
4

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Tip Calculator App
Building an Android App with Java

O b j e c t i v e s
In this chapter you’ll:

■ Design a GUI using a TableLayout.

■ Use the ADT Plugin’s Outline window in Eclipse to add
GUI components to a TableLayout.

■ Directly edit the XML of a GUI layout to customize
properties that are not available through the Visual Layout
Editor and Properties window in Eclipse.

■ Use TextView, EditText and SeekBar GUI
components.

■ Use Java object-oriented programming capabilities,
including classes, anonymous inner classes, objects,
interfaces and inheritance to create an Android app.

■ Programmatically interact with GUI components to change
the text that they display.

■ Use event handling to respond to user interactions with an
EditText and a SeekBar.

Androidfp_04.fm Page 111 Friday, May 13, 2011 10:13 AM

112 Chapter 4 Tip Calculator App
O

u
tl

in
e

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

4.1 Introduction
The Tip Calculator app (Fig. 4.1) calculates and displays tips for a restaurant bill. As the
user enters a bill total, the app calculates and displays the tip amount and total bill for three
common tipping percentages—10%, 15% and 20%. The user can also specify a custom
tip percentage by moving the thumb of a Seekbar—this updates the percentage shown to
the right of the Seekbar. We chose 18% as the default custom percentage in this app be-
cause many restaurants add this tip percentage for parties of six people or more. The sug-
gested tips and bill totals are updated in response to each user interaction. [Note: The
keypad in Fig. 4.1 may differ based on your AVD’s or device’s Android version.]

4.1 Introduction
4.2 Test-Driving the Tip Calculator App
4.3 Overview of the Technologies
4.4 Building the App’s GUI

4.4.1 TableLayout Introduction
4.4.2 Creating the Project and Adding the TableLayout and Components
4.4.3 Reviewing the Layout So Far
4.4.4 Customizing the Components to Complete the Design
4.4.5 The Final XML Markup for the Tip Calculator GUI
4.4.6 strings.xml

4.5 Adding Functionality to the App
4.6 Wrap-Up

Fig. 4.1 | Entering the bill total and calculating the tip.

Use the
Seekbar to
set the custom
tip percentage

a) Initial GUI after user touches the Bill total
EditText and the numeric keyboard is displayed

b) GUI after user enters the bill total 123.45 and
changes the Custom tip percentage to 17%.

Enter the bill
total in this
EditText;
tips and totals
are calculated
after each
digit you enter
or delete

Soft keyboard
displayed on
devices without
keyboards or
with keyboards
closed

Androidfp_04.fm Page 112 Friday, May 13, 2011 10:13 AM

4.2 Test-Driving the Tip Calculator App 113

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

You’ll begin by testing the app—you’ll use it to calculate standard and custom tips.
Then we’ll overview the technologies we used to build the app. Next you’ll build the app’s
GUI using the Outline window in Eclipse to add the GUI components, and you’ll use the
Visual Layout Editor to see what the GUI looks like. Most of the XML for this GUI will
be generated for you by the ADT Plugin tools, but you’ll also directly edit the XML to
customize properties that aren’t available through the Properties window. Finally, we’ll
present the complete code for the app and do a detailed code walkthrough.

4.2 Test-Driving the Tip Calculator App

Open and Run the App
Open Eclipse and import the Tip Calculator app project. Perform the following steps:

1. Open the Import Dialog. Select File > Import… to open the Import dialog.

2. Import the Tip Calculator app’s project. In the Import dialog, expand the General
node and select Existing Projects into Workspace, then click Next > to proceed to
the Import Projects step. Ensure that Select root directory is selected, then click
the Browse… button. In the Browse For Folder dialog, locate the TipCalculator
folder in the book’s examples folder, select it and click OK. Click Finish to import
the project into Eclipse. The project now appears in the Package Explorer win-
dow at the left side of the Eclipse window.

3. Launch the Tip Calculator app. In Eclipse, right click the TipCalculator project
in the Package Explorer window, then select Run As > Android Application from
the menu that appears. This will execute Tip Calculator in the AVD that you cre-
ated in the Before You Begin section. [Note: If you have multiple AVDs or any
Android devices connected to your computer, you may need to select one of them
on which to execute the app.]

Enter a Bill Total
Touch the Bill Total EditText to display the keypad, then enter 123.45 into it using the
keypad. [Note: If the keyboard displays Japanese text, long press the Bill Total EditText—
that is, touch it for a couple of seconds—then select Input method from the list of options.
Next, select Android keyboard from the second list of options.]

If you make a mistake, press the delete () button to erase the last digit you
entered. The EditTexts under 10%, 15% and 20% display the tip and the total bill for the
pre-specified tip percentages (Fig. 4.1(b)), and the EditTexts for the custom tip and total
display the tip and total bill, respectively, for the default 18% custom tip percentage. All
the Tip and Total EditTexts update each time you enter or delete a digit.

Select a Custom Tip Percentage
Use the Seekbar to specify a custom tip percentage. Drag the Seekbar’s thumb until the
custom percentage reads 17%. The tip and bill total for this custom tip percentage now
appear in the EditTexts below the Seekbar. By default, the Seekbar allows you to select
values from 0 to 100.

Androidfp_04.fm Page 113 Friday, May 13, 2011 10:13 AM

114 Chapter 4 Tip Calculator App

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

4.3 Overview of the Technologies
This chapter uses many Java object-oriented programming capabilities, including classes,
anonymous inner classes, objects, methods, interfaces and inheritance. You’ll create a sub-
class of Android’s Activity class to specify what should happen when the app starts exe-
cuting and to define the logic of the Tip Calculator. You’ll programmatically interact with
EditTexts, a TextView and a SeekBar. You’ll create these components using the Visual
Layout Editor and Outline window in Eclipse, and some direct manipulation of the GUI
layout’s XML. An EditText—often called a text box or text field in other GUI technolo-
gies—is a subclass of TextView (presented in Chapter 3) that can display text and accept
text input from the user. A SeekBar—often called a slider in other GUI technologies—
represents an integer in the range 0–100 by default and allows the user to select a number
in that range. You’ll use event handling and anonymous inner classes to process the user’s
GUI interactions.

4.4 Building the App’s GUI
In this section, you’ll build the GUI for the Tip Calculator using the ADT Plugin tools. At
the end of this section, we’ll present the XML that the ADT Plugin generates for this app’s
layout. We’ll show the precise steps for building the GUI. In later chapters, we’ll focus pri-
marily on new features in each app’s GUI and present the final XML layouts, highlighting
the portions of the XML we modified. [Note: As you work your way through this section,
keep in mind that the GUI will not look like the one shown in Fig. 4.1 until you’ve com-
pleted the majority of the steps in Sections 4.4.2–4.4.4.]

