
APPENDIX D
Answers
Day 1

Quiz
1. What is the difference between an interpreter and a compiler?

Interpreters read through source code and translate a program, turning the
programmer’s “code,” or program instructions, directly into actions.
Compilers translate source code into an executable program that can be
run at a later time.

2. How do you compile the source code with your compiler?

Every compiler is different. Be certain to check the documentation that
came with your compiler.

3. What does the linker do?

The linker’s job is to tie together your compiled code with the libraries
supplied by your compiler vendor and other sources. The linker lets you
build your program in “pieces” and then link together the pieces into one
big program.
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4. What are the steps in the normal development cycle?

Edit source code, compile, link, test (run), repeat if necessary.

Exercises
1. Look at the following program and try to guess what it does without running it.

1: #include <iostream>
2: int main()
3: {
4:   int x = 5;
5:   int y = 7;
6:   std::cout << ;
7:   std::cout << x + y << “ “ << x * y;
8:   std::cout << ;
9:   return 0;
10:}

This program initializes two integer variables (numbers) and then prints out their
sum, 12, and their product, 35.

2. Type in the program from Exercise 1, and then compile and link it. What does it
do? Does it do what you guessed?

See your compiler manual.

3. Type in the following program and compile it. What error do you receive?
1: include <iostream>
2: int main()
3: {
4:     std::cout << “Hello World\n”;
5:     return 0;
6: }

You must put a # symbol before the word include on the first line.

4. Fix the error in the program in Exercise 3 and recompile, link, and run it. What
does it do?

This program prints the words Hello World to the console, followed by a new line
(carriage return).

Day 2
Quiz

1. What is the difference between the compiler and the preprocessor?

Each time you run your compiler, the preprocessor runs first. It reads through
your source code and includes the files you’ve asked for, and performs other
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D

housekeeping chores. The compiler is then run to convert your preprocessed source
code to object code.

2. Why is the function main() special?

main() is special because it is called automatically each time your program is
executed. It might not be called by any other function and it must exist in every
program.

3. What are the two types of comments, and how do they differ?

C++-style, single-line comments are started with two slashes (//) and they com-
ment out any text until the end of the line. Multiline, or C-style, comments are
identified with marker pairs (/* */), and everything between the matching pairs is
commented out. You must be careful to ensure you have matched pairs.

4. Can comments be nested?

C++-style, single-line comments can be nested within multiline, C-style comments:
/* This marker starts a comment. Everything including 
// this single line comment,
is ignored as a comment until the end marker */

You can, in fact, nest slash-star style comments within double-slash, C++-style
comments as long as you remember that the C++-style comments end at the end of
the line.

5. Can comments be longer than one line?

Multiline, C-style comments can be longer than one line. If you want to extend
C++-style, single-line comments to a second line, you must put another set of dou-
ble slashes (//).

Exercises
1. Write a program that writes “I love C++” to the screen.

The following is one possible answer:
1: #include <iostream>
2: using namespace std;
3: int main()
4: {
5:    cout << “I love C++\n”;
6:    return 0;
7: }

2. Write the smallest program that can be compiled, linked, and run.

The following program contains a main() function that does nothing. This is, how-
ever, a complete program that can be compiled, linked, and run. When run, it
appears that nothing happens because the program does nothing!

int main(){}
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3. BUG BUSTERS: Enter this program and compile it. Why does it fail? How can
you fix it?
1: #include <iostream>
2: main()
3: {
4:      std::cout << Is there a bug here?”;
5: }

Line 4 is missing an opening quote for the string.

4. Fix the bug in Exercise 3 and recompile, link, and run it.

The following is the corrected program:
1: #include <iostream>
2: main()
3: {
4:      std::cout << “Is there a bug here?”;
5: }

This listing prints the following to the screen:

Is there a bug here?

5. The following is one possible solution:
1:  #include <iostream>
2:  int Add (int first, int second)
3:  {
4:      std::cout << “In Add(), received “ << first << “ and “ << second

➥<< “\n”;
5:      return (first + second);
6:  }
7:
8:  int Subtract (int first, int second)
9:  {
10:      std::cout << “In Subtract(), received “ << first << “ and “ <<

➥second << “\n”;
11:      return (first - second);
12:  }
13:  
14:  int main()
15:  {
16:      using std::cout;
17:      using std::cin;
18:  
19:      cout << “I’m in main()!\n”;
20:      int a, b, c;
21:      cout << “Enter two numbers: “;
22:      cin >> a;
23:      cin >> b;
24:  
25:      cout << “\nCalling Add()\n”;
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26:      c=Add(a,b);
27:      cout << “\nBack in main().\n”;
28:      cout << “c was set to “ << c;
29: 
30:      cout << “\n\nCalling Subtract()\n”;
31:      c=Subtract(a,b);
32:      cout << “\nBack in main().\n”;
33:      cout << “c was set to “ << c;
34:
35:      cout << “\nExiting...\n\n”;
36:      return 0;
37:  }

Day 3
Quiz

1. What is the difference between an integer variable and a floating-point variable?

Integer variables are whole numbers; floating-point variables are “reals” and have a
“floating” decimal point. Floating-point numbers can be represented using a man-
tissa and exponent.

2. What are the differences between an unsigned short int and a long int?

The keyword unsigned means that the integer will hold only positive numbers. On
most computers with 32-bit processors, short integers are two bytes and long inte-
gers are four. The only guarantee, however, is that a long integer is at least as big
or bigger than a regular integer, which is at least as big as a short integer.
Generally, a long integer is twice as large as a short integer.

3. What are the advantages of using a symbolic constant rather than a literal constant?

A symbolic constant explains itself; the name of the constant tells what it is for.
Also, symbolic constants can be redefined at one location in the source code, rather
than the programmer having to edit the code everywhere the literal is used.

4. What are the advantages of using the const keyword rather than #define?

const variables are “typed,” and, thus, the compiler can check for errors in how
they are used. Also, they survive the preprocessor, and, thus, the name is available
in the debugger. Most importantly, using #define to declare constants is no longer
supported by the C++ standard.

5. What makes for a good or bad variable name?

A good variable name tells you what the variable is for; a bad variable name has
no information. myAge and PeopleOnTheBus are good variable names, but x, xjk,
and prndl are probably less useful.
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6. Given this enum, what is the value of BLUE?

enum COLOR { WHITE, BLACK = 100, RED, BLUE, GREEN = 300 };

BLUE = 102

7. Which of the following variable names are good, which are bad, and which are
invalid?

a. Age

Good

b. !ex

Not legal

c. R79J

Legal, but a bad choice

d. TotalIncome

Good

e. __Invalid

Legal, but a bad choice

Exercises
1. What would be the correct variable type in which to store the following

information?

The following are appropriate answers for each:

a. Your age.

unsigned short int

short int

b. The area of your backyard.

unsigned long int or unsigned float

c. The number of stars in the galaxy.

unsigned double

d. The average rainfall for the month of January.

unsigned short int

2. Create good variable names for this information.

The following are possible answers:

a. myAge

b. backYardArea
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c. StarsInGalaxy

d. averageRainFall

3. Declare a constant for pi as 3.14159.:

const float PI = 3.14159;

4. Declare a float variable and initialize it using your pi constant.

float myPi = PI;

Day 4
Quiz

1. What is an expression?

An expression is any statement that returns a value.

2. Is x = 5 + 7 an expression? What is its value?

Yes, 12.

3. What is the value of 201 / 4?

50.

4. What is the value of 201 % 4?

1.

5. If myAge, a, and b are all int variables, what are their values after
myAge = 39;
a = myAge++;
b = ++myAge;

myAge: 41, a: 39, b: 41.

6. What is the value of 8+2*3?

14.

7. What is the difference between if(x = 3) and if(x == 3)?

The first one assigns 3 to x and returns the value 3, which is interpreted as true.
The second one tests whether x is equal to 3; it returns true if the value of x is
equal to 3 and false if it is not.

8. Do the following values evaluate to True or False?

a. 0 False

b. 1 True

c. -1 True

d. x = 0 False

e. x == 0 // assume that x has the value of 0 True
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Exercises
1. Write a single if statement that examines two integer variables and changes the

larger to the smaller, using only one else clause.

The following is one possible answer:
if (x > y)

x = y;
else          // y > x || y == x

y = x;

2. Examine the following program. Imagine entering three numbers, and write what
output you expect.
1:   #include <iostream>
2:   using namespace std;
3:   int main()
4:   {
5:        int a, b, c;
6:        cout << “Please enter three numbers\n”;
7:        cout << “a: “;
8:        cin >> a;
9:        cout << “\nb: “;
10:        cin >> b;
11:       cout << “\nc: “;
12:       cin >> c;
13:
14:       if (c = (a-b))
15:            cout << “a: “ << a << “ minus b: “ << b << 

➥equals c: “ << c;
16:       else
17:            cout << “a-b does not equal c: “;
18:     return 0;
19:  }

3. Enter the program from Exercise 2; compile, link, and run it. Enter the numbers
20, 10, and 50. Did you get the output you expected? Why not?

Entering 20, 10, 50 gives back a: 20, b: 30, c: 10.

Line 14 is assigning, not testing for equality.

4. Examine this program and anticipate the output:
1:     #include <iostream>
2:     using namespace std;
3:     int main()
4:     {
5:          int a = 2, b = 2, c;
6:          if (c = (a-b))
7:               cout << “The value of c is: “ << c;
8:     return 0;
9:      }
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5. Enter, compile, link, and run the program from Exercise 4. What was the output?
Why?

Because line 6 is assigning the value of a-b to c, the value of the assignment is a
(2) minus b (2), or 0. Because 0 is evaluated as false, the if fails and nothing is
printed.

Day 5
Quiz

1. What are the differences between the function prototype and the function
definition?

The function prototype declares the function; the definition defines it. The proto-
type ends with a semicolon; the definition need not. The declaration can include
the keyword inline and default values for the parameters; the definition cannot.
The declaration need not include names for the parameters; the definition must.

2. Do the names of parameters have to agree in the prototype, definition, and call to
the function?

No. All parameters are identified by position, not name.

3. If a function doesn’t return a value, how do you declare the function?

Declare the function to return void.

4. If you don’t declare a return value, what type of return value is assumed?

Any function that does not explicitly declare a return type returns int. You should
always declare the return type as a matter of good programming practice.

5. What is a local variable?

A local variable is a variable passed into or declared within a block, typically a
function. It is visible only within the block.

6. What is scope?

Scope refers to the visibility and lifetime of local and global variables. Scope is
usually established by a set of braces.

7. What is recursion?

Recursion generally refers to the ability of a function to call itself.

8. When should you use global variables?

Global variables are typically used when many functions need access to the same
data. Global variables are very rare in C++; after you know how to create static
class variables, you will almost never create global variables.
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9. What is function overloading?

Function overloading is the ability to write more than one function with the same
name, distinguished by the number or type of the parameters.

