VBA Programming
Standards

ROGRAMMING STANDARDS ARE USED TO HELP PROGRAMMERS Create a consis-
tent structure, coding style, and logic of an application. Standards
help a programmer create code that’s easy to read, unambiguous,
and easily maintained by other programmers in the organization.
The standards included here are the ones currently used by Paul D.
Sheriff and Associates, Inc. for the applications developed for its
clients. Feel free to modify these to suit your organization’s needs.
This document is also included on the companion Web site for this

book.



712 PAUL SHERIFF t@ﬂéﬁe,s VISUAL BASIC 6

Reasons for Naming Conventions

There are many reasons programming standards are created. Most mainframe
shops have had programming standards for years. Unfortunately, most PC pro-
grammers have forgotten or have never worked in a formal programming shop,
and they often overlook this important step in application development.

Creating a programming standard does not limit your creativity, as most program-
mers seem to think. Instead, it helps you focus your creativity where it's really
needed. You can concentrate on the program itself instead of having to always
think about what name to give a variable. Think about the Windows environment
(or even the Macintosh)—every program written for Windows has a consistent look
and feel. This is why users like using Windows programs, because they don’t have
to learn everything about how a new program works—they already know how to
use most of the new program’s features. By using standards in your programming,
you can also keep the programmer “look and feel” consistent. This means you
spend less time figuring out what the variables are or how many indents a pro-
grammer used, and you can focus more on the logic of the program.

The use of standards can lead to reduced maintenance costs due to a consistent
look and feel. This means you can move from one project to another very easily—
even one someone else wrote—and immediately read and understand the code.

Environment Options

To start, you should make sure every programmer’s Visual Basic environment is con-
sistent, or if you are working alone, make sure that you at least set the following
defaults. Visual Basic lets you set defaults for the development environment. Table
A.1 shows the recommended values for some of those options. To set these values,
select Tools, Options from the Visual Basic design menu.



APPENDIX A VBA PROGRAMMING STANDARDS 713

Table A.1 Options to Set in Your Visual Basic Environment

Editor Tab
Option Value Description
Tab Stops 3 Can be anything you want. | prefer 3.
Require Variable Declaration Checked Requires you to declare all variables prior
to usage by adding an Option Explicit state-
ment to the beginning of every module.
General Tab
Option Value Description
Grid Units, Height Points 60 Can be anything but should be a multiple
of 300 because that's the minimum height of
a combo box. You should strive to make all
controls a consistent size, and 300 is a good
default height.
Grid Units, Width Points 60 (See preceding description.)

Environment Tab

Option Value Description

When a Program Checked Prompts you to save changes prior to testing
Starts...Prompt the application. This is done to ensure no

to Save Changes work is lost due to general protection faults

(GPF) or other unexpected errors.

Option Explicit
Declaring all variables in your code saves programming time by reducing the num-
ber of bugs caused by typos and undeclared variables. For example, the following
variables all look the same: aUserNameTmp, sUserNameTmp, and sUserNameTemp.
If you don't set the Option Explicit statement at the top of every module, these
different variable names could all have potentially different values. At runtime, you
check the value of the sUserNameTmp variable when you really wanted to be
checking the value of the variable sUserNameTemp. If you set the Option
Explicit statement at the top of the module, the compiler will inform you of the
typo. If you don’t set the Option Explicit, the runtime engine will simply create
another variable on-the-fly and assign a zero value to that variable. This can lead to
a bug that’s very hard to track down.



714 PAUL SHERIFF t@ﬂéﬁe,s VISUAL BASIC 6

Custom Control Naming Conventions

An important part of any Visual Basic program is the controls placed on a form. All
similar custom controls should have a common prefix. For example, text boxes
should start with txt, and labels should start with /b/. Table A.2 shows the recom-
mended control name prefixes for most of the controls in the Visual Basic environ-
ment. These prefixes are consistent with those documented in the Visual Basic
Programmers Guide.

