

A Practical Guide to
Distributed Scrum
By Elizabeth Woodward, Steffan Surdek, and

Matthew Ganis

ISBN-13: 978-0-13-704113-8

This is the first comprehensive, practical guide

for Scrum practitioners working in large-scale

distributed environments. Written by three of

IBM’s leading Scrum practitioners—in close

collaboration with the IBM QSE Scrum Community

of more than 1,000 members worldwide—this

book offers specific, actionable guidance for

everyone who wants to succeed with Scrum in

the enterprise.

Readers will follow a journey through the lifecycle

of a distributed Scrum project, from envisioning

products and setting up teams to preparing for

Sprint planning and running retrospectives. Using

real-world examples, the book demonstrates how

to apply key Scrum practices, such as look-ahead

planning in geographically distributed environ-

ments. Readers will also gain valuable new

insights into the agile management of complex

problem and technical domains.

Agile Career Development
Lessons and Approaches from IBM
By Mary Ann Bopp, Diana A. Bing,

Sheila Forte-Trammell

ISBN-13: 978-0-13-715364-0

Supercharge Performance by Linking
Employee-Driven Career Development with
Business Goals

How do you make career development work for

both the employee and the business? IBM® has

done it by tightly linking employee-driven career

development programs with corporate goals. In

Agile Career Development, three of IBM’s leading

HR innovators show how IBM has accomplished

this by illustrating various lessons and approach-

es that can be applied to other organizations as

well. This book is for every HR professional, learn-

ing or training manager, executive, strategist, and

any other business leader who wants to create a

high-performing organization.

Related Books of Interest

Sign up for the monthly IBM Press newsletter at

ibmpressbooks.com/newsletters

9780132810135_Ambler_FMad.indd 1 5/8/12 12:35 PM

Related Books of Interest

Visit ibmpressbooks.com

for all product information

Implementing the IBM®

Rational Unifi ed Process®

and Solutions
By Joshua Barnes

ISBN-13: 978-0-321-36945-1

This book delivers all the knowledge and insight

you need to succeed with the IBM Rational

Unified Process and Solutions. Joshua Barnes

presents a start-to-finish, best-practice roadmap

to the complete implementation cycle of IBM

RUP—from projecting ROI and making the

business case through piloting, implementa-

tion, mentoring, and beyond. Drawing on his

extensive experience leading large-scale IBM

RUP implementations and working with some of

the industry’s most recognized thought leaders in

the Software Engineering Process world, Barnes

brings together comprehensive “lessons learned”

from both successful and failed projects. You’ll

learn from real-world case studies, including

actual project artifacts.

Work Item Management with
IBM Rational ClearQuest and
Jazz
A Customization Guide

By Shmuel Bashan and David Bellagio

ISBN-13: 978-0-13-700179-8

The Complete Guide to Managing Work

Items and Workflow with IBM® Rational®

ClearQuest® and IBM Rational Team Concert™

Work items are the lifeblood of software and

hardware development. They tell development

teams exactly who is doing what, which issues

are resolved, which remain unresolved, and which

products are impacted. In large, team-based

projects, however, managing work items can be

difficult. Now, two IBM Rational experts show

how to simplify and improve every aspect of work

item management with IBM Rational ClearQuest

and the powerful and collaborative Jazz™-based

products: IBM Rational Team Concert (RTC) and

IBM Rational Quality Manager.

9780132810135_Ambler_FMad.indd 2 5/8/12 12:35 PM

Related Books of Interest

Sign up for the monthly IBM Press newsletter at

ibmpressbooks.com/newsletters

The Business of IT

How to Improve Service and

Lower Costs

Robert Ryan, Tim Raducha-Grace

ISBN-13: 978-0-13-700061-6

An Introduction to IMS

Your Complete Guide to IBM

Information Management Systems,

2nd Edition

Barbara Klein, et al.

ISBN-13: 978-0-13-288687-1

Dynamic SOA and BPM

Best Practices for Business Process

Management and SOA Agility

Marc Fiammante

ISBN-13: 978-0-13-701891-8

Outside-in Software

Development

A Practical Approach to Building

Successful Stakeholder-based

Products

Carl Kessler, John Sweitzer

ISBN-13: 978-0-13-157551-6

Enterprise Master Data

Management

An SOA Approach to

Managing Core Information

Dreibelbis, Hechler, Milman,

Oberhofer, van Run, Wolfson

ISBN-13: 978-0-13-236625-0

Software Test
Engineering with IBM
Rational Functional Tester
The Definitive Resource

By Chip Davis, Daniel Chirillo, Daniel Gouveia,

Fariz Saracevic, Jeffrey B. Bocarsley, Larry

Quesada, Lee B. Thomas, and Marc van Lint

ISBN-13: 978-0-13-700066-1

If you’re among the thousands of developers

using IBM Rational Functional Tester (RFT), this

book brings together all the insight, examples,

and real-world solutions you need to succeed.

Eight leading IBM testing experts thoroughly

introduce this state-of-the-art product, covering

issues ranging from building test environments

through executing the most complex and power-

ful tests. Drawing on decades of experience with

IBM Rational testing products, they address both

technical and nontechnical challenges and pres-

ent everything from best practices to reusable

code.

9780132810135_Ambler_FMad.indd 3 5/8/12 12:35 PM

Praise for Disciplined Agile Delivery

“Finally, a practical down-to-earth guide that is true to agile values and principles while at the
same time acknowledging the realities of the business and the bigger picture. You will find no
purist dogma here, nor any hype or hyperbole. Ambler and Lines show how to navigate the varied
contexts and constraints of both team-level and enterprise-level needs to hit the agile ‘sweet
spot’ for your team and attain the real benefits of sustainable agility. I wish I’d had this book ten
years ago!”
—Brad Appleton, agile/lean development champion for a large fortune
150 telecommunications company

“We have found the guidance from Disciplined Agile Delivery to be a great help in customizing
our PMO governance for agile projects at CP Rail. The book will definitely be on the must-read
list for teams using agile delivery.”
—Larry Shumlich, project manager coach, Canadian Pacific Railway

“This book is destined to become the de facto standard reference guide for any organization try-
ing to apply agile/scrum in a complex environment. Scott and Mark provide practical guidance
and experiences from successful agile teams on what it takes to bring an end-to-end agile delivery
lifecycle to the enterprise.”
—Elizabeth Woodward, IBM agile community leader, coauthor of
A Practical Guide to Distributed Scrum

“There are many ways to achieve the benefits of agility, so it’s really encouraging to see a prag-
matic and usable ‘umbrella’ description that encapsulates most of these without becoming a
diluted kind of ‘best of’ compilation, or a one-size-fits-all. Great reading for anyone orientating
themselves in an ever-growing and complex field.”
—Nick Clare, agile coach/principal consultant, Ivar Jacobson International

“Scott and Mark have compiled an objective treatment of a tough topic. Loaded with insights
from successful application under game conditions, this book strikes a good balance between
progressive agilists looking to accelerate change and conservative organizational managers look-
ing for scalable solutions.”
—Walker Royce, chief software economist, IBM

“Disciplined Agile Delivery, a hybrid and experience-based approach to software delivery,
reflects the growing trend toward pragmatism and away from the anti-syncretism that has plagued
the software development industry for over 40 years. I commend Scott and Mark for writing this
book and showing the leadership necessary to take our profession to the next level.”
—Mark Kennaley, CTO, Software-Development-Experts.com;
author of SDLC 3.0: Beyond a Tacit Understanding of Agile

“I’ve seen ‘certified agile’ run rampant in an organization and create more severe problems than it
solved. Finally, we have a definitive source on how to apply agile pragmatically with discipline to
deliver success. Thanks, Scott and Mark.”
—Carson Holmes, EVP, service delivery, Fourth Medium Consulting, Inc.

Disciplined Agile
Delivery

This page intentionally left blank

IBM WebSphere

[SUBTITLE]

Deployment and Advanced
Configuration

Roland Barcia, Bill Hines, Tom Alcott, and Keys Botzum

Disciplined Agile
Delivery

A Practitioner’s Guide to Agile
Software Delivery in the Enterprise

Scott Ambler and Mark Lines

IBM Press
Pearson plc
Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Cape Town • Sydney • Tokyo • Singapore • Mexico City

Ibmpressbooks.com

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

© Copyright 2012 by International Business Machines Corporation. All rights reserved.

Note to U.S. Government Users: Documentation related to restricted right. Use, duplication, or disclosure
is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

IBM Press Program Managers: Steven Stansel, Ellice Uffer
Cover design: IBM Corporation
Publisher: Paul Boger
Marketing Manager: Stephane Nakib
Publicist: Heather Fox
Acquisitions Editor: Bernard Goodwin
Managing Editor: Kristy Hart
Designer: Alan Clements
Project Editor: Betsy Harris
Copy Editor: Geneil Breeze
Indexer: Erika Millen
Compositor: Nonie Ratcliff
Proofreader: Debbie Williams
Manufacturing Buyer: Dan Uhrig

Published by Pearson plc
Publishing as IBM Press

IBM Press offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U. S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:

International Sales
international@pearsoned.com

The following terms are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both: IBM, the IBM Press logo, Rational,
developerWorks, Rational Team Concert, Jazz, Rhapsody, Build Forge, Global Business Services,
WebSphere, Sametime, and Lotus. A current list of IBM trademarks is available on the web at “copyright
and trademark information” as www.ibm.com/legal/copytrade.shtml.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications
Agency which is now part of the Office of Government Commerce.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates. Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Library of Congress Cataloging-in-Publication data is on file.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-13-281013-5
ISBN-10: 0-13-281013-1

Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, Indiana.
First printing June 2012

www.ibm.com/legal/copytrade.shtml

For Olivia, who will always be my little pumpkin. —Scott

To my beautiful family, Louise, Brian, and Katherine,
for your love and support. I am truly blessed… —Mark

xi

Contents

Part 1: Introduction to Disciplined Agile Delivery (DAD)

Chapter 1 Disciplined Agile Delivery in a Nutshell 1
Context Counts—The Agile Scaling Model . 3
What Is the Disciplined Agile Delivery (DAD) Process Framework? . 5
People First . 5
Learning Oriented . 7
Agile . 8
A Hybrid Process Framework . 9
IT Solutions over Software . 10
Goal-Driven Delivery Lifecycle . 11
Enterprise Aware . 17
Risk and Value Driven . 19
Scalable . 22
Concluding Thoughts . 23
Additional Resources . 23

Chapter 2 Introduction to Agile and Lean . 25
Toward a Disciplined Agile Manifesto . 27
Disciplined Agile Values . 27
Disciplined Agile Principles . 29
Lean Principles . 33
Reality over Rhetoric . 36
Concluding Thoughts . 38
Additional Resources . 39

Chapter 3 Foundations of Disciplined Agile Delivery 41
The Terminology Tar Pit . 43
Scrum . 44
Extreme Programming (XP) . 48
Agile Modeling (AM) . 50
Agile Data . 53

Lean Software Development . 53
IBM Practices . 54
Open Unified Process (OpenUP) . 56
And Others . 58
Those Who Ignore Agile Practices Put Their Business at Risk . 58
Concluding Thoughts . 58
Additional Resources . 59

Part 2: People First

Chapter 4 Roles, Rights, and Responsibilities . 61
The Rights of Everyone . 63
The Responsibilities of Everyone . 64
The DAD Roles . 65
Concluding Thoughts . 81
Additional Resources . 81

Chapter 5 Forming Disciplined Agile Delivery Teams 83
Strategies for Effective Teams . 85
The Whole Team . 88
Team Organization Strategies . 89
Building Your Team . 101
Interacting with Other Teams . 104
Concluding Thoughts . 108
Additional Resources . 108

Part 3: Initiating a Disciplined Agile Delivery Project

Chapter 6 The Inception Phase . 111
How the Inception Phase Works . 113
Aligning with the Rest of the Enterprise . 117
Securing Funding . 126
Other Inception Activities . 129
When Do You Need an Inception Phase? . 130
Inception Phase Patterns . 131
Inception Phase Anti-Patterns . 132
Concluding Thoughts . 133
Additional Resources . 134

Chapter 7 Identifying a Project Vision . 135
What’s in a Vision? . 136
How Do You Create a Vision? . 137
Capturing Your Project Vision . 138

xii Contents

Bringing Stakeholders to Agreement Around the Vision . 142
Concluding Thoughts . 145
Additional Resources . 145

Chapter 8 Identifying the Initial Scope . 147
Choosing the Appropriate Level of Initial Detail . 149
Choosing the Right Types of Models . 153
Choosing a Modeling Strategy . 162
Choosing a Work Item Management Strategy . 166
Choosing a Strategy for Nonfunctional Requirements . 170
Concluding Thoughts . 173
Additional Resources . 173

Chapter 9 Identifying an Initial Technical Strategy 175
Choosing the Right Level of Detail . 178
Choosing the Right Types of Models . 182
Choosing a Modeling Strategy . 187
Architecture Throughout the Lifecycle . 190
Concluding Thoughts . 190
Additional Resources . 191

Chapter 10 Initial Release Planning . 193
Who Does the Planning? . 194
Choosing the Right Scope for the Plan . 196
Choosing a General Planning Strategy . 197
Choosing Cadences . 202
Formulating an Initial Schedule . 208
Estimating the Cost and Value . 218
Identifying Risks . 225
Concluding Thoughts . 226
Additional Resources . 228

Chapter 11 Forming the Work Environment . 229
Forming the Team . 230
Choosing Your Toolset . 231
Organizing Physical Work Environments . 238
Organizing Virtual Work Environments . 244
Visual Management . 246
Adopting Development Guidelines . 247
Concluding Thoughts . 248
Additional Resources . 249

Chapter 12 Case Study: Inception Phase . 251
Introducing the AgileGrocers POS Case Study . 251
Developing a Shared Vision . 254

Contents xiii

Requirements Envisioning . 262
Creating the Ranked Work Item List of User Stories to Implement the Solution 264
Architecture Envisioning . 265
Release Planning . 266
Other Inception Phase Activities . 268
Alternative Approach to Running Your Inception Phase . 269
Concluding the Inception Phase . 270
Concluding Thoughts . 272

Part 4: Building a Consumable Solution Incrementally

Chapter 13 The Construction Phase . 273
How the Construction Phase Works . 274
The Typical Rhythm of Construction Iterations . 281
The Risk-Value Lifecycle . 282
When Are You Ready to Deploy? . 283
Construction Patterns . 284
Construction Anti-Patterns . 285
Concluding Thoughts . 287

Chapter 14 Initiating a Construction Iteration . 289
Why Agile Planning Is Different . 290
Iteration Planning . 291
Visualizing Your Plan . 304
Look-Ahead Planning and Modeling . 306
Concluding Thoughts . 307
Additional Resources . 308

Chapter 15 A Typical Day of Construction . 309
Planning Your Team’s Work for the Day . 311
Collaboratively Building a Consumable Solution . 319
Ongoing Activities Throughout the Day . 339
A Closer Look at Critical Agile Practices . 348
Stabilizing the Day’s Work . 359
Concluding Thoughts . 360
Additional Resources . 360

Chapter 16 Concluding a Construction Iteration 363
Demonstrate the Solution to Key Stakeholders . 365
Learn from Your Experiences . 368
Assess Progress and Adjust Release Plan if Necessary . 373
Assess Remaining Risks . 375
Deploy Your Current Build . 375

xiv Contents

Determine Strategy for Moving Forward . 376
Concluding Thoughts . 380
Additional Resources . 382

Chapter 17 Case Study: Construction Phase . 383
Continuing Our Scenario with the AgileGrocers POS Case Study . 383
Planning the Iteration’s Work . 387
Subsequent Construction Iterations . 407
Other Construction Phase Activities . 414
Concluding the Construction Phase Iterations . 414
Concluding Thoughts . 415

Part 5: Releasing the Solution

Chapter 18 The Transition Phase . 417
How the Transition Phase Works . 418
Planning the Transition Phase . 419
Ensuring Your Production Readiness . 421
Preparing Your Stakeholders for the Release . 423
Deploying the Solution . 424
Are Your Stakeholders Delighted? . 426
Transition Phase Patterns . 427
Transition Phase Anti-Patterns . 429
Concluding Thoughts . 430
Additional Resources . 431

Chapter 19 Case Study: Transition Phase . 433
Planning the Phase . 434
Collaborating to Deploy the Solution . 438
AgileGrocers’ Delight . 439
Concluding Thoughts . 440

Part 6: Disciplined Agile Delivery in the Enterprise

Chapter 20 Governing Disciplined Agile Teams . 441
What Should Governance Address? . 443
Why Is Governance Important? . 447
Why Traditional Governance Strategies Won’t Work . 448
Agile Governance . 451
Agile Practices That Enable Governance . 455
Fitting in with the Rest of Your IT Organization . 460
Measuring Agile Teams . 465
Risk Mitigation . 479

Contents xv

Concluding Thoughts . 480
Additional Resources . 480

Chapter 21 Got Discipline? . 483
Agile Practices Require Discipline . 484
Reducing the Feedback Cycle Requires Discipline . 485
Continuous Learning Requires Discipline . 487
Incremental Delivery of Consumable Solutions Requires Discipline . 490
Being Goal-Driven Requires Discipline . 490
Enterprise Awareness Requires Discipline . 491
Adopting a Full Lifecycle Requires Discipline . 492
Streamlining Inception Requires Discipline . 492
Streamlining Transition Requires Discipline . 493
Adopting Agile Governance Requires Discipline . 493
Moving to Lean Requires Discipline . 493
Concluding Thoughts . 494
Additional Resources . 495

Index 497

xvi Contents

xvii

Foreword

The process wars are over, and agile has won. While working at Forrester, we observed that agile
methods had gone mainstream, with the majority of organizations saying that they were using
agile on at least 38% of their projects. But the reality of agile usage, as Scott and Mark point out,
is far from the original ideas described by the 17 thought leaders in 2001. Instead, agile is under-
mined by organizational inertia, politics, people’s skills, management practices, vendors, and
outsourced development. I observed that the reality of agile was something more akin to water-
scrum-fall—water-scrum describing the inability of an organization to start any project without a
lengthy phase up front that defined all the requirements, planning the project in detail, and even
doing some of the design. Scrum-fall defines the release practices operated by most organizations
in which software is released infrequently, with costly and complex release practices that include
manual deployments and testing. Water-scrum-fall is not all bad, with some benefits to the devel-
opment team working in an iterative, scrum-based way, but water-scrum-fall does not release the
power of agile. Enterprise agile not only creates the most efficient software development process
but more importantly delivers software of greater business value. It is my assertion that scaled,
enterprise-level agile is therefore not just important for your software-delivery organization but
crucial for business success. Fixing water-scrum-fall will increase business value and enable
organizations to compete. And this book provides a framework to make that happen.

