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Finally, the entropy of the solution is obtained by summing the partial molar entropies in
proportion to the mole fraction of each component

&= Zgl = Z-Tzsz — RZ:clln:cl

The last result is eq. (11.3). This ideal-solution entropy reflects the fact that a solution
can exist in more microscopic states than a pure fluid because in addition to arranging
molecules in space and assigning energy to them, we have the additional freedom to assign
a molecule to species ¢ or j. As we discussed in Chapter 4, more microstates means higher
entropy.

Example 11.2: Separation Work
Calculate the amount of work needed to separate into pure components a solution that
contains n-heptane (1) and n-octane (2) with 2; = 0.3, at 40 °C, 5 bar.

Solution The ideal work for separation is equal to the lost work of mixing;:
Wideal = ToASmix — AHnix-

We treat the solution as ideal since the components are chemically similar. The enthalpy of
mixing in this case is 0. The entropy of mixing of the ideal solution is ASyix = —R(z; Inz; +
xIna). With z; = 0.3, 2 = 0.7, we find ASyix = +0.611R = +5.08 J/mol K. For ideal
solutions the entropy of mixing is always positive. The lost work then is

Wideal = (300)(5.08) — 0 = 1523.6 J/mol.

We notice that the temperature (40 °C) and pressure (5 bar) of the system do not enter
in the calculation. This is because the entropy and enthalpy if mixing in ideal solutions are
independent of temperature and pressure.

11.2 Fugacity in Ideal Solution and

The key problem is to calculate the phase diagram of ideal solutionfor this we
first need an expression for fugacity. We start with the basic relationship between
fugacity and chemical potential in eq. (10.18). Taking state A to be component 7 in
sotutiom; and state B the pure component at the same temperature and pressure,
we have ) .
fz‘ld Hfd - G, 1
= =Inuz,
fi,pure RT '

In
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11.2 Fugacity in Ideal Solution 465

where we use eq. (11.9) to write the result on the far right. Solving for f; we obtain
the following simple expression:

f;‘id = Z"L'fi,pure- (1110)

This states that the fugacity of component in ideal solution is the product of the
pure-component fugacity, and the mol fraction of component in solution. This equa-
tion is known as the Lewis-Randall rule and is the basis for VLE calculations with
ideal solutions.

For the fugacity of pure liquid at the temperature and pressure of the solution
we use the Poynting equation, which relates this fugacity to the fugacity of the
saturated liquid at same temperature:

P— P

fi,pure = qbisatpisat exp <R—Tl VzL) s [7'16]

where P$' is the saturation pressure, ¢ is the fugacity coefficient of the saturated
pure component, and ViL is the molar volume of the pure liquid. Then, the fugacity
in ideal solution takes the form,

P — psat

Fid = g 58t psat ey (T]’l VﬁL) _ (11.11)

Here, except for the mol fraction, all other properties in the right-hand side refer to
pure liquid 7.

Example 11.3: Fugacity in Ideal Solution
Calculate the fugacity of water in a water/acetic acid solution at 25 °C, 1 bar, x,, = 0.42.
Assume that these components form an ideal solution.

Solution From the Lewis-Randall rule, f,, = z,f,, where f,, is the fugacity of pure water
at 25 °C, 1 bar. At this state, water is a compressed liquid. We calculate the fugacity using
the Poynting factor:

P— Psat
o= PEoz e | F T e

The saturation pressure of water at 25 °C is P = (.03166 bar. This value is so much
smaller than the critical pressure that the fugacity coefficient ¢ can be safely approx-
imated as unity. Using the molar volume of water, VL =1.003 x 1073 m?/kg = 18.05 x
10~% m?/mol, the Poynting factor is 1.00071. The fugacity of pure water is f,, = 0.03166
bar and its fugacity in the solution is

foo = Tofu = (0.42)(0.03166) = 0.0133 bar.