4.4.1 TableLayout Introduction
In this app, you’ll use a TableLayout (Fig. 4.2) to arrange GUI components into six rows
and four columns. Each cell in a TableLayout can be empty or can hold one component,
which can be a layout that contains other components. As you can see in rows 0 and 4 of
Fig. 4.2, a component can span multiple columns. To create the rows, you’ll use TableRow
objects. The number of columns in the TableLayout is defined by the TableRow that con-
tains the most components. Each row’s height is determined by the tallest component in
that row—in Fig. 4.2, you can see that rows 1 and 4 are shorter than the other rows. Sim-
ilarly, the width of a column is defined by the widest element in that column—unless you
allow the table’s columns to stretch to fill the width of the screen, in which case the col-
umns could be wider. By default, components are added to a row from left to right. You
can specify the exact location of a component—rows and columns are numbered from 0
by default. You can learn more about class TableLayout at:

and class TableRow at

Figure 4.3 shows the names of all the GUI components in the app’s GUI. For clarity,
our naming convention is to use the GUI component’s class name in each component’s Id
property in the XML layout and in each component’s variable name in the Java code.

developer.android.com/reference/android/widget/TableLayout.html

developer.android.com/reference/android/widget/TableRow.html

Androidfp_04.fm Page 114 Friday, May 13, 2011 10:13 AM

4.4 Building the App’s GUI 115

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

4.4.2 Creating the Project and Adding the TableLayout and
Components
You’ll now build the GUI in Fig. 4.2. You’ll start with the basic layout and controls, then
customize the controls’ properties to complete the design. As you add components to each
row of the TableLayout, set the Id and Text properties of the components as shown in
Fig. 4.3. As you learned in Section 3.5, literal string values should be placed in the
strings.xml file in the app’s res/values folder—especially if you intend to localize your
app for use with multiple languages. For the 10%, 15% and 20% TextViews, we chose not to
use string resources. Be sure to perform the steps for building the GUI in the exact order
specified—otherwise, the components will not appear in the correct order in each row. If this
happens, you can rearrange the components in the Outline window or in the main.xml file.

Fig. 4.2 | Tip Calculator GUI’s TableLayout labeled by its rows and columns.

Fig. 4.3 | Tip Calculator GUI’s components labeled with their Id property values.

column 0 column 1 column 2 column 3

row 0

row 1

row 2

row 3

row 4

row 5

Rows and columns in a TableLayout

billEditText

billTextView

tipTextView

totalTextView

customTextView

tipCustomTextView

tenTextView

twentyTextView

tip10EditText
tip15EditText
tip20EditText
total10EditText
total15EditText
total20EditText

customTipTextView

totalCustomEditText

tipCustomEditText

customSeekBar totalCustomTextView

fifteenTextView

Androidfp_04.fm Page 115 Friday, May 13, 2011 10:13 AM

116 Chapter 4 Tip Calculator App

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

In the following steps, you’ll use the Outline window to add components to the proper
TableRows of the TableLayout. When working with more complex layouts like TableLay-
outs, it’s difficult to see the nested structure of the layout and to place components in the
correct nested locations using the Visual Layout Editor. The Outline window makes these
tasks easier because it shows the nested structure of the GUI. So, in a TableLayout, you
can select the appropriate row and add a GUI component to it.

Step 1: Create the TipCalculator Project
Eclipse allows only one project with a given name per workspace, so before you perform
this step, delete from the workspace the existing Tip Calculator app that you executed in
the test drive. To do so, right click it and select Delete. In the dialog that appears, ensure
that Delete project contents on disk is not selected, then click OK. This removes the project
from the workspace, but leaves the project’s folder on disk. Next, create a new Android
project named TipCalculator. Specify the following values in the New Android Project di-
alog, then press Finish:

• Build Target: Ensure that Android 2.3.3 is checked

• Application name: Tip Calculator

• Package name: com.deitel.tipcalculator

• Create Activity: TipCalculator

• Min SDK Version: 10. [Note: This SDK version corresponds to Android 2.3.3;
however, we do not use any Android 2.3.3-specific functionality in this app. If
you’d like this app to execute on AVDs or devices running an earlier Android ver-
sion, you can set the Min SDK Version to a lower value. For example, you could
specify 8 to indicate that the app can execute on Android 2.2 or higher.]

Step 2: Deleting and Recreating the main.xml File
For this application, you’ll replace the default main.xml file with a new one that uses a
TableLayout in which components are arranged relative to one another. Perform the fol-
lowing steps to replace the default main.xml file:

1. Right click the main.xml file in the projects /res/layout folder and select Delete
to delete the file.

2. Right click the layout folder and select New > Other… to display the New dialog.

3. In the Android node, select Android XML File and click Next > to display the New
Android XML File dialog.

4. Specify the file name main.xml and select TableLayout, then click Finish.

Step 3: Configuring the Visual Layout Editor to Use the Appropriate Android SDK
After completing the previous step, the new main.xml file opens in the in the Visual Lay-
out Editor. Recall that if you’ve installed multiple Android SDKs, the ADT Plugin selects
the most recent one as the default for design purposes in the Graphical Layout tab—regard-
less of the SDK you selected when you created the project. As you did in Fig. 3.7, select
Android 2.3.3 from the SDK selector drop-down list at the top-right side of the Graphical
Layout tab to indicate that we’re designing a GUI for an Android 2.3.3 device.

Androidfp_04.fm Page 116 Friday, May 13, 2011 10:13 AM

4.4 Building the App’s GUI 117

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Step 4: Configuring the Visual Layout Editor’s Size and Resolution
As you did in Fig. 3.11, select 3.7in WVGA (Nexus One) from the Device Configurations
drop-down list at the top-left side of the Graphical Layout tab. This configures the design
area for devices with 480-by-800 (WVGA) resolution.

Step 5: Configure the TableLayout
Select the TableLayout the Outline window to display its properties in the Properties win-
dow, then set the following properties:

• Background: #FFF

• Id: @+id/tableLayout

• Padding: 5dp

• Stretch columns: 1,2,3

By default, the Layout width and Layout height properties are set to match_parent so that
the layout fills the entire screen. Setting the Padding property to 5dp ensures that there will
be 5 density-independent pixels around the border of the entire layout. The Stretch col-
umns property—represented in the XML with the attribute android:stretchColumns
(Fig. 4.5, line 8)—indicates that columns 1, 2 and 3 should stretch horizontally to fill the
layout’s width. Column 0 will be as wide as its widest element plus any padding specified
for that element.

Step 6: Add the TableRows
Next, you’ll use the Outline window to add six TableRows to the TableLayout. To do so:

1. Right click tableLayout in the Outline window and select Add Row to add a
TableRow.

2. Repeat this process five more times.

Be sure to right click tableLayout each time so that the TableRows are properly nested in
the TableLayout. The Id properties of the TableRows are automatically specified as
tableRow1 through tableRow6, respectively. Since columns are numbered from 0, for
consistency, we changed the TableRows’ Id properties to tableRow0 through tableRow5,
respectively. Also, select each TableRow and set its Layout width property to match_parent
so that the rows are the full width of the layout. To do this for all six TableRows at once,
click the first TableRow in the Outline window, then hold the Shift key and click the last
TableRow in the Outline window to select all six. Then, you can set the property value.

Step 7: Add the Components for tableRow0
Next, you’ll add a TextView and EditText to tableRow0. To do so:

1. Drag a TextView (billTextView) from the Palette’s Form Widgets section onto
tableRow0 in the Outline window.

2. Drag an EditText (billEditText) from the Palette’s Form Widgets section onto
tableRow0 in the Outline window.

3. Set the Id and Text property values for each component. For quick access to these
properties, you can right click the component in the Outline window and select
Edit ID… and Edit Text…, respectively.

Androidfp_04.fm Page 117 Friday, May 13, 2011 10:13 AM

118 Chapter 4 Tip Calculator App

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

It’s important to drop these items onto the proper TableRow in the Outline window to en-
sure that the elements are nested in the proper TableRow object.

Step 8: Add the Components for tableRow1
Add three TextViews to tableRow1. To do so:

1. Drag a TextView (tenTextView) onto tableRow1 in the Outline window.

2. Repeat this process to add the fifteenTextView and twentyTextView.

3. Set the Id and Text property values for each component.

Step 9: Add the Components for tableRow2
Add a TextView and three EditTexts to tableRow2. To do so:

1. Drag a TextView (tipTextView) onto tableRow2 in the Outline window.

2. Drag three EditTexts onto tableRow2 in the Outline window—tip10EditText,
tip15EditText and tip20EditText.

3. Set the Id and Text property values for each component.

Step 10: Add the Components for tableRow3
Add a TextView and three EditTexts to tableRow3. To do so:

1. Drag a TextView (totalTextView) onto tableRow3 in the Outline window.

2. Drag three EditTexts onto tableRow3 in the Outline window—total10Edit-

Text, total15EditText and total20EditText.

