost of forgoing the feature.
We should build things that add value, not things that are easy regardless of the value.

Most systems have multiple groups of users who are interested in different parts of the user
journey. We can never support all the users in all aspects of the user journey. We must choose
one or the other. We have to make those choices deliberately and continuously. We return to

2. https://www.theatlantic.com/technology/archive/2015/07/the-secret-startup-saved-healthcare-gov-the-
worst-website-in-america/397784/

http://Healthcare.gov
https://www.theatlantic.com/technology/archive/2015/07/the-secret-startup-saved-healthcare-gov-the-worst-website-in-america/397784/
https://www.theatlantic.com/technology/archive/2015/07/the-secret-startup-saved-healthcare-gov-the-worst-website-in-america/397784/

17Seven Pr inciples : The O verarching Concepts

this topic in the second principle. Furthermore, when we make a decision about the architecture, we
need to consider these additional questions:

• How does this affect the user journey?

• How much value does it add?

• Is there something else we can do that adds more value?

Principle 2: Use an Iterative Thin Slice Strategy

Premature optimization is the root of all evil. —Donald Knuth

There are two ways to build systems. The first approach is to build all the parts and then integrate
them. In my experience, most problems surface in the integration step, often adding months, if not
years, to the project. The second approach creates a thin slice of the system that goes end to end
and is useful at each step, using the most simple architectural choices. Then we identify bottlenecks
and improve those, add new features, and replace anything only later, implementing complex archi-
tectural choices as needed.

When we are writing a basic application, this means getting the main path working as soon as
possible, not worrying about the performance in the first round, then profiling the system and
improving it to handle bottlenecks. With advanced compilers like JIT (Just In Time) that do many
optimizations, it is tough to guess what parts need special handling. It is better to write simple code
and optimize it only if and when needed.

Using this approach with a distributed app is a bit harder; however, the same idea works. Start with
the most straightforward architecture and iteratively improve it. This also means integrating and
merging new code as soon as possible. In other words, do small commits.

The Wright brothers are a great example of the power of this approach. Working with limited funds
to build an airplane, they competed against well-funded professionals. Their competitors focused
on creating the best design, building the plane, and then flying it. Opponents thought (perhaps,
arrogantly) that they could think through all contingencies and build a plane that would fly on the
first run. However, every time it failed to fly, it wrecked the prototype, setting them back months.

In contrast, the Wright brothers used an iterative thin slice strategy. They focused on first building a
glider that worked, one that could land successfully, and then preserving the prototype. This strat-
egy enabled them to do many more test flights. They perfected the glider and figured out how to
control it. Then they added propellers and engines, gradually converting the glider into an airplane.
This approach allowed them to learn, to tinker, and to experiment without months of setbacks at
each failure.

An iterative thin slice strategy creates a powerful feedback cycle. This thin slice approach enabled
the Wright brothers to improve gradually while in competition with much greater brain power and
millions of dollars.

18 Chapter 2 Understanding Systems, Design, and Architec ture

Unless you have a specific reason, always start with simple architectural choices. Measure the
system, find the bottlenecks, and improve the system later; choose complex architectures only if
needed. (Parts II and III describe some default choices and more complex selections for many
situations.)

When undertaking the thin slice strategy, I have seen that simple architectures are enough to sup-
port systems over the years. A great example comes from threading models where the request per
thread (with a pool) is inefficient, and nonblocking architectures can do much better. However, the
resulting code from nonblocking models is harder to read, and it is not easy to find people expe-
rienced in writing this code. For many use cases, a simple request per thread model is sufficient
throughout its life cycle. Let’s keep our systems as simple as possible, starting unambiguously and
then gradually adding complexity.

Another advantage of the thin slice strategy is that it forces everyone to integrate code early, fix-
ing any misunderstandings about design before they come to a head and become overwhelming.
This strategy works because it rapidly creates a working system, unlocking feedback, and enables
us to uncover integration problems early. This approach gives us the time and the opportunity to
improve and fix any problem we might encounter.

Principle 3: On Each Iteration, Add the Most Value for the Least Effort to Support
More Users

As discussed, when designing the software architecture, we want to use an iterative approach that
starts with limited features and then gets user feedback to improve the system. On each iteration,
we want to add the most value for the least amount of effort. This means avoiding features that
have little value, delaying less value-adding features to later iterations. It is important to note that
most systems have many different user groups, and certain features add unique value for different
users.

The user journey provides a powerful lens for making feature-related decisions. In most products,
many users do only a few critical things. Find those and optimize for them. Doing this is the secret
behind Apple’s legendary UX. The podcast “Inside the Apple Factory: Software Design in the Age of
Steve Jobs” describes Apple’s approach in detail.3 At Apple, about one-third of most teams are UX
experts, so their UX quality is not an accident; they invest in it. Also, at Apple, any feature starts with
the product lead (or product manager) and UX experts who then do mockups and iterations for
stakeholders until the design is perfect. The code comes later.

Investing in such a process early on removes a lot of future changes and also provides a strong basis
for accepting or rejecting future feature requests. Consequently, features won’t be what is easy to
implement but what is required by the end user.

3. https://www.youtube.com/watch?v=kl2Flp4oK-g

https://www.youtube.com/watch?v=kl2Flp4oK-g

19Seven Pr inciples : The O verarching Concepts

The first step for this principle is defining value. This step can mean supporting the most
number of users, users who bring the most revenue, or users who can give the product the most
exposure. We may even use different value criteria at different stages of the product. Examine the
user journey to identify features that would add the most value by focusing on user groups that
bring in the most value. In line with this principle, the following are concepts I try to follow:

• Principle 3.1: It is impossible to thoroughly think through how users will use your product,
so embrace a minimum viable product (MVP). The idea is to identify a few use cases, do only
features that support those cases, get feedback, and shape the product based on the feedback
and experience from the MVP.

• Principle 3.2: Do as few features as possible. When in doubt (e.g., when the team disagrees),
leave it out. Many features are never used, so you might develop an extension point instead.

• Principle 3.3: Wait for someone to ask for the feature. If the feature is not a deal-breaker, wait
until three people ask for it before focusing on implementation.

• Principle 3.4: Have the courage to stand your ground if the features the customer requests
adversely affect the product. Focus on the bigger picture and try to find another way to han-
dle the problem.

