
Chapter 12

Path Finding

Don’t you just hate it when you’re just hanging around the
city, minding your own business, when all of a sudden a

bunch of ninjas jump out and attack you? You knock a few
of them out and make a quick getaway, running around
buildings and diving in alleys, but next thing you know, a
bunch of ninjas jump out at you again. No matter what you
do, the ninjas find you. Does this ever happen to you?
Anyone?

What you might be wondering is how those ninjas always
seem to find you, what they could possibly want, and
whether the writer of this book has questionable sanity.

In this chapter, we deal with the first thing you might be
wondering: how the ninjas found you. Specifically, we talk
about some path-finding algorithms and implement a generic
A* search. This search algorithm allows ninjas to find you no
matter where you are.

Also, a good path-finding algorithm is essential to artificial
intelligence, so we’ll use what we create in this chapter when
we talk about AI in Chapter 13, “Artificial Intelligence.”
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Path-Finding Basics
Path finding can be reduced to answering the question, “How do I get from point A to
point B?” Generally, the path from a ninja (or, in this case, a bot) to another location
could potentially have several different solutions, but ideally, you want a solution that
solves these goals:

1. How to get from A to B

2. How to get around obstacles in the way

3. How to find the shortest possible path

4. How to find the path quickly

Some path-finding algorithms solve none of these problems, and some solve all of
them. And in some cases, no algorithm could solve any of them—for example, point A
could be on an island completely isolated from point B, so no solution would exist.

Some Initial Path-Finding Attempts
If the environment is flat with no obstacles, path finding is no problem: The bot can just
move in a straight line to its destination. But when obstacles occur between point A and
point B, things get a little hairy. For example, in Figure 12.1, if the bot just moves
straight toward the player, it will end up just hitting a wall and getting stuck there.
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Figure 12.1 Not the best solution: The bot (white circle) just runs straight toward the 
player (black circle), even if there are obstacles in the way.
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This behavior might be fine for some games because it doesn’t really matter what the
bots do; it matters only what they appear to do. In a 3D world from the player’s per-
spective, it might look like the bot is just waiting behind the wall for the player instead
of being stuck.

A bird’s-eye perspective is a different story. Path finding is virtually required for games
with bird’s-eye perspectives, such as real-time strategy games or for games like The
Sims. You wouldn’t want to tell a team of fighters to attack something but have the
team not be able to do it because the destination was on the other side of the wall!
Come on now, use the door.

Also, making a bot smart enough to find a path around an obstacle makes it more
interesting for the player and harder to “trick” the bot into doing something or moving
a certain way.

Several techniques can be used to get around obstacles. A randomized algorithm finds
a solution eventually, if there is one. This technique makes the bot walk around ran-
domly, like in Figure 12.2, until it finds what it is looking for. 
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Figure 12.2 The bot (white circle) moves around randomly until the player (black circle) is found.

Of course, the randomized algorithm doesn’t give the best-looking results or the 
shortest path. Who wants to watch a bot move around randomly like it’s missing a 
circuit or two? 

This random algorithm could be modified to move randomly only occasionally and at
other times move directly toward the player, which would make the bot’s movement
appear slightly more intelligent.
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Another solution can be found when the environment is a simple maze with no loops,
like in Figure 12.3. Here, the path-finding algorithm is the “right hand on the wall”
algorithm (or the “left hand on the wall” algorithm, if you’re into that sort of thing).
Just keep your right hand on the wall as you move through the maze, and eventually
you’ll find the destination.
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Figure 12.3 The bot (white circle) moves in a maze, keeping its right hand 
on the wall until it finds the player (black circle).

If a bot follows the “right hand” algorithm literally, it will rarely find the shortest 
path from A to B. Alternatively, the path could be calculated ahead of time, before 
the bot makes any moves. Then any backtracking (such as when venturing into the
lower-right hall in the figure) could be removed from the path, leaving a shortest-path
solution.

However, this algorithm works only for the simple case of a maze with no loops. If a
loop was in the path, the bot would veer to the right forever. Also, if rooms had wide
spaces, the bot might never find its destination in the middle of a room because the
bot is always next to a wall. Ideally, you’ll probably want to create more intricate envi-
ronments than this.

Instead of looking at the environment as a grid, we’ll look at it as a graph, like in
Figure 12.4. A graph is simply a bunch of nodes grouped by various edges. 
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Figure 12.4 A simple graph.

Each node of the graph could be anything. For example, a node could be a cell in a 2D
grid. Or, a node could be a “city,” with the edges of the graph representing highways. And
remember, when finding the path from A to B, any node can be the start or goal node.

A graph is similar to a tree, as discussed in Chapter 10, “3D Scene Management Using
BSP Trees,” except that, instead of each node having up to two children, each node can
have an indefinite number of children, or neighbors. Some graphs are directed, mean-
ing that an edge between two nodes can be traversed in only one direction. Looking at
the example in Figure 12.4, all the edges are bidirectional except for one. A unidirec-
tional edge could be useful in such situations as when traveling involves jumping
down a cliff that is too high to jump back up.