Exercises
1. Write the prototype for a function named Perimeter(), which returns an unsigned

long int and which takes two parameters, both unsigned short ints.

unsigned long int Perimeter(unsigned short int, unsigned short int);

2. Write the definition of the function Perimeter() as described in Exercise 1. The
two parameters represent the length and width of a rectangle and have the function
return the perimeter (twice the length plus twice the width).

The following is one possible answer:
unsigned long int Perimeter(unsigned short int length, unsigned short int
width)
{
return (2*length) + (2*width);

}

3. BUG BUSTERS: What is wrong with the function in the following code?
#include <iostream>
void myFunc(unsigned short int x);
int main()
{

unsigned short int x, y;
y = myFunc(int);
std::cout << “x: “ << x << “ y: “ << y << “\n”;

return 0;
}

void myFunc(unsigned short int x)
{

return (4*x);
}

The function tries to return a value even though it is declared to return void, and
thus cannot return a value.

4. BUG BUSTERS: What is wrong with the function in the following code?
#include <iostream>
int myFunc(unsigned short int x);
int main()
{

unsigned short int x, y;
x = 7;
y = myFunc(x);
std::cout << “x: “ << x << “ y: “ << y << “\n”;
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return 0;
}

int myFunc(unsigned short int x);
{

return (4*x);
}

This function would be fine, but there is a semicolon at the end of the myFunc()
function definition’s header.

5. Write a function that takes two unsigned short integer arguments and returns the
result of dividing the first by the second. Do not do the division if the second num-
ber is 0, but do return –1.

The following is one possible answer:
short int Divider(unsigned short int valOne, unsigned short int valTwo)
{

if (valTwo == 0)
return -1;

else
return valOne / valTwo;

}

6. Write a program that asks the user for two numbers and calls the function you
wrote in Exercise 5. Print the answer, or print an error message if you get –1.
The following is one possible solution:
1:  #include <iostream>
2:  using namespace std; 
3:  
4:  short int Divider(
5:          unsigned short int valone,
6:          unsigned short int valtwo);
7:  
8:  int main()
9:  {
10:      unsigned short int one, two;
11:      short int answer;
12:      cout << “Enter two numbers.\n Number one: “;
13:      cin >> one;
14:      cout << “Number two: “;
15:      cin >> two;
16:      answer = Divider(one, two);
17:      if (answer > -1)
18:         cout << “Answer: “ << answer;
19:      else
20:         cout << “Error, can’t divide by zero!”;
21:      return 0;
22:  }
23:  
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24:  short int Divider(unsigned short int valOne, unsigned short 
➥int valTwo)

25:  {
26:      if (valTwo == 0)
27:          return -1;
28:      else
29:          return valOne / valTwo;
30:  }

7. Write a program that asks for a number and a power. Write a recursive function
that takes the number to the power. Thus, if the number is 2 and the power is 4, the
function will return 16.

The following is one possible solution:
1:  #include <iostream>
2:  using namespace std;
3:  typedef unsigned short USHORT;
4:  typedef unsigned long ULONG; 
5:  
6:  ULONG GetPower(USHORT n, USHORT power); 
7:  
8:  int main()
9:  {
10:     USHORT number, power;
11:     ULONG answer;
12:     cout << “Enter a number: “;
13:     cin >> number;
14:     cout << “To what power? “;
15:     cin >> power;
16:     answer = GetPower(number,power);
17:     cout << number << “ to the “ << power << “th power is “ <<
18:       answer << endl;
19:     return 0;
20:  }
21:  
22:  ULONG GetPower(USHORT n, USHORT power)
23:  {
24:      if(power == 1)
25:         return n;
26:      else
27:         return (n * GetPower(n,power-1));
28:  }

Day 6
Quiz

1. What is the dot operator, and what is it used for?

The dot operator is the period (.). It is used to access the members of a class or
structure.
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2. Which sets aside memory—declaration or definition?

Definitions of variables set aside memory. Declarations of classes don’t set aside
memory.

3. Is the declaration of a class its interface or its implementation?

The declaration of a class is its interface; it tells clients of the class how to interact
with the class. The implementation of the class is the set of member functions—
usually in a related CPP file.

4. What is the difference between public and private data members?

Public data members can be accessed by clients of the class. Private data members
can be accessed only by member functions of the class.

5. Can member functions be private?

Yes, member functions can be private. Although not shown in this chapter, a mem-
ber function can be private. Only other member functions of the class will be able
to use the private function.

6. Can member data be public?

Although member data can be public, it is good programming practice to make it
private and to provide public accessor functions to the data.

7. If you declare two Cat objects, can they have different values in their itsAge mem-
ber data?

Yes. Each object of a class has its own data members.

8. Do class declarations end with a semicolon? Do class method definitions?

Declarations end with a semicolon after the closing brace; function definitions
do not.

9. What would the header be for a Cat function, Meow(), that takes no parameters and
returns void?

The header for a Cat function, Meow(), that takes no parameters and returns void
looks like this:

void Cat::Meow()

10. What function is called to initialize a class?

The constructor is called to initialize a class. This special function has the same
name as the class.

Exercises
1. Write the code that declares a class called Employee with these data members: age,

yearsOfService, and Salary.
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The following is one possible solution:
class Employee
{

int Age;
int YearsOfService;
int Salary;

};

2. Rewrite the Employee class to make the data members private, and provide public
accessor methods to get and set each of the data members.

The following is one possible answer. Notice that the Get... accessor methods
were also made constant because they won’t change anything in the class.
// Employee.hpp
class Employee
{
public:
int  GetAge() const;
void SetAge(int age);
int  GetYearsOfService() const;
void SetYearsOfService(int years);
int  GetSalary() const;
void SetSalary(int salary);

private:
int itsAge;
int itsYearsOfService;
int itsSalary;

};

3. Write a program with the Employee class that makes two employees; sets their age,
YearsOfService, and Salary; and prints their values.

The following is one possible solution:
1:  // Employee.cpp
2:  #include <iostream>
3:  #include “Employee.hpp”
4:  
5:  int  Employee::GetAge() const
6:  {
7:     return itsAge;
8:  }
9:  void Employee::SetAge(int age)
10:  {
11:      itsAge = age;
12:  }
13:  int  Employee::GetYearsOfService() const
14:  {
15:      return itsYearsOfService;
16:  }
17:  void Employee::SetYearsOfService(int years)
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18:  {
19:      itsYearsOfService = years;
20:  }
21:  int  Employee::GetSalary()const
22:  {
23:      return itsSalary;
24:  }
25:  void Employee::SetSalary(int salary)
26:  {
27:      itsSalary = salary;
28:  }
29:  
30:  int main()
31:  {
32:     using namespace std;
33:  
34:      Employee John;
35:      Employee Sally;
36:  
37:      John.SetAge(30);
38:      John.SetYearsOfService(5);
39:      John.SetSalary(50000);
40:  
41:      Sally.SetAge(32);
42:      Sally.SetYearsOfService(8);
43:      Sally.SetSalary(40000);
44:  
45:      cout << “At AcmeSexist company, John and Sally have “;
46:      cout << “the same job.\n\n”;
47:  
48:      cout << “John is “ << John.GetAge() << “ years old.” << endl;
49:      cout << “John has been with the firm for “ ;
50:      cout << John.GetYearsOfService() << “ years.” << endl;
51:      cout << “John earns $” << John.GetSalary();
52:      cout << “ dollars per year.\n\n”;
53:  
54:      cout << “Sally, on the other hand is “ << Sally.GetAge(); 
55:      cout << “ years old and has been with the company “;
56:      cout << Sally.GetYearsOfService();
57:      cout << “ years. Yet Sally only makes $” << Sally.GetSalary();
58:      cout << “ dollars per year! Something here is unfair.”;
59:  }

4. Continuing from Exercise 3, provide a method of Employee that reports how many
thousands of dollars the employee earns, rounded to the nearest 1,000.

The following is one possible answer:
float Employee::GetRoundedThousands() const
{

return Salary / 1000;
}
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5. Change the Employee class so that you can initialize age, YearsOfService, and
Salary when you create the employee.

The following is one possible answer:
class Employee
{
public:

Employee(int age, int years, int salary);
int  GetAge() const;
void SetAge(int age);
int  GetYearsOfService() const;
void SetYearsOfService(int years);
int  GetSalary() const;
void SetSalary(int salary);

private:
int itsAge;
int itsYearsOfService;
int itsSalary;

};

6. BUG BUSTERS: What is wrong with the following declaration?
class Square
{
public:

int Side;
}

Class declarations must end with a semicolon.

7. BUG BUSTERS: Why isn’t the following class declaration very useful?
class Cat
{

int GetAge()const;
private:

int itsAge;
};

The accessor GetAge() is private. Remember: All class members are private unless
you say otherwise.

8. BUG BUSTERS: What three bugs in this code the compiler find?
class  TV
{
public:

void SetStation(int Station);
int GetStation() const;

private:
int itsStation;

};
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main()
{

TV myTV;
myTV.itsStation = 9;
TV.SetStation(10);
TV myOtherTv(2);

}

You can’t access itsStation directly. It is private.

You can’t call SetStation() on the class. You can call SetStation() only on
objects.

You can’t initialize myOtherTV because there is no matching constructor.

Day 7
Quiz

1. How do I initialize more than one variable in a for loop?

Separate the initializations with commas, such as

for (x = 0, y = 10; x < 100; x++, y++).

2. Why is goto avoided?

goto jumps in any direction to any arbitrary line of code. This makes for source
code that is difficult to understand, and therefore difficult to maintain.

3. Is it possible to write a for loop with a body that is never executed?

Yes, if the condition is false after the initialization, the body of the for loop will
never execute. Here’s an example:

for (int x = 100; x < 100; x++)

4. What is the value of x when the for loop completes?

for (int x = 0; x < 100; x++)

The variable x is out of scope; thus, it has no valid value.

5. Is it possible to nest while loops within for loops?

Yes. Any loop can be nested within any other loop.

6. Is it possible to create a loop that never ends? Give an example.

Yes. Following are examples for both a for loop and a while loop:
for(;;)
{

// This for loop never ends!
}
while(true)
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{
// This while loop never ends!

}

7. What happens if you create a loop that never ends?

Your program appears to “hang” because it never quits running. This causes you to
have to reboot the computer or to use advanced features of your operating system
to end the task.

Exercises
1. Write a nested for loop that prints a 10×10 pattern of 0s.

The following is one possible answer:
for (int i = 0; i< 10; i++)
{

for ( int j = 0; j< 10; j++)
cout << “0”;

cout << endl;
}

2. Write a for statement to count from 100 to 200 by 2s.

The following is one possible answer:

for (int x = 100; x<=200; x+=2)

3. Write a while loop to count from 100 to 200 by 2s.

The following is one possible answer:
int x = 100;
while (x <= 200)

x+= 2;

4. Write a do...while loop to count from 100 to 200 by 2s.

The following is one possible answer:
int x = 100;
do
{

x+=2;
} while (x <= 200);

5. BUG BUSTERS: What is wrong with this code?
int counter = 0
while (counter < 10)
{ 

cout << “counter: “ << counter;
}

counter is never incremented and the while loop will never terminate.
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6. BUG BUSTERS: What is wrong with this code?
for (int counter = 0; counter < 10; counter++);

cout << counter << “\n”;

There is a semicolon after the loop and the loop does nothing. The programmer
might have intended this, but if counter was supposed to print each value, it won’t.
Rather, it will only print out the value of the counter after the for loop has com-
pleted.

