
If tags and functions are the building blocks of ColdFusion, variables are the building
blocks of applications. In Step 1, “The Basics,” we briefly touched on the concept of
using variables. In this step, we will take a closer look at variables, how they are creat-
ed, the types of information they can contain, and how we can begin to harness their
power in our web applications.

Using Variables

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

03 2964_CH02 7/25/02 11:32 AM Page 45

46 ColdFusion MX: From Static to Dynamic in 10 Steps

Understanding Variables
According to www.whatis.com, a variable is “a quantity capable of assuming any of a
set of values.” However, as mentioned in Step 1, you can think of a variable as a con-
tainer that holds information. You create variables by giving them a name and assign-
ing them some value. ColdFusion Server uses server memory to store these values
until either you call for them by using the variable name or they are no longer need-
ed, in which case they are deleted.

Two broad categories of variables are used in ColdFusion: simple variables and com-
plex variables. In this step, we will focus mainly on simple variables. Complex vari-
ables will be discussed in Step 10, “Using Lists, Arrays, and Structures.”

Data Types
ColdFusion variables can hold many different data types. A data type indicates what
kind of information is being stored. ColdFusion variables can store data types, such as
numbers, text strings, dates, times, and Boolean values, just to name a few. See Table
2.1 for further information on various ColdFusion data types.

TABLE 2.1 ColdFusion Data Types

Data Type Description

Integers These are whole numbers (numbers without anything to the right of

the decimal point), such as 0, –17, and 105.

Real numbers Real numbers, also referred to as floating-point numbers, are num-

bers that might include a decimal value, such as 3.17, –0.175, and

25.387.

Strings Strings are a sequence of symbols, such as letters, numbers, and

special characters.

Strings are enclosed by either single or double quotes. For example,

“ColdFusion Mentor”, ‘user@anysite.com’, and “10”.

Booleans A Boolean value is either True or False. For example, <CFSET

UserIsLoggedIn = True>.

Boolean values can be expressed in a number of ways. Negative

values can be False, No, or 0. Positive vales can be True, Yes, or 1

(or any nonzero number).

Date-time Date-time values can be date only, time only, or a combination of

both the date and the time, such as the result of the Now() function.

03 2964_CH02 7/25/02 11:32 AM Page 46

Lists A list is a string that consists of multiple entries separated by some

type of delimiter. The comma is the default delimiter, but others can

be specified. Lists will be explained in Step 10. An example might

be <CFSET Colors=”Red,White,Blue”>.

Arrays This complex data type stores information in a table-like structure of

rows and columns. Arrays will be explained in Step 10.

Structures This complex data type stores information in a series of key-value

pairs. Structures will be explained in Step 10.

Queries This complex data type holds the results of a database query.

Binary Binary data is raw data, such as the contents of a file or an

executable program.

Object These are complex object types that are created using the

<CFOBJECT> tag. They can include things like COM, Java, and

CORBA objects.

You create most ColdFusion variables simply by giving them a name and assigning
them a value. We have already seen one way to accomplish this by using the <CFSET>
tag. For example, the line of code

<CFSET Age=”Thirty”>

would automatically create a variable called Age and assign it a string value of
“Thirty”.

Many other programming languages require you to set the type of value that a vari-
able will hold before you assign it a value. For example, you would have to declare
the Age variable to be a string variable before you could assign a string value, such as
“Thirty” to it. However, ColdFusion variables are typeless, meaning you are not
required to assign a specific data type to a variable name. ColdFusion automatically
evaluates variable values when they are used in operations to determine how the vari-
able should be used. For a further explanation of this, see the following sidebar.

Is It a Number or Not?

Because ColdFusion variables are typeless, there can be some confusion about the value of some
strings. For example, the code

<CFSET Age=”30”>

would set the value of the Age variable to the string value of “30” (note the quotation marks),
not the integer value of 30. In stricter programming languages, a simple mathematical operation
using this value—such as (“30”–21—would cause an error because you cannot subtract a number

Data Type Description

47Step 2 Using Variables

Continues

03 2964_CH02 7/25/02 11:32 AM Page 47

48 ColdFusion MX: From Static to Dynamic in 10 Steps

from a string. However, ColdFusion is a bit more clever than that. ColdFusion uses what is called
operation-driven evaluation; this means that when ColdFusion sees a mathematical operation,
such as subtraction or multiplication, it automatically tries to convert all the operands (elements in
the equation) into numbers. So, in ColdFusion, even though the Age variable contains a string,
instead of throwing an error, the code

<CFSET Age=”30”>
<CFSET YearsOverTheHill= Age - 21>
<CFOUTPUT>#YearsOverTheHill#</CFOUTPUT>

would output the numerical value of 9.

Pretty clever, huh?

Conversely, if you use the following code to set the DaysTillXmas variable to the integer value of
30 (note that there are no quotation marks), it will be treated as a number.

