
3

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Welcome App
Dive-Into® Eclipse and the ADT Plugin

O b j e c t i v e s
In this chapter you’ll:

■ Learn the basics of the Eclipse integrated development
environment (IDE) for writing, running and debugging your
Android apps.

■ Create an Eclipse project to develop a new app.

■ Design a GUI visually (without programming) using the
ADT (Android Development Tools) visual layout editor.

■ Edit the properties of GUI components.

■ Build a simple Android app and execute it on an Android
Virtual Device (AVD).

Androidfp_03.fm Page 84 Friday, May 13, 2011 10:13 AM

3.1 Introduction 85
O

u
tl

in
e

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

3.1 Introduction
In this chapter, you’ll build the Welcome app—a simple app that displays a welcome message
and two images—without writing any code. You’ll use the Eclipse IDE with the ADT (An-
droid Development Tools) plugin—the most popular tools for creating and testing Android
apps. We’ll overview Eclipse and show you how to create a simple Android app (Fig. 3.1)
using the ADT’s Visual Layout Editor, which allows you to build GUIs using drag-and-drop
techniques. Finally, you’ll execute your app on an Android Virtual Device (AVD).

3.2 Technologies Overview
This chapter introduces the Eclipse IDE and ADT Plugin. You’ll learn how to navigate
Eclipse and create a new project. With the ADT Visual Layout Editor, you’ll display pic-
tures in ImageViews and display text in a TextView. You’ll see how to edit GUI component
properties (e.g., the Text property of a TextView and the Src property of an ImageView) in
Eclipse’s Properties tab and you’ll run your app on an Android Virtual Device (AVD).

3.1 Introduction
3.2 Technologies Overview
3.3 Eclipse IDE
3.4 Creating a New Project
3.5 Building the Welcome App’s GUI with the ADT’s Visual Layout Editor
3.6 Examining the main.xml File
3.7 Running the Welcome App
3.8 Wrap-Up

Fig. 3.1 | Welcome app.

TextView component

ImageView components

Androidfp_03.fm Page 85 Friday, May 13, 2011 10:13 AM

86 Chapter 3 Welcome App

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

3.3 Eclipse IDE
This book’s examples were developed using the versions of the Android SDK that were most
current at the time of this writing (versions 2.3.3 and 3.0), and the Eclipse IDE with the
ADT (Android Development Tools) plugin. In this chapter, we assume that you’ve already
set up the Java SE Development Kit (JDK), the Android SDK and the Eclipse IDE, as dis-
cussed in the Before You Begin section that follows the Preface.

Introduction to Eclipse
Eclipse enables you to manage, edit, compile, run and debug applications. The ADT Pl-
ugin for Eclipse gives you the additional tools you’ll need to develop Android apps. You
can also use the ADT Plugin to manage multiple Android platform versions, which is im-
portant if you’re developing apps for many devices with different Android versions in-
stalled. When you start Eclipse for the first time, the Welcome tab (Fig. 3.2) is displayed.
This contains several icon links, which are described in Fig. 3.3. Click the Workbench but-
ton to display the Java development perspective, in which you can begin developing An-
droid apps. Eclipse supports development in many programming languages. Each set of
Eclipse tools you install is represented by a separate development perspective. Changing
perspectives reconfigures the IDE to use the tools for the corresponding language.

Fig. 3.2 | Welcome to the Eclipse IDE for Java Developers tab in the Eclipse window.

Link Description

Overview Provides an overview of the IDE and its features.

Fig. 3.3 | Links on the Eclipse IDE’s Welcome tab.

Overview What’s New Samples Tutorials Workbench

Androidfp_03.fm Page 86 Friday, May 13, 2011 10:13 AM

3.4 Creating a New Project 87

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

3.4 Creating a New Project
To begin programming with Android in Eclipse, select File > New > Project… to display the
New Project dialog. Expand the Android node, select Android Project and click Next > to dis-
play the New Android Project dialog (Fig. 3.4). You can also do this with the New ()
toolbar buttons’s drop-down list. After you create your first project, the Android Project op-
tion will appear in the File > New menu and in the New () button’s drop-down list.

A project is a group of related files, such as the code files and any images that make up
an app. Using the New Android Project dialog, you can create a project from scratch or you
can use existing source code—such as the code examples from this book.

In this dialog, specify the following information:

1. In the Project name: field, enter Welcome. This will be the name of the project’s
root node in Eclipse’s Package Explorer tab.