In this book, Scott and Mark, two very experienced software-delivery change agents,
describe a detailed framework for how to scale agile to the enterprise. They show how change
leaders can amplify agile, making it not just about teams but about the whole value stream of soft-
ware delivery. In many books about agile adoption, the really tricky problems associated with
governance and organizational control are often side-stepped, focusing on why it is stupid to do
something rather than how to change that something. Scott and Mark have not done this. They
have focused clearly on the gnarly problems of scale, describing practical ways of fixing gover-
nance models, staffing issues, and management approaches. Their use of lean positions their

framework in a broader context, allowing change leaders to not only improve their delivery capa-
bility but also connect it directly to business value. But be warned: These problems are not easily
solved, and adopting these ideas does not just require agile skills but also draws on other process
models, change techniques, and good engineering practices.

Scott and Mark not only made me think, but they also reminded me of lots of things that I
had forgotten—things that the agile fashion police have made uncool to talk about. This book is
not about fashionable agile; it is about serious change, and it should be required reading for any
change leader.

Dave West @davidjwest
Chief Product Officer, Tasktop, and former VP and Research Director, Forrester Research

xviii Foreword

xix

Preface

The information technology (IT) industry has an embarrassing reputation from the perspective of
our customers. For decades we have squandered scarce budgets and resources, reneged on our
promises, and delivered functionality that is not actually needed by the client. An outsider look-
ing at our profession must be truly baffled. We have so many process frameworks and various
bodies of knowledge such that we ourselves have difficulty keeping up with just the acronyms, let
alone the wealth of material behind them. Consider: PMBOK, SWEBOK, BABOK, ITIL®,
COBIT, RUP, CMMI, TOGAF, DODAF, EUP, UML, and BPMN, to name a few. Even within the
narrow confines of the agile community, we have Scrum, XP, CI, CD, FDD, AMDD, TDD, and
BDD, and many others. There is considerable overlap between these strategies but also consider-
able differences. We really need to get our act together.

Why Agile?
On traditional/classical projects, and sadly even on “heavy RUP” projects, basic business and
system requirements often end up written in multiple documents in different fashions to suit the
standards of the various standards bodies. Although in some regulatory environments this proves
to be good practice, in many situations it proves to be a huge waste of time and effort that often
provides little ultimate value—you must tailor your approach to meet the needs of your situation.

Fortunately, agile methods have surfaced over the past decade so that we can save ourselves
from this madness. The beauty of agile methods is that they focus us on delivering working soft-
ware of high business value to our customers early and often. We are free to adjust the project
objectives at any time as the business needs change. We are encouraged to minimize documenta-
tion, to minimize if not eliminate the bureaucracy in general. Who doesn’t like that?

More importantly, agile strategies seem to be working in practice. Scott has run surveys1

within the IT industry for several years now, and he has consistently found that the agile and
iterative strategies to software development have consistently outperformed both traditional and
ad-hoc strategies. There’s still room for improvement, and this book makes many suggestions for
such improvements, but it seems clear that agile is a step in the right direction. For example, the
2011 IT Project Success Survey revealed that respondents felt that 67% of agile projects were
considered successful (they met all of their success criteria), 27% were considered challenged
(they delivered but didn’t meet all success criteria), and only 6% were considered failures. The
same survey showed that 50% of traditional projects were considered successful, 36% chal-
lenged, and 14% failures. The 2008 IT Project Success survey found that agile project teams were
much more adept at delivering quality solutions, good return on investment (ROI), and solutions
that stakeholders wanted to work with and did so faster than traditional teams. Granted, these are
averages and your success at agile may vary, but they are compelling results. We’re sharing these
numbers with you now to motivate you to take agile seriously but, more importantly, to illustrate
a common theme throughout this book: We do our best to shy away from the overly zealous “reli-
gious” discussions found in many software process books and instead strive to have fact-based
discussions backed up by both experiential and research-based evidence. There are still some
holes in the evidence because research is ongoing, but we’re far past the “my process can beat up
your process” arguments we see elsewhere.

Alistair Cockburn, one of the original drafters of the Agile Manifesto, has argued that there
are three primary aspects of agile methodologies:

• Self-discipline, with Extreme Programming (XP) being the exemplar methodology

• Self-organization, with Scrum being the exemplar methodology

• Self-awareness, with Crystal being the exemplar methodology

As you’ll see in this book, Disciplined Agile Delivery (DAD) addresses Cockburn’s three
aspects.

Why Disciplined Agile Delivery?
Although agile strategies appear to work better than traditional strategies, it has become clear to
us that the pendulum has swung too far the other way. We have gone from overly bureaucratic and
document-centric processes to almost nothing but code. To be fair, agile teams do invest in plan-
ning, although they are unlikely to create detailed plans; they do invest in modeling, although are
unlikely to create detailed models; they do create deliverable documentation (such as operations
manuals and system overview documents), although are unlikely to create detailed specifications.
However, agile teams have barely improved upon the results of iterative approaches. The 2011 IT

xx Preface

1. The original questions, source data (without identifying information due to privacy concerns), and summary slide
decks for all surveys can be downloaded free of charge from www.ambysoft.com/surveys/.

www.ambysoft.com/surveys/

Project Success survey found that 69% of iterative projects were considered successful, 25%
challenged, and 6% failures, statistically identical results as agile projects. Similarly, the 2008 IT
Project Success survey found that agile and iterative teams were doing statistically the same
when it came to quality, ability to deliver desired functionality, and timeliness of delivery and that
agile was only slightly better than iterative when it came to ROI. The reality of agile hasn’t lived
up to the rhetoric, at least when we compare agile strategies with iterative strategies. The good
news is that it is possible to do better.

Our experience is that “core” agile methods such as Scrum work wonderfully for small
project teams addressing straightforward problems in which there is little risk or consequence of
failure. However, “out of the box,” these methods do not give adequate consideration to the risks
associated with delivering solutions on larger enterprise projects, and as a result we’re seeing
organizations investing a lot of effort creating hybrid methodologies combining techniques from
many sources. The Disciplined Agile Delivery (DAD) process framework, as described in this
book, is a hybrid approach which extends Scrum with proven strategies from Agile Modeling
(AM), Extreme Programming (XP), and Unified Process (UP), amongst other methods. DAD
extends the construction-focused lifecycle of Scrum to address the full, end-to-end delivery life-
cycle2 from project initiation all the way to delivering the solution to its end users. The DAD
process framework includes advice about the technical practices purposely missing from Scrum
as well as the modeling, documentation, and governance strategies missing from both Scrum and
XP. More importantly, in many cases DAD provides advice regarding viable alternatives and their
trade-offs, enabling you to tailor DAD to effectively address the situation in which you find your-
self. By describing what works, what doesn’t work, and more importantly why, DAD helps you to
increase your chance of adopting strategies that will work for you.

Indeed there are an increasing number of high-profile project failures associated with agile
strategies that are coming to light. If we don’t start supplementing core agile practices with a
more disciplined approach to agile projects at scale, we risk losing the hard-earned momentum
that the agile pioneers have generated.

This book does not attempt to rehash existing agile ideas that are described in many other
books, examples of which can be found in the references sections. Rather, this book is intended to
be a practical guide to getting started today with agile practices that are structured within a disci-
plined approach consistent with the needs of enterprise-scale, mission-critical projects.

What Is the History?
The Disciplined Agile Delivery (DAD) process framework began as a concept in 2007 that Scott
worked on in his role as chief methodologist for agile and lean at IBM® Rational®. He was work-
ing with customers around the world to understand and apply agile techniques at scale, and he

Preface xxi

2. A full system/product lifecycle goes from the initial idea for the product, through delivery, to operations and support
and often has many iterations of the delivery lifecycle. Our focus in DAD is on delivery, although we discuss how the
other aspects of the system lifecycle affect the delivery lifecycle.

noticed time and again that organizations were struggling to adopt mainstream agile methods
such as Extreme Programming (XP) and Scrum. At the same time Mark, also working with
organizations to adopt and apply agile techniques in practice, observed the same problems. In
many cases, the organization’s existing command-and-control culture hampered its adoption of
these more chaordic techniques. Furthermore, although many organizations were successful at
agile pilot projects, they struggled to roll out agile strategies beyond these pilot teams. A common
root cause was that the methods did not address the broader range of issues faced by IT depart-
ments, let alone the broader organization. Something wasn’t quite right.

Separately we began work on addressing these problems, with Scott taking a broad
approach by observing and working with dozens of organizations and Mark taking a deep
approach through long-term mentoring of agile teams at several organizations. In 2009 Scott led
the development of the DAD process framework within IBM Rational, an effort that continues to
this day. This work included the development of DAD courseware, whitepapers, and many blog
postings on IBM developerWorks®.3

What About Lean?
There are several reasons why lean strategies are crucial for DAD:

• Lean provides insights for streamlining the way that DAD teams work.

• Lean provides a solid foundation for scaling DAD to address complex situations, a topic
we touch on throughout the book but intend to address in greater detail in a future book.

• Lean principles explain why agile practices work, a common theme throughout this
book.

• Lean strategies, particularly those encapsulated by Kanban, provide an advanced adop-
tion strategy for DAD.

So why aren’t we writing about Disciplined Lean Development (DLD) instead? Our expe-
rience is that lean strategies, as attractive and effective as they are, are likely beyond all but a
small percentage of teams at this time. Perhaps this “small” percentage is 10% to 15%—it’s cer-
tainly under 20%—but only time will tell. We’ve found that most development teams are better
served with a lightweight, end-to-end process framework that provides coherent and integrated
high-level advice for how to get the job done without getting bogged down in procedural details.
Having said that, many of the options that we describe for addressing the goals of the DAD
process framework are very clearly lean in nature, and we expect that many teams will evolve
their process from a mostly agile one to a mostly lean one over time.

DAD is the happy medium between the extremes of Scrum, a lightweight process frame-
work that focuses on only a small part of the delivery process, and RUP, a comprehensive process
framework that covers the full delivery spectrum. DAD addresses the fundamentals of agile

xxii Preface

3. https://www.ibm.com/developerworks/mydeveloperworks/blogs/ambler/

https://www.ibm.com/developerworks/mydeveloperworks/blogs/ambler/

delivery while remaining flexible enough for you to tailor it to your own environment. In many
ways, Scrum taught agilists how to crawl, DAD hopes to teach agilists how to walk, and
agility@scale and lean approaches such as Kanban will teach us how to run.

How Does This Book Help?
We believe that there are several ways that you’ll benefit from reading this book:

• It describes an end-to-end agile delivery lifecycle.

• It describes common agile practices, how they fit into the lifecycle, and how they work
together.

• It describes how agile teams work effectively within your overall organization in an
“enterprise aware” manner, without assuming everyone else is going to be agile, too.

• It uses consistent, sensible terminology but also provides a map to terminology used by
other methods.

• It explains the trade-offs being made and in many cases gives you options for alternative
strategies.

• It provides a foundation from which to scale your agile strategy to meet the real-world
situations faced by your delivery teams.

• It goes beyond anecdotes to give fact-based reasons for why these techniques work.

• It really does answer the question “how do all these agile techniques fit together?”

Where Are We Coming From?
Both of us have seen organizations adopt Scrum and extend it with practices from XP, Agile
Modeling, and other sources into something very similar to DAD or to tailor down the Unified
Process into something similar to DAD. With either strategy, the organizations invested a lot of
effort that could have been easily avoided. With DAD, we hope to help teams and organizations
avoid the expense of a lengthy trial-and-error while still enabling teams to tailor the approach to
meet their unique situation.

Scott led the development of DAD within IBM Rational and still leads its evolution, lever-
aging his experiences helping organizations understand and adopt agile strategies. This book also
reflects lessons learned from within IBM Software Group, a diverse organization of 27,000
developers worldwide, and IBM’s Agile with Discipline (AwD) methodology followed by pro-
fessionals in IBM Global Service’s Accelerated Solution Delivery (ASD) practice. In the autumn
of 2009 DAD was captured in IBM Rational’s three-day “Introduction to Disciplined Agile
Delivery” workshop. This workshop was rolled out in the first quarter of 2010 to IBM business
partners, including UPMentors, and Mark became one of the first non-IBMers to be qualified to
deliver the workshop. Since then, Mark has made significant contributions to DAD, bringing his
insights and experiences to bear.

Preface xxiii

What’s The Best Way to Read this Book?
Most people will want to read this cover to cover. However, there are three exceptions:

• Experienced agile practitioners can start with Chapter 1, “Disciplined Agile Delivery in
a Nutshell,” which overviews DAD. Next, read Chapter 4, “Roles, Rights, and Respon-
sibilities,” to understand the team roles. Then, read Chapters 6 through 19 to understand
in detail how DAD works.

• Senior IT managers should read Chapter 1 to understand how DAD works at a high level
and then skip to Chapter 20, “Governing Disciplined Agile Teams,” which focuses on
governing4 agile teams.

• People who prefer to work through an example of DAD in practice should read the case
study chapters first. These are: Chapter 12, “Initiating a Disciplined Agile Delivery
Project—Case Study”; Chapter 17, “Case Study: Construction Phase”; and Chapter 19,
“Case Study: Transition Phase.”

We hope that you embrace the core agile practices popularized by leading agile methods
but choose to supplement them with some necessary rigor and tooling appropriate for your orga-
nization and project realities.

Incidentally, a portion of the proceeds from the sale of this book are going to the Cystic
Fibrosis Foundation and Toronto Sick Kid’s Hospital, so thank you for supporting these worthy
causes.