In this example, you want to find the shortest path from node A to node B, or the
fewest number of traversed edges to get to the goal. Looking at the figure, the solution
is easy to determine, but how would you find the solution in a computer program? An
easy solution is to use a breadth-first search.

Breadth-First Search
Like traversing BSP trees, a breadth-first search involves visiting nodes one at a time. A
breadth-first search visits nodes in the order of their distance from the start node,
where distance is measured as the number of traversed edges. So, with a breadth-first
search, first all nodes one edge away from the goal are visited, then those two edges
away are visited, and so on until all nodes are visited. This way, you find the path from
the start to the goal with the minimum number of traversed edges. Another way to
word it is like this: Visit the neighbor nodes, then the neighbor’s neighbor nodes, and
so on until the goal node is found. An example of a breadth-first search is in Figure
12.5, in which the nodes are numbered in the order they are visited.
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Figure 12.5 An example breadth-first search. The nodes are 
numbered in the order of the search.

Later in this chapter, you’ll use the A* search algorithm, which has several similarities
to a breadth-first search. But first, to better understand A*, you’ll implement the easy-
to-understand breadth-first search algorithm.

First, start with a basic node, which has references to all its neighbors:

public class Node {

List neighbors;

Node pathParent;

}

The neighbors list is simply a list of all the nodes’ neighbors.

The pathParent node is used for searching only. Think of the path from the start
node to the goal node as a tree, with each node having only one child. The
pathParent node is the node’s parent in the path tree. When the goal is found, the
path can be found by traversing up the path tree from the goal node to the start node,
like this:

private List constructPath(Node node) {

LinkedList path = new LinkedList();

while (node.pathParent != null) {

path.addFirst(node);

node = node.pathParent;

}

return path;

}

Of course, this assumes that the start node has no parent in the path.
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Okay! Now you’re ready to implement the breadth-first search algorithm. One thing to
keep in mind is that you want to be sure to only visit each node once. For example, if
A has neighbors B and C, and B has neighbor A, you don’t want to visit A again or
you’ll end up in an infinite loop.

So, you’ll keep track of all nodes that have been visited by putting them in a “closed”
list. If a node shows up in the search that’s already in the closed list, you’ll ignore it.
Likewise, you’ll keep track of all the nodes you want to visit in an “open” list. The
open list is a first in, first out list, effectively sorting the list from smallest number of
edges from the start goal to the largest. Here’s the full code:

public List search(Node startNode, Node goalNode) {

// list of visited nodes

LinkedList closedList = new LinkedList();

// list of nodes to visit (sorted)

LinkedList openList = new LinkedList();

openList.add(startNode);

startNode.pathParent = null;

while (!openList.isEmpty()) {

Node node = (Node)openList.removeFirst();

if (node == goalNode) {

// path found!

return constructPath(goalNode);

}

else {

closedList.add(node);

// add neighbors to the open list

Iterator i = node.neighbors.iterator();

while (i.hasNext()) {

Node neighborNode = (Node)i.next();

if (!closedList.contains(neighborNode) &&

!openList.contains(neighborNode)) 

{

neighborNode.pathParent = node;

openList.add(neighborNode);
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}

}

}

}

// no path found

return null;

}

This function returns a list of nodes that represent the path, not including the start
node. If a path can’t be found, it returns null.

That’s all there is for breadth-first search. However, taking a step back, it’s easy to
notice one problem with this search: You found the path with the least number of
edges, but edges could have different “costs” associated with them. For example, the
cost of one edge could be 10km, while the cost of another could be 100km. Obviously,
traversing two 10km edges would be faster than traversing a single 100km edge.
Breadth-first search assumes all edges have the same cost, which isn’t good enough.
This is where the A* algorithm comes in. 

Basics of the A* Algorithm
An A*—pronounced “A-star”—search works like a breadth-first search, except with
two extra factors:

➤ The edges have different “costs,” which is how much it costs to travel from one
node to another.

➤ The cost from any node to the goal node can be estimated. This helps refine the
search so that you’re less likely to go off searching in the wrong direction.

The cost between nodes doesn’t have to be distance. The cost could be time, if you
wanted to find the path that takes the shortest amount of time to traverse. For exam-
ple, when you are driving, taking the back roads might be a shorter distance, but 
taking the freeway usually takes less time (freeways in Los Angeles excluded). Another
example is terrain: Traveling through overgrown forests could take longer than travel-
ing through a grassy area.
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Or, you could get more creative with the cost. For instance, if you want a bot to sneak
up on the player, having the bot appear in front of the player could have a high cost,
but appearing from behind could have little or no cost. You could take this idea further
and assign a special tactical advantage to certain nodes—such as getting behind a
crate—which would have a smaller cost than just appearing in front of the player.