2. In the Contents section, ensure that Create new project in workspace is selected to
create a new project from scratch. The Create project from existing source option
allows you to create a new project and incorporate existing Java source-code files.

3. In the Build Target section, select the Android version you wish to use. For most
of this book’s examples, we use version 2.3.3; however, it’s recommended that
you select the minimum version that your app requires so that it can run on the
widest variety of devices.

In the Properties section of the dialog, specify the following information:

1. In the Application name: field, enter Welcome. We typically give our applications
the same name as their projects, but this is not required. This name appears in a
bar at the top of the app, if that bar is not explicitly hidden by the app.

2. Android uses conventional Java package-naming conventions and requires a min-
imum of two parts in the package name (e.g., com.deitel). In the Package name:
field, enter com.deitel.welcome. We use our domain deitel.com in reverse fol-
lowed by the app’s name. All the classes and interfaces that are created as part of
your app will be placed in this Java package. Android and the Android Market
use the package name as the app’s unique identifier.

3. In the Create Activity: field, enter Welcome. This will become the name of a class
that controls the app’s execution. Starting in the next chapter, we’ll modify this
class to implement an app’s functionality.

What’s New Provides information about what’s new in the installed version of Eclipse as
well as links to the online Eclipse community and updates for the IDE.

Samples Provides links to samples for the Eclipse configuration you downloaded.

Tutorials Provides tutorials to help you get started with Java development in Eclipse
and to help you use various Eclipse capabilities.

Workbench Takes you to the development perspective.

Link Description

Fig. 3.3 | Links on the Eclipse IDE’s Welcome tab.

Androidfp_03.fm Page 87 Friday, May 13, 2011 10:13 AM

88 Chapter 3 Welcome App

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

4. In the Min SDK Version: field, enter the minimum API level that’s required to run
your app. This allows your app to execute on devices at that API level and higher.
In this book, we typically use the API level 10, which corresponds to Android
2.3.3, or API level 11, which corresponds to Android 3.0. To run your app on
Android 2.2 and higher, select API level 8. In this case, you must ensure that your
app does not use features that are specific to more recent versions of Android.
Figure 3.5 shows the Android SDK versions and API levels. Other versions of the
SDK are now deprecated and should not be used. The following webpage shows the
current percentage of Android devices running each platform version:

Fig. 3.4 | New Android Project dialog.

developer.android.com/resources/dashboard/platform-versions.html

Specify project name

Select to create a
new project

Select the Android
version to use

Name the application

Specify the Java package name

Specify an Activity name

Specify the minimum Android
API level to run your application
(see Fig. 3.5)

Androidfp_03.fm Page 88 Friday, May 13, 2011 10:13 AM

3.4 Creating a New Project 89

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

5. Click Finish to create the project. [Note: You might see project errors while
Eclipse loads the Android SDK.]

Package Explorer Window
Once you create (or open) a project, the Package Explorer window at the left of the IDE
provides access to all of the project’s files. Figure 3.6 shows the project contents for the
Welcome app. The Welcome node represents the project. You can have many projects open
in the IDE at once—each will have its own top-level node.

Within a project’s node the project’s contents are organized into various files and
folders, including:

• src—A folder containing the project’s Java source files.

• gen—A folder containing the Java files generated by the IDE.

• Android 2.3.3—A folder containing the Android framework version you selected
when you created the app.

• res—A folder containing the resource files associated with your app, such as GUI
layouts and images used in your app.

We discuss the other files and folders as necessary throughout the book.

Android SDK version API level

3.0 11
2.3.3 10
2.2 8
2.1 7
1.6 4
1.5 3

Fig. 3.5 | Android SDK versions and API levels.
(developer.android.com/sdk/index.html)

Fig. 3.6 | Package Explorer window.