<CFSET DaysTillXmas=30>

If we then try to combine it with text (as seen in the following code), ColdFusion will be smart
enough to convert it to the string value of “30” rather than the number. For example, the code

<CFSET DaysTillXmas=30>
<CFSET Message=”Only #DaysTillXmas# to go!”>
<CFOUTPUT>Hey kids, Santa’s coming. #Message# </CFOUTPUT>

would output Hey kids, Santa’s coming. Only 30 days to go!

Although ColdFusion is pretty clever, there might be times when you want to make sure that a vari-
able gets evaluated as a number and not a string or vice versa. A couple of ColdFusion functions
can help you do this. The Val() function will evaluate a string into a number (if possible). For
example, the following line of code would convert the Age variable into a number:

<CFOUTPUT>This is the number #Val(Age)#</CFOUTPUT>

To convert a number into a string, you can use ToString(). For example, the following line of
code converts an integer value of 30 into the string “30”.

<CFOUTPUT>This is the string #ToString(30)#</CFOUTPUT>

For more information on various ColdFusion functions, check out the “Language Reference” sec-
tion of this book’s web site at www.LearnColdFusionMX.com.

Variable Scopes
As we’ve already seen, variables can contain varying data types. Variables also can
come in varying scopes. A scope is the context in which a variable exists, and it deter-
mines how long its data persists. To put it simply, a variable’s scope determines where
it lives, how you access it, and how long its data hangs around.

03 2964_CH02 7/25/02 11:32 AM Page 48

49Step 2 Using Variables

So far, we have just been using simple local variables. A local variable lives only in the
template in which it was created. For example, if we use <CFSET Message=”I am a
local variable”> to set the value of a variable called Message in a ColdFusion tem-
plate called page1.cfm, we can display the value of that variable anywhere in that
template simply by using <CFOUTPUT>#Message#</CFOUTPUT>. However, if we were to
attempt to use <CFOUTPUT>#Message#</CFOUTPUT> in another template called
page2.cfm, ColdFusion would return an error because the Message variable does not
exist in the page2.cfm template. If you want the value of a variable to persist from
one template/page to another, you must use a different scope.

Continues

NOTE

The value of a local variable will also be available to any included templates that are
called using <CFINCLUDE>. Because using <CFINCLUDE> is essentially the equivalent of
copying and pasting code into the calling template, local variable values set on the calling
template will be available for use in the code of the included page code as well.

Table 2.2 lists some of the different types of scopes we will be using throughout this
book. For a complete list of scopes and their descriptions, see the “Language
Reference” section of this book’s web site at www.LearnColdFusionMX.com.

TABLE 2.2 ColdFusion Variable Scopes

Scope Description

Variables As previously described, a local variable is only available

(local) on the page in which it was created and any included pages.

Form This scope is for variables passed via HTML or ColdFusion forms

using the post method of the form. See the section “Passing Values

with Forms” later in this step.

URL This scope contains variables passed via parameters added to the

end of a URL, such as www.anysite.com?id=1175. See the section

“Passing Values Via the URL” later in this step.

CGI This scope is for environment variables that automatically

accompany each page request and server response, such as

browser type and server name.

Cookie This scope is for variables used to read and write browser cookies.

Client This scope contains variables associated with a particular client

(user). They are maintained as a user moves from page to page and

are available over multiple browser sessions, or visits. For more infor-

mation on client variables, see Step 8, “ColdFusion Application

Framework.”

03 2964_CH02 7/25/02 11:32 AM Page 49

Session This scope contains variables associated with one client for one

session or visit. These variables time out when a user closes their

browser or after periods of inactivity. For more information on

session variables, see Step 8.

Application This scope contains variables that are available throughout one

entire application (web site) on a server. For more information on

application variables, see Step 8.

Server This scope contains variables that are set for a particular

ColdFusion server and that are available to all applications (web

sites) on that server. For more information on server variables, see

Step 8.

Naming Variables
When it comes time to create your variables, there are some naming rules you must
follow:

• Variable names must start with a letter, an underscore character, or a Unicode
currency symbol. Examples of valid variable names are FirstName, _department,
or $userID.

• After the starting character, variable names can contain any number of letters,
underscores, numbers, or Unicode currency symbols.

• Variable names must not contain spaces.

• Simple variable names must not contain the dot (.) character. For example, set-
ting a variable name to Sales.Manager will actually create a structure. (For more
information on structures, see Step 10.)

NOTE

A database query result is treated as a variable and must not have the same name as any
local variables in the same ColdFusion template. See Step 3, “Databases and SQL,” for
more information on queries.

Provided you follow the preceding rules, you can call your variables just about any-
thing you like. However, most developers follow some sort of naming convention for
their variables. Naming conventions make your code more readable and easier to
work with, for both yourself and other team members.