7. BUG BUSTERS: What is wrong with this code?
int counter = 100;
while (counter < 10)
{

cout << “counter now: “ << counter;
counter--;

}

counter is initialized to 100, but the test condition is that if it is less than 10, the
test will fail and the body will never be executed. If line 1 were changed to int
counter = 5;, the loop would not terminate until it had counted down past the
smallest possible int. Because int is signed by default, this would not be what
was intended.

8. BUG BUSTERS: What is wrong with this code?
cout << “Enter a number between 0 and 5: “;
cin >> theNumber;
switch (theNumber)
{

case 0:
doZero();

case 1:              // fall through
case 2:              // fall through
case 3:              // fall through
case 4:              // fall through
case 5: 

doOneToFive();
break;

default:
doDefault();
break;

}

Case 0 probably needs a break statement. If not, it should be documented with a
comment.
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Day 8
Quiz

1. What operator is used to determine the address of a variable?

The address-of operator (&) is used to determine the address of any variable.

2. What operator is used to find the value stored at an address held in a pointer?

The dereference operator (*) is used to access the value at an address in a pointer.

3. What is a pointer?

A pointer is a variable that holds the address of another variable.

4. What is the difference between the address stored in a pointer and the value at that
address?

The address stored in the pointer is the address of another variable. The value
stored at that address is any value stored in any variable. The indirection operator
(*) returns the value stored at the address, which itself is stored in the pointer.

5. What is the difference between the indirection operator and the address-of
operator?

The indirection operator returns the value at the address stored in a pointer. The
address-of operator (&) returns the memory address of the variable.

6. What is the difference between const int * ptrOne and int * const ptrTwo?

The const int * ptrOne declares that ptrOne is a pointer to a constant integer.
The integer itself cannot be changed using this pointer.

The int * const ptrTwo declares that ptrTwo is a constant pointer to integer.
After it is initialized, this pointer cannot be reassigned.

Exercises
1. What do these declarations do?

a. int * pOne;

b. int vTwo;

c. int * pThree = &vTwo;

a. int * pOne; declares a pointer to an integer.

b. int vTwo; declares an integer variable.

c. int * pThree = &vTwo; declares a pointer to an integer and initializes
it with the address of another variable, vTwo.
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2. If you have an unsigned short variable named yourAge, how would you declare a
pointer to manipulate yourAge?

unsigned short *pAge = &yourAge;

3. Assign the value 50 to the variable yourAge by using the pointer that you declared
in Exercise 2.

*pAge = 50;

4. Write a small program that declares an integer and a pointer to integer. Assign the
address of the integer to the pointer. Use the pointer to set a value in the integer
variable.

The following is one possible answer:
1:  #include <iostream>
2:  
3:  int main()
4:  {
5:     int theInteger;
6:     int *pInteger = &theInteger;
7:     *pInteger = 5;
8:  
9:     std::cout << “The Integer: “
10:               << *pInteger << std::endl;
11:  
12:     return 0;
13:  }

5. BUG BUSTERS: What is wrong with this code?
#include <iostream>
using namespace std;
int main()
{

int *pInt;
*pInt = 9;
cout << “The value at pInt: “ << *pInt;

return 0;
}

pInt should have been initialized. More importantly, because it was not initialized
and was not assigned the address of any memory, it points to a random place in
memory. Assigning a literal (9) to that random place is a dangerous bug.

6. BUG BUSTERS: What is wrong with this code?
int main()
{

int SomeVariable = 5;
cout << “SomeVariable: “ << SomeVariable << ;
int *pVar = & SomeVariable;
pVar = 9;
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cout << “SomeVariable: “ << *pVar << ;
return 0;
}

Presumably, the programmer meant to assign 9 to the value at pVar, which would
be an assignment to SomeVariable. Unfortunately, 9 was assigned to be the value
of pVar because the indirection operator (*) was left off. This will lead to disaster
if pVar is used to assign a value because it is pointing to whatever is at the address
of 9 and not at SomeVariable.

Day 9
Quiz

1. What is the difference between a reference and a pointer?

A reference is an alias, and a pointer is a variable that holds an address. References
cannot be null and cannot be assigned to.

2. When must you use a pointer rather than a reference?

When you need to reassign what is pointed to, or when the pointer might be null.

3. What does new return if there is insufficient memory to make your new object?

A null pointer (0).

4. What is a constant reference?

This is a shorthand way of saying a reference to a constant object.

5. What is the difference between passing by reference and passing a reference?

Passing by reference means not making a local copy. It can be accomplished by
passing a reference or by passing a pointer.

6. When declaring a reference, which is correct:

a. int& myRef = myInt;

b. int & myRef = myInt;

c. int  &myRef = myInt;

All three are correct; however, you should pick one style and then use it
consistently.

Exercises
1. Write a program that declares an int, a reference to an int, and a pointer to an

int. Use the pointer and the reference to manipulate the value in the int.
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The following is one possible answer:
1:  //Exercise 9.1 - 
2:  #include <iostream>
3:    
4:  int main()
5:  {
6:     int  varOne = 1;     // sets varOne to 1
7:     int& rVar = varOne;
8:     int* pVar = &varOne;
9:     rVar = 5;            // sets varOne to 5
10:     *pVar = 7;           // sets varOne to 7
11:  
12:     // All three of the following will print 7: 
13:     std::cout << “variable:  “ << varOne << std::endl;
14:     std::cout << “reference: “ << rVar   << std::endl;
15:     std::cout << “pointer:   “ << *pVar  << std::endl;
16:  
17:     return 0;
18:  }

2. Write a program that declares a constant pointer to a constant integer. Initialize the
pointer to an integer variable, varOne. Assign 6 to varOne. Use the pointer to
assign 7 to varOne. Create a second integer variable, varTwo. Reassign the pointer
to varTwo. Do not compile this exercise yet.

The following is one possible answer.
1:  int main()
2:  {
3:     int varOne;
4:     const int * const pVar = &varOne;
5:     varOne = 6;
6:     *pVar = 7;
7:     int varTwo;
8:     pVar = &varTwo;
9:     return 0;
10:  }

3. Compile the program in Exercise 2. What produces errors? What produces
warnings?

You can’t assign a value to a constant object, and you can’t reassign a constant
pointer. This means that lines 6 and 8 are problems.

4. Write a program that produces a stray pointer.

The following is one possible answer. Note that this is a dangerous program to run
because of the stray pointer.
1:  int main()
2:  {
3:     int * pVar;
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4:     *pVar = 9;
5:     return 0;
6:  }

5. Fix the program from Exercise 4.

The following is one possible answer:
1:  int main()
2:  {
3:     int VarOne;
4:     int * pVar = &varOne;
5:     *pVar = 9;
6:     return 0;
7:  }

6. Write a program that produces a memory leak.

The following is one possible answer. Note that you should avoid memory leaks in
your programs.
1:  #include <iostream>
2:  int FuncOne();
3:  int main()
4:  {
5:     int localVar = FunOne();
6:     std::cout << “The value of localVar is: “ << localVar;
7:     return 0;
8:  }
9:  
10:  int FuncOne()
11:  {
12:     int * pVar = new int (5);
13:     return *pVar;
14:  }

7. Fix the program from Exercise 6.

The following is one possible answer:
1:  #include <iostream>
2:  void FuncOne();
3:  int main()
4:  {
5:     FuncOne();
6:     return 0;
7:  }
8:  
9:  void FuncOne()
10:  {
11:     int * pVar = new int (5);
12:     std::cout << “The value of *pVar is: “ << *pVar ;
13:     delete pVar;
14:  }
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8. BUG BUSTERS: What is wrong with this program?
1:     #include <iostream>
2:     using namespace std;
3:     class CAT
4:     {
5:        public:
6:           CAT(int age) { itsAge = age; }
7:           ~CAT(){}
8:           int GetAge() const { return itsAge;}
9:        private:
10:          int itsAge;
11:    };
12:
13:    CAT & MakeCat(int age);
14:    int main()
15:    {
16:       int age = 7;
17:       CAT Boots = MakeCat(age);
18:       cout << “Boots is “ << Boots.GetAge() << “ years old”;
19:     return 0;
20:    }
21:
22:    CAT & MakeCat(int age)
23:    {
24:       CAT * pCat = new CAT(age);
25:       return *pCat;
26:    }

MakeCat returns a reference to the CAT created on the free store. There is no way to
free that memory, and this produces a memory leak.

9. Fix the program from Exercise 8.

The following is one possible answer:
1:     #include <iostream>
2:     using namespace std;
3:     class CAT
4:     {
5:        public:
6:           CAT(int age) { itsAge = age; }
7:           ~CAT(){}
8:           int GetAge() const { return itsAge;}
9:        private:
10:          int itsAge;
11:    };
12:
13:    CAT * MakeCat(int age);
14:    int main()
15:    {
16:       int age = 7;
17:       CAT * Boots = MakeCat(age);
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18:       cout << “Boots is “ << Boots->GetAge() << “ years old”;
19:       delete Boots;
20:     return 0;
21:    }
22:
23:    CAT * MakeCat(int age)
24:    {
25:       return new CAT(age);
26:    }

Day 10
Quiz

1. When you overload member functions, in what ways must they differ?

Overloaded member functions are functions in a class that share a name but differ
in the number or type of their parameters.

2. What is the difference between a declaration and a definition?

A definition sets aside memory; a declaration does not. Almost all declarations are
definitions; the major exceptions are class declarations, function prototypes, and
typedef statements.

3. When is the copy constructor called?

Whenever a temporary copy of an object is created. This also happens every time
an object is passed by value.

4. When is the destructor called?

The destructor is called each time an object is destroyed, either because it goes out
of scope or because you call delete on a pointer pointing to it.

5. How does the copy constructor differ from the assignment operator (=)?

The assignment operator acts on an existing object; the copy constructor creates a
new one.

6. What is the this pointer?

The this pointer is a hidden parameter in every member function that points to the
object itself.

7. How do you differentiate between overloading the prefix and postfix increments?

The prefix operator takes no parameters. The postfix operator takes a single int
parameter, which is used as a signal to the compiler that this is the postfix variant.

8. Can you overload the operator+ for short integers?

No, you cannot overload any operator for built-in types.
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9. Is it legal in C++ to overload operator++ so that it decrements a value in your
class?

It is legal, but it is a bad idea. Operators should be overloaded in a way that is
likely to be readily understood by anyone reading your code.

10. What return value must conversion operators have in their declarations?

None. Like constructors and destructors, they have no return values.

Exercises
1. Write a SimpleCircle class declaration (only) with one member variable:

itsRadius. Include a default constructor, a destructor, and accessor methods for
radius.