The Disciplined Agile Delivery Web Site
www.DisciplinedAgileDelivery.com is the community Web site for anything related to DAD.
Mark and Scott are the moderators. You will also find other resources such as information
on DAD-related education, service providers, and supporting collateral that can be downloaded.
We invite anyone who would like to contribute to DAD to participate as a blogger. Join the
discussion!

xxiv Preface

4. Warning: Throughout the book we’ll be using “agile swear words” such as governance, management, modeling, and
yes, even the D-word—documentation. We’d like to apologize now for our use of foul language such as this.

www.DisciplinedAgileDelivery.com

Abbreviations Used in This Book

AD Agile Data

AM Agile Modeling

AMDD Agile Model Driven Development

ASM Agile Scaling Model

ATDD Acceptance test driven development

AUP Agile Unified Process

AwD Agile with Discipline

BABOK Business Analysis Book of Knowledge

BDD Behavior driven development

BI Business intelligence

BPMN Business Process Modeling Notation

CASE Computer aided software engineering

CD Continuous deployment

CI Continuous integration

CM Configuration management

CMMI Capability Maturity Model Integrated

COBIT Control Objectives for Information and Related Technology

DAD Disciplined Agile Delivery

DDJ Dr. Dobb’s Journal

DevOps Development operations

DI Development intelligence

DODAF Department of Defense Architecture Framework

DSDM Dynamic System Development Method

EUP Enterprise Unified Process

EVM Earned value management

FDD Feature Driven Development

GQM Goal question metric

HR Human resources

IT Information technology

ITIL Information Technology Infrastructure Library

JIT Just in time

Preface xxv

MDD Model driven development

MMR Minimally marketable release

NFR Non-functional requirement

NPV Net present value

OSS Open source software

PMBOK Project Management Book of Knowledge

PMO Project management office

ROI Return on investment

RRC Rational Requirements Composer

RSA Rational Software Architect

RTC Rational Team Concert™

RUP Rational Unified Process

SCM Software configuration management

SDLC System development lifecycle

SLA Service level agreement

SWEBOK Software Engineering Book of Knowledge

TCO Total cost of ownership

TDD Test-driven development

TFD Test first development

TOGAF The Open Group Architecture Framework

T&M Time and materials

TVO Total value of ownership

UAT User acceptance testing

UML Unified Modeling Language

UI User interface

UP Unified Process

UX User experience

WIP Work in progress

XP Extreme Programming

xxvi Preface

xxvii

Acknowledgments

We’d like to thank the following people for their feedback regarding this book: Kevin Aguanno,
Brad Appleton, Ned Bader, Joshua Barnes, Peter Bauwens, Robert Boyle, Alan L. Brown, David
L. Brown, Murray Cantor, Nick Clare, Steven Crago, Diana Dehm, Jim Densmore, Paul Gorans,
Leslie R. Gornig, Tony Grout, Carson Holmes, Julian Holmes, Mark Kennaley, Richard Knaster,
Per Kroll, Cherifa Liamani, Christophe Lucas, Bruce MacIsaac, Trevor O. McCarthy, M.K.
McHugh, Jean-Louise Marechaux, Evangelos Mavrogiannakis, Brian Merzbach, Berne C.
Miller, Mike Perrow, Andy Pittaway, Emily J. Ratliff, Oliver Roehrsheim, Walker Royce, Chris
Sibbald, Lauren Schaefer, Paul Sims, Paula Stack, Alban Tsui, Karthikeswari Vijayapandian,
Lewis J. White, Elizabeth Woodward, and Ming Zhi Xie.

We’d also like to thank the following people for their ideas shared with us in online forums,
which were incorporated into this book: Eric Jan Malotaux, Bob Marshall, Valentin Tudor
Mocanu, Allan Shalloway, Steven Shaw, Horia Slusanschi, and Marvin Toll.

About the Authors

Scott W. Ambler is Chief Methodologist for IT with IBM Rational, work-
ing with IBM customers around the world to help them to improve their
software processes. In addition to Disciplined Agile Delivery (DAD), he is
the founder of the Agile Modeling (AM), Agile Data (AD), Agile Unified
Process (AUP), and Enterprise Unified Process (EUP) methodologies and
creator of the Agile Scaling Model (ASM). Scott is the (co-)author of 20
books, including Refactoring Databases, Agile Modeling, Agile Database
Techniques, The Object Primer, 3rd Edition, and The Enterprise Unified

Process. Scott is a senior contributing editor with Dr. Dobb’s Journal. His personal home page is
www.ambysoft.com.

Mark Lines co-founded UPMentors in 2007. He is a disciplined agile
coach and mentors organizations on all aspects of software development. He
is passionate about reducing the huge waste in most IT organizations and
demonstrates hands-on approaches to speeding execution and improving
quality with agile and lean techniques. Mark provides IT assessments and
executes course corrections to turn around troubled projects. He writes for
many publications and is a frequent speaker at industry conferences. Mark is
also an instructor of IBM Rational and UPMentors courses on all aspects of

software development. His Web site is www.UPMentors.com. Mark can be reached at
Mark@UPMentors.com.

www.ambysoft.com
www.UPMentors.com

1

C H A P T E R 1

Disciplined Agile
Delivery in a Nutshell

For every complex problem there is a solution that is simple, neat, and wrong. —H L Mencken

The agile software development paradigm burst onto the scene in the spring of 2001 with the pub-
lication of the Agile Manifesto (www.agilemanifesto.org). The 17 authors of the manifesto cap-
tured strategies, in the form of four value statements and twelve supporting principles, which they
had seen work in practice. These strategies promote close collaboration between developers and
their stakeholders; evolutionary and regular creation of software that adds value to the organiza-
tion; remaining steadfastly focused on quality; adopting practices that provide high value and
avoiding those which provide little value (e.g., work smarter, not harder); and striving to improve
your approach to development throughout the lifecycle. For anyone with experience on success-
ful software development teams, these strategies likely sound familiar.

Make no mistake, agile is not a fad. When mainstream agile methods such as Scrum and
Extreme Programming (XP) were introduced, the ideas contained in them were not new, nor were
they even revolutionary at the time. In fact, many of them have been described in-depth in other
methods such as Rapid Application Development (RAD), Evo, and various instantiations of the
Unified Process, not to mention classic books such as Frederick Brooks’ The Mythical Man
Month. It should not be surprising that working together closely in collocated teams and collabo-
rating in a unified manner toward a goal of producing working software produces results superior
to those working in specialized silos concerned with individual rather than team performance. It
should also come as no surprise that reducing documentation and administrative bureaucracy
saves money and speeds up delivery.

While agile was once considered viable only for small, collocated teams, improvements in
product quality, team efficiency, and on-time delivery have motivated larger teams to take a closer
look at adopting agile principles in their environments. In fact, IBM has teams of several hundred

www.agilemanifesto.org

people, often distributed around the globe, that are working on complex products who are apply-
ing agile techniques—and have been doing so successfully for years. A recent study conducted
by the Agile Journal determined that 88% of companies, many with more than 10,000 employ-
ees, are using or evaluating agile practices on their projects. Agile is becoming the dominant soft-
ware development paradigm. This trend is also echoed in other industry studies, including one
conducted by Dr. Dobb’s Journal (DDJ), which found a 76% adoption rate of agile techniques,
and within those organizations doing agile, 44% of the project teams on average are applying
agile techniques in some way.

Unfortunately, we need to take adoption rate survey results with a grain of salt: A subse-
quent Ambysoft survey found that only 53% of people claiming to be on “agile teams” actually
were. It is clear that agile methods have been overly hyped by various media over the years, lead-
ing to abuse and misuse; in fact, the received message regarding agile appears to have justified
using little or no process at all. For too many project teams this resulted in anarchy and chaos,
leading to project failures and a backlash from the information technology (IT) and systems engi-
neering communities that prefer more traditional approaches.

Properly executed, agile is not an excuse to be undisciplined. The execution of mainstream
agile methods such as XP for example have always demanded a disciplined approach, certainly
more than traditional approaches such as waterfall methods. Don’t mistake the high ceremony of
many traditional methods to be a sign of discipline, rather it’s a sign of rampant and often out-of-
control bureaucracy. However, mainstream agile methods don’t provide enough guidance for typ-
ical enterprises. Mature implementations of agile recognize a basic need in enterprises for a level
of rigor that core agile methods dismiss as not required such as governance, architectural plan-
ning, and modeling. Most mainstream agile methods admit that their strategies require significant
additions and adjustments to scale beyond teams of about eight people who are working together
in close proximity. Furthermore, most Fortune 1000 enterprises and government agencies have
larger solution delivery teams that are often distributed, so the required tailoring efforts can prove
both expensive and risky. The time is now for a new generation of agile process framework.

Figure 1.1 shows a mind map of the structure of this chapter. We describe each of the topics
in the map in clockwise order, beginning at the top right.

THE BIG IDEAS IN THIS CHAPTER

• People are the primary determinant of success for IT delivery projects.

• Moving to a disciplined agile delivery process is the first step in scaling agile
strategies.

• Disciplined Agile Delivery (DAD) is an enterprise-aware hybrid software process
framework.

• Agile strategies should be applied throughout the entire delivery lifecycle.

• Agile teams are easier to govern than traditional teams.

2 Chapter 1 Disciplined Agile Delivery in a Nutshell

Context Counts—The Agile Scaling Model 3

Disciplined Agile Delivery
in a Nutshell

IT solutions over software

Risk and value driven

Enterprise aware

Scalable

Goal-driven delivery lifecycle

A hybrid process framework

Agile

Learning oriented

People first

What is the Disciplined Agile Delivery
(DAD) framework?

Context counts - the agile scaling model

Figure 1.1 Outline of this chapter

Context Counts—The Agile Scaling Model
To understand the need for the Disciplined Agile Delivery (DAD) process framework you must
start by recognizing the realities of the situation you face. The Agile Scaling Model (ASM) is a
contextual framework that defines a roadmap to effectively adopt and tailor agile strategies to
meet the unique challenges faced by an agile software development team. The first step to scaling
agile strategies is to adopt a disciplined agile delivery lifecycle that scales mainstream agile con-
struction strategies to address the full delivery process from project initiation to deployment into
production. The second step is to recognize which scaling factors, if any, are applicable to your
project team and then tailor your adopted strategies to address the range of complexities the team
faces.

The ASM, depicted in Figure 1.2, defines three process categories:

1. Core agile development. Core agile methods—such as Scrum, XP, and Agile Modeling
(AM)—focus on construction-oriented activities. They are characterized by value-
driven lifecycles where high-quality potentially shippable software is produced on a
regular basis by a highly collaborative, self-organizing team. The focus is on small (<15
member) teams that are collocated and are developing straightforward software.

2. Agile delivery. These methods—including the DAD process framework (described in
this book) and Harmony/ESW—address the full delivery lifecycle from project initia-
tion to production. They add appropriate, lean governance to balance self-organization
and add a risk-driven viewpoint to the value-driven approach to increase the chance of
project success. They focus on small-to-medium sized (up to 30 people) near-located
teams (within driving distance) developing straightforward solutions. Ideally DAD
teams are small and collocated.

3. Agility@scale. This is disciplined agile development where one or more scaling factors
apply. The scaling factors that an agile team may face include team size, geographical
distribution, organizational distribution (people working for different groups or compa-
nies), regulatory compliance, cultural or organizational complexity, technical complex-
ity, and enterprise disciplines (such as enterprise architecture, strategic reuse, and
portfolio management).

4 Chapter 1 Disciplined Agile Delivery in a Nutshell

Agile
Development

Agile Delivery

Agility@Scale

* Value-driven lifecycle
 * Self-organizing teams
 * Focus on construction of working software

* Risk+value driven lifecycle
 * Self-organizing within appropriate governance framework
 * Focus on delivery of consumable solutions

* Disciplined agile delivery when one or
 more scaling factors apply:
 - Team size
 - Geographic distribution
 - Regulatory compliance
 - Domain complexity
 - Organization distribution
 - Technical complexity
 - Organizational complexity
 - Enterprise discipline

Figure 1.2 The Agile Scaling Model (ASM)

This book describes the DAD process framework. In most cases we assume that your team
is small (<15 people) and is either collocated or near-located (within driving distance). Having

said that, we also discuss strategies for scaling agile practices throughout the book. The DAD
process framework defines the foundation to scale agile strategies to more complex situations.

What Is the Disciplined Agile Delivery (DAD) Process
Framework?
Let’s begin with a definition:

The Disciplined Agile Delivery (DAD) process framework is a people-first,
learning-oriented hybrid agile approach to IT solution delivery. It has a risk-value
lifecycle, is goal-driven, is scalable, and is enterprise aware.

From this definition, you can see that the DAD process framework has several important
characteristics:

• People first

• Learning oriented

• Agile

• Hybrid

• IT solution focused

• Goal-driven

• Delivery focused

• Enterprise aware

• Risk and value driven

• Scalable

To gain a better understanding of DAD, let’s explore each of these characteristics in greater
detail.

People First
Alistair Cockburn refers to people as “non-linear, first-order components” in the software devel-
opment process. His observation, based on years of ethnographic work, is that people and the
way that they collaborate are the primary determinants of success in IT solution delivery efforts.
This philosophy, reflected in the first value statement of the Agile Manifesto, permeates DAD.
DAD team members should be self-disciplined, self-organizing, and self-aware. The DAD
process framework provides guidance that DAD teams leverage to improve their effectiveness,
but it does not prescribe mandatory procedures.

The traditional approach of having formal handoffs of work products (primarily docu-
ments) between different disciplines such as requirements, analysis, design, test, and develop-
ment is a very poor way to transfer knowledge that creates bottlenecks and proves in practice to

People First 5

be a huge source of waste of both time and money. The waste results from the loss of effort to
create interim documentation, the cost to review the documentation, and the costs associated with
updating the documentation. Yes, some documentation will be required, but rarely as much as is
promoted by traditional techniques. Handoffs between people provide opportunities for misun-
derstandings and injection of defects and are described in lean software development as one of
seven sources of waste. When we create a document we do not document our complete under-
standing of what we are describing, and inevitably some knowledge is “left behind” as tacit
knowledge that is not passed on. It is easy to see that after many handoffs the eventual deliverable
may bear little resemblance to the original intent. In an agile environment, the boundaries
between disciplines should be torn down and handoffs minimized in the interest of working as a
team rather than specialized individuals.

In DAD we foster the strategy of cross-functional teams made up of cross-functional
people. There should be no hierarchy within the team, and team members are encouraged to be
cross-functional in their skillset and indeed perform work related to disciplines other than their
specialty. The increased understanding that the team members gain beyond their primary disci-
pline results in more effective use of resources and reduced reliance on formal documentation
and handoffs.

As such, agile methods deemphasize specific roles. In Scrum for instance, there are only
three Scrum team roles: ScrumMaster, product owner, and team member. Nonteam roles can be
extended to stakeholder and manager. The primary roles described by DAD are stakeholder, team
lead, team member, product owner, and architecture owner. These roles are described in detail in
Chapter 4, “Roles, Rights, and Responsibilities.”

Notice that tester and business analyst are not primary roles in the DAD process frame-
work. Rather, a generic team member should be capable of doing multiple things. A team mem-
ber who specializes in testing might be expected to volunteer to help with requirements, or even
take a turn at being the ScrumMaster (team lead). This doesn’t imply that everyone needs to be an
expert at everything, but it does imply that the team as a whole should cover the skills required of
them and should be willing to pick up any missing skills as needed. However, as you learn in
Chapter 4, DAD also defines several secondary roles often required in scaling situations.

Team members are often “generalizing specialists” in that they may be a specialist in one or
more disciplines but should have general knowledge of other disciplines as well. More impor-
tantly, generalizing specialists are willing to collaborate closely with others, to share their skills
and experiences with others, and to pick up new skills from the people they work with. A team
made up of generalizing specialists requires few handoffs between people, enjoys improved col-
laboration because the individuals have a greater appreciation of the background skills and prior-
ities of the various IT disciplines, and can focus on what needs to be done as opposed to focusing
on whatever their specialties are.

However, there is still room for specialists. For example, your team may find that it needs to
set up and configure a database server. Although you could figure it out yourselves, it’s probably
easier, faster, and less expensive if you could have someone with deep experience help your team

6 Chapter 1 Disciplined Agile Delivery in a Nutshell

for a few days to work with you to do so. This person could be a specialist in database adminis-
tration. In scaling situations you may find that your build becomes so complex that you need
someone(s) specifically focused on doing just that. Or you may bring one or more business ana-
lyst specialists onto the team to help you explore the problem space in which you’re working.

DAD teams and team members should be

• Self-disciplined in that they commit only to the work they can accomplish and then per-
form that work as effectively as possible

• Self-organizing, in that they estimate and plan their own work and then proceed to col-
laborate iteratively to do so

• Self-aware, in that they strive to identify what works well for them, what doesn’t, and
then learn and adjust accordingly

Although people are the primary determinant of success for IT solution delivery projects,
in most situations it isn’t effective to simply put together a good team of people and let them loose
on the problem at hand. If you do this then the teams run several risks, including investing signif-
icant time in developing their own processes and practices, ramping up on processes or practices
that more experienced agile teams have discovered are generally less effective or efficient, and
not adapting their own processes and practices effectively. We can be smarter than that and recog-
nize that although people are the primary determinant of success they aren’t the only determinant.
The DAD process framework provides coherent, proven advice that agile teams can leverage and
thereby avoid or at least minimize the risks described previously.

Learning Oriented
In the years since the Agile Manifesto was written we’ve discovered that the most effective
organizations are the ones that promote a learning environment for their staff. There are three key
aspects that a learning environment must address. The first aspect is domain learning—how are
you exploring and identifying what your stakeholders need, and perhaps more importantly how
are you helping the team to do so? The second aspect is process learning, which focuses on learn-
ing to improve your process at the individual, team, and enterprise levels. The third aspect is tech-
nical learning, which focuses on understanding how to effectively work with the tools and
technologies being used to craft the solution for your stakeholders.