Table A.2 Custom Control Naming Conventions

Prefix Control Type Example
ani Animation button aniMailBox
cbo Combo box cboEnglish
chk Check box chkReadOnly
clp Picture clip clpToolbar
com Communications comFax

dat Data control datBiblio
dbc Data-aware combo box dbcStates
dbg Data-aware grid dbgLineltems
dbl Data-aware list box dblCustomers
dir Directory list box dirSource
dig Common dialog control dIgFileOpen
drv Drive list box drvTarget

fil File list box filSource

fra Frame fraLanguage
frm Form frmEntry

gau Gauge gauStatus
gpb Group pushbutton gpbChannel
gra Graph graRevenue
grd Grid grdPrices

hsb Horizontal scrollbar hsbVolume
img Image imglcon

iml ImagelList control imlPictures



APPENDIX A VBA PROGRAMMING STANDARDS

715

Prefix Control Type Example

key Keyboard key state keyCaps

bl Label IbIHelpMessage
lin Line linVertical

Ist List box IstPolicyCodes
Isv List view Isvitems

mci Multimedia control mciVideo

mdi MDI child form mdiNote

mnu Menu mnuFileOpen
mpm MAPI message mpmSentMessage
mps MAPI session mpsSession
msk Masked edit control mskPhone

ole OLE control oleWorksheet
out Outline control outOrgChart
pbr Progress bar pbrCompleted
pic Picture picVGA

pnl 3D panel pnlStatus

rpt Report control rptQtr1Earnings
rto Rich text box rtoNotes

sbr Status bar sbrMDI

shp Shape controls shpCircle

sld Slider sldScore

spn Spin control spnPages

tab Tab control tabForm

tbr Toolbar tbrTools

ths TabStrip control tbsForm

tmr Timer tmrAlarm

trv Tree view trvCustomers
txt Text box txtLastName
vsb Vertical scrollbar vsbRate

If you take care to name your controls with these common prefixes, when you're
using a particular control in your source code, you'll be able to identify its type

without having to refer back to the form. This can save you time when coding or
maintaining your application.



716 PAUL SHERIFF t@ﬂéﬁe,s VISUAL BASIC 6

Menu Naming Conventions

Just like custom controls, all the various menus you create should also use appropri-
ate prefixes (see Table A.3). The prefix mnu should be used on all menus. This prefix
should be followed by the caption of the menu. For each pull-down menu under
the main menu item, use the first letter of top-level menu.

Table A.3 Naming Menus

Menu Caption Sequence Menu Handler Name
File mnuFile

File.New mnuFNew

File.Open mnuFOpen
File.Send mnuFSend
File.Send.Fax mnuFSFax
File.Send.Email mnuFSEmail

Help mnuHelp

Help.About mnuHAbout

When this convention is used, all members of a particular menu group are listed
next to each other in the Object drop-down list boxes (in the Code and Property
windows). In addition, the menu control names clearly document the menu items
to which they’re attached.

Naming Conventions for Other Controls

For new controls not listed so far, try to come up with unique three-character pre-
fixes. Note, however, that it's more important to be clear than to stick to a three-
character convention.

For derivative controls, such as an enhanced list box, extend the preceding prefixes
so that there’s no confusion over which control is really being used. A lowercase
abbreviation for the manufacturer could be added to the prefix. For example, a
Crescent QuickPak Professional text box control could be named ctxtFirstName.



APPENDIX A VBA PROGRAMMING STANDARDS 717

Third-party Controls

Each third-party control used in an application should be listed in the application’s
overview comment section, providing the prefix used for the control, the full name
of the control, and the name of the software vendor (see Table A.4).

Table A.4 Third-party Control Naming Standards

Prefix Control Type Vendor
ctxt Text box Crescent
sscbo Sheridan combo box Sheridan

Variable/Object Naming

Variables are the building blocks of every application you create. As such, naming
your variables is very important. When creating names for your variables, you need
to make the purpose of the variable clear. The use of one-letter variable names
should be avoided at all costs. This only leads to confusion when you look at the
code at a later date.

The following list presents some standards you should follow when creating your
variable names:

Avoid one-letter variables.

Make all variable names mixed case.

Each word or abbreviation should be capitalized.

Do not use the underscore character in a variable name.

Use Hungarian notation (see the following section).

Preface each variable name with the type of data it contains.

Abbreviate variables only when absolutely necessary.



