
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780138097370
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780138097370
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780138097370

Exam Ref DP-500
Designing and
Implementing Enterprise-
Scale Analytics Solutions
Using Microsoft Azure
and Microsoft Power BI

Daniil Maslyuk
Justin Frébault

Exam Ref DP-500 Designing and Implementing
Enterprise-Scale Analytics Solutions Using Microsoft
Azure and Microsoft Power BI
Published with the authorization of Microsoft Corporation by:
Pearson Education, Inc.

Copyright © 2024 by Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms, and the appropriate contacts within the
Pearson Education Global Rights & Permissions Department, please visit www.
pearson.com/permissions. No patent liability is assumed with respect to the use
of the information contained herein. Although every precaution has been taken
in the preparation of this book, the publisher and author assume no responsi-
bility for errors or omissions. Nor is any liability assumed for damages resulting
from the use of the information contained herein.

ISBN-13: 978-0-13-809737-0
ISBN-10: 0-13-809737-2

Library of Congress Control Number: 2023938072

ScoutAutomatedPrintCode

TRADEMARKS

Microsoft and the trademarks listed at http://www.microsoft.com on the
“Trademarks” webpage are trademarks of the Microsoft group of companies.
All other marks are property of their respective owners.

EDITOR-IN-CHIEF
Brett Bartow

EXECUTIVE EDITOR
Loretta Yates

DEVELOPMENT EDITOR
Songlin Qiu

MANAGING EDITOR
Sandra Schroeder

SENIOR PROJECT EDITOR
Tracey Croom

COPY EDITOR
Liz Welch

INDEXER
Timothy Wright

PROOFREADER
Donna E. Mulder

TECHNICAL EDITOR
Owen Auger

EDITORIAL ASSISTANT
Cindy Teeters

COVER DESIGNER
Twist Creative, Seattle

COMPOSITOR
codeMantra

WARNING AND DISCLAIMER

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is
implied. The information provided is on an “as is” basis. The author, the publisher, and Microsoft Corporation shall have
neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the informa-
tion contained in this book or from the use of the programs accompanying it.
Unless otherwise indicated herein, any third party trademarks that may appear in this work are the property of their
respective owners and any references to third party trademarks, logos or other trade dress are for demonstrative or
descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization,
or promotion of Pearson Education, Inc., products by the owners of such marks, or any relationship between the
owner and Pearson Education, Inc. or its affiliates, authors, licensees or distributors.

SPECIAL SALES

For information about buying this title in bulk quantities, or for special sales opportunities (which may include elec-
tronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearson.com.

http://www.pearson.com/permissions
http://www.pearson.com/permissions
http://www.microsoft.com
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

To Dasha, Leonard, and William, who served as a great source of
motivation and support.

—DANIIL MASLYUK

To my wife Phaedra, who doesn’t have much to do with data
analytics but who has everything to do with enriching the rest of
my life.

—JUSTIN FRÉBAULT

Contents at a glance

Introduction xi

Preparing for the exam xi

CHAPTER 1 Implement and manage a data analytics environment 1

CHAPTER 2 Query and transform data 57

CHAPTER 3 Implement and manage data models 101

CHAPTER 4 Explore and visualize data 215

Index 251

Contents

 Introduction xi

Errata, updates, & book support xiii

Stay in touch xiii

Acknowledgments xiii

About the authors xiv

Chapter 1 Implement and manage a data analytics environment 1
Skill 1.1: Govern and administer a data analytics environment 1

Manage Power BI assets by using Azure Purview 2

Identify data sources in Azure by using Azure Purview 8

Recommend settings in the Power BI admin portal 11

Recommend a monitoring and auditing solution for a
data analytics environment, including Power BI REST
API and PowerShell cmdlets 20

Skill 1.2: Integrate an analytics platform into an existing
IT infrastructure . 21

Identify requirements for a solution, including features,
performance, and licensing strategy 22

 23

 24

to integrate with Azure Data Lake Storage Gen2 31

Integrate an existing Power BI workspace into Azure
Synapse Analytics 33

Skill 1.3: Manage the analytics development lifecycle 35

Commit code and artifacts to a source control repository
in Azure Synapse Analytics 36

Recommend a deployment strategy for Power BI assets 38

Recommend a source control strategy for Power BI assets 39

Implement and manage deployment pipelines in Power BI 40

vii

Contentsviii

Perform impact analysis of downstream dependencies
 45

Recommend automation solutions for the analytics development
lifecycle, including Power BI REST API and PowerShell cmdlets 46

Deploy and manage datasets by using the XMLA endpoint 47

Create reusable assets, including Power BI templates,
 49

Chapter summary . 52

Thought experiment . 54

Thought experiment answers . 55

Chapter 2 Query and transform data 57
Skill 2.1: Query data by using Azure Synapse Analytics 57

Identify an appropriate Azure Synapse pool when
analyzing data 58

SQL pools 67

Query relational data sources in dedicated or serverless
SQL pools, including querying partitioned data sources 68

Use a machine learning PREDICT function in a query 70

Skill 2.2: Ingest and transform data by using Power BI 72

Identify data loading performance bottlenecks in Power
Query or data sources 73

Implement performance improvements in Power Query
and data sources 76

 78

Identify and manage privacy settings on data sources 79

Create queries, functions, and parameters by using the
Power Query Advanced Editor 83

Query advanced data sources, including JSON, Parquet,
APIs, and Azure Machine Learning models 87

Chapter summary . 98

Thought experiment . 99

Thought experiment answers . 100

Contents ix

Chapter 3 Implement and manage data models 101
Skill 3.1: Design and build tabular models .101

Choose when to use DirectQuery for Power BI datasets 102

Choose when to use external tools, including DAX
Studio and Tabular Editor 2 103

Create calculation groups 105

Write calculations that use DAX variables and functions,
for example, handling blanks or errors, creating virtual
relationships, and working with iterators 108

Design and build a large format dataset 189

Design and build composite models, including aggregations 190

Design and implement enterprise-scale row-level security and
object-level security 192

Skill 3.2: Optimize enterprise-scale data models . 200

Identify and implement performance improvements in
queries and report visuals 201

Troubleshoot DAX performance by using DAX Studio 202

Optimize a data model by using Tabular Editor 2 202

 203

Implement incremental refresh (including the use of
query folding) 204

Optimize a data model by using denormalization 209

Chapter summary . 209

Thought experiment . 210

Thought experiment answers . 212

Chapter 4 Explore and visualize data 215
Skill 4.1: Explore data by using Azure Synapse Analytics 215

Explore data by using native visuals in Spark notebooks 215

Explore and visualize data by using the Azure Synapse
SQL results pane 219

Skill 4.2: Visualize data by using Power BI . 220

Create and import a custom report theme 221

Create R or Python visuals in Power BI 226

Connect to and query datasets by using the XMLA endpoint 233

Contentsx

 238

Enable personalized visuals in a report 240

 243

Create and distribute paginated reports in Power BI
Report Builder 245

Chapter summary . 246

Thought experiment . 247

Thought experiment answers . 248

Index 251

xi

Introduction

Exam DP-500 focuses on designing and implementing enterprise-scale analytics solutions
using Microsoft Azure and Microsoft Power BI. About a quarter of the book examines

implementing and managing a data analytics environment, which includes both Azure and
Power BI. Another quarter of the book reviews the query and data transformation by using
Azure and Power BI. One more quarter of the book is dedicated to tabular data modeling in
Power BI. The remainder of the book reviews the data visualization skills in Azure and Power BI.

This book was written for business intelligence developers, business intelligence architects,
data engineers, and data architects. Before reading this book, you should be familiar with
Azure, Power BI, the basics of Power Query, and DAX. It helps if you’ve passed the PL-300 exam
already.

This book covers every major topic area found on the exam, but it does not cover every
exam question. Only the Microsoft exam team has access to the exam questions, and Microsoft

You should consider this book a supplement to your relevant real-world experience and other
study materials. If you encounter a topic in this book that you do not feel completely comfort-

and take the time to research and study the topic. Great information is available on MSDN,
TechNet, and in blogs and forums.

Organization of this book

This book is organized by the “Skills measured” list published for the exam. The “Skills mea-
sured” list is available for each exam on the Microsoft Learn website: microsoft.com/learn. Each
chapter in this book corresponds to a major topic area in the list, and the technical tasks in
each topic area determine a chapter’s organization. If an exam covers six major topic areas, for
example, the book will contain six chapters.

Preparing for the exam

product knowledge. Although there is no substitute for on-the-job experience, preparation
through study and hands-on practice can help you prepare for the exam. This book is not
designed to teach you new skills.

http://microsoft.com/learn

Introductionxii

We recommend that you augment your exam preparation plan by using a combination of
available study materials and courses. For example, you might use the Exam Ref and another

the classroom experience. Choose the combination that you think works best for you. Learn
more about available classroom training, online courses, and live events at microsoft.com/learn.