50 ColdFusion MX: From Static to Dynamic in 10 Steps

TABLE 2.2 ColdFusion Variable Scopes (Continued)

Scope Description

03 2964_CH02 7/25/02 11:32 AM Page 50

51Step 2 Using Variables

For example, ColdFusion variables are not case sensitive. This means that as far as
ColdFusion is concerned, firstname, firstName, and FirstName all refer to the same
variable. However, most developers use a standard convention with regard to case
usage. Java developers, for instance, usually start variable names with a lowercase
character and use an uppercase character to mark the start of each new word in the
variable name. The variable name employeeStartDate would be an example of this
convention. Many ColdFusion developers use a similar convention but also start vari-
able names with an uppercase character, as in EmployeeStartDate. We will be follow-
ing the latter convention throughout this book.

Here are some additional guidelines for working with variable names:

• Avoid using abbreviations. The variable name EmployeeStartDate will make
sense when you revisit your code in six months time; the variable name ESD
probably will not.

• Use a consistent naming convention and capitalization scheme for variable
names.

• When using forms to update database fields, make the form field names match
the database field names. (For more information, see Step 6, “Updating,
Inserting, and Deleting Database Records.”)

• Always use the variable’s scope prefix for any scope other than the
Variables/Local scope.

Many ColdFusion developers also like to use variable name prefixes to describe the
type of data that a variable contains. For more information on data type prefixes, see
the following sidebar.

“What’s in a Name?”

Many developers like to use prefixes with their variable names to describe the type of information
that variable is meant to contain. This way, when any developer comes across a variable some-
where in code, they can instantly tell what type of data it is meant to contain.

Table 2.3 lists some common prefixes.

TABLE 2.3 Data Type Prefixes

Data Type Prefix Example

Array a aAnArrayVariable

Boolean b bChecked, bFlag

Date d dEmployeeStartDate

Date-time dt dtLastVisit

Continues

03 2964_CH02 7/25/02 11:32 AM Page 51

52 ColdFusion MX: From Static to Dynamic in 10 Steps

Integer i iAge, iDaysTillXmas

List l lFavoriteColors

Number n nValueOfPi

Query q, qry qProducts, qryDepartments

String s sFirstName, sLastName

Time t tStartTime, tFinishTime

Structure st stMyStructure

Setting Values
In ColdFusion, you create variables by giving them a name and assigning them a
value. In this step, we will concentrate on the most commonly used ways to assign a
value to a variable.

Using <CFSET>
As we have already seen, the <CFSET> tag can be used to assign a value to a variable.
The <CFSET> tag is quick and easy to use and has no attributes other than the variable
name and its assigned value. For example, the line of code

<CFSET Qty=2>

would create a variable named Qty and would set the value of that variable to the
numerical value of 2. If the variable already exists, you can use <CFSET> to reassign
the variable a different value. For example, the code

<CFSET Qty=2>
<CFSET Qty=3>
<CFOUTPUT>You have ordered #Qty# jars.</CFOUTPUT>

would first set the value of the Qty variable to 2. Because the Qty variable already
exists, the second line of code would then reassign the variable’s value to 3. The third
line of code would then output You have ordered 3 jars.

You can also perform calculations inside the <CFSET> tag when assigning a value. For
example, the code

<CFSET Qty=2>
<CFSET Qty=Qty + 1>
<CFOUTPUT>You have ordered #Qty# jars.</CFOUTPUT>

TABLE 2.3 Data Type Prefixes (Continued)

Data Type Prefix Example

03 2964_CH02 7/25/02 11:32 AM Page 52

53Step 2 Using Variables

would produce the same result as the previous code. The second line would take the
current value of the Qty variable (in this case 2), add 1 to it, and assign that value (3)
back to the Qty variable. This is a common way to increment the value of a variable.

Using <CFPARAM>
Trying to use or output a variable that has not yet been created will cause an error.
Figure 2.1 shows you the error output that ColdFusion will return if you try to use
the following line of code without first creating the Qty variable.

<CFOUTPUT>You have ordered #Qty# jars.<CFOUTPUT>

FIGURE 2.1

The error message
that results from
failing to create
variable.

Because we want to avoid errors, it is good practice to check whether a variable exists
before you try to use it. Normally, the code would flow something like this.

1. Check to see if a variable currently exists.

2. If it does, use the variable’s current value.

3. If the variable does not exist, assign it some default value.

4. Display or use the variable.

The <CFPARAM> tag encapsulates all this logic into one line of code. The <CFPARAM> tag
takes three attributes, as outlined in Table 2.4.

03 2964_CH02 7/25/02 11:32 AM Page 53

54 ColdFusion MX: From Static to Dynamic in 10 Steps

TABLE 2.4 <CFPARAM> Tag Attributes

Attribute Description

NAME The name of the variable to be checked, including

(required) scope prefix.

