
Advanced C++ Aspects
of SAX and DOM

8

PREVIOUS CHAPTERS HAVE DISCUSSED THE THEORY and practice of C++ SAX and
C++ DOM. Several issues regarding the structure and usage of these XML manipula-
tion mechanisms were discussed. However, some important C++-specific issues such
as memory management and char types were not discussed.

This chapter addresses the following key comparative (and cooperative) issues that
touch both C++ SAX and C++ DOM:

n How to decide whether to go with DOM or SAX
n Techniques to integrate SAX and DOM in C++
n Memory management (and C++ garbage collection) in C++ SAX and C++

DOM
n Unicode character encodings and their C++ representation (and the choices

used in the major parsers)

10 052X CH08 8/2/01 7:56 AM Page 129

130 Chapter 8 Advanced C++ Aspects of SAX and DOM

C++ SAX Versus C++ DOM
One of the most recurrent and often oversimplified questions when developing XML
applications is which criteria to use when deciding between SAX and DOM.

The most common answer to this question goes along the following lines: SAX is
generally faster and requires less memory, because the footprint of creating new
objects is not present. On the other hand, DOM provides random access to any point
of the tree after the document has been read.There is basically a trade-off between
memory consumption and fast multiple data accesses after parsing.

Even though the preceding sentences are the truth and nothing but the truth, they
are far from being the whole truth.They are adequate for an entry-level discussion,
because they address the nature of the interfaces, but they are unfit for our purposes,
because they don’t take into consideration the design of the applications in which
these technologies will be used.

There are two dimensions to the decision of SAX versus DOM: One concerns
performance, and the other focuses on system design quality.The following sections
explain these issues in light of some facts.

Performance
When reading and processing XML files, you can measure performance considerations
in two dimensions: time and memory. Let’s examine the consumption patterns for
these resources in both SAX and DOM.

Reading Time

The time to actually read the document using either SAX or DOM grows in linear
proportion to the size of the XML source, as shown in Figure 8.1. However, DOM’s
line is much steeper than that of SAX, because all the objects for the document must
be allocated (and eventually deleted), whereas in SAX, only simple strings are allocated
and passed.

Script for Calling Counting Programs
Figure 8.1 depicts the time taken by different versions of an element counter to handle long XML files.

(There are four element-counter programs: SAX and DOM implementations using C++, and SAX and DOM

implementations using Java.) The files have the following structure:

<tests>
<test anAttribute=’avalue’>Some content</test>
<!-- ...repeat n times -->
<test anAttribute=’avalue’>Some content</test>
</tests>

In this case, the test element gets repeated 5,000, 10,000,...,150,000 times.

The Perl script used to generate the files and call the counting programs is provided on the CD.

Even though the test of passing these big files and recording the time taken to process them is not a

rigorous benchmark, it achieves the main goal: to give you a realistic idea of the growth of processing

time in heavy-duty situations.

10 052X CH08 8/2/01 7:56 AM Page 130

131C++ SAX Versus C++ DOM

Figure 8.1 Parsing large numbers of elements.

Processing/Access Time

From the parsing time perspective, SAX seems to be a better approach than DOM.
On the other hand, searches over the in-memory DOM tree are much faster than
rereading the document. It is also important to mention that efficient random accesses
to particular nodes of the document after it has been read are possible only using
DOM (or an object model of your own).This was showcased in Chapter 7,
“Advanced C++ DOM Manipulation,” when you created an associative container to
point to particular nodes in the tree, resulting in very fast access to elements.

If repeated access to arbitrary nodes is needed, an in-memory object model is
always preferable to dealing with just events. However, this doesn’t mean that “random
access” equals “DOM,” as you will see in the section “It’s All About Design.” (After all,
you can always construct your own model, and sometimes you should.)

Memory Consumption

DOM parsers create a whole object model automatically whenever they parse an
XML document, whereas SAX merely holds simple strings for a few moments each
time it calls a handler. Naturally, DOM consumes more memory than SAX. However,
some details must be considered.