The following is one possible answer:
class SimpleCircle
{

public:
SimpleCircle();
~SimpleCircle();
void SetRadius(int);
int GetRadius();

private:
int itsRadius;

};

2. Using the class you created in Exercise 1, write the implementation of the default
constructor, initializing itsRadius with the value 5.

The following is one possible answer:
SimpleCircle::SimpleCircle():
itsRadius(5)
{}

3. Using the same class, add a second constructor that takes a value as its parameter
and assigns that value to itsRadius.

The following is one possible answer:
SimpleCircle::SimpleCircle(int radius):
itsRadius(radius)
{}

4. Create a prefix and postfix increment operator for your SimpleCircle class that
increments itsRadius.

The following is one possible answer:
const SimpleCircle& SimpleCircle::operator++()
{

++(itsRadius);
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return *this;
}

// Operator ++(int) postfix. 
// Fetch then increment
const SimpleCircle SimpleCircle::operator++ (int)
{

// declare local SimpleCircle and initialize to value of *this
SimpleCircle temp(*this);  
++(itsRadius);
return temp;  

}

5. Change SimpleCircle to store itsRadius on the free store, and fix the existing
methods.

The following is one possible answer:
class SimpleCircle
{

public:
SimpleCircle();
SimpleCircle(int);
~SimpleCircle();
void SetRadius(int);
int GetRadius();
const SimpleCircle& operator++();
const SimpleCircle operator++(int);

private:
int *itsRadius;

};

SimpleCircle::SimpleCircle()
{

itsRadius = new int(5);
}

SimpleCircle::SimpleCircle(int radius)
{

itsRadius = new int(radius);
}

const SimpleCircle& SimpleCircle::operator++()
{

++(*itsRadius);
return *this;

}

// Operator ++(int) postfix. 
// Fetch then increment
const SimpleCircle SimpleCircle::operator++ (int)
{
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// declare local SimpleCircle and initialize to value of *this
➥SimpleCircle temp(*this);  

++(*itsRadius);
return temp;  

}

6. Provide a copy constructor for SimpleCircle.

The following is one possible answer:
SimpleCircle::SimpleCircle(const SimpleCircle & rhs)
{

int val = rhs.GetRadius();
itsRadius = new int(val);

}

7. Provide an assignment operator for SimpleCircle.

The following is one possible answer:
SimpleCircle& SimpleCircle::operator=(const SimpleCircle & rhs)
{

if (this == &rhs)
return *this;

delete itsRadius;
itsRadius = new int;
*itsRadius = rhs.GetRadius();
return *this;

}

8. Write a program that creates two SimpleCircle objects. Use the default construc-
tor on one and instantiate the other with the value 9. Call the increment operator on
each and then print their values. Finally, assign the second to the first and print its
values.

The following is one possible answer:
1:  #include <iostream>
2:  using namespace std;
3:  
4:  class SimpleCircle
5:  {
6:    public:
7:        // constructors
8:       SimpleCircle();
9:       SimpleCircle(int);
10:       SimpleCircle(const SimpleCircle &);
11:       ~SimpleCircle() {} 
12:  
13:       // accessor functions
14:       void SetRadius(int);
15:       int GetRadius()const;
16:  
17:       // operators
18:       const SimpleCircle& operator++();
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19:       const SimpleCircle operator++(int);
20:       SimpleCircle& operator=(const SimpleCircle &);
21:  
22:    private:
23:       int *itsRadius;
24:  };
25:  
26:  
27:  SimpleCircle::SimpleCircle()
28:  {itsRadius = new int(5);}
29:  
30:  SimpleCircle::SimpleCircle(int radius)
31:  {itsRadius = new int(radius);}
32:  
33:  SimpleCircle::SimpleCircle(const SimpleCircle & rhs)
34:  {
35:       int val = rhs.GetRadius();
36:       itsRadius = new int(val);
37:  }  
38:    
39:  SimpleCircle& SimpleCircle::operator=(const SimpleCircle & rhs)
40:  {
41:       if (this == &rhs)
42:            return *this;
43:       *itsRadius = rhs.GetRadius();
44:       return *this;
45:  }  
46:  
47:  const SimpleCircle& SimpleCircle::operator++()
48:  {
49:       ++(*itsRadius);
50:       return *this;
51:  }  
52:  
53:  // Operator ++(int) postfix. 
54:  // Fetch then increment
55:  const SimpleCircle SimpleCircle::operator++ (int)
56:  {
57:      // declare local SimpleCircle and initialize to value of *this
58:      SimpleCircle temp(*this);  
59:      ++(*itsRadius);
60:      return temp;  
61:  }
62:  int SimpleCircle::GetRadius() const
63:  {
64:       return *itsRadius;
65:  }
66:  int main()
67:  {
68:       SimpleCircle CircleOne, CircleTwo(9);
69:       CircleOne++;
70:       ++CircleTwo;
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71:       cout << “CircleOne: “ << CircleOne.GetRadius() << endl;
72:       cout << “CircleTwo: “ << CircleTwo.GetRadius() << endl;
73:       CircleOne = CircleTwo;
74:       cout << “CircleOne: “ << CircleOne.GetRadius() << endl;
75:       cout << “CircleTwo: “ << CircleTwo.GetRadius() << endl;
76:       return 0;
77:  }

9. BUG BUSTERS: What is wrong with this implementation of the assignment
operator?
SQUARE SQUARE ::operator=(const SQUARE & rhs)
{

itsSide = new int;
*itsSide = rhs.GetSide();
return *this;

}

You must check to see whether rhs equals this, or the call to a = a will crash
your program.

10. BUG BUSTERS: What is wrong with this implementation of the addition operator?
VeryShort  VeryShort::operator+ (const VeryShort& rhs)
{

itsVal += rhs.GetItsVal();
return *this;

}

This operator+ is changing the value in one of the operands, rather than creating a
new VeryShort object with the sum. The correct way to do this is as follows:
VeryShort  VeryShort::operator+ (const VeryShort& rhs)
{

return VeryShort(itsVal + rhs.GetItsVal());
}

Day 11
Quiz

1. What is the difference between object-oriented programming and procedural
programming?

Procedural programming focuses on functions separate from data. Object-oriented
programming ties data and functionality together into objects, and focuses on the
interaction among the objects.

2. What are the phases of object-oriented analysis and design?

The phases of object-oriented analysis and design include conceptualization, which
is the single sentence that describes the great idea; analysis, which is the process of
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understanding the requirements; and design, which is the process of creating the
model of your classes, from which you will generate your code.

These are followed by implementation, testing, and rollout.

3. What is encapsulation?

Encapsulation refers to the (desirable) trait of bringing together in one class all the
data and functionality of one discrete entity.

4. In regard to analysis, what is a domain?

A domain is an area of the business for which you are creating a product.

5. In regard to analysis, what is an actor?

An actor is any person or system that is external to the system you are developing
and interacts with the system you are developing.

6. What is a use case?

A use case is a description of how the software will be used. It is a description of
an interaction between an actor and the system itself.

7. Which of the following is true?

a. A cat is a specialized form of animal.

b. Animal is a specialized form of cat and dog.

A is true and B is not.

Exercises
1. A computer system is made up of a number of pieces. These include a keyboard, a

mouse, a monitor, and a CPU. Draw a composition diagram to illustrate the rela-
tionship between the computer and its pieces. Hint: This is an aggregation.

The following diagram provides one possible answer:
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2. Suppose you had to simulate the intersection of Massachusetts Avenue and Vassar
Street—two typical two-lane roads with traffic lights and crosswalks. The purpose
of the simulation is to determine whether the timing of the traffic signal allows for
a smooth flow of traffic.

What kinds of objects should be modeled in the simulation? What would the
classes be for the simulation?

Cars, motorcycles, trucks, bicycles, pedestrians, and emergency vehicles all use the
intersection. In addition, there is a traffic signal with Walk/Don’t Walk lights.

Should the road surface be included in the simulation? Certainly, road quality can
have an effect on the traffic, but for a first design, it might be simpler to leave this
consideration aside.

The first object is probably the intersection itself. Perhaps the intersection object
maintains lists of cars waiting to pass through the signal in each direction, as well
as lists of people waiting to cross at the crosswalks. It will need methods to choose
which and how many cars and people go through the intersection.

There will only be one intersection, so you might want to consider how you will
ensure that only one object is instantiated. (Hint: Think about static methods and
protected access.)

People and cars are both clients of the intersection. They share a number of charac-
teristics: They can appear at any time, there can be any number of them, and they
both wait at the signal (although in different lines). This suggests that you will
want to consider a common base class for pedestrians and cars.

The classes could therefore include the following:
class Entity;          // a client of the intersection
class Vehicle : Entity ...;          // the root of
➥all cars, trucks, bicycles and emergency vehicles.
class Pedestrian : Entity...;   // the root of all People
class Car : public Vehicle...;
class Truck : public Vehicle...;
class Motorcycle : public Vehicle...;
class Bicycle : public Vehicle...;
class Emergency_Vehicle : public Vehicle...;
class Intersection;          // contains lists of
➥cars and people waiting to pass

3. You are asked to design a group scheduler. The software enables you to arrange
meetings among individuals or groups and to reserve a limited number of confer-
ence rooms. Identify the principal subsystems.

Two discrete programs could be written for this project: the client, which the users
run, and the server, which would run on a separate machine. In addition, the client
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machine would have an administrative component to enable a system administrator
to add new people and rooms.

If you decide to implement this as a client/server model, the client would accept
input from users and generate a request to the server. The server would service the
request and send back the results to the client. With this model, many people can
schedule meetings at the same time.

On the client’s side, there are two major subsystems in addition to the administra-
tive module: the user interface and the communications subsystem. The server’s
side consists of three main subsystems: communications, scheduling, and a mail
interface, which would announce to the user when changes have occurred in the
schedule.

4. Design and show the interfaces to the classes in the room reservation portion of the
program discussed in Exercise 3.

A meeting is defined as a group of people reserving a room for a certain amount of
time. The person making the schedule might desire a specific room, or a specified
time; however, the scheduler must always be told how long the meeting will last
and who is required.

The objects will probably include the users of the system as well as the conference
rooms. Remember to include classes for the calendar, and perhaps a class Meeting

that encapsulates all that is known about a particular event.