Expanded node

Collapsed node

Androidfp_03.fm Page 89 Friday, May 13, 2011 10:13 AM

90 Chapter 3 Welcome App

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

3.5 Building the Welcome App’s GUI with the ADT’s
Visual Layout Editor
Next, you’ll create the GUI for the Welcome app. The ADT’s Visual Layout Editor allows
you to build your GUI by dragging and dropping GUI components, such as Buttons,
TextViews, ImageViews and more, onto an app. For an Android app that you create with
Eclipse, the GUI layout is stored in an XML file called main.xml, by default. Defining the
GUI in XML allows you to easily separate your app’s logic from its presentation. Layout
files are considered app resources and are stored in the project’s res folder. GUI layouts are
placed within that folder’s layout subfolder. When you double click the main.xml file in
your app’s /res/layout folder, the Visual Layout Editor view is displayed by default
(Fig. 3.7). To view the XML contents of the file (Fig. 3.8), click the tab with the name of
the layout file (main.xml in this case). You can switch back to the Visual Layout Editor by
clicking the Graphical Layout tab. We’ll present the layout’s XML in Section 3.6

The Default GUI
The default GUI for a new Android app consists of a LinearLayout with a black back-
ground and contains a TextView with the text "Hello World, Welcome!" (Fig. 3.7). A Lin-
earLayout arranges GUI components in a line horizontally or vertically. A TextView allows
you to display text. If you were to execute this app in an AVD or on a device, you’d see the
default black background and text.

ii

Fig. 3.7 | Visual Layout Editor view of the app’s default GUI.

Androidfp_03.fm Page 90 Friday, May 13, 2011 10:13 AM

3.5 Building the Welcome App’s GUI with the ADT’s Visual Layout Editor 91

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Figure 3.9 lists some of the layouts from the android.widget package.1 We’ll cover
many more GUI components that can be placed in layouts—for a complete list, visit:

Configuring the Visual Layout Editor to use the Appropriate Android SDK
If you’ve installed multiple Android SDKs, the ADT Plugin selects the most recent one as
the default for design purposes in the Graphical Layout tab—regardless of the SDK you
selected when you created the project. In Fig. 3.7, we selected Android 2.3.3 from the

Fig. 3.8 | XML view of the app’s default GUI.

1. Earlier Android SDKs also have an AbsoluteLayout in which each component specifies its exact posi-
tion. This layout is now deprecated. According to developer.android.com/reference/android/
widget/AbsoluteLayout.html, you should use FrameLayout, RelativeLayout or a custom layout
instead.

developer.android.com/reference/android/widget/package-summary.html

Look-and-Feel Observation 3.1
To support devices of varying screen sizes and densities, it’s recommended that you use
RelativeLayout and TableLayout in your GUI designs.

Layout Description

FrameLayout Allocates space for a single component. You can add more than one com-
ponent to this layout, but each will be displayed from the layout’s upper-
left corner. The last component added will appear on top.

LinearLayout Arranges components horizontally in one row or vertically in one column.

RelativeLayout Arranges components relative to one another or relative to their parent
container.

TableLayout Arranges components into a table of rows. You can then use the TableRow
layout (a subclass of LinearLayout) to organize the columns.

Fig. 3.9 | Android layouts (package android.widget).

XML view tab

Androidfp_03.fm Page 91 Friday, May 13, 2011 10:13 AM

92 Chapter 3 Welcome App

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

SDK selector drop-down list at the top-right side of the Graphic Layout tab to indicate that
we’re designing a GUI for an Android 2.3.3 device.

Deleting and Recreating the main.xml File
For this application, you’ll replace the default main.xml file with a new one that uses a
RelativeLayout, in which components are arranged relative to one another. Perform the
following steps to replace the default main.xml file:

1. Make sure main.xml is closed, then right click it in the project’s /res/layout
folder and select Delete to delete the file.

2. Right click the layout folder and select New > Other… to display the New dialog.

3. In the Android node, select Android XML File and click Next > to display the New
Android XML File dialog.

4. Configure the file name, location and root layout for the new main.xml file as
shown in Fig. 3.10, then click Finish.

i

Fig. 3.10 | Creating a new main.xml file in the New Android XML File dialog.

New XML
file name

New XML
file location in

the project

Root layout
 for this XML

layout file

Androidfp_03.fm Page 92 Friday, May 13, 2011 10:13 AM

3.5 Building the Welcome App’s GUI with the ADT’s Visual Layout Editor 93

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Configuring the Visual Layout Editor’s Size and Resolution
Figure 3.11 shows the new main.xml file in the Visual Layout Editor. Android runs on a
wide variety of devices, so the Visual Layout Editor comes with several device configura-
tions that represent various screen sizes and resolutions. These can be selected from the
Device Configurations drop-down list at the top-left side of the Graphic Layout tab
(Fig. 3.11). If these predefined configurations do not match the device you wish to target,
you can create your own device configurations from scratch, or by copying and modifying
the existing ones.

