
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780138221980
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780138221980
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780138221980

Patterns of
Distributed Systems

The Pearson Addison-Wesley Signature Series provides readers
with practical and authoritative information on the latest trends in

modern technology for computer professionals. The series is based on
one simple premise: great books come from great authors.

Books in the Martin Fowler Signature Series are personally chosen
by Fowler, and his signature ensures that he has worked closely with
authors to define topic coverage, book scope, critical content, and
overall uniqueness. The expert signatures also symbolize a promise to
our readers: you are reading a future classic.

Visit informit.com/awss for a complete list of available publications.

Pearson Addison-Wesley
Signature Series

Connect with InformIT—Visit informit.com/community

http://Visitinformit.com/awss
http://informit.com/community

Patterns of
Distributed Systems

Unmesh Joshi

Hoboken, New Jersey

Cover image: Joe Ravi/Shutterstock
Additional image credits appear on page 427, which constitutes a continuation of this
copyright page.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2023944564

Copyright © 2024 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, request forms and the
appropriate contacts within the Pearson Education Global Rights & Permissions
Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-822198-0
ISBN-10: 0-13-822198-7

$PrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

Pearson’s Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all
learners. We embrace the many dimensions of diversity, including but not limited
to race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation,
and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the
potential to deliver opportunities that improve lives and enable economic mobil-
ity. As we work with authors to create content for every product and service, we
acknowledge our responsibility to demonstrate inclusivity and incorporate diverse
scholarship so that everyone can achieve their potential through learning. As
the world’s leading learning company, we have a duty to help drive change and
live up to our purpose to help more people create a better life for themselves
and to create a better world.

Our ambition is to purposefully contribute to a world where:

Everyone has an equitable and lifelong opportunity to succeed through
learning.

Our educational products and services are inclusive and represent the rich
diversity of learners.

Our educational content accurately reflects the histories and experiences of
the learners we serve.

Our educational content prompts deeper discussions with learners and
motivates them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you
about any concerns or needs with this Pearson product so that we can investigate
and address them.

Please contact us with concerns about any potential bias at
https://www.pearson.com/report-bias.html.

https://www.pearson.com/report-bias.html

This page intentionally left blank

Dedicated to the loving memory of
my father.

This page intentionally left blank

xviiForeword ...

xixPreface ...

xxiiiAcknowledgments ..

xxvAbout the Author ...

1Part I: Narratives ...

3Chapter 1: The Promise and Perils of Distributed Systems
3The Limits of a Single Server ..
5Separate Business Logic and Data Layer ..
6Partitioning Data ...
7A Look at Failures ...
9Replication: Masking Failures ..
9Process Crash ..
9Network Delay ..
9Process Pause ..

10Unsynchronized Clocks ...
10Defining the Term “Distributed Systems” ..
10The Patterns Approach ...

13Chapter 2: Overview of the Patterns ..
14Keeping Data Resilient on a Single Server ..
15Competing Updates ..
17Dealing with the Leader Failing ..
21Multiple Failures Need a Generation Clock ...

26
Log Entries Cannot Be Committed until They Are Accepted by a
Majority Quorum ..

29Followers Commit Based on a High-Water Mark ...

ix

Contents

34
Leaders Use a Series of Queues to Remain Responsive to Many
Clients ..

40Followers Can Handle Read Requests to Reduce Load on the Leader
42A Large Amount of Data Can Be Partitioned over Multiple Nodes
45Partitions Can Be Replicated for Resilience ...

46
A Minimum of Two Phases Are Needed to Maintain Consistency
across Partitions ..

49
In Distributed Systems, Ordering Cannot Depend on System
Timestamps ..

58A Consistent Core Can Manage the Membership of a Data Cluster
62Gossip Dissemination for Decentralized Cluster Management

69Part II: Patterns of Data Replication ..

71Chapter 3: Write-Ahead Log ...
71Problem ..
71Solution ..
73Implementation Considerations ..
74Usage in Transactional Storage ..
76Compared to Event Sourcing ..
76Examples ..

77Chapter 4: Segmented Log ..
77Problem ..
77Solution ..
79Examples ..

81Chapter 5: Low-Water Mark ..
81Problem ..
81Solution ..
82Snapshot-Based Low-Water Mark ..
83Time-Based Low-Water Mark ...
83Examples ..

85Chapter 6: Leader and Followers ..
85Problem ..
85Solution ..
86Leader Election ...

91
Why Quorum Read/Writes Are Not Enough for Strong
Consistency Guarantees ..

92Examples ..

Contentsx

93Chapter 7: HeartBeat ...
93Problem ..
93Solution ..
95Small Clusters: Consensus-Based Systems ..
96Technical Considerations ...
97Large Clusters: Gossip-Based Protocols ..
98Examples ..

99Chapter 8: Majority Quorum ..
99Problem ..

100Solution ..
100Deciding on Number of Servers in a Cluster
101Flexible Quorums ...
102Examples ..

103Chapter 9: Generation Clock ..
103Problem ..
104Solution ..
107Examples ..

109Chapter 10: High-Water Mark ..
109Problem ..
109Solution ..
112Log Truncation ..
115Examples ..

117Chapter 11: Paxos ..
117Problem ..
117Solution ..
118Flow of the Protocol ..
127An Example Key-Value Store ..
132Flexible Paxos ...
132Examples ..

133Chapter 12: Replicated Log ...
133Problem ..
133Solution ..
134Multi-Paxos and Raft ...
135Replicating Client Requests ..
141Leader Election ...

xiContents

150Technical Considerations ..
151Push vs. Pull ...
151What Goes in the Log? ..
158Examples ..

159Chapter 13: Singular Update Queue ..
159Problem ..
159Solution ..
164Choice of the Queue ..
164Using Channels and Lightweight Threads ..
165Backpressure ..
166Other Considerations ...
166Examples ..

167Chapter 14: Request Waiting List ..
167Problem ..
167Solution ..
172Expiring Long Pending Requests ...
173Examples ..

175Chapter 15: Idempotent Receiver ...
175Problem ..
175Solution ..
179Expiring the Saved Client Requests ...
180Removing the Registered Clients ...
181At-Most-Once, At-Least-Once, and Exactly-Once Actions
181Examples ..

183Chapter 16: Follower Reads ..
183Problem ..
183Solution ..
184Finding the Nearest Replica ..
187Disconnected or Slow Followers ..
188Read Your Own Writes ..
191Linearizable Reads ...
191Examples ..

193Chapter 17: Versioned Value ..
193Problem ..

Contentsxii

193Solution ..
194Ordering of Versioned Keys ...
197Reading Multiple Versions ..
199MVCC and Transaction Isolation ...
200Using RocksDB-Like Storage Engines ..
201Examples ..

203Chapter 18: Version Vector ...
203Problem ..
203Solution ..
205Comparing Version Vectors ..
207Using Version Vector in a Key-Value Store ..
216Examples ..

217Part III: Patterns of Data Partitioning ...

219Chapter 19: Fixed Partitions ...
219Problem ..
220Solution ..
221Choosing the Hash Function ..
222Mapping Partitions to Cluster Nodes ..

236
Alternative Solution: Partitions Proportional to Number of
Nodes ...

241Examples ..

243Chapter 20: Key-Range Partitions ..
243Problem ..
244Solution ..
244Predefining Key Ranges ..
247An Example Scenario ...
249Auto-Splitting Ranges ..
255Examples ..

257Chapter 21: Two-Phase Commit ...
257Problem ..
257Solution ..
261Locks and Transaction Isolation ...
268Commit and Rollback ..
273An Example Scenario ...

xiiiContents

279Using Versioned Value ..
291Using Replicated Log ...
291Failure Handling ...
297Transactions across Heterogeneous Systems ..
297Examples ..

299Part IV: Patterns of Distributed Time ...

301Chapter 22: Lamport Clock ...
301Problem ..
301Solution ..
302Causality, Time, and Happens-Before ...
303An Example Key-Value Store ..
305Partial Order ...
306A Single Leader Server Updating Values ..
307Examples ..

309Chapter 23: Hybrid Clock ...
309Problem ..
309Solution ..
312Multiversion Storage with Hybrid Clock ...
314Using Timestamp to Read Values ..
314Assigning Timestamp to Distributed Transactions
316Examples ..

317Chapter 24: Clock-Bound Wait ...
317Problem ..
318Solution ..
322Read Restart ..
325Using Clock-Bound APIs ...
332Examples ..

335Part V: Patterns of Cluster Management ..

337Chapter 25: Consistent Core ...
337Problem ..
337Solution ..
339Metadata Storage ..
339Handling Client Interactions ...
342Examples ..

Contentsxiv

345Chapter 26: Lease ...
345Problem ..
345Solution ..
351Attaching the Lease to Keys in the Key-Value Storage
353Handling Leader Failure ..
354Examples ..

355Chapter 27: State Watch ..
355Problem ..
355Solution ..
356Client-Side Implementation ..
356Server-Side Implementation ..
359Handling Connection Failures ..
362Examples ..

363Chapter 28: Gossip Dissemination ...
363Problem ..
363Solution ..
368Avoiding Unnecessary State Exchange ..
371Criteria for Node Selection to Gossip ..
372Group Membership and Failure Detection ...
372Handling Node Restarts ..
373Examples ..

375Chapter 29: Emergent Leader ...
375Problem ..
375Solution ..
379Sending Membership Updates to All the Existing Members
382An Example Scenario ...
384Handling Missing Membership Updates ...
385Failure Detection ..
392Comparison with Leader and Followers ...
392Examples ..

393Part VI: Patterns of Communication between Nodes

395Chapter 30: Single-Socket Channel ..
395Problem ..
395Solution ..
397Examples ..

xvContents

399Chapter 31: Request Batch ..
399Problem ..
399Solution ..
404Technical Considerations ..
404Examples ..

405Chapter 32: Request Pipeline ...
405Problem ..
405Solution ..
408Examples ..

409References ..

413Index ..

Contentsxvi

Engineers are often attracted to distributed computing, which promises not only
benefits like scalability and fault tolerance but also the prestige of creating clever,
talk-worthy computer systems. But the reality is that distributed systems are hard.
There are myriads of edge cases, all with subtle interactions and high-dimensional
nuance. Every move you make as a systems designer has n-th degree side effects
which aren’t obvious. You’re Sideshow Bob, surrounded by lawn rakes, and every
step you take results in a rake in the face—until you’ve left the field or expended
all the rakes. (Oh, and even when you’ve left the field, there’s still a rake or two
waiting to be trodden on.)