Remember the quote often attributed to Henry Ford: "If I had asked people what they wanted,
they would have said faster horses." Also remember that you are the expert. You are supposed
to lead. It is the leader’s job to do what is right, not what is popular. Users will thank you later
(fourth principle).

• Principle 3.5: Look out for Google envy. Do not overengineer. We all like shiny designs. It is
easy to bring features and solutions into your architecture that you will never need. For fea-
tures such as quality of service (QOS) improvements, scale, and performance limitations, wait
until those requirements are imminent. Also, approach the product with the mindset that you
will rewrite it. Implement what you want now.4

• Principle 3.6: When possible, use middleware tools or cloud services. For example, consider
authentication and authorization. If you decide to implement these, it will create a lot of fea-
ture requirements in the future. For instance, you will need a user registration flow, password
recovery, and attack detection. Using an identity and access management (IAM) tool supports
all those features, and IAM will continue to evolve its product as requirements change. The
same idea applies to message brokers, workflow systems, payment systems, and so forth.

• Principle 3.7: Interfaces and other abstractions are techniques for creating options
and delaying decisions. Use them carefully. Like financial options, software options also

4. For details, see “You Are Not Google” at https://blog.bradfieldcs.com/you-are-not-google-84912cf44afb.

https://blog.bradfieldcs.com/you-are-not-google-84912cf44afb

20 Chapter 2 Understanding Systems, Design, and Architec ture

have costs. Learn to be mindful of them. Know that this presents a trade-off, thus a judgment
call and, hence, a leader’s responsibility. For example, a common mistake, or anti-pattern, is
too many abstraction layers, which creates a terrible performance impact when we ignore the
cost of abstractions.

This UX approach should go beyond UIs. We must use the same approach with APIs and internal
and external messages because these formats are hard to change later. Create those APIs and mes-
sage formats, iterate, and get feedback. Remember, we must design deeply but implement as little
as possible.

There is one exception to implementing features as late as possible. This minimal approach does not
work with features you’ll need as a competitive advantage or for security. You must invest in them
independently of the design process. The sixth principle addresses these unknowns.

Principle 4: Make Decisions and Absorb the Risks

The most senior technical person in the project (whom I call the chief architect) must make deci-
sions and absorb the risks. Any project faces many uncertainties; for example, how much load and
latency limits should the first version of the system have? The reality is that, often, nobody knows
that number. We often ask customers, and they do not know it either. However, someone has to
put down the numbers so that the team can go ahead and hit the target date. Without a target, the
team can lose much time in indecision.

Richard Rumelt’s book Good Strategy, Bad Strategy (Profile Books, 2011) provides a great example of
this principle. When beginning to design a moon rover, nobody knew the moon’s surface. The team
designing the first such vehicle was stuck. Phyllis Buwalda, director of NASA’s Future Mission Space
Studies team, wrote a specification for the moon’s surface based on the toughest desert on Earth.
She understood that unless she took the risk of specifying the target, much time would go to waste.
By writing the specification, she absorbed the uncertainty on her shoulders, thus enabling the team
to make real progress.

Similarly, the chief architect must collect the required data, perform the necessary experiments, and
yet, at the end, understand the unresolvable uncertainties (such as how much load the system will
get) and make decisions that set concrete targets. Leaders must remove ambiguity and create
targets that are solvable.

Principle 5: Design Deeply Things That Are Hard to Change but Implement Them
Slowly

In my opinion, this fifth principle is the crux of designing software systems. We should design
deeply but implement slowly. Let’s explore what this means.

I usually advocate simple designs and adding complexity only when needed. However, some parts
of the design are hard to change, such as

21Seven Pr inciples : The O verarching Concepts

• APIs exposed directly to customers

• APIs of highly shared services

• Database schemas (if we deploy a product that uses a database in the customer
premises)

• Shared data, objects, and message formats

• Technology frameworks

When designing, we need to expend significant energy in designing parts like APIs and database
schemas. These designs must go through a lot of reviews and iterations before putting them out to
the customer. For example, with APIs, even if we version those that are exposed to our customers,
old releases hang around for a long time. They are hard to change, even beyond a rewrite. APIs of
shared services are also difficult to change because that would require coordinated releases.

To understand what is hard to change, we must design the system deeply. At the design level, we
need to dive thoroughly into creating a design that can potentially solve the entire problem and
even create PoCs as needed. Having a potential design opens our eyes to possible surprises and
enables us to learn more from evidence as they come up. Designing early and deeply lets us start
discussions and build consensus from the start, which often consumes a lot of time.

When designing deeply, know that it’s impossible to go deep into every aspect of the software due
to limited time and resources. For any part of the system that we can change and evolve without
affecting the rest of the system and for those that do not contain significant unknowns, we can
defer the details to a later date. Doing this properly requires judgment. Unless we do this, however,
we will drown in the details.

For example, writing a service is a well-understood problem, but unless we see the need for that
service to handle complexity (e.g., large throughput, large messages), we can defer the implementa-
tion details after defining the APIs. In general, if an API or interface hides the implementation details
and that is understood, we can delay the implementation design. Thus, designing deeply should
focus on APIs, interfaces, and their interactions. We must, however, realize that the current design
will be based on our incomplete understanding of the problem and will evolve over time.

The deep design does not imply an urgency to implement it. Doing things slowly lets us implement
things with more understanding and helps avoid future changes. Bring about things only when
your user journey analysis indicates that they are necessary and that they add significant value.
Designing deeply, implementing slowly, and using the judgment required to do this efficiently and
decisively are hallmarks of a great architect.

22 Chapter 2 Understanding Systems, Design, and Architec ture

Principle 6: Eliminate the Unknowns and Learn from the Evidence by Working on
Hard Problems Early and in Parallel

Detect unknowns early and systematically eliminate them rather than trusting your luck. Often this
effort requires experiments to resolve them, which is one of the chief architect’s key responsibili-
ties. Resolving unknowns requires trial and error, which usually takes time. Proactively exploring
unknowns gives us enough time to inspect those problems and find the right solutions. This fore-
sight differentiates a great architect from a good one.

Kelly Johnson, the aircraft designer, offers a great example. Designing aircraft for Defense Advanced
Research Projects Agency (DARPA), his team built the first aircraft that goes three times faster than
sound (Mach 3). Wind tunnels at that time could not simulate wing design at this speed. Kelly found
a simple solution: He collected data by borrowing 400 missiles, mounted different wing designs on
them, and conducted experiments.