Our primary testing device for this book was the Samsung Nexus S, which has a 4-
inch screen with 480-by-800 (WVGA) resolution. When designing an Android GUI, you
typically want it to be scalable so that it displays properly on various devices. For this
reason, the Visual Layout Editor’s design area does not need to precisely match your actual
device’s. Instead, you can choose a similar device configuration. In Fig. 3.11, we selected
the 3.7in WVGA (Nexus One) option—this device has the same WVGA resolution as the
Nexus S, but a slightly smaller screen size. Many of today’s smartphones have 480-by-800
or 480-by-854 resolution.

Images and Screen Sizes/Resolutions
Because Android devices have various screen sizes, resolutions and pixel densities (that is,
dots per inch or DPI), Android allows you to provide separate images (and other resources)
that the operating system chooses based on the actual device’s pixel density. For this reason

Fig. 3.11 | Visual Layout Editor view of the app’s default GUI.

Visual layout
view tab

Lists of Widgets
(GUI components),
Layouts and other

items that can be
dragged and

dropped on the
design area

SDK selector drop-down list

Device
Configurations
drop-down list

Androidfp_03.fm Page 93 Friday, May 13, 2011 10:13 AM

94 Chapter 3 Welcome App

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

your project’s res folder contains three subfolders for images—drawable-hdpi (high den-
sity), drawable-mdpi (medium density) and drawable-ldpi (low density). These folders
store images with different pixel densities (Fig. 3.12).

Images for devices that are similar in pixel density to our testing device are placed in
the folder drawable-hdpi. Images for medium- and low-density screens are placed in the
folders drawable-mdpi and drawable-ldpi, respectively. As of Android 2.2, you can also
add a drawable-xhdpi subfolder to the app’s res folder to represent screens with extra high
pixel densities. Android will scale images up and down to different densities as necessary.

Step 1: Adding Images to the Project
You’ll now begin designing the Welcome app. In this chapter, we’ll use the Visual Layout
Editor and the Outline window to build the app, then we’ll explain the generated XML in
detail. In subsequent chapters, we’ll also edit the XML directly.

For this app, you’ll need to add the Deitel bug image (bug.png) and the Android logo
image (android.png) to the project—we’ve provided these in the images folder with the
book’s examples. Perform the following steps to add the images to this project:

1. In the Package Explorer window, expand the project’s res folder.

2. Locate and open the images folder provided with the book’s examples, then drag
the images in the folder onto the res folder’s drawable-hdpi subfolder.

These images can now be used in the app.

Density Description

ldpi Low density—approximately 120 dots-per-inch.

mdpi Medium density—approximately 160 dots-per-inch.

hdpi High density—approximately 240 dots-per-inch.

xhdpi Extra high density—approximately 320 dots-per-inch.

nodpi Indicates that a resource should not be scaled regardless of screen density.

Fig. 3.12 | Android pixel densities.

Look-and-Feel Observation 3.2
For detailed information on supporting multiple screens and screen sizes in Android, visit
developer.android.com/guide/practices/screens_support.html.

Look-and-Feel Observation 3.3
For images to render nicely, a high-pixel-density device needs higher-resolution images
than a low-pixel-density device. Low-resolution images do not scale well.

Look-and-Feel Observation 3.4
Many Android professionals prefer to create their GUIs directly in XML and use the Vi-
sual Layout Editor to preview the results. As you type in the XML view, Eclipse provides
auto-complete capabilities showing you component names, attribute names and values
that match what you’ve typed so far. These help you write the XML quickly and correctly.

Androidfp_03.fm Page 94 Friday, May 13, 2011 10:13 AM

3.5 Building the Welcome App’s GUI with the ADT’s Visual Layout Editor 95

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Step 2: Changing the Id Property of the RelativeLayout
You can use the Properties window to configure the properties of the selected layout or com-
ponent without editing the XML directly. If the Properties window is not displayed, you can
display it by double clicking the RelativeLayout in the Outline window. You can also select
Window > Show View > Other…, then select Properties from the General node in the Show
View dialog. To select a layout or component, you can either click it in the Visual Layout
Editor or select its node in the Outline window (Fig. 3.13). The Properties window cannot
be used when the layout is displayed in XML view.

