
Software piracy has long been a problem in the computer games busi-
ness—ever since games moved from stand-alone machines in the 1970s

to PCs in the 1980s. Game makers, justifiably, have gone to great lengths to
thwart piracy. In the past, game makers added various countermeasures
to their software to make games harder to crack. The main purpose was to
prevent rampant copying so that people who wanted to play the game had
to buy it. In the end, these games were always cracked—but in some cases,
the countermeasures delayed the release of a cracked version by days or
even weeks. This delay earned real revenue for the game companies because
delaying a crack for even a week translated into hundreds of thousands of
dollars.

Antipiracy countermeasures made some economic sense in the over-the-
counter paradigm, in which a gamer purchased a copy of the game from a
retailer and installed the copy locally on his or her PC. But things have
changed. Many modern games have moved online, and with the advent of
game consoles connected to the Internet, this trend is likely to accelerate.1

That means companies now have two revenue sources to protect: the

Game Hacking 1012

19

1. The hugely popular Nintendo Wii, which debuted in late 2006, will certainly accelerate
this trend.

6627ch02.qxd_lb 6/22/07 7:31 AM Page 19

original game price in the retail channel, and a monthly subscription
revenue stream for online access.

In this chapter, we’ll describe a number of cheating techniques that have
become mainstream and discuss new techniques that have emerged to
prevent piracy and cheating. Unfortunately, some of the new security
monitoring approaches have grave privacy implications that require
vigilance on the part of gamers.

Defeating Piracy by Going Online

One easy way to prevent simple piracy like copying is not to distribute
anything to copy. That is, if a majority of your game resides on a central
server, it can’t be easily copied. By and large, game companies have adopted
this strategy to prevent trivial game cracking (recall the client-server model
from Chapter 1). Modern games almost all require gamers to play the game
online using only supported servers. These online servers, at the very least,
can check a local copy of the game client (running on the gamer’s PC) for a
legitimate serial number or some other key.

Of course, online games also require an online account, implying that
some kind of user or gamer authentication is required to play the game.
Note that this is a much clearer way to tie a game to a particular gamer than
existed in the previous paradigm. Tracking gamer behavior is an important
tactic in the fight against cheating.

As we briefly describe in Chapter 1, gaming is big business. For
example, Blizzard Entertainment, the developers of World of Warcraft, not
only charge over $30 for the game client but also require a gamer to pay
$14 per month to log into the online servers. WoW has over 8 million users
all paying these fees. You do the math.

Or Not . . .

Of course, the server model is not completely foolproof. A number of clever
developers realized some time ago that it is possible to create new, possibly
free, servers for gamers to connect to, thus sidestepping the subscription
model. The question is, is this piracy?

When three programmers wrote an open source version of Blizzard’s
server software called BnetD, Blizzard sued—and won. See Chapter 4 for
more.

20 Chapter 2 Game Hacking 101

6627ch02.qxd_lb 6/22/07 7:31 AM Page 20

Tricks and Techniques for Cheating

There are many ways to cheat in an online game. Some of them don’t
require much in the way of computer programming skills at all. Colluding
as a group in an online poker game against an unsuspecting fellow player is
an example from the “just takes a telephone” camp. On the other hand,
some cheats require deep programming skills.

In this chapter, we’ll introduce you to some basic cheating concepts:

■ Building a bot
■ Using the user interface (UI)
■ Operating a proxy
■ Manipulating memory
■ Drawing on a debugger
■ Finding the future

The end results of many of these approaches are now available for
purchase online at a number of spurious Web sites. One example is the Pimp
My Game Web site at <http://www.pimpmygame.org/>. The Web site,
similar to many others like it, boasts the following:

We give our users the chance to get Exploits, Bots, Hacks, Macros,
Patches, Cheats and Guides for all usual MMORPGs and FPS Games that
we support. Get them from our own downloads section and forums
where you can discuss and debate. You will become more successful in
your Game!

Of course, we’re more interested in understanding what goes on behind
the curtain of these “Exploits, Bots, Hacks, Macros, Patches, Cheats, and
Guides” than we are in buying them.

Building a Bot: Automated Gaming

If you Google “online game bots,” you’ll amass impressive millions of hits.
Most of the hits are for sites that offer to sell you a bot. But what is a bot
really?

Bots are stand-alone programs that play a game (or part of a game) for
you. The term originates from first-person shooter (FPS) games developed
for the PC. The term derives from a robot that simulates another player in
the game. You might play a game of chess against a bot, or you might battle
a bot in an FPS game like DOOM.

Tricks and Techniques for Cheating 21

6627ch02.qxd_lb 6/22/07 7:31 AM Page 21

Today, the term bot is applied widely to a range of programs, from those
as simple as a keyboard mapping that allows you to script together several
common actions to those as complex as a player based on artificial
intelligence (AI) that plays the game by following simple reasoning rules. In
the FPS world, people use bots to perform superhuman actions (e.g., perfect
aim). In the MMORPG realm, players use bots to automate the boring parts
of play. We provide an example of a macro later in the chapter that controls
a character in WoW, thus making that character a bot (temporarily at least).

In all cases, bots perform certain tasks better than humans. Maybe their
understanding of chess logic is superior, or maybe they outplay human
characters by knowing more about game state than a human can track, or
maybe they just do repetitive tasks without getting bored. But whatever
they’re programmed to do, bots give cheaters an unscrupulous advantage.

Bots have even been used to rob other characters in a game. According
to an article in the New Scientist:2

A man has been arrested in Japan on suspicion of carrying out a virtual
mugging spree by using software “bots” to beat up and rob characters in
the online computer game Lineage II. The stolen virtual possessions were
then exchanged for real cash. The Chinese exchange student was
arrested by police in Kagawa prefecture, southern Japan.

In a slightly less obvious fashion, online poker bots have been used to
win poker games for their masters. Though professional-level play is not yet
possible (because solving the problem involves creating legitimate AI that
can pass the Turing test3), poker bots are good enough to win on basic
tables with some regularity.4

In final analysis, bots have a mixed reputation. Some serious gamers
deride them as a cancer ruining games and the gaming industry for
everyone. Others see bots as extremely useful tools for delegating the boring
aspects of play to a computer program. Still others see bots as a great way to
make a living.

Game companies often deploy technical and legal countermeasures to
detect and stop bot activity. Sometimes they keep play statistics about
characters and notice when certain values go out of range (e.g., flagging

22 Chapter 2 Game Hacking 101

2. “Computer Characters Mugged in Virtual Crime Spree,” by Will Knight (August 18,
2005; see <http://www.newscientist.com/article.ns?id=dn7865>).
3. For more on the Turing test, see <http://en.wikipedia.org/wiki/Turing_test>.
4. You can find an article from MSNBC about poker bots at
<http://www.msnbc.msn.com/id/6002298/>.

6627ch02.qxd_lb 6/22/07 7:31 AM Page 22

things when a character quadruples its wealth in one hour). Another
common countermeasure is to ask a character questions to see how
humanlike its responses are.5 The Korea Times reports that in the
MMORPG Lineage, at least 150 game minders monitor the game for use
of bots and then ban players using them. The report states that 500,000
accounts had been suspended between 2004 and April 2006 because of
bot activity.6

Using the User Interface: Keys, Clicks, and Colors

Games have outstanding UIs these days. Consider the UI from WoW shown
in Figure 2–1. For an impressive and diverse collection of UIs for
MMORPGs, see <http://xune-gamers.tripod.com/id3.html>.

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4

Tricks and Techniques for Cheating 23

Figure 2–1 A WoW screenshot, demonstrating the state of the art in online game user
interfaces.

5. In this case, the perfect MMORPG bot would need to be able to pass the Turing test.
6. See <http://times.hankooki.com/lpage/culture/200605/kt2006052116201765520.htm>.

6627ch02.qxd_lb 6/22/07 7:31 AM Page 23

As you can see, UIs include parts of the screen that a user can interact
with by using standard input devices. There are buttons, text windows, and
pictures. You play the game by interacting with the UI—it’s your window on
what’s going on.

Cheaters use the UI to cheat. Let’s say a game has three buttons, A, B,
and C, that you’re only allowed to click manually yourself. By some game
companies’ definition, if you were to install a software automation tool
(such as a quality assurance testing tool) that automatically clicks the mouse
on x- and y-coordinates to drive these buttons, you would be cheating.

In many cases, EULA allowances and their associated enforcement
mechanisms restrict how you use the software. That is, you’re allowed to
click on buttons yourself, but a program that you write is not. You can learn
much more about EULAs in Chapter 4.

Controlling someone’s use of the game like this seems rather extreme
until you consider the economic impact of automated game play. In most
cases, automated game play is realized by using special tools and scripts
typically referred to as macros. For example, in WoW, monsters appear at
specific locations on a periodic basis. You can easily write a macro that
causes the in-game character to stand in that location and automatically kill
the monster every time it appears (thus gaining experience points and virtual
gold). Of course, you can do this manually yourself, waiting around all day
for the monster to appear, but given that the monster appears only once
every 10 minutes, that plan will commit you to a very long and boring night.
Why not write a macro to wait around for you? Ultimately the question is,
how can automating such a boring and repetitive activity be considered
cheating?