So how do we avoid, or at least minimize, these pitfalls? The traditional ap-
proach has been to accept that distributed systems theory and practice are both
hard, and to work your way through textbooks and academic papers with confus-
ing or playful titles, studying numerous proofs so that you can carve out small
areas of relative safety and expertise within which to build your system. There’s
a lot of value in that approach for those that can stay the course. Systems profes-
sionals who have grown up that way seem to have a knack for spotting trouble
far down the line, and possess a good deal of technical background for reasoning
about how to solve problems—or at least minimize their likelihood or impact.

However, in other areas of software engineering, this kind of educational hazing
is not so commonplace. Instead of being thrown in at the deep end, we use ab-
stractions to help us gradually learn at greater levels of detail, from higher to
lower levels of abstraction, which often maps neatly onto the way software is
designed and built. Abstractions allow us to reason about behaviors without
getting bogged down in implementation complexity. In a distributed system where
complexity is high, some abstractions can be very useful.

In general software engineering, design patterns are a common abstraction. A
design pattern is a standardized solution to a recurrent problem in software design.
Patterns provide a language that practitioners use to reason about and discuss
problems in a well-understood manner. For example, when someone asks, “How
does this work?” you may hear something like, “It’s just a visitor.” Such exchanges,

xvii

Foreword

based on a shared understanding of named patterns that solve common problems,
are short and information-rich.

The notion of taking something complex and abstracting it into a pattern is
both important and fundamental to this book. It applies the pattern approach to
the essential building blocks of modern distributed systems, naming the compo-
nents and describing their behaviors and how they interact. In doing so, it equips
you with a pattern language that, within reason, lets you treat a distributed system
as a set of composable Lego blocks.

Now, you can talk about “a system that depends on a replicated log with quo-
rum commits” without getting bogged down in the specific details of the data
structures and consensus algorithms. Perhaps more importantly, it minimizes the
risk of talking past one another because in distributed systems, textbook
terms—such as “consistency”—often have several meanings depending on context.

The effect is liberating for practitioners who now have an expressive common
vocabulary to expedite and standardize communication. But it’s also liberating
for learners who can take a structured, breadth-first tour of distributed systems
fundamentals, tackling a pattern at a time and observing how those patterns in-
teract or depend on one another. You can also, where needed, go deep into the
implementation—this book does not shy away from implementation details either.

My hope is that the patterns in this book will help you teach, learn, and com-
municate more effectively about distributed systems. It will certainly help you
avoid some of the lawn rakes.

—Jim Webber, Chief Scientist, Neo4j

Forewordxviii

Why This Book

In 2017, I was involved in developing a software system for a large optical tele-
scope called Thirty Meter Telescope (TMT). We needed to build a core framework
and services to be used by various subsystems. The subsystem components had
to discover each other and detect component failures. There was also a require-
ment to store metadata about these components. The service responsible for
storing this information had to be fault-tolerant. We couldn’t use off-the-shelf
products and frameworks due to the unique nature of the telescope ecosystem.
We had to build it all from scratch—to create a core framework and services that
different subsystems of the software could use. In essence, we had to build a
distributed system.

I had designed and architected enterprise systems using products such as Kafka,
Cassandra, and MongoDB or cloud services from providers like AWS and GCP.
All these products and services are distributed and solve similar problems. For
the TMT system, we had to build a solution ourselves. To compare and validate
our implementation choices with these proven products, we needed a deeper
understanding of the inner workings of some of these products. We had to figure
out how all these cloud services and products are built and why they are built
that way. Their own documentation often proved too product-specific for that.

Information about how distributed systems are built is scattered across various
research papers and doctoral theses. However, these academic sources have their
limitations too. They tend to focus on specific aspects, often making only passing
references to related topics. For instance, consider a well-written thesis, Consensus:
Bridging Theory and Practice [Ongaro2014]. It thoroughly explains how to implement
the Raft consensus algorithm. But you won’t know how Raft is used by products
like etcd for tracking group membership and related metadata for other products,
such as Kubernetes. Leslie Lamport’s famous paper “Time, Clocks, and the Order-
ing of Events in a Distributed System” [Lamport1978] talks about how to use

xix

Preface

logical clocks—but you won’t know how products like MongoDB use them as a
version for the data they store.

I believe that writing code is the best way to test your understanding. Martin
Fowler often says, “Code is like the mathematics of our profession. It’s where we
have to remove the ambiguity.” So, to get a deeper understanding of the building
blocks of distributed systems, I decided to build miniature versions of these
products myself. I started by building a toy version of Kafka. Once I had a rea-
sonable version, I used it to discuss some of the concepts of distributed systems.
That worked well. To verify that explaining concepts through code works effec-
tively, I conducted a few workshops within my company, Thoughtworks. Those
turned out to be very useful. So I extended this to products like Cassandra,
Kubernetes, Akka, Hazelcast, MongoDB, YugabyteDB, CockroachDB, TiKV, and
Docker Swarm. I extracted code snippets to understand the building blocks of
these products. Not surprisingly, there were a lot of similarities in these building
blocks. I happened to discuss this with Martin Fowler a few years back, and he
suggested writing about these as patterns. This book is the outcome of my work
with Martin to document these common building blocks of distributed system
implementations as patterns.

Who This Book Is For

Software architects and developers today face a plethora of choices when it comes
to selecting products and cloud services that are distributed by design. These
products and services claim to make certain implementation choices. Understand-
ing these choices intuitively can be challenging. Just reading through the docu-
mentation is not enough. Consider sentences like “AWS MemoryDB ensures
durability with a replicated transactional log” or “Apache Kafka operates indepen-
dently from ZooKeeper” or “Google Spanner provides external consistency with
accurate timing maintained by TrueTime.” How do you interpret these?

To get better insights, professionals rely on certifications from product providers.
But most certifications are very product-specific. They focus only on the surface
features of the product but not the underlying technical principles. Professional
developers need to have an intuitive understanding of technical details that are
specific enough to be expressed at the source-code level but generic enough to
apply to a wide range of situations. Patterns help there. Patterns in this book will
enable working professionals to have a good idea of what’s happening under the
hood of various products and services and thus make informed and effective
choices.

I expect most readers of this book to be in this group. In addition to those who
work with existing distributed systems, however, there is another group of readers

Prefacexx

who must build their own distributed systems. I hope the patterns in this book
will give that other group a head start. There are numerous references to design
alternatives used by various products, which might be useful to these readers.

A Note on Examples

I have provided code examples for most of the patterns. The code examples are
based on my own miniature implementations of the various products I studied
while working through these patterns. My choice of language is based on what
I think most readers are likely to be able to read and understand. Java is a good
choice here. The code examples use a minimum of Java language features—mostly
methods and classes, which are available in most programming languages.
Readers familiar with other programming languages should be able to easily un-
derstand these code examples. This book, however, is not intended to be specific
for any particular software platform. Once you understand the code examples,
you will find similarities in code bases in C++, Rust, Go, Scala, or Zig. My hope
is that, once you are familiar with the code examples and the patterns, you will
find it easier to navigate the source code of various open-source products.

How to Read This Book

The book has six numbered parts that are divided into two main conceptual
sections.

First, a number of narrative chapters cover the essential topics in distributed
systems design. These chapters (in Part I) present challenges in distributed system
design along with their solutions. However, they don’t go into much detail on
these solutions.

Detailed solutions, structured as patterns, are provided in the second section
of the book (Parts II to VI). The patterns fall into four main categories: replication,
partitioning, cluster management, and network communication. Each of these is
a key building block of a distributed system.

Consider these patterns as references; there’s no need to read them cover to
cover. You may read the narrative chapters for an overview of the book’s scope,
and then explore the patterns based on your interests and requirements.

For additional reference materials, visit https://martinfowler.com/articles/patterns-of-
distributed-systems.

I hope these patterns will assist fellow software professionals in making
informed decisions in their daily work.

xxiPreface

https://martinfowler.com/articles/patterns-of-distributed-systems
https://martinfowler.com/articles/patterns-of-distributed-systems

Register your copy of Patterns of Distributed Systems on the InformIT site for
convenient access to updates and/or corrections as they become available. To
start the registration process, go to informit.com/register and log in or create an
account. Enter the product ISBN (9780138221980) and click Submit. Look on the
Registered Products tab for an Access Bonus Content link next to this product,
and follow that link to access any available bonus materials. If you would like
to be notified of exclusive offers on new editions and updates, please check the
box to receive email from us.

Prefacexxii

http://informit.com/register

First and foremost, the book was only possible because of encouragement from
Martin Fowler. He guided me to think in terms of patterns. He also helped me
come up with good examples and contributed to the chapters that were very
tricky to write.

I want to thank the Thirty Meter Telescope (TMT) team. Working with that
team was the trigger for much of this work. I had good conversations about many
of these patterns with Mushtaq Ahmed who was leading the TMT project.

Sarthak Makhija validated a lot of these patterns while he worked on building
a distributed key-value store.

I have been publishing these patterns periodically on martinfowler.com. While
working on these patterns, I sent drafts of new material to the Thoughtworks
developer mailing list and asked for feedback. I want to thank the following
people for posting their feedback on the mailing list: Rebecca Parsons, Dave
Elliman, Samir Seth, Prasanna Pendse, Santosh Mahale, James Lewis, Chris Ford,
Kumar Sankara Iyer, Evan Bottcher, Ian Cartwright, and Priyanka Kotwal. Jojo
Swords, Gareth Morgan, and Richard Gall from Thoughtworks helped with
copyediting the earlier versions published on martinfowler.com.

While working on the patterns, I interacted with many people. Professor Indranil
Gupta provided feedback on the Gossip Dissemination pattern. Dahlia Malkhi
helped with questions about Google Spanner. Mikhail Bautin, Karthik Ran-
ganathan, and Piyush Jain from the Yugabyte team answered all my questions
about some of implementation details in YugabyteDB. The CockroachDB team
was very responsive in answering questions about their design choices. Bela Ban,
Patrik Nordwall, and Lalith Suresh provided good feedback on the Emergent
Leader pattern.

Salim Virji and Jim Webber went through the early manuscript and provided
some nice feedback. Richard Sites provided some nice suggestions on the first
chapter. I want to extend my heartfelt thanks to Jim Webber for contributing the
foreword to this book.

One of the great things about being an employee at Thoughtworks is that they
allowed me to spend considerable time on this book. Thanks to the Engineering

xxiii

Acknowledgments

http://martinfowler.com
http://martinfowler.com

for Research (E4R) group of Thoughtworks for their support. I want to also thank
Sameer Soman, MD, Thoughtworks India, who always encouraged me.

At Pearson, Greg Doench is my acquisition editor, navigating many issues in
getting a book to publication. I was glad to work with Julie Nahil as my production
editor. It was great to work with Dmitry Kirsanov for copyediting and Alina
Kirsanova for composition and indexing.

