
CHAPTER 06

Thinking is more interesting than knowing,
but less interesting than looking.

—Goethe

Less Cluttered and More Usable

09 178x ch06 03.15.02 2:30 PM Page 87

When creating a Flash interface, the designer must consider carefully all the options the potential user

will need. Almost always, you must provide two sets of features:

� Those critical to user success in accomplishing their goals on the site

� Those that are not essential for the site goals to be met, but that add to the overall

user experience

Often the most critical features are also global features, such as a help system. They should be

accessible from anywhere and have prime real estate on the screen. The functions that enhance the user

experience rather than enable it are generally not global and relate to a certain focused area of the site.

To make the user experience as intuitive as possible, access to these features should be local to the area

to which they relate. For example, information about a thumbnail image in the MODA site should be

accessed via the thumbnail rather than through a global menu control.

To successfully design an interface that may have global and section-specific features, you should begin

by organizing these different groups of features. Actions central to the user’s main goals should have

prime locations on the screen, whereas less critical actions can afford to be less in the limelight.

Nancy’s main goals on the MODA site are as follows:

� To learn about the artist

� To view the paintings

The functionality to accomplish these goals should be given the most importance visually on the screen.

Nancy’s secondary goals on the site include the following:

� To find out more about each piece and how it was made

� To save a given piece to her desktop to use as wallpaper

� To print out the information she might come across on the site

To help Nancy achieve these secondary aims, you need to make sure these functions are still

accessible but less dominant in the interface.

88

09 178x ch06 03.15.02 2:30 PM Page 88

SOLUTIONS Most of Nancy’s interaction on the site will be with the scrolling list at the

bottom of the screen, because that gives her access to the primary features. Some other features

of the site may interest her as well but may not be part of the client’s main focus or part of Nancy’s goals

on the site. Examples might be accessing additional information about the paintings, seeing the original

sketches, printing out copies, and downloading desktop wallpaper. Because of Nancy’s comfort level

with computers and her obvious affinity for aesthetic value, it becomes clear that the best way to

incorporate these secondary features is by storing them in the mouse under menu.

The trick when designing a user interface that incorporates a number of elements of differing importance

is to keep the design simple. The main controls in the interface should be clearly distinguished from

the ancillary features of the site. This is particularly important on the MODA site because its clean

appearance is crucial to providing a gallery-like feel to the site. As in a gallery, here visitor attention

should be drawn to the art they are seeing, not the gallery itself.

In exploring the possibilities available for providing the less critical functionality to Nancy without

cluttering the interface and drawing attention away from the main controls, one mechanism offers a clear

solution: the mouse under menu. This is a menu of items accessed by just clicking the target, much like

the contextual (or right-click) menus in Windows, MacOS, and other operating systems. The immediate

advantage that this control offers is that it is never in the way, yet always accessible. It is context-

sensitive, so it will be accessible only when the item that Nancy wants to act upon is clicked.

For this control to work for Nancy, she needs to know that it is available. A straightforward way of doing

this is to have a tool tip, caption, or custom mouse cursor that shows Nancy that the item under her

mouse cursor is clickable.

For the MODA site, clicking a painting, for example, will bring up options to print the image, download a

copy to her hard drive, or see alternative versions of the chosen image. Because Nancy must click the

image to trigger the mouse under menu, she should intuitively understand the menu relates specifically

to that image.

The mouse under menu adheres to Fitts’s law pretty closely, too. By creating a menu system that appears

at the mouse pointer, you are offering a menu that requires almost no mouse movement to access,

greatly reducing the amount of time it takes the user to operate the menu.

To provide even greater usability, the mouse

under menu will differ from a typical contextual

menu in one key respect: It will be movable from

its initial position. Contextual menus stay in the

same position in which they were opened. This

added control will enable Nancy to move the

menu should it start to cover up a crucial part of

the image or information.

06
less cluttered and m

ore usable

89

Note

Fitts’s law states that one of the five most accessible areas

of the screen is the point where the mouse is at any given time.