DEFAULT The default value you would like to assign to the variable

(optional) if it does not already exist.

TYPE The type of data that the variable should contain.*

(optional)

*(See the “Language Reference” section of www.LearnColdFusionMX.com for possible values.)

For example, in the code

<CFPARAM NAME=”Qty” DEFAULT=1>
<CFOUTPUT>Quantity ordered is #Qty#.</CFOUTPUT>

the first line would check for the existence of a variable named Qty. Because this vari-
able has not yet been created, it will be created by the <CFPARAM> tag and will be
assigned the default value of 1. The second line of code then outputs Quantity
ordered is 1.

If a variable with the same name already exists, the <CFPARAM> tag is ignored. For
example, in the code

<CFSET Qty=2>
<CFPARAM NAME=”Qty” DEFAULT=1>
<CFOUTPUT>Quantity ordered is #Qty#.</CFOUTPUT>

the first line of code sets the value of the Qty variable to the numeric value of 2. On
the second line, the <CFPARAM> tag checks for the existence of a variable named Qty.
Because this variable already exists, the <CFPARAM> tag is ignored, and the program
flow continues on to the third line, which outputs Quantity ordered is 2.

The <CFPARAM> tag is a quick and simple way to check for the existence of variables
before you attempt to use them. It will come in very handy when passing variables
from one page to the next, such as when processing form data.

Retrieving Values
To use variables in a particular scope, you add the name of the scope to the beginning
of the variable’s name and separate the two with a dot. For example, to output a form
variable called LastName, you would use the following line of code:

<CFOUTPUT>Last name submitted: #FORM.LastName#</CFOUTPUT>

03 2964_CH02 7/25/02 11:32 AM Page 54

55Step 2 Using Variables

This is referred to as dot notation. If you leave off the scope name, your code will
probably still work (most of the time), but it will be less efficient. By adding the scope
prefix to the variable name, you are telling ColdFusion where to look for that variable.
If there is no scope prefix, ColdFusion must search through all of the scopes until it
finds the variable. If ColdFusion comes across a variable without a scope prefix, it will
look through the various scopes in the following order of precedence.

1. Variables (local)

2. CGI

3. URL

4. Form

5. Cookie

6. Client

As you can see, you can save processing time by telling ColdFusion that a particular
variable lives in the Form scope rather than letting ColdFusion search through all
scopes.

There is a pitfall to be aware of when using variables. It is possible to create two vari-
ables with the same name but different scopes in the same template. For example,
imagine you have a template that processes data submitted by a form and you inad-
vertently create a local variable in that template with the same name. In the code

<!––– check for value from form –––>
<CFPARAM Name=”FORM.Qty” Default=10>
<!––– set local variable –––>
<CFSET Qty=2>
<!––– output variable –––>
<CFOUTPUT>Quantity ordered is #Qty#.</CFOUTPUT>

we use <CFPARAM> to check for the existence of an incoming Form variable called Qty. If
it does not exist, we set the value to 10. Next, we create (by mistake) a local variable
called Qty and assign it the value of 2. We have now ended up with two variables with
the same name. We then use <CFOUTPUT> to display the value of the variable. However,
because we have not specified a scope prefix in the <CFOUTPUT> block, ColdFusion
starts to search for the variable using the order of precedence previously listed. It first
searches the Variables (local) scope, finds a Qty variable there, and outputs the value 2.

If we wanted to make sure we used the value from the submitted form, we would
change the last line of code to read as follows:

<CFOUTPUT>Quantity ordered is #FORM.Qty#.</CFOUTPUT>

03 2964_CH02 7/25/02 11:32 AM Page 55

56 ColdFusion MX: From Static to Dynamic in 10 Steps

ColdFusion would then know exactly in which scope to look for the Qty variable. Our
template would then display the value from the submitted form, or the default value
of 10.

The moral of the story is to always use prefix scopes on all variables other than local
variables.

NOTE

You might have noticed that the first scope listed in the search order is the Variables
scope, which is the scope for local variables. So, if we wanted to be as correct as possible
when using local variables, our code would read something like this:

<CFSET Variables.Age=”30”>
<CFSET Variables.YearsOverTheHill= Age - 21>
<CFOUTPUT>#Variables.YearsOverTheHill#</CFOUTPUT>

However, because the Variables scope is the first one searched in the order of prece-
dence, there is no real savings in processing time, and most developers leave off the
scope prefix for local variables. We are a lazy bunch when we can get away with it.

Accessing CGI Variables
Table 2.2 mentioned a Variable scope called CGI, which is an abbreviation for common
gateway interface. Variables in this scope are read-only and are created every time a
template is requested from, or returned to, the server. These variables can be very use-
ful and can include things like the user’s browser type, his IP address, the web page
he has just come from, as well as server information, such as the server’s name and
what type of software it is running. To access CGI variables, you simply use the CGI
scope prefix and the variable’s name. For a complete list of CGI variable names, see
the “Language Reference” section of www.LearnColdFusionMX.com.

