
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134301846
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134301846
https://plusone.google.com/share?url=http://www.informit.com/title/9780134301846
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134301846
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134301846/Free-Sample-Chapter

Peachpit Press

V I S U A L Q U I C K P R O G U I D E

PHP and MySQL
for Dynamic Web Sites

Fifth Edition

LARRY ULLMAN

Visual QuickPro Guide
PHP and MySQL for Dynamic Web Sites, Fifth Edition
Larry Ullman

Peachpit Press
www.peachpit.com

Copyright © 2018 by Larry Ullman

To report errors, please send a note to: errata@peachpit.com
Peachpit Press is a division of Pearson Education.

Editor: Mark Taber
Copy Editor: Elizabeth Welch
Technical Reviewer: Timothy Boronczyk
Production Coordinator: David Van Ness
Compositor: Danielle Foster
Proofreader: Scout Festa
Indexer: Valerie Haynes Perry
Cover Design: RHDG / Riezebos Holzbaur Design Group, Peachpit Press
Interior Design: Peachpit Press
Logo Design: MINE™ www.minesf.com

Notice of Rights
This publication is protected by copyright, and permission should be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise. For information on obtaining permission for reprints and
excerpts, please complete the form at http://www.pearsoned.com/permissions/

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
Visual QuickPro Guide is a registered trademark of Peachpit Press, a division of Pearson Education. MySQL is
a registered trademark of MySQL AB in the United States and in other countries. Macintosh and macOS are
registered trademarks of Apple, Inc. Microsoft and Windows are registered trademarks of Microsoft Corp. Other
product names used in this book may be trademarks of their own respective owners. Images of Web sites in
this book are copyrighted by the original holders and are used with their kind permission. This book is not
officially endorsed by nor affiliated with any of the above companies, including MySQL AB.

Unless otherwise indicated herein, any third party trademarks that may appear in this work are the property
of their respective owners and any references to third party trademarks, logos or other trade dress are for
demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship,
endorsement, authorization, or promotion of Peachpit Press products by the owners of such marks, or any
relationship between the owner and Peachpit Press or its affiliates, authors, licensees or distributors.

ISBN-13: 978-0-13-430184-6
ISBN-10: 0-13-430184-6

1 17

Printed and bound in the United States of America

http://www.peachpit.com
mailto:errata@peachpit.com
http://www.minesf.com
http://www.pearsoned.com/permissions/

Dedication
Dedicated to the fine faculty at my alma mater, Northeast Missouri
State University. In particular, I would like to thank Dr. Monica Barron,
Dr. Dennis Leavens, Dr. Ed Tyler, and Dr. Cole Woodcox, whom I also
have the pleasure of calling my friend. I would not be who I am as
a writer, as a student, as a teacher, or as a person if it were not for
the magnanimous, affecting, and brilliant instruction I received from
these educators.

Special Thanks to:
My heartfelt thanks to everyone at Peachpit Press, as always.

My gratitude to the fine editor on this project, Mark Taber, for leading
the way and putting up with too many delayed emails and chapters!

Thanks to David Van Ness and Elizabeth Welch for their hard work,
helpful suggestions, and impressive attention to detail. Thanks to Scout
Festa for ensuring the writing is “pixel perfect.” Thanks also to Valerie
Perry for indexing and Danielle Foster for laying out the book, and
thanks to Timothy Boronczyk for his technical review.

Kudos to the good people working on PHP, MySQL, Apache,
phpMyAdmin, MAMP, and XAMPP, among other great projects. And a
hearty “cheers” to the denizens of the various newsgroups, mailing lists,
support forums, etc., who offer assistance and advice to those in need.

Thanks, as always, to the readers, whose support gives my job rel-
evance. An extra helping of thanks to those who provided the transla-
tions in Chapter 17, “Example—Message Board,” and who offered up
recommendations as to what they’d like to see in this edition.

Finally, I would not be able to get through a single book if it weren’t for
the love and support of my wife, Jessica. And a special shout-out to Zoe
and Sam, who give me reasons to, and not to, write books!

iv Table of Contents

Table of Contents

 Introduction. . ix

Chapter 1 Introduction to PHP. 1

Basic Syntax . 2
Sending Data to the Browser. 6
Writing Comments. 10
What Are Variables?. .14
Introducing Strings . 18
Concatenating Strings 21
Introducing Numbers . 23
Introducing Constants 26
Single vs. Double Quotation Marks 29
Basic Debugging Steps 32
Review and Pursue . 34

Chapter 2 Programming with PHP35

Creating an HTML Form 36
Handling an HTML Form41
Conditionals and Operators 45
Validating Form Data . 49
Introducing Arrays. . 55
For and While Loops . 70
Review and Pursue . 73

Chapter 3 Creating Dynamic Web Sites75

Including Multiple Files 76
Handling HTML Forms, Revisited 85
Making Sticky Forms . 91
Creating Your Own Functions 95
Review and Pursue . 112

Table of Contents v

Chapter 4 Introduction to MySQL 113

Naming Database Elements 114
Choosing Your Column Types 116
Choosing Other Column Properties 120
Accessing MySQL . 123
Review and Pursue . 130

Chapter 5 Introduction to SQL. 131

Creating Databases and Tables 132
Inserting Records . 135
Selecting Data . 140
Using Conditionals . 142
Using LIKE and NOT LIKE 145
Sorting Query Results. 147
Limiting Query Results 149
Updating Data . 151
Deleting Data . 153
Using Functions . 155
Review and Pursue . 166

Chapter 6 Database Design . 167

Normalization . 168
Creating Indexes . 181
Using Different Table Types 184
Languages and MySQL 186
Time Zones and MySQL 191
Foreign Key Constraints 197
Review and Pursue . 204

Chapter 7 Advanced SQL and MySQL 205

Performing Joins. 206
Grouping Selected Results216
Advanced Selections 220
Performing FULLTEXT Searches. 224
Optimizing Queries . 232
Performing Transactions 236
Database Encryption 239
Review and Pursue . 242

vi Table of Contents

Chapter 8 Error Handling and Debugging 243

Error Types and Basic Debugging 244
Displaying PHP Errors. 250
Adjusting Error Reporting in PHP 252
Creating Custom Error Handlers. 255
PHP Debugging Techniques 260
SQL and MySQL Debugging Techniques 264
Review and Pursue . 266

Chapter 9 Using PHP with MySQL 267

Modifying the Template. 268
Connecting to MySQL. 270
Executing Simple Queries 275
Retrieving Query Results 284
Ensuring Secure SQL 288
Counting Returned Records 293
Updating Records with PHP 296
Review and Pursue . 304

Chapter 10 Common Programming Techniques 305

Sending Values to a Script 306
Using Hidden Form Inputs310
Editing Existing Records316
Paginating Query Results. 323
Making Sortable Displays 331
Review and Pursue . 336

Chapter 11 Web Application Development 337

Sending Email . 338
Handling File Uploads 344
PHP and JavaScript . 356
Understanding HTTP Headers. 364
Date and Time Functions 370
Performing Transactions374
Review and Pursue . 380

Table of Contents vii

Chapter 12 Cookies and Sessions 381

Making a Login Page 382
Making the Login Functions 385
Using Cookies . 390
Using Sessions. 404
Improving Session Security 412
Review and Pursue . 416

Chapter 13 Security Methods . 417

Preventing Spam . 418
Validating Data by Type. 425
Validating Files by Type. 431
Preventing XSS Attacks. 435
Using the Filter Extension 438
Preventing SQL Injection Attacks 442
Securing Passwords with PHP 449
Review and Pursue . 458

Chapter 14 Perl-Compatible Regular Expressions 459

Creating a Test Script 460
Defining Simple Patterns 464
Using Quantifiers . 467
Using Character Classes 469
Finding All Matches . 472
Using Modifiers .476
Matching and Replacing Patterns478
Review and Pursue . 482

Chapter 15 Introducing jQuery . 483

What Is jQuery? . 484
Incorporating jQuery 486
Using jQuery . 489
Selecting Page Elements 492
Event Handling. 495
DOM Manipulation . 499
Using Ajax . 505
Review and Pursue . 518

viii Table of Contents

Chapter 16 An OOP Primer . 519

Fundamentals and Syntax 520
Working with MySQL 523
The DateTime Class . 538
Review and Pursue . 546

Chapter 17 Example—Message Board 547

Making the Database 548
Writing the Templates 556
Creating the Index Page 565
Creating the Forum Page 566
Creating the Thread Page 571
Posting Messages . 576
Review and Pursue . 586

Chapter 18 Example—User Registration 587

Creating the Templates 588
Writing the Configuration Scripts 594
Creating the Home Page 602
Registration . 604
Activating an Account. 614
Logging In and Logging Out 617
Password Management. 624
Review and Pursue . 634

Appendix A Installation. . 635

Installation on Windows 636
Installation on macOS. 639
Managing MySQL Users 641
Testing Your Installation 646
Configuring PHP. 649
Configuring Apache. 652

 Index . 662

Introduction ix

Introduction

Today’s web users expect exciting pages
that are updated frequently and provide a
customized experience. For them, web sites
are more like communities, to which they’ll
return time and again. At the same time, site
administrators want pages that are easier to
update and maintain, understanding that’s
the only reasonable way to keep up with
visitors’ expectations. For these reasons
and more, PHP and MySQL have become
the de facto standards for creating dynamic,
database-driven web sites.

This book represents the culmination of my
many years of web development experi-
ence coupled with the value of having
written several previous books on the tech-
nologies discussed herein. The focus of
this book is on covering the most important
knowledge in the most efficient manner.
It will teach you how to begin developing
dynamic web sites and give you plenty of
example code to get you started. All you
need to provide is an eagerness to learn.

Well, that and a computer.

x Introduction

What Are Dynamic
Web Sites?
Dynamic web sites are flexible and potent
creatures, more accurately described as
applications than merely sites. Dynamic
web sites

■■ Respond to different parameters (for
example, the time of day or the version
of the visitor’s browser)

■■ Have a “memory,” allowing for user
registration and login, e-commerce, and
similar processes

■■ Almost always integrate HTML forms,
allowing visitors to perform searches,
provide feedback, and so forth

■■ Often have interfaces where administra-
tors can manage the content

■■ Are easier to maintain, upgrade, and
build upon than statically made sites

Many technologies are available for creat-
ing dynamic web sites. The most common
are ASP.NET (Active Server Pages, a Micro-
soft construct), JSP (JavaServer Pages),
ColdFusion, Ruby on Rails (a web develop-
ment framework for the Ruby programming
language), and PHP. Dynamic sites don’t
always rely on a database, but more and
more of them do, particularly as excellent
database applications like MySQL and
MongoDB are available at little to no cost.

What Happened to PHP 6?
When I wrote a previous edition of this
book, PHP 6 and MySQL 5 for Dynamic
Web Sites: Visual QuickPro Guide, the
next major release of PHP—PHP 6—was
approximately 50 percent complete.
Thinking that PHP 6 would therefore be
released sometime after the book was
published, I relied on a beta version of
PHP 6 for a bit of that edition’s material.
And then… PHP 6 died.

One of the key features planned for PHP
6 was support for Unicode, meaning that
PHP 6 would be able to work natively
with any language. This would be a great
addition to an already popular program-
ming tool. Unfortunately, implement-
ing Unicode support went from being
complicated to quite difficult, and the
developers behind the language tabled
development of PHP 6. Not all was lost,
however; some of the other features
planned for PHP 6, such as support
for namespaces (an object-oriented
programming concept), were added
to PHP 5.3.

When it was time to release the next
major version of PHP, it was decided to
name it PHP 7 to avoid confusion with
the PHP 6 version that was started but
never completed.

http://ASP.NET

Introduction xi

What is PHP?
PHP originally stood for “Personal Home
Page” when it was created in 1994 by
Rasmus Lerdorf to track the visitors to his
online résumé. As its usefulness and capa-
bilities grew (and as it started being used
in more professional situations), it came to
mean “PHP: Hypertext Preprocessor.”