The other four are the top, bottom, and right and left sides of the

screen. If you want more detail on Fitts’s law, check out Appendix

B, “Usability Resources,” for books and web sites devoted to

specific usability guidelines.

09 178x ch06 03.15.02 2:30 PM Page 89

Seeing It in Action
Open 06_mouseMenu.fla found in the Projects folder on the Skip Intro CD-ROM and export or test the

movie. As you roll over the main picture and click, the mouse menu appears (see Figure 6.1). From

here you can drag the menu wherever you want on the screen. Rolling off the menu will fade it out, so

the site keeps its clean, uncluttered look.

Notice when you click that the menu appears wherever the mouse

is. This is the most important characteristic of the mouse under

menu. Close the test movie and open the Library panel for the

sample movie. Edit the graphic symbol named Paintings and select

the button on the top layer Menu button. If you look at the Actions

panel, you will see how simple it is to activate the mouse

under menu:

90

Figure 6.1
Clicking the big paintings should activate
the mouse under menu.

on(press)
{

mc_mouseMenu.showMenu();
}

The showMenu() function is all you have to call anywhere in the movie to show the menu. That’s

pretty simple.

Now click the Skip Intro Components folder in the library and open the MouseMenu folder that is inside

the Skins folder. The three movie clips contained in that folder define what the mouse under menu looks

like. These clips contain no code, just visual elements that can easily be changed to fit the mouse

under menu to any project in which you may need it. Separating the visual parts from the code

keeps other developers that may be using your components from having to dive into your code and

potentially break it.

In the following section, you can take a look at how this menu was implemented to understand the power

of this component.

09 178x ch06 03.15.02 2:30 PM Page 90

IMPLEMENTATION For the mouse under menu, you need to implement only a

few features:

� Mouse under. The menu should appear directly under the mouse when Nancy clicks her

mouse button.

� Draggability. Nancy should be able to drag the menu around the screen to avoid covering up

parts of the image or text that she is viewing. The developer should, however, be able to turn

off this feature.

� Instant off. Depending on the use of the menu, when the user clicks a selection the menu can

either disappear, like contextual menus, or remain on. For Nancy and her use of the site, keeping

the menu on is the better option.

Now that you have an idea of the tasks that the mouse under menu should accomplish, it’s time to

build it.

CONSTRUCTION Good news! In terms of coding, the mouse under menu is

not very complex, but takes advantage of some great Flash MX features that help to make this clip

truly flexible.

The first step is to build the graphics for the mouse under menu. As always, even though your focus is

on coding, the way you approach the visuals is just as important.

Setting Up the Movie
Make a new Flash movie and set its frame rate to 20. Create a new layer in your movie labeled mouse

menu. Put the new layer at the very top of every layer with content in it. This will ensure the mouse under

menu is on top of any other content in your movie.

On this layer, draw a rectangular shape on the Stage approximately 110 pixels wide by 30 pixels tall, and

give it a black, hairline stroke and a light-gray fill. This will be the beginning of the skin movie clips for

your mouse under menu.

06
less cluttered and m

ore usable

91

09 178x ch06 03.15.02 2:30 PM Page 91

Select the middle portion

of the rectangle, 6 pixels from

the top of the rectangle

and about 18 pixels tall, and

make it into a movie clip (F8)

named menu_middle with its

registration point to the upper-

right corner.

Now give the top portion of the

rectangle a small tab area like

the one illustrated in Figure 6.2. Select this whole top portion and make it into a movie clip called

menu_top, also setting its registration point to the upper right.

Finally, select the bottom portion of the rectangle and make it into a movie clip called menu_bottom and

set its registration point to the upper right as well. You should now have three movie clips on Stage.

Double-click the middle movie clip to place it in Edit mode.

Create a new layer called item name and create a dynamic text field on that layer. Set the x coordinate

of the field to 3 and the y coordinate to 0. Double-click to edit the text of the field and set the text to read

item Name. Then set the variable for the field to itemName and make sure the field is not selectable.

Click the Character button in the Properties panel for the field and also ensure that you’ve embedded all

the characters of the font. Make this clip 10 frames long. Make frame 5 a keyframe on both layers in this

clip and give the frame a frame label of over. On frame 6, select the light-gray section of the menu item

image and change its color to a light blue. This clip will be used for every menu item in your mouse

under menu.