WoW, and many MMORPGs like it, are so afflicted with repetitious
game play that the players have invented a term to describe it: grinding.
That is, doing awful, repetitive things all day with your character just to
gain experience is likened to a mule going around and around on a
treadmill, grinding grain into flour day in and day out. For some reason,
players enjoy this self-inflicted misery and will pay $14 a month for the
privilege of doing it. Why?

As it turns out, there is deep-seated human psychology at play here, and
it has to do with living a double life, as well as the fact that grinding away
like this brings economic reward. Whenever you kill that monster, it drops
in-game play money and gives you other rewards, such as more experience,
skills, and ultimately levels.

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

24 Chapter 2 Game Hacking 101

6627ch02.qxd_lb 6/22/07 7:31 AM Page 24

If you write a macro to do this grinding for you by manipulating the UI,
you can go away to work, or sleep, and come back later and have the sum of
all the gold pieces and experience for all the repetitive monster kills waiting
for you. Thus, the macro earns you in-game money and simultaneously
increases your character’s power—but without the associated boredom of
actually paying attention. What a great idea! It’s so great, in fact, that
thousands of players do it all the time. There is even a special term used to
describe players who play this way—they are called farmers.

The simple bot that we include later in the chapter uses UI manipulation
to control a grinding character.

Operating a Proxy: Intercepting Packets

Interacting with a game through the client software by going through the UI
is a straightforward cheating technique that is not hard to code. There are
many more sophisticated methods, of course. One method involves
operating a proxy between the game client and the game server. This proxy
can intercept packets and alter them in transit. In other words, a proxy-
based cheating scheme carries out what is in security circles known as an
attacker-in-the-middle attack7 (Figure 2–2).

There are many ways to carry out an attack like this. Monitoring the
network wire is one way. Getting between a program and the system
dynamic link libraries (DLLs) it is using is another. Basically, any place
where messages are passed around by the target program is susceptible to
this kind of interpositioning.

Proxy attacks have a long history. Some of the first network-based
proxy attacks were devised and used against FPS games. In these games, a
fair amount of data about game state is passed around between the client
software and the server. Sometimes these data are not displayed for the
player to see, but they are available to the software the player is using. A
proxy cheat sniffs the network packets, analyzes them, and adjusts various
parameters that should not be known by the player. A classic example
comes from the FPS game Counter-Strike, where proxy cheats have been
used to improve aim drastically (an essential characteristic in the shoot-’em-
up world).

Proxy-based cheats in FPS games are usually held very close to the vest.
That’s because those who use them are interested in evading detection even

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4

Tricks and Techniques for Cheating 25

7. This kind of attack is most often called a man-in-the-middle attack, but we find that
terminology sexist.

6627ch02.qxd_lb 6/22/07 7:31 AM Page 25

in complicated social situations. Being outed at a LAN party for a visually
detectable cheat could lead to bodily harm of the meat-space variety! Proxy-
based aimbots are thus carefully designed to be effectively used in social
situations and may involve statistical fuzzing of calculations to simulate not-
quite-perfect aim.8

Sophisticated proxy-based attacks attempt to change data as they move
between the server and the client. An obvious countermeasure is to encrypt
the data so that unintelligible gibberish is all that can be seen going by.
However, encryption costs cycles, and the balance is payable in a less-
realistic gaming experience that is a major resource hog. Security always
trades off against something; it never comes for free.

To use a proxy attack, cheaters configure the proxy with the address of
the server they are using. In most cases, the FPS client runs on another
machine entirely and connects through the proxy to the server. This
situation is very similar in nature to a standard network sniffing situation,
the only difference being that packets can be manipulated as they go by.

The real trick is being able to construct a useful model of the game from
the traffic going by. The model will do things like track player locations.

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

26 Chapter 2 Game Hacking 101

Hacker

Game ServerClient

Internet

Figure 2–2 A picture of an attacker-in-the-middle attack. In this picture, the hacker
interposes between the client and the server and can both monitor and manipulate traffic
as it goes either direction.

8. See the history of aimbot cheating in the game Counter Strike on the Wikipedia site at
<http://en.wikipedia.org/wiki/Cheating_in_Counter-Strike>.

6627ch02.qxd_lb 6/22/07 7:31 AM Page 26

When a packet with a marked command such as “fire the truly impressive
blunderbuss of flatulence” goes by, the proxy software determines who is
where and who must die and makes it so. It may need to do some weapon
movement to cause this to happen so that the blunderbuss is properly
aimed. (Remember, the weapon and/or player movement needs to seem
natural and reasonable—a complete back flip with a triple gainer followed
by a shot between the eyes may be a tip-off that something is fishy.)9

Proxy attacks are just as useful for non-FPS games as well. In fact, the
most sophisticated attacks against MMORPGs use a very similar idea,
interposing on machine state through manipulation of interrupts. You can
read more about those attacks in Chapter 6.

Manipulating Memory: Reading and Writing Data

Manipulating game state through interposition as described in the previous
subsection is a hands-off cheating technique. The game software is not
directly manipulated, only its input and output are. More hands-on
techniques get into the game program itself, reading and writing memory,
changing values, and generally messing around with game state directly in
the software.

One obvious target for manipulation is the drivers that control graphics
rendering on the PC. Once again, FPS games led the way in cheating. The
Counter-Strike game is a classic FPS. Like many games, it makes extensive
use of drivers to control graphics, sound, and networking. Cheaters target
the OpenGL and Direct3D drivers to do their dirty work. The Counter-Strike
hack called XQZ was one of the first to alter drivers. The creators of
Counter-Strike built an anticheat engine called Cheating-Death that was able
to detect when OpenGL drivers had been replaced. The arms race was on.

Historically, the reason that drivers are easy to manipulate is that
Microsoft Windows doesn’t include an easy way to determine whether a
driver is legitimate or nefarious. All of this is changing with the release of
Vista and its driver signing capability (though don’t believe for a minute that
this is a security silver bullet). Prior to Vista, finding these cheats on any
given computer was difficult even when full access was provided to the
machine (and, in fact, even when rootkit technology was involved).

Another common form of client-side manipulation involves the use of
classic hooking techniques to interpose on DLLs and other system libraries.

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4

9. For more on proxy attacks in FPS games, see <http://www.gamasutra.com/features/
20000724/ pritchard_pfv.htm>.

Tricks and Techniques for Cheating 27

6627ch02.qxd_lb 6/22/07 7:31 AM Page 27

Many of these techniques are in common use in software exploits (see our
book Exploiting Software for more). All modern operating systems use
runtime-loadable libraries (Win32 uses DLLs; Linux and Mac OS X use
standard UNIX-shared object libraries such as glibc.so), and as such, all
are susceptible to hooking attacks.

In some games, client-side communication is accomplished through DLL
calls, all of which are easily intercepted. Modern software almost always
makes extensive use of outside libraries, which in this particular case leads
directly to the risk of rampant cheating.

Once again, an arms race of sorts has emerged, with classic hacks (such
as the loaddll library for Counter-Strike10) leading to hook-proof
anticheats leading to sneakier hooks leading to hook detection mechanisms.

Drawing on the Debugger: Breakpoints

Debuggers are another common attack tool used by those who exploit
software. There’s nothing quite as powerful as a kernel-level debugger with
the ability to stop processes in mid stride. Many cheaters use debugger
techniques to set breakpoints or other triggers. These triggers can look for
certain messages (e.g., a secret key press) or the use of particular functions
(e.g., an easily thwarted DLL) and then carry out various nefarious
activities.

Modern attacks of the sort that we describe in Chapter 6 often involve
the use of sophisticated interrupt-driven state manipulation. More on that
later.

Finding the Future: Predictability and Randomness,
or How to Cheat in Online Poker

Many games involve an element of chance, poker being among the most
obvious. The problem is that producing unpredictable randomness is
nontrivial given the way computers work. Much work in software security
has gone into improving randomness (which as you might imagine is also
necessary for good cryptography).

Here’s a good example of how poor pseudorandom number generators
(PRNGs) can be broken in practice.11 In 1999, the Software Security Group
at Cigital discovered a serious flaw in the implementation of Texas hold ’em

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

28 Chapter 2 Game Hacking 101

10. See <http://www.answers.com/topic/cheating-in-counter-strike>.
11. This attack was first described in Building Secure Software by John Viega and Gary
McGraw (Addison-Wesley, 2001). The text here is adapted from that account.

6627ch02.qxd_lb 6/22/07 7:31 AM Page 28

poker distributed by ASF Software, Inc. The exploit allowed a cheating
player to calculate the exact deck being used for each hand in real time.
That means a player who used the exploit knew the cards in every oppo-
nent’s hand as well as the cards that made up the flop (cards placed face up
on the table after rounds of betting). A cheater could “know when to hold
’em and know when to fold ’em” every time. A malicious attacker could use
the exploit to bilk innocent players of actual money without ever being
caught.