The A* algorithm works the same as breadth-first search, except for a couple of 
differences:

➤ The nodes in the open list are sorted by the total cost from the start to the goal
node. In other words, it’s a priority queue. The total cost is the sum of the cost
from the start node and the estimated cost to the goal node.

➤ A node in the closed list can be moved back to the open list if a shorter path 
(less cost) to that node is found. 

Because the open list is sorted by the estimated total cost, the algorithm checks nodes
that have the smallest estimated cost first, so it searches the nodes that are more likely to
be in the direction of the goal. Thus, the better the estimate is, the faster the search is.

Of course, you need to define the cost and the estimated cost. If the cost is distance,
this is easy: The cost between nodes is their distance, and the cost from one node to
the goal is simply a calculation of the distance from that node to the goal.

Note that this algorithm works only when the estimated cost is never more than the
actual cost. If the estimated cost were more, the path found wouldn’t necessarily be the
shortest.

All right, let’s get started on some code. First, you’ll create a generic, abstract A* search
algorithm that can be used for any type of A* search. The idea is that you’ll be able to
use this generic abstract class for lots of different situations, and because it’s generic,
the code will be easier to read. You’ll start with an A* node, shown in Listing 12.1.

Listing 12.1 AStarNode.java

package com.brackeen.javagamebook.path;

import java.util.List;
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import com.brackeen.javagamebook.util.MoreMath;

/**

The AStarNode class, along with the AStarSearch class,

implements a generic A* search algorithm. The AStarNode

class should be subclassed to provide searching capability.

*/

public abstract class AStarNode implements Comparable {

AStarNode pathParent;

float costFromStart;

float estimatedCostToGoal;

public float getCost() {

return costFromStart + estimatedCostToGoal;

}

public int compareTo(Object other) {

float otherValue = ((AStarNode)other).getCost();

float thisValue = this.getCost();

return MoreMath.sign(thisValue - otherValue);

}

/**

Gets the cost between this node and the specified

adjacent (aka "neighbor" or "child") node.

*/

public abstract float getCost(AStarNode node);

/**

Gets the estimated cost between this node and the

specified node. The estimated cost should never exceed

the true cost. The better the estimate, the more
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efficient the search.

*/

public abstract float getEstimatedCost(AStarNode node);

/**

Gets the children (aka "neighbors" or "adjacent nodes")

of this node.

*/

public abstract List getNeighbors();

}

The AStarNode class is an abstract class that needs to be subclassed to provide any
search functionality. Like the node used for the breadth-first search, it contains the
pathParent node used during the search process only. costFromStart and
estimatedCostToGoal are also filled in during the search because these vary 
depending on where the start and goal nodes are. 

The getCost(node) abstract method returns the cost between the node and a neigh-
bor node. The getEstimatedCost(node) abstract method returns the estimated cost
between the node and the specified goal node. Remember, you have to create these
functions, depending on what you want the cost to be.

Now you’ll implement the A* search, shown here in Listing 12.2.

Listing 12.2 AStarSearch.java

package com.brackeen.javagamebook.path;

import java.util.*;

/**

The AStarSearch class, along with the AStarNode class,

implements a generic A* search algorithm. The AStarNode

class should be subclassed to provide searching capability.

*/

public class AStarSearch {
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/**

A simple priority list, also called a priority queue.

Objects in the list are ordered by their priority,

determined by the object’s Comparable interface.

The highest priority item is first in the list.

*/

public static class PriorityList extends LinkedList {

public void add(Comparable object) {

for (int i=0; i<size(); i++) {

if (object.compareTo(get(i)) <= 0) {

add(i, object);

return;

}

}

addLast(object);

}

}

/**

Construct the path, not including the start node.

*/

protected List constructPath(AStarNode node) {

LinkedList path = new LinkedList();

while (node.pathParent != null) {

path.addFirst(node);

node = node.pathParent;

}

return path;

}

/**

Find the path from the start node to the end node. A list

of AStarNodes is returned, or null if the path is not

found. 

Chapter 12664

Listing 12.2 AStarSearch.java continued

14 0051_Ch12  7/21/03  4:43 PM  Page 664



*/

public List findPath(AStarNode startNode, AStarNode goalNode)

{

PriorityList openList = new PriorityList();

LinkedList closedList = new LinkedList();

startNode.costFromStart = 0;

startNode.estimatedCostToGoal =

startNode.getEstimatedCost(goalNode);

startNode.pathParent = null;

openList.add(startNode);

while (!openList.isEmpty()) {

AStarNode node = (AStarNode)openList.removeFirst();

if (node == goalNode) {

// construct the path from start to goal

return constructPath(goalNode);

}

List neighbors = node.getNeighbors();

for (int i=0; i<neighbors.size(); i++) {

AStarNode neighborNode =

(AStarNode)neighbors.get(i);

boolean isOpen = openList.contains(neighborNode);

boolean isClosed =

closedList.contains(neighborNode);

float costFromStart = node.costFromStart +

node.getCost(neighborNode);