According to the official PHP web site,
found at www.php.net A, PHP is a “popular
general-purpose scripting language that
is especially suited to web development.”
It’s a long but descriptive definition, whose
meaning I’ll explain.

continues on next page

A The home page for PHP.

http://www.php.net

xii Introduction

Starting at the end of that statement, to
say that PHP is especially suited to web
development means that although you
can use PHP for non-web development
purposes, it’s best suited for that. The cor-
ollary is that although many other technolo-
gies can be used for web development,
that may not be what they’re best suited
for. Simply put, if you’re hoping to do web
development, PHP is an excellent choice.

Also, PHP is a scripting language, as
opposed to a compiled language: PHP
was designed to write web scripts, not
stand-alone applications (although, with
some extra effort, you can create applica-
tions in PHP). PHP scripts run only after an
event occurs—for example, when a user
submits a form or goes to a URL (uniform
resource locator, the technical term for a
web site address).

I should add to this definition that PHP is
a server-side, cross-platform technology,
both descriptions being important. Server-
side refers to the fact that everything PHP
does occurs on the server. A web server
application, like Apache or Microsoft’s IIS
(Internet Information Services), is required
and all PHP scripts must be accessed
through a URL (http://something). Its
cross-platform nature means that PHP
runs on most operating systems, including
Windows, Unix (and its many variants), and
Macintosh. More important, the PHP scripts
written on one server will normally work on
another with little or no modification.

At the time this book was written, PHP was
at version 7.1.7. Although PHP 7 is a major
release, the most important changes are
in its core, with PHP 7 being significantly
more performant than PHP 5.

For the most part, the examples in this
book will work fine so long as you’re using
at least version 5.4. Some functions and

Introduction xiii

features covered will require more specific
or current versions, like PHP 5.6 or greater.
In those cases, I will make it clear when
the functionality was added to PHP, and
provide alternative solutions if you have a
slightly older version of the language.

More information about PHP can always be
found at PHP.net.

Why use PHP?
Put simply, when it comes to developing
dynamic web sites, PHP is better, faster, and
easier to learn than the alternatives. What
you get with PHP is excellent performance,
a tight integration with nearly every data-
base available, stability, portability, and a
nearly limitless feature set due to its extend-
ibility. All of this comes at no cost (PHP is
open source) and with a very manageable
learning curve. PHP is one of the best mar-
riages I’ve ever seen between the ease with
which beginning programmers can start
using it and the ability for more advanced
programmers to do everything they require.

Finally, the proof is in the pudding: PHP has
seen an exponential growth in use since its
inception, and is the server-side technol-
ogy of choice on over 82 percent of all web
sites B. In terms of all programming lan-
guages, PHP is the sixth most popular C.

continues on next page

B The Web Technology Surveys site provides
this graphic regarding server-side technologies
(www.w3techs.com/technologies/overview/
programming_language/all).

C The Tiobe Index (https://www.tiobe.com/tiobe-index/) uses a combination of factors to rank the
popularity of programming languages.

http://PHP.net
http://www.w3techs.com/technologies/overview/programming_language/all
http://www.w3techs.com/technologies/overview/programming_language/all
https://www.tiobe.com/tiobe-index/

xiv Introduction

Of course, you might assume that I, as the
author of a book on PHP (several, actually),
have a biased opinion. Although not nearly
to the same extent as I have with PHP, I’ve
also developed sites using JavaServer
Pages (JSP), Ruby on Rails (RoR), Sinatra
(another Ruby web framework), and ASP.
NET. Each has its pluses and minuses, but
PHP is the technology I always return to.
You might hear that it doesn’t perform or
scale as well as other technologies, but
Yahoo, Wikipedia, and Facebook all use
PHP, and you can’t find many sites more
visited or demanding than those.

You might have heard that PHP is less
secure. But security isn’t in the language;
it’s in how that language is used. Rest
assured that a complete and up-to-date
discussion of all the relevant security con-
cerns is provided by this book.

Introduction xv

How PHP works
As previously stated, PHP is a server-side
language. This means that the code you
write in PHP sits on a host computer called
a server. The server sends web pages to
the requesting visitors (you, the client, with
your browser).

When a visitor goes to a site written in PHP,
the server reads the PHP code and then
processes it according to its scripted direc-
tions. In the example shown in D, the PHP
code tells the server to send the appropri-
ate data—HTML code—to the browser,
which treats the received code as it would
a standard HTML page.

This differs from a static HTML site where,
when a request is made, the server merely
sends the HTML data to the browser and
there is no server-side interpretation occur-
ring E. Because no server-side action is
required, you can run HTML pages in your
browser without using a server at all.

continues on next page

URL Request

HTML

Client Server

PHP
HTML

Script
Request

D How PHP fits into the client/server model when a user requests a page.

URL Request

HTML

Client Server

E The client/server process when a request for a static HTML page is made.

xvi Introduction

To the end user and the browser there is
no perceptible difference between what
home.html and home.php may look like, but
how that page’s content was created will
be significantly different.

What is MySQL?
MySQL (www.mysql.com) F is the world’s
most popular open source database. In
fact, today MySQL is a viable competitor to
pricey goliaths such as Oracle and Micro-
soft’s SQL Server (and, ironically, MySQL is
owned by Oracle). Like PHP, MySQL offers
excellent performance, portability, and reli-
ability, with a moderate learning curve and
little to no cost.

MySQL is a database management system
(DBMS) for relational databases (therefore,
MySQL is an RDBMS). A database, in the
simplest terms, is a collection of data, be
it text, numbers, or binary files, stored and
kept organized by the DBMS.

There are many types of databases, from
the simple flat-file to relational to object-
oriented to NoSQL. A relational database
uses multiple tables to store information
in its most discernible parts. Although
relational databases may involve more
thought in the design and programming
stages, they offer improved reliability and
data integrity that more than make up for
the extra effort required. Further, relational
databases are more searchable and allow
for concurrent users.

F The home page for the MySQL database
application.

http://home.html
http://www.mysql.com

Introduction xvii

By incorporating a database into a web
application, some of the data generated by
PHP can be retrieved from MySQL G. This
further moves the site’s content from a static
(hard-coded) basis to a flexible one, flexibil-
ity being the key to a dynamic web site.

MySQL is an open source application, like
PHP, meaning that it is free to use or even
modify (the source code itself is download-
able). There are occasions when you should
pay for a MySQL license, especially if you
are making money from the sales or incorpo-
ration of the MySQL product. Check MySQL’s
licensing policy for more information on this.

The MySQL software consists of several
pieces, including the MySQL server (mysqld,
which runs and manages the databases),
the MySQL client (mysql, which gives you
an interface to the server), and numerous
utilities for maintenance and other pur-
poses. PHP has always had good support
for MySQL, and that is even truer in the
most recent versions of the language.

continues on next page

URL Request

HTML

Client Server

PHP
MySQL

HTML
Script Request

Query

Data

G How most of the dynamic applications in this book will work, using both PHP and MySQL.

xviii Introduction

MySQL has been known to handle data-
bases as large as 60,000 tables with more
than several billion rows. MySQL can
work with tables as large as thousands
of terabytes on some operating systems,
generally a healthy 4 GB otherwise. MySQL
is used by NASA and the U.S. Census
Bureau, among many others.

As of this writing, MySQL is on version
5.7.18. The version of MySQL you have
affects what features you can use, so it’s
important that you know what you’re work-
ing with. For this book, MySQL 5.7.14 was
used, although you should be able to do
everything in this book as long as you’re
using a version of MySQL greater than 5.0.

Pronunciation Guide
Trivial as it may be, I should clarify up
front that MySQL is technically pro-
nounced “My Ess Cue Ell,” just as SQL
should be said “Ess Cue Ell.” This is a
question many people have when first
working with these technologies. Though
not a critical issue, it’s always best to
pronounce acronyms correctly.

Introduction xix

What You’ll Need
To follow the examples in this book, you’ll
need the following tools:

■■ A web server application (for example,
Apache, Nginx, or IIS)

■■ PHP

■■ MySQL

■■ A browser (Microsoft’s Internet Explorer
or Edge, Mozilla’s Firefox, Apple’s
Safari, Google’s Chrome, etc.)

■■ A text editor, PHP-capable WYSIWYG
application (Adobe’s Dreamweaver
qualifies), or IDE (integrated develop-
ment environment)

■■ An FTP application, if using a
remote server

One of the great things about developing
dynamic web sites with PHP and MySQL
is that all of the requirements can be
met at no cost whatsoever, regardless of
your operating system! Apache, PHP, and
MySQL are each free, browsers can be had
without cost, and many good text editors
are available for nothing.

The appendix discusses the installation
process on the Windows and macOS oper-
ating systems. If you have a computer, you
are only a couple of downloads away from
being able to create dynamic web sites (in
that case, your computer would represent
both the client and the server in D and
E). Conversely, you could purchase web
hosting for only dollars per month that
will provide you with a PHP- and MySQL-
enabled environment already online.

xx Introduction

About This Book
This book teaches you how to develop
dynamic web sites with PHP and MySQL,
covering the knowledge that most develop-
ers might require. In keeping with the format
of the Visual QuickPro series, the infor-
mation is discussed using a step-by-step
approach with corresponding images. The
focus has been kept on real-world, practical
examples, avoiding “here’s something you
could do but never would” scenarios. As a
practicing web developer myself, I wrote
about the information that I use and avoided
those topics immaterial to the task at hand.
As a practicing writer, I made certain to
include topics and techniques that I know
readers are asking about.

The structure of the book is linear, and
the intention is that you’ll read it in order.
It begins with three chapters covering the
fundamentals of PHP (by the second chap-
ter, you will have already developed your
first dynamic web page). After that, there
are four chapters on SQL (Structured Query
Language, which is used to interact with
all databases) and MySQL. Those chapters
teach the basics of SQL, database design,
and the MySQL application in particular.
Then there’s one chapter on debugging
and error management, information every-
one needs. This is followed by a chapter
introducing how to use PHP and MySQL
together, a remarkably easy thing to do.

The following five chapters teach more
application techniques to round out your
knowledge. Security, in particular, is repeat-
edly addressed in those pages. The next two
chapters expand your newfound knowledge
into subjects that, though not critical, are
ones you’ll want to pick up in time regard-
less. Finally, I’ve included two example
chapters, in which the heart of different web
applications are developed, with instructions.

Introduction xxi

Is this book for you?
This book was written for a wide range of
people within the beginner-to-intermediate
range. The book makes use of HTML5,
so solid experience with HTML is a must.
Although this book covers many things,
it does not formally teach HTML or web
design. Some CSS is sprinkled about these
pages but also not taught.

Second, this book expects that you have
one of the following:

■■ The drive and ability to learn without
much hand holding, or…

■■ Familiarity with another programming
language (even solid JavaScript skills
would qualify), or…

■■ A cursory knowledge of PHP

Make no mistake: This book covers PHP
and MySQL from A to Z, teaching every-
thing you’ll need to know to develop
real-world web sites, but the early chapters
in particular cover PHP at a quick pace.
For this reason I recommend either some
programming experience or a curious and
independent spirit when it comes to learn-
ing new things. If you find that the material
goes too quickly, you should probably start
off with the latest edition of my book PHP
for the World Wide Web: Visual Quick-
Start Guide, which goes at a much more
tempered pace.

No database experience is required, since
SQL and MySQL are discussed starting at a
more basic level.

xxii Introduction

What’s new in this edition
The first four editions of this book have
been very popular, and I’ve received a lot
of positive feedback on them (thanks!).
In writing this new edition, I focused on
ensuring the material is accurate, up to
date, and in keeping with today’s stan-
dards and best practices. The changes in
this edition include

■■ Updating all the code to use HTML5

■■ Use of more modern HTML design
techniques, including multiple examples
of the Twitter Bootstrap framework

■■ Updating everything for the latest ver-
sions of PHP and MySQL

■■ Additional PHP and MySQL examples,
such as performing transactions from a
PHP script

■■ Even more information and examples
for improving the security of your
scripts and sites

■■ Removal of outdated content (e.g.,
things used in older versions of PHP or
no longer applicable)

■■ Return of the installation appendix to
the printed book (in the fourth edi-
tion, the appendix was freely available
online instead)

For those of you that also own a previous
edition (thanks, thanks, thanks!), I hope you
find this to be a fresh and sharp update to
an already excellent resource.