My family has been a source of constant support. My mother was always very
hopeful about the book. My wife, Ashwini, is an excellent software developer
herself; she and I had insightful discussions and she provided valuable reviews
of early drafts. My daughter, Rujuta, and son, Advait, were sources of my
motivation.

Acknowledgmentsxxiv

Unmesh Joshi is a Principal Consultant at Thoughtworks with 24 years of industry
experience. As an ardent enthusiast of software architecture, he firmly believes
that today’s tech landscape requires a profound understanding of distributed
systems principles. For the last three years he has been publishing patterns of
distributed systems on martinfowler.com. He has also conducted various training
sessions around this topic. You can find him on X (formerly Twitter): @unmeshjoshi.

xxv

About the Author

http://martinfowler.com

This page intentionally left blank

1

Part I

Narratives

This page intentionally left blank

The Limits of a Single Server

In this book, we will discuss distributed systems. But what exactly do we mean
when we say “distributed systems”? And why is distribution necessary? Let’s start
from the basics.

In today’s digital world, the majority of our activities rely on networked services.
Whether it’s ordering food or managing finances, these services run on servers
located somewhere. When using cloud services like AWS, GCP, or Azure, these
servers are managed by the respective cloud providers. They store data, process
user requests, and perform computations using the CPU, memory, network, and
disks. These four fundamental physical resources are essential for any computation.

Consider a typical retail application functioning as a networked service, where
users can perform actions such as adding items to their shopping cart, making
purchases, viewing orders, and querying past orders. The capacity of a single
server to handle user requests is ultimately determined by the limitations of four
key resources: network bandwidth, disks, CPU, and memory.

The network bandwidth sets the maximum data transfer capacity over the
network at any given time. For example, with a network bandwidth of 1Gbps
(125MB/s) and 1KB records being written or read, the network can support a
maximum of 125,000 requests per second. However, if the record size increases
to 5KB, the number of requests that can be passed over the network decreases to
only 25,000.

Disk performance depends on several factors, including the type of read or
write operations and how well disk caches are used. Mechanical disks are also
affected by hardware features such as rotational speed and seek time. Sequential
operations usually have better performance than random ones. Moreover, the
performance is influenced by concurrent read/write operations and software-
based transactional processes. These factors can significantly affect the overall
throughput and latency on a single server.

3

Chapter 1

The Promise and Perils of
Distributed Systems

Figure 1.1 Resources of computation

Likewise, when the CPU or memory limit is reached, requests must wait for
their turn to be processed. When these physical limits are pushed to their capac-
ity, this results in queuing. As more requests pile up, waiting times increase,
negatively impacting the server’s ability to efficiently handle user requests.

Figure 1.2 Drop in throughput with increase in requests

Chapter 1 The Promise and Perils of Distributed Systems4

The impact of reaching the limits of these resources becomes evident in the
overall throughput of the system, as illustrated in Figure 1.2.

This poses a problem for end users. As the system is expected to accommodate
an increasing user base, its performance actually degrades.

To ensure requests are served effectively, you have to divide and process them
on multiple servers. This enables the utilization of separate CPUs, networks,
memory, and disks to handle user requests. In our example, the workload should
be divided so that each server handles approximately five hundred requests.

Separate Business Logic and Data Layer

A common approach is to separate an architecture into two parts. The first part
is the stateless component responsible for exposing functionality to end users.
This can take the form of a web application or, more commonly, a web API that
serves user-facing applications. The second part is the stateful component, which
is managed by a database (Figure 1.3).

Figure 1.3 Separating compute and data

This way, most of the application logic executes on the separate server utilizing
a separate network, CPU, memory, and disk. This architecture works particularly
well if most users can be served from caches put at different layers in the archi-
tecture. It makes sure that only a portion of all requests need to reach the database
layer.

As the number of user requests increases, more servers can be added to handle
the stateless business logic. This scalability allows the system to accommodate a
growing user base and ensures that requests can be processed efficiently. In the
event of a server failure, a new server can be introduced to take over the workload
and continue serving user requests seamlessly (Figure 1.4).

5Separate Business Logic and Data Layer

Figure 1.4 Scaling compute with multiple servers

This approach is effective for many applications. However, there comes a point
when the amount of data stored in stateful databases grows to hundreds of tera-
bytes or even petabytes, or the number of requests to the database layer increases
significantly. As a result, the simplistic architecture described above runs into
limitations stemming from the physical constraints of the four fundamental
resources on the server responsible for managing the data.

Partitioning Data

When a software system runs into hardware’s physical limits, the best approach
to ensure proper request processing is to divide the data and process it on mul-
tiple servers (Figure 1.5). This enables the utilization of separate CPUs, networks,
memory, and disks to handle requests on smaller data portions.

Chapter 1 The Promise and Perils of Distributed Systems6

Figure 1.5 Scaling data by distributing on multiple servers

A Look at Failures

When we utilize multiple machines with their own disk drives, network intercon-
nects, processors, and memory units, the likelihood of failures becomes a signifi-
cant concern. Consider the hard disk failure probability. If a disk has a failure
rate of once in 1000 days, the probability of it failing on any given day is 1/1000,
which may not be a major concern on its own. However, if we have 1000 disks,
the probability of at least one disk failing on a given day becomes 1. If the parti-
tioned data is being served from the disk that fails, it will become unavailable
until the disk is recovered.

To gain insights into the types of failures that can occur look at the failure
statistics from Jeff Dean’s 2009 talk [Dean2009] on Google’s data centers as shown
in Table 1.1. Although these numbers are from 2009, they still provide a valuable
representation of failure patterns.

7A Look at Failures

Table 1.1 Failure Events per Year for a Cluster in a Data Center from Jeff Dean’s 2009 Talk
[Dean2009]

DetailsEvent

Power down most machines in < 5 min (~1–2 days to
recover)

Overheating

~500–1000 machines suddenly disappear (~6 hours to
come back)

PDU Failure

Plenty of warning, ~500–1000 machines powered down
(~6 hours)

Rack Move

Rolling ~5% of machines down over 2-day spanNetwork Rewiring

40–80 machines instantly disappear (1–6 hours to
get back)

Rack Failures

40–80 machines see 50% packet lossRacks Go Wonky

4 might cause ~30-minute random connectivity lossesNetwork Maintenances

Takes out DNS and external VIPs for a couple minutesRouter Reloads

Have to immediately pull traffic for an hourRouter Failures

Dozens of 30-second blips for DNSMinor DNS Blips

1000 individual machine failuresIndividual Machine Failures

Thousands of hard drive failuresHard Drive Failures

When distributing stateless compute across multiple servers, failures can be
managed relatively easily. If a server responsible for handling user requests fails,
the requests can be redirected to another server, or a new server can be added
to take over the workload. Since stateless compute does not rely on specific data
stored on a server, any server can begin serving requests from any user without
the need to load specific data beforehand.

Failures become particularly challenging when dealing with data. Creating a
separate instance on a random server is not as straightforward. It requires careful
consideration to ensure that the servers start in the correct state and coordinate
with other nodes to avoid serving incorrect or stale data. This book mainly focuses
on systems that face these types of challenges.

To ensure that the system remains functional even if certain components are
experiencing failures, simply distributing data across cluster nodes is often
insufficient. It is crucial to effectively mask the failures.

Chapter 1 The Promise and Perils of Distributed Systems8

Replication: Masking Failures

Replication plays a crucial role in masking failures and ensuring service availabil-
ity. If data is replicated on multiple machines, even in the event of failures, clients
can connect to a server that holds a copy of the data.

However, doing this is not as simple as it sounds. The responsibility for
masking failures falls on the software that handles user requests. The software
must be able to detect failures and ensure that any inconsistencies are not visible
to the users. Understanding the types of errors that a software system experiences
is vital for successfully masking these failures.

Let’s look at some of the common problems that software systems experience
and need to mask from the users of the system.

Process Crash

Software processes can crash unexpectedly due to various reasons. It could be a
result of hardware failures or unhandled exceptions in the code. In containerized
or cloud environments, monitoring software can automatically restart a process
it recognizes as faulty. However, if a user has stored data on the server and re-
ceived a successful response, it becomes crucial for the software to ensure that
the data remains available after the process restarts. Measures need to be in place
to handle process crashes and ensure data integrity and availability.

Network Delay

The TCP/IP network protocol operates asynchronously, meaning it does not
provide a guaranteed upper bound on message delivery delay. This poses a
challenge for software processes that communicate over TCP/IP. They must de-
termine how long to wait for responses from other processes. If a response is
not received within the designated time, they need to decide whether to retry or
consider the other process as failed. This decision-making becomes crucial for
maintaining the reliability and efficiency of communication between processes.

Process Pause

During the execution of a process, it can pause at any given moment. In garbage-
collected languages like Java, execution can be interrupted by garbage collection
pauses. In extreme cases, these pauses can last tens of seconds. As a result, other
processes need to determine whether the paused process has failed. The situation
becomes more complex when the paused process resumes and begins sending
messages to other processes. The other processes then face a dilemma: Should
they ignore the messages or process them, especially if they had previously

9Replication: Masking Failures

marked the paused process as failed? Finding the right course of action in these
circumstances is a challenging problem.

Unsynchronized Clocks

The clocks in the servers typically utilize quartz crystals. However, the oscillation
frequency of a quartz crystal can be influenced by factors like temperature changes
or vibrations. This can cause the clocks on different servers to have different
times. Servers typically require a service such as NTP1 that continuously synchro-
nizes their clocks with time sources over the network. However, network faults
can disrupt this service, leading to unsynchronized clocks on servers.2 As a result,
when processes need to order messages or determine the sequence of saved data,
they cannot rely on the system timestamps because clock timings across servers
can be inconsistent.

Defining the Term “Distributed Systems”

We will explore the common solutions to address the challenges posed by these
failures. However, before we delve into that, let’s establish a definition for
distributed systems based on our observations thus far.

A distributed system is a software architecture that consists of multiple inter-
connected nodes or servers working together to achieve a common goal. These
nodes communicate with each other over a network and coordinate their actions
to provide a unified and scalable computing environment.

In a distributed system, the workload is distributed across multiple servers, al-
lowing for parallel processing and improved performance. The system is designed
to handle large amounts of data and accommodate a high number of concurrent
users. Most importantly, it offers fault tolerance and resilience by replicating data
and services across multiple nodes, ensuring that the system remains operational
even in the presence of failures or network disruptions.

The Patterns Approach

Professionals seeking practical advice need an intuitive understanding of these
systems that goes beyond theory. They need detailed and specific explanations

1. Network Time Protocol.
2. Even Google’s TrueTime clock machinery built using GPS clocks has clock skew.

However, that clock skew has a guaranteed upper bound.