Note that this Exam Ref is based on publicly available information about the exam and the
authors’ experience. To safeguard the integrity of the exam, authors do not have access to the
live exam.

experience with current Microsoft products and technologies. The exams and corresponding

and develop, or implement and support, solutions with Microsoft products and technologies

and to employers and organizations.

Quick access to online references

Throughout this book are addresses to webpages that the authors have recommended you
visit for more information. Some of these links can be very long and painstaking to type, so
we’ve shortened them for you to make them easier to visit. We’ve also compiled them into a
single list that readers of the print edition can refer to while they read.

Download the list at MicrosoftPressStore.com/ERDP500/downloads.

The URLs are organized by chapter and heading. Every time you come across a URL in the

NEED MORE REVIEW? ALL MICROSOFT CERTIFICATIONS

go to microsoft.com/learn.

http://microsoft.com/learn
http://MicrosoftPressStore.com/ERDP500/downloads
http://microsoft.com/learn

xiii

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion content. You
can access updates to this book—in the form of a list of submitted errata and their related
corrections—at:

MicrosoftPressStore.com/ERDP500/errata

If you discover an error that is not already listed, please submit it to us at the same page.

For additional book support and information, please visit MicrosoftPressStore.com/Support.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
support.microsoft.com.

Stay in touch

Let’s keep the conversation going! We’re on Twitter: twitter.com/MicrosoftPress.

Acknowledgments

Power BI exam reference books, Malobika Chakraborty for handling the project, the editing
team for making this book a better read, and everyone else at Pearson who worked on this
book to make it happen. This book wouldn’t be possible without Justin, who made me realize

support during the writing process. I would also like to thank Loretta Yates, and the whole
Microsoft Press team at Pearson, for all their hard work. Without you, the book wouldn’t be a
reality. Finally, Daniil Maslyuk, my co-author. It really was a delight collaborating with him on
this book. Thank you!

Introduction

http://MicrosoftPressStore.com/ERDP500/errata
http://MicrosoftPressStore.com/Support
http://support.microsoft.com
http://twitter.com/MicrosoftPress

xiv

About the authors

DANIIL MASLYUK is an independent business intelligence consultant,
trainer, and speaker who specializes in Microsoft Power BI. Daniil blogs at
xxlbi.com and tweets as @DMaslyuk.

JUSTIN FRÉBAULT MCT, is an independent data solutions architect and
trainer who specializes in Microsoft data products. He blogs at lafreb.com
and is active on LinkedIn.

http://xxlbi.com
http://lafreb.com

57

C H A P T E R 2

Query and transform data
Data duplication is natural in an organization. Data needs to be queried and transformed in a
format that is most suitable for the use case. This is true even at the lowest level, in a data-
base, where data is duplicated in the form of indexes to optimize reads.

Similarly, in an organization data will be queried and transformed from the operational to
the analytical system(s), and queried and transformed again through the various layers of the
analytical stack. In this chapter we will review how this is done with Azure Synapse and
Power BI.

Skills covered in this chapter:
■ 2.1: Query data by using Azure Synapse Analytics

■ 2.2: Ingest and transform data by using Power BI

Skill 2.1: Query data by using Azure Synapse Analytics

There is no doubt that the amount of data generated and used by businesses is growing.
And so are the requirements for near-real-time analytics; we want more insight and sooner.
On top of that, the complexity of the analysis is increasing. With predictive and prescriptive
solutions, we go beyond descriptive and diagnostic analytics.

To meet all these increasingly demanding requirements, data tools are multiplying. But
there is value in a single platform: ease of training, reduced cognitive load, easier cross-team
collaboration, fewer silos in the organization. . . . Azure Synapse Analytics is all about bringing
together data engineers, data scientists, and data analysts in order to achieve more with
your data.

This skill covers how to:
■ Identify an appropriate Azure Synapse pool when analyzing data

■

■

■

CHAPTER 2 Query and transform data58

Identify an appropriate Azure Synapse pool when
analyzing data
Azure Synapse Analytics is an extremely rich platform (see Figure 2-1). As the requirements
around data become more and more complex, so does the need for features. Azure Synapse
Analytics can be seen as a one-stop shop for data in your organization, bringing together data
engineers, data scientists, and data analysts.

Overall architecture of Azure Synapse Analytics
In Chapter 1, we reviewed the tight integration with Microsoft Purview, and with Power BI.
Azure Synapse Analytics comes with a default data store: the Azure Data Lake Storage Gen2,
although it is possible to link more data stores to your Azure Synapse Analytics. The default
data store supports Delta Lake, an open source storage layer that comes on top of the Data
Lake Storage and brings ACID transactions to Apache Spark.

Azure Synapse Analytics offers two query engines: Apache Spark and SQL. We will review

processing, parallel processing, stream processing, and machine learning workload. The beauty

come to mind, but there is also Scala, Python, R, and last but not least, C#. Finally, Synapse Pipe-
lines enables data transformations, even in a parallel computing fashion, with a low code tool.

Azure Synapse Analytics

Studio

SQL

Dedicated

Serverless

Spark

Azure Data Lake Storage Gen2

FIGURE 2-1 Overall architecture diagram of Azure Synapse Analytics

NOTE ACID

ACID is the acronym for Atomicity, Consistency, Isolation, and Durability. One database imple-
mentation of ACID is not necessarily equivalent to another. For example, there are many levels
of consistency possible in a data store. Nonetheless, ACID still provides more guarantees than
BASE (Basically Available, Soft state, Eventual consistency).

Skill 2.1: Query data by using Azure Synapse Analytics CHAPTER 2 59

Concepts about Spark Pool

batch and streaming—a mission that resonates with Azure Synapse Analytics. Apache Spark is
originally written in Scala, but also available in Python, SQL, and R. In Azure Synapse Analytics,
Apache Spark is also available in C#.

Apache Spark runs on a cluster, as you can see in Figure 2-2.

Driver Program

Cluster Manager
Worker Node

Executor

Worker Node

Executor

Worker Node

Executor

Worker Node

Executor

FIGURE 2-2 High-level overview of a Spark cluster

A Spark application is coordinated by the driver program. On a cluster, the driver program
connects to the cluster manager to coordinate the work. In Azure Synapse Analytics, the cluster
manager is YARN. The cluster manager is responsible for allocating resources (memory, cores,
etc.) in the cluster. Once the driver is connected to the cluster manager, it acquires resources to
create executors. Executors will be the ones doing the work: running in-memory computations
and storing data.

An Azure Spark pool is not just a Spark instance on a cluster. Azure Synapse provides
peripheral features:

 ■ Auto-Scale capabilities—The Auto-Scale feature automatically scales up and down the
number of nodes in a cluster. You can set a minimum and maximum number of nodes
when creating a new Spark pool. Every 30 seconds, Auto-Scale monitors the number of
CPUs and the amount of memory needed to complete all pending jobs, as well as the
current total CPUs and memory, and scales up or down based on these metrics.

 ■ Apache Livy—Apache Livy is a REST API for Apache Spark. Conveniently, it is included
in Azure Spark pools. Apache Livy can be used to submit programmatically Spark jobs to
the cluster.

CHAPTER 2 Query and transform data60

 ■ Preloaded Anaconda libraries—Apache Spark is great for parallel computing, but
sometimes we don’t need all that computing power, but instead want some more
specialized functionalities for machine learning or visualization. Particularly during
exploratory analysis, having Anaconda libraries preloaded in Azure Spark pools comes
in handy.

An Azure Spark pool is a great tool when dealing with a large amount of data and when
performance matters. Should it be data preparation, machine learning, or streaming data, a
Spark pool is the right tool if you want to work in Python, SQL, Scala, or C#.

EXAMPLE OF HOW TO USE IT
To review how to use an Azure Spark pool, we will start by creating an Azure Synapse Analytics
resource.

1. In your Azure portal, select Create a resource.

2. Search for and select Azure Synapse Analytics.

3. Select Create.

4. Once the resource is created, navigate to the resource and select Open Synapse
Studio, as shown in Figure 2-3.

FIGURE 2-3 Synapse Resource view in the Azure portal

Now that we have our resource, let’s create the Spark pool.

1. Go to Manage, as shown in Figure 2-4.

2. Navigate to Apache Spark pools > + New.

3. Enter a name in Apache Spark pool name, like dp500.

Skill 2.1: Query data by using Azure Synapse Analytics CHAPTER 2 61

FIGURE 2-4 The Manage menu in Azure Synapse Analytics Studio

4. Set Isolated compute to Disabled.

5. Set Node size family as Memory Optimized.

6. Set Node size to Small.

7. Set Autoscale to Enabled.

8. Set Number of nodes to 3 and 5.

9.

10. Select Review + create.

11. Select Create.

Now that we have our compute, we can use it to query and analyze some data. To do that,

1. Navigate to https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page and down-
load the January 2022 Green Taxi Trip Records.