The flaw exists in the shuffling algorithm used to generate each deck.
Ironically, the shuffling code was publicly displayed in an online FAQ with
the idea of showing how fair the game is to interested players (the page has
since been taken down), so it did not need to be reverse engineered or
guessed.

In the code, a call to randomize() is included to reseed the random
number generator with the current time before each deck is generated. The
implementation, built with Delphi 4 (a Pascal IDE), seeds the random
number generator with the number of milliseconds since midnight according
to the system clock. That means the output of the random number generator
is easily predicted. As it turns out, a predictable random number generator
is a very serious security problem.

The shuffling algorithm used in the ASF software always starts with an
ordered deck of cards and then generates a sequence of random numbers
used to reorder the deck. In a real deck of cards, there are 52! (approxi-
mately 2226) possible unique shuffles. The seed for a 32-bit random number
generator must be a 32-bit number, meaning that there are just over 4
billion possible seeds. Since the deck is reinitialized and the generator
reseeded before each shuffle, only 4 billion possible shuffles can result from
this algorithm, even if the seed had more entropy than the clock. Yet 4
billion possible shuffles is alarmingly less than 52!.

The flawed algorithm chooses the seed for the random number
generator using the Pascal function randomize(). This particular
randomize() function chooses a seed based on the number of milliseconds
since midnight. There are a mere 86,400,000 milliseconds in a day. Since
this number was being used as the seed for the random number generator,
the number of possible decks now reduces to 86,400,000—alarmingly less
than 4 billion.

In short, there were three major problems, any one of which would have
been enough to break the system.

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4

Tricks and Techniques for Cheating 29

6627ch02.qxd_lb 6/22/07 7:31 AM Page 29

■ The PRNG algorithm used a small seed (32 bits).
■ The PRNG algorithm used was noncryptographic.
■ The code was seeded with a poor source of randomness (and, in fact,

reseeded often).

The system clock seed gave the Cigital group members an idea that
reduced the number of possible shuffles even further. By synchronizing the
program with the system clock on the server generating the pseudorandom
number, they were able to reduce the possible combinations down to a
number on the order of 200,000 possibilities. After that move, the system is
broken, since searching through this tiny set of shuffles is trivial and can be
done on a PC in real time.

The tool Cigital developed to exploit this vulnerability requires five
cards from the deck to be known. Based on the five known cards, the
program searches through the few hundred thousand possible shuffles and
deduces which one is a perfect match. In the case of Texas hold ’em poker,
this means the program takes as input the two cards that the cheating player
is dealt, plus the first three community cards that are dealt face up (the flop).
These five cards are known after the first of four rounds of betting and are
enough to determine (in real time, during play) the exact shuffle.

Figure 2–3 shows the GUI for the exploit. The Site Parameters box in
the upper left is used to synchronize the clocks. The Game Parameters box
in the upper right is used to enter the five cards and initiate the search. The
figure is a screenshot taken after all cards have been determined by the
program. The cheating attacker knows who holds what cards, what the rest
of the flop looks like, and who is going to win in advance.

Once the program knows the five cards, it generates shuffles until it
discovers the shuffle that contains the five known cards in the proper order.
Since the randomize() function is based on the server’s system time, it is
not very difficult to guess a starting seed with a reasonable degree of
accuracy. (The closer you get, the fewer possible shuffles you have to look
through.) After finding a correct seed once, it is possible to synchronize the
exploit program with the server to within a few seconds. This post facto
synchronization allows the program to determine the seed being used by the
random number generator and to identify the shuffle being used during all
future games in under one second.

The ASF poker software was particularly easy to attack. However, most
uses of linear congruential PRNGs (such as rand())are susceptible to this
kind of attack. These attacks always boil down to how many outputs an

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

30 Chapter 2 Game Hacking 101

6627ch02.qxd_lb 6/22/07 7:31 AM Page 30

attacker must observe before enough information is revealed for a complete
compromise. Even if you only select random numbers in a fairly small
range, thus throwing away a large portion of the output of each call to
rand(), it usually doesn’t take very many outputs to give away the entire
internal state.

Many games other than poker make use of randomness. Any game that
is completely predictable can be won by a simple program that knows how
to predict what will happen next! As more and more money is poured into
gaming, these kinds of randomness problems turn into cash cows for
attackers.

The Bot Parade

Since bots are such pervasive cheaters’ tools, it is worth spending some time
pondering a few examples. Three large-scale categories of bots are combat
macro bots (used to cheat in MMORPG games), aimbots (a particular type
of combat macro bot used commonly in FPS games), and poker bots.

Combat Macro Bots

Many games, especially MMORPGs, have simple scripting languages that
can be used to interact with the game. These languages allow a number of
basic activities to be strung together into a macro. Sometimes games don’t

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4

The Bot Parade 31

Figure 2–3 Cigital’s Internet poker exploit can predict the outcome of a poker hand by
taking advantage of a broken shuffling algorithm.

6627ch02.qxd_lb 6/22/07 7:31 AM Page 31

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

32 Chapter 2 Game Hacking 101

12. The WoW macro is from <http://ui.worldofwar.net/listmacros.php?type=2>.
13. The Star Wars Galaxies macro is from <http://rpgexpert.com/2789.html>.

include a scripting language off the shelf, but third-party programs that run
with the game provide scripting capability.

Scripts are very useful for automating simple tasks. Here is an example
of a macro that works with WoW.12 Web sites filled with macros like this
one are easy to find on the Internet.

Macro
TargetFreeEnemy Last Updated: June 22nd, 2006

Updated since last WoW Patch

This macro cycles through all enemies around you and stops when it hits
an untapped enemy (non-faction, i.e., non-horde and non-alliance). Very
useful while grinding undead currently! (Stops after cycling through 30
enemies as to not hang your computer when none are available.) (This
macro assumes you’re Alliance, if you’re not, replace “Horde” with
“Alliance” to make it work for you as well.)

Code Start:
/script TargetNearestEnemy(); local i = 1;
if(UnitExists('target')) then while(UnitExists('target') and
(UnitFactionGroup('target') == 'Horde' or
UnitIsTapped('target')) and i < 30) do TargetNearestEnemy();
i = i+1; end;end;

Code End:

Here is another example. This macro works with Star Wars Galaxies.13

Date Added: August 2, 2004

Ok, this is an AFK combat macro designed for the in-game macro system.
If you want to take it a step further, you can run a HAM Checker macro
(checks your HAM and heals you when needed) with AC Tool.

To run this macro, set up a droid running a patrol pattern in a square
pattern around a spawn. Angle your camera in so it faces the spawn (and
go watch tv or sleep.

The macro is:

/ui action targetGroup0;
/follow;

6627ch02.qxd_lb 6/22/07 7:31 AM Page 32

/ui action cycleTargetOutward;
(if you’re a Brawler, insert /follow here)
/attack;
(insert specials here)
/pause XXX;
(amount of time to kill it)
/follow;
/pause 2;
/loot;
/harvest hide;
/macro AFKCombat;

This macro is slightly more interesting than the first example because it
works unattended. In fact, its simple description makes this clear. Some
gamers draw a big distinction between attended use of macros and
unattended use. They believe that unattended use is cheating.

Some games go so far as to outlaw the use of macros (see Chapter 4 for
more on legal moves to prevent cheating). The game Asheron’s Call includes
the following legalese:

Use of unauthorized third-party software or macros with the Software
may be prohibited in the sole discretion of Turbine. Specifically, you may
not use third-party software which allows your character to gain
experience points or items by engaging in combat without being at the
keyboard, ready to respond to Turbine staff on demand (this activity is
commonly called a “Combat Macro”). Logging off as soon as an admin
appears (visible or invisible) or when an admin tries to speak with you
will be taken into consideration in determining the use of Combat
Macros.14

One of the most well-known and widely used macro systems in gaming
is Lin2Rich <http://lin2rich.com/>. Lin2Rich is actually an advanced bot
environment. It works alongside your client (i.e., you use it in tandem with
the regular game client), sending packets directly to the game server
according to the way it is configured. Lin2Rich can be configured to send a
set of commands to the server when a certain event happens. For example, if
you click certain buttons at particular times or begin to rest at a particular
time and place, you can program the cheating client to send particular
commands to the game. Because of the way it works, detecting Lin2Rich by
monitoring player behavior is difficult.

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4

The Bot Parade 33

14. You can find more on the Asheron’s Call legalese at <http://turbine.fuzeqna.com/
asheronscall/consumer/kbdetail.asp?kbid=305>.

6627ch02.qxd_lb 6/22/07 7:31 AM Page 33

Aimbots

Aimbots are bots used in FPS games. The idea is simple: Aim better than
your opponent and win. Superhuman aim achieved through programming is
generally considered cheating (though some FPS games have built-in
aimbots that can be used).

Aimbots come in a variety of flavors. Some only aim. Some aim and
shoot. Some move, aim, and shoot. The first aimbots were created for
Quake and Counter-Strike. An interesting FAQ about Unreal Tournament
and cheats can be found at <http://www.digdilem.org/ut/aimbot.php>.