// check if the neighbor node has not been

// traversed or if a shorter path to this

// neighbor node is found.

if ((!isOpen && !isClosed) ||

costFromStart < neighborNode.costFromStart)

{

neighborNode.pathParent = node;

neighborNode.costFromStart = costFromStart;
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neighborNode.estimatedCostToGoal =

neighborNode.getEstimatedCost(goalNode);

if (isClosed) {

closedList.remove(neighborNode);

}

if (!isOpen) {

openList.add(neighborNode);

}

}

}

closedList.add(node);

}

// no path found

return null;

}

}

The PriorityList inner class is a simple LinkedList that adds nodes using an
insertion sort. In this case, only AStarNode instances are added, keeping the list 
sorted from lowest cost to highest. Nodes are removed only from the front of the list
(lowest cost).

The findPath() function is very similar to the breadth-first search implementation,
except for a couple of changes. The costFromStart and estimatedCostToGoal
fields are calculated as you go along. Also, a node is moved from the closed list to the
open list if a shorter path to that node is found. Other than that, they’re pretty much
the same.

That’s it for the basics of the A* algorithm. The next step is to actually apply this 
algorithm in a game. 
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Applying the A* Algorithm
To use the A* algorithm in a game, you’ll have to interpret the game environment as a
graph—or, in other words, decide what the nodes and edges represent.

In a top-down, tiled-based world, this is easy: The nodes represent the tiles, as in
Figure 12.6. In this figure, the game environment is laid out on a hexagonal grid, and
you can travel from one tile to any of its six neighboring tiles (unless one or more of
the neighboring tiles is an obstacle).
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Figure 12.6 A tiled-based game can easily be interpreted as a graph.

In this case, the distance between neighbor nodes is the same, but the cost between
neighbor nodes doesn’t have to be. As mentioned before, you could make traveling on
some tiles, such as muddy sand, take longer than on other tiles, such as sidewalks.

If the tiles were square, traveling diagonally would have a greater cost than traveling
straight north, south, east, or west because the diagonal distance between two square
tiles is greater.

One benefit of a top-down, tile-based world is that it’s easy to dynamically modify the
graph. If the player blasts a tile, changing it from an obstacle to a grassy area, the
graph can be easily updated.

However, tiled-based worlds aren’t the only situation in which you can use the A*
algorithm. 
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Using the A* Algorithm with a BSP Tree
Let’s consider a typical floor plan for a 3D world like you used in previous chapters. In
this world, what could your nodes be?

First, the nodes could be placed by hand. All you would have to do is make sure the
edges between neighbor nodes have a clear path (no obstacles in the way) and that
there are enough nodes to cover the entire map.

However, this can be a bit tedious. Who wants to sit around defining where path-finding
nodes are on a map? So let’s try to come up with an automatic solution for node
placement. 

Portals
You can take advantage of the fact that your “rooms” in the floor plan are convex. This
means a bot traveling from one entryway of the room to another will never hit any walls,
as long as the two entryways aren’t collinear. If two entryways are collinear (they exist on
the same line in space) and a wall was between them (think doorways in a dorm hall),
then a bot could collide with the wall between them. So, extra care may be needed to
define room boundaries so that collinear entryways in the same room don’t occur.

Entryways between convex rooms are often called portals. Portals are generally an
invisible polygon (or, in a 2D world, an invisible line) that separates two convex areas.
See Figure 12.7 for an example: The dotted lines represent the portals.
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Figure 12.7 Dotted lines represent the portals between convex areas.
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Portals can also be used as a rendering technique. With portal rendering, you start by
drawing all the polygons in the room that the camera is in. If any portals are in the view,
the room on the other side of the portal is drawn, and then so on until the view is filled.

Using portals as nodes means you can easily create a graph for traveling room to room,
as in Figure 12.8.
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Figure 12.8 The portals can be the nodes in a graph representing the map.

The only issue is that the start and goal locations are within a room, not on a portal.
However, because rooms are convex, a bot can move in a straight line from any loca-
tion in a room to one of the room’s portals without running into any walls.

So, when you are doing an A* search, you can make temporary nodes that represent the
start and the goal. These node’s neighbors are all the portals of the room they are in. 

Note that using portals as nodes takes only the world into account—obstacles based on
game objects aren’t considered. So, if you have a door or other game object in the way,
you’ll need some extra code to move around those objects or at least consider them in
the search.

Implementing Portals
In a BSP tree, portals can be stored in the leaves of the tree because the leaves represent
convex areas. This way, you can easily get all the portals for a room. Here you just add
a list of portals to the BSP tree leaf you created in Chapter 10:
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public static class Leaf extends Node {

public float floorHeight;

public float ceilHeight;

public Rectangle bounds;

public List portals;

}

Finding the portals is easy. Because a leaf in a 2D tree represents an area, just check
each edge of that area to see if there’s a “solid wall” on it. If there is not, you have a
portal. The same is true for a 3D BSP tree, except that every face of the leaf volume is
checked.