Experiments are a crucial tool in any designer’s arsenal. Because it is much easier to do experiments
with software than with an aircraft; we have little excuse for not doing them. One of my advisors
used to say never argue or analyze something that you can check with fifteen minutes of code.

This principle also ties in with the deep design that allows us to proactively identify unknowns
beyond what is apparent at first glance. If we believe a certain part of the design is unknown and
risky, we need to dig into that part early to give us time to resolve the unknown.

There is a second related point. With software, it is easy to rerun something. Yet, we do not want to
build monitoring into the system and are bad at collecting enough data to understand what is really
happening. Ironically, because it is easy to collect the data, we never collect it. Yet, complex prob-
lems and situations do not happen often and are hard to recreate. Unless we collect data, it is hard
to learn from these situations, robbing us of an opportunity to fix bugs and to deeply understand
the system.

In contrast, designers in many other disciplines such as vehicle design, aeronautics, and medicine
have only a few experiments about a particular topic at their disposal. Hence, they collect a lot of
data and usually know much more about their systems than software professionals do.

We should add monitoring into our systems early and take the time to instrument it. For example,
we can measure operating system telematics, queue sizes, selected traces, timed breakdowns,
and throughput at different places in our system. Also, because it is not practical to comb through
the data daily, we should automate the analysis process as much as possible. Careful monitoring
enables us to learn a lot from every situation.

Monitoring has a minor performance penalty. Yet, in the long run, we will save money by building
better systems. This kind of monitoring is essential for the feedback loop if we operate within tight
performance constraints.

23Seven Pr inciples : The O verarching Concepts

Principle 7: Understand the Trade-offs Between Cohesion and Flexibility in the
Software Architecture

As budding architects, we learned about the principles of flexibility and cohesion in the architec-
ture. Venkat Subramaniam’s talks are a great source for understanding these principles.5 However,
most of these principles have costs too. Hence, software architecture must be evaluated in its con-
text, which we explored in the five questions, but sometimes we have to break the principles to cre-
ate the best architecture.

Flexibility refers to the ability of the system to change. As mentioned, flexibility also costs and can
be more expensive. For example, as we discussed earlier in this chapter, flexibility to run on multiple
clouds can, on average, be more expensive than building for one cloud and redesigning if and when
it’s needed.

Cohesion broadly means that architectural concepts are applied throughout the system. A common
thing to check is whether the system reuses its components or services everywhere. An ideal system
should be composed of services or components that handle one aspect (e.g., only logging, security,
messaging, registry, mediation, or analytics), and all parts of the system must reuse those aspects
when needed without reimplementing them. If you need configuration parsing, use configuration
parsing components. If you need logs, use the logging component. This extends the DRY principle
(Don’t Repeat Yourself) from code to architecture.

In modern architectures, this reuse can happen at the library level (same process) or at the service
level. Unfortunately, trying to enforce this principle too rigidly can lead to problems. For example,
asking every service to call a configuration service or query builder service can be too much (but
not always). Sometimes, bringing in a component can also be too complicated because it brings in
other dependent components in turn. Simple features can cascade into significant changes. I saw an
example of this, where adding mediation dependency to an identity server added hundreds of new
dependencies.

The most unfortunate use of cohesion happens as follows: We detect some aspects of one service
that can be reused by another service and ask the first team to refactor and create a new service or
a component. The second team incorporates this service into their system. This kind of refactoring,
which forces close communication between multiple teams, should be done only when it is abso-
lutely necessary.

Usually, it is not worth doing this to reduce duplication slightly. I have done this and paid the price.
With hindsight, I am now willing to live with some level of duplication and inconsistencies when fix-
ing those results in significant complexity. The cure, sometimes, can be worse than the disease.

It is useful to think about architecture as a way to build systems that are cheaper in the long run and
tactics as tools in your toolbox. We use tools only when they make sense. In the next section, we
look at a sample system to explore how to use these questions and principles.

5. See http://alex-ii.github.io/notes/2017/12/09/core_design_principles.html.

http://alex-ii.github.io/notes/2017/12/09/core_design_principles.html

24 Chapter 2 Understanding Systems, Design, and Architec ture

Designing for an Online Bookstore
As a running example, let’s consider an online bookshop, where users can search for rare books,
order them, make payments, and then track the order until it is delivered. It also includes returns
and any after-sales services. This example will show us how to use the concepts mentioned in this
chapter in real use cases.

As previously noted, a solid design process begins with an understanding of the business context.
Take, for example, a bookstore, which can range from being quite simple (like a friendly neighbor-
hood bookstore that announces new arrivals via WhatsApp) to extremely complex (like Amazon).
These differences are shaped by the unique business context.

It falls to leadership to ensure the business context isn’t lost when faced with making tough choices
or trade-offs at the information system or technology levels. We’ve already discussed five questions
that aid in understanding the business and technical context, as well as seven principles for itera-
tively improving the system’s design in the realm of software architecture.

Furthermore, as we’ve previously discussed, our conversation primarily centers on the design layer
of the information system.

First, let’s consider the business context. We have six months to take the product to market with an
average team. Our initial goal is to establish the product in the market. We do not know how much
load we can expect. However, the back-of-a-napkin calculator shows us 50–100 TPS (Transactions
per Second) throughput, which means that the business will be in good shape. It is fair to assume
that we can rewrite the system at that point.

A developer cannot make this decision; one of the leaders has to make it, which is an example of
the fourth principle. The two unknowns are transaction processing at scale and book recommenda-
tions. We are able to differentiate the first problem because we need only 50–100 TPS. We need to
start exploring the recommendations soon because this is unknown to the team.

As per the first principle, we should start by understanding the user journey. My recommendation
is to start with a UX design. In my experience, writing a requirement specification does not work
well because neither designers, developers, nor users can see the fine points in the design without
experiencing the system. We need an iterative approach. A mocked UX lets everyone experience the
system and iterate it.

As we alluded to previously, the design has many levels of recursive abstractions. A typical system
would have a macro-level architecture that describes different services, data stores, and other
middleware and how they relate to each other. Then, each service would have an architecture that
describes different components and how they relate to each other, and each component would
have an architecture on the code level and how those code segments relate to each other. This
book focuses primarily on the first two levels. We discuss how to architect the overall system in
Chapters 5–10 and how to architect individual services in Chapter 11.