03 2964_CH02 7/25/02 11:32 AM Page 56

57Step 2 Using Variables

Example 2.1: Using CGI Variables
In this example, we will create a ColdFusion template to display some commonly
used CGI variables.

1. Open your editor and type the code shown in Listing 2.1, or you can open the
CGIVariables.cfm file from the CompletedFiles\Examples\Step02 folder.

LISTING 2.1 Commonly Used CGI Variables

<!–––
File: CGIVariables.cfm
Description: Displays some common CGI variables
Author:
Created:
–––>

<HTML>
<HEAD>

<TITLE>Common CGI Variables</TITLE>
</HEAD>

<BODY>
<CFOUTPUT>
<!––– display some commonly used CGI variables –––>
User’s Browser Type: HTTP_USER_AGENT = #CGI.HTTP_USER_AGENT#

User’s IP Address: REMOTE_ADDR = #CGI.REMOTE_ADDR#

Referring Page: HTTP_REFERER = #CGI.HTTP_REFERER#

Server’s Name: SERVER_NAME=#CGI.SERVER_NAME#

Server’s Port: SERVER_NAME=#CGI.SERVER_PORT#

</CFOUTPUT>

</BODY>
</HTML>

2. Save this file into your Examples\Step02 directory as CGIVariables.cfm.

3. Use a URL to browse to the page. For example,
http://localhost/Examples/Step02/CGIVariables.cfm.

4. You should see something similar to the page displayed in Figure 2.2.

5. To see HTTP_REFER information, set up a hyperlink to CGIVariables.cfm on
another page and use the link to jump to CGIVariables.cfm.

03 2964_CH02 7/25/02 11:32 AM Page 57

58 ColdFusion MX: From Static to Dynamic in 10 Steps

FIGURE 2.2

CGIVariables.cfm
browser display.

Passing Values
Hypertext Transfer Protocol (HTTP), the underlying protocol used by the World Wide
Web, is a stateless protocol. This means that each page request made to a web server
is independent from any others and has no information about anything that has
occurred previously. Consequently, no information is kept about what data has been
entered or what events have occurred prior to the current page request.

The capability to track state, which includes such things as user actions or entered
information, is the cornerstone of any modern application. For us to be able to
transform our old, static web site into a responsive, data-driven web application, we
have to be able to track and pass information from one page to the next.

One of the easiest ways to track information is to store it in a variable and then pass
that variable between pages. This can be done in a number of ways. In this step,
however, we will focus on using forms and web-page URLs to pass variables.

Passing Values with Forms
If you have been using the Internet for any length of time, you have probably filled
out a web form or two. This is one of the most common ways to pass information
between web pages. Information entered into a form is packaged up and sent to the
web server. The web server then uses a script of some sort to process that information
and do something with it, such as email it to the webmaster, pass it to another page,
or enter it into a database.

Using forms to pass information will be covered in detail in Step 5, “Using Forms
with ColdFusion MX.”

03 2964_CH02 7/25/02 11:32 AM Page 58

59Step 2 Using Variables

Passing Values Via the URL
Another simple way to pass information between web pages is to append it to the end
of the URL being requested. This is done by adding a question mark after the file-
name and then adding a variable name and value. For example, with the URL

http://www.anysite.com/Details.cfm?Name=John

we are requesting a page called Details.cfm from www.anysite.com, and we are also
passing a variable called Name that has been assigned a value of John. Variables passed
using this method become variables in the URL scope.

To retrieve this variable and use its value in the Details.cfm template, simply call the
variable using its name and the URL scope prefix. For example, the line of code

<CFOUTPUT>Welcome #URL.Name#</CFOUTPUT>

would look in the URL string for a variable called Name and retrieve its value, in this
case John.

If you want to send more than one variable via the URL, you can append additional
variable/value pairs to the end of the URL using the ampersand (&) symbol. For
example, the URL

http://www.anysite.com/Details.cfm?Name=John&Dept=Sales

would pass our Name variable again as well as another variable called Dept. As you
might have guessed, you would access that variable’s value in the same way we used
our Name variable, by using the variable’s name (Dept) and the URL scope prefix as
illustrated here:

<CFOUTPUT>
Name: #URL.Name#

Dept: #URL.Dept#

</CFOUTPUT>

No Space Allowed

When passing information via URL variables, we have to be careful that those variables do not con-
tain spaces. URLs are not allowed to contain spaces, so consequently, if we tack on a URL variable
that has spaces in it, we will break that rule. For example, if we use a URL variable, such as
TemplateName.cfm?Name=#UsersName# and the #UsersName# variable happens to
contain the value John Smith, we could be in trouble. The resulting URL would be
TemplateName.cfm?Name=John Smith. This URL could cause us problems, depending
on the browser type and version being used.