You should rename each layout and component with a relevant name, especially if the
the layout or component will be manipulated programmatically (as we’ll do in later apps).
Each object’s name is specified via its Id property. The Id can be used to access and modify
component without knowing its exact location in the XML. As you’ll see shortly, the Id
can also be used to specify the relative positioning of components in a RelativeLayout.

Select the RelativeLayout, then scroll to the Id property in the Properties window
and set its value to

The + in the syntax @+id indicates that a new id (that is, a variable name) should be created
with identifier to the right of the /. The Properties and Outline windows should now ap-
pear as in Fig. 3.14.

Step 3: Changing the Background Property of the RelativeLayout
The layout’s default background color is black, but we’d like it to be white. Every color
can be created from a combination of red, green and blue components called RGB val-
ues—each is an integer in the range 0–255. The first value defines the amount of red in
the color, the second the amount of green and the third the amount of blue. When using

Fig. 3.13 | Hierarchical GUI view in the Outline window.

@+id/welcomeRelativeLayout

Fig. 3.14 | Properties window after changing the RelativeLayout’s Id property.

Androidfp_03.fm Page 95 Friday, May 13, 2011 10:13 AM

96 Chapter 3 Welcome App

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

the IDE to specify a color you typically use hexadecimal format. In this case, the RGB
components are represented as values in the range 00–FF.

To change the background color, locate the Background property in the Properties
window and set its value to #FFFFFF (Fig. 3.15). This represents white in the hexadecimal
format #RRGGBB—the pairs of hexadecimal digits represent the red, green and blue color
components, respectively. Android also supports alpha (transparency) values in the range
0–255, where 0 represents completely transparent and 255 represents completely opaque.
If you wish to use alpha values, you can specify the color in the format #AARRGGBB, where
the first two hexadecimal digits represent the alpha value. For cases in which both digits
of each component of the color are the same, you can use the formats #RGB or #ARGB. For
example, #FFF will be treated as #FFFFFF.

Step 4: Adding a TextView
Next, we’ll add a TextView to the user interface. In the Form Widgets list at the left of the
Visual Layout Editor window, locate TextView and drag it onto the design area
(Fig. 3.16). When you add a new component to the user interface, it’s automatically se-
lected and its properties are displayed in the Properties window.

Fig. 3.15 | Properties window after changing the RelativeLayout’s Background property.

Fig. 3.16 | TextView with its default text.

TextView with its default text

Androidfp_03.fm Page 96 Friday, May 13, 2011 10:13 AM

3.5 Building the Welcome App’s GUI with the ADT’s Visual Layout Editor 97

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Step 5: Configuring the TextView’s Text Property Using a String Resource
According to the Android documentation for application resources

it’s considered a good practice to “externalize” strings, string arrays, images, colors, font
sizes, dimensions and other app resources so that you, or someone else on your team, can
manage them separately from your application’s code. For example, if you externalize col-
or values, all components that use the same color can be updated to a new color simply by
changing the color value in a central resource file.

If you wish to localize your app in several different languages, storing the strings sep-
arately from the app’s code allows you to change them easily. In your project’s res folder,
the subfolder values contains a strings.xml file that’s used to store strings. To provide
localized strings for other languages, you can create separate values folders for each lan-
guage. For example, the folder values-fr would contain a strings.xml file for French
and values-es would contain a strings.xml file for Spanish. You can also name these
folders with region information. For example, values-en-rUS would contain a
strings.xml file for U.S. English and values-en-rGB would contain a strings.xml file
for United Kingdom English. For more information on localization, see

To set the TextView’s Text property, we’ll create a new string resource in the
strings.xml file.

1. Ensure that the TextView is selected.

2. Locate its Text property in the Properties window, click its default value, then
click the ellipsis button () at the right size of the property’s value field to dis-
play the Resource Chooser dialog.

3. In the Resource Chooser dialog, click the New String… button to display the Cre-
ate New Android String dialog (Fig. 3.17).

4. Fill the String and New R.string fields as shown in Fig. 3.17, then click OK to dis-
miss the Create New Android String dialog and return to the Resource Chooser di-
alog.

5. The new string resource named welcome is automatically selected. Click OK to se-
lect this resource.

In the Properties window, the Text property should now appear as shown in Fig. 3.18. The
syntax @string indicates that an existing string resource will be selected from the
strings.xml file, and the name welcome indicates which string resource to select.