Old quick formulas for DOM memory consumption were very popular at the
beginning of XML and still are in some introductory literature.They stated things
such as,“The amount of memory used will be approximately 7 to 10 times the size
of the document.”These guidelines become more obsolete every day as DOM imple-
mentations get smarter by means of patterns such as “flyweight” (factorize data
repeated in many objects and represent it only once) and “proxy” (wait to create an
object until it is really needed).

Count Elements Benchmark

8000

7000

6000

5000

4000

3000

2000

1000

0

50
00

15
00

0
25

00
0

35
00

0
45

00
0

55
00

0
65

00
0

75
00

0
85

00
0

95
00

0
10

50
00

11
50

00

T
im

e
(m

s) C++ SAXCount

Java SAXCount

C++ DOMCount

Java DOMCount

10 052X CH08 8/2/01 7:56 AM Page 131

132 Chapter 8 Advanced C++ Aspects of SAX and DOM

Even though the old formulas might be less of a guideline nowadays, one thing is
for sure: memory consumption in a DOM implementation is dependent on the size of
the file, usually O(n). SAX memory consumption is largely a constant, independent of
the document’s size.

The C++ Factor in Memory Consumption
One very appealing reason to stay with C++ in SAX/DOM programs is the excellent compromise between

resource consumption and features. Consider the following anecdote:

While I was testing the benchmark script in the preceding section with a Pentium III 966Mhz computer

running Windows 2000/XP with 256MB of RAM, the Java version of the DOMCount program consistently

died with java.lang.OutOfMemory, except with files beyond 135,000 nodes. The C++ program per-

formed fine (and significantly faster) for all test cases.

The programming effort to manipulate either version is virtually identical because of the C++ automatic

garbage collection implemented in the Xerces toolkit (see the later section “Memory Management in C++

DOM”).

This is just one of many examples of the pleasant (and sometimes antihype) facts you will encounter

when developing C++ XML programs.

It’s All About Design
Even though performance issues are important, the main factors to decide between
DOM and SAX remain a matter of design.

Table 8.1 enumerates the most common types of C++ XML modules and their
constraints and provides guidelines (not a recipe, of course) for the SAX versus DOM
decision.

Table 8.1 Types of Problems and Their Implementation Strategies in C++ XML

Implementation
Problem Considerations Strategy Example

Construct numerous An object model is Use SAX handlers (or any syntaxTree

domain-specific needed, but it must event-oriented API, for (see Chapter 3)
objects based on a be one that is that matter) as object
known vocabulary. meaningful and builders, creating a hierarchy

rich for the that is semantically rich for
program’s problem, your program. Do not fall
not a view of XML. into the temptation of the

“ready-made” hierarchy
provided by DOM, because
it is a terrible model for
your problem and thus is a
hard-to-maintain and
inexpressive solution.

10 052X CH08 8/2/01 7:56 AM Page 132

133C++ SAX Versus C++ DOM

Construct parallel This problem is Use DOM to represent XML editor (see
representations of faced by most the in-memory XML, and Chapters 6
arbitrary XML general-purpose use Visitors over it in and 7)
documents (without XML tools.There order to add the
knowing in advance is no domain- functionality required.
their particular specific knowledge,
vocabulary). but there is

sometimes the need
to augment the
DOM functionality.

Manipulate another In this case, In reality, there are two Case 1: XPath
application’s apparently no ways of adding functionality programs for
exported XML decision needs to be over the exported model: IE5.5 (see
model. made, because the Work over it as it is Chapter 10)

external program originally provided
exports a view of (create Visitors over Case 2: SAX
the XML (generally the DOM, as just wrapper for
as a DOM tree). discussed), or adapt the DOM (see the

exported model so that next section of
it can be perceived as SAX this chapter)
events and work with it in
an event-driven way (mainly
for the reuse of existing
SAX code).