Continues

03 2964_CH02 7/25/02 11:32 AM Page 59

60 ColdFusion MX: From Static to Dynamic in 10 Steps

To get around this problem, we can use the URLEncodedFormat() function. This function
encodes URLs and converts non-URL-friendly characters, such as spaces, into URL-safe
hexadecimal escape characters. For example, if we use TemplateName.
cfm?Name=#URLEncodedFormat(UsersName)# instead of the previous example,
we would end up the a URL that looks like TemplateName.cfm?Name=John%20Smith.

To turn that variable back into its original form, you use the URLDecode() function. So, on the
TemplateName.cfm template, we could use code like

<CFOUTPUT>Hello, #URLDecode(URL.Name)# </CFOUTPUT>

to display Hello, John Smith.

NOTE

Using URL variables is a very common technique for passing information from one tem-
plate to the next. However, this method should never be used for sensitive information,
such as usernames or passwords. Because this information is attached to the URL, it is
there for anyone to see. In addition, this information is also recorded if the user happens
to take a bookmark of the URL or add it to her favorites list.

03 2964_CH02 7/25/02 11:32 AM Page 60

61Step 2 Using Variables

Example 2.2: Passing Variables Via the URL
In this example, we are going to use two pages to demonstrate how to pass variables
via a URL.

1. Open your editor and type the code shown in Listing 2.2, or you can open the
Page1.cfm file from the CompletedFiles\Examples\Step02 folder.

LISTING 2.2 Page1.cfm

<!–––
File: Page1.htm
Description: Demonstrates passing URL variables
Author:
Created:
–––>

<HTML>
<HEAD>

<TITLE>Pick a color any color</TITLE>
</HEAD>
<BODY>

<H2>What is your favorite color?</H2>
Blue

Red

Green

Yellow

</BODY>
</HTML>

2. Save the file as Page1.htm into your Examples\Step02 folder.

3. In your text editor create a new file and type the code shown in Listing 2.3, or
you can open the Page2.cfm file from the CompletedFiles\Examples\Step02 folder.

LISTING 2.3 Page2.cfm

<!–––
File: Page2.cfm
Description: Demonstrates the use of URL scope variables
Author:
Created:
–––>
<HTML>
<HEAD>

<TITLE>That is so cool</TITLE>
</HEAD>
<BODY>

<H2>That is so cool!</H2>
<H2><CFOUTPUT>#URL.Color# is my favorite too.</CFOUTPUT></H2>
<<back

</BODY>
</HTML>

03 2964_CH02 7/25/02 11:32 AM Page 61

62 ColdFusion MX: From Static to Dynamic in 10 Steps

4. Save the file as Page2.cfm into your Examples\Step02 folder.

5. Open a browser and browse to Page1.htm. Your URL should be something simi-
lar to http://localhost/Examples/Step02/Page1.htm. You should see a page
similar to the one shown in Figure 2.3.

FIGURE 2.3

Page1.htm browser
display.

6. Follow any link on Page1.htm. Notice the URL variable present in the browser’s
address bar. You should see a page similar to the one shown in Figure 2.4.

03 2964_CH02 7/25/02 11:32 AM Page 62

63Step 2 Using Variables

7. The variable is pulled from the URL and is used in the <CFOUTPUT> statement.

Makeover Exercise
During this portion of our web site makeover, we will do the following:

• Use CGI variables to ensure that all the path information for our included files
is always correct, no matter where in our directory structure the included page
ends up.

• Prepare for future exercises by adding URL variables to our product categories.

First we will fix some of the file path problems that we might have encountered with
our included files. When you use a <CFINCLUDE> to include code in a page (as we did
in Step 1), you will remember that it is essentially the same as copying the code into
the calling template. This might cause problems if the templates are in different direc-
tories and you are using relative paths for image and file links. However, if you use
absolute paths, you have to change that information every time you move your code
from a development or testing server to a production server.

FIGURE 2.4

Page2.cfm browser
display.

03 2964_CH02 7/25/02 11:32 AM Page 63

64 ColdFusion MX: From Static to Dynamic in 10 Steps

In the previous step, we setup a directory structure called NewSite to hold our
makeover web site. You should have a virtual mapping to the directory set up. For
information on setting up virtual mappings see the Appendix, “System Setup”.

In the first part of this exercise, we will add CGI variables to the path information
in our three included files: Header.cfm, Footer.cfm, and LeftNav.cfm. By adding
these CGI variables, we will create “automatic” absolute path information that will
work with whatever server the files are stored on. Follow these steps to get this
accomplished:

1. Open Header.cfm in your editor.

2. Change the path information for the image tag for our logo to read as follows:

<IMG SRC=”http://#CGI.Server_Name#/NewSite/Images/logo.gif” WIDTH=”250”
HEIGHT=”75” VSPACE=”2”>

When ColdFusion processes the template, it will use the values for the server
name for the web server on which the files are currently stored.