Introduction xxiii

How this book compares
to my other books
This is my fourth PHP and/or MySQL title,
after (in order)

■■ PHP for the World Wide Web: Visual
QuickStart Guide

■■ PHP Advanced and Object-Oriented
Programming: Visual QuickPro Guide

■■ MySQL: Visual QuickStart Guide

I hope this résumé implies a certain level of
qualification to write this book, but how do
you, as a reader standing in a bookstore,
decide which title is for you? Of course,
you are more than welcome to splurge
and buy the whole set, earning my eternal
gratitude, but…

The PHP for the World Wide Web: Visual
QuickStart Guide book is very much a
beginner’s guide to PHP. This title overlaps
it some, mostly in the first three chapters,
but uses new examples so as not to be
redundant. For novices, this book acts as a
follow-up to that one. The advanced book
is really a sequel to this one, as it assumes
a fair amount of knowledge and builds
on many things taught here. The MySQL
book focuses almost exclusively on MySQL
(there are but two chapters that use PHP).

continues on next page

xxiv Introduction

With that in mind, read the section
“Is this book for you?” and see if the
requirements apply. If you have no
programming experience at all and would
prefer to be taught PHP more gingerly,
my first book would be better. If you
are already very comfortable with PHP
and want to learn more of its advanced
capabilities, pick up PHP Advanced and
Object-Oriented Programming: Visual
QuickPro Guide. If you are most interested
in MySQL and are not concerned with
learning much about PHP, check out
MySQL: Visual QuickStart Guide.

That being said, if you want to learn every-
thing you need to know to begin devel-
oping dynamic web sites with PHP and
MySQL today, then this is the book for you!
It references the most current versions of
both technologies, uses techniques not
previously discussed in other books, and
contains its own unique examples.

And whatever book you do choose, make
sure you’re getting the most recent edi-
tion or, barring that, the edition that best
matches the versions of the technologies
you’ll be using.

Introduction xxv

Companion Web Site
I have developed a companion web site
specifically for this book, which you may
reach at LarryUllman.com. There you will
find every script from this book, a text file
containing lengthy SQL commands, and a
list of errata that occurred during publica-
tion. (If you have problems with a com-
mand or script, and you are following the
book exactly, check the errata to ensure
there is not a printing error before driving
yourself absolutely mad.) At this web site
you will also find a popular forum where
readers can ask and answer each other’s
questions (I answer many of them myself),
and more!

Questions, comments,
or suggestions?
If you have any questions on PHP or
MySQL, you can turn to one of the many
web sites, mailing lists, newsgroups, and
FAQ repositories already in existence. A
quick search online will turn up virtually
unlimited resources. For that matter, if you
need an immediate answer, those sources
or a quick online search will most assuredly
serve your needs (in all likelihood, some-
one else has already seen and solved your
exact problem).

You can also direct your questions, com-
ments, and suggestions to me. You’ll get
the fastest reply using the book’s cor-
responding forum (I always answer those
questions first). If you’d rather email me, my
contact information is available on my site.
I do try to answer every email I receive,
although I cannot guarantee a quick reply.

http://LarryUllman.com

xxvi Introduction

Accessing the free Web Edition
Your purchase of this book in any format
includes access to the corresponding Web
Edition, which provides several special
online-only features:

■■ The complete text of the book, with all
the figures and in full color

■■ Updates and corrections as they
become available

The Web Edition can be viewed on all
types of computers and mobile devices
with any modern web browser that sup-
ports HTML5. To get access to the Web
Edition of PHP and MySQL for Dynamic
Web Sites: Visual QuickPro Guide all you
need to do is register this book:

1. Go to www.peachpit.com/register.

2. Sign in or create a new account.

3. Enter ISBN: 9780134301846.

4. Answer the questions as proof of
purchase.

The Web Edition will appear under the
Digital Purchases tab on your Account
page. Click the Launch link to access
the product.

http://www.peachpit.com/register

4
Introduction
to MySQL

Because this book discusses how to inte-
grate several technologies—primarily PHP,
SQL, and MySQL—a solid understanding of
each is important before you begin writing
PHP scripts that use SQL to interact with
MySQL. This chapter is a departure from its
predecessors in that it temporarily leaves
PHP behind to delve into MySQL.

MySQL is the world’s most popular open
source database application (according
to MySQL’s web site, www.mysql.com) and
is commonly used with PHP. The MySQL
software comes with the database server
that stores the actual data, different cli-
ent applications for interacting with the
database server, and several utilities. In this
chapter, you’ll see how to define a simple
table using MySQL’s allowed data types
and other properties. Then you’ll learn how
to interact with the MySQL server using
two different client applications. This infor-
mation will be the foundation for the SQL
taught in the next chapter.

In This Chapter
Naming Database Elements 114

Choosing Your Column Types 116

Choosing Other Column Properties 120

Accessing MySQL 123

Review and Pursue 130

http://www.mysql.com

114 Chapter 4

Naming Database
Elements
Before you start working with databases,
you have to identify your needs. The pur-
pose of the application (or web site, in this
case) dictates how the database should be
designed. With that in mind, the examples
in this chapter and the next will use a data-
base that stores some user registration
information.

When creating databases and tables, you
should come up with names (formally
called identifiers) that are clear, meaning-
ful, and easy to type. Also, identifiers

■■ Should only contain letters, numbers,
and the underscore (no spaces)

■■ Should not be the same as an exist-
ing keyword (like an SQL term or a
function name)

■■ Should be treated as case-sensitive

■■ Cannot be longer than 64 characters
(approximately)

■■ Must be unique within its realm

This last rule means that a table cannot
have two columns with the same name and
a database cannot have two tables with
the same name. You can, however, use the
same column name in two different tables
in the same database; in fact, you often
will do this.

As for the first three rules, I use the word
should, as these are good policies more
than exact requirements. Exceptions can
be made to these rules, but the syntax for
doing so can be complicated. Abiding by
these suggestions is a reasonable limita-
tion and will help avoid complications.

To name a database’s elements:
1. Determine the database’s name.

This is the easiest and, arguably, least
important step. Just make sure that
the database name is unique for that
MySQL server. If you’re using a hosted
server, your web host will likely provide
a database name that may or may not
include your account or domain name.

For this first example, the database will
be called sitename, since the informa-
tion and techniques could apply to any
generic site.

2. Determine the table names.

The table names just need to be unique
within this database, which shouldn’t
be a problem. For this example, which
stores user registration information, the
only table will be called users.

Introduction to MySQL 115

TABLE 4.1 users Table

Column Name Example

user_id 834

first_name Larry

last_name David

email ld@example.com

pass emily07

registration_date 2017-08-31 19:21:03

3. Determine the column names for
each table.

The users table will have columns
to store a user ID, a first name, a last
name, an email address, a password,
and the registration date. Table 4.1
shows these columns, with sample
data, using proper identifiers. Because
MySQL has a function called password,
I’ve changed the name of that column
to just pass. This isn’t strictly necessary
but is really a good idea.

For the user_id column, there are two
common approaches. Some use simply
id as the identifying column name in
any table so that all tables have an
id column. Others use a variation on
tablename_id: user_id or users_id.

 Chapter 6, “Database Design,” discusses
database design in more detail, using more
complex examples.

 To be precise, the length limit for the
names of databases, tables, and columns
is actually 64 bytes, not characters. While
most characters in many languages require
1 byte apiece, it’s possible to use a multibyte
character in an identifier. But 64 bytes is still
a lot of space, so this probably won’t be an
issue for you.

 Whether or not an identifier in MySQL
is case-sensitive actually depends on many
things, because each database is actually a
folder on the server and each table is actually
one or more files. On Windows and normally
on macOS, database and table names are
generally case-insensitive. On Unix and
some macOS setups, they are case-sensitive.
Column names are always case-insensitive.
It’s really best, in my opinion, to always use
all lowercase letters and work as if case-
sensitivity applied.

mailto:ld@example.com

116 Chapter 4

Choosing Your
Column Types
Once you have identified all of the tables
and columns that the database will need,
you should determine each column’s data
type. When you’re creating a table, MySQL
requires that you explicitly state what sort
of information each column will contain.
There are three primary types, which is
true for almost every database application:

■■ Text (aka strings)

■■ Numbers

■■ Dates and times

Within each of these, there are many vari-
ants—some of which are MySQL specific.
Choosing your column types correctly
not only dictates what information can
be stored and how, but also affects the
database’s overall performance. Table 4.2
lists most of the available types for MySQL,
how much space they take up, and brief
descriptions of each type. Note that some
of these limits may change in different
versions of MySQL, and the character set
(to be discussed in Chapter 6, “Database
Design”) may also impact the size of the
text types.

Many of the types can take an optional
Length attribute, limiting their size. (The
brackets, [], indicate an optional parameter
to be put in parentheses.) For performance
purposes, you should place some restric-
tions on how much data can be stored in
any column. But understand that attempting
to insert a string five characters long into a
CHAR(2) column will result in truncation of
the final three characters. Only the first two
characters would be stored; the rest would
be lost forever. This is true for any field in
which the size is set (CHAR, VARCHAR, INT,
etc.). Thus, your length should always corre-
spond to the maximum possible value—as a
number—or the longest possible string—as
text—that might be stored.

The various date types have all sorts of
unique behaviors, the most important of
which you’ll learn about in this book. All the
behaviors are documented in the MySQL
manual. You’ll use the DATE and TIME
fields primarily without modification, so
you do not have to worry too much about
their intricacies.

There are also two special types—ENUM and
SET—that allow you to define a series of
acceptable values for that column. An ENUM
column can store only one value of a pos-
sible several thousand, whereas SET allows
for several of up to 64 possible values.
These are available in MySQL but aren’t
present in every database application.

Introduction to MySQL 117

TABLE 4.2 MySQL Data Types

Type Size Description

CHAR[Length] Length bytes A fixed-length field from 0 to 255 characters
long

VARCHAR[Length] String length + 1 or 2 bytes A variable-length field from 0 to 65,535
characters long

TINYTEXT String length + 1 bytes A string with a maximum length of 255
characters

TEXT String length + 2 bytes A string with a maximum length of 65,535
characters

MEDIUMTEXT String length + 3 bytes A string with a maximum length of 16,777,215
characters

LONGTEXT String length + 4 bytes A string with a maximum length of
4,294,967,295 characters

TINYINT[Length] 1 byte Range of –128 to 127 or 0 to 255 unsigned

SMALLINT[Length] 2 bytes Range of –32,768 to 32,767 or 0 to 65,535
unsigned

MEDIUMINT[Length] 3 bytes Range of –8,388,608 to 8,388,607 or 0 to
16,777,215 unsigned

INT[Length] 4 bytes Range of –2,147,483,648 to 2,147,483,647 or 0
to 4,294,967,295 unsigned

BIGINT[Length] 8 bytes Range of –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 or 0 to
18,446,744,073,709,551,615 unsigned

FLOAT[Length, Decimals] 4 bytes A small number with a floating decimal point

DOUBLE[Length, Decimals] 8 bytes A large number with a floating decimal point

DECIMAL[Length, Decimals] Length + 1 or 2 bytes A DOUBLE stored as a string, allowing for a fixed
decimal point

DATE 3 bytes In the format YYYY-MM-DD

DATETIME 8 bytes In the format YYYY-MM-DD HH:MM:SS

TIMESTAMP 4 bytes In the format YYYYMMDDHHMMSS; acceptable
range starts in 1970 and ends in the year 2038

TIME 3 bytes In the format of HH:MM:SS

ENUM 1 or 2 bytes Short for enumeration, which means that each
column can have one of several possible values

SET 1, 2, 3, 4, or 8 bytes Like ENUM except that each column can have
more than one of several possible values

118 Chapter 4

To select the column types:
1. Identify whether a column should

be a text, number, or date/time type
(Table 4.3).