Filter XML input Because multiple Because SAX provides SAXTrimmer
into an XML output. independent outputs natural interfaces for filter (see Chapter 4)

may be connected, development, and also
parallelism becomes because of the parallelism
a consideration.The contract, the best approach
partial output of is to implement this type
a filter must be of program in terms of SAX.
available as the input
of the next one,
before it finishes
processing the
whole document.

Create XML-based Extension languages Use SAX to create All the examples
extension languages (languages for the hierarchies or lists of in Chapter 13
for C++ applications. power user to mani- commands (objects that (Linux and

pulate and extend encapsulate an action COM+)
C++ programs) are and provide an “undo”
a special case of interface).
constructing custom-
made hierarchies

Implementation
Problem Considerations Strategy Example

10 052X CH08 8/2/01 7:56 AM Page 133

134 Chapter 8 Advanced C++ Aspects of SAX and DOM

based on XML input.
The main difference
between these and the
general case is that they
must provide self-
contained behavior,
not only data.

Implement an XML When wrapping No inherently better SAX view of
view of other another data source approach.Totally driven databases (see
data sources. (such as a database by client preferences. Chapter 15)

table) as XML, the DOM view of
decision between databases (see
SAX and DOM must Chapter 15)
be driven by what
your client expects.
Chapter 15 expands
on this, particularly for
the problem of
relational databases.

Implementation
Problem Considerations Strategy Example

About Patterns

The idea of this section is to create a good mental framework of the scenarios for the
decision between C++ SAX and DOM.A related subject is that of design patterns.
Even though you probably recognize parts of patterns in the list above, this list is not a
patterns discussion. For more about XML patterns, refer to the following resources
written by me:

n XML Developer’s Guide (McGraw-Hill, 2000, ISBN 00702126485)
n XML Patterns, Part I (www.xml.com/pub/a/2000/01/19/feature/index.html,

1999)
n XML Patterns, Part II (www.xml.com/pub/a/2000/02/16/feature/index.html,

2000)
n XMLable Pattern (www.thefaactory.com/ta/poa.ps,Arciniegas and Casallas, 1998

[provided on the CD])

10 052X CH08 8/2/01 7:56 AM Page 134

135C++ SAX Plus C++ DOM

C++ SAX Plus C++ DOM
The preceding sections discussed how to decide between SAX and DOM.This com-
plementary section discusses the opposite problem: how to glue them together for the
sake of reuse.

The notion of adapters is a key topic in object-oriented software engineering.
Adapters are objects whose only purpose is to provide the interface that a client
expects while delegating the actual work to an underlying, preexisting object that
would otherwise be unfit to use.

The problem of gluing together SAX and DOM interfaces is common whenever
preexisting pieces of software written for one model must be adapted to be used with
the other.

DOMAsSAX Adapter
Listing 8.1 is the source code of the DOMAsSAX adapter. It behaves like any other
SAX source, except that its primary content is a DOM document (thus making the
process invisible to the client).The edition shown here is based on the Linux version
of Xerces 1.4.

DOMAsSAX as COM
DOMAsSAX is implemented in Listing 8.1. as a Linux program mainly because I try to keep platform

variety in the examples. The code has also been ported to Windows and is available on the CD.

For a COM version that implements similar functionality, please refer to the MSDN code center at

http://msdn.microsoft.com/code/default.asp?URL=/code/topic.asp?URL=/msdn-

files/028/000/072/topic.xml

and download “XML Provider consumer” under the “XML DOM” item. This URL is not very likely to

change, but if it does, this book’s Web site will provide the new location.

Listing 8.1 DOMAsSAX.h

#ifndef DOMAsSAX_H
#define DOMAsSAX_H

#ifdef DO_DEBUG
#define DEBUG(x) cout << x
#else
#define DEBUG(x)
#endif

//---
// Includes and Constants
//---
#include <sax2/SAX2XMLReader.hpp>
#include <parsers/SAX2XMLReaderImpl.hpp>

continues

10 052X CH08 8/2/01 7:56 AM Page 135

136 Chapter 8 Advanced C++ Aspects of SAX and DOM

#include <util/PlatformUtils.hpp>
#include <util/XMLString.hpp>
#include <util/XMLUniDefs.hpp>