A key benefit of defining your string values this way is that you can easily localize your
app by creating additional XML resource files for string resources in other languages. In
each file, you use the same name in the New R.string field and provide the internationalized
string in the String field. Android can then choose the appropriate resource file based on the
device user’s preferred language. For more information on localization, visit

developer.android.com/guide/topics/resources/index.html

developer.android.com/guide/topics/resources/
 providing-resources.html#AlternativeResources

developer.android.com/guide/topics/resources/localization.html

developer.android.com/guide/topics/resources/localization.html

Androidfp_03.fm Page 97 Friday, May 13, 2011 10:13 AM

98 Chapter 3 Welcome App

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Step 6: Configuring the TextView’s Text size and Padding top Properties—Scaled Pix-
els and Density-Independent Pixels
The sizes of GUI components and text in Android can be specified in several different
units (Fig. 3.19). The documentation for supporting multiple screen sizes

recommends that you use density-independent pixels for the dimensions of GUI compo-
nents and other screen elements and scale-independent pixels for font sizes.

Defining your GUIs with density-independent pixels enables the Android platform to
automatically scale the GUI, based on the pixel density of the actual device’s screen. One

Fig. 3.17 | Create New Android String window.

Fig. 3.18 | Properties window after changing the TextView’s Text property.

developer.android.com/guide/practices/screens_support.html

Androidfp_03.fm Page 98 Friday, May 13, 2011 10:13 AM

3.5 Building the Welcome App’s GUI with the ADT’s Visual Layout Editor 99

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

density-independent pixel is equivalent to one pixel on a screen with 160 dpi (dots per
inch). On a screen with 240 dpi, each density-independent pixel will be scaled by a factor
of 240/160 (i.e., 1.5). So, a component that’s 100 density-independent pixels wide will be
scaled to 150 actual pixels wide. On a screen with 120 dpi, each density-independent pixel
is scaled by a factor of 120/160 (i.e., .75). So, the same component that’s 100 density-
independent pixels wide will be 75 actual pixels wide. Scale-independent pixels are scaled
like density-independent pixels, and they’re also scaled by the user’s preferred font size
specified on the device. [Note: At the time of this writing, users cannot yet change the pre-
ferred font size on Android devices, but this feature is expected in the future.]

You’ll now increase the size of the TextView’s font and add some padding above the
TextView to separate the text from the edge of the device’s screen.

1. To change the font size, ensure that the TextView is selected, then change its Text
size property to 40sp.

2. To add some space between the top edge of the layout and the TextView, set the
Layout margin top property in the Misc section of the Properties window to 10dp.

Step 7: Configuring Additional TextView Properties
Configure the following additional TextView’s properties as well:

1. Set its Id property to @+id/welcomeTextView.

2. Set its Text color property to #00F (blue).

3. Set its Text style property to bold. To do so, click the Value field for this proper-
ty, then click the ellipsis button () to display the dialog for selecting the font
style. Click the bold checkbox, then click OK to set the text style.

4. To center the text in the TextView if it wraps to multiple lines, set its Gravity
property to center. To do so, click the Value field for this property, then click the
ellipsis button to display a dialog with the Gravity property’s options (Fig. 3.20).
Click the center checkbox, then click OK to set the value.

The Visual Layout Editor window should now appear as shown in Fig. 3.21.

Step 8: Adding ImageViews to Display the Android Logo and the Deitel Bug Logo
Next, you’ll add two ImageViews to the GUI to display the images that you added to the
project in Step 1. When you first drag an ImageView onto the Visual Layout Editor, noth-
ing appears. For this reason, we’ll use the Outline window to add the ImageViews. Perform
the following steps:

Unit Description

px pixel

dp or dip density-independent pixel

sp scale-independent pixel

in inches

mm millimeters

Fig. 3.19 | Measurement units.

Androidfp_03.fm Page 99 Friday, May 13, 2011 10:13 AM

100 Chapter 3 Welcome App

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

1. Drag an ImageView from the Images & Media category in the Visual Layout Edi-
tor’s Palette and drop it onto the Outline window as shown in Fig. 3.22. The new
ImageView appears below the welcomeTextView node. This does not indicate that
this component will appear below the TextView in the GUI. This requires setting
the Layout below property, which we’ll do in a moment. [Note: If you drag the
ImageView over the welcomeTextView and hover for a moment, a green rectangle
with sections will appear around the welcomeTextView. If you then drag the Im-
ageView over one of those sections and drop it, the Visual Layout Editor can set
the relative positioning for you.]