3. Set the Id and Text property values for each component.

Step 11: Add the Components for tableRow4
Add a TextView, a SeekBar and another TextView tableRow4. To do so:

1. Drag a TextView (customTextView) onto tableRow4 in the Outline window.

2. Drag a SeekBar (customSeekBar) onto tableRow4 in the Outline window.

3. Drag a TextView (customTipTextView) onto tableRow4 in the Outline window.

4. Set the Id and Text property values for the TextViews.

Step 12: Add the Components for tableRow5
Add a TextView, an EditText, another TextView and another EditText to tableRow5. To
do so:

1. Drag a TextView (tipCustomTextView) onto tableRow5 in the Outline window.

2. Drag an EditText (tipCustomEditText) onto tableRow5 in the Outline window.

3. Drag a TextView (totalCustomTextView) onto tableRow5 in the Outline win-
dow.

4. Drag an EditText (totalCustomEditText) onto tableRow5 in the Outline win-
dow.

5. Set the Id and Text property values for each component.

Androidfp_04.fm Page 118 Friday, May 13, 2011 10:13 AM

4.4 Building the App’s GUI 119

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

4.4.3 Reviewing the Layout So Far
At this point, the GUI should appear as shown in Fig. 4.4. As you compare this to Fig. 4.2,
notice that:

• The billEditText and customSeekBar do not yet span multiple columns.

• The text of all the TextViews is light gray and hard to read.

• Some of the components are in the wrong columns—in particular, the 10%, 15%
and 20% TextViews in tableRow1 and the 18% TextView in tableRow4. The last
of these will self-correct after we make the customSeekBar span two columns.

• Most of the text in Fig. 4.2 is either center aligned or right aligned, whereas all the
text in Fig. 4.4 is left aligned.

4.4.4 Customizing the Components to Complete the Design
In the next steps, you’ll complete the app’s design by customizing the components’ prop-
erties.

Step 13: Change the Text color Property of All the TextViews
In the Outline window, you can select multiple components at the same time by holding
the Ctrl (or Control) key as you click each component that you wish to select. When you
do this, the Properties window shows you only the properties that the selected components
have in common. If you change a property value with multiple components selected, that
property’s value is changed for every selected component. We’d like all of the TextViews
to use black text to make them more readable. To change the Text color property for all of
the TextViews at once:

1. Hold the Ctrl (or Control) key and click each TextView until they’re all selected.

2. Locate the Text color property in the Properties window and set it to #000.

Fig. 4.4 | Tip Calculator GUI before customizing properties other than the Id and Text of
each component.

Androidfp_04.fm Page 119 Friday, May 13, 2011 10:13 AM

120 Chapter 4 Tip Calculator App

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Step 14: Move the 10%, 15% and 20% TextViews to the Correct Columns
In Fig. 4.2, the 10%, 15% and 20% column heads are in the second, third and fourth col-
umns, respectively. By default, when you add components to a TableRow, the first com-
ponent is placed in the first column, the second component is placed in the second column
and so on. To start in a different column, you must specify the component’s column num-
ber. Unfortunately, this property is not displayed in the Properties window by default. To
specify a component’s column, you must edit the component’s XML directly.

1. Switch to the main.xml tab in the Visual Layout Editor to view the layout’s XML
markup.

2. Locate the <TextView> element with the android:id attribute that has the value
"@+id/tenTextView".

3. In the TextView’s opening XML tag, add the following attribute/value pair:

This moves the 10% TextView to the second column—columns are numbered from 0. All
other components in the row are placed in the subsequent columns automatically. If you
wish to skip other columns, you can set the android:layout_column attribute on each
component in a row to specify the exact column in which the component should appear.
Once you manually add an attribute to the XML, the attribute and its value are displayed
in the Properties window under the Misc section.

Step 15: Center the Text in the TextViews of tableRow1 and the EditTexts of
tableRow2, tableRow3 and tableRow5 and Set the EditTexts’ Font Size
In Fig. 4.2, the text of many components is centered. Here you’ll set the Gravity property
of these components to center their text. Switch back to the Graphical Layout tab in the
Visual Layout Editor, then perform the following steps:

1. In the Outline window, select the three TextViews in tableRow1.

2. Set the Gravity property to center in the Properties window.

3. Select all the EditTexts in tableRow2, tableRow3 and tableRow5.

4. Set the Gravity property to center in the Properties window.

5. Set the Text size property to 14sp—this reduces the default font size in the Edit-
Texts so more digits can be displayed without wrapping the text.

Step 16: Set billEditText and the customSeekBar to Span Multiple Columns
In Fig. 4.2, the billEditText spans columns 1–3 and the customSeekBar spans columns
1–2. You must add the spanning attribute directly in the XML.

1. Click the main.xml tab in the Visual Layout Editor to view the layout’s markup.

2. Locate the <EditText> element with the android:id attribute that has the value
"@+id/billEditText".

3. In the EditText’s opening XML tag, add the following attribute/value pair:

4. Locate the <SeekBar> element.

 android:layout_column="1"

 android:layout_span="3"

Androidfp_04.fm Page 120 Friday, May 13, 2011 10:13 AM

4.4 Building the App’s GUI 121

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

5. In the SeekBar’s opening XML tag, add the following attribute/value pair:

The billEditText now spans columns 1–3 and customSeekBar now spans columns 1–2.

Step 17: Right Align the TextViews
The TextViews in column 0 are all right aligned as is the TextView in tableRow5’s third
column. Also, each of these TextViews has 5dp of padding at its right side to separate it
from the control immediately to its right.

1. Switch back to the Graphical Layout tab in the Visual Layout Editor.

2. In the Outline window, select all the TextViews in column 0 and the second Text-
View in the last row.

3. Set the Gravity property to right, then set the Padding right to 5dp.

Step 18: Vertically Center the TextViews in tableRow4
We’d like the TextViews in tableRow4 to align better vertically with the SeekBar, so we’ll
now adjust the Gravity property.

1. In the Outline window, select the customTextView in tableRow4.

2. Locate the Gravity property and click the ellipsis () button to the right of the
property’s value to display the list of possible Gravity values.

3. Check the center_vertical value. Now both right and center_vertical
should be checked.

4. Click OK to apply the value.

5. In the Outline window, select the customTipTextView in tableRow4.

6. Set the Gravity property to center_vertical.

7. Click OK to apply the value.

8. In the Outline window, select both TextViews in tableRow4 and set their Layout
height properties to match_parent and the Padding bottom property to 5dp. This
makes the two TextViews the same height as the SeekBar and enables the Gravity
property to align the text vertically with the SeekBar. We’ll also be setting the
Padding bottom property of the SeekBar momentarily, so setting this property on
the TextViews helps keep their text aligned with the SeekBar.

9. Finally, set the customTipTextView’s Padding left property to 5dp to separate the
TextView from the SeekBar.

Step 19: Set the customSeekBar’s Progress Property and Padding
To complete the GUI design, you’ll set the Progress, Padding left and Padding right prop-
erties of the SeekBar. Initially, we’d like the SeekBar’s thumb position to represent 18%,
since that’s what we’re displaying in the TextView to the SeekBar’s right. Also, we need to
add some padding to the left and right side of the SeekBar. When you move the thumb
to the far left or far right of the SeekBar (representing 0 and 100, respectively), the thumb
becomes hard for the user to grab if there is not enough space between the SeekBar and
the components to its left and right.

 android:layout_span="2"

Androidfp_04.fm Page 121 Friday, May 13, 2011 10:13 AM

122 Chapter 4 Tip Calculator App

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

1. In the Outline window, select the customSeekBar.

2. Set the Progress property to 18.

3. Set the Padding left and Padding right properties to 8dp.

4. Set the Padding bottom property to 5dp to separate it from the last row of com-
ponents.

5. Set the Focusable property to false so that when the user changes the SeekBar’s
value, the billEditText still maintains the focus—this helps keep the keyboard
on the screen on a device that displays the soft keyboard.