25Designing for an Onl ine Bookstore

Having narrowed down the UX, we should focus on the macro architecture. Figure 2.1 shows a typi-
cal macro architecture for the bookstore. Typical software architecture in the 2020s would use data-
bases to store the state: a set of (stateless) services that handle business logic. Those services are
used in one of three ways: a single-page application (SPA) running in the browser, a mobile app, or
direct API calls. (Chapters 5–10 discuss these in more detail.)

User

Scheduled
Tasks

LB
 +

 A
P

I M
an

ag
em

en
t

Recommendations

Identity
(IAM)

Search

Shopping
Cart

Fulfillment

Returns
Courier

APIs

Payment
Gateway

Browser

APIs

Activity Store

Catalog

Inventory

User Events

Figure 2.1
A typical macro architecture for the online bookstore.

Services are loosely coupled with other services. If we use microservices concepts in our macro
architecture, each service can be developed, released, and deployed independently. Identifying ser-
vices given a problem is called service decomposition, which is a crucial skill of an architect. Chapter
5 discusses it in more detail under SOA.

Once we have identified services, the next step is to identify interservice interactions and to define
message formats (APIs) for those interactions. At this point, our “do as little as possible” approach
applies some friction.

It is hard to change the message formats or API of a widely used service later. We must
spend time thinking through these interactions and develop a mature set of APIs. We can
use user interactions identified in our UX design in this phase. Following the fifth principle,
at this point, we should design deeply, define message formats, and think through immediate
and long-term use cases. As part of thinking deeply, we should also define the database schema.

26 Chapter 2 Understanding Systems, Design, and Architec ture

When we deeply design both schemas and APIs, it clarifies most of the design. It is a good idea to
take a lot of feedback and discussion about APIs and databases to ensure we get them right.

As mentioned, we implement slowly, learning and revising the design as we go on. A far-reaching
API design gives us a broad and balanced understanding of the system. Public APIs need extra care,
however. If well-defined message standards exist, we should adopt them as much as possible. For
example, using JWT (JSON Web Tokens) tokens for authentication saves us the need to define a
token format and also gives us the flexibility to change our identity server later.

Once we have a design, we should plan the implementation. As principles 2 and 3 mention, we
should first identify a thin slice and get that working. This could be the ability to see a book, select
it, and order it. Each iteration after that should create features to maximize the value they add. For
example, iterations can add search, shopping cart, returns, recommendations, and so on to our
online bookstore.

In parallel, as per principle 6, we need to start exploring hard problems such as recommendations
and even scalable transaction processing. The reason is that we need time to get them right.

After identifying the abstract architecture, while implementing iterations, we should design our ser-
vices. We can do this by deciding which parts to develop, which parts to reuse, and how to imple-
ment them. Here are some examples:

• We can implement each service using tools like Spring Boot and MySQL. For services such as
IAM and payment APIs, we can use either an off-the-shelf middleware or an SaaS (Software as
a Service) solution.

• We can implement fulfillment and return services using a message queue or a workflow
system, due to their asynchronous and long-running nature.

The final choice needs to factor in considerations such as time to market, required performance, and
the experience of the team. My recommendation is to start simple and add complexity as needed
unless you have prior experience in building similar systems.

At some point in the middle of development, we should take the product to customers. This point
is called minimum viable product or minimum lovable product. It can start with friendly users and
expand to more and more users.

At each step, we should strive to learn. Although we have a design, we can modify it if our learning
suggests changes. Note that this process continues as long as the system is live.

From the viewpoint of TOGAF’s three layers, the majority of the architecture we’ve talked about
falls into the category of information systems architecture. Yet, most decisions are influenced by
the business context, which expands upon TOGAF’s business architecture. We delve into technol-
ogy architecture only when we discuss specific technologies, like Spring Boot or MySQL, and that’s
mainly done as examples or to illustrate complexity.

27Designing for the Cloud

Designing for the Cloud
Several exciting possibilities open up if we are designing the system for the cloud. We have two
choices:

• Shallow cloud integration: We write our services, pack them as containers, and run them in
the cloud using cloud services for databases and storage only. Such a design architecturally
behaves similarly to on-premises systems.

• Deep cloud integration: We build the system using the cloud as much as possible, replacing all
services with serverless functions and as much functionality with cloud and SaaS services.

Figure 2.2 shows an example of architecture for a bookshop that uses the cloud as much as
possible.

Cloud Services

Courier APIs
(SaaS)

Payment
Gateway
(SaaS)

User

Browser

APIs

Catalog (DBaaS)

Fn - Serverless Function
SaaS - Software as a Service
DBaaS - Database as a Service

User Events

Inventory (DBaaS)

LB
 +

 A
P

I M
an

ag
em

en
t (

S
aa

S
)

Analytics for
Recommendations

(SaaS)

Identity and Access
Management

(SaaS)

Returns (fn)

Fulfillment
(fn)

Shopping
Cart (fn)

Search (fn)

Scheduled Tasks
as a Service

Figure 2.2
Software architecture for a bookshop that uses the cloud.

Choosing such an architecture yields several advantages. First, it provides a faster time to market
because it

• Needs less coding and configuration

• Avoids boilerplate code such as security logic with configurations

28 Chapter 2 Understanding Systems, Design, and Architec ture

• Replaces functionality with API calls

• Focuses on business logic instead of plumbing

• Provides HA, scalability, and DevOps out of the box

Second, it lowers platform costs by providing a true, pay-as-you-go model while eliminating idle
time costs. Most applications have variable loads. However, according to the central limit theorem,
when many of those variable loads are aggregated, the resulting workload has a predictable distri-
bution curve even if the individual workloads are not predictable. Consequently, cloud platforms
can operate with fewer resources despite the additional overhead. As a result, cloud providers enjoy
substantial savings through economies of scale, which they can pass on to the users.

Third, cloud platforms lower development costs by taking over DevOps and monitoring costs. Cloud
platforms can deliver DevOps and monitoring for a fraction of the cost, using economies of scale,
tools, and optimized operations. They can also pass on some of those savings to the end user, creat-
ing a win-win situation for both.

Fourth, cloud architectures provide predictable costs, tying costs to the amount of work the system
receives, thus reducing capital expenditures and the risks of operating the system. Usually, doing
more work brings organizations more money; hence, having cost tied to future revenues is a wel-
come development. Because cloud platforms are metered with fine granularity, they provide greater
insights into managing costs.