The DAD process framework suggests several strategies to support domain learning,
including initial requirements envisioning, incremental delivery of a potentially consumable
solution, and active stakeholder participation through the lifecycle. To support process-focused
learning DAD promotes the adoption of retrospectives where the team explicitly identifies poten-
tial process improvements, a common agile strategy, as well as continued tracking of those
improvements. Within the IBM software group, a business unit with more than 35,000 develop-
ment professionals responsible for delivering products, we’ve found that agile teams that held
retrospectives improved their productivity more than teams that didn’t, and teams that tracked

Learning Oriented 7

their implementation of the identified improvement strategies were even more successful. Tech-
nical learning often comes naturally to IT professionals, many of whom are often eager to work
with and explore new tools, techniques, and technologies. This can be a double-edged sword—
although they’re learning new technical concepts they may not invest sufficient time to master a
strategy before moving on to the next one or they may abandon a perfectly fine technology
simply because they want to do something new.

There are many general strategies to improve your learning capability. Improved collabora-
tion between people correspondingly increases the opportunities for people to learn from one
another. Luckily high collaboration is a hallmark of agility. Investing in training, coaching, and
mentoring are obvious learning strategies as well. What may not be so obvious is the move away
from promoting specialization among your staff and instead fostering a move toward people with
more robust skills, something called being a generalizing specialist (discussed in greater detail in
Chapter 4). Progressive organizations aggressively promote learning opportunities for their
people outside their specific areas of specialty as well as opportunities to actually apply these
new skills.

If you’re experienced with, or at least have read about, agile software development, the pre-
vious strategies should sound familiar. Where the DAD process framework takes learning further
is through enterprise awareness. Core agile methods such as Scrum and XP are typically project
focused, whereas DAD explicitly strives to both leverage and enhance the organizational ecosys-
tem in which a team operates. So DAD teams should both leverage existing lessons learned from
other agile teams and also take the time to share their own experiences. The implication is that
your IT department needs to invest in a technology for socializing the learning experience across
teams. In 2005 IBM Software Group implemented internal discussion forums, wikis, and a center
of competency (some organizations call them centers of excellence) to support their agile learn-
ing efforts. A few years later they adopted a Web 2.0 strategy based on IBM Connections to sup-
port enterprise learning. When the people and teams within an organization choose a
learning-oriented approach, providing them with the right tools and support can increase their
success.

Agile
The DAD process framework adheres to, and as you learn in Chapter 2, “Introduction to Agile
and Lean,” enhances, the values and principles of the Agile Manifesto. Teams following either
iterative or agile processes have been shown to produce higher quality solutions, provide greater
return on investment (ROI), provide greater stakeholder satisfaction, and deliver these solutions
quicker as compared to either a traditional/waterfall approach or an ad-hoc (no defined process)
approach. High quality is achieved through techniques such as continuous integration (CI),
developer regression testing, test-first development, and refactoring—these techniques, and
more, are described later in the book. Improved ROI comes from a greater focus on high-value
activities, working in priority order, automation of as much of the IT drudgery as possible, self-

8 Chapter 1 Disciplined Agile Delivery in a Nutshell

organization, close collaboration, and in general working smarter not harder. Greater stakeholder
satisfaction is increased through enabling active stakeholder participation, by incrementally
delivering a potentially consumable solution each iteration, and by enabling stakeholders to
evolve their requirements throughout the project.

A Hybrid Process Framework
DAD is the formulation of many strategies and practices from both mainstream agile methods as
well as other sources. The DAD process framework extends the Scrum construction lifecycle to
address the full delivery lifecycle while adopting strategies from several agile and lean methods.
Many of the practices suggested by DAD are the ones commonly discussed in the agile commu-
nity—such as continuous integration (CI), daily coordination meetings, and refactoring—and
some are the “advanced” practices commonly applied but for some reason not commonly dis-
cussed. These advanced practices include initial requirements envisioning, initial architecture
envisioning, and end-of-lifecycle testing to name a few.

The DAD process framework is a hybrid, meaning that it adopts and tailors strategies from
a variety of sources. A common pattern that we’ve seen time and again within organizations is
that they adopt the Scrum process framework and then do significant work to tailor ideas from
other sources to flesh it out. This sounds like a great strategy. However, given that we repeatedly
see new organizations tailoring Scrum in the same sort of way, why not start with a robust process
framework that provides this common tailoring in the first place? The DAD process framework
adopts strategies from the following methods:

• Scrum. Scrum provides an agile project management framework for complex projects.
DAD adopts and tailors many ideas from Scrum, such as working from a stack of work
items in priority order, having a product owner responsible for representing stakehold-
ers, and producing a potentially consumable solution every iteration.

• Extreme Programming (XP). XP is an important source of development practices for
DAD, including but not limited to continuous integration (CI), refactoring, test-driven
development (TDD), collective ownership, and many more.

• Agile Modeling (AM). As the name implies, AM is the source for DAD’s modeling and
documentation practices. This includes requirements envisioning, architecture envi-
sioning, iteration modeling, continuous documentation, and just-in-time (JIT) model
storming.

• Unified Process (UP). DAD adopts many of its governance strategies from agile instan-
tiations of the UP, including OpenUP and Agile Unified Process (AUP). In particular
these strategies include having lightweight milestones and explicit phases. We also draw
from the Unified Process focus on the importance of proving that the architecture works
in the early iterations and reducing much of the business risk early in the lifecycle.

A Hybrid Process Framework 9

• Agile Data (AD). As the name implies AD is a source of agile database practices, such
as database refactoring, database testing, and agile data modeling. It is also an important
source of agile enterprise strategies, such as how agile teams can work effectively with
enterprise architects and enterprise data administrators.

• Kanban. DAD adopts two critical concepts—limiting work in progress and visualizing
work—from Kanban, which is a lean framework. These concepts are in addition to the
seven principles of lean software development, as discussed in Chapter 2.

The concept of DAD being a hybrid of several existing agile methodologies is covered in
greater detail in Chapter 3, “Foundations of Disciplined Agile Delivery.”

OUR APOLOGIES

Throughout this book we’ll be applying agile swear words such as phase, serial, and yes,
even the “G word”—governance. Many mainstream agilists don’t like these words and have
gone to great lengths to find euphemisms for them. For example, in Scrum they talk about
how a project begins with Sprint 0 (DAD’s Inception phase), then the construction sprints fol-
low, and finally you do one or more hardening/release sprints (DAD’s Transition phase).
Even though these sprint categories follow one another this clearly isn’t serial, and the
Scrum project team clearly isn’t proceeding in phases. Or so goes the rhetoric. Sigh. We
prefer plain, explicit language.

IT Solutions over Software
One aspect of adopting a DAD approach is to mature your focus from producing software to
instead providing solutions that provide real business value to your stakeholders within the
appropriate economic, cultural, and technical constraints. A fundamental observation is that as IT
professionals we do far more than just develop software. Yes, software is clearly important, but in
addressing the needs of our stakeholders we often provide new or upgraded hardware, change the
business/operational processes that stakeholders follow, and even help change the organizational
structure in which our stakeholders work.

This shift in focus requires your organization to address some of the biases that crept into
the Agile Manifesto. The people who wrote the manifesto (which we fully endorse) were for the
most part software developers, consultants, and in many cases both. It was natural that they
focused on their software development strengths, but as the ten-year agile anniversary workshop
(which Scott participated in) identified, the agile community needs to look beyond software
development.

It’s also important to note that the focus of this book is on IT application development. The
focus is not on product development, even though a tailored form of DAD is being applied for

10 Chapter 1 Disciplined Agile Delivery in a Nutshell

that within IBM, nor is it on systems engineering. For agile approaches to embedded soft-
ware development or systems engineering we suggest you consider the IBM Harmony process
framework.

Goal-Driven Delivery Lifecycle
DAD addresses the project lifecycle from the point of initiating the project to construction to
releasing the solution into production. We explicitly observe that each iteration is not the same.
Projects do evolve and the work emphasis changes as we move through the lifecycle. To make
this clear, we carve the project into phases with lightweight milestones to ensure that we are
focused on the right things at the right time. Such areas of focus include initial visioning, archi-
tectural modeling, risk management, and deployment planning. This differs from mainstream
agile methods, which typically focus on the construction aspects of the lifecycle. Details about
how to perform initiation and release activities, or even how they fit into the overall lifecycle, are
typically vague and left up to you.

Time and again, whenever either one of us worked with a team that had adopted Scrum we
found that they had tailored the Scrum lifecycle into something similar to Figure 1.3, which
shows the lifecycle of a DAD project.1 This lifecycle has several critical features:

• It’s a delivery lifecycle. The DAD lifecycle extends the Scrum construction lifecycle to
explicitly show the full delivery lifecycle from the beginning of a project to the release
of the solution into production (or the marketplace).

• There are explicit phases. The DAD lifecycle is organized into three distinct, named
phases, reflecting the agile coordinate-collaborate-conclude (3C) rhythm.

• The delivery lifecycle is shown in context. The DAD lifecycle recognizes that activi-
ties occur to identify and select projects long before their official start. It also recognizes
that the solution produced by a DAD project team must be operated and supported once
it is delivered into production (in some organizations called operations) or in some cases
the marketplace, and that important feedback comes from people using previously
released versions of the solution.

• There are explicit milestones. The milestones are an important governance and risk
reduction strategy inherent in DAD.

The lifecycle of Figure 1.3, which we focus on throughout this book, is what we refer to as
the basic agile version. This is what we believe should be the starting point for teams that are new
to DAD or even new to agile. However, DAD is meant to be tailored to meet the needs of your sit-
uation. As your team gains more experience with DAD you may choose to adopt more and more
lean strategies, and may eventually evolve your lifecycle into something closer to what you see in

Goal-Driven Delivery Lifecycle 11

1. Granted, in this version we’re using the term “iteration” instead of “sprint,” and “work item list” instead of “product
backlog.”

Figure 1.4. A primary difference of this lean version of the DAD lifecycle is that the phase and
iteration cadence disappears in favor of a “do it when you need to do it” approach, a strategy that
works well only for highly disciplined teams.

12 Chapter 1 Disciplined Agile Delivery in a Nutshell

Highest-Priority

Work Items

Daily
Work

Working

System

Daily Coordination
Meeting

Iteration planning session to
select work items and identify
work tasks for current iteration

Iteration review &
retrospective: Demo to
stakeholders, determine
strategy for next
iteration, and learn
from your experiences

Tasks

Work
Items

Iteration
BacklogInitial

Requirements

and Release
Plan

Initial
Architectural
Vision

Working

Solution

Release
solution into
production

Operate and
support solution

in production

Enhancement Requests
and Defect Reports

Inception Construction Transition

Funding

Initial
modeling,

planning, and
organization

One or more short iterations Many short iterations producing a potentially consumable solution each iteration One or more
short iterations

Feedback

Iteration

Stakeholder consensus

Proven architecture

Sufficient functionality

Identify, prioritize,
and select
projects

Initial Vision
and Funding

Project viability
(several)

Delighted stakeholders

Production ready

Figure 1.3 The Disciplined Agile Delivery (DAD) lifecycle

Options

Standard

Expedite

Fixed Delivery Date

Intangible

Work items are
pulled when

capacity is available
to address them

Replenishment
Modeling Session

Operate and
support solution

in production

Enhancement Requests
and Defect Reports

New
Features

Identify, prioritize,
and select
projects

Initial Vision
and Funding Initial

Requirements

Initial
Architectural
Vision

Initial
modeling,

planning, and
organization

Daily work

Retrospective

Demo

Release
solution into
production

Coordination
Meeting

New
Features

Feedback

Learnings

Strategy

Inception Construction Transition

Continuous stream of development

Stakeholder consensus Sufficient functionality

Delighted stakeholders

Production ready

Figure 1.4 A lean version of the DAD lifecycle

One of the challenges with describing a process framework is that you need to provide suf-
ficient guidance to help people understand the framework, but if you provide too much guidance

you become overly prescriptive. As we’ve helped various organizations improve their software
processes over the years, we’ve come to the belief that the various process protagonists are com-
ing from one extreme or the other. Either there are very detailed processes descriptions (the IBM
Rational Unified Process [RUP] is one such example), or there are very lightweight process
descriptions, with Scrum being a perfect example. The challenge with RUP is that many teams do
not have the skill to tailor it down appropriately, often resulting in extra work being performed.
On the other hand many Scrum teams had the opposite problem with not knowing how to tailor it
up appropriately, resulting in significant effort reinventing or relearning techniques to address the
myriad issues that Scrum doesn’t cover (this becomes apparent in Chapter 3). Either way, a lot of
waste could have been avoided if only there was an option between these two extremes.

To address this challenge the DAD process framework is goals driven, as summarized in
Figure 1.5. There are of course many ways that these goals can be addressed, so simply indicating
the goals is of little value. In Chapters 6 through 19 when we describe each of the phases in turn,
we suggest strategies for addressing the goals and many times discuss several common strategies
for doing so and the trade-offs between them. Our experience is that this goals-driven, suggestive
approach provides just enough guidance for solution delivery teams while being sufficiently flex-
ible so that teams can tailor the process to address the context of the situation in which they find
themselves. The challenge is that it requires significant discipline by agile teams to consider the
issues around each goal and then choose the strategy most appropriate for them. This may not be
the snazzy new strategy that everyone is talking about online, and it may require the team to per-
form some work that they would prefer to avoid given the choice.

Goal-Driven Delivery Lifecycle 13

Goals for the Inception Phase

- Form initial team
- Identify the vision for the

project
- Bring stakeholders to

agreement around the vision
- Align with enterprise direction
- Identify initial technical

strategy, initial requirements,
and initial release plan

- Set up the work environment
- Secure funding
- Identify risks

Goals for Construction Phase Iterations

- Produce a potentially consumable solution
- Address changing stakeholder needs
- Move closer to deployable release
- Maintain or improve upon existing levels

of quality
- Prove architecture early

Goals for the Transition Phase

- Ensure the solution is
production ready

- Ensure the stakeholders are
prepared to receive the solution

- Deploy the solution into
production

Ongoing Goals

- Fulfill the project mission - Improve team process and environment
- Grow team members’ skills - Leverage existing infrastructure
- Enhance existing infrastructure - Address risk

Figure 1.5 Goals addressed throughout a DAD project

Figure 1.5 doesn’t provide a full listing of the goals your team will address. There are sev-
eral personal goals of individuals, such as specific learning goals and the desire for interesting
work, compensation, and public recognition of their work. There are also specific stakeholder
goals, which will be unique to your project.

THE AGILE 3C RHYTHM

Over the years we’ve noticed a distinct rhythm, or cadence, at different levels of the agile
process. We call this the agile 3C rhythm, for coordinate, collaborate, and conclude. This is
similar conceptually to Deming’s Plan, Do, Check, Act (PDCA) cycle where coordinate maps
to plan, collaborate maps to do, and conclude maps to check and act. The agile 3C rhythm
occurs at three levels in the DAD process framework:

1. Release. The three phases of the delivery lifecycle—Inception, Construction,
Transition—map directly to coordinate, collaborate, and conclude, respectively.

2. Iteration. DAD construction iterations begin with an iteration planning workshop
(coordinate), doing the implementation work (collaborate), and then wrapping
up the iteration with a demo and retrospective (conclude).

3. Day. A typical day begins with a short coordination meeting, is followed by the
team collaborating to do their work, and concludes with a working build (hope-
fully) at the end of the day.

Let’s overview the DAD phases to better understand the contents of the DAD process
framework.

The Inception Phase
Before jumping into building or buying a solution, it is worthwhile to spend some time identify-
ing the objectives for the project. Traditional methods invest a large amount of effort and time
planning their projects up front. Agile approaches suggest that too much detail up front is not
worthwhile since little is known about what is truly required as well as achievable within the time
and budget constraints. Mainstream agile methods suggest that very little effort be invested in up-
front planning. Their mantra can be loosely interpreted as “let’s just get started and we will deter-
mine where we are going as we go.” To be fair, some agile teams have a short planning iteration
or do some planning before initiating the project. “Sprint 0” is a common misnomer used by
some Scrum teams. Extreme Programming (XP) has the “Planning Game.” In fact, a 2009
Ambysoft survey found that teams take on average 3.9 weeks to initiate their projects. In DAD,
we recognize the need to point the ship in the right direction before going full-speed ahead—typ-
ically between a few days and a few weeks—to initiate the project. Figure 1.6 overviews the
potential activities that occur during Inception, described in greater detail in Chapters 6 through
12. This phase ends when the team has developed a vision for the release that the stakeholders
agree to and has obtained support for the rest of the project (or at least the next stage of it).