The prototypes for the classes might include
class Calendar_Class;        // forward reference
class Meeting;               // forward reference
class Configuration
{
public:

Configuration();
~Configuration();
Meeting Schedule( ListOfPerson&, 

Delta Time duration );
Meeting Schedule( ListOfPerson&, 

Delta Time duration, Time );
Meeting Schedule( ListOfPerson&, 

Delta Time duration, Room );
ListOfPerson&     People();  // public accessors
ListOfRoom&     Rooms();     // public accessors

protected:
ListOfRoom     rooms;
ListOfPerson     people;

};
typedef long      Room_ID;
class Room
{
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public:     
Room( String name, Room_ID id, int capacity,

String directions = “”, String description = “” );
~Room();
Calendar_Class Calendar();

protected:
Calendar_Class     calendar;
int          capacity;
Room_ID     id;
String          name;
String          directions;          // where is this room?
String          description;

};
typedef long Person_ID;
class Person
{
public:

Person( String name, Person_ID id );
~Person();
Calendar_Class Calendar();           // the access point to add 
➥meetings

protected:
Calendar_Class     calendar;
Person_ID     id;
String          name;

};
class Calendar_Class
{
public:

Calendar_Class();
~Calendar_Class();

void Add( const Meeting& );     // add a meeting to the calendar
void Delete( const Meeting& );                    
Meeting* Lookup( Time );        // see if there is a meeting at the

// given time

Block( Time, Duration, String reason = “” );    
// allocate time to yourself...

protected:
OrderedListOfMeeting meetings;

};
class Meeting
{
public:

Meeting( ListOfPerson&, Room room, 
Time when, Duration duration, String purpose

= “” );
~Meeting();
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protected:
ListOfPerson   people;
Room           room;
Time           when;
Duration       duration;
String         purpose;

};

You might have used private instead of protected. Protected members are cov-
ered on Day 12, “Implementing Inheritance.”

Day 12
Quiz

1. What is a v-table?

A v-table, or virtual function table, is a common way for compilers to manage vir-
tual functions in C++. The table keeps a list of the addresses of all the virtual func-
tions, and depending on the runtime type of the object pointed to, invokes the right
function.

2. What is a virtual destructor?

A destructor of any class can be declared to be virtual. When the pointer is deleted,
the runtime type of the object will be assessed and the correct derived destructor
invoked.

3. How do you show the declaration of a virtual constructor?

This was a trick question—there are no virtual constructors.

4. How can you create a virtual copy constructor?

By creating a virtual method in your class, which itself calls the copy constructor.

5. How do you invoke a base member function from a derived class in which you’ve
overridden that function?

Base::FunctionName();

6. How do you invoke a base member function from a derived class in which you
have not overridden that function?

FunctionName();

7. If a base class declares a function to be virtual, and a derived class does not use the
term virtual when overriding that class, is it still virtual when inherited by a
third-generation class?

Yes, the virtuality is inherited and cannot be turned off.
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8. What is the protected keyword used for?

protected members are accessible to the member functions of derived objects.

Exercises
1. Show the declaration of a virtual function that takes an integer parameter and

returns void.
virtual void SomeFunction(int);

2. Show the declaration of a class Square, which derives from Rectangle, which in
turn derives from Shape.

Because you are showing a declaration of Square, you don’t need to worry about
Shape. Shape is automatically included as a part of Rectangle.
class Square : public Rectangle
{};

3. If, in Example 2, Shape takes no parameters, Rectangle takes two (length and
width), but Square takes only one (length), show the constructor initialization for
Square.

Just as with Exercise 2, you don’t need to worry about Shape.
Square::Square(int length):

Rectangle(length, width){}

4. Write a virtual copy constructor for the class Square (in Exercise 3).

The following is one possible answer:
class Square
{

public:
// ...
virtual Square * clone() const { return new Square(*this); }
// ...

};

5. BUG BUSTERS: What is wrong with this code snippet?
void SomeFunction (Shape);
Shape * pRect = new Rectangle;
SomeFunction(*pRect);

Perhaps nothing. SomeFunction expects a Shape object. You’ve passed it a
Rectangle “sliced” down to a Shape. As long as you don’t need any of the
Rectangle parts, this will be fine. If you do need the Rectangle parts, you’ll need
to change SomeFunction to take a pointer or a reference to a Shape.
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6. BUG BUSTERS: What is wrong with this code snippet?
class Shape()
{
public:

Shape();
virtual ~Shape();
virtual Shape(const Shape&);

};

You can’t declare a copy constructor to be virtual.

Day 13
Quiz

1. What are the first and last elements in SomeArray[25]?

SomeArray[0], SomeArray[24]

2. How do you declare a multidimensional array?

Write a set of subscripts for each dimension. For example, SomeArray[2][3][2] is
a three-dimensional array. The first dimension has two elements, the second has
three, and the third has two.

3. Initialize the members of an array declared as SomeArray[2][3][2].

SomeArray[2][3][2] = { { {1,2},{3,4},{5,6} } , { {7,8},{9,10},{11,12}

➥} };

4. How many elements are in the array SomeArray[10][5][20]?

10*5*20=1,000

5. What is the maximum number of elements that you can add to a linked list?

Both arrays and linked lists are containers for storing information; however, linked
lists are designed to link together as needed.

6. Can you use subscript notation on a linked list?

This string contains 16 characters—the fifteen you see and the null character that
ends the string.

7. What is the last character in the string “Brad is a nice guy”?

The null character.

Exercises
1. Declare a two-dimensional array that represents a tic-tac-toe game board.
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The following is one possible solution. Your array might have a different name, but
should be followed by [3][3] in order to hold a 3 by 3 board.

int GameBoard[3][3];

2. Write the code that initializes all the elements in the array you created in Exercise
1 to the value 0.

int GameBoard[3][3] = { {0,0,0},{0,0,0},{0,0,0} }

3. Write the declaration for a Node class that holds integers.

The following is one possible solution. This uses the strcpy() and strlen()
functions.
#include <iostream>
#include <string.h>
using namespace std;

int main()
{

char firstname[] = “Alfred”;
char middlename[] = “E”;
char lastname[] = “Numan”;
char fullname[80];
int  offset = 0;

strcpy(fullname,firstname);
offset = strlen(firstname);
strcpy(fullname+offset,” “);
offset += 1;
strcpy(fullname+offset,middlename);
offset += strlen(middlename);
strcpy(fullname+offset,”. “);
offset += 2;
strcpy(fullname+offset,lastname);

cout << firstname << “-” << middlename << “-”
<< lastname << endl;

cout << “Fullname: “ << fullname << endl;

return 0;
}

4. BUG BUSTERS: What is wrong with this code fragment?
unsigned short SomeArray[5][4];
for (int i = 0; i<4; i++)

for (int j = 0; j<5; j++)
SomeArray[i][j] = i+j;

The array is five elements by four elements, but the code initializes 4×5.
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5. BUG BUSTERS: What is wrong with this code fragment?
unsigned short SomeArray[5][4];
for (int i = 0; i<=5; i++)

for (int j = 0; j<=4; j++)
SomeArray[i][j] = 0;

You wanted to write i<5, but you wrote i<=5 instead. The code will run when i ==
5 and j == 4, but there is no such element as SomeArray[5][4].

Day 14
Quiz

1. What is a down cast?

A down cast (also called “casting down”) is a declaration that a pointer to a base
class is to be treated as a pointer to a derived class.

2. What does “percolating functionality upward” mean?

This refers to the idea of moving shared functionality upward into a common base
class. If more than one class shares a function, it is desirable to find a common
base class in which that function can be stored.

3. If a round-rectangle has straight edges and rounded corners, and your RoundRect
class inherits both from Rectangle and from Circle, and they in turn both inherit
from Shape, how many Shapes are created when you create a RoundRect?

If neither class inherits using the keyword virtual, two Shapes are created, one
for Rectangle and one for Shape. If the keyword virtual is used for both classes,
only one shared Shape is created.

4. If Horse and Bird inherit from Animal using virtual inheritance, do their construc-
tors initialize the Animal constructor? If Pegasus inherits from both Horse and
Bird, how does it initialize Animal’s constructor?

Both Horse and Bird initialize their base class, Animal, in their constructors.
Pegasus does as well, and when a Pegasus is created, the Horse and Bird initial-
izations of Animal are ignored.

5. Declare a class vehicle and make it an abstract data type.

The following is one possible answer:
class Vehicle
{

virtual void Move() = 0;
}
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6. If a base class is an ADT, and it has three pure virtual functions, how many of
these functions must be overridden in its derived classes?

None must be overridden unless you want to make the class nonabstract, in which
case all three must be overridden.

Exercises
1. Show the declaration for a class JetPlane, which inherits from Rocket and

Airplane.

class JetPlane : public Rocket, public Airplane

2. Show the declaration for Seven47, which inherits from the JetPlane class
described in Exercise 1.

class Seven47: public JetPlane

3. Write a program that derives Car and Bus from the class Vehicle. Make Vehicle
an ADT with two pure virtual functions. Make Car and Bus not be ADTs.

The following is one possible answer:
class Vehicle
{

virtual void Move() = 0;
virtual void Haul() = 0;

};

class Car : public Vehicle
{

virtual void Move();
virtual void Haul();

};

class Bus : public Vehicle
{

virtual void Move();
virtual void Haul();

};

4. Modify the program in Exercise 3 so that Car is an ADT, and derive SportsCar
and Coupe from Car. In the Car class, provide an implementation for one of the
pure virtual functions in Vehicle and make it non-pure.

The following is one possible answer:
class Vehicle
{

virtual void Move() = 0;
virtual void Haul() = 0;

};
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class Car : public Vehicle
{

virtual void Move();
};

class Bus : public Vehicle
{

virtual void Move();
virtual void Haul();

};

class SportsCar : public Car
{

virtual void Haul();
};

class Coupe : public Car
{

virtual void Haul();
};

Day 15
Quiz

1. Can static member variables be private?

Yes. They are member variables and their access can be controlled like any other.
If they are private, they can be accessed only by using member functions or, more
commonly, static member functions.

2. Show the declaration for a static member variable.

static int itsStatic;

3. Show the declaration for a static function.

static int SomeFunction();

4. Show the declaration for a pointer to function returning long and taking an integer
parameter.

long (* function)(int);

5. Modify the pointer in Question 4 so it’s a pointer to member function of class Car.

long ( Car::*function)(int);

6. Show the declaration for an array of 10 pointers as defined in Question 5.

long ( Car::*function)(int) theArray [10];

42 Appendix D

0672327112_webxd.qxd  11/17/04  8:10 AM  Page 42



Answers 43

D

Exercises
1. Write a short program declaring a class with one member variable and one static

member variable. Have the constructor initialize the member variable and incre-
ment the static member variable. Have the destructor decrement the member
variable.

The following is one possible answer:
0:     // Ex1501.cpp
1:     class myClass
2:     {
3:        public:
4:          myClass();
5:          ~myClass();
6:        private:
7:          int itsMember;
8:          static int itsStatic;
9:     };
10:
11:    myClass::myClass():
12:     itsMember(1)
13:    {
14:       itsStatic++;
15:    }
16:
17:    myClass::~myClass()
18:    {
19:       itsStatic--;
20:    }
21:
22:    int myClass::itsStatic = 0;
23:
24:    int main()
25:    {
26:       // do something
27:       return 0;
28:    }

2. Using the program from Exercise 1, write a short driver program that makes three
objects and then displays their member variables and the static member variable.
Then destroy each object and show the effect on the static member variable.