Step 20: Prevent the User from Manipulating Text in the EditTexts That Show Cal-
culation Results
With the exception of the billEditText at the top of the GUI, all the other EditTexts in
this app are used simply to show the results of calculations. For this reason, the user should
not be allowed to manipulate their text. You can control whether or not the user can give
the focus to an EditText by setting its Focusable property. You can also prevent the user
from long clicking an EditText and prevent an EditText from displaying a cursor so that
the user can’t manipulate the text. To configure these options:

1. In the Outline window, select all the EditTexts except the billEditText.

2. Set the Focusable, Long clickable and Cursor visible properties to false.

Step 21: Specify billEditText’s Keypad Type
The user should be allowed to enter only floating-point numbers in billEditText. To
configure this options

1. In the Outline window, select the billEditText.

2. Set the Input type property to numberDecimal.

Step 22: Set the Layout Weights of Various Components
A component’s Layout weight specifies it’s relative importance with respect to other com-
ponents. By default, all components have a Layout weight of 0. Each component’s Layout
weight determines how it should be sized relative to other components. In this layout, we
set Layout weight to 1 for all the components except the TextViews in the left column.
When the layout is stretched to fill the width of the screen, the TextViews in the left col-
umn will occupy only the width required by the widest TextView in that column. The oth-
er components with Layout weight set to 1 will stretch to fill the remaining space and will
share that space equally. If a component in a row had Layout weight set to 2, it would oc-
cupy twice as much space as the components with Layout weight set to 1 in that row.

This completes the GUI design. The next section presents the XML markup that was
generated by the Visual Layout Editor, then Section 4.5 presents the app’s code.

4.4.5 Final XML Markup for the Tip Calculator GUI
Your GUI should now appear as shown in Fig. 4.2. Figure 4.5 presents the completed
XML markup for the Tip Calculator’s GUI. We’ve reformatted the XML and added com-
ments for readability. We’ve also highlighted some of the key new GUI features that were
discussed in Sections 4.4.2 and 4.4.4.

Androidfp_04.fm Page 122 Friday, May 13, 2011 10:13 AM

4.4 Building the App’s GUI 123

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

1 <?xml version="1.0" encoding="utf-8"?>
2 <!-- main.xml -->
3 <!-- Tip Calculator's XML Layout -->
4
5 xmlns:android="http://schemas.android.com/apk/res/android"
6 android:layout_width="match_parent" android:layout_height="match_parent"
7 android:background="#FFF" android:id="@+id/tableLayout"
8 >
9

10 <!-- tableRow0 -->
11 android:layout_height="wrap_content"
12 android:layout_width="match_parent" android:id="@+id/tableRow0">
13 <TextView android:id="@+id/billTextView"
14 android:layout_width="wrap_content"
15 android:layout_height="wrap_content"
16 android:textColor="#000"
17 ></TextView>
18 <EditText android:layout_width="wrap_content"
19 android:id="@+id/billEditText"
20 android:layout_height="wrap_content"
21 >
22 </EditText>
23 </TableRow>
24
25 <!-- tableRow1 -->
26 <TableRow android:layout_height="wrap_content"
27 android:layout_width="match_parent" android:id="@+id/tableRow1">
28 <TextView android:id="@+id/tenTextView"
29 android:layout_width="wrap_content"
30 android:layout_height="wrap_content" android:text="10%"
31 android:textColor="#000"
32 android:gravity="center" android:layout_weight="1"></TextView>
33 <TextView android:id="@+id/fifteenTextView"
34 android:layout_width="wrap_content"
35 android:layout_height="wrap_content" android:text="15%"
36 android:textColor="#000" android:gravity="center"
37 android:layout_weight="1"></TextView>
38 <TextView android:id="@+id/twentyTextView"
39 android:layout_width="wrap_content"
40 android:layout_height="wrap_content" android:text="20%"
41 android:textColor="#000" android:gravity="center"
42 android:layout_weight="1"></TextView>
43 </TableRow>
44
45 <!-- tableRow2 -->
46 <TableRow android:layout_height="wrap_content"
47 android:layout_width="match_parent" android:id="@+id/tableRow2">
48 <TextView android:id="@+id/tipTextView"
49 android:layout_width="wrap_content"
50 android:layout_height="wrap_content"
51 android:textColor="#000"
52 android:gravity="right" android:paddingRight="5dp"></TextView>

Fig. 4.5 | Tip Calculator app’s XML layout. (Part 1 of 3.)

<TableLayout

android:stretchColumns="1,2,3" android:padding="5dp"

<TableRow

android:text="@string/billTotal"
android:gravity="right" android:paddingRight="5dp"

android:layout_span="3"
android:inputType="numberDecimal" android:layout_weight="1"

android:layout_column="1"

android:text="@string/tip"

Androidfp_04.fm Page 123 Friday, May 13, 2011 10:13 AM

124 Chapter 4 Tip Calculator App

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

53 <EditText android:layout_width="wrap_content"
54 android:id="@+id/tip10EditText"
55 android:layout_height="wrap_content"
56 android:gravity="center"
57 android:layout_weight="1" android:textSize="14sp"
58 >
59 </EditText>
60 <EditText android:layout_width="wrap_content"
61 android:id="@+id/tip15EditText"
62 android:layout_height="wrap_content"
63 android:gravity="center" android:focusable="false"
64 android:layout_weight="1" android:textSize="14sp"
65 android:cursorVisible="false" android:longClickable="false">
66 </EditText>
67 <EditText android:layout_height="wrap_content"
68 android:layout_width="wrap_content"
69 android:id="@+id/tip20EditText"
70 android:gravity="center" android:focusable="false"
71 android:layout_weight="1" android:textSize="14sp"
72 android:cursorVisible="false" android:longClickable="false">
73 </EditText>
74 </TableRow>
75
76 <!-- tableRow3 -->
77 <TableRow android:layout_height="wrap_content"
78 android:layout_width="match_parent" android:id="@+id/tableRow3">
79 <TextView android:layout_width="wrap_content"
80 android:layout_height="wrap_content"
81 android:id="@+id/totalTextView"
82 android:textColor="#000" android:gravity="right"
83 android:paddingRight="5dp"></TextView>
84 <EditText android:layout_width="wrap_content"
85 android:layout_height="wrap_content"
86 android:id="@+id/total10EditText" android:gravity="center"
87 android:focusable="false" android:layout_weight="1"
88 android:textSize="14sp" android:cursorVisible="false"
89 android:longClickable="false"></EditText>
90 <EditText android:layout_width="wrap_content"
91 android:layout_height="wrap_content"
92 android:id="@+id/total15EditText" android:gravity="center"
93 android:focusable="false" android:layout_weight="1"
94 android:textSize="14sp" android:cursorVisible="false"
95 android:longClickable="false"></EditText>
96 <EditText android:layout_width="wrap_content"
97 android:layout_height="wrap_content"
98 android:id="@+id/total20EditText" android:gravity="center"
99 android:focusable="false" android:layout_weight="1"
100 android:textSize="14sp" android:cursorVisible="false"
101 android:longClickable="false"></EditText>
102 </TableRow>
103

Fig. 4.5 | Tip Calculator app’s XML layout. (Part 2 of 3.)