When you have a portal, you need to know what leaf is on either side of it. You 
can find out by doing a simple tree traversal, shown in Listing 12.3 with the
getFrontLeaf() and getBackLeaf() methods of BSPTree.

Listing 12.3 getLeaf() Methods of BSPTree.java

/**

Gets the Leaf in front of the specified partition.

*/

public Leaf getFrontLeaf(BSPLine partition) {

return getLeaf(root, partition, BSPLine.FRONT);

}

/**

Gets the Leaf in back of the specified partition.

*/

public Leaf getBackLeaf(BSPLine partition) {

return getLeaf(root, partition, BSPLine.BACK);

}

protected Leaf getLeaf(Node node, BSPLine partition, int side)

{

if (node == null || node instanceof Leaf) {

return (Leaf)node;
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}

int segSide = node.partition.getSide(partition);

if (segSide == BSPLine.COLLINEAR) {

segSide = side;

}

if (segSide == BSPLine.FRONT) {

return getLeaf(node.front, partition, side);

}

else if (segSide == BSPLine.BACK) {

return getLeaf(node.back, partition, side);

}

else { // BSPLine.SPANNING

// shouldn’t happen

return null;

}

}

These methods assume the partition doesn’t span any other partitions because the par-
tition is the edge of a leaf. The correct Leaf object is returned depending on whether
you want the leaf in front of or in back of the partition.

Finally, you’ll make a Portal class, as shown in Listing 12.4. This class is a subclass of
AStarNode.

Listing 12.4 Portal.java

package com.brackeen.javagamebook.bsp2D;

import java.util.*;

import com.brackeen.javagamebook.math3D.Vector3D;

import com.brackeen.javagamebook.path.AStarNode;

/**

A Portal represents a passable divider between two

leaves in a BSP tree (think: entryway between rooms).

The Portal class is also an AStarNode, so AI creatures

can use the A* algorithm to find paths throughout the

BSP tree.

Path Finding 671

continues

14 0051_Ch12  7/21/03  4:43 PM  Page 671



*/

public class Portal extends AStarNode {

private BSPLine divider;

private BSPTree.Leaf front;

private BSPTree.Leaf back;

private ArrayList neighbors;

private Vector3D midPoint;

/**

Create a new Portal with the specified divider and front/

back leaves.

*/

public Portal(BSPLine divider, BSPTree.Leaf front,

BSPTree.Leaf back)

{

this.divider = divider;

this.front = front;

this.back = back;

midPoint = new Vector3D(

(divider.x1 + divider.x2) / 2,

Math.max(front.floorHeight, back.floorHeight),

(divider.y1 + divider.y2) / 2);

}

public float getCost(AStarNode node) {

return getEstimatedCost(node);

}

public float getEstimatedCost(AStarNode node) {

if (node instanceof Portal) {

Portal other = (Portal)node;

float dx = midPoint.x - other.midPoint.x;

float dz = midPoint.z - other.midPoint.z;

return (float)Math.sqrt(dx * dx + dz * dz);
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}

else {

return node.getEstimatedCost(this);

}

}

public List getNeighbors() {

if (neighbors == null) {

neighbors = new ArrayList();

if (front != null) {

neighbors.addAll(front.portals);

}

if (back != null) {

neighbors.addAll(back.portals);

}

// remove all references to this node

while (neighbors.remove(this));

}

return neighbors;

}

}

The neighbors of a portal are the portals in the front and back leaves. The
getNeighbors() method fills the neighbors in a list.

The getEstimatedCost() estimates the cost between portals as the distance between
the midpoints of each portal. Note that for two adjacent nodes, getEstimatedCost()
is the same as the actual cost.

Finally, you just need one more type of AStarNode that is a location anywhere within
a convex area defined by the leaf. These nodes are generally just temporary because
they are used only for the start and goal nodes of a specific path search. 
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Listing 12.5 LeafNode Inner Class of AStarSearchWithBSP

/**

The LeafNode class is an AStarNode that represents a

location in a leaf of a BSP tree. Used for the start

and goal nodes of a search.

*/

public class LeafNode extends AStarNode {

BSPTree.Leaf leaf;

Vector3D location;

public LeafNode(BSPTree.Leaf leaf, Vector3D location) {

this.leaf = leaf;

this.location = location;

}

public float getCost(AStarNode node) {

return getEstimatedCost(node);

}

public float getEstimatedCost(AStarNode node) {

float otherX;

float otherZ;

if (node instanceof Portal) {

Portal other = (Portal)node;

otherX = other.getMidPoint().x;

otherZ = other.getMidPoint().z;

}

else {

LeafNode other = (LeafNode)node;

otherX = other.location.x;

otherZ = other.location.z;

}

float dx = location.x - otherX;

float dz = location.z - otherZ;

return (float)Math.sqrt(dx * dx + dz * dz);

}

public List getNeighbors() {
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return leaf.portals;

}

}

The LeafNode class is fairly straightforward. The neighbors of a LeafNode are all 
the portals of the BSP tree leaf the node is in. The estimated cost is calculated as the
distance between the node location and a portal’s midpoint.