The following is one possible answer:
0:    // Ex1502.cpp
1:    #include <iostream>
2:    using namespace std;
3:    class myClass
4:    {
5:      public:
6:        myClass();
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7:        ~myClass();
8:        void ShowMember();
9:        void ShowStatic();
10:      private:
11:        int itsMember;
12:        static int itsStatic;
13:   };
14:  
15:    myClass::myClass():
16:      itsMember(1)
17:    {
18:       itsStatic++;
19:    }
20:  
21:    myClass::~myClass()
22:    {
23:       itsStatic--;
24:       cout << “In destructor. ItsStatic: “ << itsStatic << endl;
25:    }
26:  
27:    void myClass::ShowMember()
28:    {
29:       cout << “itsMember: “ << itsMember << endl;
30:    }
31:  
32:    void myClass::ShowStatic()
33:    {
34:       cout << “itsStatic: “ << itsStatic << endl;
35:    }
36:    int myClass::itsStatic = 0;
37:  
38:    int main()
39:    {
40:       myClass obj1;
41:       obj1.ShowMember();
42:       obj1.ShowStatic();
43:  
44:       myClass obj2;
45:       obj2.ShowMember();
46:       obj2.ShowStatic();
47:  
48:       myClass obj3;
49:       obj3.ShowMember();
50:       obj3.ShowStatic();
51:     return 0;
52:    }

3. Modify the program from Exercise 2 to use a static member function to access the
static member variable. Make the static member variable private.

The following is one possible answer:
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0:    // Ex1503.cpp
1:    #include <iostream>
2:    using namespace std;
3:    class myClass
4:    {
5:       public:
6:         myClass();
7:         ~myClass();
8:         void ShowMember();
9:         static int GetStatic();
10:       private:
11:         int itsMember;
12:         static int itsStatic;
13:    };
14:
15:    myClass::myClass():
16:      itsMember(1)
17:    {
18:       itsStatic++;
19:    }
20:
21:    myClass::~myClass()
22:    {
23:       itsStatic--;
24:       cout << “In destructor. ItsStatic: “ << itsStatic << endl;
25:    }
26:
27:    void myClass::ShowMember()
28:    {
29:       cout << “itsMember: “ << itsMember << endl;
30:    }
31:
32:    int myClass::itsStatic = 0;
33:
34:    int myClass::GetStatic()
35:    {
36:       return itsStatic;
37:    }
38:
39:    int main()
40:    {
41:       myClass obj1;
42:       obj1.ShowMember();
43:       cout << “Static: “ << myClass::GetStatic() << endl;
44:
45:       myClass obj2;
46:       obj2.ShowMember();
47:       cout << “Static: “ << myClass::GetStatic() << endl;
48:
49:       myClass obj3;
50:       obj3.ShowMember();
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51:       cout << “Static: “ << myClass::GetStatic() << endl;
52:       return 0;
53:    }

4. Write a pointer to member function to access the non-static member data in the
program in Exercise 3, and use that pointer to print the value of that data.

The following is one possible answer:
0:    // Ex1504.cpp
1:    #include <iostream>
2:    using namespace std;
3:    class myClass
4:    {
5:       public:
6:         myClass();
7:         ~myClass();
8:         void ShowMember();
9:         static int GetStatic();
10:       private:
11:         int itsMember;
12:         static int itsStatic;
13:    };
14:
15:    myClass::myClass():
16:      itsMember(1)
17:    {
18:       itsStatic++;
19:    }
20:
21:    myClass::~myClass()
22:    {
23:       itsStatic--;
24:       cout << “In destructor. ItsStatic: “ << itsStatic << endl;
25:    }
26:
27:    void myClass::ShowMember()
28:    {
29:       cout << “itsMember: “ << itsMember << endl;
30:    }
31:
32:    int myClass::itsStatic = 0;
33:
34:    int myClass::GetStatic()
35:    {
36:       return itsStatic;
37:    }
38:
39:    int main()
40:    {
41:       void (myClass::*PMF) ();
42:

46 Appendix D

0672327112_webxd.qxd  11/17/04  8:10 AM  Page 46



Answers 47

D

43:       PMF=myClass::ShowMember;
44:
45:       myClass obj1;
46:       (obj1.*PMF)();
47:       cout << “Static: “ << myClass::GetStatic() << endl;
48:
49:       myClass obj2;
50:       (obj2.*PMF)();
51:       cout << “Static: “ << myClass::GetStatic() << endl;
52:
53:       myClass obj3;
54:       (obj3.*PMF)();
55:       cout << “Static: “ << myClass::GetStatic() << endl;
56:       return 0;
57:    }

5. Add two more member variables to the class from the previous exercises. Add
accessor functions that get the value of these data and give all the member func-
tions the same return values and signatures. Use the pointer to member function to
access these functions.

The following is one possible answer:
0:    // Ex1505.cpp
1:    #include <iostream>
2:    using namespace std;
3:    class myClass
4:    {
5:       public:
6:         myClass();
7:         ~myClass();
8:         void ShowMember();
9:         void ShowSecond();
10:         void ShowThird();
11:         static int GetStatic();
12:       private:
13:         int itsMember;
14:         int itsSecond;
15:         int itsThird;
16:         static int itsStatic;
17:    };
18:  
19:    myClass::myClass():
20:      itsMember(1),
21:      itsSecond(2),
22:      itsThird(3)
23:    {
24:       itsStatic++;
25:    }
26:
27:    myClass::~myClass()
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28:    {
29:       itsStatic--;
30:       cout << “In destructor. ItsStatic: “ << itsStatic << endl;
31:    }
32:
33:    void myClass::ShowMember()
34:    {
35:       cout << “itsMember: “ << itsMember << endl;
36:    }
37:
38:    void myClass::ShowSecond()
39:    {
40:       cout << “itsSecond: “ << itsSecond << endl;
41:    }
42:
43:    void myClass::ShowThird()
44:    {
45:       cout << “itsThird: “ << itsThird << endl;
46:    }
47:    int myClass::itsStatic = 0;
48:
49:    int myClass::GetStatic()
50:    {
51:       return itsStatic;
52:    }
53:
54:    int main()
55:    {
56:       void (myClass::*PMF) ();
57:
58:       myClass obj1;
59:       PMF=myClass::ShowMember;
60:       (obj1.*PMF)();
61:       PMF=myClass::ShowSecond;
62:       (obj1.*PMF)();
63:       PMF=myClass::ShowThird;
64:       (obj1.*PMF)();
65:       cout << “Static: “ << myClass::GetStatic() << endl;
66:
67:       myClass obj2;
68:       PMF=myClass::ShowMember;
69:       (obj2.*PMF)();
70:       PMF=myClass::ShowSecond;
71:       (obj2.*PMF)();
72:       PMF=myClass::ShowThird;
73:       (obj2.*PMF)();
74:       cout << “Static: “ << myClass::GetStatic() << endl;
75:
76:       myClass obj3;
77:       PMF=myClass::ShowMember;
78:       (obj3.*PMF)();
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79:       PMF=myClass::ShowSecond;
80:       (obj3.*PMF)();
81:       PMF=myClass::ShowThird;
82:       (obj3.*PMF)();
83:       cout << “Static: “ << myClass::GetStatic() << endl;
84:  
85:       return 0;
86:    }

Day 16
Quiz

1. How do you establish an is-a relationship?

An is-a relationship is established with public inheritance.

2. How do you establish a has-a relationship?

A has-a relationship is established with aggregation (containment); that is, one
class has a member that is an object of another type.

3. What is the difference between aggregation and delegation?

Aggregation describes the idea of one class having a data member that is an object
of another type. Delegation expresses the idea that one class uses another class to
accomplish a task or goal.

4. What is the difference between delegation and implemented in terms of?

Delegation expresses the idea that one class uses another class to accomplish a task
or goal. Implemented in terms of expresses the idea of inheriting implementation
from another class.

5. What is a friend function?

A friend function is a function declared to have access to the protected and private
members of your class.

6. What is a friend class?

A friend class is a class declared so that all of its member functions are friend
functions of your class.

7. If Dog is a friend of Boy, is Boy a friend of Dog?

No, friendship is not commutative.

8. If Dog is a friend of Boy, and Terrier derives from Dog, is Terrier a friend of Boy?

No, friendship is not inherited.

0672327112_webxd.qxd  11/17/04  8:10 AM  Page 49



9. If Dog is a friend of Boy and Boy is a friend of House, is Dog a friend of House?

No, friendship is not associative.

10. Where must the declaration of a friend function appear?

A declaration for a friend function can appear anywhere within the class declara-
tion. It makes no difference whether you put the declaration within the public:,
protected:, or private: access areas.

Exercises
1. Show the declaration of a class, Animal, that contains a data member that is a

string object.

The following is one possible answer:
class Animal:
{

private:
String itsName;

};

2. Show the declaration of a class, BoundedArray, that is an array.

The following is one possible answer:
class boundedArray : public Array
{

//...
}

3. Show the declaration of a class, Set, that is declared in terms of an array.

The following is one possible answer:
class Set : private Array
{

// ...
}

4. Modify Listing 16.1 to provide the String class with an extraction operator (>>).

The following is one possible answer:
0:    #include <iostream.h>
1:    #include <string.h>
2:  
3:    class String
4:    {
5:       public:
6:           // constructors
7:           String();
8:           String(const char *const);
9:           String(const String &);
10:          ~String();

50 Appendix D

0672327112_webxd.qxd  11/17/04  8:10 AM  Page 50



Answers 51

D

11:  
12:          // overloaded operators
13:          char & operator[](int offset);
14:          char operator[](int offset) const;
15:          String operator+(const String&);
16:          void operator+=(const String&);
17:          String & operator= (const String &);
18:          friend ostream& operator<<( ostream& 
19:                         theStream,String& theString);
20:          friend istream& operator>>( istream&
21:               theStream,String& theString);
22:          // General accessors
23:          int GetLen()const { return itsLen; }
24:          const char * GetString() const { return itsString; }
25:          // static int ConstructorCount;
26:  
27:       private:
28:          String (int);         // private constructor
29:          char * itsString;
30:          unsigned short itsLen;
31:  
32:    };
33:  
34:    ostream& operator<<( ostream& theStream,String& theString)
35:    {
36:        theStream << theString.GetString();
37:        return theStream;
38:    }
39:  
40:    istream& operator>>( istream& theStream,String& theString)
41:    {
42:        theStream >> theString.GetString();
43:        return theStream;
44:    }
45:  
46:    int main()
47:    {
48:       String theString(“Hello world.”);
49:       cout << theString;
50:       return 0;
51:    }

5. BUG BUSTERS: What is wrong with this program?
1:    #include <iostream>
2:    using namespace std;
3:    class Animal;
4:
5:    void setValue(Animal& , int);
6:
7:
8:    class Animal
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9:    {
10:    public:
11:       int GetWeight()const { return itsWeight; }
12:       int GetAge() const { return itsAge; }
13:    private:
14:       int itsWeight;
15:       int itsAge;
16:    };
17:
18:    void setValue(Animal& theAnimal, int theWeight)
19:    {
20:       friend class Animal;
21:       theAnimal.itsWeight = theWeight;
22:    }
23:
24:    int main()
25:    {
26:       Animal peppy;
27:       setValue(peppy,5);
28:     return 0;
29:    }

You can’t put the friend declaration into the function. You must declare the func-
tion to be a friend in the class.