2. In the Synapse Studio, navigate to the Data menu, as shown in Figure 2-6.

https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

CHAPTER 2 Query and transform data62

FIGURE 2-5 Configuration parameters for the Apache Spark pool

FIGURE 2-6 Data menu in Synapse Studio

Skill 2.1: Query data by using Azure Synapse Analytics CHAPTER 2 63

3. Select the Linked tab and then select Azure Data Lake Storage Gen2.

4.

5.

6. New notebook >
Load to Dataframe.

7. In the new notebook, attach the Spark pool you created previously.

8.

After a few minutes, the time for the Spark pool to spin up, you should see a table with the

DataFrame, so the analysis can proceed.

FIGURE 2-7 Results from reading the Parquet file with the Spark pool

Architecture of Synapse SQL

this part of Azure Synapse Analytics. Figure 2-8 represents the internal architecture of Azure
Synapse SQL.

Control Node

Compute Node Compute Node Compute Node Compute Node

Azure Storage

FIGURE 2-8 The internal architecture of Azure Synapse SQL

CHAPTER 2 Query and transform data64

The control node is going to be the entry point of Azure Synapse SQL and the orchestrator
of the distributed query to the compute node, similar to the driver node in a Spark pool. And as
their name indicates, the compute nodes will do the computation.

in the pricing. You can scale your compute without affecting your storage, and vice versa.

The difference between serverless and dedicated is primarily in the number of nodes avail-
able. With serverless, the number of nodes is not predetermined and will scale automatically
based on the computation needs. With dedicated, the number of nodes is preallocated.

A dedicated SQL pool also, beyond querying the data, allows ingestion of data, whereas
serverless only allows querying the data. The ingestion of data will allow you to create tables
in your SQL pool. Those tables will be distributed. There are three possible distributions: hash,
round-robin, and replicate.

The hash distribution is typically used for large tables, such as fact tables. The round-robin is
used for staging tables. And the replicate is used for small tables, such as dimensions.

EXAM TIP

that you thoroughly understand each of the three distributions and when they would be
appropriate to use.

SQL serverless pool
Because a SQL serverless pool is serverless, that doesn’t mean there is no server behind the
scene, but it does mean that for you there is no infrastructure to set up or maintain. A SQL
serverless pool will be automatically provisioned and ready to go when you create a Synapse
Analytics workspace, and it will scale as needed. You will be charged by how much data you
process.

Because of that, a SQL serverless pool is particularly suited for unpredictable workloads,
such as exploratory analysis. Another perfect use case for SQL serverless pools is to create a
logical data warehouse, to be queried by Power BI. Indeed, instead of provisioning a cluster so
that Power BI can query your data lake, a SQL serverless pool is available whenever you need it.

NEED MORE REVIEW? DEEP DIVE INTO DISTRIBUTIONS

If you want to review the intricacies of the distributions in Azure Synapse SQL, see the fol-
lowing documentation: https://learn.microsoft.com/en-us/azure/synapse-analytics/sql/
overview-architecture#distributions.

https://learn.microsoft.com/en-us/azure/synapse-analytics/sql/overview-architecture#distributions
https://learn.microsoft.com/en-us/azure/synapse-analytics/sql/overview-architecture#distributions

Skill 2.1: Query data by using Azure Synapse Analytics CHAPTER 2 65

EXAMPLE OF HOW TO USE IT
To see how to use SQL serverless pools, let’s open our Synapse Studio:

1. Go to the Develop menu, as shown in Figure 2-9.

FIGURE 2-9 Develop menu in Synapse Studio

2. Select + > SQL script, as shown in Figure 2-10.

FIGURE 2-10 The Develop menu with its various capabilities

3. Built-
in compute. Built-in is the name of the SQL serverless pool automatically created for
you when you create an Azure Synapse Analytics resource.

NOTE SQL SERVERLESS POOL BEST PRACTICES

Make sure you review the best practices to get the best results out of SQL server-
less pools: https://learn.microsoft.com/en-us/azure/synapse-analytics/sql/
best-practices-serverless-sql-pool.

https://learn.microsoft.com/en-us/azure/synapse-analytics/sql/best-practices-serverless-sql-pool
https://learn.microsoft.com/en-us/azure/synapse-analytics/sql/best-practices-serverless-sql-pool

CHAPTER 2 Query and transform data66

4. Using the OPENROWSET function, query the previously loaded taxi dataset, and display the
top 10 rows:

SELECT TOP 10 *
FROM OPENROWSET(
 BULK 'https://yoursynapseresource.dfs.core.windows.net/yourfilestore/
synapse/workspaces/green_tripdata_2022-01.parquet',
FORMAT = 'PARQUET') AS [result]

5. Select Run.

After a few seconds—the start-up time is much less than for the Apache Spark pool—you

FIGURE 2-11 Results from querying the dataset with a SQL serverless pool

EXAM TIP

It is important to understand how the function OPENROWSET works and how to use it. If you
https://learn.microsoft.com/

en-us/sql/t-sql/functions/openrowset-transact-sql?view=sql-server-ver16.

Concepts about SQL dedicated pools

dedicated nature it needs to be provisioned, and second, data can be ingested in a SQL
dedicated pool.

units). A DWU is an abstraction representing a unit that combines CPU, memory, and I/O.

To ingest data into the dedicated pool, you can use T-SQL to query data from external
sources. This is possible thanks to PolyBase, a virtualization feature that allows you to query
data from various sources without the need to install a client connection software.

Table partitioning is an important topic to review for SQL dedicated pools.

ROUND-ROBIN DISTRIBUTION
Round-robin will favor data writes, not reads, so it is suitable for rapidly loading data and
therefore suitable for staging tables. It randomly distributes table rows evenly across all nodes.

https://yoursynapseresource.dfs.core.windows.net/yourfilestore/synapse/workspaces/green_tripdata_2022-01.parquet',FORMAT
https://yoursynapseresource.dfs.core.windows.net/yourfilestore/synapse/workspaces/green_tripdata_2022-01.parquet
https://learn.microsoft.com/en-us/sql/t-sql/functions/openrowset-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/functions/openrowset-transact-sql?view=sql-server-ver16

Skill 2.1: Query data by using Azure Synapse Analytics CHAPTER 2 67

Querying data distributed in a round-robin fashion, particularly with joins, will yield poor per-
formance. To accomplish that, it’s better to use hash distribution.

HASH DISTRIBUTION
Hash distribution won’t distribute rows randomly, but rather it will use a deterministic hash
function to assign each value to a node. If two values are the same, they will be assigned to
the same node. This is important to remember when choosing the column used for partition-
ing. If a column has skew—that is, many times the same value—one node will be a hot spot
(overused) and the other nodes will barely have any data on them. So it’s important to choose
a column evenly distributed. The hash distribution is typical for large fact tables. For smaller
tables, like dimensions, there is a third option.

REPLICATED DISTRIBUTION
As its name indicates, replicated distribution will copy the table in each node. That could be
seen as a waste of space, but in a distributed workload that’s a huge performance boost, since
data doesn’t need to move around if each node already has it. This is only possible if the table
is small, so typically this distribution is used for dimension tables. The general guidance is to
use replicated for tables smaller than 2 GB.

SQL pools
Synapse serverless SQL pool scales automatically and doesn’t need you to provision anything.
That’s why it’s great for unpredictable workloads and logical data warehousing. You pay
depending on how much data you query. Moreover, it’s important to remember that Synapse
is catering for your analytics needs, not your operational needs. This affects the access patterns
appropriate for Synapse serverless SQL pools. For example, an online transaction processing
(OLTP) workload, updating or reading all columns of a single row, is not the appropriate use
case. Analytics needs mean online analytical processing (OLAP), in other words, querying a
large number of rows, on a limited number of columns, often with some aggregations per-

Analytics.

common for analytics applications.

The syntax is the same to query them, making use of the OPENROWSET function:

SELECT *FROM OPENROWSET(
 BULK 'https://mydatalake.blob.core.windows.net/data/files/*.csv',
 FORMAT = 'csv') AS rows

Why is Parquet recommended for analytics? It comes down to the access pattern. Parquet

https://mydatalake.blob.core.windows.net/data/files/*.csv'

CHAPTER 2 Query and transform data68

has two implications. First, accessing the data for OLAP queries is faster with columnar format,
because the data we want to query (the whole column) is physically stored next to each other.

the data is generally more homogenous in a column than in a row. Indeed, usually a row con-
tains multiple data types, so there will be a mix of data. In a column the data has the same type
and can be similar or even identical sometimes. This leads to greater potential for compression.

1. Navigate to Develop > + > SQL script.

2. Make sure it is attached to Built-in, as a reminder, this is your serverless pool.

3. Using OPENROWSET, select the top 10 rows of your taxi dataset in a Parquet format:

SELECT
 TOP 10 *
FROM
OPENROWSET(
BULK 'https:// your-storage.dfs.core.windows.net/ your-filestore /synapse/
workspaces/green_tripdata_2022-01.parquet',
FORMAT = 'PARQUET'
) AS [result]

4. Select Run.

You should get the same results as before, as shown earlier in Figure 2-11.