3. Repeat the procedure for the other two graphics.

4. In the Header.cfm file, you will find a link to the FeedbackForm.cfm file. Add
similar code to this link:

5. Put <CFOUTPUT> </CFOUTPUT> tags around the entire table.

6. If you were to try to use the template now, it would produce an error. Because
we have surrounded the table with <CFOUTPUT> tags, ColdFusion will become
confused by the # symbols in the hexadecimal color values. You must escape the
symbol by putting an additional # symbol in front of it. For more information,
see the Note on escaping pound signs in Step 1.

7. You should end up with code very similar to that displayed in Listing 2.4.

LISTING 2.4 Header.cfm

<!–––
File: Header.cfm
Description: File header table for all files
Author:
Created:
–––>

<!––– start header table –––>

03 2964_CH02 7/25/02 11:32 AM Page 64

65Step 2 Using Variables

<!––– add CGI Variables to make sure the path info
is correct no mater where the template is used as a
CFINCLUDE. Don’t forget to ‘escape’ the # symbols in the
Hex color codes that appear between CFOUTPUT tags–––>

<CFOUTPUT>
<TABLE WIDTH=”735” BORDER=”0” CELLPADDING=”0” CELLSPACING=”0” ALIGN=”center”>
<!––– escape the # symbol in the color codes –––>

<TR BGCOLOR=”##CC0000”>
<TD WIDTH=”559” HEIGHT=”79” VALIGN=”middle” BGCOLOR=”##FFFFFF”>

<IMG SRC=”http://#CGI.Server_Name#/Images/logo.gif” WIDTH=”266”
➥HEIGHT=”100” VSPACE=”2”>

</TD>
<TD VALIGN=”bottom” WIDTH=”202” ALIGN=”right” BGCOLOR=”##FFFFFF”>

<IMG SRC=”http://#CGI.Server_Name#/NewSite/Images/email.gif” WIDTH=”150”
➥HEIGHT=”27” BORDER=”0” ALT=”send us some email”>

<!––– don’t forget to add path info to the HREF attribute of the link to the form
➥–––>

<IMG SRC=”http://#CGI.Server_Name#/NewSite/Images/feedback.gif”
➥WIDTH=”150” HEIGHT=”24” VSPACE=”3” BORDER=”0” ALT=”please let us know
➥what you think”>

</TD>
</TR>

<TR BGCOLOR=”##333333”>
<TD HEIGHT=”8” VALIGN=”top” BGCOLOR=”##FF6600”
➥background=”http://#CGI.Server_Name#/NewSite/images/bar.gif”>

</TD>
<TD VALIGN=”top” BGCOLOR=”##FF6600” ALIGN=”right” CLASS=”date”
➥background=”http://#CGI.Server_Name#/NewSite/images/bar.gif” height=”8”>
➥#DateFormat(Now(),”MMMM DD, YYYY”)#
</TD>

</TR>
<TR BGCOLOR=”##333333”>
<TD HEIGHT=”16” VALIGN=”top” BGCOLOR=”##FFFFFF”>
➥
</TD>
<TD VALIGN=”top” BGCOLOR=”##FFFFFF”>
➥
</TD>

</TR>
</TABLE>
</CFOUTPUT>
<!––– end header table –––>

8. Save your changes.

9. Open Footer.cfm in your editor. Use CGI variables to add path information to
the links for the navigation bar. Your code should look similar to Listing 2.5.

03 2964_CH02 7/25/02 11:32 AM Page 65

66 ColdFusion MX: From Static to Dynamic in 10 Steps

LISTING 2.5 Footer.cfm

<!–––
File: Footer.cfm
Description: Text-based secondary navigation menu
Author:
Created:
–––>

<!–– text nav bar ––>
<CFOUTPUT>
<P align=”center”>

Home

|

News

|

Products

|

About Us

|

Contact Us

</P>
</CFOUTPUT>

10. Save your changes.

11. Open LeftNav.cfm in your editor. Using CGI variables, add path information to
the links for the navigation menu. Your code should look similar to Listing 2.6.