android:text="@string/zero"
android:focusable="false"

android:cursorVisible="false" android:longClickable="false"

android:text="@string/zero"

android:text="@string/zero"

android:text="@string/total"

android:text="@string/zero"

android:text="@string/zero"

android:text="@string/zero"

Androidfp_04.fm Page 124 Friday, May 13, 2011 10:13 AM

4.4 Building the App’s GUI 125

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

104 <!-- tableRow4 -->
105 <TableRow android:layout_height="wrap_content"
106 android:layout_width="match_parent" android:id="@+id/tableRow4">
107 <TextView android:id="@+id/customTextView"
108 android:layout_width="wrap_content"
109 android:textColor="#000" android:paddingRight="5dp"
110
111 android:layout_height="match_parent"
112 android:focusable="false"></TextView>
113 android:layout_height="wrap_content"
114 android:layout_width="match_parent"
115 android:id="@+id/customSeekBar"
116
117 android:paddingRight="8dp" android:paddingBottom="5dp"
118 android:layout_weight="1"></SeekBar>
119 <TextView android:id="@+id/customTipTextView"
120 android:layout_width="wrap_content" android:text="18%"
121 android:textColor="#000" android:gravity="center_vertical"
122 android:layout_height="match_parent"
123 android:paddingBottom="5dp" android:focusable="false"
124 android:layout_weight="1"></TextView>
125 </TableRow>
126
127 <!-- tableRow5 -->
128 <TableRow android:layout_height="wrap_content"
129 android:layout_width="match_parent" android:id="@+id/tableRow5">
130 <TextView android:layout_width="wrap_content"
131 android:layout_height="wrap_content"
132 android:id="@+id/tipCustomTextView"
133 android:textColor="#000" android:gravity="right"
134 android:paddingRight="5dp"></TextView>
135 <EditText android:layout_width="wrap_content"
136 android:layout_height="wrap_content"
137 android:id="@+id/tipCustomEditText"
138 android:gravity="center" android:focusable="false"
139 android:layout_weight="1" android:textSize="14sp"
140 android:cursorVisible="false" android:longClickable="false">
141 </EditText>
142 <TextView android:id="@+id/totalCustomTextView"
143 android:layout_width="wrap_content"
144 android:layout_height="wrap_content"
145 android:textColor="#000" android:gravity="right"
146 android:paddingRight="5dp" android:layout_weight="1"></TextView>
147 <EditText android:layout_height="wrap_content"
148 android:layout_width="wrap_content"
149 android:id="@+id/totalCustomEditText"
150 android:gravity="center" android:focusable="false"
151 android:layout_weight="1" android:textSize="14sp"
152 android:cursorVisible="false" android:longClickable="false">
153 </EditText>
154 </TableRow>
155 </TableLayout>

Fig. 4.5 | Tip Calculator app’s XML layout. (Part 3 of 3.)

android:text="@string/custom"

android:gravity="right|center_vertical"
android:paddingBottom="5dp"

<SeekBar

android:layout_span="2"
android:progress="18" android:paddingLeft="8dp"

android:paddingLeft="5dp"

android:text="@string/tip"

android:text="@string/zero"

android:text="@string/total"

android:text="@string/zero"

Androidfp_04.fm Page 125 Friday, May 13, 2011 10:13 AM

126 Chapter 4 Tip Calculator App

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

4.4.6 strings.xml
Figure 4.6 contains the string resources that are used in Fig. 4.5.

4.5 Adding Functionality to the App
Figures 4.7–4.15 implement the Tip Calculator app in the single class TipCalculator that
calculates 10%, 15%, 20% and custom percentage tips on a bill amount, then adds the tip
to the bill amount to calculate the total bill.

The package and import Statements
Figure 4.7 shows the package statement and import statements in TipCalculator.java.
The package statement in line 3 indicates that the class in this file is part of the package
com.deitel.tipcalculator. This line was inserted when you created the project in Step 1
of Section 4.4.

The import statements in lines 5–14 import the various classes and interfaces the app
uses:

• Class Activity of package android.app (line 5) provides the basic lifecycle meth-
ods of an app—we’ll discuss these shortly.

• Class Bundle of package android.os (line 6) represents an app’s state informa-
tion. An app can save its state when it’s sent to the background by the operating

1 <?xml version="1.0" encoding="utf-8"?>
2 <resources>
3 <string name="app_name">Tip Calculator</string>
4 <string name="billTotal">Bill total</string>
5 <string name="tip">Tip</string>
6 <string name="total">Total</string>
7 <string name="custom">Custom</string>
8 <string name="zero">0.00</string>
9 </resources>

Fig. 4.6 | String resources in strings.xml.

1 // TipCalculator.java
2 // Calculates bills using 5, 10, 15 and custom percentage tips.
3 package com.deitel.tipcalculator;
4
5 import android.app.Activity;
6 import android.os.Bundle;
7 import android.text.Editable;
8 import android.text.TextWatcher;
9 import android.widget.EditText;

10 import android.widget.SeekBar;
11 import android.widget.SeekBar.OnSeekBarChangeListener;
12 import android.widget.TextView;
13

Fig. 4.7 | TipCalculator’s package and import statements.

Androidfp_04.fm Page 126 Friday, May 13, 2011 10:13 AM

4.5 Adding Functionality to the App 127

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

system—for example, when the user launches another app or a phone call is re-
ceived.

• Interface Editable of package android.text (line 7) allows you to change the
content and markup of text in a GUI.

• You implement interface TextWatcher of package android.text (line 8) to re-
spond to events when the user interacts with an EditText component.

• Package android.widget (lines 9–12) contains the widgets (i.e., GUI compo-
nents) and layouts that are used in Android GUIs, such as EditText (line 9),
SeekBar (line 10) and TextView (line 12).

• You implement interface SeekBar.OnSeekBarChangeListener of package an-
droid.widget (line 11) to respond to the user moving the SeekBar’s thumb.

Tip Calculator App Activity and the Activity Lifecycle
Android apps don’t have a main method.Instead, they have four types of components—ac-
tivities, services, content providers and broadcast receivers—we’ll show how these are initiat-
ed. In this chapter, we’ll discuss only activities. Users interact with activities through
views—that is, GUI components. A separate activity is typically associated with each
screen of an app.

Class TipCalculator (Figs. 4.8–4.15) is the Tip Calculator app’s only Activity class.
In later chapters, we’ll create apps that have several activities—typically each activity rep-
resents a different screen in the app. The TipCalculator class extends (inherits from) class
Activity (line 15). When you created the TipCalculator project, the ADT Plugin gen-
erated this class as a subclass of Activity and provided the shell of an overridden onCreate
method, which every Activity subclass must override. We’ll discuss this method shortly.

Throughout its life an activity can be in one of several states—active (or running),
paused or stopped. The activity transitions between these states in response to various events.

• An active (or running) activity is visible on the screen and “has the focus”—that
is, it’s in the foreground. This is the activity the user is interacting with.

• A paused activity is visible on the screen but doesn’t have the focus. A paused ac-
tivity can be killed when its memory is needed by the operating system (perhaps
to run another app), but stopped activities are killed first.

• A stopped activity is not visible on the screen and is likely to be killed by the system
when its memory is needed.

As an activity transitions among these states, it receives calls to various lifecycle
methods—all of which are defined in the Activity class (developer.android.com/
reference/android/app/Activity.html). Two lifecycle methods that we implement in
the Tip Calculator app are onCreate and onSaveInstanceState. Some other key methods

14 // main Activity class for the TipCalculator
15 public class TipCalculator
16 {

Fig. 4.8 | Class TipCalculator is a subclass of Activity.

extends Activity

Androidfp_04.fm Page 127 Friday, May 13, 2011 10:13 AM

128 Chapter 4 Tip Calculator App

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

are onStart, onPause, onRestart, onResume, onStop and onDestroy. We’ll discuss most
of these methods in later chapters.