// Exceptions
#include <util/TranscodingException.hpp>
#include <util/IOException.hpp>
#include <dom/DOM_DOMException.hpp>
#include <dom/DOM.hpp>

#include <string.h>
#include <iostream.h>
//--
// Class definition
//--
/**

Adapt a DOM Tree so it can be used as SAX events.
@see DOMAsSAX

*/

class DOMAsSAX : public SAX2XMLReaderImpl

{
public:
/**
Default constructor.
*/
DOMAsSAX();

/**
Recursively traverse the given DOM node generating SAX events.
Avoids multiple entrance
@param n the node

*/
void parse(const DOM_Node n);

protected:
/**

Recursively traverse the given DOM node generating SAX events.
@param n the node

*/
void scanDOM(const DOM_Node n);

private:
bool fParseInProgress;

};
#endif DOMAsSAX_H

Listing 8.1 Continued

10 052X CH08 8/2/01 7:56 AM Page 136

137C++ SAX Plus C++ DOM

Inheritance Versus Delegation in Adapters
You might notice an apparently small difference between the code shown here and the code provided on

the CD. Here, the DOMAsSAX class inherits from SAX2XMLReaderImpl (the Xerces implementation of

a SAX 2 parser), whereas the DOMAsSAX on the CD inherits directly from the pure virtual

SAX2XMLReader.

Deriving from the implementation seems very convenient, because much behavior is readily available, and

there is no need to go through the pain of defining all the pure virtual methods specified in

SAX2XMLReader. However, it is a less-than-ideal choice from a design point of view, because it forces

an unnecessary coupling between classes that conceptually should not have anything in common except

their base class. (This is similar to the awkwardness of being adopted by your brother.)

A much more sensible approach in this case is the one taken in the complete code on the CD: Derive

DOMAsSAX from the SAX2XMLReader interface, include a reference to a SAX2XMLReaderImpl

member, and delegate functionality as needed.

Even though these two approaches might pay your bills, it is much better to ask your brother for a favor

than to force him to adopt you as a son.

Listing 8.2 shows the implementation file for the DOMAsSAX program.

Listing 8.2 DOMAsSAX.cpp

#include “DOMAsSAX.h”

DOMAsSAX::DOMAsSAX() : SAX2XMLReaderImpl(),
fParseInProgress(false)

{

}

void DOMAsSAX::parse(const DOM_Node n)
{

// Avoid multiple entrance
if (fParseInProgress)

ThrowXML(IOException, XMLExcepts::Gen_ParseInProgress);

try
{

fParseInProgress = true;
scanDOM(n);
fParseInProgress = false;

}

catch (...)
{

fParseInProgress = false;
throw;

}
}

continues

10 052X CH08 8/2/01 7:56 AM Page 137

138 Chapter 8 Advanced C++ Aspects of SAX and DOM

void DOMAsSAX::scanDOM(DOM_Node n)
{
DOMString nodeName = n.getNodeName();
DOMString nodeValue = n.getNodeValue();
unsigned long len = nodeValue.length();

// For the sake of readability
#define nn nodeName.rawBuffer()
#define nv nodeValue.rawBuffer()

switch (n.getNodeType())
{

case DOM_Node::DOCUMENT_NODE :
{

startDocument();
DOM_Node child = n.getFirstChild();
while(child != 0) {
scanDOM(child);
child = child.getNextSibling();
}
break;

}

case DOM_Node::PROCESSING_INSTRUCTION_NODE :
{
docPI(nn,nv);
break;

}

// ... and so on for each type of node.

default:
DEBUG(“Unrecognized node type = “ << (long)n.getNodeType());

}
/**
What is happening on the base class:
void SAX2XMLReaderImpl::docPI(const XMLCh* const target

, const XMLCh* const data)
{

// Just map to the SAX document handler
if (fDocHandler)

fDocHandler->processingInstruction(target, data);

//
// If there are any installed advanced handlers, let’s call them
// with this info.
//
for (unsigned int index = 0; index < fAdvDHCount; index++)

fAdvDHList[index]->docPI(target, data);
}
**/
}

Listing 8.2 Continued

10 052X CH08 8/2/01 7:56 AM Page 138

139Memory Management in C++ SAX

Naturally, it is worth mentioning that the converse case of this code, a SAXAsDOM
adapter, is also possible. Such an exercise in SAX handlers is not included, but you
should be able to implement it after reading Chapter 4,“SAX C++,” Chapter 5,“SAX
C++ 2.0 and Advanced Techniques,” and this chapter.