Query relational data sources in dedicated or serverless SQL

SQL pools, whether dedicated or serverless, will test your knowledge of T-SQL. Here you will
learn how to query data, both with dedicated and serverless, and we will also consider parti-
tioned data.

To review how to use SQL dedicated pools, let’s go back to our Synapse Studio and:

1. Go to the Manage menu.

2. Under Analytics pools select SQL pools > + New.

3. Set Dedicated SQL Pool Name to a name of your choice

NOTE DELTA

Skill 2.1: Query data by using Azure Synapse Analytics CHAPTER 2 69

4. Change the Performance level to DW100c; the default is DW1000c.

5. Select Review + create > Create.

The deployment of the dedicated SQL pool will take a few minutes. Next let’s look at how to
ingest the data into the dedicated pool:

6. Go to Develop > + > SQL script.

7. Set the Connect to option to your dedicated SQL pool, not to Built-in.

8. You can ingest from the data lake to your SQL dedicated pool with the COPY statement.

COPY INTO dbo.TaxiTrips
FROM 'https://your-storage.dfs.core.windows.net/your-filestore/synapse/workspaces/
green_tripdata_2022-01.parquet'
WITH
(
FILE_TYPE = 'PARQUET',
MAXERRORS = 0,
IDENTITY_INSERT = 'OFF',
AUTO_CREATE_TABLE = 'ON'
)

9. You can now run a SELECT on the newly created table in your dedicated pool. You will

SELECT TOP 10 * FROM dbo.TaxiTrips

10. Select Run.

FIGURE 2-12 Results from querying the populated table with Synapse Dedicated Pool

11. Don’t forget to pause your dedicated SQL pool to limit the cost of this exercise.

we’ll use the SQL serverless pool. So follow these steps:

1. Navigate to https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page and down-
load the February and March 2022 Green Taxi Trip Records.

2. In Synapse Studio, select Data > Linked > Azure Data Lake Storage Gen2.

3. Open your primary data store.

https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

CHAPTER 2 Query and transform data70

4. With the + New folder command, create a folder structure in your data store
representing YEAR/MONTH, as shown in Figure 2-13.

FIGURE 2-13 The file store hierarchy in Synapse Studio

5.
month.

6. To leverage the partitioning in your query, try to count how many records are in each
partition, using the OPENROWSET function, the Parquet format, and the * wildcard.

7. Run the query for Partitions 1 and 2:

SELECT
COUNT(*)
FROM
OPENROWSET(
BULK 'https:// your-storage.dfs.core.windows.net/ your-filestore /synapse/
workspaces/2022/*/*.parquet',
FORMAT = 'PARQUET'
) AS TaxiTrips
WHERE TaxiTrips.filepath(1) IN ('1', '2')

8. Run the query for Partition 1:

SELECT
COUNT(*)
FROM
OPENROWSET(
BULK 'https://your-storage.dfs.core.windows.net/your-filestore/synapse/
workspaces/2022/*/*.parquet',
FORMAT = 'PARQUET'
) AS TaxiTrips
WHERE TaxiTrips.filepath(1) IN ('1')

9. Check that the results are different.

Use a machine learning PREDICT function in a query
Finally, Synapse SQL dedicated pools can be used to consume a machine learning model. For
example, with our taxi dataset, we could have a model to predict the duration of the trip, based

Skill 2.1: Query data by using Azure Synapse Analytics CHAPTER 2 71

on the pickup location and the time of day. Having the ability to score, or consume, the model
directly in Synapse Analytics is useful because we don’t need to move the data outside of our
data analytics platform. To score our model, we will use the PREDICT function.

However, a Synapse SQL dedicated pool doesn’t have the ability to train a machine learn-
ing model. So to use the PREDICT function, we will need to have the model trained outside of
Synapse SQL. We could, for example, train the model in a Synapse Spark pool or in another
product like Azure Machine Learning.

The trained model will need to be converted to the ONNX (Open Neural Network
Exchange) format. ONNX is an open source standard format, with the very purpose of enabling
exchange of models between platforms.

Load a model in a Synapse SQL dedicated pool table
The model has to be stored in a dedicated SQL pool table, as a hexadecimal string in a
varbinary(max) column. For instance, such a table could be created with this:

CREATE TABLE [dbo].[Models]
(
[Id] [int] IDENTITY(1,1) NOT NULL,
[Model] [varbinary](max) NULL,
[Description] [varchar](200) NULL
)
WITH
(
DISTRIBUTION = ROUND_ROBIN,
HEAP
)
GO

where Model is the varbinary(max) column storing our model, or models, as hexadecimal
strings.

Once the table is created, we can load it with the COPY statement:

COPY INTO [Models] (Model)
FROM '<enter your storage location>'
WITH (
FILE_TYPE = 'CSV',
CREDENTIAL=(IDENTITY= 'Shared Access Signature', SECRET='<enter your storage key here>')
)

We now have a model ready to be used for scoring.

Scoring the model
Finally, the PREDICT function will come into play to score the model. Like any machine learning
scoring, you will need the input data to have the same format as the training data.

The following query shows how to use the PREDICT function. It takes the model and the data
as parameters.

DECLARE @model varbinary(max) = (SELECT Model FROM Models WHERE Id = 1);
SELECT d.*, p.Score

CHAPTER 2 Query and transform data72

FROM PREDICT(MODEL = @model,
DATA = dbo.mytable AS d, RUNTIME = ONNX)
WITH (Score float) AS p;

Skill 2.2: Ingest and transform data by using Power BI

Power BI includes Power Query, which is an extract-transform-load (ETL) tool that uses the M
language. M is a functional, case-sensitive language that, unlike DAX, does not resemble Excel
formula language in any way, and differs from DAX in important ways, too. In this section,
we’ll look at the problems you may need to solve when working with large amounts of data in
Power Query.

degradation. There are tools within Power Query that will help you identify the performance
problems, and later we’ll review the techniques you can use to improve performance.

Combining data from different data sources will lead to data privacy issues, which we’ll also
discuss later in this chapter.

Finally, we’ll discuss how you can use Advanced Editor to write your own queries and functions,
and how you can query some of the more complex data sources by using Power Query.

NEED MORE REVIEW? THE PREDICT FUNCTION

The full documentation for the PREDICT function can be found here: https://learn.microsoft.
com/en-us/sql/t-sql/queries/predict-transact-sql?view=sql-server-ver15.

NOTE COMPANION FILE

Most of the Power Query queries shown in this chapter are available in the companion

This skill covers how to:
■ Identify data loading performance bottlenecks in Power Query or data sources

■ Implement performance improvements in Power Query and data sources

■

■ Identify and manage privacy settings on data sources

■ Create queries, functions, and parameters by using the Power Query Advanced
Editor

■ Query advanced data sources, including JSON, Parquet, APIs, and Azure Machine
Learning models

https://learn.microsoft.com/en-us/sql/t-sql/queries/predict-transact-sql?view=sql-server-ver15
https://learn.microsoft.com/en-us/sql/t-sql/queries/predict-transact-sql?view=sql-server-ver15

Skill 2.2: Ingest and transform data by using Power BI CHAPTER 2 73

Identify data loading performance bottlenecks in Power
Query or data sources
Several reasons could be responsible for poor performance when connecting to data in Power
BI. Power BI Desktop has a few features that can help identify those issues.

View native query
When you get data in Power BI from some data sources, like databases, Power Query will do
its best to translate the transformations you perform into the native language of the data
source—for example, SQL. This feature of Power Query is known as query folding. Most of the

get a subset of columns from a table, Power Query may only retrieve those columns from the
data source instead of loading all columns and then locally removing the ones you don’t want.

In some cases, it may be possible to view the query that Power Query sent to the data
source to retrieve the data you wanted. For this, you need to right-click a query step in Power
Query Editor and select View Native Query. The window that opens looks like Figure 2-14.

FIGURE 2-14 Native Query window

and selected a few columns. Because these operations can be translated to SQL, Power Query
decided to do the transformations in the source instead of performing them after loading the
whole table, which led to better performance.

You cannot edit the native query; it is provided for your information only. If you want Power

CHAPTER 2 Query and transform data74

If the View Native Query option is grayed out, it means that the data source does not
support query folding or that some query step could not be translated into the data source’s
native language. For example, if we applied the Clean transformation to a text column, the
query would not fold, because there is no direct equivalent in SQL yet.

Query diagnostics
Power BI contains the query diagnostics toolset, which can help you identify performance
bottlenecks. Query diagnostics allow you to see the queries that you emit while authoring
or refreshing a dataset. They are especially useful for working with data sources that support
query folding. By using query diagnostics, you can look at all queries that happen during data
refreshes or while you author queries, or you can analyze a single step in detail.

1.