Cloud-based architectures also have disadvantages:

• A deep cloud integration invariably creates a lock-in restriction, making it hard and expensive
to move away from a cloud provider after going to production.

• Using the cloud requires the team to learn new programming models. Furthermore, cloud
platforms are opinionated, forcing programmers to follow preset patterns, allowing users little
or no leverage to get those fixed if cloud features do not fit well with their requirements.

• The cloud can be more expensive than other options if the system receives a significant load
around the clock.

An architect must balance these pros and cons and decide on which approach to use, based on the
key questions we discussed in this chapter. Sometimes, it may be more economical to accept the
lock-in and commit to rewriting if we have to move out of the cloud.

Next, we move on to Part II, where we discuss performance and UX concepts, which are key tools
for good design. However, if you do not want to delve into technical details, you can skip to Part III,
where we discuss macro-level and micro-level design.

29Summar y

Summary
Following are key takeaways from this chapter:

• Software architecture is a plan to build a software system.

• The overarching goal of creating a software system (hence, for software architecture) is to
meet quality standards and ones that are more economical in the long run.

• Although there are essential tactics (e.g., making code easy to change, avoiding lock-in), we
should evaluate each of those tactics not as something that stands alone but as something
that is a part of the whole. For example, sometimes, it might make sense to accept lock-in and
go to the cloud if in the long run it is cheaper to rewrite the system than switching to a new
cloud provider.

• The best design depends on the context. Hence, it is a matter of judgment.

• We discussed five questions and seven principles that can help us make the right judgment
calls when designing and implementing software systems. We saw those questions and
principles in action by way of an example.

This page intentionally left blank

Index

Numbers
80/20 rule, 32

A
abstraction, 19–20, 24
access control

Relationship-based, 92
role-based, 91–92

ACID (Atomicity, Consistency, Isolation, and
Durability), 65, 76

ACL (access control list), 91
Active Directory, 86
active-active/active-passive replication, 106
ad hoc diagram, 172
ADM (architecture design model), 5
admission control, 40–41, 46, 153–154
Agans, D., 161
agile, 5
aircraft, 3–4

Blackbird, 4
experiments, 22

Amdahl’s law, 35–36, 142
API, 20, 21, 158

backward compatibility, 123

client library, 55
CORBA, 61
design, 21, 168
forward compatibility, 123–124
internal, 54
manager, 64
message format, 25–26
nonblocking, 134–135
public, 54
standards, 55
UX design, 54–56

APM (Application Performance Monitoring), 161
append-only processing, 44
Apple, 18, 56
application, 33
apps and application/s

balanced, 144–145
CPU-bound, 144
failure specifications, 75–76
interaction security. See interaction

security
I/O, 143
I/O-bound, 145
iOS, 56
memory-bound, 144

179

180 I ndex

multi-user, 88–89
non-multi-user, 88–89
portability, 10
single-page, 94

architecture/architectural, 4, 6, 169.
See also microservices

BFF (backend-for-frontend), 93, 94–96
business layer, 4
cloud, 28
CORBA, 61
designing for the cloud, 27–28
distributed, 59
fast recovery, 107–109
gossip, 65
HA (high availability)

fast recovery, 107–109
replication, 105–107

information systems layer, 4–5
macro, 24, 59–60, 63–64. See also

macro architecture
modern, 62–63
owner, 169
scalability, 109–110

async processing, 113
caching, 112
distribution, 112
shared-nothing design, 112, 115–116
successive bottleneck elimination,

114–115
security strategy, 98. See also security
server, 132

comparing, 137
event-driven, 134–135
staged event-driven, 135–136
thread-per-request, 132–134

service-oriented, 59
shared-nothing, 110
technology layer, 4
thread-per-request, 132
three-tier, 60

arrival rate, 40, 151–152
asynchronous calls, 71
attacks, DoS (denial-of-service), 100–101, 154
attribute-based authorization, 92

authentication, 87, 89–90
coupling with authorization, 93
zero-trust model, 99–100

authorization, 90–92
complex models, 92–93
coupling with authentication, 93
token-based, 99

autoscaling, 152–153
availability, 157–158

B
A/B test, 174
back pressure, 153–154, 158
backward compatibility, microservice, 123
balanced applications, 144–145
Ballerina, coordination logic, 71
best practices

software architecture, 10
transaction, 80–81
writing a service, 130–131

Bezos, J., 169, 170
BFF-based architecture, 93, 94–96
binary protocols, 62
Blackbird, 4
blockchain, 100
blocking synchronization, 36
bloom filter, 43
blue-green systems, 159
bottlenecks, 33–34

eliminating, 114–115
fixing, 41
locating, 41

BPEL (Business Process Execution Language),
coordination logic, 71

BPMN (Business Process Modeling and
Notation), coordination logic, 71

Brown, M., Hacking Growth: How Today’s Fastest-
Growing Companies Drive Breakout Success,
173, 175

buffering, I/O, 43
bug fixes, 161–162, 167
building blocks, 59, 63–64, 67, 111–112.

See also tools

181I ndex

business architecture, 4
business context, 4–5, 11, 24
business performance, 31
Buwalda, P., 20

C
cache misses, 44
caching, 112
calculators, 145–146
canary deployment, 159
capacity planning, 151
Cassandra, 44
central limit theorem, 28
Chaos Monkey, 156
checklists, 171
choreography, 71–72
CIAM (customer identity and access

management), 98
client library, 55
cloud

architecture, 28
designing for, 27–28

code
logic, 91
reviews, 166
thin slice approach, 17–18
user-provided, 100

coherency, 36, 138
cohesion, 23
communication, tools, 65
competitive advantage, 15
computer

CPU, 32
disk, 33
memory, 32
network, 33
performance, 31–32. See also mental

models of computer performance
bottlenecks, 33–34
tuning, 32

soft resources, 33
configurations

defaults, 54

errors, 54
UX design, 53–54

consistency, 78
containers, 64
context switching, 35
Convoy Effect, 160–161
Conway’s law, 168
coordination/coordination layer, 63

centralized middleware, 71
drive flow from client, 69–70
implement choreography, 71–72
leadership considerations, 73
microservice, 122
overhead