Now you have all the little pieces you need to perform an A* search on a BSP tree.
Next, you’ll put all the little pieces together in a wrapper that implements a generic
path-finding interface.

Generic Path Finding
The A* search function you created returns a list of AStarNodes, which is great for
generic implementation but isn’t too friendly when you need something more concrete.
Really, you want something like a list of locations, as in the PathFinder interface in
Listing 12.6. 

Listing 12.6 PathFinder.java

/**

The PathFinder interface is a function that finds a path

(represented by a List of Vector3Ds) from one location to

another, or from one GameObject to another. Note that the 

find() method can ignore the requested goal, and instead

give an arbitrary path, like patrolling in a set path or 

running away from the goal.

*/

public interface PathFinder {

/**

Finds a path from GameObject A to GameObject B. The path

is an Iterator of Vector3Ds, not including the start 

location (GameObject A) but including the goal location 

(GameObject B). The Vector3D objects may be used in

other objects and should not be modified. 
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Returns null if no path found.

*/

public Iterator find(GameObject a, GameObject b);

/**

Finds a path from the start location to the goal

location. The path is an Iterator of Vector3Ds, not 

including the start location, but including the goal 

location. The Vector3D objects may be used in other 

objects and should not be modified. Returns null if no 

path found.

*/

public Iterator find(Vector3D start, Vector3D goal);

}

In this interface, two methods are provided: one to find a path between two points, and
another to find a path between two objects. The specification of the interface says that
these functions should return Iterator objects that iterate over a list of Vector3D
locations. 

So, if you use PathFinder, it doesn’t matter what the underlying algorithm is,
whether it is A*, random, or some other idea. Also, you can use this interface for other
types of paths, such as simple paths that follow the perimeter of a room or a flocking
bird pattern as a background effect. You’ll use the PathFinder interface a lot in the
next chapter. 

But, hey, we’re getting ahead of ourselves here! First, let’s create an implementation of
the PathFinder interface for finding the shortest path between two points in a BSP
tree using the A* algorithm. Sound like a mouthful? Well, at least the
AStarSearchWithBSP class in Listing 12.7 is straightforward.

Listing 12.7 AStarSearchWithBSP.java

package com.brackeen.javagamebook.path;

import java.util.*;
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import com.brackeen.javagamebook.game.GameObject;

import com.brackeen.javagamebook.math3D.Vector3D;

import com.brackeen.javagamebook.bsp2D.BSPTree;

import com.brackeen.javagamebook.bsp2D.Portal;

/**

The AStarSearchWithBSP class is a PathFinder that finds

a path in a BSP tree using an A* search algorithm.

*/

public class AStarSearchWithBSP extends AStarSearch

implements PathFinder

{

private BSPTree bspTree;

/**

Creates a new AStarSearchWithBSP for the specified

BSP tree.

*/

public AStarSearchWithBSP(BSPTree bspTree) {

this.bspTree = bspTree;

}

public Iterator find(GameObject a, GameObject b) {

return find(a.getLocation(), b.getLocation());

}

public Iterator find(Vector3D start, Vector3D goal) {

BSPTree.Leaf startLeaf = bspTree.getLeaf(start.x, start.z);

BSPTree.Leaf goalLeaf = bspTree.getLeaf(goal.x, goal.z);

// if start and goal are in the same leaf, no need to do

// A* search

if (startLeaf == goalLeaf) {

return Collections.singleton(goal).iterator();
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}

AStarNode startNode = new LeafNode(startLeaf, start);

AStarNode goalNode = new LeafNode(goalLeaf, goal);

// temporarily add the goalNode we just created to

// the neighbors list

List goalNeighbors = goalNode.getNeighbors();

for (int i=0; i<goalNeighbors.size(); i++) {

Portal portal = (Portal)goalNeighbors.get(i);

portal.addNeighbor(goalNode);

}

// do A* search

List path = super.findPath(startNode, goalNode);

// remove the goal node from the neighbors list

for (int i=0; i<goalNeighbors.size(); i++) {

Portal portal = (Portal)goalNeighbors.get(i);

portal.removeNeighbor(goalNode);

}

return convertPath(path);

}

/**

Converts path of AStarNodes to a path of Vector3D

locations.