To make these accessible from within the ActionScript you’ll write later, you will have to change the

linkage properties for each of the three movie clips. Start by right-clicking (in Windows) or Control-

clicking (on the Macintosh) on the menu_top movie clip in the Library panel and selecting Linkage from

the context menu. Click the Export for ActionScript check box on the Linkage Properties dialog box.

Flash will automatically fill in the Identifier field with menu_top. Click the OK button and repeat the

process for the menu_middle and menu_bottom movie clips.

Now that you’ve created the skins that control how your menu looks, now it’s time to dive into the guts of

this component.

Creating the Component
Make a rectangle on the mouse menu layer. Select the rectangle and make it a movie clip named

MouseMenu, and then give this clip and instance name of mc_mouseMenu. Double-click the new

movie clip symbol to open it in Edit mode.

92

Figure 6.2
Select the middle portion of the rectangle and make it into a
movie clip called menu_middle.

09 178x ch06 03.15.02 2:30 PM Page 92

CODE The code for the mouse under menu will work like several of the other components in

the book—it uses a frame loop. To begin, add two more frames to the movie clip and then add a new

layer named actions. Select the three frames in the actions layer and convert them to keyframes

(Modify>Frames>Convert to Keyframes).

Initialization
Click frame 1 of the actions layer, open the ActionScript editor (F2), and enter the following code:

06
less cluttered and m

ore usable

93

var MENU_ITEMS = ["item 1", "item 2", "item 3"];
var HIDE_DELAY = 1000;
var HIDE_ON_CLICK = true;

These first few variables will be replaced later with component parameters. The MENU_ITEMS variable

is an array of elements that represent your menu items. In this case, you have three menu items: item 1,

item 2, and item 3.

The HIDE_DELAY variable holds the number of milliseconds in which the menu waits without user input

before fading away.

HIDE_ON_CLICK will tell the component whether to fade away immediately after the user clicks an item

in the menu.

Next you need to initialize some global variables. Add this code:

var gMenuShowing = false;
var gHideCalled = false;
var gTimerStarted = false;
var gStartTime = 0;

this._alpha = 50;
this.swapDepths(99999);

The gMenuShowing variable will be used later to tell different functions in the component whether the

menu is currently being displayed.

The gHideCalled global variable is set to true when the hideMenu() function (which you will define later)

gets called and is used in fading out the menu.

09 178x ch06 03.15.02 2:30 PM Page 93

gTimerStarted holds the state of the timer which will hide the menu after a given number of milliseconds

(defined earlier in HIDE_DELAY) has elapsed.

The alpha of the component is set here to 50%, but this will be changed to 0 when the component is

complete. This ensures the menu is hidden from view right when the mouse menu component

is loaded.

The built-in Flash swapDepths() function ensures the menu displays over all other items on its layer.

Building the Menu
Now it’s time to start putting those skin movie clips you created earlier to good use. Start by entering this

code in the Actions panel:

94

this.attachMovie("menu_top", "mc_menu_top", 1);

var tempLevel = 2;
var tempOffset = this.mc_menu_top._height;
for (var i = 0; i < MENU_ITEMS.length; i++) {

this.attachMovie("menu_middle", "mc_menu_item_" + i, tempLevel);
this["mc_menu_item_" + i].itemName = MENU_ITEMS[i];
this["mc_menu_item_" + i]._y = tempOffset;
this["mc_menu_item_" + i].gotoAndStop(1);

tempLevel++;
tempOffset += this["mc_menu_item_" + i]._height;

}

This code attaches the menu_top movie clip to

the current movie clip. This will be the top of

your menu.

Now is a good time to save your movie and test

it. You should notice that the menu_top movie

clip appears 50% transparent in the same place

as the MouseMenu clip you created. If this is

the case, you’re off to a good start.

Close the test movie and return to the Actions

panel for frame 1 of the MouseMenu movie clip. Add this code next:

Figure 6.3
The menu_top movie clip appears at the position of
the MouseMenu movie clip you are currently defining.