2. Select Get data (or New Source if you’re already in Power Query Editor) > OData feed.

3. Enter https://services.odata.org/AdventureWorksV3/AdventureWorks.svc in the
URL box and select OK.

4. If prompted, in the credentials window, ensure Anonymous is selected and select
Connect.

5. Select the CompanySales check box in the Navigator window and select Transform
Data or OK if you’re already in Power Query Editor.

Now that you are connected to an OData feed, you can apply some transformations and
see the effect on our query. To start recording traces in Power Query, select Start Diagnostics
on the Tools Stop Diagnostics. Alternatively, you can analyze a
single step—for this, you must select the Diagnose Step button on the Tools ribbon, or you
can right-click a step and select Diagnose. We are going to analyze a single step in the follow-
ing way:

1. Filter the ProductCategory column to Bikes
header.

2. Right-click the ProductCategory column header and select Remove.

3. In the Query Settings pane, right-click the last step and select Diagnose.

Diagnostics (as in Figure 2-15, which contains several queries whose names start with Compa-
nySales_Removed Columns, all ending with the current date and time). The queries are sources

IMPORTANT POWER QUERY STEPS ORDER

The order of steps in Power Query matters. If you must have a transformation that cannot be
folded, it’s best to reorder your steps to fold as many steps as possible.

https://services.odata.org/AdventureWorksV3/AdventureWorks.svc

Skill 2.2: Ingest and transform data by using Power BI CHAPTER 2 75

Detailed query contains more rows and
columns than the Aggregated query, which is a summary query.

Among other information available in the recorded traces, you will see the time it took for a
query to run and whether a native query was sent to a data source, which can help you under-

Data
Source Query column, which contains the query sent to the data source, if available.

Occasionally, you won’t be able to see the native query by using the View Native Query
feature discussed earlier in this chapter, but you will see a native query sent to a data source
when using query diagnostics. We can check whether query folding took place by following
these steps:

1. In the Aggregated Operation column to only include
CreateResult.

2. Go to the Data Source Query column and select the only column cell. You should see
the result shown in Figure 2-15.

FIGURE 2-15 Native query sent to OData feed

The full query is as follows:

https://services.odata.org/AdventureWorksV3/AdventureWorks.svc/CompanySales?$filter=
ProductCategory eq

'Bikes'&$select=ID,OrderQtr,OrderYear,ProductSubCategory,Sales&$top=1000 HTTP/1.1

ProductCategory column is
included in the query and the ProductCategory column is not included in the query result. If
you only relied on the View Native Query feature, you would not see the query because the
option would be grayed out.

https://services.odata.org/AdventureWorksV3/AdventureWorks.svc/CompanySales?$filter=ProductCategory
https://services.odata.org/AdventureWorksV3/AdventureWorks.svc/CompanySales?$filter=ProductCategory

CHAPTER 2 Query and transform data76

Some query diagnostics may require that you run Power BI Desktop as administrator. If you
are unable to record some traces, like full data refreshes, due to IT policies, you can still record
traces when previewing and authoring queries in Power Query Editor. For this, go to File >
Options and settings > Options > Global > Diagnostics > Query diagnostics and select
Enable in Query Editor.

Implement performance improvements in Power Query
and data sources
If your Power Query queries need to be improved in terms of performance, the techniques
you’ll use will highly depend on the data sources you’re using and how you’re using them. In
this section, we’ll explore a few methods of improving the data loading performance, divided
into four parts:

■ General advice

■

■ Working with foldable data sources

■ Improving the merge operations

General advice

and remove columns as early as possible. Many operations in Power Query are performed in
memory, and less data translates into better performance.

If you can choose, in many cases you should use table functions instead of operating on lists
and records because Power Query includes some built-in optimizations that can make use of
table functions.

When working with tables or lists that are referenced multiple times, you may improve per-
formance by using Table.Buffer or List.Buffer, respectively. Buffering functions store data in
memory and ensure that data isn’t read multiple times from the source. When buffering data,

foldable data source and buffer a table, then further transformations won’t be folded even if
they could be folded without buffering. Second, only scalar values are buffered; if your table or
list includes nested structures such as records or other lists or tables, then those values won’t
be buffered, and if you need them later, then your data source will be read again.

Depending on the nature of your data sources and how you’re using them, you may
want to edit the Parallel loading of tables

NEED MORE REVIEW? USING QUERY DIAGNOSTICS

For advanced information on how you can use the feature, including details on how to under-
stand and visualize the recorded traces, see “Query Diagnostics” at https://learn.microsoft.
com/en-us/power-query/QueryDiagnostics.

https://learn.microsoft.com/en-us/power-query/QueryDiagnostics
https://learn.microsoft.com/en-us/power-query/QueryDiagnostics

Skill 2.2: Ingest and transform data by using Power BI CHAPTER 2 77

(File > Options and settings > Options > Current File > Data Load), where the default
value is 6, meaning six tables are going to be loaded in parallel at most. If your data model con-
tains more than six tables, which take a long time to refresh, you can try to set a custom param-
eter value higher than 6, allowing more tables to load in parallel, and your data model may
refresh more quickly as a result. On the other hand, if you’re getting some data from a web API
and then reference the data a few times, you may want to disable parallel loading, because that
way the API may be called fewer times, resulting in better data refresh performance.

In case you’ve got a slow data source that’s updated less frequently than you refresh your
-

Excel.Workbook is set
to true

simpler in structure and therefore faster to read.

-
pany’s network.

Working with foldable data sources
If you can make use of incremental refresh, then it may decrease the data refresh times substan-
tially. We’ll discuss incremental refresh in Chapter 3, “Implement and Manage Data Models.”

In general, you should push as many transformations as you can as close to the data source

than Power Query. Some transformations may still fold, even if the View native query option
of the step is grayed out, as discussed earlier in this chapter in the “Query diagnostics” sec-

type, like Excel, then instead of merging tables, you should use a native query and make use
of the WHERE pbi.Prod-

uct table from a SQL database based on a list of items from a different Power Query query,
ProductSubCategories:

let

 FilterItems = "'" & Text.Combine(List.Buffer(ProductSubCategories), "', '") &
"'",

 Source = Sql.Databases("mydatabase.database.windows.net"),

 sakes = Source{[Name="sales"]}[Data],

 Result = Value.NativeQuery(sales, "SELECT * FROM pbi.Product WHERE [Product
Type] IN (@Items)", [Items = FilterItems])

in

 Result

CHAPTER 2 Query and transform data78

Improving the merge operations
When you merge two tables and one table has a unique key, you should add a key to it. While
it’s possible to use the Table.AddKey function in Power Query, doing so won’t guarantee
uniqueness; it’s preferable to remove duplicates from the key column or columns, which will
add a key automatically and improve the merge performance.

While you should not keep data you don’t need in general, it’s especially important in case
of merges; since merges take place in memory, fewer columns mean quicker merges. You can
remove columns before the merge or immediately after, and the performance gains are going
to be similar.

If you work with data that has its keys pre-sorted, then instead of Table.NestedJoin, you can
use Table.Join with JoinAlgorithm.SortMerge as the last parameter. Note that if your data isn’t
sorted, then you’re going to get unexpected results without any error message.

In addition to Power BI Desktop, Power Query can be found in the Power BI service: you can

Power Query queries to be reused across your organization without necessarily being in the

only you have access to it.

New > . From there, you have several
choices:

 ■ Add new tables

 ■ Add linked tables
reduce duplication of data and improve consistency across your organization.

 ■ Import model
import it.

 ■ Create and attach—Attach a Common Data Model folder from your Azure Data Lake
Storage Gen2 account and use it in Power BI.

The Power Query Online interface looks similar to Power Query Editor in Power BI Desktop
and is shown in Figure 2-16.

Save & close and enter the name
Refresh now from the

Skill 2.2: Ingest and transform data by using Power BI CHAPTER 2 79

FIGURE 2-16 Power Query interface when editing a dataflow

-

-
mental refresh in the next chapter.