Fig. 3.20 | Options for the gravity attribute of an object.

Fig. 3.21 | Visual Layout Editor window after completing the TextView’s configuration.

Androidfp_03.fm Page 100 Friday, May 13, 2011 10:13 AM

3.5 Building the Welcome App’s GUI with the ADT’s Visual Layout Editor 101

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

2. Set the ImageView’s Id property to @+id/droidImageView. The Outline window
now shows the object’s name as droidImageView.

3. Set the droidImageView’s Layout below property to @id/welcomeTextView to po-
sition the ImageView below the welcomeTextView. To do so, click the Value field
for this property, then click the ellipsis button to display the Reference Chooser
dialog (Fig. 3.23). The ID node contains the names of the objects in the GUI. Ex-
pand the ID node and select welcomeTextView.

4. Set the droidImageView’s Layout center horizontal property to true to center the
ImageView in the layout.

5. Set the droidImageView’s Src property to the image that should be displayed. To
do so, click the Value field for this property, then click the ellipsis button to display
the Reference Chooser dialog (Fig. 3.24). The Drawable node contains the re-
sources in your app’s drawable folders within the res folder. In the dialog, expand
the Drawable node and select android, which represents the android.png image.

6. Repeat items 1–5 above to create the bugImageView. For this component, set its
Id property to @+id/bugImageView, its Src property to bug and its Layout below
property to droidImageView.

The Visual Layout Editor window should now appear as shown in Fig. 3.25.

Fig. 3.22 | Dragging and dropping an ImageView onto the Outline window.

Fig. 3.23 | Selecting the value for the droidImageView’s Layout below property.

Androidfp_03.fm Page 101 Friday, May 13, 2011 10:13 AM

102 Chapter 3 Welcome App

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Fig. 3.24 | Selecting the value for the droidImageView’s Src property.

Fig. 3.25 | Visual Layout Editor window after completing the GUI configuration.

Androidfp_03.fm Page 102 Friday, May 13, 2011 10:13 AM

3.6 Examining the main.xml File 103

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

3.6 Examining the main.xml File
XML is a natural way to express a GUI’s contents. It allows you, in a human- and computer-
readable form, to say which layouts and components you wish to use, and to specify their
attributes, such as size, position and color. The ADT Plugin can then parse the XML and
generate the code that produces the actual GUI. Figure 3.26 shows the final main.xml file
after you perform the steps in Section 3.5. We reformatted the XML and added some com-
ments to make the XML more readable. (Eclipse’s Source > Format command can help you
with this.) As you read the XML, notice that each XML attribute name that contains multi-
ple words does not contain spaces, whereas the corresponding properties in the Properties
window do. For example, the XML attribute android:paddingTop corresponds to the prop-
erty Padding top in the Properties window. When the IDE displays property names, it dis-
plays the multiword names as separate words for readability.

welcomeRelativeLayout
The welcomeRelativeLayout (lines 6–33) contains all of the app’s GUI components.

1 <?xml version="1.0" encoding="utf-8"?>
2 <!-- main.xml -->
3 <!-- Welcome App's XML layout. -->
4
5 <!-- RelativeLayout that contains the App's GUI components. -->
6 <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
7 android:layout_width="match_parent"
8 android:layout_height="match_parent"
9 android:id="@+id/welcomeRelativeLayout" android:background="#FFFFFF">

10
11 <!-- TextView that displays "Welcome to Android App Development!" -->
12 <TextView android:layout_width="wrap_content"
13 android:layout_height="wrap_content"
14 android:text="@string/welcome"
15 android:textSize="40sp" android:id="@+id/welcomeTextView"
16 android:textColor="#00F" android:textStyle="bold"
17 android:layout_centerHorizontal="true" android:gravity="center"
18 android:layout_marginTop="10dp"></TextView>
19
20 <!-- ImageView that displays the Android logo -->
21 <ImageView android:layout_height="wrap_content"
22 android:layout_width="wrap_content" android:id="@+id/droidImageView"
23 android:layout_centerHorizontal="true"
24 android:src="@drawable/android"
25 android:layout_below="@id/welcomeTextView"></ImageView>
26
27 <!-- ImageView that displays the Deitel bug logo -->
28 <ImageView android:layout_height="wrap_content"
29 android:layout_width="wrap_content" android:id="@+id/bugImageView"
30 android:src="@drawable/bug"
31 android:layout_below="@id/droidImageView"
32 android:layout_centerHorizontal="true"></ImageView>
33 </RelativeLayout>

Fig. 3.26 | Welcome App’s XML layout.