Memory Management in C++ SAX
An always-important issue in C++ programs is memory management. Happily, the
rules for memory responsibilities in all major C++ XML toolkits are quite well-
defined.The following are the rules and guidelines for memory manipulation in
C++ SAX.

String Allocation and Release
C++ XML toolkits (MSXML 3.0, Xerces 1.4, Unicorn 1.0) are responsible for creat-
ing and destroying the strings they pass to the calling process. Other design issues
might change in future versions of these tools, but deleting strings passed to your
handler is something that will never be required.

Naturally, copies you make of the strings received in handlers are your responsibility
and should be explicitly deallocated.

Strings in MSXML are represented as wchar arrays for the character data, plus a
separate integer indicating their length. Strings in Xerces are represented as arrays of
XMLCh and an unsigned integer for their length. In either case, the strings are not guar-
anteed to be zero-terminated and should never be read beyond the specified length.

Another Comparison: Features Recognized by Each Parser
Before I end all SAX-specific discussions in this chapter, you might want to check out the following
information, which compares the features recognized by MSXML and Xerces. (See Chapter 5 for the defi-
nition of feature in SAX2.)

The following are the features that are handled and recognized by the MSXML SAXXMLReader:

n http://xml.org/sax/features/namespaces

n http://xml.org/sax/features/namespace-prefixes

n http://xml.org/sax/features/external-general-entities

n http://xml.org/sax/features/external-parameter-entities

n http://xml.org/sax/features/validation

n normalize-line-breaks

n server-http-request

The following are the features that are handled and recognized by the Xerces SAX2XMLReaderImpl:

n http://xml.org/sax/features/namespaces

n http://xml.org/sax/features/namespace-prefixes

n http://xml.org/sax/features/validation

n http://apache.org/xml/features/validation/dynamic

n http://xml.org/sax/features/validation feature (default)

n http://apache.org/xml/features/validation/reuse-validator

10 052X CH08 8/2/01 7:56 AM Page 139

140 Chapter 8 Advanced C++ Aspects of SAX and DOM

Memory Management in C++ DOM
DOM, having a much bigger memory footprint than SAX, must pay even closer
attention to memory issues.

The idea of automatic memory management has been introduced in all major
DOM implementations, and the notion of garbage collection by reference count in
C++ is used in Xerces (and recent versions of MSXML).

Garbage collection by reference count is simple:As long as a node is accessible,
either directly or via some other node, it stays in memory.As soon as the number of
references to a node decreases to zero, the node is ready for automatic collection and
is deleted.The most common case for automatic collection happens whenever a local
DOM_Node variable goes out of scope, as shown in Listing 8.3.

Listing 8.3 Garbage Collection and Scope

void found(const DOM_Document& doc)
{

DOM_Element a = doc.createElement(“founder”);
a.setAttribute(“surname”,

“Durden”);
DOM_Element b = doc.createElement(“company”);
a.setAttribute(“name”,

“The Paper Street Soap Company”);
d.appendChild(b);

} // a gets destroyed, as it goes out of scope
// b stays, as it is accessible via doc

One important consequence of automatic garbage collection as implemented by
Xerces is that the application is no longer allowed to create objects in the heap with
new objects as it sees fit. Instead, the factory view of creation defined by the DOM
interfaces (all the create methods in DOM_Document) is enforced, and all new nodes
must be created either by a factory method in DOM_Document or by cloning, as shown
in Listing 8.4.