Chapter 1 The Promise and Perils of Distributed Systems10

that help comprehend real code while remaining applicable to a wide range of
systems. The Patterns approach is an excellent tool to fulfill these requirements.

The concept of patterns was initially introduced by architect Christopher
Alexander in his book A Pattern Language [Alexander1977]. This approach gained
popularity in the software industry, thanks to the influential book widely known
as the Gang Of Four [Gamma1994] book.

Patterns, as a methodology, describe particular problems encountered in soft-
ware systems, along with concrete solution structures that can be demonstrated
by real code. One of the key strengths of patterns lies in their descriptive names
and the specific code-level details they provide.

A pattern, by definition, is a “recurring solution” to a problem within a specific
context. Therefore, something is only referred to as a pattern if it is
observed repeatedly in multiple implementations. Generally, The Rule of Three3 is
followed—a pattern should be observed in at least three systems before it can be
recognized as a pattern.

The patterns approach, employed in this book, is rooted in the study of actual
codebases from various open source projects, such as Apache Kafka,4
Apache Cassandra,5 MongoDB,6 Apache Pulsar,7 etcd,8 Apache ZooKeeper,9
CockroachDB,10 YugabyteDB,11 Akka,12 JGroups,13 and others. These patterns
are grounded in practical examples and can be applied to different software sys-
tems. By exploring the insights gained from these codebases, readers can learn
to understand and apply these patterns to solve common software challenges.

Another important aspect of patterns is that they are not used in isolation but
rather in conjunction with other patterns. Understanding how the patterns interlink
makes it much easier to grasp the overall architecture of the system.

The next chapter takes a tour of most of the patterns and shows how they link
together.

3. https://wiki.c2.com/?RuleOfThree
4. https://kafka.apache.org
5. https://cassandra.apache.org
6. https://www.mongodb.com
7. https://pulsar.apache.org
8. https://etcd.io
9. https://zookeeper.apache.org

10. https://www.cockroachlabs.com
11. https://www.yugabyte.com
12. https://akka.io
13. http://www.jgroups.org

11The Patterns Approach

https://wiki.c2.com/?RuleOfThree
https://kafka.apache.org
https://cassandra.apache.org
https://www.mongodb.com
https://pulsar.apache.org
https://etcd.io
https://zookeeper.apache.org
https://www.cockroachlabs.com
https://www.yugabyte.com
https://akka.io
http://www.jgroups.org

This page intentionally left blank

by Unmesh Joshi and Martin Fowler

As discussed in the last chapter, distributing data means at least one of two
things: partitioning and replication. To start our journey through the patterns in
this book, we’ll focus on replication first.

Imagine a very minimal data record that captures how many widgets we have
in four locations (Figure 2.1).

Figure 2.1 An example data record

We replicate it on three nodes: Jupiter, Saturn, and Neptune (Figure 2.2).

Figure 2.2 Replicated data record

13

Chapter 2

Overview of the Patterns

Keeping Data Resilient on a Single Server

The first area of potential inconsistency appears with no distribution at all. Con-
sider a case where the data for Boston, London, and Pune are held on different
files. In this case, performing a transfer of 40 widgets means changing bos.json to
reduce its count to 10 and changing pnq.json to increase its count to 115. But what
happens if Neptune crashes after changing Boston’s file but before updating
Pune’s? In that case we would have inconsistent data, destroying 40 widgets
(Figure 2.3).

Figure 2.3 Node crash causes inconsistency

An effective solution to this is Write-Ahead Log (Figure 2.4). With this, the
message handler first writes all the information about the required update to a

Figure 2.4 Using WAL

Chapter 2 Overview of the Patterns14

log file. This is a single write, so is simple to ensure it’s done atomically. Once the
write is done, the handler can acknowledge to its caller that it has handled
the request. Then the handler, or other component, can read the log entry and
carry out the updates to the underlying files.

Should Neptune crash after updating Boston, the log should contain enough
information for Neptune, when it restarts, to figure out what happened and restore
the data to a consistent state, as shown in Figure 2.5. (In this case it would
store the previous values in the log before any updates are made to the data file.)

Figure 2.5 Recovery using WAL

The log gives us resilience because, for a known prior state, the linear sequence
of changes determines the state after the log is executed. This property is impor-
tant for resilience in a single node scenario but, as we’ll see, it’s also very valuable
for replication. If multiple nodes start at the same state, and they all play the
same log entries, we know they will end up at the same state too.

Databases use a Write-Ahead Log, as discussed in the above example, to
implement transactions.

Competing Updates

Suppose two different users, Alice and Bob, are connecting to two different
cluster nodes to execute their requests. Alice wants to move 30 widgets from
Boston to London, while Bob wants to move 40 widgets from Boston to Pune
(Figure 2.6).

15Competing Updates

Figure 2.6 Competing updates

How should the cluster resolve this? We can’t have any node just decide to do
an update because we’d quickly run into inconsistency hell as we try to figure
out how to get Boston to store antimatter widgets. One of the most straightforward
approaches is Leader and Followers, where one of the nodes is marked as the
leader, and the others are considered followers. In this situation, the leader
handles all updates and broadcasts those updates to the followers. Let’s say
Neptune is the leader in this cluster. Then, Jupiter will forward Alice’s A1 request
to Neptune (Figure 2.7).

Figure 2.7 Leader handling all the updates

Neptune now gets both update requests, so it has the sole discretion as to how
to deal with them. It can process the first one it receives (Bob’s B1) and reject
A1 (Figure 2.8).

Chapter 2 Overview of the Patterns16

Figure 2.8 Leader rejecting requests for insufficient widgets

Dealing with the Leader Failing

That’s what happens most of the time—when all goes well. But the point of getting
a distributed system to work is what happens when things don’t go well. Here’s a
different case. Neptune receives B1 and sends out its replication messages. But
it is unable to contact Saturn. It could replicate only to Jupiter. At this point it
loses all connectivity with the other two nodes. This leaves Jupiter and Saturn
connected together, but disconnected from their leader (Figure 2.9).

So now what do these nodes do? For a start, how do they even find out what’s
broken? Neptune can’t send Jupiter and Saturn a message saying the connection
is broken . . . because the connection is broken. Nodes need a way to find out
when connections to their colleagues break. They do this with a HeartBeat—or,
more strictly, with the absence of a heartbeat.

A heartbeat is a regular message sent between nodes, just to indicate they are
alive and communicating. Heartbeat does not necessarily require a distinct mes-
sage type. When cluster nodes are already engaged in communication, such as
when replicating data, the existing messages can serve the purpose of heartbeats.
If Saturn doesn’t receive a heartbeat from Neptune for a period of time, Saturn
marks Neptune as down. Since Neptune is the leader, Saturn now calls for an
election for a new leader (Figure 2.10).

17Dealing with the Leader Failing

Figure 2.9 Leader failure

Figure 2.10 Leader sending heartbeats

Chapter 2 Overview of the Patterns18

The heartbeat gives us a way to know that Neptune has disconnected, so now
we can turn to the problem of how to deal with Bob’s request. We need to ensure
that once Neptune has confirmed the update to Bob, even if Neptune crashes,
the followers can elect a new leader with B1 applied to their data. But we also
need to deal with more complication than that, as Neptune may have received
multiple messages. Consider the case where there are messages from both Alice
(A1) and Bob (B1) handled by Neptune. Neptune successfully replicates them
both with Jupiter but is unable to contact Saturn before it crashes, as shown in
Figure 2.11.

Figure 2.11 Leader failure—incomplete replication

In this case, how do Jupiter and Saturn deal with the fact that they have different
states?

The answer is essentially the same as discussed earlier for resilience on a single
node. If Neptune writes changes into a Write-Ahead Log and treats replication as

19Dealing with the Leader Failing

copying those log entries to its followers, then its followers will be able to figure
out what the correct state is by examining the log entries (Figure 2.12).

Figure 2.12 Leader failure—incomplete replication—using log

When Jupiter and Saturn elect a new leader, they can tell that Jupiter’s log
has later index entries, and Saturn can apply those log entries to itself to gain a
consistent state with Jupiter.

This is also why Neptune can reply to Bob that the update was accepted, even
though it hadn’t heard back from Saturn. As long as a Majority Quorum—that is,
a majority—of the nodes in the cluster have successfully replicated the log mes-
sages, Neptune can be sure that the cluster will maintain consistency even if the
leader disconnects.

Chapter 2 Overview of the Patterns20

Multiple Failures Need a Generation Clock

We assumed here that Jupiter and Saturn can figure out whose log is most up
to date. But things can get trickier. Let’s say Neptune accepted a request from
Bob to move 40 widgets from Boston to Pune but failed before replicating it
(Figure 2.13).

Figure 2.13 Leader fails before replication.

Jupiter is elected as a new leader, and accepts a request from Alice to move
30 widgets from Boston to London. But it also crashes before replicating the
request to other nodes (Figure 2.14).

In a while, Neptune and Jupiter come back, but before they can talk, Saturn
crashes. Neptune is elected as a leader. Neptune checks with itself and Jupiter
for the log entries. It will see two separate requests at index 1, the one from Bob
which it had accepted and the one from Alice that Jupiter has accepted. Neptune
can’t tell which one it should pick (Figure 2.15).

To solve this kind of situation, we use a Generation Clock. This is a number that
increments with each leadership election. It is a key requirement of Leader and
Followers.

Looking at the previous scenario again, Neptune was leader for generation 1.
It adds Bob’s entry in its log marking it with its generation (Figure 2.16).

When Jupiter gets elected as a leader, it increments the generation to 2. So
when it adds Alice’s entry to its log, it’s marked for generation 2 (Figure 2.17).

21Multiple Failures Need a Generation Clock

Figure 2.14 New leader fails before replication.

Figure 2.15 Leader needs to resolve existing log entries.

Chapter 2 Overview of the Patterns22

Figure 2.16 Leader adds generation to log entries.

Figure 2.17 New leader increments generation.

23Multiple Failures Need a Generation Clock

Now, when Neptune is again elected as a leader, it will be for generation 3.
Before it starts serving the client requests, it checks the logs of all the available
nodes for entries which are not replicated on the Majority Quorum. We call these
entries as “uncommitted,” as they are not yet applied to data. We will see how each
node figures out which entries are incompletely replicated in a while. But once
the leader knows about these entries, it completes the replication for those entries.
In case of conflict, it safely picks up the entry with higher generation (Figure 2.18).

Figure 2.18 Conflicting log entries are resolved based on generation.

Chapter 2 Overview of the Patterns24

After selecting the entry with the latest generation, Neptune overwrites the
uncommitted entry in its own log with its current generation number and
replicates with Jupiter.