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

34 Chapter 2 Game Hacking 101

Black Hat Corner: ZelliusBot Readme File

========ZelliusBot UT2004 Edition ver 1.0===========

—About—

My leet aimbot with lots of useful features :D Works on UT2004 Demo & UT2004 retail

ver. 3186. My bots feature base is aimed towards ease of tracking down crybabies and

huge-ego clanmembers :)

—Installation—

1. Copy ZelliusBot.u & Zelliusbot.ini to your UT’s ‘System’ folder

2. Open up your UT2004.ini, navigate to the [XInterface.ExtendedConsole] and

edit the ServerInfoMenu so its value is: ZelliusBot.ZelliusServerInfo. It should

look like ServerInfoMenu=ZelliusBot.ZelliusServerInfo. If Serverinfo line aint

already there, just add it.

3. Open up your User.ini and bind ‘serverinfo’ to a key of your choice. e.g.,

z=serverinfo

4. Wait until you’ve joined a game and press your serverinfo key, if all goes well the

Zelliusbot status should appear on your HUD.

—Usage—

Use your number row keys to toggle various commands. You can change your selected

toggling keys by editing your ut2004.ini statements like AutoTauntKey.

You can get the various number codes for each key by setting bShowKeyNumbers

to True, joining a game and taking note of the numbers that are displayed when you

press a certain key.

—Notes—

This bot will not aim while in UT2004 vehicles

Compile in the UT2003 development environment.

6627ch02.qxd_lb 6/22/07 7:31 AM Page 34

One popular aimbot called ZelliusBot works by reprogramming
initialization files in Unreal Tournament. The Black Hat Corner includes
some text from the readme file that comes with ZelliusBot.

In most cases, aimbots come packaged with other features such as the
ability to travel through walls. One early aimbot for Counter-Strike was
XQZ. XQZ combined several capabilities into an easy-to-use package. It
was eventually released to the public. XQZ at first replaced and then later
hooked the OpenGL DLL. XQZ included features that allowed users to use
it stealthily during LAN parties without detection. Counter-Strike is still
filled with spinoffs from XQZ.

In its first instantiations, the XQZ aimbot was invoked when a button
on the keyboard or mouse was pressed. Pressing the button resulted in the
aimbot controlling the aiming crosshairs.

Care must be taken when developing and using aimbots to ensure that
their superhuman potential does not become a giveaway. For example, using
an aimbot that perfectly tracks a strangely moving adversary, shooting it
over and over in the exact same spot, is called slaving. Decoupling the aim
and shoot features is sometimes necessary. As we mentioned earlier, more
advanced aimbots can add statistical noise to their actions.

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4

The Bot Parade 35

Experiment in game or read the uscript to figure out how everything works.

If you encounter a ‘shooting at wall’ problem when an enemy comes into sight

increase your FireDelayTime.

Unload the bot when the match is ended, if you still get a invalid game file error on

map change type ‘reconnect’ in the console.

—Thanks—

Thanks go to tenbucks, moonwolf, play2win, lamer, spunky and many others for

lots of testing and feedback.

Thanks go to [ELF]HelioS for his help with ping code, HUD and his textures (from

helios ut bot).

Thanks go to DrSiN[Epic] for leaving multiple gaping holes in UT2004.

I hope you have lots of fun!

~Zellius

6627ch02.qxd_lb 6/22/07 7:31 AM Page 35

Poker Bots

Now that online poker has topped $1 billion in revenue, it’s not surprising
that much activity has been invested in creating automated bots to play
poker. Fortunately, poker is a reasonably hard game that can’t easily
be automated. However, poker bots do exist, and they are improving
rapidly.

Of course, if poker bots get too good, they will undermine the game
itself. Nobody wants to lose consistently to a bot! Especially when money is
involved.

Rumors abound of a new generation of sophisticated poker bots that
can beat newbies with some regularity. Some even say that above-average
players can be beaten as well. Of course, just as in other kinds of gaming,
the game companies want to discourage the use of bots. They make use of
player monitoring and look for suspicious patterns of play, sometimes
adapting their games to defeat bots.

Still, some people are making their living by selling poker bots com-
mercially. A number of programs are available at the WinHoldEm Web
site <http://www.winholdem.net/>, ranging from a $25 standard package
of hand analysis software to a $200 version that includes bot play
capability.

Once again we find ourselves in the midst of a classic arms race. Simple
bots pop up, antibot measures out them, the bots improve, and so on. Of
course, most online casinos don’t allow bots, but enforcing that rule is
difficult.

The entire online poker phenomenon is confusing to many security
professionals. The biggest problem is collusion between players. Cheating
by discussing hands in an out-of-band conversation is very difficult to
detect. Banning this activity is easy from a legal perspective, but enforcing
the ban may not be possible.

Some believe the inability to control poker bots and out-of-band
communication will be the demise of online poker. We’ll just have to wait
and see.

Lurking (Data Siphoning)

Much valuable gaming data can be gleaned simply by watching other
players play the game and learning how they behave. This is true for sports,
of course, where watching your opponents play in order to understand their

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

36 Chapter 2 Game Hacking 101

6627ch02.qxd_lb 6/22/07 7:31 AM Page 36

play is an invaluable aid. The same kind of technique works for online
gaming, from actions in an MMORPG to hands in online poker.

Online Statistics

Services like Thottbot help users collect and use statistics about the game.15

For example, Thottbot can tell you exactly where to find the vorpal sword
of heinosity, provide you with a map to it, and let you know what your
chances are of obtaining it once you’re there. Thottbot works by sucking up
as much information as it can from cooperating gamers and then republish-
ing that information after it has been properly organized. For more on
Thottbot, see Chapter 3.

Poker Statistics

Online poker is just as big as if not bigger than MMORPGs, though the
recently passed legislation in the United States will put a big crimp in the
market.

A number of third-party vendors create and sell software packages to
help analyze hand history data and build a database of information about
players and their tendencies. Serious poker players use these statistics to
check for weaknesses in their play and uncover weaknesses in the play
of others. Using these tools is extremely common, and all serious
players (including an entire class of professional online poker players)
use them.

As usual, academics and mathematicians have entered the fray. One
interesting paper titled “Mathematical Statistics and Online Poker” by
Jason Swanson can be found at <http://www.math.wisc.edu/~swanson/
instructional/stats_poker.pdf>. Be forewarned, though—this paper includes
real math!

Figure 2–4 shows the GUI from a typical online poker third-party
application. This application helps a player understand poker statistics
and what to do next. It generates statistics, win percentages, hand prob-
abilities, and useful tactical information for the game of Texas Hold ’em
Poker.

In any game that involves money, it should be clear that your adversary
will tool up. Online poker cheats and stats trackers are destined to become
much better over time. Perhaps one day the bots will be good enough to
beat even the best humans consistently.

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4

Lurking (Data Siphoning) 37

15. Thottbot <http://www.thottbot.com> is an online database of WoW information.

6627ch02.qxd_lb 6/22/07 7:31 AM Page 37

Auction Manipulation

Cheaters also like to cheat in auctions. Though only tangential to online
gaming, online auctions share many of the same “instant riches” lure that
online games do. Considering some of the tactics that cheaters in online
auctions resort to may provide some insight on cheaters in general.

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

38 Chapter 2 Game Hacking 101

Figure 2–4 An online poker helper application. (From <http://www.frayn.net>;
reproduced with permission.)

6627ch02.qxd_lb 6/22/07 7:31 AM Page 38

Probably the most obvious tactic in auction manipulation is shill
bidding. The idea behind shill bidding is to place a bid on an item only to
inflate the final value. Of course, it’s also against the law and a felony in the
United States (you see, shill bidding existed long before online auctions).
Auction houses like eBay track IP numbers to try to defeat shill bidding.
They also monitor bidding activity over time to look for suspicious patterns.
Sound familiar?

Another common cheating technique in online auctions is interfering in
a transaction through out-of-band communication. This can take place
through e-mail or any other channel. Colluding in an auction can be just as
unfair as colluding in a poker game, and just as hard to detect.

A third form of cheating involves interposing near the end of an auction
to try to intercept payment. By simply dashing off a quick e-mail to the
winner as if the attacker were the seller and asking for payment, the
attacker can sometimes dupe the poor winner into paying the wrong
person. Traceable payment systems help make this attack less prevalent than
others.16

Finally, there’s a way to cheat in head-to-head auctions, applicable when
things begin to heat up at the end. The competing parties (A and B) may be
bidding against each other for the last few minutes, when A carries out an
attack to deny service to B. One simple technique involves A attempting to
log in as B unsuccessfully several times in a row so that B is temporarily
locked out of the account.

Tooling Up

By now we have described a number of common “game cheating 101”
attacks. We’ve even shown you how simple macros work. But explaining
how these things work is not quite the same as seeing how they are
constructed. Toward that end, we present a simple macro for WoW.
Warning: Use of this macro is cheating and is against the rules. Your
character may be banned from the game if you use this macro.