09 178x ch06 03.15.02 2:30 PM Page 94

This little loop is the heart of the under mouse menu component. It loops through the MENU_ITEMS

array, attaches a new menu_middle movie clip for each element in the array, and then sets the itemLabel

field inside that menu_middle movie clip to the text of that element of the array. This will enable you to

add as many menu items as you need by just adding those items to the MENU_ITEMS array.

Now, before testing the loop, add the bottom part of the skin next by entering this code:

06
less cluttered and m

ore usable

95

this.attachMovie("menu_bottom", "mc_menu_bottom", tempLevel);
this.mc_menu_bottom._y = tempOffset;

Now you’re ready to test the movie again. You should

notice that the whole menu appears as a whole piece.

Great work so far!

As you can see, much of the real work is now done. The

next several steps will deal with adding the finer details

that help to make Nancy’s experience the best it can be.

Mouse Handling
The next code you will add will handle the mouse events

for the dragging of the menu. Add this code next to the

Actions for frame 1:

Figure 6.4
You should see something very similar
to this now, with all the items in the
MENU_ITEMS array showing up as
items in your menu.

function menuMouseDownFunc()
{

if(this.hitTest(_root._xmouse, _root._ymouse, true)) {
this.deltaX = _root._xmouse - this._parent._x;
this.deltaY = _root._ymouse - this._parent._y;
this.isDragging = true;

}
}

function menuMouseUpFunc()
{

this.isDragging = false;
}

09 178x ch06 03.15.02 2:30 PM Page 95

The menuMouseDownFunc() function tests to determine whether the user’s mouse is actually over the top

of the menu. If it is, the difference between the clip’s x and y coordinates and the mouse’s are

calculated and saved to the delta variables and the isDragging Boolean is set to true.

The menuMouseUpFunc() function sets the isDragging variable back to false. This will be used to tell the

next function you will enter to stop moving the menu along with the mouse. Enter this code now:

96

function menuMouseMoveFunc()
{

if(this.isDragging) {
this._parent._x = _root._xmouse - this.deltaX;
this._parent._y = _root._ymouse - this.deltaY;
updateAfterEvent(mouseMove);

}
}

this.mc_menu_top.onMouseDown = menuMouseDownFunc;
this.mc_menu_top.onMouseUp = menuMouseUpFunc;
this.mc_menu_top.onMouseMove = menuMouseMoveFunc;

menuMouseMoveFunc() checks to determine whether the isDragging variable is true and, if it is, updates

the position of the menu and refreshes the drawing of the frame immediately to ensure the dragging is

smooth.

How do these functions ever get called? These three functions will get attached to the movie clip at the

top of the menu (menu_top), enabling the user to drag it around. Do that now. Right below the code

where you attach the menu_top movie clip (before looping through the MENU_ITEMS array), add this

ActionScript:

What this code does is attach each of the last

three functions you defined to the three mouse

events for the menu_top movie clip. It’s that

easy! Now before testing the movie again, go

to keyframe 3 of the MouseMenu component

and add this ActionScript:

Figure 6.5
Attach the mouse functions to the menu_top movie clip to allow it to
be dragged around with the mouse.

gotoAndPlay(2);

09 178x ch06 03.15.02 2:30 PM Page 96

This will ensure that the component loops over the last two frames and does not replay the frame of the

clip, which would reinitialize the variables and cause the dragging to malfunction. Now save and test

your movie.

You should be able to grab the top portion of the menu and easily drag it around the screen. Wow,

that’s smooth!