Androidfp_03.fm Page 103 Friday, May 13, 2011 10:13 AM

104 Chapter 3 Welcome App

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

• Its opening XML tag (lines 6–9) sets various RelativeLayout attributes.

• Line 6 uses the xmlns attribute to indicate that the elements in the document are
all part of the android XML namespace. This is required and auto-generated by
the IDE when you create any layout XML file.

• Lines 7–8 specify the value match_parent for both the android:layout_width
and android:layout_height attributes, so the layout occupies the entire width
and height of layout’s parent element—that is, the one in which this layout is
nested. In this case, the RelativeLayout is the root node of the XML document,
so the layout occupies the entire screen (excluding the status bar).

• Line 9 specifies the values for the welcomeRelativeLayout’s android:id and
android:background attributes.

welcomeTextView
The first element in the welcomeRelativeLayout is the welcomeTextView (lines 12–18).

• Lines 12 and 13 set the android:layout_width and android:layout_height at-
tributes to wrap_content. This value indicates that the view should be just large
enough to fit its content, including its padding values that specify the spacing
around the content.

• Line 14 sets the android:text attribute to the string resource named welcome
that you created in Section 3.5, Step 5.

• Line 15 sets the android:textSize attribute to 40sp and the android:id attri-
bute to "@+id/welcomeTextView".

• Line 16 sets the android:textColor attribute to "#00F" (for blue text) and the
android:textStyle attribute to "bold".

• Line 17 sets the android:layout_centerHorizontal attribute to "true", which
centers the component horizontally in the layout, and sets the android:gravity
attribute to "center" to center the text in the TextView. The android:gravity
attribute specifies how the text should be positioned with respect to the width
and height of the TextView if the text is smaller than the TextView.

• Line 18 sets the android:marginTop attribute to 10dp so that there’s some space
between the top of the TextView and the top of the screen.

droidImageView
The last two elements nested in the welcomeRelativeLayout are the droidImageView
(lines 21–25) and the bugImageView (lines 28–32). We set the same attributes for both
ImageViews, so we discuss only the droidImageView’s attributes here.

• Lines 21 and 22 set the android:layout_width and android:layout_height at-
tributes to wrap_content. Line 22 also sets the android:id attribute to "@+id/
droidImageView".

• Line 23 sets the android:layout_centerHorizontal attribute to "true" to cen-
ters the component in the layout.

• Line 24 sets the android:src attribute to the drawable resource named android,
which represents the android.png image.

Androidfp_03.fm Page 104 Friday, May 13, 2011 10:13 AM

3.7 Running the Welcome App 105

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

• Line 25 sets the android:layout_below attribute to "@id/welcomeTextView".
The RelativeLayout specifies each component’s position relative to other com-
ponents. In this case, the ImageView follows the welcomeTextView.

3.7 Running the Welcome App
To run the app in an Android Virtual Device (AVD), right click the app’s root node in
the Package Explorer window and select Run As > Android Application. Figure 3.27 shows
the running app.

3.8 Wrap-Up
This chapter introduced key features of the Eclipse IDE and the ADT Visual Layout Ed-
itor. You used the Visual Layout Editor to create a working Android app without writing
any code. You used the TextView and ImageView GUI components to display text and im-

Fig. 3.27 | Welcome app running in an AVD.

Androidfp_03.fm Page 105 Friday, May 13, 2011 10:13 AM

106 Chapter 3 Welcome App

© Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

ages, respectively, and you arranged these components in a RelativeLayout. You edited
the properties of GUI components to customize them for your app. You then tested the
app in an Android Virtual Device (AVD). Finally, we presented a detailed walkthrough of
the XML markup that generates the GUI.

In the next chapter we introduce how to program Android apps using Java. Android
development is a combination of GUI design, and Java and XML coding. Java allows you
to specify the behavior of your apps. You’ll develop the Tip Calculator app, which calculates
a range of tip possibilities when given a restaurant bill amount. You’ll design the GUI and
add Java code to specify how the app should process user inputs and display the results of
its calculations.

Androidfp_03.fm Page 106 Friday, May 13, 2011 10:13 AM