I/O, 138
memory access, 138–139

using another service for, 70
CORBA (Common Object Request Broker

Architecture), 61–62
CPU, 32

-bound applications, 144
optimization techniques

optimize individual tasks, 42
thread model, 38
waste, 38

CQRS (Command and Query Responsibility
Segregation), 13, 162

CSRF (cross-site request forgery), 89–90

D
DARPA (Defense Advanced Research Projects

Agency), 22
data collection, 22, 173
data management, 64
database/s, 24

ACID, 82, 83
microservice, 120–122
schema, 25–26
sharding, 114–115
syncing, 106
transaction manager, 76–77
transaction/s, 76

deadlocks, 160–161. See also failure

182 I ndex

decentralized identities, 87
decision making, 20

coordination-related, 73
default choices, 46
delegating, 170
performance-related, 46–47
security-related, 101–102
uncertainty, 170

deep design, 20–21, 25–26
default choices, 46
demand excellence, 170–172
dependency/ies, 1, 38

graphs, 124
handling, 157–158
microservice, 122–123
team, 125

design, 4. See also system design
abstraction, 24
API, 168
for the cloud, 27–28
communicating, 172
deep, 20–21, 25–26
before implementation, 52–53
online bookstore, 24–26
Postel’s law, 124
product manager, 168
roadmap, 167–168
service, 26
shared-nothing, 112, 115–116
teams, 168
UX (user experience), 168–169

developers, 167. See also design; test/ing
code reviews, 166
demanding excellence, 170–172
QA (quality assurance), 166
test/ing

environment, 166
integration, 166
smoke, 166
unit, 166

DevOps, 28
DHT (distributed hash table), 65
disk, 38
disrupter, 136

Disruptor, 44
distributed applications, 59

monoliths, 60
RPC (remote procedure call), 60

distributed cache, 64
distributed coordination system, 65
DoS (denial-of-service) attacks, 100–101
Downey, A., The Little Book of Semaphores, 160
DRY (Don’t Repeat Yourself), 23

E
Ellis, S., Hacking Growth: How Today’s Fastest-

Growing Companies Drive Breakout Success,
173, 175

Erb, B., “Concurrent Programming for Scalable
Web Architectures”, 137

errors
configuration, 54
unexpected load, handling, 151–152

admission control, 153–154
autoscaling, 152–153
noncritical functionality, 154

unknown, handling, observability, 161
ESB (enterprise service bus), 64, 71, 154
event-driven architecture, 71–72, 132, 134–135
executors, 64
experiments, 22
expertise, UX, 57
exploitation, 162
extensions, UX design, 56

F
failure, 78, 171

compensation, 78–80
false positive, 156
fast recovery, 107–109
load balancer, 106
resource, 154–155

detection, 156
leaks, 159
network partitions, 157

false sharing, 138

183I ndex

fast recovery, 107–109, 155
fault tolerance, 107–108, 109
feature/s, 19–20

graceful degradation, 163
quick fixes, 167
user management, 86–87

federation, 87
feedback, 17, 173
Ferguson, D., “Some Essentials for Modern

Solution Development”, 119
five questions, 11

what are the hard problems, 15–16
what is the skill level of the team, 13–14
when can we rewrite the system?, 15
when is the best time to market?, 12–13

flexibility, 23, 56
forward compatibility, microservice, 123–124
Fowler, M., 2, 119
framework, 130
funnel, growth hacking, 174–175

G
Gawande, A., The Checklist Manifesto, 171
GC (garbage collection), 33, 144
GDPR (General Data Protection Regulation),

96–97
Genevès, S., “An Analysis of Web Servers

Architectures Performances on
Commodity Multicores”, 44

GitOps, 108, 159
gossip architecture, 65
graceful degradation, 163
Graham, P., 171–172
Gray, J., 76
Gregg, B., 41
gross negligence, 171
growth hacking, 173–175

H
HA (high availability), 105

fast recovery, 107–109
leadership considerations, 117

replication, 105–106, 111, 155
active-active/active-passive setup, 106
load balancing, 106–107

hard problems, identifying, 15–16
Hayek, F., “The Use of Knowledge in

Society”, 169
history of macro architecture, 60–62
Hohpe, G., 2, 11
HTTP, 55, 140
HTTP Basic Auth, 89–90
HTTP2, 62
human changes, handling, 158–159

I
IAM (identity and access management), 19, 65,

88, 98
idempotent operations, 131
IDL (interface definition language), 61
IDP (identity provider), 89, 90
implementation plan, 26
information systems architecture, 4–5
input classes, 162
“Inside the Apple Factory: Software Design in

the Age of Steve Jobs”, 18
integration, 17

cloud, 27–28
testing, 166

interaction security, 88–89
common scenarios for an app, 93

trusted system making API calls with
multi-user applications, 94

trusted system making API calls with non-
multi-user applications, 94

untrusted system with multi-user
applications, 94–96

untrusted system with non-multi-user
applications, 94–96

interface, 19–20
internal API, 54
interoperability, 60–61
interviews, 173
intuitive feel for performance, 46
I/O, 45–46, 143–144

184 I ndex

-bound applications, 145
buffering, 43
optimization techniques

append-only processing, 44
avoid I/O, 43
send early, receive late, 43

overhead, 138
prefetching, 43–44

iOS, 56
Isard, M., “Scalability! But at What COST?, 110
ISO (International Organization for

Standardization), 5
iterative approach, 18, 24

J
JIT (Just In Time) compiler, 17
Johnson, K., 3, 4, 22
judgment, 1–2, 3, 19–20, 21
JVM, 51–52
JWT (JSON Web Tokens), 26

K-L
knowledge, 2
Krug, S., Don’t Make Me Think, 51
Kubernetes, 109

Lamport, L., 157
latency, 14, 34, 37, 151–152

versus arrival rate, 40
limits, 39–41
optimization techniques, 45

admission control, 46
do work in parallel, 45
reduce I/O, 45–46

system access path, 99
tail, 40–41, 158
and utilization, 39

Lawson, J., Ask Your Developer, 125
leadership, 2, 3, 13

building the system, 175–176
coordination-related decisions, 73
for creating services, 146–147

demand excellence, 170–172
HA-related decisions, 117
judgment, 1–2, 19–20, 21
macro architecture, 66–67
microservices, 126–127
performance-related decisions, 46–47
scalability-related decisions, 117
security-related decisions, 101–102
software, 3
technical, 3
transaction-related decisions, 81–83
vision, 2, 3

library, 130
load balancer, 64, 106–107
local state, saving

disk-based persistent service, 139–140
message queue-based persistent service, 140

logging, 23
logins, 87
long run, 9

M
macro architecture, 24, 59–60

building blocks, 63–64
communication, 65
data management, 64
executors, 64
routers and messaging, 64
security, 65

coordination, 69
centralized middleware, 71
drive flow from client, 69–70
implement choreography, 71–72
using another service for, 70

history of, 60–62
leadership considerations, 66–67

MapReduce systems, 64
Martin, B., 2
MAUs (monthly active users), 98
McEvoy, K., “What’s the Ideal Team Size for High