This is normally an easy and obvious
step, but you want to be as specific as
possible. For example, the date 2006-
08-02 (MySQL format) could be stored
as a string—August 2, 2006. But if you
use the proper date format, you’ll have
a more useful database (and, as you’ll
see, there are functions that can turn
2006-08-02 into August 2, 2006).

2. Choose the most appropriate subtype
for each column (Table 4.4).

For this example, user_id is set as a
MEDIUMINT, allowing for up to nearly 17
million values (as an unsigned, or non-
negative, number). registration_date will
be a DATETIME. It can store both the date
and the specific time a user registered.
When deciding among the date types,
consider whether you’ll want to access
just the date, the time, or possibly both.

When choosing a subtype, err on the
side of storing too much information.

The other fields will be mostly VARCHAR,
since their lengths will differ from
record to record. The only exception
is the password column, which will
be a fixed-length CHAR (you’ll see why
when inserting records in the next
chapter). See the sidebar “CHAR vs.
VARCHAR” for more information on these
two types.

CHAR vs. VARCHAR
Both of these types store strings and
can be set with a maximum length. The
primary difference between the two
is that anything stored as a CHAR will
always be stored as a string the length
of the column (using spaces to pad it;
these spaces will be removed when
you retrieve the stored value from the
database). Conversely, strings stored
in a VARCHAR column will require only
as much space as the string itself. So
the word cat in a VARCHAR(10) column
requires 4 bytes of space (the length of
the string plus 1), but in a CHAR(10) col-
umn, that same word requires 10 bytes
of space. Hence, generally speaking,
VARCHAR columns tend to require less
disk space than CHAR columns.

However, databases are normally faster
when working with fixed-size columns,
which is an argument in favor of CHAR.
And that same three-letter word—cat—
in a CHAR(3) uses only 3 bytes but in a
VARCHAR(10) requires 4. So how do you
decide which to use?

If a string field will always be of a set
length (e.g., a state abbreviation), use
CHAR; otherwise, use VARCHAR. You
may notice, though, that in some cases
MySQL defines a column as the one
type—like CHAR—even though you
created it as the other: VARCHAR. This is
perfectly normal and is MySQL’s way of
improving performance.

Introduction to MySQL 119

3. Set the maximum length for text
columns (Table 4.5).

The size of any field should be
restricted to the smallest possible value,
based on the largest possible input.
For example, if a column stores a state
abbreviation, it would be defined as a
CHAR(2). Other times you might have to
guess: I can’t think of any first names
longer than about 10 characters, but just
to be safe I’ll allow for up to 20.

 The length attribute for numeric types
does not affect the range of values that can
be stored in the column. Columns defined as
TINYINT(1) or TINYINT(20) can store the
exact same values. Instead, for integers, the
length dictates the display width; for decimals,
the length is the total number of digits that
can be stored.

 If you need absolute precision when
using non-integers, DECIMAL is preferred over
FLOAT or DOUBLE.

 MySQL has a BOOLEAN type, which is
just a TINYINT(1), with 0 meaning FALSE and
1 meaning TRUE.

 Many of the data types have synonymous
names: INT and INTEGER, DEC and DECIMAL,
and so on.

 Depending on the version of MySQL in
use, the TIMESTAMP field type is automati-
cally set as the current date and time when an
INSERT or UPDATE occurs, even if no value is
specified for that particular field. If a table has
multiple TIMESTAMP columns, only the first one
will be updated when an INSERT or UPDATE
is performed.

 MySQL also has several variants on
the text types that allow for storing binary
data. These types are BINARY, VARBINARY,
TINYBLOB, MEDIUMBLOB, and LONGBLOB.
Such types can be used for storing files or
encrypted data.

TABLE 4.3 users Table

Column Name Type

user_id number

first_name text

last_name text

email text

pass text

registration_date date/time

TABLE 4.4 users Table

Column Name Type

user_id MEDIUMINT

first_name VARCHAR

last_name VARCHAR

email VARCHAR

pass CHAR

registration_date DATETIME

TABLE 4.5 users Table

Column Name Type

user_id MEDIUMINT

first_name VARCHAR(20)

last_name VARCHAR(40)

email VARCHAR(60)

pass CHAR(128)

registration_date DATETIME

120 Chapter 4

Choosing Other
Column Properties
Besides deciding what data types and
sizes you should use for your columns,
consider a handful of other properties.

First, every column, regardless of type, can
be defined as NOT NULL. The NULL value, in
databases and programming, is equivalent
to saying that the field has no known value.
Ideally, in a properly designed database,
every column of every row in every table
should have a value, but that isn’t always
the case. To force a field to have a value,
add the NOT NULL description to its col-
umn type. For example, a required dollar
amount can be described as

cost DECIMAL(5,2) NOT NULL.

Indexes, Keys, and AUTO_INCREMENT
Two concepts closely related to database design are indexes and keys. An index in a database is
a way of requesting that the database keep an eye on the values of a specific column or combina-
tion of columns (loosely stated). The benefit of an index is improved performance when retrieving
records but marginally hindered performance when inserting records or updating them.

A key in a database table is integral to the “normalization” process used for designing more com-
plicated databases (see Chapter 6). There are two types of keys: primary and foreign. Each table
should have exactly one primary key, and the primary key in one table is often linked as a foreign
key in another.

A table’s primary key is an artificial way to refer to a record and must abide by three rules:

1. It must always have a value.

2. That value must never change.

3. That value must be unique for each record in the table.

In the users table, user_id will be designated as a PRIMARY KEY, which is both a description of
the column and a directive to MySQL to index it. Since user_id is a number—which primary keys
almost always will be, the AUTO_INCREMENT description is also added to the column, which tells
MySQL to use the next-highest number as the user_id value for each added record. You’ll see
what this means in practice when you begin inserting records.

Introduction to MySQL 121

Finally, when designing a database, you’ll
need to consider creating indexes, adding
keys, and using the AUTO_INCREMENT prop-
erty. Chapter 6 discusses these concepts
in greater detail, but in the meantime,
check out the sidebar “Indexes, Keys, and
AUTO_INCREMENT” to learn how they affect
the users table.

To finish defining your columns:
1. Identify your primary key.

The primary key is quixotically both
arbitrary and critically important. Almost
always a number value, the primary key
is a unique way to refer to a particular
record. For example, your phone num-
ber has no inherent value but is unique
to you (your home or mobile phone).

In the users table, user_id will be the
primary key: an arbitrary number used
to refer to a row of data. Again, Chapter
6 will go into the concept of primary
keys in more detail.

2. Identify which columns cannot have a
NULL value.

In this example, every field is required
(cannot be NULL). As an example of a
column that could have NULL values,
if you stored people’s addresses,
you might have address_line1 and
address_line2, with the latter one
being optional. In general, tables that
have a lot of NULL values suggest
a poor design (more on this in…you
guessed it…Chapter 6).

continues on next page

When creating a table, you can also specify
a default value for any column, regard-
less of type. In cases where a majority of
the records will have the same value for a
column, presetting a default will save you
from having to specify a value when insert-
ing new rows (unless that row’s value for
that column is different from the norm).

subscribe ENUM('Yes', 'No') default 'No'

With the subscribe column, if no value
is specified when adding a record, the
default will be used.

If a column cannot be NULL and does
not have a default value, and no value is
specified for a new record, that field will
be given a default value based on its type.
For numeric types, the default value is 0.
For most date and time types, the type’s
version of “zero” will be the default (e.g.,
0000-00-00). The first TIMESTAMP column
in a table will have a default value of the
current date and time. String types use
an empty string ('') as the default value,
except for ENUM, whose default value—
again, if not otherwise specified—is the
first possible enumerated value (Yes in the
previous example).

The number types can be marked as
UNSIGNED, which limits the stored data
to positive numbers and zero. This also
effectively doubles the range of positive
numbers that can be stored because no
negative numbers will be kept (see Table
4.2). You can also flag the number types as
ZEROFILL, which means that any extra room
will be padded with zeros. ZEROFILLs are
also automatically UNSIGNED.

122 Chapter 4

3. Make any numeric type UNSIGNED if it
won’t ever store negative numbers.

user_id, which will be a number,
should be UNSIGNED so that it’s always
positive. As a rule, primary keys should
always be unsigned. Other examples of
UNSIGNED numbers would be the price
of items in an e-commerce example, a
telephone extension for a business, or
a zip code.

4. Establish the default value for any column.

None of the columns here logically
implies a default value.

5. Confirm the final column definitions
(Table 4.6).

Before creating the tables, you should
revisit the type and range of data you’ll
store to make sure that your database
effectively accounts for everything.

 Text columns can also have defined
character sets and collations. This will mean
more…in Chapter 6.

 Default values must always be a static
value, not the result of executing a func-
tion, with one exception: the default value
for a TIMESTAMP column can be assigned as
CURRENT_TIMESTAMP.

 TEXT columns cannot be assigned
default values.

TABLE 4.6 users Table

Column Name Type

user_id MEDIUMINT UNSIGNED
NOT NULL

first_name VARCHAR(20) NOT NULL

last_name VARCHAR(40) NOT NULL

email VARCHAR(60) NOT NULL

pass CHAR(128) NOT NULL

registration_date DATETIME NOT NULL

Introduction to MySQL 123

Accessing MySQL
To create tables, add records, and request
information from a database, you need
some sort of client to communicate with
the MySQL server. Later in the book, PHP
scripts will act in this role, but being able to
use another interface is necessary.

Although oodles of client applications are
available, I’ll focus on two: the mysql client
and the web-based phpMyAdmin. A third
option, the MySQL Workbench, is not dis-
cussed in this book but can be found at the
MySQL web site (https://dev.mysql.com/
downloads/workbench/), should you not
be satisfied with these two choices.

The rest of this chapter assumes you have
access to a running MySQL server. If you
are working on your own computer, see
Appendix A, “Installation,” for instructions
on installing MySQL, starting MySQL,
and creating MySQL users, all of which
must already be done in order to finish
this chapter. If you are using a hosted
server, your web host should provide you
with the database access. Depending on
the hosting, you may be provided with
phpMyAdmin but not be able to use the
command-line mysql client.

Using the mysql client
The mysql client is normally installed with
the rest of the MySQL software. Although
the mysql client does not have a pretty
graphical interface, it’s a reliable, standard
tool that’s easy to use and behaves consis-
tently on many different operating systems.

The mysql client is accessed from a
command-line interface, be it the Terminal
application in Linux or macOS A, or a DOS
prompt in Windows B. If you’re not com-
fortable with command-line interactions,
you might find this interface to be challeng-
ing, but it becomes easy to use in no time.

To start the application from the command
line, type its name and press Return or Enter:

mysql

Depending on the server (or your com-
puter), you may need to enter the full path
to start the application. For example:

■■ /Applications/MAMP/Library/bin/
➝ mysql (macOS, using MAMP)

■■ C:\xampp\mysql\bin\mysql (Windows,
using XAMPP)

continues on next page

A A Terminal window in macOS.

B A Windows DOS prompt or console (although the default is
for white text on a black background).

https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/

124 Chapter 4

When invoking this application, you can
add arguments to affect how it runs. The
most common arguments are the username,
password, and hostname (computer name,
URL, or IP address) you want to use to con-
nect. You establish these arguments like so:

mysql -u username -h hostname -p

The -p option will cause the client to
prompt you for the password. You can
also specify the password on this line if
you prefer—by typing it directly after the
-p prompt—but it will be visible, which is
insecure. The -h hostname argument is
optional, and you can leave it off unless
you cannot connect to the MySQL server
without it.

Within the mysql client, every statement
(SQL command) needs to be terminated by
a semicolon. These semicolons are an indi-
cation to the client that the query is com-
plete and should be run. The semicolons, a
common point of confusion, are not part of
the SQL itself. What this also means is that
you can continue the same SQL statement
over several lines within the mysql client,
which makes it easy to read and to edit,
should that be necessary.

