

Using the Oracle PL/SQL Profiler
By Dan Hotka

Oracle has provided the ability to see how much time each step of a PL/SQL routine
takes since Oracle8i. The environment is easy to setup and the information is easy to
retrieve.

Introduction

Why Profile? When tuning SQL, it is easy because there is just the single SQL
statement. With PL/SQL, there are SQL statements, SQL imbedded in implicit and
explicit cursors, called routines (functions/procedures), and the PL/SQL code itself.
When a PL/SQL routine is taking 5 minutes to run, exactly what code is taking how
much time. This is the information that the PL/SQL profiler provides. Without this
information, the person trying to tune the PL/SQL is only shooting in the dark, perhaps
pulling out and tuning the SQL within the code, but otherwise has no idea what a
PL/SQL routine is doing when it comes to time spent on each line of code.

The profiler is easy to setup and easy to use. Tools like Quest Software’s TOAD
provides a nice GUI interface to this profiler.

Installation

The profiler has two scripts that setup the environment. Both are found in the
<ORACLE_HOME>/rdbms/admin folder.

The PROFLOAD.sql script needs to be run as SYS (connect <connect string> AS
SYSDBA). This script will create the DBMS_PROFILER package and create synonyms
and permissions for usage.

The PROFTAB.sql script is recommended to be executed for each user desiring to run
the DBMS_PROFILER package. This script sets up the three main tables:
PLSQL_PROFILER_RUNS, PLSQL_PROFILER_UNITS, and the
PLSQL_PROFILER_DATA. This script can be setup so that all the users share these
tables but this topic is beyond the scope of this paper.

Understanding the Profiler Process

Profiling is initiated with the START_PROFILER program. Start this process then
execute the PL/SQL routine to be profiled. When execution is done, run the

STOP_PROFILER program. This will stop the profiling process and write the collected
information to the profiler tables.

There are two more routines that control the collection of profiler data:
PAUSE_PROFILER and RESUME_PROFILER. These routines might be useful if only
certain statistics are of interest from a rather large PL/SQL program, or perhaps called
subroutines are not desired to be profiled. These routines are typically imbedded in the
PL/SQL code.

The FLUSH_DATA routine can also be called to periodically write the collected
information to the profiler tables. This might be useful if the STOP_PROFILER routine
is taking an excessive amount of time when profiling larger PL/SQL routines. This
routine is typically embedded in the PL/SQL code.

When the START_PROFILER routine is started, the Oracle RDBMS collects a variety of
information about the PL/SQL routine while it is being executed. The
STOP_PROFILER then stops this collection process and writes the collected information
to the three profiler tables.

These tables are then examined using SQL to view the results of the profiler collection.

Using the PL/SQL Profiler

There will be additional profiler information collected if the object being profiled has
been compiled using the debug option.

This example will use this simple LOOPING_EXAMPLE code:

CREATE OR REPLACE PROCEDURE looping_example
IS
 loop_counter NUMBER := 0;
BEGIN
 FOR rec IN (SELECT *
 FROM emp)
 LOOP
 loop_counter := loop_counter + 1;
 DBMS_OUTPUT.put_line (
 'Record ' || loop_counter || ' is Employee ' || rec.ename
);
 END LOOP;

 DBMS_OUTPUT.put_line ('Procedure Looping Example is done');
END;

To capture PL/SQL profile information, execute the following statements. The comment
submitted with the START command will be populated into the RUN_COMMENT in the
PLSQL_PROFILER_RUNS table, see below.

SQL> execute DBMS_PROFILER.START_PROFILER(‘User0 Looping_Example’);
SQL>

SQL> execute LOOPING_EXAMPLE:
SQL>
SQL> execute DBMS_PROFILER.STOP_PROFILER;

This example code and the PROFILER_RPT.sql SQL*Plus script (runs all 3 SQL
statements in an interactive script) are available from www.DanHotka.com (downloads).
You can also me for the PROFILER_RPT.sql script.