14 Chapter 1 Disciplined Agile Delivery in a Nutshell

Figure 1.6 Inception phase overview

The Construction Phase
The Construction phase in DAD is the period of time during which the required functionality is
built. The timeline is split up into a number of time-boxed iterations. These iterations, the poten-
tial activities of which are overviewed in Figure 1.7, should be the same duration for a particular
project and typically do not overlap. Durations of an iteration for a certain project typically vary
from one week to four weeks, with two and four weeks being the most common options. At the
end of each iteration a demonstrable increment of a potentially consumable solution has been
produced and regression tested. At this time we consider the strategy of how to move forward in
the project. We could consider executing an additional iteration of construction, and whether to
deploy the solution to the customer at this time. If we determine that there is sufficient functional-
ity to justify the cost of transition, sometimes referred to as minimally marketable release
(MMR), then our Construction phase ends and we move into the Transition phase. The Construc-
tion phase is covered in greater detail in Chapters 13 through 17.

The Transition Phase
The Transition phase focuses on delivering the system into production (or into the marketplace in
the case of a consumer product). As you can see in Figure 1.8 there is more to transition than
merely copying some files onto a server. The time and effort spent transitioning varies from
project to project. Shrink-wrapped software entails the manufacturing and distribution of soft-
ware and documentation. Internal systems are generally simpler to deploy than external systems.
High visibility systems may require extensive beta testing by small groups before release to the
larger population. The release of a brand new system may entail hardware purchase and setup
while updating an existing system may entail data conversions and extensive coordination with
the user community. Every project is different. From an agile point of view, the Transition phase
ends when the stakeholders are ready and the system is fully deployed, although from a lean point

Goal-Driven Delivery Lifecycle 15

Collaborate ConcludeCoordinate

Project
selected

· Initiate team
· Schedule stakeholders

for envisioning sessions

· Build team
· Requirements envisioning
· Architecture envisioning
· Consider feasibility
· Align with enterprise strategy
· Release planning (initial)
· Develop shared vision
· Set up environment

· Light-weight
milestone
review

· Communicate
vision to
stakeholders

Stakeholder
consensus

Up to a few hours Ideally: Up to a few weeks
Average: Four weeks

Worst case: Several months

Up to a few hours

of view, the phase ends when your stakeholders have worked with the solution in production and
are delighted by it. The Transition phase is covered in greater detail in Chapters 18 and 19.

16 Chapter 1 Disciplined Agile Delivery in a Nutshell

Collaborate ConcludeCoordinate

Iteration
start

· Iteration planning
· Iteration modeling · Test-driven development (TDD)

· Acceptance TDD (ATDD)
· Continuous deployment (CD)
· Look-ahead modeling
· Parallel independent testing
· Continuous documentation
· Non-solo development
· Look-ahead planning

· Iteration demo
· Retrospective
· Release

planning
(update)

· Determine “go
forward ”
strategy

Potentially
consumable
solution

Two hours for each week of
the iteration length

Typical: One to four weeks

Average: Two weeks
Worst case:: Six weeks One hour per week

of iteration length

· Visualize work
· Daily coordination meeting
· Refactoring
· Developer regression testing
· Model storming
· Continuous integration (Cl)
· Sustainable pace
· Prioritized requirements
· Architecture spike
· Collective ownership
· Burndown chart
· Automated metrics

“Advanced” practices:“Standard” practices:

Figure 1.7 Construction iteration overview

Collaborate ConcludeCoordinate

Sufficient
functionality

· Phase planning · Transition planning
· End-of-lifecycle testing and fixing
·

Pilot/beta the solution
Data and user migration

·
Finalize documentation·
Communicate deployment·

· Prepare support environment
· Train/educate stakeholders

· Production
readiness
review

· Deploy
solution

Production
ready

Ideally: Nothing
Typical: One hour per week

of collaborate time

Ideally: Nothing
Average: Four weeks

Worst case: Several months

Ideally: Less
than an hour
Worst case:

Several months

· Actual
usage

Delighted
stakeholders

Figure 1.8 Transition phase overview

Some agilists will look at the potential activities listed in Figure 1.8 and ask why you
couldn’t do these activities during construction iterations. The quick answer is yes, you should
strive to do as much testing as possible throughout the lifecycle and you should strive to write and
maintain required documentation throughout the lifecycle, and so on. You may even do some
stakeholder training in later construction iterations and are more likely to do so once your solu-
tion has been released into production. The more of these things that you do during the Construc-
tion phase, the shorter the Transition phase will be, but the reality is that many organizations

require end-of-lifecycle testing (even if it’s only one last run of your regression test suite), and
there is often a need to tidy up supporting documentation. The November 2010 Ambysoft Agile
State of the Art survey found that the average transition/release phase took 4.6 weeks.

Enterprise Aware
DAD teams work within your organization’s enterprise ecosystem, as do other teams, and explic-
itly try to take advantage of the opportunities presented to them—to coin an environmental cliché
“disciplined agilists act locally and think globally.” This includes working closely with the fol-
lowing: enterprise technical architects and reuse engineers to leverage and enhance2 the existing
and “to be” technical infrastructure; enterprise business architects and portfolio managers to fit
into the overall business ecosystem; senior managers who should be governing the various teams
appropriately; operations staff to support your organization’s overall development and operations
(DevOps) efforts; data administrators to access and improve existing data sources; IT develop-
ment support people to understand and follow enterprise IT guidance (such as coding, user inter-
face, security, and data conventions to name a few); and business experts who share their market
insights, sales forecasts, service forecasts, and other important concerns. In other words, DAD
teams should adopt what Mark refers to as a “whole enterprise” mindset.

WHAT IS APPROPRIATE GOVERNANCE?
Effective governance strategies should enhance that which is being governed. An appropri-
ate approach to governing agile delivery projects, and we suspect other types of efforts, is
based on motivating and then enabling people to do what is right for your organization.What
is right of course varies, but this typically includes motivating teams to take advantage of,
and to evolve, existing corporate assets following common guidelines to increase consis-
tency, and working toward a shared vision for your organization. Appropriate governance is
based on trust and collaboration. Appropriate governance strategies should enhance the
ability of DAD teams to deliver business value to their stakeholders in a cost effective and
timely manner.

Unfortunately many existing IT governance strategies are based on a command-and-con-
trol, bureaucratic approach that often proves ineffective in practice. Chapter 20, “Governing
Disciplined Agile Teams,” explores appropriate governance, the impact of traditional gover-
nance strategies, and how to adopt an appropriate governance strategy in greater detail.

With the exception of startup companies, agile delivery teams do not work in a vacuum.
Often existing systems are currently in production, and minimally your solution shouldn’t impact
them. Granted, hopefully your solution will leverage existing functionality and data available in

Enterprise Aware 17

2. Disciplined agile teams strive to reduce the level of technical debt in your enterprise by adopting the philosophy of
mature campers and hikers around the world: Leave it better than how you found it.

production so there will always be at least a minor performance impact without intervention of
some kind. You will often have other teams working in parallel to your team, and you may want to
take advantage of a portion of what they’re doing and vice versa. Your organizations may be work-
ing toward a vision to which your team should contribute. A governance strategy might be in
place, although it may not be obvious to you, which hopefully enhances what your team is doing.

Enterprise awareness is an important aspect of self-discipline because as a professional you
should strive to do what’s right for your organization and not just what’s interesting for you.
Teams developing in isolation may choose to build something from scratch, or use different
development tools, or create different data sources, when perfectly good ones that have been suc-
cessfully installed, tested, configured, and fine-tuned already exist within the organization. We
can and should do better by doing the following:

• Leveraging enterprise assets. There may be many enterprise assets, or at least there
should be, that you can use and evolve. These include common development guidelines,
such as coding standards, data conventions, security guidelines, and user interface stan-
dards. DAD teams strive to work to a common infrastructure; for example, they use the
enterprise-approved technologies and data sources whenever possible, and better yet
they work to the “to be” vision for your infrastructure. But enterprise assets are far more
than standards. If your organization uses a disciplined architecture-centric approach to
building enterprise software, there will be a growing library of service-based compo-
nents to reuse and improve upon for the benefit of all current and future solutions. To do
this DAD teams collaborate with enterprise professionals—including enterprise archi-
tects, enterprise business modelers, data administrators, operations staff, and reuse engi-
neers—throughout the lifecycle and particularly during Inception during envisioning
efforts. Leveraging enterprise assets increases consistency and thereby ease of mainte-
nance, decreases development costs and time, and decreases operational costs.

• Enhancing your organizational ecosystem. The solution being delivered by a DAD
team should minimally fit into the existing organizational ecosystem—the business
processes and systems supporting them—it should better yet enhance that ecosystem.
To do this, the first step is to leverage existing enterprise assets wherever possible as
described earlier. DAD teams work with operations and support staff closely throughout
the lifecycle, particularly the closer you get to releasing into production, to ensure that
they understand the current state and direction of the organizational ecosystem. DAD
teams often are supported by an additional independent test team—see Chapter 15, “A
Typical Day of Construction”—that performs production integration testing (among
other things) to ensure that your solution works within the target production environ-
ment it will face at deployment time.

18 Chapter 1 Disciplined Agile Delivery in a Nutshell

• Sharing learnings. DAD teams are learning oriented, and one way to learn is to hear
about the experiences of others. The implication is that DAD teams must also be
prepared to share their own learnings with other teams. Within IBM we support agile
discussion forums, informal presentations, training sessions delivered by senior team
members, and internal conferences to name a few strategies.

• Open and honest monitoring. Although agile approaches are based on trust, smart
governance strategies are based on a “trust but verify and then guide” mindset. An
important aspect of appropriate governance is the monitoring of project teams through
various means. One strategy is for anyone interested in the current status of a DAD
project team to attend their daily coordination meeting and listen in, a strategy promoted
by the Scrum community. Although it’s a great strategy we highly recommend, it unfor-
tunately doesn’t scale very well because the senior managers responsible for governance
are often busy people with many efforts to govern, not just your team. In fact Scott
found exactly this in the 2010 How Agile Are You? survey. Another approach, one that
we’ve seen to be incredibly effective, is for DAD teams to use instrumented and inte-
grated tooling, such as Rational Team Concert (RTC), which generates metrics in real
time that can be displayed on project dashboards. You can see an example of such a
dashboard for the Jazz™ team itself at www.jazz.net, a team following an open commer-
cial strategy. Such dashboards are incredibly useful for team members to know what is
going on, let alone senior managers. A third strategy is to follow a risk-driven lifecycle,
discussed in the next section, with explicit milestones that provide consistent and coher-
ent feedback as to the project status to interested parties.

Risk and Value Driven
The DAD process framework adopts what is called a risk/value lifecycle, effectively a light-
weight version of the strategy promoted by the Unified Process (UP). DAD teams strive to
address common project risks, such as coming to stakeholder consensus around the vision and
proving the architecture early in the lifecycle. DAD also includes explicit checks for continued
project viability, whether sufficient functionality has been produced, and whether the solution is
production ready. It is also value driven, a strategy that reduces delivery risk, in that DAD teams
produce potentially consumable solutions on a regular basis.

It has been said “attack the risks before they attack you.” This is a philosophy consistent
with the DAD approach. DAD adopts what is called a risk-value driven lifecycle, an extension of
the value-driven lifecycle common to methods such as Scrum and XP. With a value-driven lifecy-
cle you produce potentially shippable software every iteration or, more accurately from a DAD
perspective, a potentially consumable solution every iteration. The features delivered represent
those in the requirements backlog that are of highest value from the perspective of the stakehold-
ers. With a risk-value driven lifecycle you also consider features related to risk as high priority

Risk and Value Driven 19

www.jazz.net

items, not just high-value features. With this in mind we explicitly address risks common to IT
delivery projects as soon as we possibly can. Value-driven lifecycles address three important
risks—the risk of not delivering at all, the risk of delivering the wrong functionality, and political
risks resulting from lack of visibility into what the team is producing. Addressing these risks is a
great start, but it’s not the full risk mitigation picture.

First and foremost, DAD includes and extends standard strategies of agile development
methods to reduce common IT delivery risks:

• Potentially consumable solutions. DAD teams produce potentially consumable solu-
tions every construction iteration, extending Scrum’s strategy of potentially shippable
software to address usability concerns (the consumability aspect) and the wider issue of
producing solutions and not just software. This reduces delivery risk because the stake-
holders are given the option to have the solution delivered into production when it
makes sense to do so.

• Iteration demos. At the end of each construction iteration the team should demo what
they have built to their key stakeholders. The primary goal is to obtain feedback from the
stakeholders and thereby improve the solution they’re producing, decreasing functional-
ity risk. A secondary goal is to indicate the health of the project by showing their com-
pleted work, thereby decreasing political risk (assuming the team is working
successfully).

• Active stakeholder participation. The basic idea is that not only should stakeholders,
or their representatives (i.e., product owners), provide information and make decisions
in a timely manner, they can also be actively involved in the development effort itself.
For example, stakeholders can often be actively involved in modeling when inclusive
tools such as paper and whiteboards are used. Active stakeholder involvement through
the entire iteration, and not just at demos, helps to reduce both delivery and functionality
risk due to the greater opportunities to provide feedback to the team.

DAD extends current agile strategies for addressing risk on IT delivery projects, but also
adopts explicit, lightweight milestones to further reduce risk. At each of these milestones an
explicit assessment as to the viability of the project is made by key stakeholders and a decision as
to whether the project should proceed is made. These milestones, indicated on the DAD lifecycle
depicted previously in Figure 1.3, are

• Stakeholder consensus. Held at the end of the Inception phase, the goal of this mile-
stone is to ensure that the project stakeholders have come to a reasonable consensus as
to the vision of the release. By coming to this agreement we reduce both functionality
and delivery risk substantially even though little investment has been made to date in the
development of a working solution. Note that the right outcome for the business may in
fact be that stakeholder consensus cannot be reached for a given project vision. Our

20 Chapter 1 Disciplined Agile Delivery in a Nutshell

experience is that you should actually expect to cancel upwards to10% of your projects
at this milestone, and potentially 25% of projects that find themselves in scaling situa-
tions (and are therefore higher risk).

• Proven architecture. In the early Construction phase iterations we are concerned with
reducing most of the risk and uncertainty related to the project. Risk can be related to
many things, such as requirements uncertainty, team productivity, business risk, and
schedule risk. However, at this point in time much of the risk on an IT delivery project is
typically related to technology, specifically at the architecture level. Although the high-
level architecture models created during the Inception phase are helpful for thinking
through the architecture, the only way to be truly sure that the architecture can support
the requirements is by proving it with working code. This is a vertical slice through the
software and hardware tiers that touches all points of the architecture from end to end. In
the UP this is referred to as “architectural coverage” and in XP as a “steel thread” or
“tracer bullet.” By writing software to prove out the architecture DAD teams greatly
reduce a large source of technical risk and uncertainty by discovering and then address-
ing any deficiencies in their architecture early in the project.

• Continued viability. In Scrum the idea is that at the end of each sprint (iteration) your
stakeholders consider the viability of your project. In theory this is a great idea, but in
practice it rarely seems to happen. The cause of this problem is varied—perhaps the
stakeholders being asked to make this decision have too much political stake in the
project to back out of it unless things get really bad, and perhaps psychologically people
don’t notice that a project gets into trouble in the small periods of time typical of agile
iterations. The implication is that you need to have purposeful milestone reviews where
the viability of the project is explicitly considered. We suggest that for a given release
you want to do this at least twice, so for a six month project you would do it every sec-
ond month, and for longer projects minimally once a quarter.

• Sufficient functionality. The Construction phase milestone is reached when enough
functionality has been completed to justify the expense of transitioning the solution into
production. The solution must meet the acceptance criteria agreed to earlier in the
project, or be close enough that it is likely any critical quality issues will be addressed
during the Transition phase.

• Production ready. At the end of the Transition phase your key stakeholders need to
determine whether the solution should be released into production. At this milestone,
the business stakeholders are satisfied with and accept the solution and the operations
and support staff are satisfied with the relevant procedures and documentation.

• Delighted stakeholders. The solution is running in production and stakeholders have
indicated they are delighted with it.

Risk and Value Driven 21

Scalable
The DAD process framework provides a scalable foundation for agile IT and is an important part
of the IBM agility@scale3 strategy. This strategy makes it explicit that there is more to scaling
than team size and that there are multiple scaling factors a team may need to address. These scal-
ing factors are

• Geographical distribution. A team may be located in a single room, on the same floor
but in different offices or cubes, in the same building, in the same city, or even in differ-
ent cities around the globe.

• Team size. Agile teams may range from as small as two people to hundreds and poten-
tially thousands of people.

• Regulatory compliance. Some agile teams must conform to industry regulations such
as the Dodd-Frank act, Sarbanes-Oxley, or Food and Drug Administration (FDA)
regulations.

• Domain complexity. Some teams apply agile techniques in straightforward situations,
such as building an informational Web site, to more complex situations such as building
an internal business application, and even in life-critical health-care systems.

• Technical complexity. Some agile teams build brand-new, “greenfield systems” from
scratch running on a single technology platform with no need to integrate with other
systems. At the other end of the spectrum some agile teams are working with multiple
technologies, evolving and integrating with legacy systems, and evolving and accessing
legacy data sources.