Every node tracks the latest generation it knows of the leader. This is helpful
in another problem that might occur, as Figure 2.19 demonstrates. When Jupiter
became leader, the previous leader, Neptune, might not have crashed, but just
temporarily disconnected. It might come back online and send the requests to
Jupiter and Saturn. If Jupiter and Saturn have elected a new leader and accepted

Figure 2.19 Generation helps detecting stale requests from old leader.

25Multiple Failures Need a Generation Clock

requests from Alice, what should they do when they suddenly start getting re-
quests from Neptune? Generation Clock is useful in this case as well. Every request
is sent to cluster nodes, along with the generation clock. So every node can always
choose the requests with the higher generation and reject the ones with the
lower generation.

Log Entries Cannot Be Committed until They Are
Accepted by a Majority Quorum

As seen above, entries like B1 can be overwritten if they haven’t been successfully
replicated to a Majority Quorum of nodes in the cluster. So the leader cannot apply
the request to its data store after just appending to its own log—it has to wait
until it gets enough acknowledgments from other nodes first. When an update
is added to a local log, it is uncommitted, until the leader has had replies from
a Majority Quorum of other nodes, at which point it becomes committed. In the
case of the example above, Neptune cannot commit B1 until it hears that at least
one other node has accepted it, at which point that other node, plus Neptune
itself, makes two out of three nodes—a majority and thus a Majority Quorum.

When Neptune, the leader, receives an update, either from a user (Bob) directly
or via a follower, it adds the uncommitted update to its log and then sends
replication messages to the other nodes. Once Saturn (for example) replies, that
means two nodes have accepted the update, Neptune and Saturn. This is two
out of three nodes, which is the majority and thus a Majority Quorum. At that
point Neptune can commit the update (Figure 2.20).

The importance of the Majority Quorum is that it applies to decision by the
cluster. Should a node fail, any leadership election must involve a Majority
Quorum of nodes. Since any committed updates have also been sent to a Major-
ity Quorum of nodes, we can be sure that committed updates will be visible
during the election.

If Neptune receives Bob’s update (B1), replicates, gets an acknowledgment from
Saturn, and then crashes, Saturn still has a copy of B1. If the nodes then elect
Jupiter as the leader, Jupiter must apply any uncommitted updates—that is,
B1—before it can start accepting new ones (Figure 2.21).

Chapter 2 Overview of the Patterns26

Figure 2.20 Log entries are committed once they are accepted by a Majority Quorum.

When the log is large, moving the log across nodes for leader election can be
costly. The most commonly used algorithm for Replicated Log, Raft [Ongaro2014],
optimizes this by electing the leader with the most up-to-date log. In the above
example this would elect Saturn as the leader.

27Log Entries Cannot Be Committed until They Are Accepted by a Majority Quorum

Figure 2.21 New leader commits uncommitted log entries.

Followers Commit Based on a High-Water Mark

As we’ve seen, leaders commit when they get acknowledgments from a Majority

Chapter 2 Overview of the Patterns28

Quorum—but when do followers commit their log entries? In the three node ex-
ample we’ve been using, it’s obvious. Since we know the leader must have added
the log entry before it replicates, any node knows that it can commit since it
and the leader form a Majority Quorum. But that isn’t true for larger clusters. In
a five-node cluster, a single follower and a leader are only two of five.

A High-Water Mark solves this conundrum. Simply put, the High-Water Mark
is maintained by the leader and is equal to the index of the latest update to be
committed. The leader then adds the High-Water Mark to its HeartBeat. Whenever
a follower receives a HeartBeat, it knows it can commit all its log entries up to
the High-Water Mark.

Figure 2.22 Leader tracks High-Water Mark.

Let’s look at an example of this (Figure 2.22). Bob sends a request (B1) to
Neptune. Neptune replicates the request to Jupiter and Saturn. Jupiter acknowl-
edges first, allowing Neptune to increase its High-Water Mark to 1, execute the
update against its data store, and return success to Bob. Saturn’s acknowledgment

29Followers Commit Based on a High-Water Mark

is late, and since it’s not higher than the High-Water Mark, Neptune takes no
action on it.

Neptune now gets three requests from Alice (A1, A2, and A3). Neptune puts
all of these into its log and starts sending replication messages. The link between
Neptune and Saturn, however, gets tangled and Saturn doesn’t get them
(Figure 2.23).

Figure 2.23 Nodes missing replication of log entries

After the first two messages, Neptune coincidentally sends out heartbeats,
which alert followers to update their High-Water Mark. Jupiter acknowledges A1,
allowing Neptune to update its High-Water Mark to 2, execute the update, and
notify Alice. But then Neptune crashes before it’s able to replicate A3, as shown
in Figure 2.24.

Chapter 2 Overview of the Patterns30

Figure 2.24 The High-Water Mark is propagated using HeartBeat.

At this point, here are the states of the nodes:

NeptuneSaturnJupiter

111gen

201hwm

B1 A1 A2 A3B1B1 A1 A2log

Jupiter and Saturn fail to get HeartBeat from Neptune and thus hold an election
for a new leader. Jupiter wins and gathers log entries. In doing this it accepts
that A2 reached Majority Quorum and sets its High-Water Mark to 3. Jupiter
replicates its log to Saturn, and when Saturn gets a HeartBeat with High-Water

31Followers Commit Based on a High-Water Mark

Mark of 3 it’s able to update its High-Water Mark and execute the updates against
its store (Figure 2.25).

Figure 2.25 New leader replicates missing log entries and High-Water Mark.

Now, the state of the nodes is:

NeptuneSaturnJupiter

122gen

233hwm

B1 A1 A2 A3B1 A1 A2B1 A1 A2log

Chapter 2 Overview of the Patterns32

At this point Alice times out of her A3 request and resends it (A3.2), which
routes to Jupiter as the new leader. Just as this happens, Neptune starts back up
again. Neptune tries to replicate A3, and is told that there’s a new generation of
leader, so Neptune accepts that it’s now a follower of Jupiter and discards its log
down to its High-Water Mark. Jupiter sends replication messages for A2 and A3.2.
Once Jupiter gets an acknowledgment for A3.2, it can update its High-Water
Mark, execute the update, and respond to Alice (Figure 2.26).

Saturn and Neptune will update their states on the next HeartBeat from Jupiter.

Figure 2.26 Old leader discards conflicting log entries.

33Followers Commit Based on a High-Water Mark

A
acceptors (Paxos), 118–119
acknowledgment messages, 379
ActiveM message broker, 297
Akka toolkit, 11

coordinators in, 222
data clusters in, 68
discovery protocols in, 376, 392
failure detection in, 97–98, 386
gossip protocols in, 381
partitioning in, 43, 221, 241
sending heartbeats asynchronously in, 96
split brain resolver in, 388

all-to-all heartbeating, 386
Amazon

AWS (Amazon Web Services), 3
Clock Bound library, 58, 322, 325, 333
Time Sync Service, 322, 325, 333

S3 (Simple Storage Service), 188
Apache

BookKeeper, 116, 343, 404
Cassandra, 11, 58, 62, 66, 68, 79, 91, 96–98,

102, 107, 128, 132, 166, 173, 212, 216,
239, 371, 373

Flink, 343
HBase, 44, 181, 250, 255
HDFS, 343
Ignite, 43, 221, 225, 241, 386, 392
Kafka, 11, 39, 46, 58–59, 61, 76, 79, 83, 92,

107, 116, 151, 158, 166, 173, 181, 187,
192, 220, 222, 225, 229, 241, 297, 340,
343, 349, 354, 360, 362, 398, 404, 408

Pulsar, 11
Spark, 343
ZooKeeper, 11, 39, 59, 61, 82–83, 87, 90–92,

95, 100, 107, 152–153, 166, 181, 229,
339–340, 343, 349, 351, 354, 361–362,
397

ArrayBlockingQueue class (Java), 164–165
asynchronous communication, 167
at-least-once, at-most-once actions, 181
atomic operations, 74
auto-splitting, 249–255
AWS (Amazon Web Services), 3

Clock Bound library, 58, 322, 325, 333
Time Sync Service, 322, 325, 333

Azure platform (Microsoft), 3
Cosmos DB, 128, 134

B
backpressure, 165, 358
bandwidth, 3, 97, 393
Birman, Kenneth, 100
blockchains, 151, 158, 373
blocking queues, 407
Bolt database, 194, 200
BookKeeper service (Apache), 116

metadata in, 343
request batching in, 404

bookmarks, in write operations, 191
bottlenecks

in logs, 74, 77
in partitioning, 229
on leaders, 341

brokers
caching metadata across, 229
controller, 59, 92, 166
follower, 92, 192
leader, 92
message, 134

Byzantine faults, 134

C
callbacks, 35, 167–168
candidates, 86
CASPaxos register, 131

413

Index

Cassandra database (Apache), 11
data clusters in, 58, 62, 68
durability of, 76
failure detection in, 91, 97–98
generations in, 107
implementing Paxos, 128, 132
log segmentation in, 79
LWW conflict resolution in, 212, 216
Majority Quorum in, 173
metadata in, 66, 371, 373
multiple random tokens in, 239
node communication in, 173
paused processes in, 96
SEDA architecture in, 166
updates in, 102

causal clusters, 191
causal consistency, 188
causal relationship, 302
Chubby lock service (Google), 339, 342, 354
clients

communicating with leaders, 134, 340
identifiers of, 175, 178, 215
interactions of, 339
log entries visible to, 112
number of, 216
read-only, 183
receiving data from event history, 361
refreshing metadata, 229
registered with servers, 36, 175–177, 355–360

removing, 180
requests of:

duplicated, 151
executing, 388
replicating, 135–140
responding to, 175

tracking queued requests, 400
Clock Bound library (AWS), 58, 322, 325, 333
clock skew, 56–58, 157, 290, 299
Clock-Bound Wait pattern, 299, 317–333

APIs for, 325–331
consistency in, 54–58, 317
read restarts in, 322–324
timestamps in, 290

ClockErrorBound (AWS), 325
clocks

atomic, 325
error bounds of, 325–326
hybrid logical, 309–316, 318
lagging behind, 319
Lamport, 301–307
monotonic, 154, 157, 346, 349
not monotonic, 264, 286, 346
time-of-the-day, 299

unsynchronized, 10, 49, 299, 349
closed timestamps, 192
cloud services, 3
Cloudflare, 141
cluster controllers, 59
cluster time, 346
clusters

causal, 191
consensus-based, 95, 100, 141
decision-making in, 26
gossip-based, 97
managing, 58–61
registering, 222–225
size of, 90, 100–102, 220, 337, 364, 386
states in, 133, 372
updates in, 16, 34, 100, 363