Note that these kinds of tools are in common use every day in all kinds
of games. It’s not just in WoW that cheating happens.

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4

Tooling Up 39

16. For more on online auction cheating, see <http://www.dummies.com/WileyCDA/
DummiesArticle/id-2679.html>.

6627ch02.qxd_lb 6/22/07 7:31 AM Page 39

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

40 Chapter 2 Game Hacking 101

AC Tool: Macro Construction

There are a number of popular macro construction tools on the Internet.
These include macro express (which costs money), AC Tool, AutoHotKey,
AutoIt3.0, LTool-0.3, and xautomation. All of the ones mentioned here
have been nicely collected on a wiki at <http://wiki.atitd.net/tale2/Macros>.

AC Tool is particularly popular. You can download it for free from
<http://www.actool.net>. Once you have installed AC Tool, you can create
macros for WoW using its macro language. The FAQ on the AC Tool Web
site describes the tool as follows:

AC Tool is a utility that allows you to list a series of keystrokes and mouse
clicks in advance and send them to Asheron’s Call at a later time. The list
of keystrokes and mouse clicks is called a macro or a script.

Here is a simple grinding/farming macro (called Hoglund’s WoW_Agro
Macro) designed to be used with AC Tool. This macro controls a character
that camps out waiting for monsters to appear and kills them when they do.
We’ll interleave commentary with the code so you can understand what’s
happening.

// —————————————————————————
// hoglund’s WoW_Agro Macro
// —————————————————————————
//RESOLUTION: 1024x768
//PUT ALL FILES IN YOUR AC TOOL\MACROS FOLDER.

SETActiveWindow World of Warcraft
delay 4 sec

// put all your 'globals' here
Constants

gPCHealth = "NoValue"
// the current health of the PC (HIGH | MEDIUM | LOW |

CRITICAL)
gMobHealth = "NoValue"
// the current health of the current targeted mob (HIGH |

MEDIUM | LOW | CRITICAL)
gPCPosture = "Standing"
// current/starting posture of the PC character
gMachineState = "START"
// global machine state, core of the system
gSelectedTarget = "NoTarget"
pc_name = xanier

6627ch02.qxd_lb 6/22/07 7:31 AM Page 40

The first part of the code sets up global variables, most importantly the
currently selected target, the name of the character being automated, and
the current state of the state machine. This script implements a classic
architecture that many macros follow—that is, it is designed to operate as a
state machine. This means that the script maintains a single state variable
while automating the character. States can have mnemonic labels such as
“attacking,” “healing,” or “running away for dear life.” Only one state can
be active at any one time, and there are rules for transitioning from one state
to another.

// hot keys
keyExecAttack = 1
// set your F1 key to attack before using this MACRO
keyExecPickup = {F2}

The part of the script above indicates which keys need to be used in
order to automate the game. When the F2 key is pressed, the character picks
up items, and when the number 1 key is pressed, the character attacks. This
kind of key binding is very common in macros like this. Simple macros
operate the software using only keystrokes and mouse movements—there is
nothing invasive that exploits the game software directly. More advanced
methods of cheating are nowhere near as simple.

// screen coordinates
coord_MobHPMin = 262, 50
coord_MobHPFull = 370, 50

coord_SafeHP = 200, 50
//if green at or above this mark, you’re fine
coord_HalfHP = 146, 50
//half hp if lower than this mark
coord_LowHP = 116, 50
//low hp if at or lower than this mark
coord_DeadHP = 96, 50
//you’re dead :(
coord_temp = 0,0

// colors
color_AliveGreen = 150
color_AttackRed = 147

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4

Tooling Up 41

6627ch02.qxd_lb 6/22/07 7:31 AM Page 41

// temp stuff
TempTarget = NoValue
//holds the value for target before placing into list
tCount = 1
//used to traverse the targetList index
Total = 1
//used to find the ListCount
redDifference = 0
blueDifference = 0
greenDifference = 0
numAttacks = 0
Returned = 0
aCount = 0

End

The section of the script above is quite fascinating. It designates x- and
y-coordinates on the screen. Furthermore, it designates exact color
thresholds for pixels. This information is used to sample pixels on the screen
at precise x- and y-coordinates. The pixels in question happen to correspond
to locations where health and enemy health are displayed on the screen for
the game user. This information, along with the color threshold, is then used
to determine whether the character is at full health, is partially damaged, or
is in critical condition—all via sampling pixels on the screen and figuring
out color matches while the macro runs.

////MAIN LOOP
While 1=1
Processmessages //required for AC Tool operation
Call Lazy8_Main //the main lazy8 machine handler

End
///END MAIN LOOP

///
// the main lazy8 machine handler
///
Procedure Lazy8_Main

//KeyDown /whisper $pc_name Lazy8_Main {RETURN}
//KeyDown /whisper $pc_name current state: $gMachineState

{RETURN}

You see this sort of thing all over the place in the macro; the whisper
command prints a message on the screen and is used to output debug

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

42 Chapter 2 Game Hacking 101

6627ch02.qxd_lb 6/22/07 7:31 AM Page 42

messages while the macro is under development. You can see the results of a
whisper call in the screenshot in Figure 2–5.

// perform effective switch() on machine state
//
// START
if $gMachineState = "START"
Call LazyStart
end

// IDLE
// bored, we need to do something
if $gMachineState = "DRAWING"
Call LazyDraw
end

// END
// game over, man
if $gMachineState = "END"
call LazyEnd
end

End //end Lazy8_Main

Procedure LazyStart
KeyDown /stand {RETURN}
delay 100
// go directly to draw agro mode
Set gMachineState = "DRAWING"

End

Procedure LazyDraw
KeyDown /whisper $pc_name LazyDraw {RETURN}

//Call LureIfNoMonster

//target last agro, this targets nearest also
KeyDown {TAB}
Delay 400

Call EnsureAttackMode

// hero strike
KeyDown 2
Delay 400

End

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4

Tooling Up 43

6627ch02.qxd_lb 6/22/07 7:31 AM Page 43

In the above section of the macro, we perform a pixel test to determine
whether the character is currently in “agro” mode—that is, attacking a
monster. If not, we call a routine to target the nearest monster and begin
attacking. The script presses the 2 key in order to perform a hero strike—a
powerful form of attack in the game.

// run forward and back to lure agro
Procedure Lure

KeyDown {UP} 3 sec
KeyDown {DOWN} 3 sec

End

// put the PC into attack mode
Procedure EnsureAttackMode

LoadRGB 34,64
Compute $redDifference = Abs ($color_AttackRed -

{RGBRED})
if $redDifference < 80

KeyDown /whisper $pc_name im currently in attack
mode {RETURN}

else
KeyDown /whisper $pc_name im attempting to start

attack mode {RETURN}
KeyDown $keyExecAttack 150

end
End

// perform a random move if no monster is targeted
Procedure LureIfNoMonster

Call util_GetMobHealth
if $gMobHealth = "DEAD"

KeyDown /whisper $pc_name Rest in Peace! .. luring
{RETURN}

Call Lure
else

KeyDown /whisper $pc_name still going... {RETURN}
end

End

The section of the macro above is used to “draw agro” from nearby
monsters. Essentially this amounts to getting the monster’s attention by
moving nearby. Such movement causes the monster to attack the character.
Once the attack occurs, the character can attack the monster and kill it.

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

44 Chapter 2 Game Hacking 101

6627ch02.qxd_lb 6/22/07 7:31 AM Page 44

///
// END - kill the engine
///
Procedure LazyEnd

KeyDown /whisper $pc_name LazyEnd {RETURN}

//TODO
End

///
// Utility Function
// Get target mob health
///
Procedure util_GetMobHealth

//KeyDown /whisper $pc_name util_GetMobHealth {RETURN}

LoadRGB $coord_MobHPMin
Compute $greenDifference = ABS ($color_AliveGreen -

{RGBGREEN})

//KeyDown /whisper $pc_name sample monster {RGBRED}
{RGBBLUE} {RGBGREEN} {RETURN}

if {RGBRED} = 0 AND {RGBBLUE} = 0 AND $greenDifference < 80
Set gMobHealth = "ALIVE"
//KeyDown /whisper $pc_name monster is still alive

{RGBGREEN} {RETURN}
else

// we never found any green
Set gMobHealth = "DEAD"
KeyDown /whisper $pc_name monster is dead {RETURN}

end

End

This section of the macro detects whether or not the target monster is
dead yet. Like monitoring character health, this is done through the simple
technique of sampling pixels. In this case we pull a sample at the location
that displays the monster’s health bar.

And that’s it, a complete macro for automating the attraction and killing
of monsters in WoW. By running this macro, a character can accumulate
experience and gold without human intervention.