• onCreate is called by the system when an Activity is starting—that is, when its
GUI is about to be displayed so that the user can interact with the Activity.

• onSaveInstanceState is called by the system when the configuration of the de-
vice changes during the app’s execution—for example, when the user rotates the
device or slides out a keyboard on a device with a hard keyboard (like the original
Motorola Droid). This method can be used to save state information that you’d
like to restore when the app’s onCreate method is called as part of the configu-
ration change. When an app is simply placed into the background, perhaps so the
user can answer a phone call or when the user starts another app, the app’s GUI
components will automatically save their contents for when the app is brought
back to the foreground (provided that the system does not kill the app).

Each activity lifecycle method you override must call the superclass’s version of that method
first; otherwise, an exception will be thrown when that method is called.

Class Variables and Instance Variables
Lines 18–32 of Fig. 4.9 declare class TipCalculator’s variables, many of which are the
EditTexts into which the user types the bill amount, and in which the app displays the
possible tip amounts and total bills with the tip amounts included. The static Strings
(lines 18–19) are used as the keys in key/value pairs for the current bill total and custom
tip percentage. These key/value pairs are stored and retrieved in onSaveInstanceState
and onCreate, respectively, when the app’s configuration changes.

The bill amount entered by the user into EditText billEditText is read and stored
as a String in currentBillTotal—this requires a conversion that we’ll explain in a
moment. The custom tip percentage that the user sets by moving the Seekbar thumb (an
Integer in the range 0–100) will be stored in currentCustomPercent—this value will

17 // constants used when saving/restoring state
18 private static final String BILL_TOTAL = "BILL_TOTAL";
19 private static final String CUSTOM_PERCENT = "CUSTOM_PERCENT";
20
21 private double currentBillTotal; // bill amount entered by the user
22 private int currentCustomPercent; // tip % set with the SeekBar
23 private EditText tip10EditText; // displays 10% tip
24 private EditText total10EditText; // displays total with 10% tip
25 private EditText tip15EditText; // displays 15% tip
26 private EditText total15EditText; // displays total with 15% tip
27 private EditText billEditText; // accepts user input for bill total
28 private EditText tip20EditText; // displays 20% tip
29 private EditText total20EditText; // displays total with 20% tip
30 private TextView customTipTextView; // displays custom tip percentage
31 private EditText tipCustomEditText; // displays custom tip amount
32 private EditText totalCustomEditText; // displays total with custom tip
33

Fig. 4.9 | TipCalculator class’s instance variables.

Androidfp_04.fm Page 128 Friday, May 13, 2011 10:13 AM

4.5 Adding Functionality to the App 129

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

eventually be multiplied by .01 to create a double for use in calculations. The amount of
the custom tip and the total bill including the custom tip are stored in tipCustomEditText
and totalCustomEditText, respectively. Line 30 declares the TextView in which the
custom tip percentage that corresponds to the SeekBar thumb’s position is displayed (see
the 18% in Fig. 4.1(a)).

The fixed percentage tips of 10%, 15% and 20% and the total bills with these tips
included are displayed in EditTexts. The amount of the 10% tip and the total bill
including a 10% tip are stored in tip10EditText and total10EditText, respectively. The
amount of the 15% tip and the total bill including a 15% tip are stored in tip15EditText
and total15EditText, respectively. The amount of the 20% tip and the total bill
including a 20% tip are stored in tip20EditText and total20EditText, respectively.

Overriding Method OnCreate of Class Activity
The onCreate method (Fig. 4.10)—which is auto-generated when you create the app’s proj-
ect—is called by the system when an Activity is started. Method onCreate typically initial-
izes the Activity’s instance variables and GUI components. This method should be as
simple as possible so that the app loads quickly. In fact, if the app takes longer than five sec-
onds to load, the operating system will display an ANR (Application Not Responding) dia-
log—giving the user the option to forcibly terminate the app. Time consuming initializations
should be done in a background process instead of the onCreate method.

34 // Called when the activity is first created.
35 @Override
36
37 {
38 super.onCreate(savedInstanceState); // call superclass's version
39
40
41 // check if app just started or is being restored from memory
42
43 {
44 currentBillTotal = 0.0; // initialize the bill amount to zero
45 currentCustomPercent = 18; // initialize the custom tip to 18%
46 } // end if
47 else // app is being restored from memory, not executed from scratch
48 {
49 // initialize the bill amount to saved amount
50
51
52 // initialize the custom tip to saved tip percent
53
54
55 } // end else
56
57 // get references to the 10%, 15% and 20% tip and total EditTexts
58
59 total10EditText = (EditText) findViewById(R.id.total10EditText);
60 tip15EditText = (EditText) findViewById(R.id.tip15EditText);
61 total15EditText = (EditText) findViewById(R.id.total15EditText);

Fig. 4.10 | Overriding Activity method onCreate. (Part 1 of 2.)

public void onCreate(Bundle savedInstanceState)

setContentView(R.layout.main); // inflate the GUI

if (savedInstanceState == null) // the app just started running

currentBillTotal = savedInstanceState.getDouble(BILL_TOTAL);

currentCustomPercent =
 savedInstanceState.getInt(CUSTOM_PERCENT);

tip10EditText = (EditText) findViewById(R.id.tip10EditText);

Androidfp_04.fm Page 129 Friday, May 13, 2011 10:13 AM

130 Chapter 4 Tip Calculator App

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

During the app’s execution, the user could change the device’s configuration by rotating
the device or sliding out a hard keyboard. The user wants the app to continue operating
smoothly through such configuration changes. When the system calls onCreate, it passes a
Bundle to parameter savedInstanceState. This contains the activity’s saved state, if any.
Typically, this state information is saved by the Activity’s onSaveInstanceState method
(Fig. 4.13). (We use savedInstanceState in lines 42–55.) Line 38 calls the superclass’s
onCreate method, which is essential when overriding any Activity method.

As you build your app’s GUI and add resources (such as strings in the strings.xml
file or GUI components in the main.xml file) to your app, the ADT Plugin tools generate
a class named R that contains nested static classes representing each type of resource in
your project’s res folder. You can find this class in your project’s gen folder, which contains
generated source-code files. Within class R’s nested classes, the tools create static final
int constants that enable you to refer to these resources programmatically from your app’s
code (as we’ll discuss momentarily). Some of the nested classes in class R include:

• Class drawable—contains constants for any drawable items, such as images, that
you put in the various drawable folders in your app’s res folder

• Class id—contains constants for the GUI components in your XML layout files

• Class layout—contains constants that represent each layout file in your project
(such as, main.xml)

• Class string—contains constants for each String in the strings.xml file

The call to setContentView (line 39) receives the constant R.layout.main to indicate
which XML file represents the activity’s GUI—in this case, the constant represents the
main.xml file. Method setContentView uses this constant to load the corresponding XML

62 tip20EditText = (EditText) findViewById(R.id.tip20EditText);
63 total20EditText = (EditText) findViewById(R.id.total20EditText);
64
65 // get the TextView displaying the custom tip percentage
66 customTipTextView = (TextView) findViewById(R.id.customTipTextView);
67
68 // get the custom tip and total EditTexts
69 tipCustomEditText = (EditText) findViewById(R.id.tipCustomEditText);
70 totalCustomEditText =
71 (EditText) findViewById(R.id.totalCustomEditText);
72
73 // get the billEditText
74 billEditText = (EditText) findViewById(R.id.billEditText);
75
76 // billEditTextWatcher handles billEditText's onTextChanged event
77 billEditText.addTextChangedListener(billEditTextWatcher);
78
79 // get the SeekBar used to set the custom tip amount
80 SeekBar customSeekBar = (SeekBar) findViewById(R.id.customSeekBar);
81 customSeekBar.setOnSeekBarChangeListener(customSeekBarListener);
82 } // end method onCreate
83

Fig. 4.10 | Overriding Activity method onCreate. (Part 2 of 2.)