Identify and manage privacy settings on data sources
When you combine data from different data sources, it is important to set the privacy levels
correctly. Privacy levels determine the rules according to which data will be combined. These
rules may affect the performance of queries, and in some cases, queries will not be executed
at all if it is not permitted by privacy levels. To illustrate what happens in an example, we are

1. Get the data from https://raw.githubusercontent.com/DaniilMaslyuk/DP-500/
main/ProductSubcategory.csv.

2. Right-click the Column1 column header and select Drill Down.

3. Create a new parameter by selecting Manage Parameters > New Parameter, as
shown in Figure 2-17.

https://raw.githubusercontent.com/DaniilMaslyuk/DP-500/main/ProductSubcategory.csv
https://raw.githubusercontent.com/DaniilMaslyuk/DP-500/main/ProductSubcategory.csv

251

Index

Symbols
%%sql magic command, 217–218

A
accessibility, Power BI report, 238

alt text, 239
markers, 239
page names, titles, and labels, 238–239
tab order, 239
theme and color selection, 240

ACID (Atomicity, Consistency, Isolation, and
Durability), 58
activity log, 21
ADLS Gen2 (Azure Data Lake Storage Gen2), Power BI
integration, 31

admin API, 8, 18
advanced networking settings, Power BI, 19
aggregation table, 191–192
AI Insights, 96–97
ALL function, 134–137
ALLSELECTED function, 176
ALM (application lifecycle management), 38–39
alt text, 239
Apache Spark, 33, 58
API, 90–91

activity log, 21
openFDA, 91–93

use List.Generate function, 95–96
use total number of records, 93–95

Power BI REST, 46
architecture

Azure Synapse Analytics, 58
Azure Synapse SQL, 63–64

assigning a workspace, 43

audit and usage settings, Power BI, 17
automatic page refresh, 243

change detection, 244–245

automation
CI/CD (continuous integration/continuous
delivery), 36
monitoring, 21

Azure AD, creating a security group, 6–7
Azure Data Lake, connecting to Microsoft
Purview, 5–6
Azure DevOps Git, connecting to Azure Synapse
Analytics, 37–38
Azure Spark pool. See Spark pool
Azure SQL database, connecting to Microsoft
Purview, 4–5
Azure Synapse Analytics, 33–34

architecture, 58
connecting a source control repository, 36

Azure DevOps Git, 37–38
GitHub, 31–37

exploring data, 215
identifying data sources in, 11
linking a Power BI workspace, 34
Power BI integration, 34
query engines, 58
Spark pool, 59

cluster manager, 59
executors, 59
features, 59–60
how to use, 60–63

SQL. See also SQL
architecture, 63–64
data visualization, 219–220
dedicated pools, 66–67
querying relational data sources, 68–70
serverless pools, 64–66

252

binning

TOPN function, 145–147
UNION function, 154–155
VALUES function, 138–139
variables, 165–166

CALCULATETABLE function, 131, 137–138
calculation groups

calculation item properties, 107
creating, 105–108
DAX functions, 107–108

CALENDAR function, 151–153
CALENDARAUTO function, 151–153
capacity, Power BI settings, 23–24
change detection refresh, 244–245
CI/CD (continuous integration/continuous delivery), 36
circular dependencies, 131–132

cluster manager, 59
cmdlet

Get_PowerBIActivityEvent, 21
Install-Module-Name MicrosoftPowerBIMgmt, 46

collections, browsing, 9
color themes, 240
combining functions, 182–184
commands, magic, 217–218
composite models, 190–192
connecting

to advanced data sources
JSON, 88
Parquet, 89–90
XML, 88–89

data source
Azure Data Lake, 5–6
Azure SQL database, 4–5

to a dataset, 233–234
to OData feed, 74

content pack and app settings, Power BI, 16
COUNT function, 170
COUNTBLANK function, 170–171
counting values in DAX, 169–172
creating

Azure AD security group, 6–7
calculation groups, 105–108

deployment pipeline, 41–42
paginated reports, 245–246
R visuals, 229–231
roles, 192–194

CROSSJOIN function, 147–149

B
binning, 123–126
BLANK function, 110
browsing

collections, 9
data sources, 9–10

buffering functions, 76

C
CALCULATE function, 129–130, 172–176
calculated columns

binning, 123–126
circular dependencies, 131–132
formulas, 111–113

grouping values, 120–126
versus measures, 169
primary key, 131–132
row context, 128–129
sort by another column error, 121–122
using functions in, 113–119
variables, 127–128

calculated tables, 132
ALL function, 134–137
CALCULATETABLE function, 137–138
CALENDAR function, 151–153
CALENDARAUTO function, 151–153
CROSSJOIN function, 147–149
DATATABLE function, 163–165
DISTINCT function, 138–139
EXCEPT function, 157–158
FILTER function, 132–134
GENERATE function, 147–149
GENERATEALL function, 147–149
GENERATESERIES function, 149–151
inactive relationships, 185
INTERSECT function, 155–157
NATURALINNERJOIN function, 159–161
NATURALLEFTOUTERJOIN function, 161–163

ROW function, 153–154
SELECTCOLUMNS function, 143–145
SUMMARIZE function, 139–143
SUMMARIZECOLUMNS function, 139–143

253

DAX

D
dashboard, Power BI, settings, 17
data asset. See also data source

Azure Data Lake, connecting to Microsoft
Purview, 5–6
Azure SQL database, connecting to Microsoft
Purview, 4–5
browsing, 9–10
identifying, 8
registering, 3–4
requesting access, 10–11

data governance, 1, 2. See also Microsoft Purview
data model/ing, 101

composite, 190–192
DAX Studio, 103–104
denormalization, 209
DirectQuery, 102

advantages, 102
disadvantages, 102–103

importing data, 102
optimizing, 202–203
tabular

calculation item properties, 107
create calculation groups, 105–108
DAX functions, 107–108

Tabular Editor 2, 104–105
data source

adding to a gateway, 28–29
DirectQuery, 102
foldable, 77
gateway, user management, 29–30
identifying data loading performance
bottlenecks, 73
performance improvements, 76–77
privacy settings, 79–83

data types
DAX, 109–110
M, 84–86
Power Query

list, 84–85
record, 84–85
table, 86–87

data visualization. See also report
Azure Synapse SQL results pane, 219–220
color, 240
magic commands, 217–218

markers, 239
personalization, 241–242
perspective, 242
Power BI, 220–221

create and import a custom report theme,
221–222

theme editor, 223
third-party theme tools, 225–226

Python, 226
creating, 231–233
Matplotlib, 218–219
requirements, 226–227
work in script editors, 226–227

R, 226
creating, 229–231
requirements, 226–227
work in script editors, 226–227

Spark show() and display() functions, 216–217

creating, 78
Power BI settings, 18
transforming data, 79

datamart settings, Power BI, 19
dataset

connecting to, 233–234
large format, 189–190
querying, 234–235
security, Power BI settings, 19
shared, 51–52

DATATABLE function, 163–165
date and time functions, 118–119
DATEADD function, 181
DATESBETWEEN function, 184
DATESINPERIOD function, 184
DATESYTD function, 177–178
DATEVALUE function, 109
DAX, 101, 108

calculated columns
binning, 123–126
circular dependencies, 131–132
formulas, 111–113
grouping values, 120–126
versus measures, 169
primary key, 131–132
sort by another column error, 121–122
using functions in, 113–119
variables, 127–128

254

DAX

DISTINCTCOUNT, 171–172
evaluation context, 128–131
EXCEPT, 157–158
FILTER, 132–134

FIND, 114–115
FIRSTDATE, 184
FORMAT, 109–110
GENERATE, 147–149
GENERATEALL, 147–149
GENERATESERIES, 149–151
IF, 120–121
IFERROR, 115–116
INTERSECT, 155–157
ISBLANK, 110
LASTDATE, 184
LEFT, 114
LEN, 114
LOOKUPVALUE, 119–120
mathematical, 117–118
NATURALINNERJOIN, 159–161
NATURALLEFTOUTERJOIN, 161–163
NOT, 111
OPENINGBALANCEMONTH, 179–180
OR, 111
RELATED, 113
RELATEDTABLE, 113
ROW, 153–154
row context, 128–129
SELECTCOLUMNS, 143–145
SELECTEDVALUE, 186
SUBSTITUTE, 116
SUM, 129
SUMMARIZE, 139–143
SUMMARIZECOLUMNS, 139–143
SUMX, 168–169
SWITCH, 121, 122–123
TOPN, 145–147
UNION, 154–155
VALUES, 138–139

implicit type conversion, 109
measures, 167–169

versus calculated columns, 169
semi-additive, 179

null values, 110
operators, 110–111
query

DEFINE keyword, 235–236
EVALUATE statement, 234–235

DAX, continued
calculated tables, 132

ALL function, 134–137
CALCULATETABLE function, 137–138
CALENDAR function, 151–153
CROSSJOIN function, 147–149
DATATABLE function, 163–165
DISTINCT function, 138–139
EXCEPT function, 157–158
FILTER function, 132–134
GENERATE function, 147–149
GENERATEALL function, 147–149
GENERATESERIES function, 149–151
inactive relationships, 185
INTERSECT function, 155–157
NATURALINNERJOIN function, 159–161
NATURALLEFTOUTERJOIN function, 161–163

ROW function, 153–154
SELECTCOLUMNS function, 143–145
SUMMARIZE function, 139–143
SUMMARIZECOLUMNS function, 139–143
TOPN function, 145–147
UNION function, 154–155
VALUES function, 138–139
variables, 165–166

counting values, 169–172
data types, 109–110
explicit type conversion, 109
functions, 107–108