• Organizational distribution. Some agile teams are comprised of people who work for
the same group in the same company. Other teams have people from different groups of
the same company. Some teams are made up of people from similar organizations work-
ing together as a consortium. Some team members may be consultants or contractors.
Sometimes some of the work is outsourced to one or more external service provider(s).

• Organizational complexity. In some organizations people work to the same vision and
collaborate effectively. Other organizations suffer from politics. Some organizations
have competing visions for how people should work and worse yet have various sub-
groups following and promoting those visions.

• Enterprise discipline. Many organizations want their teams to work toward a common
enterprise architecture, take advantage of strategic reuse opportunities, and reflect their
overall portfolio strategy.

22 Chapter 1 Disciplined Agile Delivery in a Nutshell

3. The term “agility@scale” was first coined by Scott in his IBM developerWorks blog by the same name. The full term
is now IBM agility@scale™.

Each team will find itself in a unique situation and will need to tailor its strategy accord-
ingly. For example a team of 7 collocated people in a regulatory environment works differently
than a team of 40 people spread out across several locations in a non-regulatory environment.
Each of the eight scaling factors just presented will potentially motivate tailoring to DAD prac-
tices. For example, although all DAD teams do some sort of initial requirements envisioning dur-
ing the Inception phase, a small team does so differently than a large team, a collocated team uses
different tools (such as whiteboards and paper) than a distributed team (who might use IBM
Rational Requirements Composer in addition), and a team in a life-critical regulatory environ-
ment would invest significantly more effort capturing requirements than a team in a nonregula-
tory environment. Although it’s the same fundamental practice, identifying initial requirements,
the way in which you do so will be tailored to reflect the situation you face.

Concluding Thoughts
The good news is that evidence clearly shows that agile methods deliver superior results
compared to traditional approaches and that the majority of organizations are either using agile
techniques or plan to in the near future. The bad news is that the mainstream agile methods—
including Scrum, Extreme Programming (XP), and Agile Modeling (AM)—each provide only a
part of the overall picture for IT solution delivery. Disciplined Agile Delivery (DAD) is a hybrid
process framework that pulls together common practices and strategies from these methods and
supplements these with others, such as Agile Data and Kanban, to address the full delivery lifecy-
cle. DAD puts people first, recognizing that individuals and the way that they work together are
the primary determinants of success on IT projects. DAD is enterprise aware, motivating teams to
leverage and enhance their existing organizational ecosystem, to follow enterprise development
guidelines, and to work with enterprise administration teams. The DAD lifecycle includes
explicit milestones to reduce project risk and increase external visibility of key issues to support
appropriate governance activities by senior management.

Additional Resources
For more detailed discussions about several of the topics covered in this chapter:

• The Agile Manifesto. The four values of the Agile Manifesto are posted at http://www.
agilemanifesto.org/ and the twelve principles behind it at http://www.agilemanifesto.
org/principles.html. Chapter 2 explores both in greater detail.

• Agile surveys. Throughout the chapter we referenced several surveys. The Agile Jour-
nal Survey is posted at http://www.agilejournal.com/. The results from the Dr. Dobb’s
Journal (DDJ) and Ambysoft surveys are posted at http://www.ambysoft.com/surveys/,
including the original source data, questions as they were asked, as well as slide decks
summarizing Scott Ambler’s analysis.

Additional Resources 23

http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
http://www.agilemanifesto.org/principles.html
http://www.agilemanifesto.org/principles.html
http://www.agilejournal.com/
http://www.ambysoft.com/surveys/

• People first. The Alistair Cockburn paper, “Characterizing people as non-linear,
first-order components in software development” at http://alistair.cockburn.us/
Characterizing+people+as+non-linear%2c+first-order+components+in+software+
development argues that people are the primary determinant of success on IT projects.
In “Generalizing Specialists: Improving Your IT Skills” at http://www.agilemodeling.
com/essays/generalizingSpecialists.htm Scott argues for the need to move away from
building teams of overly specialized people.

• The Agile Scaling Model (ASM). The ASM is described in detail in the IBM white-
paper “The Agile Scaling Model (ASM): Adapting Agile Methods for Complex
Environments” at ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/raw14204usen/
RAW14204USEN.PDF.

• Lean. For more information about lean software development, Mary and Tom
Poppendieck’s Implementing Lean Software Development: From Concept to Cash
(Addison Wesley, 2007) is the best place to start.

• Hybrid processes. In SDLC 3.0: Beyond a Tacit Understanding of Agile (Fourth
Medium Press, 2010), Mark Kennaley summarizes the history of the software process
movement and argues for the need for hybrid processes that combine the best ideas from
the various process movements over the past few decades.

24 Chapter 1 Disciplined Agile Delivery in a Nutshell

http://alistair.cockburn.us/Characterizing+people+as+non-linear%2c+first-order+components+in+software+development
http://alistair.cockburn.us/Characterizing+people+as+non-linear%2c+first-order+components+in+software+development
http://alistair.cockburn.us/Characterizing+people+as+non-linear%2c+first-order+components+in+software+development
http://www.agilemodeling.com/essays/generalizingSpecialists.htm
http://www.agilemodeling.com/essays/generalizingSpecialists.htm

497

Index

A
acceptance criteria, 170
acceptance test-driven

development (ATDD),
279, 334

acceptance tests, 320-321,
391-392

accountability of teams, 86
active stakeholder participation,

51, 486-488
AD (Agile Data), 10

practices, 53
resources, 59
strengths, 42

ad hoc process improvement,
368-370

adaptive (detailed) planning, 198
adative (light) planning, 198
adative (none) planning, 198
address risks, 277
adoption rate of agile software

development, 1-2
advantages of agile software

development, 1

“Agile Architecture Strategies”
(article), 109

Agile Data. See AD
“Agile Enterprise Architecture”

(Ambler), 109, 481
Agile Estimating and Planning

(Cohn), 308, 361
agile governance, 451-456, 493
Agile Manifesto, 1, 23, 26,

39, 163
Agile Model Driven

Development (AMDD), 50
Agile Modeling. See AM
agile nature of DAD (Disciplined

Agile Delivery), 8-9
agile release planning, 193
Agile Scaling Model (ASM),

3-5, 24
agile statistics, 108
agile surveys, 23, 134
“Agile Testing and Quality

Strategies,” 81
Agile Testing: A Practical Guide

for Testers and Agile Teams
(Crispin and Gregory), 361

Agile Unified Process (AUP), 58
agiledata.org, 59, 109, 191
AgileGrocers POS (Point of

Sale) system
Construction phase, 383-384

acceptance test criteria,
391-392

concluding first
iteration, 403

coordinating days work,
395-397

daily coordination
meeting, 393-394

day-by-day breakdown,
397-403

fifth Construction
iteration, 410

fourth Construction
iteration, 409

high-priority work items,
387-390

ideal planning sheet hours,
384-386

iteration burndown chart,
394-395

498 Index

iteration retrospective,
405-406

iteration review, 403-405
last Construction

iteration, 413
milestone review, 413-414
ninth Construction

iteration, 411-413
other Construction phase

activities, 414-415
sanity check, 392-393
second Construction

iteration, 407-408
sixth Construction

iteration, 410-411
third Construction

iteration, 408-409
work item breakdown and

estimation, 392
Inception phase

alternative approaches to,
269-270

architecture envisioning,
265-266

concluding, 270-272
goals and background,

251-254
other Inception phase

activities, 268
release planning, 266-268
requirements envisioning,

262-264
summary of tasks

completed and work
products produced,
271-272

vision statement, 254-262
work item list, 264-265

Transition phase, 433
collaborating to deploy

solution, 438-439
planning, 434-438

Stakeholder Delight,
439-440

weekly goals, 435
work item priority,

437-438
agilemanifesto.org, 1, 23, 26, 39
agilemodeling.com, 59, 109, 191
agreement-building strategies,

142-144
all-hands demonstrations, 365,

459-461
AM (Agile Modeling), 9, 165

explained, 50
practices, 51-52
resources, 59
strengths, 42

Ambysoft Java Coding
Guidelines, 248

AMDD (Agile Model Driven
Development), 50

analysis paralysis, 133
Anderson, David J., 39
anti-patterns

Construction, 285-286
Inception, 132-133
Transition, 429-430

Appelo, Jurgen, 308
Appleton, Brad, 130
architecture

architectural runways, 129
architectural spikes, 129, 327
architecture envisioning, 51,

265-266
Construction phase, 277
initial architectural

modeling, 175
architecture through the

lifecycle, 190
benefits of, 176-177
IBM Global Services case

study, 181
IBM Rational case

study, 182

levels of architectural
specification detail,
178-181

model types, 182-186
modeling strategies,

187-189
resources, 191

proving, 276
architecture owners

challenges, 77-78
resources, 81
responsibilities, 76-77

artifacts, 446
just barely good enough

artifacts, 51
shared artifacts, 125

ASM (Agile Scaling Model),
3-5, 24

ATDD (acceptance test-driven
development), 279, 334

audit process, 446
AUP (Agile Unified Process), 58
autocratic project management

practices, 133
automation, 454

automated metrics, 347, 466
automated tools, 233

availability (teams), 293
available release windows, 216

B
backlogs, 45, 166, 275
Basili, Victor R., 481
Bays, Michael E., 431
Beautiful Teams (Stellman and

Greene), 108
Beck, Kent, 59
Bentley, Jon, 362
betas, 422
big requirements up front

(BRUF), 149-150, 174
Bjornvig, Gertrud, 191

Index 499

blockers, 317
Boehm, Barry, 362
Booch, Grady, 191
BPMN (Business Process

Modeling Notation), 237
Brooks, Frederick, 1
BRUF (big requirements up

front), 149-150, 174
build management tools, 236
burndown charts, 209, 318
business architecture

models, 182
Business Process Modeling

Notation (BPMN), 237
business value, providing, 476

C
cadences, 202-203, 208
Caldiera, Gianluigi, 481
canceling projects, 377
Cantor, Murray, 208, 481
Capex (capital expense), 440
capturing vision, 138-139
CCB (change control board), 166
CD (continuous deployment),

353-354, 486
change management,

344-345, 493
change prevention, 344-346
formal change

management, 166
responding to change, 29

“Characterizing people as non-
linear, first-order components
in software development”
(Cockburn), 24

charts, burndown, 318
iteration burndown charts,

394-395, 402
ranged burndown charts, 374

CI (continuous integration), 48,
236, 334, 350-352, 486

Clean Code: A Handbook of
Agile Software Craftsmanship
(Martin), 362

CM (configuration
management), 53, 236, 344

CMMI, 464
coaching, 488
Cockburn, Alistair, 24, 163, 246
code analysis (dynamic)

tools, 236
code analysis (static) tools, 236
code now, fix later, 332
code review tools, 236
code/schema analysis, 335
coding standard, 48
Cohn, Mike, 59, 218, 308, 361
collaboration with

stakeholders, 28-30
AgileGrocers POS project,

397-398
collaboration tools, 236

collective ownership, 48, 343
commercial tools, 233
commitment

deferring, 33
obtaining, 303-304

common to all, 280
communication, 31, 423-424
component teams, 96-98
concluding

first Construction
iteration, 403

Inception phase, 270-272
concurrent testing, 54
conditions of satisfaction, 262
configuration management, 53,

236, 344
constraints (AgileGrocers POS

system), 261
Construction iteration, 281

Construction phase, 15
agile practices

CD (continuous
deployment), 353-354

CI (continuous
integration), 350-352

parallel independent
testing, 355-358

reviews, 358-359
TDD (test-driven

development), 328-350
AgileGrocers POS (Point of

Sale) system, 383-384
acceptance test criteria,

391-392
concluding first

iteration, 403
coordinating day’s work,

395-397
daily coordination

meeting, 393-394
day-by-day breakdown,

397-403
fifth Construction

iteration, 410
fourth Construction

iteration, 409
high-priority work items,

387-390
ideal planning sheet hours,

384-386
iteration burndown chart,

394-395
iteration retrospective,

405-406
iteration review, 403-405
last Construction

iteration, 413
milestone review, 413-414
ninth Construction

iteration, 411-413
other Construction phase

activities, 414-415

500 Index

sanity check, 392-393
second Construction

iteration, 407-408
sixth Construction

iteration, 410-411
third Construction

iteration, 408-409
work item breakdown and

estimation, 392
analysis, 278
anti-patterns, 285-286
architecture, 277
common to all, 280
decision approaches, 380-381
deploying current build, 375
deployment, 283
design, 278
go-forward strategies,

376-380
goals, 275-277
how it works, 274
iteration hardening, 363
iteration planning workshops

agile planning, 290-291
decomposing work items

into tasks, 299-300
eliciting work item details,

294-297
modeling potential

solutions, 298-299
obtaining commitment,

303-304
planning team

availability, 293
resources, 308
sanity check, 302-303
selecting work items,

293-294
signing up for tasks, 300
team velocity, 301
updating estimates, 301
workflow, 291-292

look-ahead planning and
modeling, 306-307

ongoing activities
automated metrics

gathering, 347
change management,

344-345
collective ownership, 343
configuration

management, 344
documentation, 340-341
non-solo

development, 343
organizational

standards, 348
sustainable pace, 347
task progress updates, 345
team leadership, 345-347

patterns, 284-285
programming, 278
planning

coordination meetings
(Kanban), 312

daily coordination
meetings (Scrum),
312-319

weekly status
meetings, 312

process assessment, 373-374
process improvement

strategies, 368-373
project management, 279
quality assurance, 280
resources, 360-362
risk assessment, 375
risk-value lifecycle, 282-283
solution demonstration

strategies, 365-368
stabilizing day’s work, 359
3C rhythm, 277
technical writing, 279
testing, 278
timeline, 309-310
user experience (UX), 279

visualizing your plan,
304-306

workflow, 319
building solutions, 332
exploring solutions,

322-331
sharing solutions, 339
understanding work items,

320-324
validating solutions,

334-338
consumability design, 327
consumability of solutions, 490
contingency

iteration contingency, 393
release contingency, 389

continuous delivery, 29
Continuous Delivery: Reliable

Software Releases Through
Build, Test, and Deployment
Automation (Humble and
Farley), 361

continuous deployment (CD),
353-354, 486

continuous documentation,
51, 490

continuous integration (CI), 48,
236, 334, 350-352, 486

continuous learning, 487-489
coordinating

project management, 93
requirements, 93
technical dependencies, 95
work, 395-397

coordination meetings, 459
AgileGrocers POS system,

393-394
Kanban, 312
Scrum, 46, 312-319

Coplien, James O., 191
corporate performance,

optimizing, 453

Index 501

cost
estimating, 218-225
qualitative benefits and

costs, 224
quantitative benefits and

costs, 223
Crago, Steven, 153
Cripps, Peter, 191
Crispin, Lisa, 361
Crystal Clear, 58
current build, deploying, 375
customer acceptance tests,

320-321
customer tests, 48, 320-321

D
daily coordination meetings. See

coordination meetings
daily plans, 197
Daily Scrum, 46
dashboard tools, 236
data governance, 463
data management, team

interaction with, 107
data migration, 422, 431
database refactoring, 53
database regression testing, 53
decelerators, 317
decision approaches, 380-381
decision rights, 444
dedicated facilities, 132, 239
defect counts, 286
defect management, 339
deferring commitment, 33
deliverable documentation,

340-341
delivery

early and continuous
delivery, 29

frequent delivery, 30
lean principles, 34
sustainable delivery, 31

demonstrating solutions to
stakeholders, 365-368,
375, 489

all-hands demonstrations,
459-461

iteration demonstrations, 459
Densmore, Jim, 182, 220
dependencies

with other teams, 216
between work items, 299

deployable releases, 276
deployment

collaboration, 438-439
Construction phase, 283
continuous deployment, 486
deployment management

tools, 236
proven deployment/

installation, 427
rehearsing deployments, 422
solutions, 424-426
testing, 421
in timely manner, 476-477
trade-offs, 420
working builds, 375

deployment management
tools, 236

design
Construction phase, 278
consumability design, 327
design specifications, 327
evolutionary architecture, 54
importance of, 31
information design, 327
simplicity, 49

detailed end-to-end
specification, 178

detailed interfaces, 178
determining when project

ends, 440
developer sandboxes, 53
development guidelines, 48, 53,

247-248

DevOps, 17, 29, 37, 154, 176,
187, 202, 294, 329, 357, 421,
425, 463, 490-492

diagrams, use case, 263-264
digital cameras, 239
digital taskboards, 407
disaster recovery, 424
disciplined agile principles,

29-32
disciplined agile values, 27-29
disciplined approach to agile

delivery
agile governance, 493
continuous learning, 487-489
enterprise awareness,