Figure 2–5 shows a screenshot taken while the WoW_Agro macro is
running. Notice the pile of dead monsters near the character. You should

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4

Tooling Up 45

6627ch02.qxd_lb 6/22/07 7:31 AM Page 45

note that running a macro like this is against the rules and can cause you to
be banned from the game. The WoW character’s name displayed on the
screen, Xanier, is no secret. Blizzard banned Hoglund’s Xanier account just
before the character was to reach level 60 (which at the time was the ultimate
level for a WoW character). In this case, Hoglund was a little too flagrant
with his cheating. Hoglund had spent over $400 on game-card registered
accounts by this point. All of the accounts were banned for various reasons.

Time for another pesky question: Why is farming with a macro
cheating? Some would argue that Blizzard made the game boring in the first
place, so fair is fair.

Countermeasures

For obvious reasons, gaming companies are most interested in keeping bots
out of games. Scientists have even begun to study the problem and publish
work about it. For example, the paper “Preventing Bots from Playing

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

46 Chapter 2 Game Hacking 101

Figure 2–5 A screenshot from WoW showing what happens when the WoW_Agro macro
runs. Virtual bodies pile up as the macro runs all night long.

6627ch02.qxd_lb 6/22/07 7:31 AM Page 46

Online Games” by Philippe Golle and Nicolas Ducheneaut appears in ACM
Computers in Entertainment.17

One clever idea suggested for ensuring that humans (rather than bots)
are playing games has been used successfully to combat spam. It’s called a
reverse Turing test. The Turing test is a test from the AI field meant to
determine whether the entity at one end of a conversation is a human. A
reverse Turing test works by asking questions to ensure that the answering
target (in this case, a gamer) is a human. In many cases, this involves
displaying a convoluted picture that only a human can properly decode
(Figure 2–6). This technique is often referred to as captcha, short for
Completely Automated Public Turing Test to Tell Computers and Humans
Apart.

Often, gamers self-police and try to ferret out and expose bots among
themselves. This can happen through the invocation of a game’s chat
function (something that game masters also employ as a tactic to find bots).
The chat countermeasure works in many games, from MMORPGs to online
poker. Poker bots are not very good at small talk!

Monitoring in real time (possibly using chat) is often accompanied by
monitoring history as well. Looking for behavior that is nonhuman in
nature—maybe superhuman aim, or maybe obsessive behavior such as
killing monsters over and over in the same spot—is often a tip-off that a bot
may be involved. Game masters make use of history to uncover cheating as
a standard tactic.

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4

Countermeasures 47

17. The paper is also available from the PARC Web site at <http://www.parc.xerox.com/
research/publications/files/5445.pdf>.

Figure 2–6 A classic reverse Turing test based on human perception. (From
<http://www.brianpautsch.com/Blog/2005/12/1/Captcha>; used by permission.)

6627ch02.qxd_lb 6/22/07 7:31 AM Page 47

Spyware

Anticheat tools have been around almost as long as game servers have.
Public outcry on open servers led to the first such tools. Game companies
running private servers carry on the tradition to this day.

The first service devoted to this is called PunkBuster, run by a Texas
company named Even Balance, Inc. The PunkBuster service started in 2000.
The first versions relied on simple techniques such as variable checking and
process validation authorized through a server. This was followed by a
number of server-based checks. Today, PunkBuster is integrated into a
number of online games.

The PunkBuster Web site lists the following “features” of the product.18

■ Real-time scanning of memory by PB Client on players’ computers
searching for known hacks/cheats

■ Throttled two-tiered background auto-update system using multiple
Internet Master Servers to provide end-user security ensuring that
no false or corrupted updates can be installed on players’ computers

■ Frequent status reports (highly encrypted) are sent to the PB Server
by all players and the PB Server raises a violation when necessary
which causes the offending player to be removed from the game
and all other players are informed of the violation

■ PB Admins can also manually remove players from the game for a
specified number of minutes or permanently ban if desired

■ PB Servers can optionally be configured to randomly check player
settings looking for known exploits of the game engine

■ PB Admins can request actual screenshot samples from specific
players and/or can configure the PB Server to randomly grab
screenshot samples from players during gameplay

■ An optional “bad name” facility is provided so that PB Admins can
prevent players from using offensive player names containing
unwanted profanity or racial slurs

■ Search functions are provided for PB Admins who wish to search
player’s keybindings and scripts for anything that may be known to
exploit the game

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

48 Chapter 2 Game Hacking 101

18. Quoted from the PunkBuster Web site at <http://www.evenbalance.com/
index.php?page=info.php>.

6627ch02.qxd_lb 6/22/07 7:31 AM Page 48

■ The PunkBuster Player Power facility can be configured to allow
players to self-administer game servers when the Server Administra-
tor is not present entirely without the need for passwords

■ PB Servers have an optional built-in mini http web server interface
that allows the game server to be remotely administered via a web
browser from anywhere over the Internet

Note that some of these features are extremely invasive, such as the one
that scans client PCs! This kind of scanning often involves the installation of
spyware on a gamer’s PC.

PunkBuster was originally conceived as a way to stop client-side hacks
in Counter-Strike. But today PunkBuster concentrates on helping to protect
and police other games.

As it turns out, PunkBuster was a harbinger of invasive techniques to
come.

The Warden: Defeating Cheaters by Crossing the Line

Today, WoW has a two-pronged strategy to defeat cheaters. The first
approach is to make rules against cheating and ban those characters caught
cheating. This is carried out by publishing the terms of use, which are
administered according to the legally binding EULA. Nothing is wrong with
that.19 (For more on the legal situation, see Chapter 4.) The second
approach is to keep an eye on every PC running the WoW client and try to
determine whether it is being used to cheat. This spying thing is a problem.

If monitoring someone’s PC sounds like spying to you, that’s because it
is. WoW’s embedded Warden reads all sorts of data from the gamer’s PC.
Hoglund’s Warden discovery in fall 2005 set off a controversy over privacy,
security, and just what lengths security measures should go to in order to
stop cheating. And it’s part of the reason that we decided to write Exploit-
ing Online Games.

Besides monitoring the WoW process space and keeping track of DLLs
running in that space, the Warden pokes around into other processes, doing
things like reading the window text in the title bar of every window and
doing a scan of the code loaded for every process running on your computer
(which it then compares against known cheat code). Blizzard claims not to

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4

Countermeasures 49

19. Note that this is not a law, it is a contract, and there is no due process. Game companies
can ban your character at any time.

6627ch02.qxd_lb 6/22/07 7:31 AM Page 49

have any designs to use the data it digs up for purposes other than security,
but nothing is really stopping the company from doing whatever it wants on
a gamer’s PC, and it has already crossed the invisible line by poking around
outside the game’s process area. We don’t trust them.

This is a clear invasion of privacy. So much so that the Electronic
Frontier Foundation (EFF) has even weighed in with an opinion
<http://www.eff.org/deeplinks/archives/004076.php>. Though the EULA
does call out that Blizzard may monitor PC activities with the Warden
(without specifying what the Warden actually does), this information is
buried in the small print that almost nobody ever reads. In informal
conversations with WoW players, we have found that none of them were
aware that they had agreed to such monitoring. Some of them were
concerned enough to stop playing.

Worldwide, 8 million people play WoW (usually about 500,000 at any
one time). And every single one of these players has granted Blizzard the
right to scan their computer programs and memory—which Blizzard does.

The Warden process scans for an arbitrary list of things such as open
processes, URLs, and so on, controlled at Blizzard’s discretion, and mails
the information it finds back to Blizzard any time the game program is
running. Figure 2–7 shows an example of content being sent back to
Blizzard by the Warden as determined by a program we wrote called the

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

50 Chapter 2 Game Hacking 101

Figure 2–7 The Governor program, which we created, reports on the activities of the
WoW Warden. The Warden acts as a spy for Blizzard and keeps an eye on your PC by
calling into open processes and reading memory to see what it finds, then reporting that
information back to Blizzard for analysis.

6627ch02.qxd_lb 6/22/07 7:31 AM Page 50

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4

Countermeasures 51

Governor. You can think of the Warden as 8 million copies of what the
game companies call “legitimate spyware.” We think the term spyware is
apt without a modifier.

Of course, Blizzard isn’t the only company that does monitoring like
this—many other game companies do it, too. Sony even tried to install a
monitor when music CDs were inserted into a PC but did it so poorly that
the company landed in hot water. Reaction to the unmasking of programs
like the WoW Warden and Sony’s rootkit has been intense.

The Black Hat Corner reprints a blog entry outing the Warden as
spyware. This story spread worldwide.

Black Hat Corner: WoW Warden as Spyware

In the fall of 2005, one of us (Hoglund) discovered the WoW Warden and outed it to the

technical community. Hoglund’s original posting to the rootkit.com blog (available at

<http://www.rootkit.com/blog.php?newsid=358> with follow-up threads and

discussion) touched off a firestorm. Here’s the post.