Listing 8.4 Cloning Versus the Factory Method

void extend(const DOM_Document& doc)
{

// Factory method in DOM_Document
DOM_Element a = d.createElement(“worker”);
a.setAttribute(“name”,

“Tyler”);
// Cloning
// Note that the cloneNode has a boolean parameter. This indicates
// whether a deep cloning should be performed (i.e. copy character
// data) or not.
DOM_Element b = a.cloneNode(false);

}

10 052X CH08 8/2/01 7:56 AM Page 140

141Memory Management in C++ DOM

Given the conditions just mentioned, there is a risk of relaxing too much and becom-
ing less than careful with memory and performance issues. In particular, it is not
uncommon to see beginners passing and returning huge DOM objects by value.As an
experienced and well-behaved C++ XML developer, you must avoid such situations
and use references whenever possible.

Character Encodings in C++
One very important aspect of C++ XML manipulation is a seemingly basic concept:
characters. Characters, despite their ubiquitous use, are a surprisingly deep subject and
deserve some careful attention.This section explains characters under C++ and their
use in MSXML and Xerces.

Even though you can safely and profitably use the APIs without knowing much
about Unicode or wchar_t, it is recommended that you read this section, because you
can make performance and elegance improvements to your programs if you under-
stand the inner workings of their character representation.

The following sections explain the relationship between characters, character codes,
character encodings, and glyphs.

Characters

Characters are abstract entities. They are defined (in the Unicode Standard) as “the
smallest components of a written language that have semantic value.”Abstract as they
may be, you can assign a description to each character (pretty much the same process
as naming “the number one”).A character description contains the character’s name
and other useful information, such as related characters or voicing. For example, the
following entry has the character “v” in the Unicode Standard:

028C v LATIN SMALL LETTER V WITH HOOK
= LATIN SMALL LETTER SCRIPT V
voiced labiodental approximate
-> 01B2 V latin capital letter v with hook
-> 03C5 v greek small letter upsilon

Character Codes

Just as you can assign a description to each character, you can assign it a unique uni-
versal value.This is the primary goal of the Unicode Standard: provide a 16-bit charac-
ter code for each character in the world (this provides for 65,535 codes).

Character codes in Unicode are identified by a four-position hexadecimal number
(four groups of 4 bits), such as the 028C in the example in the preceding section.
(Now you know why you can insert Unicode characters in HTML documents using a
reference such as ʌ.) In everyday use, people commonly call Unicode character
codes Unicode characters. In print, it is also common to refer to a character with the
notation U+code, such as U+0424.

10 052X CH08 8/2/01 7:56 AM Page 141

142 Chapter 8 Advanced C++ Aspects of SAX and DOM

Unicode character codes are organized in blocks—useful contiguous ranges of
related characters.The following is the list of the first few blocks (the complete list is
provided on the CD):

Start Code; End Code; Block Name
0000; 007F; Basic Latin
0080; 00FF; Latin-1 Supplement
0100; 017F; Latin Extended-A
0180; 024F; Latin Extended-B
0250; 02AF; IPA Extensions
02B0; 02FF; Spacing Modifier Letters
0300; 036F; Combining Diacritical Marks
0370; 03FF; Greek
0400; 04FF; Cyrillic
0530; 058F; Armenian
0590; 05FF; Hebrew
0600; 06FF; Arabic
0700; 074F; Syriac
0780; 07BF; Thaana
0900; 097F; Devanagari
0980; 09FF; Bengali
...

For the sake of extensibility, two surrogate blocks have been defined—D800-DBFF
and DC00-DFFF.The idea is to expand the number of available points by identifying
some Unicode characters as the combination of two codes: one in the surrogate block,
and one outside it.These characters are currently not in use, and furthermore, they are
illegal in XML, so there is no need to pay too much attention to them.

Character Encodings

As a C++ programmer, you are not as surprised as others when somebody mentions
that there are numerous ways to encode that 16-bit character value.