CockroachDB database, 11
data clusters in, 58
gossip protocol in, 371, 373
Hybrid Clock in, 58, 279, 290, 309, 314, 316
latencies in, 186
MVCC backend in, 201, 307
partitioning in, 44, 255, 297
read restarts in, 333
reading from follower servers in, 192
serializable isolation in, 261
timestamps in, 291, 314
transactional intents in, 293

column-family databases, 212
Command pattern, 72
Commit Log. See Write-Ahead Log pattern
commitIndex (Raft), 115, 137–140, 148
commit-wait operation, 326
compareAndSwap operation, 90
concurrency, 199
ConcurrentLinkedQueue class (Java), 164
conflict resolvers, 211–213
connections

closing, 357
failures of, 127, 360
pipelined, 358
timeouts on, 397
watch events on, 356–362

consensus algorithms, 117, 132
building, 133–134
determining up-to-date servers in, 87
fault tolerance in, 337–338
High-Water Mark in, 115
leader elections in, 86, 90–92, 141
liveness issues in, 338
processing requests in, 166
replication lagging in, 183
snapshot mechanisms in, 82

Index414

consistency, 46–49, 75
causal, 188, 191
eventual, 62, 68, 372
external, 317

Consistent Core pattern, 337–343
built with state machine replication, 158
client registration with, 177
connection failures in, 360
finding leaders in, 151
key changes in, 355
leader elections in, 90–91, 353, 392
leases in, 345–353
partitioning data in, 43, 222
read requests in, 191
storing metadata with, 237, 239
supporting hierarchical storage in, 339, 359
tracking clusters in, 58–62
vs. Emergent Leader, 375
vs. Gossip Dissemination, 68, 372

Consul service (HashiCorp)
Consistent Core in, 372
data clusters in, 68
failure detection in, 97–98, 372
gossip protocol in, 372–373
leader elections in, 91
leases in, 158
sending heartbeats asynchronously in, 96
stale data in, 153
timeouts in, 157

controller brokers, 59, 92
Controller Quorum (Kafka), 360
Coordinated Universal Time. See UTC
coordinators, 46–49, 222–235, 375

choosing timestamps, 279
clashes between, 386
communicating the outcome of transactions,

291
crashing, 292
creating key ranges, 245, 249
designating, 68, 293
fault tolerance of, 297
mapping partitions to ranges, 247
performing rollbacks, 271–272, 292
receiving commit requests, 268–270
retrying connections periodically, 389
tracking:

received updates, 379
transactions, 258–260, 265, 295

Cosmos DB database (Microsoft Azure), 128,
134

counters, 49
for log entries, 193
for nodes, 203

for processes, 104
for versions, 306

CPUs (central processing units), 3–6
partition splitting and, 255

crashes, 9
conflicts after, 112, 115
detecting, 17–19
restarting after, 15
restoring states after, 73, 292
See also failures

CRC records, 74
crystal oscillators, 299, 301, 346

D
data

availability of, 100
after crashing, 9

clusters of. See clusters
consistency of, 85
distributing, 5, 8, 10, 13, 42
failures in, 7–9
fraudulent, 134
inconsistencies in, 283
integrity of, 9
mapping to nodes, 219–222
moving between nodes, 42–44, 230–233
partitioning, 6, 42–44, 217–297
replicating, 9, 13, 45, 69–216
resilient, 14–15
spreading, 62–63, 364
stale, 40, 153, 183, 188, 191, 299, 340
uncommitted, 26
updating:

by followers, 40–41
from multiple threads, 34
stopped, 187

data stores, 42
distributed, 286, 291, 297
locks in, 293
nonblocking, 199
partitioning in, 253
Replicated Log in, 152
serializable isolation in, 261–262
transaction restarting in, 264

databases, 5
column-family, 212
durability of, 76
failure assumptions in, 134
implementing transactions in, 15
partitioned, 151
read restarts in, 58
relational, 100

datacenters, 183

415Index

Date-Time API (Java), 325, 346
deadlocks, 262–263, 275
Dean, Jeff, 7
Dgraph database, 286
DHCP (Dynamic Host Configuration Protocol),

354
discovery protocols, 376
disks

durability of, 74
failures of, 7
performance of, 3
saving data to, 404
slow, 187

distributed systems
definition of, 3, 10
liveness vs. safety of, 99
scaling, 217

dotted version vectors, 216
duplicate detection, 342

E
elapsed time, 346
elections. See leaders, electing
electionTimeout interval, 157
embedded storage engines, 200
Emergent Leader pattern, 375–392

data clusters in, 68
split brain problem in, 386–390
updates in:

missing, 384
sending, 379–383

vs. Leader and Followers, 392
enterprise systems, failure assumptions in,

134
EPaxos algorithm, 151
ephemeral nodes, 90, 351
epidemics, 62–63, 364
epoch. See Generation Clock pattern
error-on-conflict policy, 263–266, 279
etcd key-value store, 11

Bolt database in, 200
channels in, 166
coordinators in, 222
data clusters in, 59, 61
forwarding client requests in, 340
goroutines in, 166
leader elections in, 90–91
leases in, 158, 354
metadata in, 343
processing requests in, 166
read requests in, 152
snapshot mechanisms in, 82
stale data in, 153

waiting lists in, 173
watch channels in, 358, 362

etcd3 interface, 201
events

order of, 104
sourcing, 76
storing history of, 361

EvictingQueue (Java), 361
exactly-once actions, 181
ExecutorService interface (Java), 160
external consistency, 317
external service calls, 166

F
failover protocol, 354
failures

access to resources and, 345
assuming, 134
connection, 360
detecting, 86, 91, 93–98, 153, 157, 222–224,

372, 378, 385–390
handling, 291–292
log files and, 74
managing, 8, 17–26, 59, 270–272
masking, 9
multiple, 21–26
probability of, 7–8
recovering after, 109
single point of, 287
tolerating, 100–101, 134, 177, 297, 337–338,

345, 364
See also crashes

Fixed Partitions pattern, 43–44, 219–235, 241
choosing placement of, 392
distributing across nodes, 219–220, 375
tracking clusters in, 61

Flink framework (Apache), 343
FLP impossibility result, 127
flushing, 73–74
follower brokers, 92
Follower Reads pattern, 183–192

replicating updates to followers in, 40
followers, 16, 86

commitIndex updates by, 140
committing, 29–33
disconnected, 187
handling read requests in, 340
missing log entries in, 109
reading from, 183, 188, 192
replicating:

log entries, 135–137
updates to, 40–41

serializing updates from the leader, 395

Index416

with the least network latency, 187
See also Leader and Followers pattern

Fowler, Martin, 13, 117

G
garbage collection, 9, 96, 103, 105–106
GCP (Google Cloud Platform), 3
Generation Clock pattern, 21–26, 103–107

as a Lamport clock, 307
detecting staled leaders with, 96, 141
for log entries, 111, 115, 136
for node metadata, 372
for partitions, 253
in Paxos, 117–119
in Raft, 141
leader elections in, 86–88, 133–134, 145–146

Go programming language
channels and goroutines in, 34, 159, 164–166
clones in, 200
lightweight threads in, 164
memberlist library of, 97

Google
Chubby, 339, 342, 354
data centers, 7–8
GCP, 3
Guava, 361
Percolator, 286–287
Spanner, 58, 128, 134, 261, 264, 291, 332
TrueTime, 10, 58, 299, 322, 325, 332

gossip convergence, 381
Gossip Dissemination pattern, 62–68,

363–373
eventual consistency and, 68, 372
failure detection in, 97
node selection in, 371
restarts in, 372
state exchanges in, 199, 368–372
tracking updates in, 381
vs. Consistent Core, 68, 372

gossip fanout, 366
GPS (Global Positioning System), 299, 325
Gray, Jim, 100
group membership, 339
Guava library (Google), 361
Gunther, Neil, 100

H
hardware, physical limits of, 3–6, 42
hash functions, 221, 229
HashiCorp

Consul, 96–98, 153, 157–158, 372–373
Serf Convergence Simulator, 364

HashMap class (Java), 74

Hazelcast platform
coordinators in, 222, 385, 392
executing client requests in, 388
failure detection in, 386
partitioning in, 221, 225, 241

HBase database (Apache)
idempotency in, 181
partitioning in, 44, 250, 255

HDFS (Hadoop Distributed File System), 343
head-of-line blocking, 96, 397
HeartBeat pattern, 17–19, 29, 32, 93–98

all-to-all, 386
detecting failures with, 222

in cluster members, 378, 385
in coordinators, 292
in leaders, 86, 88, 153, 157

expected from leaders, 95, 141–142
expiring sessions with, 180
including generations in, 105
network round trip time in, 94, 349
propagating the high-water mark with, 112
sending asynchronously in, 96
time intervals in, 94
tracking clusters in, 59

heterogeneous systems, 297
hierarchical storage, 339, 359
High-Water Mark pattern, 109–116

commitIndex as an example of, 115, 140
committing log entries in, 29–33
conflicting entries in, 104
generations in, 107
known by follower brokers, 192
leases and, 348, 350
majority of servers in, 100
propagating to followers, 112
read-your-writes consistency in, 41, 189
tracking replication with, 339
updating in, 34, 193, 229

Howard, Heidi, 132
Hybrid Clock pattern, 309–316

in Versioned Value, 318, 322
read-your-writes consistency in, 41, 189
tracking request order in, 54–58
used in two-phase commits, 279
vs. Lamport Clock, 310
with distributed transactions, 314–316

Hyperledger Fabric software, 134, 158, 373

I
idempotency, 35–36, 175–181

in key-value stores, 177, 273
idempotent producers (Kafka), 181
Idempotent Receiver pattern, 175–181

417Index

detecting duplicate requests with, 151, 342
request batching in, 404
updating data in, 35–36

Ignite database management system (Apache)
coordinators in, 392
failure detection in, 386
mapping in, 225
partitioning in, 43, 221, 241

IllegalStateException (Java), 165
Intel Optane memory, 74
Internet, time sources on, 301
isolation, 75

J
J2EE servers, 297
Java programming language

Date-Time API of, 325, 346
garbage collection in, 9
hash values in, 221
MVCC in, 194
Singular Update Queue implementation in,

160
java.lang.Thread class, 160–161
JDK (Java Development Kit), collection library

of, 164
JGroups toolkit, 11

discovery protocols in, 376, 392
JMS (Java Message Service), 297
join requests, 377

K
Kafka platform (Apache), 11

blockchains and, 158
consistency in, 46
Controller Quorum in, 360
controllers in, 92, 166, 222
data clusters in, 58–59, 61
epoch in, 107
High-Water Mark in, 116
idempotency in, 181
logical storage structures in, 225
logs in:

cleaning, 83
segmentation of, 79

mapping data in, 220
messages from follower brokers in, 192
metadata in, 229, 343, 362
offsets in, 187
partitioning in, 241, 297, 340
pending requests in, 173
pull-based replication in, 151
request batching in, 404
request pipelines in, 408

single-socket channel in, 39, 398
storage implementation in, 76
timeouts in, 349, 354
transactions in, 297