*/

protected Iterator convertPath(List path) {

if (path == null) {

return null;

}

for (int i=0; i<path.size(); i++) {

Object node = path.get(i);

if (node instanceof Portal) {
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path.set(i, ((Portal)node).getMidPoint());

}

else {

path.set(i, ((LeafNode)node).location);

}

}

return Collections.unmodifiableList(path).iterator();

}

}

The actual searching in the find() method is just like we said it would be: First, you
create temporary nodes representing the start and goal nodes, add them to the graph,
and then perform the search. After the search, you clean up by removing those tempo-
rary nodes from the graph. Also, if the start location and the goal location are in the
same leaf of the BSP tree, no search needs to be performed, so the method just returns
an Iterator over the goal location.

The convertPath() method converts a list of AStarNodes to actual locations. Here,
you use the midpoint of each portal as the location to use. Another idea instead of
using the midpoint is to use a point within the portal that is closest to the location on
either side of it, as long as you leave room for the size of the object. But midpoints
work well, so you can stick with that simpler solution.

Making a PathBot
Here’s something you might have already thought about: Let’s say you have a bot that
finds a path to the player and starts to follow it, but by the time the bot reaches the
goal location, the player is long gone. Kinda pointless, eh?

You could recalculate the path every frame, but what a waste of resources! Performing
an A* search makes quite a few temporary objects and takes up a chunk of processor
power (including several Math.sqrt() calls), so you don’t want a bot to recalculate
the path every frame. Also, the player or any other goal location isn’t likely to change
much from frame to frame, so the path wouldn’t need to change much, either.
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Instead, you can just keep a calculated path around for a while and recalculate it occa-
sionally, every few seconds or so. This way, the path is fairly up-to-date but doesn’t hog
the processor or waste memory.

Another thought along those lines is, what if you have several bots calculating their
path at the exact same time? You might see little drops in the frame rate of the game as
this happens because several bots are hogging the processor at once. To alleviate this,
you can just take the easy route and make sure each bot starts calculating a path after a
random amount of time. In this case, you’ll make sure bots don’t calculate the path
until 0 to 1000 milliseconds have passed.

Another idea is to cache common A* searches from portal to portal (not including start
and goal nodes). This way, two bots in the same room can share a path, and a path
that’s already been calculated wouldn’t need to be calculated again.

All right, let’s do it. You’ll make that bot here in Listing 12.8. The PathBot follows the
path given to it from a PathFinder. It has a few default attributes, such as its speed,
how fast it can turn, and how high above the floor it “flies.” The turn speed is purely
cosmetic—the bot will turn to face the direction it’s facing, but the turn speed doesn’t
affect how fast a bot travels along a path.

Listing 12.8 PathBot.java

package com.brackeen.javagamebook.path;

import java.util.Iterator;

import com.brackeen.javagamebook.path.PathFinder;

import com.brackeen.javagamebook.math3D.*;

import com.brackeen.javagamebook.game.GameObject;

/**

A PathBot is a GameObject that follows a path from a 

PathFinder.

*/

public class PathBot extends GameObject {

// default values

protected PathFinder pathFinder = null;

protected Vector3D facing = null;
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protected long pathRecalcTime = 4000;

protected float turnSpeed = .005f;

protected float speed = .25f;

protected float flyHeight = 64;

// for path following

protected Iterator currentPath;

protected Vector3D nextPathLocation = new Vector3D();

protected long timeUntilPathRecalc;

public PathBot(PolygonGroup polygonGroup) {

super(polygonGroup);

setState(STATE_ACTIVE);

}

public boolean isFlying() {

return (flyHeight > 0);

}

/**

Sets the PathFinder class to use to follow the path.

*/

public void setPathFinder(PathFinder pathFinder) {

if (this.pathFinder != pathFinder) {

this.pathFinder = pathFinder;

currentPath = null;

// random amount of time until calculation, so

// not all bot calc the path at the same time

timeUntilPathRecalc = (long)(Math.random() * 1000);

}

}

/**
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Sets the location this object should face as it follows

the path. This value can change. If null, this object

faces the direction it is moving.

*/

public void setFacing(Vector3D facing) {

this.facing = facing;

}

public void update(GameObject player, long elapsedTime) {

if (pathFinder == null) {

super.update(player, elapsedTime);

return;

}

timeUntilPathRecalc-=elapsedTime;

// update the path to the player

if (timeUntilPathRecalc <= 0) {

currentPath = pathFinder.find(this, player);

if (currentPath != null) {

getTransform().stop();

}

timeUntilPathRecalc = pathRecalcTime;

}

// follow the path

if (currentPath != null && currentPath.hasNext() &&

!getTransform().isMovingIgnoreY()) 

{

nextPathLocation.setTo((Vector3D)currentPath.next());

nextPathLocation.y+=flyHeight;

getTransform().moveTo(nextPathLocation, speed);

// face either the direction we are traveling,

// or face the specified face location.
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Vector3D faceLocation = facing;

if (faceLocation == null) {

faceLocation = nextPathLocation;

}

getTransform().turnYTo(

faceLocation.x - getX(), 

faceLocation.z - getZ(), 

(float)-Math.PI/2, turnSpeed);

}

super.update(player, elapsedTime);

}

/**

When a collision occurs, back up for 200ms and then

wait a few seconds before recalculating the path.