For instance, you might choose to use an unsigned long int, thus allowing the
representation of each character in only one allocation unit.Also, you might recognize
that the first block in Unicode coincides with ASCII and that a more-compact repre-
sentation of English can be made: Use only 1 byte for Basic Latin and multiple bites
for other characters.

Different considerations such as these (in terms of performance and aesthetics) have
led to a myriad of machine character representations or encodings.The two most
popular (and the only two required to be understood by every XML parser) are UTF-
16 (the uniform 16-bit storage model described later) and UTF-8 (a multibyte repre-
sentation suitable for ASCII and European characters but very expensive for Asian).

Glyphs

We have gone from ideas (characters) to internal computer representation (encodings).
Now it is time to present the encoded values to humans.

10 052X CH08 8/2/01 7:56 AM Page 142

143Memory Management in C++ DOM

Characters are represented for humans as glyphs.A single character may have many
glyphs, and more than two characters may be composed of only one glyph—such as
when extension or composition characters such as an acute accent are applied, as
shown in Figure 8.2.

Character Description Character Code Encoded Character (UTF-8) Glyph

Cyrillic Capital Letter ef
Combining acute accent
(modifier character)

U+0424
U+0301

d0a4 cc81 3c2f 623e
(hex representation)

Figure 8.2 From characters to glyphs.

Characters are rendered by a displaying engine using fonts and typesetting rules.
(This might seem obvious for English, but displaying languages such as Kannada is a
challenge.)

Representing UTF-16 and UTF-8 in C++

A UTF-8 character is represented as 1 to 3 bytes according to the following rules:
n Characters in the range U+0000 to U+007F in 1 byte: [0][bits 0 to 6]
n Characters in the range U+0080 to U+07FF in 2 bytes: [110][bits 7 to

10]10[bits 0 to 6]
n Characters in the range U+0800 to U+FFFF in 3 bytes: [1110][bits 12 to

15][10][bits 6 to 11][10][bits 0 to 5]

Even though both UTF-16 and UTF-8 are required to be read by a parser, all parsers
represent their characters internally in a uniform way (normally, UTF-16).

UTF-16 is often represented by either a wchar_t (a wide char) or an unsigned
integer.When using wide characters, you have three basic alternatives for string
representation:

n Use an elegant implementation of strings defined by the C++ standard
basic_string

n Rely on wide char C-style functions
n Use a custom-made string class

The basic_string class relies on the character representation definition given by the
template char_traits, shown in Listing 8.5, to provide an efficient definition of a
string.

10 052X CH08 8/2/01 7:56 AM Page 143

144 Chapter 8 Advanced C++ Aspects of SAX and DOM

Listing 8.5 Char Traits

struct char_traits<E> {
//All the information needed by basic_string to elegantly and
//efficiently implement a string made of this type of characters

typedef E char_type;
typedef T1 int_type;
typedef T2 pos_type;
typedef T3 off_type;
typedef T4 state_type;
static void assign(E& x, const E& y);
static E *assign(E *x, size_t n, const E& y);
static bool eq(const E& x, const E& y);
static bool lt(const E& x, const E& y);
static int compare(const E *x, const E *y, size_t n);
static size_t length(const E *x);
static E *copy(E *x, const E *y, size_t n);
static E *move(E *x, const E *y, size_t n);
static const E *find(const E *x, size_t n, const E& y);
static E to_char_type(const int_type& ch);
static int_type to_int_type(const E& c);
static bool eq_int_type(const int_type& ch1, const int_type& ch2);
static int_type eof();
static int_type not_eof(const int_type& ch);
};

This is elegant and convenient, but is unsupported by some compilers. None of the
current major parsers rely on basic_string.

C-style functions (such as strlen) are available for wide characters in the library
<cwchar>. MSXML 3.0, for the sake of efficiency, chooses to represent every string as
an array of wchars and an integer for length.The usage of C-style functions for wide
characters is thus common in projects using MSXML.

Finally, custom-made strings are also an option, especially when you’re dealing with
automatic garbage collection and other assorted trickery.This is more akin to the style
chosen by Xerces. It defines its own XMLCh character type as an unsigned short (in
most platforms) but also defines a series of manipulation methods around it in the
form of its util and transcoding classes.