Now you will add two mouse functions to the menu items themselves. Start by going to frame 1 of the

MouseMenu clip and adding this to its Actions:

06
less cluttered and m

ore usable

97

function itemMouseUpFunc()
{

if (this.hitTest(_root._xmouse, _root._ymouse, false)) {
_root.underMenuDispatch(this.itemName);
if (this._parent.HIDE_ON_CLICK) hideMenu();

}
}

function itemMouseMoveFunc()
{

if (this.hitTest(_root._xmouse, _root._ymouse, false)) {
this.gotoAndStop("over");

} else {
this.gotoAndStop(1);

}
}

The itemMouseUpFunc() function first checks to see that the mouse is released over the calling clip by

using the Flash built-in function, hitTest(). Then it calls a dispatch function called underMenuDispatch()

located in the root movie. A dispatch function takes in a parameter (in this case, this.itemName) and

decides what to do with it, dispatching any other functions as a result. You will define this particular

dispatch function near the end of this chapter. The itemMouseMoveFunc() function also checks to see

whether the mouse is over the clip and, if it is, it tells the clip to go to the frame labeled over; otherwise

the clip is told to display frame 1.

Now that you’ve defined these functions, it is time to attach them to the individual menu items. Inside the

loop that creates each menu item, find the code that tells the newly created item to go to and stop on

frame 1 (this["mc_menu_item_" + i].gotoAndStop(1)). Add this code immediately following:

this["mc_menu_item_" + i].onMouseUp = itemMouseUpFunc;
this["mc_menu_item_" + i].onMouseMove = itemMouseMoveFunc;

09 178x ch06 03.15.02 2:30 PM Page 97

Now save your movie and test what you have so far. You should now be able to roll over each of the items

in your mouse under menu and see the item highlighted. If it is not working properly, that’s alright; just

review the code and compare it to what’s in this chapter to help you track down the problem.

You may have noticed one peculiar thing about your menu: When you drag it, the original rectangle you

made at the very beginning of this chapter is still showing behind the menu and drags along with it. To

fix this problem, select frame 2 of the layer that the rectangle is on and create a keyframe (F6). Now

delete any items from this layer on frames 2 and 3. This will ensure that the rectangle shows up only in

the first frame of the clip by removing any remnant of the rectangle from frames 2 and 3.

Open to the Public
You are now ready to add the public functions to

this component. At the top of frame 1, right after

you define the HIDE_ON_CLICK variable, enter

this code in the Actions panel:

98

Note

The notion of public and private functions and variables is a

powerful notion in the world of the C programming language;

because when you declare something as private, it is actually

private, and trying to use it will shower you with compiler

warnings. In ActionScript and JavaScript, however, the notion

of public and private functions and variables is purely an

organizational tool and in no way changes the way Flash or your

web browser interprets or manages the code.

function showMenu()
{

if (gMenuShowing) {
if (this.hitTest(_root._xmouse, _root._ymouse, true)) {

return;
} else {

hideMenu();
return;

}
}
gHideCalled = false;
gTimerStarted = false;
gMenuShowing = true;
this._x = _root._xmouse;
this._y = _root._ymouse;
this._alpha = 100;

}

09 178x ch06 03.15.02 2:30 PM Page 98

The showMenu() function

typically gets called as a

result of a mouse click and

begins by checking to see

whether the menu is already

showing and whether the

mouse is over the menu. If

the menu is showing and the

mouse is not over it, the menu

is hidden by calling the

hideMenu() function (which

you will define in a moment).

If the menu is not already

showing (gMenuShowing is

false), the gHideCalled and

gTimerStarted variables are

set to false. These variables

tell the clip that the hideMenu()

function has been called, and that the delay timer (which hides the menu after a certain amount of

inactivity) is set to false, respectively. The gMenuShowing variable is then set to true to tell the rest

of the clip that the menu is showing. Finally, the menu is positioned at the current mouse pointer

coordinates and the alpha of the clip is set to 100% opacity.

Now it is time to define the hideMenu() function. Enter this code:

06
less cluttered and m

ore usable

99

Figure 6.6
Define the clip’s public functions at the top of the Actions panel. This makes it easy for
other developers to spot if they open the clip and view the code.

function hideMenu()
{

gMenuShowing = false;
gHideCalled = true;

}

This function doesn’t seem like it does very much, but it is important. After telling the rest of the movie

clip that the menu is no longer showing, it sets the gHideCalled variable to true. This variable will get

checked in the code you will be entering next and used to fade the menu out.