The profiler populates three tables with related information. PLSQL_PROFILER_RUNS
has information about each time the profiler is started, including the comment entered
when the profiler session was initiated. The PLSQL_PROFILE_UNITS contains
information about the PL/SQL code executed during the run. Each procedure, function,
and package will have its own line in this table. The PLSQL_PROFILE_DATA contains
the executed lines of code, code execution time, and more. The following SQL is useful
in extracting the profiler information.

First, find the profiler run of interest. The RUN_COMMENT column has the

select runid, run_owner, run_date, run_comment
from plsql_profiler_runs;

In this SQL, enter the RUNID from the prior SQL statement. Oracle will place several
lines of ‘<anonymous>’ in the UNIT_OWNER column. This information is the overhead
that Oracle incurred executing the code, not the code itself. Since I am not interested in
this clutter, I coded the SQL to just show me the profiler information of interest to me.

select runid, unit_number, unit_type, unit_owner, unit_name,
unit_timestamp
from plsql_profiler_units
where unit_owner <> '<anonymous>'
and runid = &rpt_runid;

select pu.unit_name, pd.line#, pd.total_occur passes,
round(pd.total_time / 1000000000,5) total_time, us.text text
from plsql_profiler_data pd, plsql_profiler_units pu, user_source us
where pd.runid = &rpt_runid

and pd.unit_number = &rpt_unitid
and pd.runid = pu.runid
and pd.unit_number = pu.unit_number
and us.name = pu.unit_name
and us.line = pd.line#
and us.type in ('PACKAGE BODY','PROCEDURE','FUNCTION');

This code cleans up the profiler tables.

delete from plsql_profiler_data;
delete from plsql_profiler_units;
delete from plsql_profiler_runs;

TOAD Users

Quest Software has implemented the PL/SQL Profiler into the TOAD tool. This option
has been available for quite a while. It too is easy to use and the whole process is easily
handled from the TOAD environment.

Starting and stopping the profiler is easily accomplished by clicking on the Toggle
PL/SQL Profiler button . If this button is grayed out, then the TOAD Server Side
objects need to be executed (Database ! Administrate ! TOAD Server Side Objects
Wizard).

When the PL/SQL code is executed, a dialog box will popup for the start comment.

Click the Toggle PL/SQL Profiler button again to stop
profiling.

The same profile tables are populated but TOAD also
formats this same outout using a nice interactive wizard.
Use Database ! Optimize ! Profiler Analysis menu item
to access the Profiler Analysis.

The output is easily visible. Select your executed code
from the list and click on the arrow button in the circle.

Summary

The PL/SQL Profiler is an essential tool when tuning PL/SQL and the SQL coded into
these same routines. Without something like this profiler process, it is impossible to tell
where the time is spend when tuning PL/SQL code.

Dan Hotka

Dan Hotka is a Training Specialist who has over 31 years in the computer industry and
over 26 years of experience with Oracle products. He is an internationally recognized
Oracle expert with Oracle experience dating back to the Oracle V4.0 days. Dan’s latest

book is the TOAD Handbook by Pearson. He is also the author of SQL Developer
Handbook by Oracle Press, SQL Developer Handbook by Oracle Press, Oracle9i
Development By Example, and Oracle8i from Scratch by Que and has co-authored 7
other popular books including the Database Oracle10g Linux Administration by Oracle
Press. He is frequently published in Oracle trade journals, and regularly speaks at Oracle
conferences and user groups around the world. Visit his website at www.DanHotka.com.
Dan can be reached at dhotka@earthlink.net .

Dan Hotka - Author/Instructor/Expert
www.DanHotka.com
DHotka@Earthlink.net
515 279-3361

	Using the Oracle PL/SQL Profiler
	Introduction
	Installation
	Understanding the Profiler Process
	Using the PL/SQL Profiler
	TOAD Users
	Summary