Androidfp_04.fm Page 130 Friday, May 13, 2011 10:13 AM

4.5 Adding Functionality to the App 131

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

document, which is then parsed and converted into the app’s GUI. This process is known
as inflating the GUI.

Lines 42–55 determine whether the app has just started executing or is being restored
from a configuration change. If savedInstanceState is null (line 42), the app just started
executing, so lines 44–45 initialize currentBillTotal and currentCustomPercent with
the values that are required when the app first loads. If the app is being restored, line 50
calls the savedInstanceState object’s getString method to get the saved bill total as a
double value, and lines 53–54 call the savedInstanceState object’s getInt method to get
the saved custom tip percentage as an int value.

Once the layout is inflated, you can get references to the individual widgets using
Activity’s findViewById method. This method takes an int constant for a specific view
(that is, a GUI component) and returns a reference to it. The name of each GUI compo-
nent’s constant in the R.id class is determined by the GUI component’s android:id attri-
bute in the main.xml file. For example, billEditText’s constant is R.id.billEditText.

Lines 58–63 obtain references to the six EditTexts that hold the 10%, 15% and 20%
calculated tips and total bills including these tips. Line 66 obtains a reference to the TextView
that will be updated when the user changes the custom tip percentage. Lines 69–71 obtain
references to the EditTexts where the custom tip and total amounts will be displayed.

Line 74 gets a reference to the billEditText, and line 77 calls its addText-
ChangedListener method to register the TextChangedListener that will respond to
events generated when the user changes the text in the billEditText. We define this lis-
tener object in Fig. 4.15.

Line 80 gets a reference to the customSeekBar and line 81 calls its setOnSeekBar-
ChangeListener method to register the OnSeekBarChangeListener that will respond to
events generated when the user moves the customSeekBar’s thumb to change the custom
tip percentage. We define this listener object in Fig. 4.14.

Method updateStandard of Class TipCalculator
Method updateStandard (Fig. 4.11) updates the 10%, 15% and 20% tip and total Edit-
Texts each time the user changes the bill total. The method uses the currentBillTotal val-
ue to calculate tip amounts and bill totals for tips of 10% (lines 88–95), 15% (lines 98–106)
and 20% (lines 109–116) tips. Class String’s static format method is used to convert the
tip amounts and bill amounts to Strings that are displayed in the corresponding EditTexts.

84 // updates 10, 15 and 20 percent tip EditTexts
85 private void updateStandard()
86 {
87 // calculate bill total with a ten percent tip
88 double tenPercentTip = currentBillTotal * .1;
89 double tenPercentTotal = currentBillTotal + tenPercentTip;
90
91 // set tipTenEditText's text to tenPercentTip
92 tip10EditText.setText(String.format("%.02f", tenPercentTip));
93

Fig. 4.11 | TipCalculator method updateStandard calculates and displays the tips and
totals for the standard tip percentages—10%, 15% and 20%. (Part 1 of 2.)

Androidfp_04.fm Page 131 Friday, May 13, 2011 10:13 AM

132 Chapter 4 Tip Calculator App

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Method updateCustom of Class TipCalculator
Method updateCustom (Fig. 4.12) updates the custom tip and total EditTexts based on
the tip percentage the user selected with the customSeekBar. Line 123 sets the customTip-
TextView’s text to match the position of the SeekBar. Lines 126–127 calculate the cus-
tomTipAmount. Line 130 calculates the customTotalAmount. Lines 133–135 convert the
customTipAmount and the customTotalAmount to Strings and display them in the tip-
CustomEditText and totalCustomEditText, respectively.

94 // set totalTenEditText's text to tenPercentTotal
95 total10EditText.setText(String.format("%.02f", tenPercentTotal));
96
97 // calculate bill total with a fifteen percent tip
98 double fifteenPercentTip = currentBillTotal * .15;
99 double fifteenPercentTotal = currentBillTotal + fifteenPercentTip;
100
101 // set tipFifteenEditText's text to fifteenPercentTip
102 tip15EditText.setText(String.format("%.02f", fifteenPercentTip));
103
104 // set totalFifteenEditText's text to fifteenPercentTotal
105 total15EditText.setText(
106 String.format("%.02f", fifteenPercentTotal));
107
108 // calculate bill total with a twenty percent tip
109 double twentyPercentTip = currentBillTotal * .20;
110 double twentyPercentTotal = currentBillTotal + twentyPercentTip;
111
112 // set tipTwentyEditText's text to twentyPercentTip
113 tip20EditText.setText(String.format("%.02f", twentyPercentTip));
114
115 // set totalTwentyEditText's text to twentyPercentTotal
116 total20EditText.setText(String.format("%.02f", twentyPercentTotal));
117 } // end method updateStandard
118

119 // updates the custom tip and total EditTexts
120 private void updateCustom()
121 {
122 // set customTipTextView's text to match the position of the SeekBar
123 customTipTextView.setText(currentCustomPercent + "%");
124
125 // calculate the custom tip amount
126 double customTipAmount =
127 currentBillTotal * currentCustomPercent * .01;
128
129 // calculate the total bill, including the custom tip
130 double customTotalAmount = currentBillTotal + customTipAmount;

Fig. 4.12 | TipCalculator method updateCustom calculates and displays the tip and total for
the custom tip percentage that the user selects with the customSeekBar. (Part 1 of 2.)

Fig. 4.11 | TipCalculator method updateStandard calculates and displays the tips and
totals for the standard tip percentages—10%, 15% and 20%. (Part 2 of 2.)

Androidfp_04.fm Page 132 Friday, May 13, 2011 10:13 AM

4.5 Adding Functionality to the App 133

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Overriding Method onSaveInstanceState of Class Activity
Lines 139–146 of Fig. 4.13 override class Activity’s onSaveInstanceState method,
which the system calls when the configuration of the device changes during the app’s ex-
ecution—for example, when the user rotates the device or slides out a keyboard on a device
with a hard keyboard. In Eclipse, you can generate this method by right clicking in the
source code, then selecting Source > Override/Implement Methods…. The dialog that ap-
pears shows you every method that can be overridden or implemented in the class. Simply
select the checkbox for onSaveInstanceState, specify where in your class you’d like the
IDE to insert the code and click OK to create the method’s shell.

In this app we first call the superclass’s onSaveInstanceState method, then we store
key/value pairs in the Bundle that was passed to the method. Line 144 saves the current
bill total and line 145 saves the custom tip percentage (that is, the current position of the
SeekBar’s thumb). These values are used in onCreate when it’s called to restore the app
after the configuration change. In upcoming apps, we’ll explore several other Activity
lifecycle methods, which are documented in detail at:

Anonymous Inner Class That Implements Interface OnSeekBarChangeListener
Lines 149–171 of Fig. 4.14 create the anonymous inner-class object customSeekBarLis-
tener that responds to customSeekBar’s events. If you’re not familiar with anonymous in-
ner classes, visit the following page from Oracle’s Java Tutorial

131
132 // display the tip and total bill amounts
133 tipCustomEditText.setText(String.format("%.02f", customTipAmount));
134 totalCustomEditText.setText(
135 String.format("%.02f", customTotalAmount));
136 } // end method updateCustom
137

138 // save values of billEditText and customSeekBar
139 @Override
140
141 {
142 super.onSaveInstanceState(outState);
143
144
145
146 } // end method onSaveInstanceState
147

Fig. 4.13 | Overriding Activity method onSaveInstanceState to save state when the app’s
configuration changes.

bit.ly/ActivityLifeCycle

bit.ly/AnonymousInnerClasses

Fig. 4.12 | TipCalculator method updateCustom calculates and displays the tip and total for
the custom tip percentage that the user selects with the customSeekBar. (Part 2 of 2.)

protected void onSaveInstanceState(Bundle outState)

outState.putDouble(BILL_TOTAL, currentBillTotal);
outState.putInt(CUSTOM_PERCENT, currentCustomPercent);

Androidfp_04.fm Page 133 Friday, May 13, 2011 10:13 AM

134 Chapter 4 Tip Calculator App

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Line 81 registered customSeekBarListener as customSeekBar’s event-handling object.
Lines 153–170 implement the methods of interface OnSeekBarChangeListener.