Key-Range Partitions pattern, 44, 243–255
auto-splitting in, 249–255
load-based splitting in, 255
predefined key ranges in, 244–246

keys
all versions for, 197–199
mapped to partitions, 44, 221
ordering, 194–196, 200, 313
prefixes of, 339, 359
ranges of, 44, 241, 243–255
updating, 209

concurrently, 203–216
key-value records

adding, 75
setting, 151

key-value stores, 42, 127–130
changing keys in, 355
client interface of, 229, 245
current state of, 361
Hybrid Clock in, 322
key ranges in, 243–245
leases in, 351–352
mapping in, 219–220
Replicated Log in, 151
requests in:

idempotent, 177, 273
not ordered, 151
queued, 399–403
read, 152, 190

two-phase commits in, 258–260
updates in, 270
version numbers in, 193, 303–306, 312,

317
version vectors in, 207–210

Kotlin programming language, 164
Kubernetes system

coordinators in, 222
data clusters in, 58, 61
metadata in, 343
watch channels in, 362

L
Lamport Clock pattern, 104, 301–307

causal consistency in, 188
partially ordered values in, 54, 305, 318
tracking request order in, 52–54
used in two-phase commits, 279–280, 287
vs. Hybrid Clock, 310

Lamport timestamps. See timestamps, logical

Index418

Lamport, Leslie, 117, 302
latency, 186–187
Leader and Followers pattern, 16, 85–92

consensus among nodes in, 117, 339
coordinators in, 222
generations of, 104–106
majority of servers in, 100
messages between, 395
overloading with requests in, 183
replicating:

leases in, 345
log entries in, 109, 193

temporarily disconnected, 103
using Generation Clock with, 21
version numbers in, 305
vs. Emergent Leader, 375, 392

leader brokers, 92
Leader Epoch (Kafka), 107
leader leases, 154, 157–158, 340
leaderLeaseTimeout interval, 155–157
leaderless replication, 208
leaders, 16, 85

bottlenecks on, 341
coordinating replication, 134
deposed, 105
electing, 17–27, 85–91, 96, 100, 104, 112, 134,

141–142, 340, 353
continuously triggered, 338
waiting prior to, 141

executing log entries, order of, 140
failures of, 17–26, 35, 59, 86, 91, 96, 109, 153,

157, 177, 342, 353
finding, 151, 340–341, 392
forwarding requests to, 340
handling updates, 16
maintaining:

Lamport clock, 305–306
leases, 350
timeouts, 155, 157

overloaded, 183
reducing load on, 40
responsive, 34–39
sending:

heartbeats to followers, 95, 141–142, 153,
157

replicated log entries, 135, 137
stale, 96, 141, 152

Lease pattern, 345–354
cluster managing in, 337
detecting failures in, 224
distributing tasks across servers in, 342
in key-value stores, 351–352
leader failures and, 353

log entries in, 151
non-idempotent requests in, 177
system timestamps in, 49
tracking clusters in, 58–59, 352

leases
creating, 177
duplicated, 349
expiring, 59, 345–346, 350
leader, 154, 157–158, 340
refreshing, 353
registering, 349
renewing, 345
replicated, 59

lightweight threads, 164–165
linearizability, 90, 337, 340
LinkedBlockingDeque class (Java), 164
liveness, 99, 127
LMAX Disruptor library, 164, 166
load-based splitting, 255
locks, 159, 199, 258, 261–267

deadlock prevention in, 262–267
holding, 275, 279–280, 283
releasing, 267, 270–272
transaction isolation and, 261–262
two-phase, 262
using pending transactions as, 293–295

log entries, 14–15
appending, 111, 135
committing, 26–33
conflicting, 104, 112, 115, 150
corrupted, 74
counters for, 193
discarding, 81–83
duplicated, 74
executing order of, 140
flushing, 73–74
identifiers for, 71
missing, 109
previous generation of, 142
replicating, 20, 109–111, 150
resolving conflicts in, 21, 24
sending to followers, 135
storing states of, 133
updating, 71, 159
visible to clients, 112

LogCabin algorithm
cluster time in, 346
heartbeats in, 96
idempotency in, 181
single-socket channel in, 398

logical partitions, 220
logical storage structures, 225
logical timestamps, 299–333

419Index

logs
cleaning, 71, 76–77, 81–83, 151
flushing, 404
replicating, 133–158
segmented, 77–79
single, 71–76
size of, 77, 83
storing generations in, 104
syncing, 139
truncating, 112–115

Low-Water Mark pattern, 81–83
logs in:

cleaning, 71, 76, 151
segmenting, 74

time-based, 83
LWW (Last Write Wins) conflict resolution,

212–213, 216

M
Majority Quorum pattern, 20, 24, 99–102

building consensus with, 133–134, 137,
150–153

cluster size vs. throughput in, 337
committing log entries in, 26–29
data partitioning and, 45
in Paxos, 120–127, 132
leader elections in, 88, 141–142, 392
not sufficient for data consistency, 85
processing requests in, 167
replicating log entries in, 109
timeouts and, 155
tracking:

clusters in, 58
replication with, 339

updating data in, 34, 117
matchIndex (Raft), 139
MD5 hash algorithm, 221
memberlist library (Go), 97
membership

changes in, 375
maintaining list of, 378
missing updates of, 384
updating, 377, 379–383

memory, 3–6
partition splitting and, 255
queues and, 165

message brokers
distributed, 297
failure assumptions in, 134
mapping data in, 220

messages
acknowledgment, 379
delivery delays of, 9

ordering, 10, 408
processing, 163

metadata, 62
caching, 229
changes in, 342
creating, 254–255
implementing storage for, 339
propagation of, 62, 364–371
refreshing, 229
token, 237–241
transmitted at regular intervals, 365

microservices, 297
Microsoft Azure platform, 3

Cosmos DB, 128, 134
MongoDB database, 11

consistency in, 46, 191
data clusters in, 58, 61
Hybrid Clock in, 58, 279, 290, 309, 314,

316
latencies in, 186
log entries in, 151
MVCC backend in, 201, 307, 316
partitioning in, 297
replicas in, 187
Replicated Log in, 151
transactions in, 297

Multi-Paxos protocol, 128
implementing Replicated Log, 134, 158

Multi-Raft algorithm, 291
Murmur hash algorithm, 221
MVCC (multiversion concurrency control), 194,

201
hybrid timestamps in, 316
implemented in databases, 307
transaction isolation and, 199

N
Nagel’s algorithm, 404
Neo4j database management system, 191
networks, 3–5

bandwidth of, 3, 97, 393
delays in, 299
failures of, 364
latency of, 399
partitioning in, 102
round trip time of, 94, 154, 349
temporarily disrupted, 103
throughput of, 404

nodes
adding, 42, 44, 230–235, 239–241, 381
age of, 375
agreeing upon themselves, 117
available, 24, 372

Index420

communications between, 167, 203, 393–408
continuously reading new requests, 395
counters for, 203
crashing, 14, 17–20, 117, 134, 258–259, 378
ephemeral, 90
equal, 375
executing different requests, 15
failures in, 222–224, 257, 270–272, 352, 372
identifiers of, 265, 378
lagging behind, 150
location of, 184
majority of, 100, 388
mapping data to, 219–222
multiple, 15
ordering, 375
overwhelmed, 407
partitioning data across, 42–44, 220–241
reconnecting to, 389
restarting, 372
seed, 375–377
sending:

gossip messages, 62–67, 363, 371
requests, 171

state of, 133, 363, 372
updating, 117–132, 363, 372

concurrent, 214
waiting, 141

nosql databases
durability of, 76
log segmentation in, 79

NTP service, 10, 212–213, 299, 301, 346

O
OFFSET_NOT_AVAILABLE error (Kafka), 192
operations

atomic, 74
read-modify-write, 261
write, 58, 101, 191, 273

P
parallel processing, 10
partitioning, 6, 13, 42–44, 217–297

bottlenecks in, 229
linearizability and, 340
number of partitions in, 219–241
ordering requests in, 151
quorums and, 102
resilience of, 45

partitions, 42
atomically stored values in, 297
consistency across, 46–49
distributing data across, 42

evenly, 220

fixed, 43–44, 219–235, 241
key-range, 44, 243–255
logical, 42, 220, 244
managing data in, 58–61
moving, 44, 220
proportional to number of nodes,

236–241
replicating, 45, 291
size of, 250–255
splitting points of, 44, 244
updating status of, 229

patterns
definition of, 10
See also individual patterns by name

Paxos pattern, 117–132
consensus in, 337–338
failures in, 134
flexible, 132
handling multiple values, 131
liveness vs. safety in, 127
phases of, 117–118
quorums in, 102, 120–127, 132
single-decree, 127
vs. Replicated Log, 257

PBFT algorithm, 134
Pebble database, 200
peer-to-peer systems, 375
Percolator data store (Google), 286–287
performance

communicating between servers and, 405
data replication and, 39
disks and, 3
flushing and, 74
log file size and, 77
parallel processing and, 10
partitioning and, 45
transaction isolation and, 261–262

Phi Accrual failure detector, 97–98
pickRandomNode method, 371
PostgresSQL database, 285
primary (Viewstamped Replication algorithm),

92
processes

causally related actions in, 104
crashing, 9
pausing, 9
waiting for response, 9

promises (Paxos), 120
proposers (Paxos), 118–119

competing, 127
pull-based replication, 151
Pulsar platform (Apache), 11
purgatory data structure, 173

421Index

Q
quartz crystals, 299
queues, 34–39

backpressure on, 165
singular update, 159–166

quorums
flexible, 101
handling responses of, 170
intersection of, 102
majority, 100–102
size of, 101–102

R
Raft algorithm, 27

commitIndex in, 115
blockchains and, 158
cluster time in, 346
conflicting entries in, 115
consensus in, 132, 337–339
Consistent Core in, 372
failures in, 98, 134
idempotency in, 181
implementing Replicated Log, 134–158, 291
leader elections in, 87, 92, 112
logs in, 76

segmentation of, 79
performance of, 39
quorums in, 102
replication lagging in, 183
request pipelines in, 408
requests in:

expired, 179
pipelined, 408
processing, 166

sending heartbeats in, 95
single-socket channel in, 398
snapshot mechanisms in, 82–83
state-per-cluster nodes in, 151
terms in, 107, 141, 143
version numbers in, 193