491-492
full delivery lifecycle, 492
goal-driven approach,

490-491
incremental delivery of

solutions, 490
lean strategies, 493-494
mainstream agile practices,

484-485
reduced feedback cycle,

485-486
resources, 495
streamlined inception, 492
streamlined transition, 493

documentation
continuous documentation,

51, 490
creating deliverable

documentation, 340-341
detailed vision

documents, 138
documentation tools, 237
finalizing, 422
late documentation, 51
minimal documentation, 132
non-solo development, 343
versus solutions, 28

Domain Driven Design: Tackling
Complexity in the Heart of
Software (Evans), 108

502 Index

domain experts, 78
domain modeling, 153
dominance of agile software

development, 1-2
Drive (Pink), 108
DSDM (Dynamic System

Development Method), 41, 58
duration versus effort, 386
Dynamic System Development

Method (DSDM), 41, 58

E
early delivery, 29
“Earned Value for Agile

Development” (Rusk), 481
earned value management

(EVM), 481
Eclipse Process Framework

(EPF), 56-59
educating stakeholders, 424
Eeles, Peter, 191
effective teams, strategies for,

85-88
effort versus duration, 386
eliminating waste, 33
empathy for stakeholders, 297
empirical observation, 466
end users, 67
end-of-lifecycle testing, 334, 421
ensuring production readiness,

421-422
Enterprise architects, team

interaction with, 106
enterprise awareness, 17-19, 87,

491-492
enterprise development

guidance, 460
enterprise professionals, 460
enterprise support strategies

(Inception phase), 117-123
enterprise teams, 455
Enterprise Unified Process

(EUP) site, 191

enterpriseunifiedprocess.com,
191

EPF (Eclipse Process
Framework), 56-59

escalation process, 445
estimates

AgileGrocers POS
system, 392

fixed price estimates,
126, 129

for AgileGrocers POS (Point
of Sale) case study, 267

ranged estimates, 132
updating, 301

estimating
cost and value, 218-225
estimation techniques,

comparing, 221-222
estimation tools, 237

EUP (Enterprise Unified
Process) site, 191

Evans, Eric, 108
EVM (earned value

management), 481
Evo, 1
evolutionary architecture, 54
evolutionary design, 54
exceptions, 445
executable specifications, 51
explicit lists, 170
Extreme Programming (XP), 1, 9

practices, 48-49
resources, 59
strengths, 42

Extreme Programming
Explained (Beck), 59

F
face-to-face communication, 31
Farley, David, 361
FDD (Feature Driven

Development), 58
feature teams, 96-98

feedback cycle, reducing,
485-486

fifth Construction iteration
(AgileGrocers POS system),
410

finalizing documentation, 422
fixed price estimates, 126-129
fixed-everything projects, 225
flexible work item

management, 345
focus, 85
formal change management, 166
formal milestone reviews,

380-381
formal modeling sessions, 162
formal point counting, 218
formal reviews, 143
forming teams, 230-232
formulating initial schedules,

208-217
fourth Construction iteration

(AgileGrocers POS
system), 409

Fourth Medium Consulting,
420, 440

Fowler, Martin, 326, 361
frequency of releases, 203
frequent delivery, 30
full delivery lifecycle, 492
funding strategies, 126-129, 134

G
Ganis, Matthew, 108, 308
Gantt charts, 215-217
general planning strategies,

197-201
generalizing specialists, 88
geographically distributed/

dispersed teams, 99-101
Gilb, Tom, 39
go-forward strategies, 376-380
goal question metric (GQM)

approach, 466

Index 503

goal-driven approach, 490-491
goal-driven delivery life cycle,

11-14
“The Goal Question Metric

Approach” (Basili et al), 481
goals

Construction, 275-277
Inception, 113-117

Gorans, Paul, 454
Gottesdiener, Ellen, 174
governance, 17, 441-442

agile governance
philosophies, 451-454

agile governance strategies,
455-456

agile practices that support
governance, 459-462

DAD milestones, 457-458
governance body, 107, 444
importance of, 447-448
issues addressed by, 443-447
metrics, 465-468

audiences for, 468
guidelines, 465-468
mapping goals, audience,

and potential metrics,
476-478

table of, 469-475
overall IT governance

strategy, 460-465
resources, 480-481
risk mitigation, 479-480
scope, 443
traditional governance

strategies, 448-451
governance body, 107, 444
GQM (goal question metric)

approach, 466
Greene, Jennifer, 108
Gregory, Janet, 361
gross velocity, 209, 213
Grout, Tony, 162, 298
guidelines, 446, 453
Gutz, Steve, 361

H
Handbook of Software

Architecture site, 191
hardware, procuring, 238
Harold, Rusty, 361
healthy working environment,

476-478
help desks, 424
high-priority work items

(AgileGrocers POS system),
387-390

high-level overview, 178
Hillier, Rick, 82
Holmes, Carson, 495
Holmes, Julian, 422, 495
How to Measure Anything:

Finding the Value of
Intangibles in Business
(Hubbard), 481

Hubbard, Douglas W., 481
Humble, Jez, 361
hybrid process framework, 9-10

I
“I Want to Run an Agile Project”

(video), 495
IASA (International Association

of Software Architects), 191
IBM, 1
IBM Global Business

Services, 153
IBM Global Services, 181, 292,

317, 373, 454
IBM Practices, 54-59
IBM Practices Library, 42
IBM Rational, 162, 182,

298, 479
IBM Rational Requirements

Composer (RRC), 162
IBM Rational Team Concert

(RTC), 153, 233, 299

ideal planning sheet hours
(AgileGrocers POS system),
384-386

Implementing Lean Software
Development (Poppendieck),
24, 39, 59

Implementing Scrum site, 59
importance of agile practices, 58
improving process, 368-373
“Improving Software

Economics: Top 10 Principles
for Achieving Agility at Scale”
(Royce), 39

Inception phase, 14, 111-112
AgileGrocers POS (Point of

Sale) system
alternative approaches

to Inception phase,
269-270

architecture envisioning,
265-266

concluding Inception
phase, 270-272

goals and background,
251-254

other Inception phase
activities, 268

release planning, 266-268
requirements envisioning,

262-264
summary of tasks

completed and work
products produced,
271-272

vision statement, 254-262
work item list, 264-265

anti-patterns, 132-133
coding and environment

setup, 129-130
enterprise support strategies,

117-123
goals, 113-117

504 Index

initial architectural
modeling, 175

architecture through the
lifecycle, 190

benefits of, 176-177
IBM Global Services case

study, 181
IBM Rational case

study, 182
levels of architectural

specification detail,
178-181

model types, 182-186
modeling strategies,

187-189
resources, 191

initial requirements modeling
benefits of, 147-148
level of detail, choosing,

149, 152
model types, 1531-162
modeling strategies,

162-165
NFR (nonfunctional

requirement) capture
strategies, 170-171

resources, 173-174
work item management

strategies, 166-170
length of, 131
with nonagile groups, 121
patterns, 131-132
project funding strategies,

126-129, 134
project vision, identifying.

See vision
resources, 134
sample three-week Inception

phase schedule, 117-119
streamlining, 492
teams, forming, 230-231
when to run, 130-131

incremental delivery of
solutions, 490

independent testers, 79-81
individual learning, 488
informal modeling sessions, 163
informal reviews, 142
information design, 327
initial architectural

modeling, 175
architecture through the

lifecycle, 190
benefits of, 176-177
IBM Global Services case

study, 181
IBM Rational case study, 182
levels of architectural

specification detail, 178-181
model types, 182-186
modeling strategies, 187-189
resources, 191

initial release planning, 193
estimating cost and value,

218-225
formulating initial schedule,

208-217
how to do it, 196
who does it, 194

initial requirements modeling
benefits of, 147-148
level of detail, choosing,

149-152
model types, 153-162
modeling strategies, 162-165
NFR (nonfunctional

requirement) capture
strategies, 170-171

resources, 173-174
work item management

strategies, 166-170
initiating projects. See

Inception phase
insiders, 67
integrated tool suites, 233
integrators, 79
interacting with other teams,

104-108

internal open source, 97, 109
interviews, 163
iron triangle anti-pattern, 134
IT Governance (Weill and

Ross), 481
IT governance strategy, 460-465
IT investment, 476
IT solutions over software, 10-11
iteration burndown charts

AgileGrocers POS project,
394-395

purpose of, 402
iteration contingency, 393
iteration demonstrations,

365-366, 459
iteration hardening, 363
iteration length, 202-204
iteration modeling, 51
iteration planning workshops, 46,

88, 197
agile planning, 290-291
decomposing work items into

tasks, 299-300
eliciting work item details,

294-297
modeling potential solutions,

298-299
obtaining commitment,

303-304
planning team

availability, 293
resources, 308
sanity check, 302-303
selecting work items,

293-294
signing up for tasks, 300
team velocity, 301
updating estimates, 301
workflow, 291-292

iterative development, 25, 55
The International Association

of Software Architects
(IASA), 191

Index 505

J-K
Jeffries, Ron, 59
just barely good enough

artifacts, 51

Kanban, 10, 34-35, 41, 48,
312, 494

KANBAN: Successful
Evolutionary Change for Your
Technology Business
(Anderson), 39

Katzenbach, Jon R., 108
Kennaley, Mark, 24, 420, 440,

459, 487
Kernigham, Brian W., 362
Kerth, Norm, 371, 382
Kessler, Karl, 82
Knaster, Richard, 451, 479
knowledge sharing process,

33, 445
Krebs, William, 382
Kroll, Per, 382

L
large teams, 93-99

component teams, 96-98
feature teams, 96-98
internal open source, 97, 109
project management

coordination, 93
requirements coordination, 93
technical coordination, 95

last Construction iteration
(AgileGrocers POS
system), 413

late documentation, 51
leadership, 345-347
Leadership: 50 Points of

Wisdom for Today’s Leaders
(Hillier), 82

Leading Lean Software
Development (Poppendieck),
39, 82

Lean Architecture for Agile
Software Development
(Coplien and Bjornvig), 191

“Lean Development
Governance” (Kroll and
Ambler), 480

The Lean Startup (Ries),
376, 382

lean principles, 33-36
lean programming, 493-494
lean software development, 24

principles, 53-54
resources, 59
strengths, 42

Lean Software Development
(Poppendieck), 39

lean techniques, 382
learning

continuous learning, 487-489
learning from experiences,

368-373
learning opportunities, 85
learning orientation of

DAD, 7-8
Leffingwell, Dean, 59, 134, 145
levels of architectural

specification detail, 178-181
lifecycle

architecture through the
lifecycle, 190

lifecycle goals, 274
lighting work areas, 243
lightweight milestone

reviews, 380
lightweight vision

statements, 139
limiting WIP (work in

progress), 35

lists
explicit lists, 170
work item lists

for AgileGrocers POS
(Point of Sale) system,
264-265

managing, 307
look-ahead planning and

modeling, 51, 306-307, 322,
326, 395

M
management

change management, 344-345
configuration

management, 344
Management 3.0: Leading Agile

Developers, Developing Agile
Leaders (Appelo), 308

Managing Software Debt
(Sterling), 362

Manifesto for Agile Software
Development, 1, 23, 26,
39, 163

manual models, 237
manual taskboards, 407
manual testing, 335
manual tools, 233
mapping goals, audience, and

potential metrics, 476-478
Martin, Robert C., 362
MDD (model-driven

development), 328
measured improvement, 368-370
measuring teams, 465-468

audiences for metrics, 468
guidelines, 465-468
mapping goals, audience, and

potential metrics, 476-478
table of metrics, 469-475

medium-sized teams, 90-93

506 Index

meetings
AgileGrocers POS project,

393-394
coordination meetings, 459

Kanban, 312
Scrum, 312-319

iteration planning
meetings. See iteration
planning workshops

look-ahead planning and
modeling, 306-307

team meetings, 380
weekly status meetings, 312

Mencken, H. L., 1
mentoring, 488
metrics, 445

audiences for, 468
automated metrics

gathering, 347
guidelines, 465-468
mapping goals, audience, and

potential metrics, 476-478
table of, 469-475

migration, 422, 431
milestones, 457-458

formulating initial
schedules, 216

reviews, 455
AgileGrocers POS

system, 413-414
formal milestone reviews,

380-381
lightweight milestone

reviews, 380
mind maps, 255-256
minimal documentation, 132
minimally marketable release

(MMR), 15
mitigating risk, 445, 479-480
MMR (minimally marketable

release), 15
model storming, 51, 322, 326
model-driven development

(MDD), 328

modeling
AM (Agile Modeling), 9, 165

explained, 50
practices, 51-52
resources, 59
strengths, 42

initial architectural
modeling, 175

architecture through the
lifecycle, 190

benefits of, 176-177
IBM Global Services case

study, 181
IBM Rational case

study, 182
levels of architectural

specification detail,
178-181

model types, 182-186
modeling strategies,

187-189
resources, 191

initial requirements modeling
benefits of, 147-148
level of detail, choosing,

149-152
model types, 153-162
modeling strategies,

162-165
NFR (nonfunctional

requirement) capture
strategies, 170-171

resources, 173-174
work item management

strategies, 166-170
look-ahead planning and

modeling, 51, 306-307, 322,
326, 395

MDD (model-driven
development), 328

model storming, 322, 326
potential solutions, 298-299
tools, 237

Morris, John, 431
motivating teams, 452
multiple iterations, 427
multiple models, 52
The Mythical Man Month

(Brooks), 1

N
net present value (NPV),

224, 473
net velocity, 210
NFRs (nonfunctional

requirements), 154, 170-171
ninth Construction iteration

(AgileGrocers POS system),
411-413

nonagile groups, working
with, 121

nonfunctional requirements
(NFRs), 154, 170-171

nonfunctional testing, 335
non-solo development, 343,

485-488
non-solo work, 48
NPV (net present value),

224, 473
Nygard, Michael T., 431

O
OID (Outside-In Development),

41, 59
on-demand demonstrations, 365
open source tools, 233
OpenUP (Open Unified Process)

explained, 56
project lifecycle, 56-57
resources, 59
strengths, 42

“Operational IT Governance”
(Cantor and Sanders), 481

operations governance, 463
Opex (operations expense), 440

Index 507

optimizing corporate
performance, 453

organizational change, 490
organizational standards, 348
organizing

physical work environments,
238-244

teams
geographically

distributed/dispersed
teams, 99-101

large teams, 93-99
medium-sized teams,

90-93
small teams, 89-90

virtual work environments,
244-246

Outside-In Development (OID),
41, 59

Outside-in Software
Development (Kessler and
Sweitzer), 59, 82

overall IT governance strategy,
4603-465

ownership, collective, 343

P
pace, sustainability, 347
pair programming, 48
parallel independent testing, 334,

355-358
partners, 67
patterns

Construction, 284-285
Inception, 131-132
Transition, 427-428

payback period, 224
PDCA (Plan, Do, Check, Act)

cycle, 14
people-first nature of DAD,

5-7, 27
phase duration, 202
physical taskboards, 304-306

Pike, Rob, 362
pilots, 422
Pink, Dan, 108
Pittaway, Andy, 181, 292,

317, 373
pivoting project direction, 377
Plan, Do, Check, Act (PDCA)

cycle, 14
planning

AgileGrocers POS
Construction iterations

acceptance test criteria,
391-392

coordinating day’s work,
395-397

daily coordination
meeting, 393-394

day-by-day breakdown,
397-403

high-priority work items,
387-390

ideal planning sheet hours,
384-386

iteration burndown charts,
394-395

sanity check, 392-393
work item breakdown and

estimation, 392
cadences, 202-203, 208
Construction phase

daily coordination
meetings 312-319

weekly status
meetings, 312

daily plans, 197
general planning strategies,

197-201
initial release planning, 193

estimating cost and value,
218-225

formulating initial
schedule, 208-217

how to do it, 196
who does it, 194

iteration contingency, 393
iteration planning workshops,

88, 197
agile planning, 290-291
decomposing work items

into tasks, 299-300
eliciting work item details,

294-297
modeling potential

solutions, 298-299
obtaining commitment,

303-304
planning team

availability, 293
resources, 308
sanity check, 302-303
selecting work items,

293-294
signing up for tasks, 300
team velocity, 301
updating estimates, 301
workflow, 291-292

look-ahead planning and
modeling, 51, 306-307, 322,
326, 395

planning game, 49
planning poker, 218
portfolio plan, 196
release contingency, 389
release planning, 46, 55, 196
responsibility options, 195
scope, 196-197
short release cycles, 217
solution plans, 196
sprint planning, 46
strategies, comparing,

198-201
tools, 237
Transition phase, 419-421,

434-438
visualizing your plan,

304-306
planning (agile) tools, 237
planning (classic) tools, 237

508 Index

PMO (project management
office), 107

point counting, 218, 223
point-specific tools, 233
policies, 446
Poppendieck, Mary, 24, 39,