LISTING 2.6 LeftNav.cfm

<!–––
File: LeftNav.cfm
Description: Left side main navigation menu
Author:
Created:
–––>

<!––– navigation menu –––>

<CFOUTPUT>
<!––– add CGI Variables to make sure the path info

is correct no mater where the template is
used as a CFINCLUDE –––>

<P>
<A HREF=”http://#CGI.Server_Name#/NewSite/Index.cfm”

03 2964_CH02 7/25/02 11:32 AM Page 66

67Step 2 Using Variables

CLASS=”leftNavMajor”>Home
</P>

<P>
<A HREF=”http://#CGI.Server_Name#/NewSite/News/News.cfm”

CLASS=”leftNavMajor”>News
</P>

<P>
<A HREF=”http://#CGI.Server_Name#/NewSite/Products/Products.cfm”

CLASS=”leftNavMajor”>Products

<A HREF=”http://#CGI.Server_Name#/NewSite/Products/Chillies.cfm”

CLASS=”leftNavMinor”>Chillies

<A HREF=”http://#CGI.Server_Name#/NewSite/Products/Sauces.cfm”

CLASS=”leftNavMinor”>Sauces

<A HREF=”http://#CGI.Server_Name#/NewSite/Products/Clothing.cfm”

CLASS=”leftNavMinor”>Clothing

<A HREF=”http://#CGI.Server_Name#/NewSite/Products/Gifts.cfm”

CLASS=”leftNavMinor”>Gifts

</P>

<P>
<A HREF=”http://#CGI.Server_Name#/NewSite/About/About.cfm”

CLASS=”leftNavMajor”>About Us
</P>

<P>
<A HREF=”http://#CGI.Server_Name#/NewSite/Contact/Contact.cfm”

CLASS=”leftNavMajor”>Contact Us
</P>
</CFOUTPUT>

12. Save your changes.

13. Browse to the home page. Check that the links all work correctly and that the
images appear correctly on each page.

In the next part of the exercise, we are going to prepare some of our links for
upcoming exercises. In a future exercise, we are going to create one
ProductCategory.cfm page to display products from a chosen category. To do
this, we will have to pass a category variable to that page via the URL.

14. Open LeftNav.cfm in your editor.

15. Find the link for the Chillies product category and add a URL variable to speci-
fy the product category. Your link should look something like this:

<A HREF=”http://#CGI.Server_Name#/NewSite/Products/Chillies.cfm?Category=Chillies”
CLASS=”leftNavMinor”>Chillies

16. Follow the same procedure for the rest of the product categories. Your code
should end up looking similar to Listing 2.7.

03 2964_CH02 7/25/02 11:32 AM Page 67

68 ColdFusion MX: From Static to Dynamic in 10 Steps

LISTING 2.7 LeftNav.cfm with Category Variables

<!–––
File: LeftNav.cfm
Description: Left side main navigation menu
Author:
Created:
–––>

<!––– navigation menu –––>

<CFOUTPUT>
<!––– add CGI Variables to make sure the path info

is correct no mater where the template is
used as a CFINCLUDE –––>

<P>
<A HREF=”http://#CGI.Server_Name#/NewSite/Index.cfm”
➥CLASS=”leftNavMajor”>Home

</P>

<P>
<A HREF=”http://#CGI.Server_Name#/NewSite/News/News.cfm”
➥CLASS=”leftNavMajor”>News

</P>

<P>
<A HREF=”http://#CGI.Server_Name#/NewSite/Products/Products.cfm”
➥CLASS=”leftNavMajor”>Products

<A
➥HREF=”http://#CGI.Server_Name#/NewSite/Products/Chillies.cfm?Category=Chillies”
➥CLASS=”leftNavMinor”>Chillies

<A HREF=”http://#CGI.Server_Name#/NewSite/Products/Sauces.cfm?Category=Sauces”
➥CLASS=”leftNavMinor”>Sauces

<A
➥HREF=”http://#CGI.Server_Name#/NewSite/Products/Clothing.cfm?Category=Clothing”
➥CLASS=”leftNavMinor”>Clothing

<A HREF=”http://#CGI.Server_Name#/NewSite/Products/Gifts.cfm?Category=Gifts”
➥CLASS=”leftNavMinor”>Gifts

</P>

<P>
<A HREF=”http://#CGI.Server_Name#/NewSite/About/About.cfm”
➥CLASS=”leftNavMajor”>About Us

</P>

<P>
<A HREF=”http://#CGI.Server_Name#/NewSite/Contact/Contact.cfm”
➥CLASS=”leftNavMajor”>Contact Us

</P>
</CFOUTPUT>

03 2964_CH02 7/25/02 11:32 AM Page 68

69Step 2 Using Variables

17. Save your file.

18. Browse to the home page and hover your mouse pointer over the category links.
Check the URL information displayed in the browser’s status bar to confirm that
the links are correct. Do not try to follow these links at the moment because
they point to a page that does not currently exist; we will create the new page in
a future exercise.

Summary
In this step, we looked at variables and discussed the different types of data they can
contain as well as the different scopes in which they can live. We also looked at how
to create new variables, check for the existence of variables, and pass variables from
one template to the next.

In Step 3, we will take a brief look at database basics. We also will discover how to
access information stored in a database and use it in our web site.

03 2964_CH02 7/25/02 11:32 AM Page 69

03 2964_CH02 7/25/02 11:32 AM Page 70