DOMString is implemented as a black box Unicode string that can be transformed
into XMLCh* by means of the method rawBuffer.

Practical C++ Tools for Translation and Display

Here are the four most useful tools I normally use for character display and
transformation:

n emacs using mule and the UTF package for display (included with installation
instructions on the CD).

n emacs using hexl mode for the inspection of particular codes for characters.

10 052X CH08 8/2/01 7:56 AM Page 144

145Memory Management in C++ DOM

n saxprint with the -x switch. This Xerces utility produces a document using the
specified encoding.

n The Unicode 3.0 Standard Book.This is a great tool and a total aesthetic
pleasure. It contains sample glyphs for every code in the standard, plus detailed
information on its implementation.

Figure 8.3 shows these tools in action.

Figure 8.3 Tools for translation and display.

Programmatic Translation of UTF-16 and UTF-8 in C++

Even though the practical tools just discussed will prove very useful, sometimes you
need programmatic access to conversions.The Listing 8.6 code snippet is based on the
open-source program Cvtutf7 by Mark E. Davis and David Goldsmith. It shows how
to translate from UTF-16 to UTF-8.

Listing 8.6 Programmatic Conversion of UTF-16 to UTF-8

typedef unsigned short UTF16;
typedef unsigned char UTF8;

// This code is embedded only as a guide to the look and feel of these
// transformations. Pointers to the commented code are given in the CD
// section for this chapter.
void ConvertUTF8toUTF16 (

UTF8** sourceStart, UTF8* sourceEnd,
UTF16** targetStart, const UTF16* targetEnd)

{

continues

10 052X CH08 8/2/01 7:56 AM Page 145

146 Chapter 8 Advanced C++ Aspects of SAX and DOM

ConversionResult result = ok;
register UTF8* source = *sourceStart;
register UTF16* target = *targetStart;
while (source < sourceEnd) {

register UCS4 ch = 0;
register unsigned short extraBytesToWrite =
bytesFromUTF8[*source];
if (source + extraBytesToWrite > sourceEnd) {

result = sourceExhausted; break;
};
switch(extraBytesToWrite) {

case 5: ch += *source++; ch <<= 6;
case 4: ch += *source++; ch <<= 6;
case 3: ch += *source++; ch <<= 6;
case 2: ch += *source++; ch <<= 6;
case 1: ch += *source++; ch <<= 6;
case 0: ch += *source++;

};
ch -= offsetsFromUTF8[extraBytesToWrite];

if (target >= targetEnd) {
result = targetExhausted; break;

};
if (ch <= kMaximumUCS2) {

*target++ = ch;
} else if (ch > kMaximumUTF16) {

*target++ = kReplacementCharacter;
} else {

if (target + 1 >= targetEnd) {
result = targetExhausted; break;

};
ch -= halfBase;
*target++ = (ch >> halfShift) + kSurrogateHighStart;
*target++ = (ch & halfMask) + kSurrogateLowStart;

};
};
*sourceStart = source;
*targetStart = target;
return result;

}

Listing 8.6 Continued

10 052X CH08 8/2/01 7:56 AM Page 146

147Summary

Summary
This chapter dealt with C++-specific issues, going from the highest-level design deci-
sion, SAX versus DOM, to the most basic and specific of concepts: characters.

Toolkits (MSXML and Xerces), paradigms (C++ DOM and SAX), techniques
(filters versus builders), and implementations (basic_string versus XMLCh*, garbage
collection versus manual management), were compared and unified to give you a
better set of conceptual and physical tools to create advanced and efficient C++ XML
applications.

This chapter concludes Part II of this book.The next chapters build on the con-
cepts shown here in order to show programmatic applications in C++ of all the major
XML-related technologies, such as XML Schema, XPointer, and XSLT.

10 052X CH08 8/2/01 7:56 AM Page 147

10 052X CH08 8/2/01 7:56 AM Page 148