Performance”, 119–120
McSherry, F., “Scalability! But at What

COST?, 110

185I ndex

memory
access overhead, 138–139
-bound applications, 144
computer, 33
optimization, 42
optimization techniques

insufficient memory, 45
too many cache misses, 44

wall, 44
mental models, 31, 33, 50

computer performance
Amdahl’s law, 35–36
context switching overhead, 35
cost of switching to kernel mode

from user mode, 34
designing for throughput with the MUU

(maximal useful utilization) model,
37–39

latency and utilization trade-offs, 37
latency limits, 39–41
operations hierarchy, 34–35
USL (Universal Scalability Law),

36–37
UX and, 50

message broker, 64
message format, API, 25–26
method, tryAcquire(), 142
metrics, 161
Meyer, R., “The Secret Startup That Saved

the Worst Website in America”, 16
microservice/s, 25, 119–120, 167

backward compatibility, 123
coordinating, 122
dependencies, 122–123
dependency graphs, 124
forward compatibility, 123–124
handling shared databases, 120–121

one microservice updating the
database, 121

two microservices updating the
database, 122

leadership considerations, 126–127
repository-based teams as an alternative,

125–126
securing, 122

middleware, 19, 71
minimum viable product, 26
mobile app, 53. See also apps and

application/s
modern architecture, 62–63, 110–111
monitoring, 22, 161
monoliths, 60
MTTF (mean time to failure), 107–108
MTTR (mean time to recovery), 107–108
multi-user applications, 88–89

authentication techniques, 89–90
authorization, 90–92

Murray, D., “Scalability! But at What COST?, 110
MUU (maximal useful utilization), 37–39
MVP (most viable product), 19

N
NASA, Future Mission Space Studies team, 20
network, 33
Newman, S., Building Microservices, 90
NIST 800–207, 99–100
nonblocking architecture, 18, 134–135
non-multi-user applications, 88–89
Nova, O., “You Are Not Google”, 109
N-tier, 62

O
OAuth, 90
observability, 161
OMG (Object Management Group), 5
onboarding, 86
OOP (object-oriented programming), 60–61
OPA (Open Policy Agent), 93
operations hierarchy, 34–35
optimization techniques

CPU
maximize utilization, 42
optimize individual tasks, 42
optimize memory, 42

I/O
append-only processing, 44
avoid I/O, 43
buffering, 43

186 I ndex

prefetching, 43–44
send early, receive late, 43

latency, 45
admission control, 46
do work in parallel, 45
reduce I/O, 45–46

memory
insufficient memory, 45
too many cache misses, 44

orchestration model, 124
OS, context switch, 35
outsourcing, security, 85
overhead

I/O, 138
memory access, 138–139

P
PEP (policy enforcement point), 89
performance, 7, 31. See also optimization

techniques
business, 31
computer, 31–32, 33–34
intuitive feel for, 46
mental models

Amdahl’s law, 35–36
context switching overhead, 35
cost of switching to kernel mode

from user mode, 34
designing for throughput with the MUU

(maximal useful utilization) model, 37–39
latency and utilization trade-offs, 37
latency limits, 39–41
operations hierarchy, 34–35
USL (Universal Scalability Law), 36–37

monitoring, 22
sensitivity, 14
tuning, 32

PII, 97–98
PIP (policy information point), 89
plan, implementation, 26
PoC (proof of concept), 13, 15
portability, 10, 11
Postel’s law, 124

prefetching, 43–44, 131
principle of least astonishment, 50
product lead, 19
product manager, 168
programming language, 13, 71
project management, 5–6
PSD2 (revised Payment Services Directive), 96–97
public API, 54

Q-R
QA (quality assurance), 166
queues, 142–143, 151–152
quick fixes, 167

RBAC (role-based access control), 91–92
read and write operations, separating, 141
ReBAC (Relationship-based access control), 92
refactoring, 23
registry, 64
regulatory compliance, data sharing, 96–98
relentlessly resourceful, 171–172
replication, 105–106, 111, 155

active-active/active-passive setup, 106
load balancing, 106–107

repository-based teams, 125–127
request object, 129–130
resource/s, 62

allocation, 38
deadlocks, 160–161
dependencies, 38
disk, 38
failure, 154–155

detection, 156
network partitions, 157

leaks, 159
soft, 33

rewrite/s, 15, 19, 24
ROA, 62
roadmap, 167–168
ROC (recovery-oriented computing), 108
ROI (return on investment), 9
RPC (remote procedure call), 60
Rumelt, R., Good Strategy, Bad Strategy, 20

187I ndex

S
saving local state

disk-based persistent service, 139–140
message queue-based persistent

service, 140
scalable/scalability, 109–110

async processing, 113
building blocks, 111–112
caching, 112
distribution, 112
leadership considerations, 117
for modern architecture, 110–111
shared-nothing design, 112, 115–116
successive bottleneck elimination, 114–115

scripts, 100
security

authentication techniques, 89–90
authorization, 90–93
blockchain, 100
IAM servers, 65
interaction, 88–89. See also interaction

security
leadership considerations, 101–102
microservices, 122
outsourcing, 85
standards, 86
storage, 96
tools, 86
user management, 86

decentralized identities, 87
required features, 86–87
types of users, 87
user profiles, 87

zero-trust model, 99–100
SEDA (staged event-driven architecture),

135–136
server

architecture, 132
comparing, 137
event-driven, 134–135
staged event-driven, 135–136
thread-per-request, 132–134

socket, 130

service/s, 24–25, 59, 76. See also error handling;
microservices

blocked, 130–131
calculators, 145–146
calls, 143
choosing a transport system, 140
coordination, 70
design, 26
leadership considerations, 146–147
micro, 25
-oriented architecture, 59
pools, 131
queues and pools, 142–143
saving local state

disk-based persistent service, 139–140
message queue-based persistent

service, 140
separating reads and writes, 141
server socket, 130
state, 130
synchronization primitives, 141–142
transaction, 76
update and lookup, 146
web, 61
writing, 129–131