As a quick demonstration of accessing and
using the mysql client, these next steps
will show you how to start the mysql client,
select a database to use, and quit the cli-
ent. Before following these steps,

■■ The MySQL server must be running.

■■ You must have a username and pass-
word with proper access.

Both are explained in Appendix A.

As a side note, in the following steps and
throughout the rest of the book, I will con-
tinue to provide images using the mysql cli-
ent on both Windows and macOS. Although
the appearance differs, the steps and
results will be identical. So in short, don’t be
concerned about why one image shows the
DOS prompt and the next a Terminal.

To use the mysql client:
1. Access your system from a command-

line interface.

On Unix systems and macOS, this is just
a matter of bringing up the Terminal or a
similar application.

If you are using Windows and you have
installed MySQL on your computer, or
press Windows Key+R, type cmd in the
window C, and press Enter (or click OK)
to bring up a DOS prompt.

C Executing cmd within the Run prompt in
Windows is one way to access a DOS prompt
interface.

Introduction to MySQL 125

2. Invoke the mysql client, using the
appropriate command D.

/path/to/mysql/bin/mysql -u
➝ username -p

The /path/to/mysql part of this step will
be largely dictated by the operating sys-
tem you are running and where MySQL
was installed. I’ve already provided two
options, based on installations of MAMP
on macOS or XAMPP on Windows (both
are installed in Appendix A).

The basic premise is that you are
running the mysql client, connecting
as username, and requesting to be
prompted for the password. Not to
overstate the point, but the username
and password values that you use must
already be established in MySQL as
valid (see Appendix A).

D Access the mysql client by entering the full path to the utility,
along with the proper arguments.

E If you are successfully able to log in, you’ll see a welcome message like this.

3. Enter the password at the prompt and
press Return/Enter.

The password you use here should
be for the user you specified in the
preceding step. If you used the proper
username/password combination (i.e.,
someone with valid access), you should
be greeted as shown in E. If access
is denied, you’re probably not using
the correct values (see Appendix A for
instructions on creating users).

4. Select the database you want to use F.

USE test;

The USE command selects the database
to be used for every subsequent com-
mand. The test database is one that
MySQL installs by default. Assuming it
exists on your server, all users should
be able to access it.

continues on next page

126 Chapter 4

5. Quit out of mysql G.

exit

You can also use the command quit to
leave the client. This step—unlike most
other commands you enter in the mysql
client—does not require a semicolon at
the end.

6. Quit the Terminal or DOS console session.

exit

The command exit will terminate the
current session. On Windows, it will also
close the DOS prompt window.

F After getting into the mysql client, run a USE command to choose the database
with which you want to work.

G Type either exit or quit to terminate your MySQL session and leave the
mysql client.

 If you know in advance which database
you will want to use, you can simplify matters
by starting mysql with

/path/to/mysql/bin/mysql -u username
-p databasename

 To see what else you can do with the
mysql client, type

/path/to/mysql/bin/mysql --help

 The mysql client on most systems allows
you to use the up and down arrows to scroll
through previously entered commands. If you
make a mistake in typing a query, you can
scroll up to find it, and then correct the error.

Introduction to MySQL 127

phpMyAdmin constitutes unnecessary
extra work (although all-in-one PHP and
MySQL installers may do this for you). If
you are using a hosted server, your web
host is virtually guaranteed to provide
phpMyAdmin as the primary way to work
with MySQL and the mysql client may not
be an option.

Using phpMyAdmin isn’t hard, but the next
steps run through the basics so that you’ll
know what to do in the following chapters.

To use phpMyAdmin:
1. Access phpMyAdmin through your web

browser H.

The URL you use will depend on your
situation. If running web sites on your
own computer, this might be http://
localhost/phpMyAdmin/. If running on
a hosted site, your web host will provide
you with the proper URL. Likely, phpMy-
Admin would be available through the
site’s control panel (should one exist).

continues on next page

 In the mysql client, you can also termi-
nate SQL commands using \G instead of the
semicolon. For queries that return results,
using \G displays those results as a vertical
list, as opposed to a horizontal table, which is
sometimes easier to peruse.

 If you are in a long statement and make
a mistake, cancel the current operation by typ-
ing \c and pressing Return or Enter. If mysql
thinks a closing single or double quotation
mark is missing (as indicated by the '> and ">
prompts), you’ll need to enter the appropriate
quotation mark first.

Using phpMyAdmin
phpMyAdmin (www.phpmyadmin.net) is
one of the best and most popular applica-
tions written in PHP. Its sole purpose is to
provide an interface to a MySQL server.
It is somewhat easier and more natural
to use than the mysql client but requires
a PHP installation and must be accessed
through a web browser. If you’re running
MySQL on your own computer, you might
find that using the mysql client makes more
sense, because installing and configuring

H The first phpMyAdmin
page (when connected as a
MySQL user who can access
multiple databases).

http://www.phpmyadmin.net

128 Chapter 4

Note that phpMyAdmin will only work if
it’s been properly configured to connect
to MySQL with a valid username/pass-
word/hostname combination.

2. If possible and necessary, use the list on
the left to select a database to use I.

What options you have here will vary
depending on what MySQL user php-
MyAdmin is connecting as. That user
might have access to one database,
several databases, or every database.
On a hosted site where you have just
one database, that database will prob-
ably already be selected for you. On
your own computer, with phpMyAdmin
connecting as the MySQL root user,
you would see a pull-down menu or a
simple list of available databases J.

3. Click on a table name in the left column
to select that table J.

You don’t always have to select a table—
in fact, you never will if you just use the
SQL commands in this book, but doing
so can often simplify some tasks.

I Use the list
of databases on
the left side of
the window to
choose with which
database you
want to work. This
is the equivalent
of running a USE
databasename
query within the
mysql client.

J Selecting a table from
the left column changes the
options on the right side of
the page.

Introduction to MySQL 129

4. Use the tabs and links (on the right side
of the page) to perform common tasks.

For the most part, the tabs and links are
shortcuts to common SQL commands.
For example, you can use options on
the Browse tab to perform a SELECT
query and options on the Insert tab to
add new records.

5. Use the SQL tab K to enter SQL
commands.

The next three chapters, and a couple
more later in the book, will provide SQL
commands that must be run to create,
populate, and manipulate tables. These
might look like
INSERT INTO tablename (col1, col2)
VALUES (x, y)

These commands can be run using
the mysql client, phpMyAdmin, or any
other interface. To run them within
phpMyAdmin, just enter them into the
SQL tab and click Go.

 There’s a lot more that can be done with
phpMyAdmin, but full coverage would require
a chapter in its own right (and a long chap-
ter at that). The information presented here
will be enough for you to follow any of the
examples in the book, should you not want to
use the mysql client.

 phpMyAdmin can be configured to use
a special database that will record your query
history, allow you to bookmark queries, and
more. See the phpMyAdmin documentation
for details.

 One of the best reasons to use php-
MyAdmin is to transfer a database from one
computer to another. Use options on the
Export tab in phpMyAdmin connected to the
source computer to create a file of data. Then,
on the destination computer, use the Import
tab in phpMyAdmin (connected to that MySQL
server) to complete the transfer.

K The SQL tab, in the main part of the window, can be used to run any SQL command.

130 Chapter 4

Review and Pursue
If you have any problems with the
review questions or the pursue prompts,
turn to the book’s supporting forum
(LarryUllman.com/forums/).

Review
■■ What version of MySQL are you using?

If you don’t know, find out now!

■■ What characters can be used in data-
base, table, and column names?

■■ Should you treat database, table, and
column names as case-sensitive or
case-insensitive?

■■ What are the three general column types?

■■ What are the differences between CHAR
and VARCHAR?

■■ How do you determine what size (in
terms of subtype or length) a column
should be?

■■ What are some of the other properties
that can be assigned to columns?

■■ What is a primary key?

■■ If you’re using the command-line mysql
client to connect to MySQL, what
username and password combination
is required?

Pursue
■■ Find the online MySQL manual for your

version of MySQL. Bookmark it!

■■ Start thinking about what databases
you may need for your projects.

■■ If you haven’t yet changed the MySQL
root user password (assuming you’ve
installed MySQL on your own computer),
use the instructions in Appendix A to
do so now.

http://LarryUllman.com/forums/

662 Index

Numbers
1NF (first normal form), 171–173
2NF (second normal form), 174–176
3NF (third normal form), 177–178
8-bit Unicode Transformation Format, 2

Comment and Operator Symbols
-- operator, 23
– operator, 23
! operator, 45
!= operator, 142
% operator, 23
&& operator, 45, 48, 142
* operator, 23
/* and */, using with comments, 10
?? operator, 49
@ operator, using to suppress errors, 252, 274
| operator, 142
|| operator, 45, 48, 142
+ + operator, 23
+ operator, 23
< operator, 45, 142
<!-- and --> tags, using with comments, 10
<= operator, 45, 142
<> operator, 142
= = operator, 45
= operator, 142
> operator, 45, 142
>= operator, 45, 142

Symbols
\ (backslash)

escape sequence, 29
matching, 466
escaping characters, 6

` (backtick) in SQL commands, 139
 (Boolean mode) operator, 229

– (Boolean mode operator), 229
+ (Boolean mode) operator, 229
< (Boolean mode operator), 229
> (Boolean mode operator), 229
((Boolean mode operator), 229
* (Boolean mode operator), 229
= (Boolean mode) operator, 229
[] (brackets), 104, 469–471
{} (braces)

arrays, 56, 58, 62
conditionals, 45
using with characters, 468
using with conditionals, 48

.= (concatenation operator), 22
$ (dollar sign)

escape sequence, 29
preceding variables, 14

" (double quotation mark), 29–31, 94
' ' (empty string), using, 49, 51, 104
= (equals sign), using with variables, 14, 142
\ \ (escape sequence), 29
% (percentage sign), using to match records,

145–146
(pound sign), using with comments, 10
' (single quotation mark), 29–31
. (period) operator, 21–22
; (semicolons), using with queries, 132–133
/ and // (slashes), 8, 10, 23
_ (underscore), using to match records, 145–146

A
ABS() function, 159
absolute vs. relative paths, 76
access problems, debugging, 265
account activation, 614–616
accounts table, 202

creating, 200
populating, 202

Index

Index 663

arithmetic operators
precedence, 25
types, 23
using, 144

array elements, assigning to variables, 109
array_map() function, 424
arrays. See also associative arrays

asort() function, 66
braces ({}), 56, 58, 62
combining, 64
count() function, 62
creating and accessing, 59–62
features, 14, 55–56
foreach loop, 59–60
is_array() function, 62
keys, 55, 58
ksort() function, 66
multidimensional, 62–65
natsort() function, 69
number of elements, 62
$_POST, 57–58
range() function, 62
rsort() function, 66
sorting, 66–69
storing in sessions, 406
and strings, 66
superglobal, 56
using, 57–58
usort() function, 69

AS term, 157
ASC and DESC sorting, 147–148
asort() and arsort() functions, 66
assignment operator, using with variables, 14, 25
associative arrays, 287. See also arrays
attr() function, using with jQuery, 504
AUTO_INCREMENT, 120–121
AUTOCOMMIT, altering, 238
AVG() function, 216–217, 219

B
background color variable, initializing, 328
backslash (\)

escape sequence, 29
matching, 466
using to escape characters, 6

backtick (`) in SQL commands, 139
banking database, 198
BETWEEN operator, 142

action attribute, using with form tag, 36, 90
activation page, creating, 614–617
activation process, 611
ADD COLUMN clause, 224
ADD INDEX clause, 224
ADDDATE() function, 163
addition operator, 23
ADDTIME() function, 163
administration, 633
Adobe Dreamweaver, 3
ads, creating, 96
advanced selections, performing, 222–223.