4.5 million copies of EULA-compliant spyware

Oct 05 2005, 19:07 (UTC+0)

Hoglund writes:

I recently performed a rather long reversing session on a piece of software

written by Blizzard Entertainment, yes—the ones who made Warcraft, and

World of Warcraft (which has 4.5 million+ players now, apparently). This

software is known as the ‘warden client’—it’s written like shellcode in that it’s

position independent. It is downloaded on the fly from Blizzard’s servers, and it

runs about every 15 seconds. It is one of the most interesting pieces of

spyware to date, because it is designed only to verify compliance with a

EULA/TOS. Here is what it does, about every 15 seconds, to about 4.5 million

people (500,000 of which are logged on at any given time):

The warden dumps all the DLL’s using a ToolHelp API call. It reads

information from every DLL loaded in the ‘world of warcraft’ executable

process space. No big deal.

6627ch02.qxd_lb 6/22/07 7:31 AM Page 51

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

52 Chapter 2 Game Hacking 101

The warden then uses the GetWindowTextA function to read the window

text in the titlebar of every window. These are windows that are not in the

WoW process, but any program running on your computer. Now a Big Deal.

I watched the warden sniff down the email addresses of people I was

communicating with on MSN, the URL of several websites that I had open at

the time, and the names of all my running programs, including those that

were minimized or in the toolbar. These strings can easily contain social

security numbers or credit card numbers, for example, if I have Microsoft Excel

or Quickbooks open w/ my personal finances at the time.

Once these strings are obtained, they are passed through a hashing

function and compared against a list of ‘banning hashes’—if you match

something in their list, I suspect you will get banned. For example, if you have

a window titled ‘WoW!Inmate’—regardless of what that window really does, it

could result in a ban. If you can’t believe it, make a dummy window that does

nothing at all and name it this, then start WoW. It certainly will result in

warden reporting you as a cheater. I really believe that reading these window

titles violates privacy, considering window titles contain a lot of personal data.

But, we already know Blizzard Entertainment is fierce from a legal perspective.

Look at what they have done to people who tried to make BNetD, freecraft, or

third-party WoW servers.

Next, warden opens every process running on your computer. When each

program is opened, warden then calls ReadProcessMemory and reads a series

of addresses—usually in the 0x0040xxxx or 0x0041xxxx range—this is the

range that most executable programs on windows will place their code.

Warden reads about 10–20 bytes for each test, and again hashes this and

compares against a list of banning hashes. These tests are clearly designed to

detect known 3rd party programs, such as wowglider and friends. Every

process is read from in this way. I watched warden open my email program,

and even my PGP key manager. Again, I feel this is a fairly severe violation of

privacy, but what can you do? It would be very easy to devise a test where the

warden clearly reads confidential or personal information without regard.

This behavior places the warden client squarely in the category of

spyware. What is interesting about this is that it might be the first use of

spyware to verify compliance with a EULA. I cannot imagine that such

6627ch02.qxd_lb 6/22/07 7:31 AM Page 52

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4

Countermeasures 53

The Governor

Hoglund was upset enough by the Warden to write a program called the
Governor that gamers can use to determine exactly what the Warden is
doing.

We believe that having the Governor around is useful, especially if
you’re interested in what WoW software might be doing on your PC. A
listing of part of the Governor is included here. You may download a copy
of the software and the libraries required to build it from the book’s Web
site or at <http://www.rootkit.com/vault/hoglund/Governor.zip>. As we did
earlier, we have interspersed the code with commentary to make it easier to
understand.

// The Governor
// Oct 16, 2005 - Greg Hoglund
// www.rootkit.com

#include "stdafx.h"
#include "GovernorDLL.h"
#include <windows.h>
#include <stdio.h>
#include <stdarg.h>
#include <process.h>

HANDLE g_hPipe = 0;
CRITICAL_SECTION g_pipe_protector;

void PatchFunctions();

practices will be legal in the future, but right now in terms of law, this is the

wild wild west. You can’t blame Blizz for trying, as well as any other company,

but this practice will have to stop if we have any hope of privacy. Agree w/

botting or game cheaters or not, this is a much larger issue called ‘privacy’ and

Blizz has no right to be opening my excel or PGP programs, for whatever

reason.

—Greg

6627ch02.qxd_lb 6/22/07 7:31 AM Page 53

The code here is used in a DLL—a type of code object that can be
loaded directly into a program. In this case, the WoW program is forced to
load this DLL via a process known in software security parlance as DLL
injection. The injected DLL is actually just a normal DLL, but it is forced to
load after the WoW game client has already started and logged into the
WoW server.

BOOL APIENTRY DllMain(HANDLE hModule,
DWORD ul_reason_for_call,
LPVOID lpReserved)

{
switch (ul_reason_for_call)
{
case DLL_PROCESS_ATTACH:

InitializeCriticalSection(&g_pipe_protector);
g_hPipe = StartPipe("\\\\.\\pipe\\wow_hooker");
SendText(g_hPipe, "GovernorDLL Loaded.");
PatchFunctions();
break;

case DLL_THREAD_ATTACH:
break;

case DLL_THREAD_DETACH:
break;

case DLL_PROCESS_DETACH:
SendText(g_hPipe, "GovernorDLL Unloaded.");
ShutdownPipe(g_hPipe);
break;

}
return TRUE;

}

The DLL opens a named pipe—a form of communication port—when it
is loaded. Later, the named pipe will be used to report on the Warden’s
activity.

//
// Send text down the pipe
//
void
SendText (HANDLE hPipe, char *szText)
{

if(!hPipe) return;

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

54 Chapter 2 Game Hacking 101

6627ch02.qxd_lb 6/22/07 7:31 AM Page 54

char *c;
DWORD dwWritten;
DWORD len = strlen(szText);
DWORD lenh = 4;

EnterCriticalSection(&g_pipe_protector);

// send length first
c = (char *)&len;
while(lenh)
{

//char _g[255];
//_snprintf(_g, 252, "sending header %d", lenh);
//OutputDebugString(_g);

if (!WriteFile (hPipe, c, lenh, &dwWritten, NULL))
{

LeaveCriticalSection(&g_pipe_protector);
ShutdownPipe(hPipe);
return;

}
lenh -= dwWritten;
c += dwWritten;

}

// then string
c = szText;
while(len)
{

//char _g[255];
//_snprintf(_g, 252, "sending string %d", len);
//OutputDebugString(_g);

if (!WriteFile (hPipe, c, len, &dwWritten, NULL))
{

LeaveCriticalSection(&g_pipe_protector);
ShutdownPipe(hPipe);
return;

}
len -= dwWritten;
c += dwWritten;

}

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4

Countermeasures 55

6627ch02.qxd_lb 6/22/07 7:31 AM Page 55

LeaveCriticalSection(&g_pipe_protector);
}

HANDLE StartPipe(char *szPipeName)
{

HANDLE hPipe;
TCHAR szBuffer[300];

//
// Open the output pipe
//
hPipe = CreateFile (szPipeName, GENERIC_WRITE, 0, NULL,

OPEN_EXISTING, FILE_FLAG_WRITE_THROUGH,
NULL);

if (hPipe == INVALID_HANDLE_VALUE)
{

_snprintf (szBuffer, sizeof (szBuffer),
"Failed to open output pipe(%s): %d\n",
szPipeName, GetLastError ());
OutputDebugString(szBuffer);

return NULL;
}

return hPipe;
}

void ShutdownPipe(HANDLE hPipe)
{

//cleanup
if (hPipe)
{

FlushFileBuffers (hPipe);
CloseHandle (hPipe);

}
// make sure it stops being used
g_hPipe = 0;

}

Some of the Warden hooking files are displayed below in order to enhance
your understanding of what’s going on. Remember, we’re only showing you
the essential parts of the Governor system here.

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

56 Chapter 2 Game Hacking 101

6627ch02.qxd_lb 6/22/07 7:31 AM Page 56

// The Governor
// Oct 16, 2005 - Greg Hoglund
// www.rootkit.com

#include "stdafx.h"
#include <windows.h>
#include <stdio.h>
#include <string.h>
#include <winsock2.h>
#include "GovernorDLL.h"
#include "detours.h"
#include <psapi.h>

//
// These are functions used by the Warden to spy on other processes
//

The functions below are all used by the WoW Warden. Here, we use the
public Microsoft Detours library to intercept calls made to these func-
tions.20 This move allows us to report on any program that attempts to use
these calls, including the Warden, through our named pipe.

DETOUR_TRAMPOLINE(BOOL __stdcall Real_GetWindowTextA(HWND hWnd,
LPSTR lpString, int nMaxCount), GetWindowTextA);
BOOL __stdcall Mine_GetWindowTextA(HWND hWnd, LPSTR lpString, int
nMaxCount)
{

int len = Real_GetWindowTextA(hWnd, lpString, nMaxCount);
if(len != 0)
{

// WoW found some window text, let’s report it
char _t[255];
_snprintf(_t, 252, "GetWindowTextA called from WoW,

returned %d bytes, %s ", len, lpString);
SendText(g_hPipe, _t);

}

return len;
}

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4

Countermeasures 57

20. You can find out more about the Microsoft Detours library and download the code from
<http://research.microsoft.com/sn/detours>.