718 PAUL SHERIFF t@ﬂéﬁe,s VISUAL BASIC 6

Hungarian Notation

Hungarian notation is a naming scheme for variables developed by a programmer
who worked at Microsoft. Originally developed for C language programmers, it has
now been successfully applied to many other languages. The use of Hungarian
notation in a program gives a programmer a lot of information about a variable just
by looking at the name. A variable that has been named using the Hungarian nota-
tion scheme tells a programmer the variable’s scope (global, module, or local), what
data type it contains (Integer, Long, and so on), and, of course, the purpose of
that variable.

Hungarian notation is as valuable in Visual Basic as it is in the C language.
Hungarian notation is widely used by Windows C language programmers and con-
stantly referenced in Microsoft product documentation and in programming books.
With all this attention on Hungarian notation, it seems this is a worthy standard
that has stood the test of time, and it will probably be around for many years to
come.

Visual Basic supplies type suffixes (%, &, $, and so on) to indicate a variable’s data
type. However, these suffixes are very cryptic to a new user of Visual Basic and also
make source code difficult to read. Additionally, they do not explain what the vari-
able will be used for or how it can be accessed. Table A.5 lists some examples of
how you should create your variable names without using the suffixes.

Table A.5 Hungarian Notation Examples

Variable Name Description

intSend Represents a count of the number of messages sent

boolSend A Boolean flag that defines the success of the last Send operation
hwnd A handle to a window

In Table A.5, each of the variable names tell a programmer something very different
because of the prefix added to each. This information is lost when the variable
name is reduced to Send& or Sends.

NOTE

Do not use Hungarian notation on any properties or classes that will be
exposed through an Automation Server to other applications. Keep these
properties and class names generic so users can understand them.



APPENDIX A VBA PROGRAMMING STANDARDS 719

Variable Data Type Prefixes

Table A.6 defines the standard variable data types in Visual Basic. These prefixes
should be used when naming the variables in your program. Avoid the use of the

Table A.6 Variable Type Prefixes

Visual Basic suffixes (%, &, #, and so on) at all costs.

Prefix Data Type Storage Example
bool Boolean Two bytes boolPerform
byt Byte One byte byteArray
cur Currency Eight bytes curSales
int Integer Two bytes intLoop
dbl Double Eight bytes dblvalue
dt Date and Time Eight bytes dtEntered
Ing Long Four bytes 1ngEnv
sql Single Four bytes sglvalue
str String One byte per char strName
vnt Variant Sixteen bytes vntAnything
plus one byte
for each character
in a string type
a Array Depends on size astrName
typ User-defined type Depends on size typCustomer
0 or obj Objects Any object oconn

Scope Prefixes

A variables scope refers to the locations within your application that a particular
variable may be read or modified. For example, a local variable is one declared
within a Sub...End Sub or Function...End Function. This variable may only
be read or modified while code is executing within the Sub...End Sub state-
ments. A module-level variable, on the other hand, may be read and modified from
any procedure or function within the same module. Global or public variables may
be referenced from any procedure or function within the same project. Table A.7
lists the common scope prefixes you should use.



720 PAUL SHERIFF t@ﬂéﬁe,s VISUAL BASIC 6

Table A.7 Scope Prefixes

Prefix Description

g Global or public

m Module- or form-level variable/object
st Static variable

Local variables should not have a prefix. This will distinguish them as being local
and not having a scope outside of the current procedure. Here are some examples
of declaring variables:

Global gintLoop As Integer

Dim mstrName As String

Private pboolOpen As Boolean

Handles

When programming Windows using the Windows API, you're frequently dealing
with handles to windows. You'll also find handles when dealing with the ODBC
API. As such, you need a special prefix to identify handles. Use the prefix h to name
a handle variable:

Dim hwWnd As Long ' Handle to a Window
Dim hEnv As Long ' Handle to the ODBC environment space
Dim hdbc As Long ' Handle to an ODBC data connection

User-defined Types

Declare user-defined types with the prefix typ. Variables that are dimmed of this
particular type should also be referenced with a typ prefix. This will help distinguish
the setting of elements in a user-defined type from the setting of properties in an
object. Here's an example:

Type typCustomer
strName As String
strState As String * 2
1IngID as Long

End Type



APPENDIX A VBA PROGRAMMING STANDARDS 721

When declaring an instance variable of a user-defined type, add a prefix to the vari-
able name to reference the type:

Dim typCust as typCustomer

Class Naming

When creating your own user-defined classes, you need to be aware of who your
target user will be for that class. If you'll be exposing that object and its properties
through an Automation Server, you should not use Hungarian notation.
Nonprogrammer types will not understand this type of notation.