See also SELECT command
AES_ENCRYPT() function, 239
age element, using with HTML forms, 42, 44
aggregate functions, 216
Ajax. See also jQuery

creating form, 506–509
JavaScript, 511
overview, 505–506
server requests, 506
server-side script, 509–511

Ajax request
anonymous functions, 516
debugging, 517
event listener, 512
handling, 510
performing, 512–517

aliases, 157
ALTER privilege, 643
ALTER statement, 224
AMPPS installer, 636
ANALYZE command, 232
and and AND operators, 45, 142
anonymous functions

Ajax request, 516
jQuery, 489–490

Apache
AllowOverride directive, 658
changing PHP’s configuration, 661
configuring, 652–661
default directory page, 658
Directory directive, 659
.htaccess file, 657–659
updating hosts, 656–657
URL rewriting, 660
virtual hosts, 653–655

applications, finding, 3

664 Index

“big” databases, 235. See also databases
BIGINT[] data types, 117, 198
binary, converting to, 239
BINARY text type, 119
Bitnami installer, 636
blacklist validation, 425
blank pages, debugging, 8, 260
blank spaces, 44
body tag, placement, 4
Boolean FULLTEXT searches, performing, 229–231
Boolean variables, 14
Bootstrap framework, 90
bound variable types, 443. See also variables
boundaries, using, 471
braces ({})

arrays, 56, 68, 62
conditionals, 45
using with characters, 468
using with conditionals, 48

brackets ([]), 104, 469–471
break element, 48
browser

sending data to, 6–9
sending HTML code, 8, 11–12

brute-force attacks, preventing, 449
buffer size, limit, 593

C
calculator.html file

DOM manipulation, 500–504
jQuery, 496–497

calculator.js page, saving, 498
calculator.php script

creating, 86–90
default argument values, 101–104
Filter extension, 439–441
radio buttons, 98–100
rewriting, 91–94
validating data by type, 430
values from functions, 105–109

calendar form, 60, 72
calendar.php, creating, 60–62
call to undefined function error, 260
cannot redeclare function error, 260
capitalizing characters, 22
CAPTCHA test, 424
carriage return, 29
CASCADE action, 198

CASE() function, 221
case insensitivity, 6
CEILING() function, 159
CHANGE COLUMN clause, 224
CHAR[Length] data type, 117–118
character classes, using, 469–471
character sets

assigning, 188–190
changing, 224
listing, 186

characters. See also meta-characters
capitalizing, 22
escaping, 6
escaping in patterns, 466
mismatching encodings, 550
representing, 2

chmod command, adjusting folder permissions, 349
cinema database, 174
class meta-characters, 464
classes, using brackets ([]) with, 469–471
client-server request model, 505
closing database connections, 281
COALESCE() function, 220
code blocks, indenting, 48
collations

assigning, 188–190
changing, 224
using with character sets, 186–187

column lengths, fine tuning, 158
column names, determining, 115
column properties, choosing, 120–122
column types, choosing, 116–119
columns

applying functions, 155
changing definition, 452
including in indexes, 181
listing in SELECT statements, 141
listing in tables, 134
populating, 137

comments
using with HTML forms, 42
writing, 10–13

COMMIT, using with transactions, 236, 238
comparative operators, 45
comparison functions, 220. See also functions
CONCAT() function, 156–158, 219
CONCAT_WS() function, 158
concatenating strings, 21–22

http://calculator.html

Index 665

conditionals
and operators, 45–48
in SQL, 142–144

configuration file, making, 594–598
configuration script

connecting to database, 599–601
database script, 598
using, 594

configuring
Apache, 652–661
PHP, 649–651

connecting to MySQL, 270–274
connection script, securing, 288
constants

vs. triggers, 203
using, 26–28
vs. variables, 26

contact form, 339
CONVERT() function, 190
CONVERT_TZ() function, 192, 567
cookies

accessing, 394–396
data limitation, 394
deleting, 399–400, 403
in directories, 398
generating, 396
logout link, 400–403
requiring, 415
sending, 392–394
vs. sessions, 404
setting, 390–391
setting parameters, 396–398
testing for, 391

COUNT() function
grouping selected results, 216–217, 219
paginating query results, 324, 330
creating forum page, 569

count() function, using with arrays, 62
counting returned records, 293–295
CREATE privilege, 643
CREATE SQL command, 132–133
create_ad() function, defining, 96–97
create_window() function, 358
CROSS JOIN, 209
CSS (Cascading Style Sheets), 37
CSS files, declaring encoding, 5
CSS selectors, using with jQuery, 492
CURDATE() function, 161–162

CURTIME() function, 161–162
customers table, populating, 202

D
Darwin operating system, 28
data

deleting, 153–154
encrypting, 137
encrypting and decrypting, 240–241
grouping, 218–219
inserting into tables, 136–139
limiting amount returned, 149–150
selecting, 140–141
selecting conditionally, 220
sending to browser, 6–9
sorting, 147–148
updating, 151–152
validating by type, 425–430

data types, 116–117, 119
data validation. See validating
database connection

changing, 526
closing, 281

database design. See also normalization
conventions, 171
ERD (entity-relationship diagram), 171
explained, 168
foreign key constraints, 197–203
indexes, 181–183
languages, 186–190
reviewing, 179–180
table types, 184–185
time zones, 191–196

database structure, confirming, 190
databases. See also “big” databases; MySQL;

SQL (Structured Query Language)
AUTO_INCREMENT, 120
connecting to, 270–274
creating in SQL, 132–134
DATE and TIME fields, 116
deciding on contents, 168
default values, 122
deleting, 154
encrypting, 239–241
ENUM data type, 116
forms, 171
identifiers, 114
indexes and keys, 120

666 Index

databases (continuted)
Length attribute, 116
length limits, 115
message board, 548–556
naming elements, 114–115
optimizing, 232
PRIMARY KEY, 120
relationships, 170–171
revealing information about, 190
schema, 168, 171, 601
selecting, 270–274
SET data type, 116
table names, 114–115
TEXT columns, 122

DATE and TIME fields, 116
date and time functions, 161–165, 370–373
date constant, creating, 27
DATE data type, 117
DATE() function, 161
DATEDIFF() function, 163
DateTime class, 538–545. See also time and

date functions
DATETIME data type, 117
DateTime::COOKIE, 545
DateTime::getTimestamp() method, 545
DAYNAME() function, 161–162
DAYOFMONTH() function, 161
debugging. See also errors

access problems, 265
Ajax request, 517
beginning, 246–248
best practices, 248
blank pages, 8
HTML errors, 8, 249
JavaScript, 485
overview, 244–245
PHP objects, 526
PHP scripts, 5, 8, 261–263, 369
SQL queries, 264–265
steps, 32–33, 246
techniques, 260–264

DECIMAL[Length, Decimals] data type, 117, 119
decimals, 14, 25
decrement operator, 23
decrypting data, 240–241
default element, 48
define() function, constants, 26
DELETE privilege, 643

delete.user.php script, 310–312.
See also users table

deleting
cookies, 399–400, 403
data, 153–154
databases, 154
records, 203
session variables, 409–411

DESC and ASC sorting, 147–148
DESCRIBE tablename, 134
die() function, 263
directories, referring to, 355
display_errors, 33, 250–251, 261–263
division

operator, 23
returning integer quotient, 25

documents, organizing, 273
dollar sign ($)

escape sequence, 29
preceding variables, 14

DOM manipulation, 498–504. See also jQuery
DOS prompt, accessing and exiting, 124–126
double quotation mark ("), 29–31, 94
DOUBLE[Length, Decimals] data type, 117, 119
do.while loops, 72
DROP COLUMN clause, 224
DROP INDEX clause, 224
DROP privilege, 643
dynamic scripts, 17
dynamic web sites

HTML forms, 85–90
multiple files, 76–84
sticky forms, 91–94

E
E_* constants, 252
echo function, 6–7. See also print function

arrays, 68
calculator.php script, 87
constants, 27
debugging scripts, 261–263
handle_form.php, 43, 46
language construct, 8
mathematical calculations, 25
over multiple lines, 9
quotation marks, 29, 31
strings, 18, 20
Trip Cost Calculator, 88

Index 667

validation results, 53
variables, 16

echo statement, sortable links, 335
editing records, 316–322
edit.user.php script, 316–319
else clause, 89
else conditional, 45–48
elseif conditional, 45–48
email, sending, 338–343
email addresses, validating, 470–471
email conditional, 320
email element, using with HTML forms, 42
email input, adding to HTML forms, 39
email.php script, 339–343, 420
embedding PHP code, 5
empty() function, 49, 51, 104
empty variable value error, 260
encoding. See also mismatching encodings

declaring, 5
displaying, 186
indicating to browser, 2

encrypting data, 137, 239–241, 350
enctype, using with form tag, 350, 355
Enter and Return, 10
ENUM data type, 116–117, 121, 148
equals (=) operator, 14, 142
ERD (entity-relationship diagram), 171, 180
error handlers, customizing, 255–259
error management, die() and exit(), 263
error reporting, adjusting, 252–254
error types, overview, 244–245
error_log() function, 259
errors. See also debugging; warnings

causes, 264
displaying, 33
echo, 6
INSERT, 139
NULL, 139
revealing in PHP, 250
suppressing with @, 252, 274

$errors conditional, 321
escape meta-character, 464
escape sequences, 29
escaping characters, 6
event handling, jQuery, 495–498
event listener, creating for Ajax request, 512
exclusive or operator, 45, 48
executing queries, 276–283, 526–531

exit command, 126
exit() function, 263
EXPLAIN EXTENDED command, 235
EXPLAIN keyword, 232–235
extension support, enabling, 649
extensions, 3, 269
external files. See files; multiple files PHP files

F
FALSE keyword, 144
fetch_object() method, 534
FILE privilege, 643
file uploads

allowing for, 344–345
configurations, 344
directory access, 348
with PHP, 350–355
preparing server, 346–349
secure folder permissions, 345
set_time_limit() function, 349
validating, 355

Fileinfo extension, 432–434
files, validating by type, 431–434. See also

multiple files; PHP files
$_FILES array, 350
Filter extension

vs. regular expressions, 477
using, 438–441

firewalls and installation, 636
first normal form (1NF), 171–173
first.php script

creating, 3–5
sending data to browser, 7

FLOAT[Length, Decimals] data type, 117, 119
floating-point type, 14, 25
FLOOR() function, 159
folder permissions, securing, 345
footer.html file

saving, 564
user registration, 590–593

for loops, 70–72
foreach loop, using with arrays, 59–60, 63–65
foreign key constraints

action options, 197
CASCADE action, 198
creating, 199–203
requirement, 203

http://footer.html

668 Index

foreign keys
adding, 176
message board, 556

forgot_pasword.php, writing, 624–629
form data, validating, 49–54
form tag, using, 36, 38
FORMAT() function, 159–160
form.html script, 37–38
forms. See hidden forms; HTML forms;

sticky forms
forum administration, 585
forum data, 168–169
forum database

Atomic, 172
ERD (entity-relationship diagram), 180
indexes, 183
message board, 548

forum page, making for message board, 566–570
forum.php file, saving, 570
forums table

character sets and collations, 189–190
UTC (Coordinated Universal Time), 193

FULLTEXT index, 181, 185, 224–226
FULLTEXT searches, performing, 226–228
function calls, chaining, 504
function parameters, declaring, 111. See also

parameters
function.js script, 358–360
functions. See also comparison functions

applying to columns, 155
arguments without values, 104
array() function, 109
creating, 95–97
default argument values, 101–104
grouping, 216–217
looking up, 22
multiple values, 109
$name argument, 103
naming, 95
return statement, 109
returning values, 105–109
in SQL, 155–165
syntax, 95
taking arguments, 97–100
text, 156–158
user-defined, 111

funds transfer form, 374

G
garbage collection, 411
gender element

using with HTML forms, 42, 44, 47
validating, 52

get and post, using with HTML forms, 36
GET method

sending values to scripts, 306
using with HTML forms, 36

GET request, 85
getdate() function, 370–371
getimagesize() array, 360
$GLOBALS array, 110
GMT (Greenwich Mean Time), 191
GRANT privilege, 643
greater than operator, 45, 142
greater than or equal to operator, 45, 142
GREATEST() function, 220
greet() function, 111
GROUP BY clause

aggregate functions, 217
message board, 566

GROUP_CONCAT() function, 216–217, 219
grouping

data, 218–219
functions, 216–217

H
handle_errors.php, saving, 259
handle_form.php

conditionals, 46–47
creating, 42
testing, 43
validating forms, 50, 54

HAVING clause, 219
header file, making for template, 268–269
header() function, 365–369
header.html file

creating, 80–81
login and logout links, 400–401
$_SESSION, 408
templates for message board, 557–564
user registration, 588–593

headers already sent error, 260
hex. See UNHEX() function
hidden forms, inputs, 310–315. See also sticky

forms; HTML forms

http://form.html
http://header.html

Index 669

home page
message board, 565
user registration, 602–603

HOUR() function, 161
.htaccess file, 345, 652, 657–659
HTML attributes, double-quoting, 94
HTML code, sending to browser, 8, 11–12
HTML document, creating, 4
HTML errors, debugging, 8, 249
.html extension, 3, 40
HTML forms, 54. See also hidden forms;

sticky forms
action attribute, 90
creating, 36–40
elements to variables, 42
fields, 54
GET and POST methods, 36
GET request, 85
handling, 41–44, 85–90
input types, 44
inputs, 39, 41
jQuery, 492–494
multidimensional arrays, 65
POST method, 85
pull-down menus, 39, 61–62
radio buttons, 39
select menu options, 94
submitting back, 90
text and email inputs, 39
text box, 40
textarea element, 40
Trip Cost Calculator, 86
validating, 50