09 178x ch06 03.15.02 2:30 PM Page 99

To test that the showMenu() function works properly, you need to hide the menu completely when it

initializes. Therefore, find the line of code where you set the alpha of the clip to 50% and set the alpha

to 0. Below that line of code, add this:

100

this._x = -1000;

This will ensure not only that the clip is invisible on the Stage (at 0 percent alpha), but also that it can no

longer receive any mouse event because it will be positioned way off Stage.

As mentioned earlier, the showMenu() function typically gets called from a button symbol, so go to

scene 1 of your movie and create a square. Select the square and make it into a button symbol (F8). Add

this code to the button:

on(press)
{

mc_mouseMenu.showMenu();
}

This very simple code calls the showMenu() function you

created only moments ago. Now save your work and test

the movie again. You should notice that the movie now

begins without the menu clip showing and that clicking

the button you created shows the menu at the mouse

coordinates. Great! Now add the fading-out code.

Fading
Close the test movie and edit the MouseMenu movie

clip. Select frame 2 of the Actions layer in the timeline

and enter this code:
Figure 6.7
The button symbol that will activate the mouse under menu.

if (gHideCalled) {
if (this._alpha <= 10) {

this._x = -1000;
gHideCalled = false;

} else {
this._alpha -= 20;

}
}

09 178x ch06 03.15.02 2:30 PM Page 100

Because this clip loops over frames 2 and 3, this code gets checked throughout the lifetime of the movie.

If gHideCalled is true (which would be the case if the hideMenu() function were called), the clip begins

to grow more and more transparent until it is positioned off Stage.

Test your movie and click the button you created to activate the menu. Then click outside the menu area

but still in the button. You should find that the menu gently fades away when you click outside the area

of the menu.

Now it is time to add the timer code, which will fade the menu out if the user’s mouse pointer is

outside the menu for a given amount of time. Start by adding this code right after the code you

added previously:

06
less cluttered and m

ore usable

101

if (gMenuShowing && !gHideCalled && !this.hitTest(_root._xmouse,
➥_root._ymouse, true)) {

if (!gTimerStarted) {
gStartTime = getTimer();
gTimerStarted = true;

} else {
if (getTimer() > (gStartTime + HIDE_DELAY)) {

hideMenu();
}

}
} else {

gTimerStarted = false;
}

This code might look a bit daunting, but it is

really pretty simple. The first if statement

checks to see whether the menu is

currently showing, that the hideMenu()

function has not been called, and that the

mouse pointer is not within the menu area.

If all of those conditions are met, and if the

timer has not yet been started, it is started;

otherwise, the code checks to see whether

the number of milliseconds defined in the

HIDE_DELAY variable have elapsed and

then calls hideMenu() automatically. As you

recall, the HIDE_DELAY variable was initially set to 1000 milliseconds, or 1 second. Therefore after

1 second of the mouse pointer being outside the area of the menu, the menu should automatically fade.

Save and test your movie to determine whether this works.

Figure 6.8
This timer code handles fading out the menu after a period of inactivity.

09 178x ch06 03.15.02 2:30 PM Page 101

All that is left is to define the component parameters to make this a real, reusable component, and to add

the dispatch function mentioned earlier to the root movie timeline.

From Movie Clip to Component
To begin, you will need to comment out the

three variables you defined at the top of

the Actions panel for frame 1 in your

MouseMenu clip. Select frame 1 of the Actions

layer in your MouseMenu clip, open the

Actions panel for it (F2), and comment

out the MENU_ITEMS, HIDE_DELAY, and

HIDE_ON_CLICK variables.

Right-click (Windows) or Control-click (Mac) the

MouseMenu clip in the Library panel and select

Component Definition.

Start off by adding a MENU_ITEMS variable and making

it an array. Then add a HIDE_DELAY variable of type

Number with a value of 1000, and finally add a

HIDE_ON_CLICK Boolean variable.

Click the OK button and return to your main movie

timeline. Select frame 1 of the main timeline and open

the Actions panel. Add the following code:

102

Figure 6.9
Don’t forget to comment out the temporary variables
you defined in the beginning.