It's recommended that you create Property Get/Let/Set procedures for every
variable used within the class you want to give the user access to. Use Hungarian
notation on all private data but do not use it on the Property Get/Let/Set proce-
dures.

When naming your class modules, keep in mind that you need to give each public
class a descriptive name that the user can understand. If you're creating an internal
class that's only used within your program, use the prefix c/s or maybe just C (see
Table A.8).

Table A.8 Prefixes for Class Modules

Prefix Description
cls or C Only used for private classes
(none) For any public classes that will be exposed through an OLE Server

Naming Constants

Constant names should use uppercase letters with an underscore (_) between the
words. This will help distinguish your constants from the built-in constants in VBA.
Also, be sure to always type your constants. If you do not type your constants, they
will be of the type variant. This means you're using up 16 bytes per constant.
This is a big waste and should be avoided. Here are some examples of constant
declarations:

Public Const TAB_ADDRESS As Integer = 0
Public Const TAB_PHONES As Integer = 1



722 PAUL SHERIFF t@ﬂéﬁe,s VISUAL BASIC 6

Conditional Compile
For conditional compilation constants, use the prefix cc:

#If ccDEMO Then
' Perform some code here
#End If

Variant Data Type

If you know that a variable will always store data of a particular type, Visual Basic
can handle that data more efficiently if you declare the variable of that type. For
example, if you need to loop through an array, create an index of the type
Integer, not Variant. In other words, avoid the use of Variant unless it's
absolutely necessary.

Function and Procedure Naming

Here are some general guidelines to follow when naming your functions and proce-
dures:

Use mixed case, where each word in the procedure is capitalized.
Preface all functions and procedures with a noun.
Follow this noun with the action that will be performed on that noun.

Do not use underscores in your function names—this makes it hard to
determine which procedures are yours and which are Visual Basic event pro-
cedures.

Here are some examples of procedure names that should not be used because the
verb comes first:

DisplayForm
InitializeForm

LoadStates



APPENDIX A VBA PROGRAMMING STANDARDS 723

Here are some examples of better procedure names:
FormShow
FormInit

cboStatelLoad

The difference is the noun, or object, is placed first. There are fewer ways to
describe an object than there are for a verb to describe what will be done. For
example, the verb display can be expressed a couple other ways, such as show,
draw, or even print. However, a form is always a form, there's no other descriptor
for it.

In object-oriented languages and even in VB, the object name is placed first and
then the method or action you want to perform on that object. Objects are always
nouns, and actions are verbs. You should follow this coding style when creating
names for your procedures.

An additional benefit of this coding style is that when you use a cross-referencing
tool or are looking in the Proc combo box, you'll see all functions that operate on a
particular object grouped in one place.

Error Labels

Labels in a procedure should only be used for error handling. Otherwise, too many
programmers would be tempted to use the GoTo statement. A GoTo statement can
lead to many problems. Name your labels with the name of the procedure followed
by the suffix _EH. Here's an example:

Private Sub cmdSave_Click()
On Error GoTo cmdSave_Click_EH

cmdSave_Click_EH:
" Error handling here
End Sub



724

PAUL SHERIFF teﬂcﬁe.s VISUAL BASIC 6

Commenting Your Code

Each procedure and function should begin with a brief comment describing the
functional characteristics of the routine (what it does). This description should not
describe the implementation details (how it does it), because these often change
over time, resulting in unnecessary comment maintenance work or, worse yet, erro-
neous comments. The code itself and any necessary inline or local comments
should describe the implementation.

Parameters passed to a routine should be described when their function is not obvi-
ous and when the routine expects the parameters to be in a specific range.
Function return values and global variables that are changed by the routine (espe-
cially through reference parameters) must also be described at the beginning of
each routine.