HTML resources, 5
HTML table, using with arrays, 67
HTML templates, 78–79
HTML5 page, 2
HTML5 validation rules, 426
HTML-embedded scripted language, 2
htmlentities() function, 435–436
htmlspecialchars() function, 435–437, 583
HTTP (Hypertext Transfer Protocol), 381
http://, using with PHP code, 5, 7
HTTP headers, 364–369
httpd.conf file, 652

I
IDE (integrated development environment), 2–3
identifiers in databases, 114–115
if conditional, 45–48, 52
IF() function, 220–221, 223
if-else conditional, 52
if-elseif-else conditional, 47
IFNULL() function, 223
images.php script

date and time functions, 371–373
HTTP headers, 364
JavaScript and PHP, 361–362

IN operator, 142
include() functions, 76–77, 84
increment operator, 23
indenting code blocks, 48
index page for message board, 565
INDEX privilege, 643
INDEX type, 181
indexes

creating, 181–183
and keys, 120

index.php file
creating, 82–83
creating functions, 96–97
home page for user registration, 602–603

ini_set() function, 250–251
inner joins, 207–209, 211
InnoDB storage engine, 184
INSERT command

errors, 139
records, 135–139

INSERT privilege, 643
INSERT query, running, 276–279
installation

firewalls, 636
macOS, 639–640
testing, 646–648
Windows, 636–638

INT[Length] data type, 117
intdiv() function, 25
integers, 14, 25
INTO term, 139
is equal to operator, 45
IS FALSE operator, 142
is not equal to operator, 45

670 Index

IS NOT NULL operator, 142
IS NULL operator, 142
IS TRUE operator, 142
is_* type validation functions, 425
is_array() function, 62
is_numeric() function, 54
is_uploaded_file() function, 355
isset() function, 45, 48–49

J
JavaScript. See also jQuery

chaining function calls, 504
creating for Ajax, 511
debugging, 485
and PHP, 356–363

JavaScript files, creating for PHP, 357–360
JOIN, using with message board, 566
joining tables, 213–215
joins

across databases, 213
and conditionals, 213
inner joins, 207–209
outer joins, 210–212
performing, 206–207
self-joins, 212–213
types, 209, 234

jQuery. See also Ajax; DOM manipulation;
JavaScript

anonymous functions, 489–490
append() function, 504
attr() function, 504
CSS selectors, 492
DOM manipulation, 499–504
event handling, 495–498
hosted version, 487
HTML page and browser load, 489
incorporating, 486–488
overview, 484–485
page elements, 492–494
prepend() function, 504
“ready” status, 491
remove() function, 504
using, 489–491

jQuery() function, calling, 491
JSON (JavaScript Object Notation), 517

K
KEY vs. INDEX, 183
keys

explained, 169
and indexes, 120

ksort() and krsort() functions, 66, 68

L
language encoding, 2
languages, 186, 584
languages table, including in message board,

548, 551
LEAST() function, 220
LEFT() function, 156
left joins, 211–212
Length attribute, 116
LENGTH() function, 156, 158
less than operator, 45, 142
less than or equal to operator, 45, 142
LIKE and NOT LIKE, 145–146
LIKE keyword, 224
LIMIT clause, 149–150, 323
limiting query results, in SQL, 149–150
links, making sortable, 331–335. See also URLs
list() function, 109
loggedin.php script, 394–395

securing sessions, 413–414
session variables, 407–409

logging PHP errors, 259
logical errors, 244
logical operators, 45
login functions, making, 385–389
login page, making, 382–384
login process, updating to secure passwords,

455–457
login_ajax.php script, creating, 510
login_function.inc.php script, 455–457
login.js file, creating, 512
Login/Logout links, using, 409
login.php script, 392

Ajax form, 506–509
encrypting data, 413
sessions, 405
setcookie() function, 397–398
user registration, 617–622

logout link, creating, 400–403
logout.php script, user registration, 622–623
LONGBLOB text type, 119

Index 671

LONGTEXT data type, 117
loops, for and while, 70–72
LOWER() function, 156
lowercase strings, 22

M
macOS

Darwin, 28
XAMPP installer, 639–640

mail() function, 650
dependencies in PHP, 338
using, 339–343

malicious code, protecting against, 435
many-to-many relationships, 170
MariaDB, 636
matches, finding, 472–475
matches.php file, saving, 474
matching

backslash (\), 466
patterns, 461–463
records, 145–146
and replacing patterns, 478–481
strings, 466

math operators, 23
mathematical calculations, 144
MAX() function, 216–217, 569
MAX_FILE_SIZE restriction, 355
MEDIUMBLOB text type, 119
MEDIUMINT[Length] data type, 117
MEDIUMTEXT data type, 117
MEMORY table type, 185
message board

complications, 584
database, 548–556
foreign keys, 556
forum administration, 585
forum page, 566–570
index page, 565
language dropdown menu, 563
languages, 554
languages table, 548, 551
mismatching encodings, 550
posting messages, 576–585
posts table, 549, 552
relationships, 549
removing tags, 583
tables, 548–549
templates, 557–564

thread page, 571–575
threads table, 548–549, 552, 583
translations, 555
users table, 553, 555
words table, 549, 553–554, 556

message hierarchy, reflecting, 179
messages table

creating, 189
UTC (Coordinated Universal Time), 194

meta tag, indicating encoding, 2
meta-characters, using in patterns, 464.

See also characters
method attribute, using with form tag, 36
MIME type, 433
MIN() function, 216–217, 569
MINUTE() function, 161
mismatching encodings, 550. See also encoding
MOD() function, 159–160
modifiers, using, 476–477
modulus operator, 23
MONTH() function, 161
MONTHNAME() function, 161
move_uploaded_file() function, 355
movies table, 172
movies-actors table, 173
multidimensional arrays, 62–65
multiple files. See also files; PHP files

absolute vs. relative paths, 76
functions, 76–77
includes directory, 78
including, 78–84
site structure, 78
templates directory, 78

multiplication operator, 23
multivalued variables, 14
MylSAM table type, 184
MySQL. See also databases; SQL (Structured

Query Language)
accessing, 123–129
column properties, 120–122
column types, 116–119
connecting to, 270–272
data types, 117
database elements, 114–115
default values, 123
operators, 142
testing, 648
text types for binary data, 119
web site, 113

672 Index

MySQL and OOP
creating connections, 523–526
executing queries, 526–531
fetching results, 531–533
outbound parameters, 538
prepared statements, 534

mysql client, 123–127
MySQL Extension, 283
MySQL users, managing, 641–645
MySQL version, confirming, 247
MySQLi constructor, arguments, 526
MySQLi object, creating, 525
mysqli_affected_rows() conditional,

303, 313, 320
mysqli_close() function, 291
mysqli_connect() function, 270–274
mysqli_fetch_array() constants, 284, 287
mysqli_num_rows() function, 296
mysqli_query() function, 280, 283, 287
mysqli_real_escape_string() vs. prepared

statements, 442–443
mysqli_real_escape_string(), using,

288–292, 318
MySQLi::character_set_name() method, 526
MySQLi::prepare() method, 534

N
\n (newline character), 10
\n escape sequence, 29
name element, using with HTML forms, 42
natsort() function, 69
nesting conditionals, 48
newline character (\n), 10, 29
nonscalar variables, 14
normalization. See also database design

1NF (first normal form), 171–173
2NF (second normal form), 174–176
3NF (third normal form), 177–178
flexibility, 178
keys, 169
overruling, 178
overview, 167–168
primary keys, 169
relationships, 170–171

NOT BETWEEN operator, 142
not equal to operator, 142
NOT IN operator, 142
NOT LIKE and LIKE, 145–146

NOT NULL columns, 120
NOT NULL values, in tables, 135
not operator, 45
NOT operator, 142
NOT REGEXP() function, 158
Notepad, warning against, 3
NOW() function, 137, 139, 141, 161
NULL coalescing operator, 49
NULL columns, 120–121
NULL values

grouping results, 219
inner joins, 209
and quotation marks, 136
in tables, 135

NULL variables, 14, 45
number types, UNSIGNED, 121
number_format() function, 23, 88
numbers

is_numeric() function, 54
testing for, 54
using, 23–25

numeric functions, 159–160

O
ob_clean() function, 593
ob_end_flush() function, 593
ob_flush() function, 593
ob_get_contents() function, 593
objects, 14
one-to-many relationships, 170, 176
one-to-one relationships, 170, 176
OOP (object-oriented programming)

classes, 522
DateTime class, 522, 538–545
fundamentals, 520–521
MySQLi class, 522
vs. procedural, 520
syntax in PHP, 521–522

OOP and MySQL
creating connections, 523–526
executing queries, 526–531
fetching results, 531–533
outbound parameters, 538
prepared statements, 534

operators
and conditionals, 45–48, 142
ternary, 324

Index 673

OPTIMIZE command, 232
OR operator, 142, 144
or operator, 45
ORDER BY clause, 147–148
organizing documents, 273
outbound parameters, 538. See also parameters
outer joins, 210–212
output buffering, 589

P
paginating query results, 323–330
parameters, indicating, 104. See also function

parameters; outbound parameters
parse errors, debugging, 8, 244, 260
password_verify() function, 451, 457
password.php script, 297–302
passwords

changing, 296, 629–633
resetting, 624–629
root user, 641–642
securing with PHP, 449–457
storing hash versions, 450
validating, 299

passwords, validating, 279
patterns

back referencing, 478, 481
defining, 464–466
escaping characters, 466
greediness, 473–474
matching, 461–463
matching and replacing, 478–481
matching start and end, 477
meta-characters, 464

pcre.php file
character classes, 470–471
creating, 465
quantifiers, 467–468
reporting matches, 472–475
saving, 463

percentage sign (%), using to match records,
145–146

period (.) operator, 21–22
permissions forum, 349
PHP

changing configuration for Apache, 661
configuring, 649–651
confirming server settings, 346
and JavaScript, 356–363

mail() dependencies, 338
securing passwords, 449–457
testing, 646–648
updating records, 296–303
uploading files, 350–355

PHP code
adding, 2
embedding, 5
in HTML tags, 91
running through http://, 5
test script, 3

PHP errors
displaying, 250–251
examples, 260
logging, 259

.php extension, 3
PHP files, extensions, 3. See also files;

multiple files
PHP manual, accessing, 22
PHP objects, debugging, 526
PHP scripts

accessing via URLs, 4–5
altering output, 20
commenting, 11–13
debugging, 5, 33, 261–263, 369
for JavaScript, 360–363
making, 3–5
revealing errors, 250
sending values to, 306–309