Figure 6.10
This component will have only three simple parameters.

function underMenuDispatch(clickedItem)
{

switch (clickedItem) {
case "item 1":

trace("1 was clicked");
break;

case "item 2":
trace("now 2 was");
break;

default:
trace(clickedItem);

}
}

09 178x ch06 03.15.02 2:30 PM Page 102

This function gets called every time a menu item

is clicked. It gets sent the label of the menu item

and checks it against a list of cases; if a match is

found, the code within that case branch is

executed. Using this method, you can have the

menu execute any functions you desire. In this

particular case, there are cases for handling

menu items named item 1, item 2, and a default

case that will handle any other menu items.

To test this code, you need to adjust the parame-

ters of your component. Select the MouseMenu

component on the Stage and click the

Parameters tab. Enter five items: item 1, item 2,

item 3, item 4, and item 5. Notice that after

adding the first one, every time you click on the

plus sign (+) to add a new array element, Flash

automatically adds a new item and increments

the number appropriately. Now set the

HIDE_ON_CLICK parameter to true and test your movie.

Upon clicking any of the menu items in the mouse under menu, you should

notice that the menu disappears and that the Output window displays the

appropriate message for each item. That’s it! You now have a complete,

functional, and reusable mouse under menu component.

You need to perform one final trick for this component to be truly reusable:

You need to ensure the menu_top, menu_middle, and menu_bottom

clips tag along appropriately when you drag and drop this clip into other

movies. For this to function properly, select the MouseMenu component in

the library, Right-click (Windows) or Control-click (Mac) and select Edit.

Create a new layer named skins and move it to the bottom of the list of

layers. Now drag each of the menu skin clips (menu_top, menu_middle,

and menu_bottom) onto the newly created layer and resize each of

them so that they are about 10 pixels wide by 10 pixels tall. This

effectively hides them from view. Now right-click (Windows) or

Control-click (Mac) on the skins layer in the layer list and make it a

guide layer. This further hides it completely on the Stage. Now you

can drag the MouseMenu component to any other movie and the

menu skin clips will automatically follow.

06
less cluttered and m

ore usable

103

Note

The code in the sample movies included on the Skip Intro

CD-ROM should be identical to the code discussed in the

chapter except for the fact that the code on the CD-ROM is

heavily commented to make it easier to go through. In some

cases, however, items such as the ones listed in the menu and

dispatch functions may differ from those in the sample files to

make it less specific to the sample movie and more general.

Figure 6.11
The dispatch function handles the different menu item labels sent in
and dispatches the appropriate functions for them.

Figure 6.12
Flash automatically adds the
next item in the array with an
incremented number.

Figure 6.13
Making the layer a guide layer ensures
that Flash will not display it.

09 178x ch06 03.15.02 2:31 PM Page 103

CONCLUSION You now have a nice little module that you can use, with minor

graphic modifications, in any of your projects!

Key Points/Don’t Forget
� Mouse under menus are an excellent implementation of Fitts’s Law. There is no mouse

movement on the user’s part to open a mouse under menu. Just click and it opens.

� Mouse under menus shouldn’t be used as a primary navigation device. Despite their

efficiency in terms of Fitts’s law, mouse under menus are hidden from the users’ view until

they are click. There will always be a moment’s delay while the user identifies the new options

presented. Ideally, mouse under menus should offer the user supplementary options. The core

navigation elements of the site should be kept onscreen and easily identifiable at all times.

� There should be some indication that mouse under menus exist. This is extremely important.

If the users don’t know the menu is there, they won’t use it. Informing the user—either through

direct means such as instructions or through hints such as a cursor change—is essential in the

use of mouse under menus.

� Dragging has to be the single biggest UI crime in Flash design. Yes, in some instances

dragging and dropping is the perfect metaphor to use. Puzzle-type games, room planner

devices, and so on all use Flash’s dragging capability effectively. For the most part, however,

dragging in Flash is just annoying for the user. Watch out! If you want to read more about

why dragging can be a drag, check out the Skip Intro web site (www.skip-intro.org).

104

09 178x ch06 03.15.02 2:31 PM Page 104