*/

protected void backupAndRecomputePath() {

// back up for 200 ms

nextPathLocation.setTo(getTransform().getVelocity());

if (!isFlying()) {

nextPathLocation.y = 0;

}

nextPathLocation.multiply(-1);

getTransform().setVelocity(nextPathLocation, 200);

// wait until computing the path again

currentPath = null;

timeUntilPathRecalc = (long)(Math.random() * 1000);

}

public void notifyWallCollision() {

backupAndRecomputePath();

}
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public void notifyObjectCollision(GameObject object) {

backupAndRecomputePath();

}

}

PathBot is fairly uncomplicated. It keeps track of how much time is left until the path
is recalculated again, and if that amount of time has passed, the path is recalculated in
the update() method. The rest of the update() method simply follows the path in
this manner:

1. The bot’s transform is set to move to the first location in the path.

2. When the bot has finished moving, the next location in the path is chosen.

3. If there are no more locations in the path, the bot stops until the path is 
recalculated.

Also note that the bot turns to look at the location specified by the facing vector. If this
value is null, the bot just looks at the direction it’s traveling. You’ll use this later when
you want a bot to focus its attention on, say, the player.

The last thing that PathBot does is handle collisions. If a collision with a wall or an
object is detected, the bot backs up, stops, and then waits a few seconds before recal-
culating the path.

That’s it for path finding! The source code with this book also includes the
PathFindingTest class, which creates a few pyramid-shape PathBots in the same
3D map used in the last couple of chapters. The PathBots follow the player around,
no matter where the player is. No matter where you go, the ninjas will find you!

Enhancing the A* Search
When you run the PathFindingTest demo, you might notice some strange behavior
in the bots related to the portals. Because the BSP building process splits polygons,
sometimes a few portals can exist within a convex room. So, when the bot travels from
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portal to portal, it occasionally won’t travel in a straight line from the bot to the player,
even though it looks like it should.

You can fix this in a few ways. One way is to do extra checks at runtime to see if you
can skip a portal in the path. For instance, instead of traveling from portal A to B to C,
you would just travel from A to C if there was nothing in the way to block you.

Another way is to just define the portals yourself by hand, like we mentioned before.
Yuck, right?

A third way to fix this is what we implement in the next chapter. In that chapter, if a
bot can “see” the player, it can just head straight toward it. This isn’t a perfect solution,
considering things such as small holes the bot could see though but not travel though,
but combined with other AI abilities, it works well.

Another idea is to enhance a path by smoothing out the corners using a Bézier curve.
This way, instead of making sharp turns, the bot gradually turns around a corner, pre-
senting a more natural movement.

Finally, some larger worlds might be so big that doing an A* search between frames
could cause a visible slowdown. What you could do is create a low-priority “worker”
thread which has the sole job of calculating paths. A bot could make the request to the
worker to calculate a path, and later the worker would signal to the bot that the path
was found.

Keep in mind that this worker thread would work only if there was just one of them.
Only one path should be found at a time because various fields of AStarNode are
changed during the searching process. Two threads modifying nodes at the same time
will destroy the path. So, the worker thread could hold requests in a queue (such as a
one-thread ThreadPool from Chapter 1, “Java Threads”) and perform all path calcula-
tions in that thread.

Also, remember that the PathBot knows nothing of the A* search—all it does is fol-
low the path given to it by a PathFinder. As we mentioned earlier, this means you
can modify your underlying search algorithm or give a bot other interesting paths to
follow. You’ll actually create several different path patterns in the next chapter.
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Summary
In this chapter, you started with the basics: ninjas. 

Actually, you started with some basic path-finding routines on a tile-based map, such
as a randomized search and the popular “right hand on the wall” trick. Then you 
went to more advanced environments based on graphs and implemented a generic 
A* algorithm that could be used for graph- or tile-based environments (because 
tile-based worlds could be interpreted as a graph anyway).

Finally, you merged your A* searching with the BSP tree you’ve been working with for
the past couple of chapters, and you created a generic path bot that follows any type of
path, whether it was created by an A* search or not. As usual, you made a demo to
show off the stuff from this chapter.

Path finding is one of those required elements of a game, and it’s also the building
block of a lot of artificial intelligence in games. Currently, your A* path bots are god-
like, meaning they always “know” where the player is. In the next chapter, you’ll use
your path-finding capabilities to dumb down the bots’ godlike powers, but you’ll also
give the bots a little more smarts about making decisions such as attacking, dodging,
and chasing the player. In addition, you’ll make the bots “strike back” so you can fight
against your robots.

Which makes me wonder, is killing robots okay?
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