PHP tags, inserting, 4
PHP validation, 517
PHP version, confirming, 247
phpinfo() function

display_errors, 33
file uploads, 346
invoking, 650
version confirmation, 247

php.ini configuration file
altering configuration, 650–651
file uploads, 344
include_path setting, 84

phpMyAdmin client
accessing tables, 134
creating users, 645
executing queries, 132–133
inserting records, 139
listing tables, 134
root user password, 642

674 Index

phpMyAdmin (continued)
SELECT queries, 141
using, 123–129

pipe (|), using with regular expressions, 465
pop-up window

creating, 360
resizing, 359

$_POST array, 57–58
POST method, using with HTML forms, 36, 85
post_form.php script, creating, 576–580
post_message.php

prepared statements, 535–537
saving, 448

posting messages, 576–585
post.php script, creating, 580–585
pound sign (#), using with comments, 10
POW() function, 159
predefined variables, 14–17
preg_match() function, 460, 472
preg_replace() function, 478, 480–481
preg_split() function, 475
prepared statements

OOP and MySQL, 534–537
using, 442–448

PRIMARY KEY, 120–121, 181–182
primary keys

assigning, 169
2NF (second normal form), 175
foreign-key link, 180

print function. See also echo function
debugging scripts, 261–263
language construct, 8
over multiple lines, 9
using, 6–7

privileges in MySQL, 643–644
procedural vs. OOP, 520
PROCESS privilege, 643
proxy scripts, 364, 369
pull-down menus, using on HTML forms,

39, 61–62, 91

Q
quantifiers

meta-characters, 464
using, 467–468

queries. See also simple queries
executing, 132–133, 275–283, 526–531
explaining, 233–235

optimizing, 232–235
quotation marks, 136
running, 141

query results
fetching, 531–534
limiting, 149–150
paginating, 323–330
retrieving, 284–287
sorting, 147–148

quit command, 126
quotation marks

vs. ` (backtick), 139
printing, 6
in queries, 136
single vs. double, 29–31
variables, 18

R
\r escape sequence, 29
radio buttons, using on HTML forms, 39, 92,

98–100
RAND() function, 159–160, 240
range() function, using with arrays, 62
ranges, MySQL operators, 142
read.php page, 571–575, 582
records. See also returned records

adding to databases, 276–279
deleting, 153–154, 203
editing, 316–322
inserting in phpMyAdmin, 139
inserting in SQL, 135–139
matching, 145–146
updating with PHP, 296–303

REGEXP() function, 158
register.php script

executing queries, 526–531
modifying, 295
mysqli_real_escape_string(), 289–291
securing passwords, 452–454
user registration, 604–613

registration script, creating, 275–283, 604–613
regular expressions

character classes, 469–471
data validation, 430
defining patterns, 464–466
vs. Filter extension, 477
finding matches, 472–475

Index 675

greediness, 473–474
lazy matches, 473
matching and replacing patterns, 478–481
matching patterns, 461–463
modifiers, 476–477
pipe (|), 465
preg_match() function, 460
quantifiers, 467–468
searches, 158
test script, 460–463

relationships, 170–171
relative vs. absolute paths, 76
RELOAD privilege, 643
RENAME TO clause, 224
REPLACE command, 139
REPLACE() function, 156
report_errors script, saving, 254
$_REQUEST variable, 42, 44
require() functions, 76–77, 84
resetting passwords, 624–629
resource variable type, 14
return, creating, 9–10
return statement, using with functions, 109
returned records, counting, 293–295. See also

records
REVOKE privilege, 643
RIGHT() function, 156
right joins, 210–211
ROLLBACK, using with transactions, 236
root user password, setting, 641–642
ROUND() function, 159
round() function, 23
rsort() function, 66
RTF MIME type, 433
run-time errors, 244

S
sanitization filters, 438
savepoints, creating in transactions, 238
scalar values, using with constants, 26
scalar variables, 14
schema, 168, 171, 601
scripts. See PHP scripts
searches, FULLTEXT, 224–231
SECOND() function, 161
second normal form (2NF), 174–176
second.php script, saving, 7

security. See also SQL security
approach, 419
recommendations, 450
of sortable links, 335

SELECT command, 140. See also
advanced selections

and joins, 206–207
listing columns, 141

SELECT privilege, 643
select_db() method, 526
selecting data, 140–141, 158
self-joins, 212–213
semicolons (;), using with queries, 132–133
sending email, 338–343
server settings, confirming, 346
server-side PHP validation, 517
$_SESSION, 408, 411
session behavior, changing, 412
session fixation, preventing, 415
session hijacking, 412–413
session security, improving, 412–415
session variables

accessing, 407–409
deleting, 409–411
setting, 404

session_start(), calling, 593
sessions

beginning, 405–406
vs. cookies, 404
garbage collection, 411
storing arrays in, 406

SET data type, 116–117
setcookie() function, 394, 396, 398
sha1() function, 413–414
SHA2() function, 137, 139, 144, 239
SHOW CHARACTER SET command, 186
SHOW COLLATION LIKE command, 187
SHOW command, 189–190
SHOW ENGINES command, 185
SHOW WARNINGS command, 139
show_image.php, 361, 367–368
SHUTDOWN privilege, 643
simple queries, 284. See also queries
single quotation mark ('), 29–31
site administration, 633
site structure, 78
sitename database, 132–134
slashes (/ and //), including with tags, 8, 10, 23

676 Index

SMALLINT[Length] data type, 117
sortable displays, making, 331–335
sorting

arrays, 66–69
query results, 147–148

source, readability, 9
spacing, altering, 9–10
spam, preventing, 418–424
spam_scrubber() function, 421–424
SPATIAL index, 183
SQL (Structured Query Language). See also

databases; MySQL
conditionals, 142–144
databases, 132–134
deleting data, 153–154
functions, 155–165
LIKE and NOT LIKE, 145–146
limiting query results, 149–150
records, 135–139
selecting data, 140–141
sorting query results, 147–148
tables, 132–134
updating data, 151–152

SQL commands
` (backtick), 139
downloading, 139
entering, 129

SQL errors, causes, 264
SQL injection attacks, preventing, 442–448
SQL queries, debugging, 264–265
SQL security, ensuring, 288–292. See also

security
SQRT() function, 159
sticky forms, making, 91–94, 321–322. See also

hidden forms; HTML forms
sticky-footer-navbar.css file, 79
storage engine, specifying, 184
string meta-characters, 464
strings

and arrays, 66
concatenating, 21–22
converting case, 22
functions, 22
matching, 466
meta-characters, 466
using, 18–21
variable type, 14

strip_tags() function, 435–437, 583
strstr() function, 466

strtolower() function, 22
strtoupper() function, 22
SUBDATE() function, 163
Sublime Text, 3
submission conditional, 321
submit element, using with HTML forms, 42
subpattern meta-characters, 464
SUBSTRING() function, 156
SUBTIME() function, 163
subtraction operator, 23
SUM() function, 216–217, 219
superglobal arrays, 56–58, 110
switch conditional, 48
syntactical errors, 244–245
syntax

basics, 2
comments, 11
for making functions, 95

T
\t escape sequence, 29
tab escape sequence, 29
table names, determining, 114–115
table types, using, 184–185
tables

analyzing horizontally, 173
analyzing vertically, 176
confirming, 134
creating in SQL, 132–134
emptying, 154
inserting data, 136–139
as intermediaries, 176
joining, 213–215
listing columns, 134
relationships, 170
revealing information about, 190
selecting data, 140–141
and text columns, 134
types, 134

tags
including slashes, 8
removing, 583

templates
directory, 78
message board, 557–564
modifying, 268–269
storing in external files, 82
user registration, 588–593

Index 677

Terminal, accessing and exiting, 124–126
ternary operator, 324
test() function, 111
test.html file

HTML form for jQuery, 492–494
jQuery, 488–491

test.js document
creating, 490
event handling, 496–498

text, converting character sets, 190
text box, adding to HTML form, 40
text columns, using with tables, 134
TEXT data type, 117, 122
text functions, 156–158
text input, adding to HTML forms, 39
textarea element, 40
third normal form (3NF), 177–178
thread page, creating for message board,

571–575
Thumbs.db file, 363
time and date functions, 161–165, 370–373.

See also DateTime class
TIME data type, 117
time zones, 191–196
TIMESTAMP data type, 117, 119, 121
TINYTEXT data type, 117
TINYBLOB text type, 119
TINYINT[Length] data type, 117, 119
transactions

performing, 236–238
uploads in PHP, 374–379

transactions table, creating, 201
transfer.php, 374–379
translations, noting in message board, 555
triggers vs. constraints, 203
TRIM() function, 156
Trip Cost Calculator, 86, 89–90, 94, 100, 104
TRUE keyword, 144
TRUE or FALSE variables, 14
TRUNCATE command, 154, 303
type validation functions, 425
typecasting variables, 427–430, 438

U
ucfirst() function, 22
ucwords() function, 22
undefined variables, 44, 260
underscore (_), using to match records, 145–146

UNHEX() function, 239–240
Unicode data, using in queries, 550
Unicode version 9.0.0, 2
UNION statement

explaining queries, 233
using with joins, 211

UNIQUE index, 139, 181
UNIX_TIMESTAMP() function, 161
UNSIGNED number types, 121–122
UPDATE privilege, 643
updating

data, 151–152
records with PHP, 296–303

upload_rtf.php script, creating, 431
uploading files. See file uploads
UPPER() function, 155–156
uppercase strings, 22
URL rewriting, enabling in Apache, 660
URLs. See also links

appending variables, 309
using to access PHP scripts, 4–5, 7

user ID value, validating, 317
user registration

account activation, 614–616
activation process, 611
configuration scripts, 594–601
database schema, 601
home page, 602–603
logging in and out, 617–623
output buffering, 589
password management, 624–633
registration, 604–613
site administration, 633
templates, 588–593

user-defined functions, 111
users. See MySQL users
users and privileges, creating, 643–645
users table, 114–115, 119, 122. See also

delete.user.php script
character sets and collations, 189–190
creating, 133
inserting values, 138
UTC (Coordinated Universal Time), 193

usort() function, 69
UTC (Coordinated Universal Time), 191–196
UTC_TIMESTAMP() function, 161
UTF-8 encoding, 2, 187, 199

http://test.html

678 Index

V
validating

data by type, 425–430
email addresses, 470–471
files by type, 431–434
form data, 49–54, 88
passwords, 279
server-side PHP, 517

validation, approaches, 425
values

MySQL operators, 142
sending to scripts, 306–309

VARBINARY text type, 119
VARCHAR[Length] data type, 117–118
variable scope, 110
variables. See also bound variable types

altering output, 20
appending to URLs, 309
checking, 49
vs. constants, 26
HTML forms, 42
and numbers, 24
and strings, 19
typecasting, 427–428
undefined, 44
using, 14–17

versions, confirming, 247
vi editor, 3
view_users.php script

counting returned records, 293–295
object-oriented version, 534
paginating, 323–330
retrieving query results, 285–286
sending values to scripts, 306–307
sortable links, 331–335

virtual hosts, using with Apache, 653–655

W
W3C validation tools, using, 249
WAMP installer, 636
warnings, showing, 139. See also errors
web server, confirming, 247–248
WHEN clauses, advanced selections, 221
WHERE conditional, using with UPDATE, 151–152
while loops, 70–72, 284, 287
white space, 10
whitelist validation, 425
Widget Cost Calculator, 425
Windows, XAMPP installer, 637–638
WITH QUERY EXPANSION modifier, 231

X
XAMPP installer

accessing, 636
Windows, 636–637

XML-style tags, 4
XOR operator, 142
xor operator, 45, 48
XSS attacks, preventing, 435–437

Y
YEAR() function, 161

Z
ZEROFILL number type, 121
zones. See time zones
Zulu time. See UTC (Coordinated Universal Time)

	Cover
	Title Page
	Copyright Page
	Table of Contents
	Introduction
	Chapter 4 Introduction to MySQL
	Naming Database Elements
	Choosing Your Column Types
	Choosing Other Column Properties
	Accessing MySQL
	Review and Pursue

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