Comments The calculation demonstrates that—the—approximatiors—mRaoutts—taw—are
germeratty justifred for pressures around ambient. f

that the Poynting correction is generally negligible
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466 Chapter 11 Ideal Solution

11.3 VLE in ldeal Solution—Raoult’s Law

To perform VLE calculations with ideal solutions, we begin with the equilibrium
condition that requires the fugacity of component 7 to be the same in the liquid and
in the vapor:

¥ =1
For the fugacity of the liquid we use eq. (11.11); for the fugacity of the component in
the vapor we use the general expression, f" = y;¢,” P. Combining these expressions,
the equilibrium criterion now takes the form,

P — psat
o P= ot Pt oxp | T vE. (11.12)
Here, ¢,” is the fugacity coefficient of component i in the vapor, not to be confused
with ¢, which refers to the saturated pure component i at the same temperature.
This result takes a much simpler form if pressure is relatively low. Then, the Poynt-
ing correction can be neglected and the fugacity coefficients may be set to 1. With
these simplifications, eq. (11.12) becomes

yi P = z; P;". (11.13)

This is known Raoult’s law and requires only the saturation pressure of the pure
components. The assumptions that make this simple equation valid are that the total
pressure and the saturation pressure of component i be sufficiently low. Raoult’s law
should be understood as a shortcut for quick calculations.

In a binary mixture, Raoult’s law gives

y P = a PP, (11.14)
Yo P = 1y P53, (11.15)
These two equations, along with the normalization conditions for the mol fractions,
—— x2
I = 1,
yitiyp =1,

constitute four equations that relate the following six variables:

{z1, 22, 1, 12, P, T}.

Temperature appears implicitly in the saturation pressure of pure component, which
is assumed to be known as a function of temperature, usually via the Antoine
equation, or some similar temperature-dependent expression. The six unknowns
and four equations result in two degrees of freedom.? The typical problems are

2. The same result is reached through application of the phase rule: with two components (N = 2)
and two phases (m = 2), the degrees of freedom are F = N +2 — 7 = 2.
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11.3 VLE in Ideal Solution—Raoult’s Law 467

Table 11-1: Classification of VLE Problems

Knowns Unknowns
Bubble P T, x; P, y;
Bubble T P, T T, Yi
change to y_i Dew P T, y; P,
Dew—F ﬁg,@ T, T
Flash P y T Tiy Yi

classified as “bubble T or P,” “dew T or P,” or “flash.” These classifications were
introduced in Chapter 9 and are summarized again in Table 11-1. Solution strategies
for performing these calculations are outlined below.

Bubble P Calculation Following the designation of VLE problems introduced in
Chapter 10, in the bubble P problem we know temperature and the composition of
the liquid and seek pressure and the composition of the vapor. Adding eqs. (11.14)
and (11.15) to eliminate the unknown vapor fractions we obtain the bubble pressure
of the solution:

P = 2, P} + 1, PS5, (11.16)
The vapor mol fractions are then calculated from egs. (11.14) and (11.15):
1 Pt 19 P35
_ _ i 11.17
A P Y2 P ( )

where P is the bubble pressure calculated above. Notice that according to eq. (11.16),
the bubble pressure of an ideal solution is an average of the saturation pressures of
the pure components.

Bubble T Calculation In this case we know liquid composition and total pressure,
and seek to calculate vapor composition and temperature. Again we add eqs. (11.14)
and (11.15) to eliminate the unknown vapor fractions:

P = 21 P 4 3y P5™, [11.16]

In this equation, the unknown is temperature, which appears implicitly in the satu-
ration pressure through an equation such as the Antoine. Because this is a nonlinear
equation in 7, it requires a numerical solution. Once temperature is known, the sat-
uration pressures are calculated and the vapor mole fractions are obtained as before,

using
z) P§ 7 P3*

P Y2 = P
Dew P Calculation Here the knowns are temperature and the composition of the
vapor, and we seek to calculate pressure and the composition of liquid. We begin
by solving eqgs. (11.14) and (11.15) for the unknown mol fractions:

n = [11.17]
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