Overriding Method onProgressChanged of Interface OnSeekBarChangeListener
Lines 153–160 override method onProgressChanged. In line 158, SeekBar method get-
Progress returns an Integer in the range 0–100 representing the position of the Seek-
Bar’s thumb and assigns this value to currentCustomPercent. Line 159 calls method
updateCustom, which uses the customCurrentPercent to calculate and display the custom
tip and total bill.

Overriding Methods onStartTrackingTouch and onStopTrackingTouch of Inter-
face OnSeekBarChangeListener
Java requires that we override every method of an interface that we implement. We don’t
use either of these interface methods in our app, so we simply provide an empty shell for
each (lines 162–170) to fulfill the interface contract.

Anonymous Inner Class That Implements Interface TextWatcher
Lines 174–206 of Fig. 4.15 create the anonymous inner-class object billEditTextWatch-
er that responds to billEditText’s events. Line 77 registered billEditTextWatcher to
listen for billEditText’s events. Lines 177–205 implement the methods of interface
TextWatcher.

148 // called when the user changes the position of SeekBar
149 private OnSeekBarChangeListener customSeekBarListener =
150 new OnSeekBarChangeListener()
151 {
152 // update currentCustomPercent, then call updateCustom
153 @Override
154 public void onProgressChanged(SeekBar seekBar, int progress,
155 boolean fromUser)
156 {
157 // sets currentCustomPercent to position of the SeekBar's thumb
158 currentCustomPercent = seekBar.getProgress();
159 updateCustom(); // update EditTexts for custom tip and total
160 } // end method onProgressChanged
161
162 @Override
163 public void onStartTrackingTouch(SeekBar seekBar)
164 {
165 } // end method onStartTrackingTouch
166
167 @Override
168 public void onStopTrackingTouch(SeekBar seekBar)
169 {
170 } // end method onStopTrackingTouch
171 }; // end OnSeekBarChangeListener
172

Fig. 4.14 | Anonymous inner class that implements interface OnSeekBarChangeListener to
respond to the events of the customSeekBar.

Androidfp_04.fm Page 134 Friday, May 13, 2011 10:13 AM

4.5 Adding Functionality to the App 135

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Overriding Method onTextChanged of Interface TextWatcher
The onTextChanged method (lines 177–194) is called whenever the text in the billEdit-
Text is modified. The method receives four parameters (lines 178–179). In this example,
we use only CharSequence s, which contains a copy of billEditText’s text. The other pa-
rameters indicate that the count characters starting at start replaced previous text of length
before.

Line 184 converts the text the user entered in billEditText to a double. Line 192
calls updateStandard to update the 10%, 15% and 20% EditTexts for both the tip
amounts and the total bills including the tip amounts. Line 193 calls updateCustom to
update the custom tip and total bill EditTexts, based on the custom tip percentage
obtained from the SeekBar.

173 // event-handling object that responds to billEditText's events
174 private TextWatcher billEditTextWatcher = new TextWatcher()
175 {
176 // called when the user enters a number
177 @Override
178 public void onTextChanged(CharSequence s, int start,
179 int before, int count)
180 {
181 // convert billEditText's text to a double
182 try
183 {
184 currentBillTotal = Double.parseDouble(s.toString());
185 } // end try
186 catch (NumberFormatException e)
187 {
188 currentBillTotal = 0.0; // default if an exception occurs
189 } // end catch
190
191 // update the standard and custom tip EditTexts
192 updateStandard(); // update the 10, 15 and 20% EditTexts
193 updateCustom(); // update the custom tip EditTexts
194 } // end method onTextChanged
195
196 @Override
197 public void afterTextChanged(Editable s)
198 {
199 } // end method afterTextChanged
200
201 @Override
202 public void beforeTextChanged(CharSequence s, int start, int count,
203 int after)
204 {
205 } // end method beforeTextChanged
206 }; // end billEditTextWatcher
207 } // end class TipCalculator

Fig. 4.15 | Anonymous inner class that implements interface TextWatcher to respond to the
events of the billEditText.

Androidfp_04.fm Page 135 Friday, May 13, 2011 10:13 AM

136 Chapter 4 Tip Calculator App

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Methods beforeTextChanged and afterTextChanged of the billEditText-
Watcher TextWatcher
We don’t use these TextWatcher interface methods in our app, so we simply override each
with an empty method (lines 196–205) to fulfill the interface contract.

4.6 Wrap-Up
In this chapter, you created your first interactive Android app—the Tip Calculator. We
overviewed the app’s capabilities, then you test-drove it to calculate standard and custom
tips based on the bill amount entered. You followed detailed step-by-step instructions to
build the app’s GUI using the ADT Plugin’s tools in Eclipse, including the Visual Layout
Editor, the Outline window and the Properties window. In subsequent chapters, we’ll dis-
cuss only the new GUI capabilities as we introduce them. Finally, we did a detailed code
walkthrough of the Activity class TipCalculator, which specifies what happens when
the app starts executing and defines the app’s logic.

In the app’s GUI, you used a TableLayout to arrange the GUI components into rows
and columns. You learned that each cell in a TableLayout can be empty or can hold one
component, and each cell can be a layout that contains other components. You used
TableRows to create the rows in the layout and learned that the number of columns is
defined by the TableRow that contains the most components. You also learned that each
row’s height is determined by the tallest component in that row and the width of a column
is defined by the widest element in that column (unless the columns are set to stretch).
You used TextViews to label the GUI’s components, an EditText to receive the bill total
from the user, non-focusable EditTexts to display the various tips and totals for different
tip percentages, and a SeekBar to allow the user to specify a custom tip percentage. Most
of the XML for the GUI was generated for you by the ADT Plugin tools, but you also
directly edited the XML to customize several properties that were not available through
the Properties window.

You used many Java object-oriented programming capabilities, including classes,
anonymous inner classes, objects, methods, interfaces and inheritance. We explained the
notion of inflating the GUI from its XML file into its screen representation. You learned
about Android’s Activity class and part of the Activity lifecycle. In particular, you over-
rode the onCreate method to initialize the app when it’s launched and the onSaveIn-
stanceState method save app state when the device’s configuration changes. In the
onCreate method, you used Activity method findViewById to get references to each of
the GUI components that the app interacts with programmatically. For the billEdit-
Text, you defined an anonymous inner class that implements the TextWatcher interface
so the app can calculate new tips and totals as the user changes the text in the EditText.
For the customSeekBar, you defined an anonymous inner class that implements the
OnSeekBarChangeListener interface so the app can calculate a new custom tip and total
as the user changes the custom tip percentage by moving the SeekBar’s thumb.

In the next chapter, we introduce collections while building the Favorite Twitter
Searches app. You’ll lay out a GUI programmatically—allowing you to add and remove
components dynamically in response to user interactions.

Androidfp_04.fm Page 136 Friday, May 13, 2011 10:13 AM

