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4. Solve the cubic polynomial for the compressibility factor. If there are more
than one positive roots, choose according to the phase of the mixture:12 for a
liquid mixture choose the smallest root; for gas mixture, choose the largest.

5. Use the compressibility factor to calculate the residual enthalpy and entropy
according to the equations in Table 5-3.

In working with eqs. (9.38)–(9.43) we follow the convention: a single subscript refers
to pure component, whereas no subscript refers to mixture.

9.7 Mixture Properties from Equations of State

Residual properties are defined in the same manner as for pure components:

F = F igm + FR, (9.44)

where F is the molar property of the mixture at a given state, F igm is the same
property in the hypothetical ideal-gas state, and FR is the residual property. All
terms in eq. (9.44) are at the same pressure, temperature, and composition. For the
enthalpy of the mixture, this equation becomes

H =
∑

i

xiH ig
i + HR. (9.45)

Here we have substituted for H igm the expression from eq. (9.26), which gives the
ideal-gas enthalpy of the mixture in terms of the ideal-gas enthalpy of the pure
components. For entropy we obtain a similar result,

S =
∑

i

xiS ig
i − R

∑

i

xi ln xi + SR. (9.46)

Here, the ideal-gas entropy of mixture is given by eq. (9.27) and includes the ideal
entropy of mixing. Equations (9.45) and (9.46) reduce the calculation of mixture
properties into a two-step calculation, one for the ideal-gas contributions, and one
for the residual corrections.

To calculate the absolute enthalpy and entropy of mixture we need to the abso-
lute properties of the pure components, H ig

i and S ig
i . These must be calculated

12. The phase must be known ahead of time. We will learn in Chapter 10 that it is possible to
determine the phase from the equation of state itself.
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422 Chapter 9 Properties of Mixtures

based on a reference state. We must specify one reference state for each component,
not necessarily the same for all components, though this choice is convenient. If the
reference state for component i is at temperature T0i and pressure P0i , its ideal-gas
properties at temperature T and pressure P are

H ig
i = H ig

0i +
∫ T

T0i

C ig
P ,idT, (9.47)

S ig
i = S ig

0i +
∫ T

T0i

C ig
P ,i

dT
T

− R ln
P

P0i
, (9.48)

where H ig
i0 and S ig

i0 are the ideal-gas enthalpy of the component at its reference state.
The value of these constants depends on the reference state adopted:

• Actual enthalpy and entropy at P0,T0, are set to zero. For this reference state
we use,

H ig
0i = HR

0i , S ig
0i = SR

0i , (9.49)

where HR
0i and SR

0i are the residual properties of pure component at its refer-
ence state.13

• Ideal-gas enthalpy and entropy at P0, T0, are set to zero. In this case,

H ig
0i = 0, S ig

0i = 0. (9.50)

Once the reference state for each component is selected, H ig
0i and S ig

0i become numer-
ical constants and the calculation proceeds as usual. Table 9-2 summarizes all the
equations needed for the calculation of the enthalpy and entropy of a binary mixture
based on the Soave-Redlich-Kwong equation of state. The calculation is somewhat
involved but completely straightforward. Except for the calculation of the ideal-gas
integrals, everything else involves serial algebraic calculations. The entire procedure
can be coded easily for computer calculation. The required inputs are the criti-
cal properties, the ideal-gas heat capacities as functions of temperature, and the
numerical values of the reference state values H ig

01 and S ig
0i of all components. The

calculation should then be set up so that enthalpy and entropy are calculated for any
user input of temperature, pressure, mol fractions and phase of the mixture. The
phase is needed in order to select the proper root of the compressibility equation,
if more than one real root is found.

13. Using Hi = H ig
i + H R

i you should be able to confirm that this above reference state leads to
H0 = 0 and S0 = 0.
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9.7 Mixture Properties from Equations of State 423

Table 9-2: Properties of binary mixture using the Soave-Redlich-Kwong equation of state.
Subscript i refers to pure component 1 or 2; the values of H ig

0i and S ig
0i are fixed

by the reference state.

H = x1H ig
1 + x2H ig

2 + HR [9.45]

S = x1S ig
1 + x2S ig

2 − R(x1 ln x1 + x2 ln x2) + SR [9.46]

H ig
i = H ig

0i +
∫ T

T0i

C ig
P ,idT [9.47]

S ig
i = S ig

0i +
∫ T

T0i

C ig
P ,i

dT
T

− R ln
P

P0i
[9.48]

HR = RT(Z − 1) +
T (da/dT) − a

b
ln

Z + B ′

Z
[5.55]

SR = R ln(Z − B ′) +
da/dT

b
ln

Z + B ′

Z
[5.56]

Z 3 − Z 2 + (A′ − B ′ − B ′2)Z − A′B ′ = 0 [2.44]

A′ =
aP

(RT)2
, B ′ =

bP
RT

[2.36]

b = x1b1 + x2b2 [9.41]

a = x2
1a1 + x2

2a2 + 2x1x2(1 − k12)
√

a1a2 [9.42]

da
dT

= x2
1

(
da1

dT

)
+ x2

2

(
da2

dT

)
+ x1x2(1 − k12)

√
a1a2

(
1
a1

da1

dT
+

1
a2

da2

dT

)
[9.43]

bi = 0.08664
RTci

Pci
[2.41]

ai = 0.42748
R 2T 2

ci

Pci

[
1 + Ωi

(
1 −

√
Tri

)]2
[2.42]

dai

dT
= −0.42748

R 2T 2
ci

Pci

(
1 + Ωi

(
1 −

√
Tri

))
Ωi√

Tri
[5.57]

Ωi = 0.480 + 1.574ωi − 0.176ω2
i [2.43]
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