6627ch02.qxd_lb 6/22/07 7:31 AM Page 57

DETOUR_TRAMPOLINE(BOOL __stdcall Real_GetWindowTextW(HWND hWnd,
LPWSTR lpString, int nMaxCount), GetWindowTextW);
BOOL __stdcall Mine_GetWindowTextW(HWND hWnd, LPWSTR lpString,
int nMaxCount)
{

int len = Real_GetWindowTextW(hWnd, lpString, nMaxCount);
if(len != 0)
{

// WoW found some window text, let’s report it

char _t[255];
_snprintf(_t, 252, "GetWindowTextW called from WoW,

returned %d bytes", len);
SendText(g_hPipe, _t);

}

return len;
}

Now we can identify when the Warden is opening windows on the com-
puter, even windows that belong to other programs (e.g., your instant
messaging program). The Governor reports not only which window the
Warden opened but also what text it read. This technique has been used to
watch the Warden program read sensitive and presumably private informa-
tion, including the e-mail addresses of the contacts in your instant messen-
ger program.

DETOUR_TRAMPOLINE(int __stdcall Real_WSARecv(
SOCKET s,
LPWSABUF lpBuffers,
DWORD dwBufferCount,
LPDWORD lpNumberOfBytesRecvd,
LPDWORD lpFlags,
LPWSAOVERLAPPED lpOverlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine),

WSARecv);

int __stdcall Mine_WSARecv(
SOCKET s,
LPWSABUF lpBuffers,
DWORD dwBufferCount,

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

58 Chapter 2 Game Hacking 101

6627ch02.qxd_lb 6/22/07 7:31 AM Page 58

LPDWORD lpNumberOfBytesRecvd,
LPDWORD lpFlags,
LPWSAOVERLAPPED lpOverlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine)

{
int res = Real_WSARecv(s, lpBuffers, dwBufferCount,

lpNumberOfBytesRecvd,lpFlags,
lpOverlapped,lpCompletionRoutine);

char _t[255];
_snprintf(_t, 252, "WSARecv returned %d, %d bytes

received", res, *lpNumberOfBytesRecvd);
SendText(g_hPipe, _t);

return res;
}

DETOUR_TRAMPOLINE(DWORD __stdcall Real_CharUpperBuffA(LPTSTR
lpString, DWORD cchLength), CharUpperBuffA);
DWORD __stdcall Mine_CharUpperBuffA(LPTSTR lpString, DWORD
cchLength)
{

DWORD len = Real_CharUpperBuffA(lpString, cchLength);
if(len != 0)
{

// WoW is processing some text, let’s report it

char _t[255];
_snprintf(_t, 252, "CharUpperBuffA called from WoW,

string %s", lpString);
SendText(g_hPipe, _t);

}

return len;
}

DETOUR_TRAMPOLINE(HANDLE __stdcall Real_OpenProcess(DWORD
dwDesiredAccess, BOOL bInheritHandle, DWORD dwProcessId),
OpenProcess);
HANDLE __stdcall Mine_OpenProcess(DWORD dwDesiredAccess, BOOL
bInheritHandle, DWORD dwProcessId)
{

HANDLE h = Real_OpenProcess(dwDesiredAccess,
bInheritHandle, dwProcessId);

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4

Countermeasures 59

6627ch02.qxd_lb 6/22/07 7:31 AM Page 59

if(h != 0)
{

// WoW is opening a process, let’s report it

char _t[255];
_snprintf(_t, 252, "OpenProcess called from WoW, pid

%d, returned handle 0x%08X", dwProcessId, (DWORD)h);
SendText(g_hPipe, _t);

}

return h;
}

DETOUR_TRAMPOLINE(BOOL __stdcall Real_ReadProcessMemory(
HANDLE hProcess,
LPCVOID lpBaseAddress,
LPVOID lpBuffer,
SIZE_T nSize,
SIZE_T* lpNumberOfBytesRead),

ReadProcessMemory);

BOOL __stdcall Mine_ReadProcessMemory(HANDLE hProcess, LPCVOID
lpBaseAddress, LPVOID lpBuffer, SIZE_T nSize, SIZE_T
*lpNumberOfBytesRead)
{

BOOL ret = Real_ReadProcessMemory(hProcess,
lpBaseAddress, lpBuffer, nSize, lpNumberOfBytesRead);

if(ret && ((DWORD)hProcess != -1))
{

// WoW is reading a process, let’s report it
char szProcessName[MAX_PATH] = "unknown";

GetProcessImageFileName(hProcess, szProcessName,
MAX_PATH);

char _t[255];
_snprintf(_t, 252, "ReadProcessMemory called from

WoW, handle 0x%08X, process %s, read from address 0x%08X,
%d bytes",

hProcess,
szProcessName,
lpBaseAddress,
nSize);

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

60 Chapter 2 Game Hacking 101

6627ch02.qxd_lb 6/22/07 7:31 AM Page 60

SendText(g_hPipe, _t);
}

return ret;
}

The last two functions above leave no guesswork as to Warden activity. They
clearly report whenever the Warden opens another process and it reads the
memory of that process. Our spy versus spy system is complete.

void PatchFunctions()
{

DetourFunctionWithTrampoline((PBYTE)Real_GetWindowTextA,
(PBYTE)Mine_GetWindowTextA);

DetourFunctionWithTrampoline((PBYTE)Real_GetWindowTextW,
(PBYTE)Mine_GetWindowTextW);

DetourFunctionWithTrampoline((PBYTE)Real_CharUpperBuffA,
(PBYTE)Mine_CharUpperBuffA);

DetourFunctionWithTrampoline((PBYTE)Real_OpenProcess,
(PBYTE)Mine_OpenProcess);

DetourFunctionWithTrampoline((PBYTE)Real_ReadProcessMemory,
(PBYTE)Mine_ReadProcessMemory);

//DetourFunctionWithTrampoline((PBYTE)Real_WSARecv,
(PBYTE)Mine_WSARecv);
}

This last part of the code actually installs the “detours” we defined
against the selected functions. You can easily modify the source code to
monitor additional calls, and you can apply this code against any program
you want, including other games. We encourage you to experiment with this
functionality. Perhaps you will discover other games and applications that
are spying on users.

Where Do You Stand?

Online MMORPG forums and Web sites have been abuzz with the spyware
controversy ever since Hoglund described the Warden. Some people believe
that complaining about such spyware is silly and that if someone is so
worried about it, he or she can just choose not to play. We disagree. We’ve
also heard the opinion that maybe the blame belongs to Microsoft since
its operating system allows arbitrary programs to collect the kind of

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4

Countermeasures 61

6627ch02.qxd_lb 6/22/07 7:31 AM Page 61

information the Warden collects. What we worry about is the intention
here. Regardless of whether you can invade privacy, should you?

What Blizzard is doing in the name of security is unacceptable, and it
needs to stop. The tradeoff between personal liberty and security is an
essential tradeoff that must be carefully negotiated. Citizens in a free society
must guard their freedoms vigilantly or risk tyranny in the name of security.
Historically, monitoring activities lead very quickly to abuse and present an
unacceptably slippery slope. Blizzard does not need to read our e-mail, surf
our URLs, or look into our non-Blizzard processes. Allowing the company
to do so gives up too much ground for not enough return. Once everyone is
doing this, there will be no more privacy on a “personal” computer.

Hoglund says it best in an open message to Blizzard posted at
<http://www.rootkit.com/newsread.php?newsid=371>:

Blizzard, it is within your right to attempt to make your computer game
the way you wish it to be, and to attempt to catch cheaters. But, reading
the memory of other processes and windows that are not part of the
World of Warcraft game client is a violation of privacy. Making a violation
of privacy legal in your EULA and TOS does not make it also moral. It
remains a violation of privacy. Please refactor your policy in regards to
scanning memory, and limit the warden to integrity checking of the
game client’s memory space, and please stop opening other processes
and reading windows that do not belong to you.

If we stand by and let a game company poke around on our PCs in the
name of security, what do you suppose they will do next?

Cheating

As we have shown in this chapter, there are many widespread ways to cheat
in online games. Some of the techniques we describe are several years old.
As more and more money is at stake, more gamers are likely to be tempted
to cheat. Cheating is bad. Cheating technology is improving.

Big questions remain regarding anticheating technology, though. Are
back door programs, rootkits, and invasive scanners really necessary for
piracy detection? When does such a countermeasure cross the line between
legitimate copy protection and invasion of privacy? What rights to your
computer must you give up in order to play an online game?

Consider, for example, that Blizzard’s Warden scanning program isn’t
really used to detect pirates—it’s really used to detect cheaters. Blizzard, of

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

62 Chapter 2 Game Hacking 101

6627ch02.qxd_lb 6/22/07 7:31 AM Page 62

course, gets to define precisely what it means by cheating—it is their game,
after all. Among other things, cheating in this case means any use of
software automation tools like the WoW_Agro macro we showed in this
chapter to play the game.

It seems that the war on cheating has led to collateral damage in the
form of privacy. Yet we have only begun to describe what’s happening in the
gaming world.

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4

Countermeasures 63

6627ch02.qxd_lb 6/22/07 7:31 AM Page 63

