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where a system may exist in more than one phase that satisfies the criteria for stability, the
system adopts the most stable phase, rendering the other phases metastable. When two phases
are equally stable we obtain the saturation point, namely, a state where two (or more) phases
exist in equilibrium with each other. We may identify the stable and metastable phases by com-
paring their fugacity. Suppose we follow the ¢ isotherm starting from point D. Initially, the
compressibility equation has a single root and the only possible phase is the vapor. Beginning
with some pressure, the compressibility equation has three real roots, indicating that a liquid
phase is possible. However, the fugacity coefficient of this liquid is higher than that of the vapor:
the liquid phase is metastable, meaning less stable than the vapor at the same pressure and tem-
perature. A metastable phase may materialize briefly, but thermal fluctuations will eventually
cause the system to revert to the more stable phase. At saturation, both phases have the same
fugacity coefficient. Past this point, the situation is reversed: the liquid phase is more stable
than the vapor because its fugacity coefficient is lower. In all cases the most stable phase is
the one with the lower fugacity coefficient. This also means that the more stable phase has
lower Gibbs energy, lower residual Gibbs energy and lower fugacity, compared to the metastable
phase.3

7.6 Phase Diagrams from Equations of State

At this point we have reached one of the main goals we set out to achieve: obtain
the properties of a pure fluid at any temperature and pressure. The two pieces
of information that make this calculation possible are the equation of state and
the ideal-gas heat capacity as a function of temperature. The equation of state
allows the calculation of all residual properties and the determination of the phase
boundary, namely of the saturation pressure and the properties of the saturated
phases. Thus we have the tools to compute the entire phase diagram of the pure
fluid. This calculation is demonstrated with the example below.

Example 7.10: Phase Diagram of Ethylene
Calculate the phase diagram of ethylene using the SRK equation. The reference state is
saturated liquid at 110 K.

then be repeated
Solution We will demonstrate the calculation by obtaining all properties along an iso-

m, from the compressed liquid region to the superheated vapor. The calculation can
the@peated with other temperatures to obtain the complete phase diagram. We pick
T =260 K.

3. To reach this conclusion we write G = G '8 1 GR. Since both phases are the same pressure and
temperature, the term G'® is common in both phases. Then, the phase with the lower fugacity
coefficient has the lower residual Gibbs free energy and also the lower molar Gibbs free energy.
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Saturation pressure From Figure 7-3 we see that the saturation pressure at 260 K must be
between the pressures of points B (~ 15 bar) and C (~ 35 bar). Using P = 29 bar as the
trial pressure, we find the following roots for the compressibility factor:

Zy =0.1104, Z; =0.2244, Z3 = 0.6651.

Using Z;, = 7Z; in eq. (7.21) we find ¢, = 0.7733; with Zy = Z5 the same equation gives
¢y = 0.7539. These values are not sufficiently close. Therefore we repeat the calculation
with different pressures in small increments and construct the table below:

P (bar) Z Zy Pr dv  oL/dv
29 0.1104 0.6651 0.7733 0.7539 1.0256
30 0.1136 0.6461 0.7503 0.7452 1.0069
Bl 0.1169 0.6255 0.7289 0.7363 0.9898
32 0.1201 0.6026 0.7088 0.7274 0.9744

. . 1 .
The saturation pressure is betwegr? @BDand @)ag By refining the pressure step (or by
simple interpolation between the values in the table), we find

P2 = 30.39 bar.
The value reported in Perry’s Handbook is 30.046 bar.

Properties. The enthalpy and entropy are calculated using eqgs. (5.62) and (5.64):

H=AH® + HE - HE + H,, [5.62]
S=ASE + 88— SE + 5, [5.64]

with Hy = 0, So = 0. Since the reference state is the saturated liquid at Ty = 110 K, we
must first calculate the saturation pressure at this temperature. The calculation is done as
in the previous step. We find,

Py = 0.00333 bar, HE = —15565.8 J/mol, S&* = —141.505 J/mol K

For subcritical isotherms the procedure for the calculation of the enthalpy and entropy is
as follows:

Fix temperature.
Calculate the saturation pressure.

Fix pressure.

8 =

Determine the phase of the system at the given pressure: if P < P the phase is
vapor; if P > P52 the phase is compressed liquid; if P = P33, the system is saturated.

5. Solve for the compressibility factor. If three real roots, pick according to the phase.
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6. Calculate the residual properties as usual.
7. Calculate the ideal-gas parts of enthalpy and entropy.
8. Combine the ideal gas and residual parts to obtain the absolute properties.

9. Change the pressure and return to step 4 to repeat the calculation.

The calculation for supercritical isotherms is simpler. In this case there is no saturation
pressure and the compressibility equation has one real root only. Therefore, steps 2 and 4
are skipped, otherwise the calculation is identical.

The table below shows results at three pressures, 40 bar (compressed liquid), 30.3929 bar
(saturated vapor-liquid) and 20 bar (superheated vapor).

Phase
Comp. liq. Sat. liq. Sat. vap. S/H vap.
T (K) 260 260 260 260
P (bar) 40  30.3929 30.3929 20
Z 0.145477 0.114908 0.63825  0.797499
H (J/mol) 11056.1 11238.9 18428.9 19528.4
S (J/mol K) 60.04  61.04 88.70 95.46

Other properties may be computed from their relationship to the properties shown here.
For example, the internal energy is calculated as U= U — ZRT, the Gibbs free energy as
G = H— TS, and so on.

Figure 7-5 shows the pressure-enthalpy diagram of ethylene calculated by this method. The
graph shows the phase boundary and representative isotherms.

7.7 Summary

In this chapter we developed the theoretical tools for the study of saturated phases,
namely, phases that coexist in equilibrium with each other. The fundamental prop-
erty is the Gibbs free energy, which has the same value in both phases. This
fundamental equality is the basis of all the results obtained in this chapter. Fugacity
and the fugacity coefficient are auxiliary variables intrody
are both related to the Gibbs free energy but are more cdnvenient to work with
because they do not require a reference state. In addition, ‘they reduce thevery
simple expressions in the ideal-gas state. introduced to
An important conclusion in this chapter is that all properties of a pure fluid
at saturation can be calculated from the equation of state. The equation of state,

for convenience. They
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