Each nontrivial variable declaration should include an inline comment describing the
use of the variable being declared.

Variables, controls, and routines should be named clearly enough that inline com-
menting is only needed for complex or nonintuitive implementation details.

An overview description of the application, enumerating primary data objects, rou-
tines, algorithms, dialog boxes, database and file system dependencies, and so on
should be included at the start of the BAS module that contains the project’s Visual
Basic generic constant declarations.

NOTE

The Project window inherently describes the list of files in a project, so this

overview section only needs to provide information on the most important

files and modules or the files the Project window doesn’t list, such as initial-
ization (INI) or database files.

Formatting Your Code

Because many programmers still use VGA displays, screen real estate must be con-
served as much as possible while still allowing code formatting to reflect logic struc-
ture and nesting. Standard tab-based, block-nesting indentations should be three
spaces. More than four spaces is unnecessary and can cause statements to be hid-
den or accidentally truncated. Less than two spaces does not sufficiently show logic
nesting. The highest-level statements that follow the overview comment should be
indented one tab, with each nested block indented an additional tab. Here’s an
example:



APPENDIX A VBA PROGRAMMING STANDARDS 725

IEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

'* Procedure: FormCenter() - Center Form on the Screen
'* Author : Paul D. Sheriff

'* Date : Oct. 22, 1998

'* Revised : Oct. 22, 1998

'* Description:
'* Center Form on the Screen or MDI Main Form

'* Syntax: Call FormCenter(frmFormName)

'* Parameters:
"* <frm> frmFormName => Form To Center
IR SRS R R RS SRR SRR RS E R R R R R EEEEEEEEEEEESEEEESESSES
Sub FormCenter (frmFormName As Form)
frmFormName.Left = (Screen.Width - frmFormName.Width) / 2
frmFormName.Top = (Screen.Height - frmFormName.Height) / 2
End Sub

Operators

Scope

Always use the & operator when concatenating strings and the + operator when
working with numerical values. Using + may cause problems when operating on
two variants. Here's an example:

vntvarlt = "10.01"

vntvar2 = 11

vntResult = vntVari + vntVar2 ' vntResult = 21.01
vntResult = vntVari & vntVar2 ' vntResult = 10.0111

As you can see from this source code, the + and & operators create two different
results when using the vVariant data type. This is a good reason to always use the
appropriate operator and avoid using a Variant data type.

Variables should always be defined with the smallest scope possible. Global vari-
ables can create enormously complex state machines and make the logic of an
application extremely difficult to understand. Global variables also make the reuse
and maintenance of your code much more difficult. Variables in Visual Basic can
have the following scope, as detailed in Table A.9.



726 PAUL SHERIFF t@ﬂéﬁe,s VISUAL BASIC 6

Table A.9 Scope of Variables

Variable
Scope Declared In: Visibility
Procedure level Event procedure, sub, function, Visible in the procedure in
or method which it's declared
Form level, Module Declarations section of a form or Visible in every procedure in
level module (FRM, BAS, or CLS) the form or code module
Global/public level Declarations section of a code Always visible

module (BAS using Global keyword)

In a Visual Basic application, only use global variables when there’s no other conve-
nient way to share data between forms. You should use a property on a form
instead of using global variables.

Global Variables

If you must use global variables, it's good practice to declare all of them in a single
module and group them by function. Give the module a meaningful name that
indicates its purpose, such as GLOBAL.BAS.

With the exception of global variables, procedures and functions should only oper-
ate on objects that are passed to them. Global variables that are used in routines
should be identified in the general comment area at the beginning of the routine.
In addition, you should pass arguments to subs and functions using ByVal, unless
you explicitly want to change the value of the passed argument.

Write modular code whenever possible. For example, if your application displays a
dialog box, put all the controls and code required to perform the dialog box’s task
in a single form. This helps keep the application’s code organized into useful com-
ponents and minimizes its runtime overhead.

Summary

Programming standards can make the job of the maintenance programmer much
easier. Because 90 percent of the time you’ll be the maintenance programmer, you
should try to follow some programming standards when designing your applica-
tions. Programming standards are absolutely essential in a multiprogrammer shop.