59, 82
Poppendieck, Tom, 24, 39,

59, 82
portfolio management, 262
portfolio plans, 196
post-delivery activities, 492
post mortems, 368-370
potential solutions, modeling,

298-299
Practical Data Migration

(Morris), 431
A Practical Guide to Distributed

Scrum (Woodward et al), 66,
101, 108, 308

Practical Project Initiation
(Wiegers), 134

The Practice of Programming
(Kernigham and Pike), 362

predelivery activities, 492
predictive (detailed)

planning, 197
predictive (light) planning, 198
predictive (none) planning, 198
preproduct testing, 375
present value (PV), 224
principals, 67
principles

disciplined agile principles,
29-32

lean principles, 33-36
prioritized requirements, 52
prioritized work items, 294-296,

437-438
process

assessing, 373-374
improving, 368-373
modeling, 154

The Process of Software
Architecting (Eeles and
Cripps), 191

procuring hardware, 238
product backlog, 45, 166
product owners

challenges, 69-71
reponsibilities, 68-69
resources, 81

“The Product Owner Role: A
Stakeholder Proxy for Agile
Teams,” 81

production, deploying into, 375
production readiness, 421-422
Production Ready milestone, 424
production release cadences, 206
Programming Pearls

(Bentley), 362
project funding strategies,

126-129, 134
project management, 93-95, 279
project management office

(PMO), 107
project missions, fulfilling, 276
projected revenue, 224
projected savings, 224
projectors space, 240
proven deployment/

installation, 427
proving architecture, 276
pull reporting, 466
push reporting, 466
PV (present value), 224

Q
QA (quality assurance), 106,

280, 463
qualitative benefits and

costs, 224
quality solutions, 476
quantified business value, 31
quantitative benefits and

costs, 223

“Questioning the Value of
Earned Value Management in
IT Projects” (Ambler), 481

R
RAD (Rapid Application

Development), 1
ranged burndown charts,

209-213, 374
ranged estimates, 132
ranked risk lists, 226
Rapid Application Development

(RAD), 1
Rational Requirements

Composer (RRC), 162
Rational Team Concert (RTC),

153, 299
Rational Unified Process

(RUP), 57
“A Real Revolutionary Agile

Manifesto: Value to
Stakeholders, Not Working
Code to Customers” (Gilb), 39

realities faced by DAD teams, 27
reality over rhetoric, 36-38
recovery, 424
reducing

feedback cycle, 485-486
technical debt, 476

refactoring, 48, 361
Refactoring: Improving the

Design of Existing Code
(Fowler), 361

Refactoring Databases (Ambler
and Sadalage), 431

reference books, 240
regression testing, 53
regulatory compliancy, 476-478
rehearsing deployments, 422
release contingency, 389
Release It! (Nygard), 431

Index 509

releases
deployable, 276
small releases, 49
release planning, 46, 55, 196,

266-268
release dates, 216

reporting status, 361
Requirements by Collaboration:

Workshops for Defining Needs
(Gottesdiener), 174

requirements coordination, 93
requirements envisioning, 52,

149-150, 153, 262-264
requirements modeling

benefits of, 147-148
level of detail, choosing,

149-152
model types, 153-162
modeling strategies, 162-165
NFR (nonfunctional

requirement) capture
strategies, 170-171

resources, 173-174
work item management

strategies, 166-170
requirements specifications,

321-322
respect, 34, 85, 452
responding to change, 29
responsibilities

of architecture owners, 76-77
definition of, 61
of everyone, 64-65
of product owners, 68-69
of team leads, 73-74
of team members, 71-72

retrospectives, 47, 368-373, 382,
405-406, 460, 489

retrospectives.com, 382
return on investment (ROI), 224
reuse engineers, 107
“Reuse Patterns and

Antipatterns,” 109

“Reuse Through Internal Open
Source,” 109

revenue projections, 224
reviews, 335, 358-359. See also

retrospectives
AgileGrocers POS (Point of

Sale) system, 403-405
formal milestone reviews,

380-381
formal reviews, 143
informal reviews, 142
lightweight milestone

reviews, 380
milestone reviews,

413-414, 455
sprint review and

demonstration, 46
reward structure, 445
Ries, Eric, 376, 382
rights, 61-64, 453
risk

AgileGrocers POS (Point of
Sale) case study, 268

assessing, 375
identifying, 225-226
risk mitigation, 445, 479-480
risk-value lifecycle, 19-21,

55, 282-283, 455
ROI (return on investment), 224
roles, 443-444

architecture owner, 76-81
definition of, 61
domain experts, 78
explained, 65
independent testers, 79-81
integrators, 79
product owner, 68-71, 81
project manager, 95
specialists, 78-81
stakeholders. See

stakeholders
team lead, 73-75
team members, 71-73

and teamwork, 66
technical experts, 79
traditional roles, 61-62
transitioning to, 79-80

Rombach, H. Dieter, 481
Ross, Jeanne W., 481
Royce, Walker, 33, 39, 308
RRC (Rational Requirements

Composer), 162
RTC (Rational Team Concert),

153, 203, 233-236, 299
RUP (Rational Unified

Process), 57
Rusk, John, 481

S
safe teams, 85
sandboxes, 53
Sanders, John D., 481
sanity checks, 302-303, 392-393
savings projections, 224
scalability, 22-23
scalar values, 466
Scaled Agile Framework, 41,

58-59
scaling agile, 479
Scaling Software Agility

(Leffingwell), 134, 145
scalingsoftwareagilityblog.com,

59
Schaefer, Lauren, 233, 246
schedules

formulating, 208-217
three-week Inception phase

schedule, 117-119
schema analysis tools, 237
Schwaber, Ken, 58
scope

of governance, 443
initial requirements modeling

benefits of, 147-148
level of detail, choosing,

149-152

510 Index

model types, 153-162
modeling strategies,

162-165
resources, 173-174
work item management

strategies, 166-171
Scrum, 9

daily coordination meetings,
312-319

explained, 44
practices, 45-47
product backlog, 166
resources, 59
strengths, 41
team roles, 6

Scrum Guide, 59
SDLC 3.0: Beyond a Tacit

Understanding of Agile
(Kennaley), 24

second Construction iteration
(AgileGrocers POS system),
407-408

security governance, 463
self-awareness, 87
self-leveling teams, 300
self-organization, 86, 459
shared artifacts, 125
shared solutions, 339
shared vision, 55
shared workspaces, 86
Shingo, Shigeo, 328
short iterations, 486
short release cycles, 217, 486
short transitions, 427
signing up for tasks, 300
simplicity, 31, 49, 275
single source information, 52
sixth Construction iteration

(AgileGrocers POS system),
410-411

skills development, 132
small releases, 49
small teams, 89-90
Smith, Douglas K., 108

Software Development
Experts, 487

Software Development Practice
Advisor (SDPA), 459

Software Engineering Economics
(Boehm), 362

Software Project Management: A
Unified Framework
(Royce), 308

Software Release Methodology
(Bays), 431

solutions
betas/pilots, 422
building, 332
consumability, 490
delivery of

early and continuous
delivery, 29

frequent delivery, 30
sustainable delivery, 31

demonstrating for
stakeholders, 365-368, 459

deploying, 424-426
importance of, 28
incremental delivery of, 490
preparing stakeholders for,

423-424
quality solutions, 476
sharing, 339
solution plan, 196
understanding, 322,-331
validating, 334-338

SPDA (Software Development
Practice Advisor), 459

specialists, 78-81, 88
spending IT investment

wisely, 476
split tests, 376
sprint planning, 46
sprint retrospective, 47
sprint review and

demonstration, 46
stabilizing day’s work, 359
stage gate strategy, 126

Stakeholder Delight milestone,
426, 439-440

stakeholders
active participation, 51,

486-488
AgileGrocers POS (Point of

Sale) case study, 257
agreement with project

vision, 142-143
communication with,

423-424
cost set by, 220
definition of, 67
demonstrating solutions to,

365-368, 459, 489
empathy with, 297
end users, 67
insiders, 67
partners, 67
preparing for solution release,

423-424
principals, 67
resources, 82
stakeholder collaboration,

28-30
stakeholder consensus,

142-143
Stakeholder Delight, 426,

439-440
training/educating, 424

standards, 348, 446
starting iterations midweek, 292
static code analysis, 361
status reporting, 361, 446
Stellman, Andrew, 108
Sterling, Chris, 362
storage cabinets, 240
story tests, 320-321
streamlining

inception, 492
transition, 493

structured surveys, 368, 382

Index 511

Succeeding with Agile: Software
Development Using Scrum
(Cohn), 59

sufficient artifacts, 51
supplementary

specifications, 170
support issues, 490
Surdek, Steffan, 108, 308
surveys, 368, 382
sustainable delivery, 31
sustainable pace, 49, 347
Sweitzer, John, 82

T
T&M (time and materials), 126
T-skilled people, 88
tables, 240
task progress, updating, 345
taskboards, 284, 304-306, 407
tasks, signing up for, 300
TCO (total cost of

ownership), 224
TDD (test-driven development),

49-52, 328-332, 348-350
team change management, 55
team lead, 73-75, 345-347
team members

challenges, 72-73
formulating initial

schedules, 216
growing skills, 277
responsibilities, 71-72

teams, 5-7, 83-84
accountability, 86
building, 101-104
disciplined agile

principles, 32
enterprise teams, 455
estimating cost and

value, 219
forming, 230-232
fully dispersed teams, 246

geographically
distributed/dispersed teams,
99-101

governance, 441-442
agile governance

philosophies, 451-454
agile governance

strategies, 455-456
agile practices that

support governance,
459-462

DAD milestones, 457-458
importance of, 447-448
issues addressed by,

443-447
metrics, 465-478
overall IT governance

strategy, 460-465
resources, 480-481
risk mitigation, 479-480
scope, 443
traditional governance

strategies, 448-451
interacting with other teams,

104-108
large teams, 93-99

component teams, 96-98
feature teams, 96-98
internal open source,

97, 109
project management

coordination, 93
requirements

coordination, 93
technical coordination, 95

measuring
audiences for metrics, 468
guidelines, 465-468
mapping goals, audience,

and potential metrics,
476-478

table of metrics, 469-475
medium-sized teams, 90-93
motivating, 452

resources, 108-109
self-leveling teams, 300
small teams, 89-90
strategies for effective teams,

85-88
team availability, 293
team change management, 55
team lead, 73-75, 345-347
team members

challenges, 72-73
formulating initial

schedules, 216
growing skills, 277
responsibilities, 71-72

velocity, 301
whole team strategy, 49,

88-89
technical coordination, 95
technical debt, 17, 76, 175-176,

276, 278, 280, 295, 302, 322,
326, 331-333, 338, 360, 362,
405, 465, 476-477, 479

technical experts, 79
technical stories, 170
technical writers, 106, 279
technology governance, 463
technology models, 182
terminology, 43-44
test data management tools, 237
test-driven development (TDD),

49-52, 328-332, 348-350
test planning and management

tools, 237
testing

acceptance tests, 320-321,
391-392

concurrent testing, 54
Construction phase, 278
deployment testing, 421
end-of-lifecycle testing,

334, 421
manual testing, 335
nonfunctional testing, 335

512 Index

parallel independent testing,
334, 355-358

preproduct testing, 375
split tests, 376
testing after

development, 332
tools, 237
UI (user interface)

testing, 334
testing (acceptance) tools, 237
testing (other) tools, 237
testing (unit) tools, 237
third Construction iteration

(AgileGrocers POS system),
408-409

3C rhythm, 14, 277
three-phase delivery

lifecycle, 492
time and materials (T&M), 126
TOGAF information site, 191
tools

automated tools, 233
build management tools, 236
code analysis (dynamic), 236
code analysis (static), 236
code review tools, 236
collaboration tools, 236
commercial tools, 233
configuration management

(CM) tools, 236
continuous integration (CI)

tools, 236
dashboard tools, 236
deployment management

tools, 236
documentation tools, 237
estimating tools, 237
integrated tool suites, 233
manual tools, 233
modeling tools, 237
open source tools, 233
planning (agile), 237
planning (classic), 237
point-specific tools, 233

schema analysis tools, 237
test data management

tools, 237
test planning and

management tools, 237
testing (acceptance), 237
testing (other), 237
testing (unit), 237

toolsets, 231-238
total cost of ownership

(TCO), 224
total value of ownership

(TVO), 224
toys, 240
traditional governance strategies,

448-451
traditional software

development, 25
training stakeholders, 424
Transition phase, 15-17, 417

AgileGrocers POS (Point of
Sale) system, 433

collaborating to deploy
solution, 438-439

planning, 434-438
Stakeholder Delight,

439-440
weekly goals, 435
work item priority,

437-438
anti-patterns, 429-430
determining when project

ends, 440
how it works, 418-419
patterns, 427-428
planning, 419-421
production readiness,

421-422
resources, 431
solutions, deploying, 424-426
Stakeholder Delight

milestone, 426
stakeholders, preparing for

solution release, 423-424
streamlining, 493

transition planning, 421
transparency, 452
trend tracking, 213, 466
trust, 85, 452
TVO (total value of

ownership), 224

U
UI (user interface) modeling,

154, 183
UI (user interface) testing, 334
UI prototypes, 186
UML (Unified Modeling

Language), 237
uncontrolled change, 345
UP (Unified Process), 1, 9
updating

estimates, 301
task progress, 345

usage-driven development, 47
usage modeling, 153
usage statistics, 376
use case diagrams, 263-264
use case-driven development, 55
user experience (UX), 106, 279
user interface (UI) modeling,

154, 183
user interface (UI) testing, 334
user stories, 257-259
user story-driven development,

47, 55
UX (User Experience)

experts, 106, 279

V
validating solutions, 334-338
value

disciplined agile values,
27-29

estimating, 218-225
net present value (NPV), 224
present value (PV), 224

Index 513

quantified business value, 31
value-driven lifecycle, 19-21,

45, 55, 282-283, 455
velocity (teams), 301
virtual work environments,

244-246
vision, 135-136

AgileGrocers POS (Point of
Sale) case study, 254-255

business problem to be
solved, 254-256

conditions of
satisfaction, 262

constraints, 261
key stakeholders, 257
mind map, 255-256
needs and features,
257-260
product overview, 260
user stories/features,

257-259
capturing, 138-139
creating, 137
shared vision, 55
stakeholder agreement with,

142-143
vision radiators, 139
vision statements

contents, 136-137
detailed, 138
lightweight, 139
portfolio management

approach, 262
vision strategies, 140-141
AgileGrocers POS (Point of

Sale) system
business problem to be

solved, 254-256
conditions of

satisfaction, 262
constraints, 261
key stakeholders, 257
mind map, 255-256

needs and features,
257-260

product overview, 260
user stories/features,

257-259
contents, 136-137
detailed vision

documents, 138
lightweight vision

statements, 139
portfolio management

approach, 262
visual management, 246-247
visualizing

plan, 304-306
workflow, 32-34

Vizdo, Mike, 59

W-X-Y-Z
wall space, 240
waste, eliminating, 33
water-scrum-fall, 134, 492
Water-Scrum-Fall Is the Reality

of Agile for Most Organizations
Today
(West), 134

waterfall software
development, 25

Waterfall2006.com, 495
weekly goals of Transition

phase (AgileGrocers POS
system), 435

weekly status meetings, 312
Weill, Peter, 481
West, Dave, 134
Whelan, Declan, 83
whiteboard space, 239
whole team strategy, 49, 54,

88-89
Wideband Delphi, 218
Wiegers, Karl, 134

WIP (work in progress),
limiting, 35

The Wisdom of Teams
(Katzenbach and Smith), 108

Woodward, Elizabeth, 66, 108,
121, 308

work areas, 241-242
work environments

physical environments,
238-244

virtual environments,
244-246

work in progress (WIP),
limiting, 35

work item pool, 167
work item stack, 166
work items, 45, 52, 275

AgileGrocers POS (Point
of Sale) system, 264-265,
437-438

decomposing into tasks,
299-300

dependencies, 299
flexible work item

management, 345
management strategies,

166-170, 307
prioritizing, 294-296
selecting, 293-294
understanding, 320-324
work item details, eliciting,

294-297
workflow, visualizing, 32-34
working builds, deploying, 375
working environment, 476-478
workspaces, shared, 86

XP (Extreme Programming), 1, 9
practices, 48-49
resources, 59
strengths, 42

	Contents
	Chapter 1 Disciplined Agile Delivery in a Nutshell
	Context Counts—The Agile Scaling Model
	What Is the Disciplined Agile Delivery (DAD) Process Framework?
	People First
	Learning Oriented
	Agile
	A Hybrid Process Framework
	IT Solutions over Software
	Goal-Driven Delivery Lifecycle
	Enterprise Aware
	Risk and Value Driven
	Scalable
	Concluding Thoughts
	Additional Resources

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-k
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W-X-Y-Z