6. Fix the listing in Exercise 5 so that it will compile.

The following is the fixed listing:
0:     Bug Busters
1:     #include <iostream>
2:     using namespace std;
3:     class Animal;
4:
5:     void setValue(Animal& , int);
6:
7:     class Animal
8:     {
9:       public:
10:          friend void setValue(Animal&, int);
11:          int GetWeight()const { return itsWeight; }
12:          int GetAge() const { return itsAge; }
13:       private:
14:          int itsWeight;
15:          int itsAge;
16:    };
17:
18:    void setValue(Animal& theAnimal, int theWeight)
19:    {
20:       theAnimal.itsWeight = theWeight;
21:    }
22:

52 Appendix D

0672327112_webxd.qxd  11/17/04  8:10 AM  Page 52



Answers 53

D

23:    int main()
24:    {
25:       Animal peppy;
26:       setValue(peppy,5);
27:       return 0;
28:    }

7. BUG BUSTERS: What is wrong with this code?
1:     #include <iostream>
2:     using namespace std;
3:     class Animal;
4:
5:     void setValue(Animal& , int);
6:     void setValue(Animal& ,int,int);
7:
8:     class Animal
9:     {
10:    friend void setValue(Animal& ,int); // here’s the change!
11:    private:
12:       int itsWeight;
13:       int itsAge;
14:    };
15:
16:    void setValue(Animal& theAnimal, int theWeight)
17:    {
18:        theAnimal.itsWeight = theWeight;
19:    }
20:
21:    void setValue(Animal& theAnimal, int theWeight, int theAge)
22:    {
23:       theAnimal.itsWeight = theWeight;
24:       theAnimal.itsAge = theAge;
25:    }
26:
27:    int main()
28:    {
29:       Animal peppy;
30:       setValue(peppy,5);
31:       setValue(peppy,7,9);
32:     return 0;
33:    }

The function setValue(Animal&,int) was declared to be a friend, but the over-
loaded function setValue(Animal&,int,int) was not declared to be a friend.

8. Fix Exercise 7 so that it compiles.

The following is the fixed listing:
0:     // Bug Busters
1:     #include <iostream>
2:     using namespace std;
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3:     class Animal;
4:  
5:     void setValue(Animal& , int);
6:     void setValue(Animal& ,int,int); // here’s the change!
7:   
8:     class Animal
9:     {
10:       friend void setValue(Animal& ,int);
11:       friend void setValue(Animal& ,int,int);
12:       private:
13:          int itsWeight;
14:          int itsAge;
15:     };
16:
17:     void setValue(Animal& theAnimal, int theWeight)
18:     {
19:         theAnimal.itsWeight = theWeight;
20:     }
21:
22:    void setValue(Animal& theAnimal, int theWeight, int theAge)
23:    {
24:       theAnimal.itsWeight = theWeight;
25:       theAnimal.itsAge = theAge;
26:    }
27:
28:    int main()
29:    {
30:        Animal peppy;
31:        setValue(peppy,5);
32:        setValue(peppy,7,9);
33:        return 0;
34:    }

Day 17
Quiz

1. What is the insertion operator, and what does it do?

The insertion operator (<<) is a member operator of the ostream object and is used
for writing to the output device.

2. What is the extraction operator, and what does it do?

The extraction operator (>>) is a member operator of the istream object and is
used for writing to your program’s variables.

3. What are the three forms of cin.get(), and what are their differences?

The first form of get() is without parameters. This returns the value of the charac-
ter found, and will return EOF (end of file) if the end of the file is reached.
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The second form of get() takes a character reference as its parameter; that charac-
ter is filled with the next character in the input stream. The return value is an
iostream object.

The third form of get() takes an array, a maximum number of characters to get,
and a terminating character. This form of get() fills the array with up to one fewer
characters than the maximum (appending null) unless it reads the terminating char-
acter, in which case it immediately writes a null and leaves the terminating charac-
ter in the buffer.

4. What is the difference between cin.read() and cin.getline()?

cin.read() is used for reading binary data structures.

getline() is used to read from the istream’s buffer.

5. What is the default width for outputting a long integer using the insertion
operator?

Wide enough to display the entire number.

6. What is the return value of the insertion operator?

A reference to an istream object.

7. What parameter does the constructor to an ofstream object take?

The filename to be opened.

8. What does the ios::ate argument do?

ios::ate places you at the end of the file, but you can write data anywhere in
the file.

Exercises
1. Write a program that writes to the four standard iostream objects: cin, cout, cerr,

and clog

The following is one possible solution:
0:   // Ex1701.cpp
1:   #include <iostream>
2:   int main()
3:   {
4:       int x;
5:       std::cout << “Enter a number: “;
6:       std::cin >> x;
7:       std::cout << “You entered: “ << x << std::endl;
8:       std::cerr << “Uh oh, this to cerr!” << std::endl;
9:       std::clog << “Uh oh, this to clog!” << std::endl;
10:       return 0;
11:   }
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2. Write a program that prompts the user to enter her full name and then displays it
on the screen.

The following is one possible solution:
0:    // Ex1702.cpp
1:    #include <iostream>
2:    int main()
3:    {
4:       char name[80];
5:       std::cout << “Enter your full name: “;
6:       std::cin.getline(name,80);
7:       std::cout << “\nYou entered: “ << name << std::endl;
8:       return 0;
9:    }

3. Rewrite Listing 17.9 to do the same thing, but without using putback() or
ignore().

The following is one possible solution:
0:   // Ex1703.cpp
1:   #include <iostream>
2:   using namespace std;
3:  
4:   int main()
5:   {
6:      char ch;
7:      cout << “enter a phrase: “;
8:      while ( cin.get(ch) )
9:      {
10:         switch (ch)
11:         {
12:           case ‘!’:
13:              cout << ‘$’;
14:              break;
15:           case ‘#’:
16:              break;
17:           default:
18:              cout << ch;
19:              break;
20:         }
21:      }
22:      return 0;
23:   }

4. Write a program that takes a filename as a parameter and opens the file for reading.
Read every character of the file and display only the letters and punctuation to the
screen. (Ignore all non-printing characters.) Then close the file and exit.

The following is one possible solution:
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0:   // Ex1704.cpp
1:   #include <fstream>
2:   #include <iostream>
3:   using namespace std;
4:   
5:   int main(int argc, char**argv)   // returns 1 on error
6:   {
7:      if (argc != 2)
8:      {
9:         cout << “Usage: argv[0] <infile>\n”;
10:         return(1);
11:      }
12:   
13:      // open the input stream
14:      ifstream fin (argv[1],ios::binary);
15:      if (!fin)
16:      {
17:         cout << “Unable to open “ << argv[1] <<” for reading.\n”;
18:         return(1);
19:      }
20:   
21:      char ch;
22:      while ( fin.get(ch))
23:         if ((ch > 32 && ch < 127) || ch == ‘\n’|| ch == ‘\t’)
24:            cout << ch;
25:      fin.close();
26:   }

5. Write a program that displays its command-line arguments in reverse order and
does not display the program name.

The following is one possible solution:
0:  // Ex1705.cpp
1:  #include <iostream>
2:      
3:  int main(int argc, char**argv)   // returns 1 on error
4:  {
5:     for (int ctr = argc-1; ctr>0 ; ctr--)
6:        std::cout << argv[ctr] << “ “;
7:  }

Day 18
Quiz

1. How do you access the function MyFunc() if it is in the Inner namespace within
the Outer namespace?

Outer::Inner::MyFunc();
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2. Consider the following code:
int x = 4;
int main()
{

for( y = 1; y < 10; y++)
{

cout << y << “:” << endl;
{

int x = 10 * y;
cout << “X = “ << x << endl

}
}
// *** HERE ***

}

What is the value of X when this program reaches “HERE” in the listing?

At the point the listing reaches HERE, the global version of X will be used, so it
will be 4.

3. Can I use names defined in a namespace without using the using keyword?

Yes, you can use names defined in a namespace by prefixing them with the name-
space qualifier.

4. What are the major differences between normal and unnamed namespaces?

Names in a normal namespace can be used outside of the translation unit where the
namespace is declared. Names in an unnamed namespace can only be used within
the translation unit where the namespace is declared.

5. What are the two forms of statements with the using keyword? What are the dif-
ferences between those two forms?

The using keyword can be used for the using directives and the using declara-
tions. A using directive allows all names in a namespace to be used as if they are
normal names. A using declaration, on the other hand, enables the program to use
an individual name from a namespace without qualifying it with the namespace
qualifier.

6. What are the unnamed namespaces? Why do we need unnamed namespaces?

Unnamed namespaces are namespaces without names. They are used to wrap a col-
lection of declarations against possible name clashes. Names in an unnamed name-
space cannot be used outside of the translation unit where the namespace is
declared.

7. What is the standard namespace?

The standard namespace std is defined by the C++ Standard Library. It includes
declarations of all names in the Standard Library.
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Exercises
1. BUG BUSTERS: What is wrong in this program?

#include <iostream>
int main()
{

cout << “Hello world!” << end;
return 0;

}

The C++ standard iostream header file declares cout and endl in namespace std.
They cannot be used outside of the standard namespace std without a namespace
qualifier.

2. List three ways of fixing the problem found in Exercise 1.

You can add the following line between lines 0 and 1.

using namespace std;

You can add the following two lines between 0 and 1:
using std::cout; 

using std::endl;

You can change line 3 to the following:
std::cout << “Hello world!” << std::endl;

3. Show the code for declaring a namespace called MyStuff. This namespace should
contain a class called MyClass.

The following is one possible answer:
Namespace MyStuff
{

class MyClass
{

//MyClass stuff
}

}

Day 19
Quiz

1. What is the difference between a template and a macro?

Templates are built in to the C++ language and are type-safe. Macros are imple-
mented by the preprocessor and are not type-safe.

2. What is the difference between the parameter in a template and the parameter in a
function?

0672327112_webxd.qxd  11/17/04  8:10 AM  Page 59



The parameter to the template creates an instance of the template for each type. If
you create six template instances, six different classes or functions are created. The
parameters to the function change the behavior or data of the function, but only
one function is created.

3. What is the difference between a type-specific template friend class and a general
template friend class?

The general template friend function creates one function for every type of the
parameterized class; the type-specific function creates a type-specific instance for
each instance of the parameterized class.

4. Is it possible to provide special behavior for one instance of a template but not for
other instances?

Yes, create a specialized function for the particular instance. In addition to creating
Array<t>::SomeFunction(), also create Array<int>::SomeFunction() to change
the behavior for integer arrays.

5. How many static variables are created if you put one static member into a template
class definition?

One for each instance type of the class.

6. What attributes must your class have to be used with the standard containers?

The class must define a default constructor, a copy constructor, and an overloaded
assignment operator.

7. What does STL stand for and why is the STL important?

STL stands for the Standard Template Library. This library is important because it
contains a number of template classes that have already been created and are ready
for you to use. Because these are a part of the C++ standard, any compiler support-
ing the standard will also support these classes. This means you don’t have to
“reinvent the wheel!”