Reactive Streams API, 358
read requests, 152–158, 183

blocking, 262
bypassing logs for, 152, 191
dedicated threads for, 395–397
handled by followers, 40–41, 340
linearizable, 191
repairing, 213–214

read restarts, 58, 322–324, 333
ReadRestartException (Java), 324
read-wait operation, 330–331
read-your-writes consistency, 40, 189
relational databases, 100

Replicated Log pattern, 27, 133–158
bypassing logs for read requests in, 152, 191
consistency in, 46–49
handled by a separate thread, 34, 41
in metadata storage, 339
key-value stores and, 151
partitioning data in, 45, 222–223
performance of, 39
persistent partition tables in, 226
quorums in, 102
registering requests in, 36–39
storing mapping in, 245
timestamp oracle in, 287
tracking clusters in, 58, 61
transactions in, 291
version counters in, 306
vs. Paxos, 128, 257
vs. Write-Ahead Log, 74, 152

replication, 9, 13, 45, 69–216
conflicting entries in, 115
full, 139–140
lagging, 183, 191
leaderless, 208
of client requests, 135–140
pull-based, 151
state machine, 158, 193

Request Batch pattern, 399–404
asynchronous communication in, 167
retry-backoff policy in, 404

request intervals, 94
Request Pipeline pattern, 405–408

asynchronous communication in, 167
for connected clients, 355
for head-of-line blocking, 397
heartbeats in, 96
in-flight requests in, 179, 407
request batching in, 404

Request Waiting List pattern, 167–173
adding callbacks to, 168
updating data in, 34–35

requests
accepting, 21
batching, 399–404
connection, 342
duplicated, 151, 175, 180–181, 342
executing in different nodes, 15
expiring, 172, 179
failures in, 408
handling, 15
idempotent, 177, 273
in separate threads, 405–406
in-flight, 179, 407
join, 377

Index422

non-idempotent, 177
one-way, 379
order of, 52–58, 151–152
overloading, 183
pending, 173, 400
processing, 161–173, 179, 181
processing time of, 399
read. See read requests
rejecting, 16, 408
repeated, 35, 175
responding to, 175
retrying, 181, 408
stale, 26
stopping serving of, 187
tracking, 35
waiting, 35
write. See write requests

resilience, 45
ResultCollector object, 379–381
retry-backoff policy, 404
Riak database

concurrent updates in, 214
LWW conflict resolution in, 212–213, 216
version vectors in, 204, 216

ring buffer data structure, 164
RocksDB database, 75

arranging data in, 194
clones of, 200
locks in, 293
sequence number in, 49

rollbacks, 271–272, 292
RSocket protocol, 358
rumors, 62–63, 364

S
S3 (Simple Storage Service), 188
safety, 99, 127
scalability, 5
schedulers, 94
SEDA architecture, 166
seed nodes, 375–377
Segmented Log pattern, 77–79

reducing storage space in, 74
using Write-Ahead Log with, 71

Serf Convergence Simulator (HashiCorp), 364
serializability, 340
serializable isolation, 261–262, 285
servers

changes on, 355
comparing timestamps on, 301
connection requests to, 342
distributing tasks across, 339
failures of, 364

detecting, 93–98
recovering after, 109
tolerating, 101

generation of, 104
number of, in a cluster, 100–102
overwhelming, 355
rebooting, 104
registering clients with, 175–177, 355–360
sessions on, 176
states of, 86
up-to-date, 87

service calls, external, 166
sessions, 176

expired, 180, 351
shard allocation (Akka), 241
shards. See partitions
sibling explosion, 216
Single Writer Principle, 166
Single-Socket Channel pattern, 395–398

between leader and followers, 39
for connected clients, 342, 355
heartbeats in, 96
performance and, 405
tracking clusters in, 61

Singular Update Queue pattern, 34, 159–166
backpressure in, 165
channels in, 164
heartbeats in, 96
Java implementation of, 161
performance and, 405
task chaining in, 166
threads in, 164
updates in, 71, 86

snapshot isolation, 199, 283–290
timestamps in, 286–290

snapshot mechanisms, 82–83
software systems

dealing with hardware physical limits, 6
problems in, 9–10

Spanner service (Google), 58
commit-wait in, 332
Multi-Paxos in, 128, 134
serializable isolation in, 261
timestamps in, 291
transactions in, 264

Spark engine (Apache), 343
split brain problem, 68, 386
state machine replication, 158, 193
State Watch pattern, 355–362

all events from a specific version in, 197–199
node failures in, 352
notification in, 342
tracking clusters in, 58–60

423Index

storage
causal consistency in, 188
embedded engines for, 200
hierarchical, 339, 359
limitations of, 74
multiversion, 362
stability of, 74
transactional, 74–75

suspicion numbers, 97
SWIM (Scalable Weakly-Consistent

Infection-Style Process Group Membership
Protocol), 98, 372–373

with Lifeguard enhancement, 97
synchronization, 49
System.currentMillis, System.nanoTime methods (Java),

346

T
tasks

chaining, 166
distributing across servers, 339, 342
scheduled, 180, 346, 365–366, 384

TCP protocol, 9, 366, 395
Nagel’s algorithm in, 404

terms (Raft), 141, 143
Thread class (Java), 160–161
threads

blocking, 159
communicating, 165
concurrent, 199
dedicated for read and write requests,

395–397
execution, 161–162
handling, 34–39
lightweight, 164–165
separate for read and write requests, 405–406
single, 159

three-way handshake, 371
tick method, 302
TiDB database, 286–287
TiKV database

partitioning in, 255
transactional intents in, 293

Time Sync Service (AWS), 322, 325, 333
time-bound leases. See Lease pattern
timeouts, 94, 155–157

expiring requests after, 172
for leases, 349
measuring, 346

timestamp oracle service, 287–290
timestamps

closed, 192
comparing, 301

conflict resolution with, 212–213
handling, 316
hybrid, 311–314, 316
logical, 299–333
monotonic, 286–290
of heartbeats, 95
ordering, 290–291, 313
system, 49–56, 299, 301, 318, 325

reading, 314
used in two-phase commits, 279

token metadata, 237–241
transactional intents, 293–295
transactional outbox, 297
transactions, 74–75

committing, 270
concurrent, 262, 279, 285, 287
conflicting, 275–279
deadlocks in, 262–263
distributed, 314–316
fraudulent, 134
identifiers of, 258
incomplete, 292
isolation of, 199, 261–262, 283–290
lightweight, 128, 132
logging, 291
monotonic, 290
ordering, 264–266
pending, using as locks, 293–295
read-only, 279
read-write, 279–280, 283
recording states of, 292
restarting, 264, 291
retried, 278
rolling back, 263, 271–272, 292
serializable, 285

TrueTime service (Google), 10, 58, 322, 325
clock bound in, 332
clock skew in, 299

Two-Phase Commit pattern, 257–297
consistency in, 46–49
failure handling in, 291–292
Hybrid Clock in, 290
in heterogeneous systems, 297
snapshot isolation in, 199
transactional intents in, 293–295
transactions in, 75, 258–297, 314–316
updating data in, 117

two-phase locking, 262

U
UDP (User Datagram Protocol), 366
updates

atomic, 75, 257, 297

Index424

competing, 15–17
concurrent, 214
logging, 292
lost, 285
missing, 384
sending to other members, 379–383
two-phase, 257–297

UTC (Coordinated Universal Time), 50

V
values

changing, 355
partially ordered, 305, 318
storing version numbers of, 193

Vector Clock algorithm, 204
vector stamps, 203
version numbers, 193, 303
Version Vector, 203–216

comparing vectors in, 205
dotted, 216
implementations of, 204
in key-value stores, 207–210
read repairs in, 213–214
resolving conflicts in, 211–213
size of, 216
vs. Vector Clock, 204

Versioned Value pattern, 193–201
all events from a specific version in, 197–199
consistency in, 40–41, 49
Hybrid Clock in, 318, 322
ordering keys in, 194–196, 200, 313
storing values with, 306
timestamp oracle in, 287
transaction isolation in, 199
used in two-phase commits, 279–282
version numbers in, 303, 369

Viewstamped Replication algorithm, 92
Multi-Paxos in, 158

Voldemort database, 212
version vectors in, 205, 208, 216

votes
majority of, 100, 145–146
rejecting, 145
requesting, 141

W
wait-die policy, 267
waiting lists

adding callbacks to, 168, 171
expiring requests, 172
handling responses, 170, 172
invoking callbacks, 168, 172
maintaining, 167–168

WAL. See Write-Ahead Log
watch events, 356–362
web APIs, 5
wound-wait policy, 266, 279
write requests, 183

atomic, 273
buffered, 287
dedicated threads for, 395–397
in-flight, 291
repairing replicas after, 213
returning bookmarks, 191
throughput of, 101
waiting in, 58, 291

write skew, 285
Write-Ahead Log (WAL) pattern, 14–15, 19–20,

71–76
consistency in, 47
leader elections in, 87
node states in, 133
recording transaction states in, 292
saving write requests in, 193
storing generations in, 104–105
updating data in, 34, 159
used to recover after crashes, 109, 258–259
vs. Replicated Log, 152

write-behind logging, 74

X
XA transactions, 297

Y
YugabyteDB database, 11

data clusters in, 58, 61, 222
Hybrid Clock in, 58, 316
leader leases in, 158, 340
metadata in, 229
partitioning in, 44, 250, 254–255
read restart in, 333
transactional intents in, 293

Z
Zab algorithm

consensus in, 337
failures in, 98
leader elections in, 87, 92, 112
logs in, 76
Multi-Paxos in, 158
processing requests in, 166
request pipelines in, 408

ZooKeeper server (Apache), 11
data clusters in, 59, 61, 100
ephemeral nodes in, 90, 351
epoch in, 107

425Index

events in, 361–362
filesystem-like interface in, 339
forwarding client requests in, 340
leader elections in, 87, 90–92
metadata in, 229, 343
processing requests in, 166

read requests in, 152–153
sending heartbeats in, 95
sessions in, 181, 349, 351, 354
single-socket channel in, 39, 397
snapshot mechanisms in, 82–83

zxid (ZooKeeper transaction id), 181

Index426

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	Part I: Narratives
	Chapter 1: The Promise and Perils of Distributed Systems
	The Limits of a Single Server
	Separate Business Logic and Data Layer
	Partitioning Data
	A Look at Failures
	Replication: Masking Failures
	Process Crash
	Network Delay
	Process Pause
	Unsynchronized Clocks

	Defining the Term “Distributed Systems”
	The Patterns Approach

	Chapter 2: Overview of the Patterns
	Keeping Data Resilient on a Single Server
	Competing Updates
	Dealing with the Leader Failing
	Multiple Failures Need a Generation Clock
	Log Entries Cannot Be Committed until They Are Accepted by a Majority Quorum
	Followers Commit Based on a High-Water Mark

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