ALL, 134–137
ALLSELECTED, 176
AND, 111
BLANK, 110
CALCULATE, 129–130, 172–176
CALCULATETABLE, 131, 137–138
CALENDAR, 151–153
CALENDARAUTO, 151–153
CALENDARAUTO function, 151–153
combining, 182–184
COUNT, 170
COUNTBLANK, 170–171
CROSSJOIN, 147–149
DATATABLE, 163–165
date and time, 118–119
DATESBETWEEN, 184
DATESINPERIOD, 184
DATEVALUE, 109
DISTINCT, 138–139

255

function

ORDER BY keyword, 236
parameters, 237
START AT keyword, 236

Time Intelligence, 177
DATESYTD function, 177–178
TOTALYTD function, 178

troubleshooting performance issues, 202
DAX Studio, 103–104
dedicated pools, 66–67

hash distribution, 67
machine learning model

loading, 71
scoring, 71–72

PREDICT function, 70–71
replicated distribution, 67
round-robin distribution, 66–67

DEFINE keyword, 235–236
Delta, 68
denormalization, 209
deployment

rules, 44–45
strategy, Power BI asset, 38–39

deployment pipeline, 40–41
assigning workspaces, 43
creating, 41–42
develop and test content, 43–45
licensing, 41

developer settings, Power BI, 17–18
development, 38
DevOps, 35, 36

CI/CD (continuous integration/continuous
delivery), 36
deployment pipeline

assigning workspaces, 43
creating, 41–42
develop and test content, 43–45
implement and manage in
Power Bi, 40–41

DirectQuery, 102
advantages, 102
composite models, 190–192
disadvantages, 102–103

discovery settings, Power BI, 15
display() function, 216–217
DISTINCT function, 138–139
DISTINCTCOUNT function, 171–172
DWU (data warehousing unit), 66
dynamic row-level security, 195–197

E

ETL (extract-transform-load), 72
EVALUATE statement, 234–235
evaluation context, 128–131

EXCEPT function, 157–158
executors, 59
explicit type conversion, DAX, 109
exploring data, using Azure Synapse Analytics, 215
export and sharing settings, Power BI, 14–15
external tools

DAX Studio, 103–104
Tabular Editor 2, 104–105

calculation groups, creating, 105–108

F
FILTER function, 132–134

context, 128
passing from disconnected tables, 186–188
RangeStart and RangeEnd parameters, 206–207

FIND function, 114–115
FIRSTDATE function, 184

foldable data sources, 77
FORMAT function, 109–110
formulas, calculated column, 111–113

AND function, 111
OR function, 111
function, 87. See also Time Intelligence

buffering, 76
combining, 182–184
DAX, 107–108

ALL, 134–137
ALLSELECTED, 176
AND, 111
BLANK, 110
CALCULATE, 129–130, 172–176
CALCULATETABLE, 131, 137–138
CALENDAR, 151–153
CALENDARAUTO, 151–153
COUNT, 170
COUNTBLANK, 170–171
CROSSJOIN, 147–149

256

function

list, 84–85
List.Generate, 95–96
OPENROWSET, 66
PREDICT, 70–72
Spark

display(), 216–217
show(), 216–217

using in calculated columns, 113–119
Web.Contents, 90

G
gateway

adding a data source, 28–29
cluster, 27

installing, 25–27
manage data source users, 29–30
personal mode, 26
settings, 27
standard mode, 25
tenant administration, 25–26
user management, 27–28
using, 30–31
VNet (virtual network), 26

GENERATE function, 147–149
GENERATEALL function, 147–149
GENERATESERIES function, 149–151
Get_PowerBIActivityEvent cmdlet, 21
GitHub, connecting to Azure Synapse Analytics, 37–38
grouping values, 120–126

H
hash distribution, SQL dedicated pool, 67
help and support settings, Power BI, 13

how to use
Spark pool, 60–63
SQL serverless pool, 60–63

I
identifying, data sources, 8
IF function, 120–121
IFERROR function, 115–116

function, continued
DATATABLE, 163–165
date and time, 118–119
DATEADD, 181
DATESBETWEEN, 184
DATESINPERIOD, 184
DATESYTD, 177–178
DATEVALUE, 109
DISTINCT, 138–139
DISTINCTCOUNT, 171–172
evaluation context, 128–131
EXCEPT, 157–158
FILTER, 132–134

FIND, 114–115
FIRSTDATE, 184
FORMAT, 109–110
GENERATE, 147–149
GENERATEALL, 147–149
GENERATESERIES, 149–151
IF, 120–121
IFERROR, 115–116
INTERSECT, 155–157
ISBLANK, 110
LASTDATE, 184
LEFT, 114
LEN, 114
LOOKUPVALUE, 119–120
mathematical, 117–118
NATURALINNERJOIN, 159–161
NATURALLEFTOUTERJOIN, 161–163
NOT, 111
OPENINGBALANCEMONTH, 179–180
OR, 111
RELATED, 113
RELATEDTABLE, 113
ROW, 153–154
row context, 128–129
SELECTCOLUMNS, 143–145
SELECTEDVALUE, 186
SUBSTITUTE, 116
SUM, 129
SUMMARIZE, 139–143
SUMMARIZECOLUMNS, 139–143
SUMX, 168–169
SWITCH, 121, 122–123
TOPN, 145–147
TOTALYTD, 178
UNION, 154–155
VALUES, 138–139

257

monitoring

impact analysis, 45–46
implicit type conversion, DAX, 109
inactive relationships, 185
incremental refresh, 204

creating the RangeStart and RangeEnd
parameters, 205–206

parameters, 206–207
policy, 207–208

information protection settings, Power BI, 13
insights, Power BI settings, 19
installing, Power BI gateway, 25–27
Install-Module-Name MicrosoftPowerBIMgmt
cmdlet, 46
integration settings, Power BI, 16–17
IntelliSense, 112
INTERSECT function, 155–157
ISBLANK function, 110
ISSELECTEDMEASURE function, 107

J-K
JSON

querying, 88
keyword

DEFINE, 235–236
ORDER BY, 236
START AT, 236

L
large format dataset, 189–190
LASTDATE function, 184
LEFT function, 114
LEN function, 114
let/in expressions, 83–84
licenses

deployment pipeline, 41
features, 23
performance differences, 22–23
Power BI, 22

Lineage tab, Microsoft Purview, 10
List.Generate function, 95–96
lists, 84–85

loading, machine learning model to Synapse SQL
dedicated pool table, 71
LOOKUPVALUE function, 119–120

M
M, 83

data types, 84–86
list, 84–85
record, 86
table, 86–87

functions, 87
let/in expressions, 83–84
parameters, 87

machine learning model
load to a Synapse SQL dedicated pool table, 71
scoring, 71–72

magic commands, 217–218
markers, 239
mathematical functions, 117–118
Matplotlib, 218–219
measures, 167–169

CALCULATE function, 172–176
versus calculated columns, 169
query-level, 235
semi-additive, 179

merge operations, 78
metrics, Power BI, settings, 19
Microsoft Purview, 2–3

collection path, 10
collections, browsing, 9
data source

Azure Data Lake, connecting, 5–6
Azure SQL database, connecting, 4–5
browsing, 9–10
identifying, 8
registering, 3–4

Lineage tab, 10
Open in Power BI Desktop feature, 11
Overview tab, 10
Schema tab, 10
search bar, 9
using in Azure Synapse Studio, 11

monitoring
automating, 21
Usage Metrics report, 20–21

258

NATURALINNERJOIN function

data visualization, 220–221
deployment pipeline

assigning workspaces, 43
creating, 41–42
develop and test content, 43–45

deployment strategy for assets, 38–39
gateway

adding a data source, 28–29

installing, 25–27
manage data source users, 29–30
tenant administration, 25–26
user management, 27–28
using, 30–31

incremental refresh, 204
creating the RangeStart and RangeEnd
parameters, 205–206

parameters, 206–207
policy, 207–208

integration with ADLS Gen2, 31

integration with Synapse, 34
IntelliSense, 112
licensing, 22

features, 23
performance differences, 22–23

operators, 85
organizational subscription, 22

Performance Analyzer, 201–202
pipeline, 47
Power Query, 72–73

improving merge operations, 78
performance improvements, 76–77
query folding, 73
View Native Query option, 73–74

Premium subscription, 22
query diagnostics, 74–76
R or Python visuals

creating, 229–233
requirements, 226–227
work in script editors, 226–227

Report Builder, 245–246
reports

accessibility, 238
alt text, 239

N
NATURALINNERJOIN function, 159–161
NATURALLEFTOUTERJOIN function, 161–163
networking, Power Bi settings, 19. See also VNet (virtual
network)
NOT function, 111
null values, DAX, 110

O
object-level security, 197–198
OData feed, connecting to, 74
OLAP (online analytical processing), 67
OLTP (online transaction processing), 67
OneDrive for Business, 40
openFDA API, 91–96
OPENINGBALANCEMONTH function, 179–180
OPENROWSET function, 66
operators

DAX, 110–111
Power Query, 85

ORDER BY keyword, 236
organizational subscription, Power BI, 22
Overview tab, Microsoft Purview, 10