Sesno, F., Ask More: The Power of Questions to
Open Doors, Uncover Solutions

and Spark Change, 171
session state, 107
seven principles

add the most value for the least effort,
18–20

design deeply but implement slowly, 20–21
drive everything from the user’s journey,

16–17
eliminate the unknowns, 22
make decisions and absorb the

risks, 20
understand trade-offs between

cohesion and flexibility, 23
use an iterative thin slice strategy,

17–18
sharding, 114–115
shared-nothing architecture, 110

188 I ndex

side effects, 79
simplicity, 52, 162
SLA (service-level agreement), 158
smoke test, 166
SOA, 62
soft resources, 33
software architecture, 9

best practices, 10
goals, 9
iterative approach, 18
uncertainty, 9–10

software leadership, 3
SPA (single-page applications), 94
speedup, 35–36
SQL injection, 89–90
SSL, 88
SSTables, 41
stability, 149

factors affecting, 150–151
leadership considerations, 163–164

standards
API, 55
NIST 800–207, 99–100
security, 86
UX, 51

state, 130
saving

disk-based persistent service, 139–140
message queue-based persistent service,

140
session, 107

sticky sessions, 107
storage

regulatory compliance, 96–98
security, 96

Subramaniam, V., 23
synchronization primitives, 141–142
system access path, 99
system architecture

agile, 5
waterfall approach, 5

system design, 11–12. See also architecture/
architectural; design

experiments, 22
five questions, 11–12

what are the hard problems, 15–16
what is our system’s performance

sensitivity, 14
what is the skill level of the team,

13–14
when can we rewrite the system?, 15
when is the best time to market, 12–13

seven principles, 12
add the most value for the least effort,

18–20
design deeply but implement slowly,

20–21
drive everything from the user’s journey,

16–17
eliminate the unknowns, 22
make decisions and absorb the risks, 20
understand trade-offs between cohesion

and flexibility, 23
use an iterative thin slice strategy,

17–18

T
tail latency, 40–41, 158
task, decomposition, 42
team/s, 168

demanding excellence, 171–172
dependencies, 125
repository-based, 125–127
size, 119–120
skill level, 13–14
training, 13

technical leadership, 3–4, 57
technology architecture, 4
test/ing, 161–162

A/B, 174
environment, 166
integration, 166
setup, 158
smoke, 166
unit, 166

189I ndex

thin slice approach, 17–18
Thomson, M., “Adventures with Concurrent

Programming in Java: A Quest for
Predictable Latency”, 44

thrashing, 35
thread, 38

-per-request architecture, 132–134
pools, 142–143
state, 142

three-tier architecture, 60
throughput

and latency, 39–40
MUU (maximal useful utilization)

model, 37–39
time to market, 12–13, 26
TOGAF (The Open Group Architecture

Framework), 4, 5, 26
token-based

authentication, 90
authorization, 92, 99

tools, 67
communication, 65
data management, 64
executors, 64
routers and messaging, 64
security, 65, 86

training, 13
transaction/s, 75–76

best practices, 80–81
failure specifications

compensation, 78–80
redefine the problem to require lesser

guarantees, 78
idempotent, 79
leadership considerations, 81–83
manager, 65, 76–77
service, 76
side effects, 79

tree of responsibility pattern, 65
trust, 175
trusted environment, 93
tryAcquire() method, 142
tuning, 32, 143–144

U-V
U-2, 4
uncertainty, 6, 20, 24, 170

eliminating, 22
in software architecture, 9–10

unexpected load, handling, 151–152
admission control, 153–154
autoscaling, 152–153
noncritical functionality, 154

unit tests, 166
unknown errors, observability, 161
unknowns, 24
update and lookup services, 146
user management, 86. See also multi-user

applications
authentication techniques, 89–90
authorization, 90–92
decentralized identities, 87
IDP (identity provider), 89
required features, 86–87
types of users, 87
user profiles, 87

user-provided code, 100
USL (Universal Scalability Law), 36–37,

109–110
utilization, 37, 38

and latency, 39
maximizing, 42

UUIDs, 97
UX (user experience), 7, 11, 16–17, 24, 49–50,

168–169
Apple, 18
common mistakes, 57
design for APIs, 54–56
design for configurations, 53–54
design for extensions, 56
interviews, 173
principle of least astonishment, 50
principles

design before implementation, 52–53
do as little as possible, 50–51
good products don’t need a

manual, 51

190 I ndex

information exchange, 51–52
make things simple, 52
understand the users, 50, 55

standards, 51
technical leadership, 57
unused features, 16

value, 19
vision, 2, 3
VM (virtual machine), 64

W
waterfall approach, 5
web services, 61

WebSocket, 62
Williams, R., The Non-Designer’s Design

Book, 49
work stealing, 42
workflow systems, 64, 71, 81
Wright brothers, 3–4, 17
writing, services, 129–130

X-Y-Z
XACML (Extensible Access Control Markup

Language), 93

zero-trust model, 99–100

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	2 Understanding Systems, Design, and Architecture
	What Is Software Architecture?
	How to Design a System
	Five Questions
	Question 1: When Is the Best Time to Market?
	Question 2: What Is the Skill Level of the Team?
	Question 3: What Is Our System’s Performance Sensitivity?
	Question 4: When Can We Rewrite the System?
	Question 5: What Are the Hard Problems?

	Seven Principles: The Overarching Concepts
	Principle 1: Drive Everything from the User’s Journey
	Principle 2: Use an Iterative Thin Slice Strategy
	Principle 3: On Each Iteration, Add the Most Value for the Least Effort to Support More Users
	Principle 4: Make Decisions and Absorb the Risks
	Principle 5: Design Deeply Things That Are Hard to Change but Implement Them Slowly .
	Principle 6: Eliminate the Unknowns and Learn from the Evidence by Working on Hard Problems Early and in Parallel
	Principle 7: Understand the Trade-offs Between Cohesion and Flexibility in the Software Architecture

	Designing for an Online Bookstore
	Designing for the Cloud
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