P
paginated reports, creating, 245–246
parameters, 87, 237
Parquet, 67–70, 89–90

performance
bottlenecks, identifying, 73
DAX, troubleshooting, 202
Power Query, 76–77
Shared versus Premium capacity license, 22–23

Performance Analyzer, 201–202

perspective, 242
per-user license, Power BI, 22
pipeline, 47. See also deployment pipeline
policy, incremental refresh, 207–208
PolyBase, 66
Power BI

AI Insights, 96–97
create and import a custom report theme, 221–222

259

query

markers, 239
page names, titles, and labels, 238–239
tab order, 239
theme and color selection, 240

REST API, 46
RLS (row-level security), 192
roles

creating, 192–194
viewing as, 194–195

settings
admin API, 18
advanced networking, 19
audit and usage, 17
capacity, 23–24
content pack and app, 16
dashboard, 17

datamart, 19
dataset security, 19
developer, 17–18
discovery, 15
export and sharing, 14–15
gateway, 27
help and support, 13
information protection, 13
insights, 19
integration, 16–17
metrics, 19
Q&A, 18
R and Python visuals, 17
share data with your Microsoft 365 services, 19
template app, 18
tenant, 11–12
user experience experiments, 19
visuals, 17
workspace, 13

shared dataset, 51–52
source control, 39–40
template, 49–50
tenant

accessing the read-only admin API, 8
registering, 6–8

theme editor, 223, 224–225
third-party theme tools, 225–226
workspace, linking to Synapse, 34
XMLA (XML for Analysis) endpoint, 47–49

Power Query, 72–73
Advanced Editor, 83
APIs, 90–96

JSON, 88
Parquet, 89–90
XML, 88–89

data source privacy settings, 79–83
data types, 84–86

list, 84–85
record, 86
table, 86–87

creating, 78
transforming data, 79

foldable data sources, 77
functions, 87
identifying data loading performance
bottlenecks, 73
improving merge operations, 78
parameters, 87
performance improvements, 76–77
query folding, 73
View Native Query option, 73–74

PowerShell, cmdlets
Get_PowerBIActivityEvent, 21
Install-Module-Name MicrosoftPowerBIMgmt, 46

PREDICT function, 70–71
Premium subscription

features, 23
performance, 22–23
Power BI, 22
XMLA (XML for Analysis) endpoint, 47–49

primary key, 131–132
privacy settings, data source, 79–83
production, 38
Python

Matplotlib, 218–219
Power BI visuals settings, 215–227
supported packages, 233
visuals

requirements, 226–227
work in script editors, 226–227

Q
Q&A settings, Power BI, 18
query

dataset, 234–235
DAX, 101

260

query

user experience experiments, 19
visuals, 17
workspace, 13

records, Power Query, 86
registration

data source, 3–4
Power BI tenant, 6–8

RELATED function, 113
RELATEDTABLE function, 113
replicated distribution, SQL dedicated pool, 67
report

automatic page refresh, 243
change detection, 244–245

creating a custom theme, 221–222
paginated, 245–246
personalized visuals, 241–242
perspective, 242
Power BI

accessibility, 238
alt text, 239
markers, 239
page names, titles, and labels, 238–239
tab order, 239
theme and color selection, 240

Usage Metrics, 20–21
requesting access to data assets, 10–11
RLS (row-level security), 192. See also dynamic row-level
security
roles

creating, 192–194
viewing as, 194–195

round-robin distribution, SQL dedicated pool, 66–67
row context, 128–129
ROW function, 153–154
rules, deployment, 44–45

S
Schema tab, Microsoft Purview, 10
scoring, machine learning model, 71–72
script editors, 226–227
search bar, Microsoft Purview, 9
security

dynamic row-level, 195–197
group, creating, 6–7
object-level, 197–198

query, continued
DEFINE keyword, 235–236
EVALUATE statement, 234–235
ORDER BY keyword, 236
parameters, 237
START AT keyword, 236

diagnostics, 74–76
folding, 73, 208–209
JSON, 88
-level measures, 235
Parquet, 89–90
PREDICT function, 70–71
relational data sources, 68–70
serverless pools, 67–68
XML, 88–89

R
R

Power BI visuals settings, 17
visuals

creating, 229–231
requirements, 226–227
work in script editors, 226–227

recommended settings, Power BI
admin API, 18
advanced networking, 19
audit and usage, 17
capacity, 23–24
content pack and app, 16
dashboard, 17

datamart, 19
dataset security, 19
developer, 17–18
discovery, 15
export and sharing, 14–15
gateway, 27
help and support, 13
information protection, 13
insights, 19
integration, 16–17
metrics, 19
Q&A, 18
R and Python visuals, 17
share data with your Microsoft 365 services, 19
template app, 18
tenant, 11–12

261

Usage Metrics report

role membership, 198–200
row-level, 192

SELECTCOLUMNS function, 143–145
SELECTEDMEASURE function, 107
SELECTEDMEASUREFORMATSTRING function, 107
SELECTEDMEASURENAME function, 107
SELECTEDVALUE function, 186
semi-additive measures, 179
serverless pools, 64–66, 67–68
share data with your Microsoft 365 services, Power BI
settings, 19
Shared capacity license

features, 23
performance, 22–23

shared dataset, 51–52
SharePoint, 40
show() function, 216–217
source control, 39–40

repository, connecting to Azure Synapse
Analytics, 36

Azure DevOps Git, 37–38
GitHub, 31–37

Spark
notebook

display() function, 216–217
magic commands, 217–218
Matplotlib, 218–219
show() function, 216–217

pool, 59
features, 59–60
how to use, 60–63

SQL, 58. See also query
dedicated pools, 66–67

hash distribution, 67
replicated distribution, 67
round-robin distribution, 66–67
using PREDICT function in a query, 70–71

querying data, 68–70
serverless pools, 64–66

querying, 67–68
T-, 66

START AT keyword, 236
storage, ADLS Gen2 (Azure Data Lake Storage Gen2),
Power BI integration, 31–32
subscription, Power BI, 22
SUBSTITUTE function, 116
SUM function, 129
SUMMARIZE function, 139–143

SUMMARIZECOLUMNS function, 139–143
SUMX function, 168–169
SWITCH function, 121, 122–123

T
tables, 86–87

aggregation, 191–192
calculated. See calculated tables

tabular data model
calculation groups, creating, 105–108
calculation item properties, 107
DAX functions, 107–108

Tabular Editor 2, 104–105
calculation groups, creating, 105–108
data model optimization, 202–203

template, Power BI, 18, 49–50
tenant administration, gateway, 25–26
tenant settings, Power BI, 11–12
testing, 38, 43–45
theme

color, 240
editor, 223

report, 221–222
third-party theme tools, 225–226
Time Intelligence, 177

combining functions, 182–184
DATEADD function, 181
DATESBETWEEN function, 184
DATESINPERIOD function, 184
DATESYTD function, 177–178
FIRSTDATE function, 184
LASTDATE function, 184
OPENINGBALANCEMONTH function, 179–180
TOTALYTD function, 178

TOPN function, 145–147
TOTALYTD function, 178

troubleshooting, DAX performance issues, 202
T-SQL, 66

U
UNION function, 154–155
Usage Metrics report, 20–21

262

user experience experiments, Power BI settings

W
Web.Contents function, 90
workspace

assigning, 43
settings, 13

X-Y-Z
XML, querying, 88–89
XMLA (XML for Analysis) endpoint, 47–49

connect to a dataset, 233–234
query a dataset, 234–235

user experience experiments, Power BI settings, 19
user management, Power BI gateway, 27–28

V
values

counting, 169–172
grouping, 120–126

VALUES function, 138–139
variables

calculated column, 127–128
calculated table, 165–166

VertiPaq Analyzer, 203
View Native Query option, Power Query, 73–74
viewing, roles, 194–195
visuals, Power BI settings, 17. See also data visualization
VNet (virtual network), gateway, 26

	Cover
	Title Page
	Copyright Page
	Contents at a glance
	Table of Contents
	Introduction
	Microsoft certifications
	Errata, updates, & book support
	Stay in touch
	Acknowledgments
	About the authors

	Chapter 2 Query and transform data
	Skill 2.1: Query data by using Azure Synapse Analytics
	Identify an appropriate Azure Synapse pool when analyzing data
	Recommend appropriate file type for querying serverless SQL pools
	Query relational data sources in dedicated or serverless SQL pools, including querying partitioned data sources
	Use a machine learning PREDICT function in a query

	Skill 2.2: Ingest and transform data by using Power BI
	Identify data loading performance bottlenecks in Power Query or data sources
	Implement performance improvements in Power Query and data sources
	Create and manage scalable Power BI dataflows
	Identify and manage privacy settings on data sources
	Create queries, functions, and parameters by using the Power Query Advanced Editor
	Query advanced data sources, including JSON, Parquet, APIs, and Azure Machine Learning models

	Chapter summary
	Thought experiment
	Thought experiment answers

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