Exercises
1. Create a template based on this List class:

class List
{
private:

public:
List():head(0),tail(0),theCount(0) {}
virtual ~List();
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void insert( int value );
void append( int value );
int is_present( int value ) const;
int is_empty() const { return head == 0; }
int count() const { return theCount; }

private:
class ListCell
{
public:

ListCell(int value, ListCell *cell = 0):val(value),next(cell){}
int val;
ListCell *next;

};
ListCell *head;
ListCell *tail;
int theCount;

};

One way to implement this template:
0:  //Exercise 19.1
1:  template <class Type>
2:  class List  
3:  { 
4:  
5:    public:
6:       List():head(0),tail(0),theCount(0) { }
7:       virtual ~List();
8:  
9:       void insert( Type value );
10:       void append( Type value );
11:       int is_present( Type value ) const;
12:       int is_empty() const { return head == 0; }
13:       int count() const { return theCount; }
14:  
15:    private:
16:       class ListCell
17:       {
18:         public:
19:            ListCell(Type value, ListCell *cell = 

➥0):val(value),next(cell){}
20:            Type val;
21:            ListCell *next;
22:       };
23:  
24:       ListCell *head;
25:       ListCell *tail;
26:       int theCount;
27:  };
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2. Write the implementation for the List class (non-template) version.

The following is one possible answer:
0:  // Exercise 19.2
1:  void List::insert(int value)
2:  {
3:       ListCell *pt = new ListCell( value, head );
4:  
5:       // this line added to handle tail
6:       if ( head == 0 ) tail = pt;
7:  
8:       head = pt;
9:       theCount++;
10:  }
11:  
12:  void List::append( int value )
13:  {
14:       ListCell *pt = new ListCell( value );
15:       if ( head == 0 )
16:            head = pt;
17:       else
18:            tail->next = pt;
19:       
20:       tail = pt;
21:       theCount++;
22:  }
23:  
24:  int List::is_present( int value ) const
25:  {
26:       if ( head == 0 ) return 0;
27:       if ( head->val == value || tail->val == value )
28:            return 1;
29:       
30:        ListCell *pt = head->next;
31:       for (; pt != tail; pt = pt->next)
32:            if ( pt->val == value )
33:                 return 1;
34:            
35:       return 0;
36:  }

3. Write the template version of the implementations.

The following is one possible answer:
0:  // Exercise 19.3
1:  template <class Type>
2:  List<Type>::~List()
3:  {
4:       ListCell *pt = head;
5:       
6:       while ( pt )
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7:       {
8:            ListCell *tmp = pt;
9:            pt = pt->next;
10:            delete tmp;
11:       }
12:       head = tail = 0;
13:  }
14:  
15:  template <class Type>
16:  void List<Type>::insert(Type value)
17:  {
18:       ListCell *pt = new ListCell( value, head );
19:       assert (pt != 0);
20:       
21:       // this line added to handle tail
22:       if ( head == 0 ) tail = pt;
23:       
24:       head = pt;
25:       theCount++;
26:  }
27:  
28:  template <class Type>
29:  void List<Type>::append( Type value )
30:  {
31:       ListCell *pt = new ListCell( value );
32:       if ( head == 0 )
33:            head = pt;
34:       else
35:            tail->next = pt;
36:       
37:       tail = pt;
38:       theCount++;
39:  }
40:  
41:  template <class Type>
42:  int List<Type>::is_present( Type value ) const
43:  {
44:       if ( head == 0 ) return 0;
45:       if ( head->val == value || tail->val == value )
46:            return 1;
47:       
48:       ListCell *pt = head->next;
49:       for (; pt != tail; pt = pt->next)
50:            if ( pt->val == value )
51:                 return 1;
52:            
53:       return 0;
54:  }
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4. Declare three list objects: a list of Strings, a list of Cats, and a list of ints.
List<String> string_list;
List<Cat> Cat_List;
List<int> int_List;

5. BUG BUSTERS: What is wrong with the following code? (Assume the List tem-
plate is defined and Cat is the class defined earlier in the book.)
List<Cat> Cat_List;
Cat Felix;
CatList.append( Felix );
cout << “Felix is “ << ( Cat_List.is_present( Felix ) ) ? “” : “not “ <<
➥“present”;

Hint: (this is tough) What makes Cat different from int?

Cat doesn’t have operator == defined; all operations that compare the values in the
List cells, such as is_present, will result in compiler errors. To reduce the chance
of this, put copious comments before the template definition stating what opera-
tions must be defined for the instantiation to compile.

6. Declare friend operator== for List.

The following is one possible answer:

friend int operator==( const Type& lhs, const Type& rhs );

7. Implement friend operator== for List.

The following is one possible answer:
0:  Exercise 19.7
1:  template <class Type>
2:  int List<Type>::operator==( const Type& lhs, const Type& rhs )
3:  {
4:       // compare lengths first
5:       if ( lhs.theCount != rhs.theCount )
6:            return 0;     // lengths differ  
7:  
8:       ListCell *lh = lhs.head;
9:       ListCell *rh = rhs.head; 
10:  
11:       for(; lh != 0; lh = lh.next, rh = rh.next )
12:            if ( lh.value != rh.value )
13:                 return 0;  
14:  
15:       return 1;          // if they don’t differ, they must match
16:  }

8. Does operator== have the same problem as in Exercise 5?

Yes, because comparing the array involves comparing the elements, operator!=
must be defined for the elements as well.
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9. Implement a template function for swap, which exchanges two variables.

The following is one possible answer:
0:  // Exercise 19.9
1:  // template swap:
2:  // must have assignment and the copy constructor defined for the Type.
3:  template <class Type>
4:  void swap( Type& lhs, Type& rhs)
5:  {
6:       Type temp( lhs );
7:       lhs = rhs;
8:       rhs = temp;
9:  }

Day 20
Quiz

1. What is an exception?

An exception is an object that is created as a result of invoking the keyword throw.
It is used to signal an exceptional condition, and is passed up the call stack to the
first catch statement that handles its type.

2. What is a try block?

A try block is a set of statements that might generate an exception.

3. What is a catch statement?

A catch statement is a routine that has a signature of the type of exception it han-
dles. It follows a try block and acts as the receiver of exceptions raised within the
try block.

4. What information can an exception contain?

An exception is an object and can contain any information that can be defined
within a user-created class.

5. When are exception objects created?

Exception objects are created when the program invokes the keyword throw.

6. Should you pass exceptions by value or by reference?

In general, exceptions should be passed by reference. If you don’t intend to modify
the contents of the exception object, you should pass a const reference.

7. Will a catch statement catch a derived exception if it is looking for the base class?

Yes, if you pass the exception by reference.
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8. If two catch statements are used, one for base and one for derived, which should
come first?

catch statements are examined in the order they appear in the source code. The
first catch statement whose signature matches the exception is used. In general, it
is best to start with the most specific exception and work toward the most general.

9. What does catch(...) mean?

catch(...) catches any exception of any type.

10. What is a breakpoint?

A breakpoint is a place in the code where the debugger stops execution.

Exercises
1. Create a try block, a catch statement, and a simple exception.

The following is one possible answer:
0:  #include <iostream>
1:  using namespace std;
2:  class OutOfMemory {};
3:  int main()
4:  {
5:       try
6:       {
7:            int *myInt = new int;
8:            if (myInt == 0)
9:                 throw OutOfMemory();
10:       }
11:       catch (OutOfMemory)
12:       {
13:            cout << “Unable to allocate memory!” << endl;
14:       }
15:       return 0;
16:  }

2. Modify the answer from Exercise 1, put data into the exception along with an
accessor function, and use it in the catch block.

The following is one possible answer:
1:  #include <iostream>
2:  #include <stdio.h>
3:  #include <string.h>
4:  using namespace std;
5:  class OutOfMemory
6:  {
7:    public:
8:       OutOfMemory(char *);
9:       char* GetString() { return itsString; }
10:    private:
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11:       char* itsString;
12:  };  
13:
14:  OutOfMemory::OutOfMemory(char * theType)
15:  {
16:       itsString = new char[80];
17:       char warning[] = “Out Of Memory! Can’t allocate room for: “;
18:       strncpy(itsString,warning,60);
19:       strncat(itsString,theType,19);
20:  }  
21:
22:  int main()
23:  {
24:       try
25:       {
26:            int *myInt = new int;
27:            if (myInt == 0)
28:                 throw OutOfMemory(“int”);
29:       }
30:       catch (OutOfMemory& theException)
31:       {
32:            cout << theException.GetString();
33:       }
34:       return 0;
35:  }

3. Modify the class from Exercise 2 to be a hierarchy of exceptions. Modify the
catch block to use the derived objects and the base objects.

The following is one possible answer:
0:    // Exercise 20.3
1:    #include <iostream>
2:    using namespace std;
3:    // Abstract exception data type
4:    class Exception 
5:    {
6:       public:
7:         Exception(){}
8:         virtual ~Exception(){}
9:         virtual void PrintError() = 0;
10:    };
11:
12:    // Derived class to handle memory problems.
13:    // Note no allocation of memory in this class!
14:    class OutOfMemory : public Exception
15:    {
16:      public:
17:        OutOfMemory(){}
18:        ~OutOfMemory(){}
19:        virtual void PrintError();
20:      private:
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21:    };
22:
23:    void OutOfMemory::PrintError()
24:    {
25:       cout << “Out of Memory!!” << endl;
26:    }
27:
28:    // Derived class to handle bad numbers
29:    class RangeError : public Exception
30:    {
31:      public:
32:        RangeError(unsigned long number){badNumber = number;}
33:        ~RangeError(){}
34:        virtual void PrintError();
35:        virtual unsigned long GetNumber() { return badNumber; }
36:        virtual void SetNumber(unsigned long number) {badNumber = 

➥number;}
37:      private:
38:        unsigned long badNumber;
39:    };
40:
41:    void RangeError::PrintError()
42:    {
43:       cout << “Number out of range. You used “ ;
44:       cout << GetNumber() << “!!” << endl;
45:    }
46:
47:    void MyFunction();  // func. prototype
48:
49:    int main()
50:    {
51:       try
52:       {
53:          MyFunction();
54:       }
55:       // Only one catch required, use virtual functions to do the
56:       // right thing.
57:       catch (Exception& theException)
58:       {
59:          theException.PrintError();
60:       }
61:       return 0;
62:    }
63:
64:    void MyFunction()
65:    {
66:          unsigned int *myInt = new unsigned int;
67:          long testNumber;
68:  
69:          if (myInt == 0)
70:             throw OutOfMemory();
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71:   
72:          cout << “Enter an int: “;
73:          cin >> testNumber;
74:   
75:          // this weird test should be replaced by a series
76:          // of tests to complain about bad user input
77:   
78:          if (testNumber > 3768 || testNumber < 0)
79:             throw RangeError(testNumber);
80:
81:          *myInt = testNumber;
82:          cout << “Ok. myInt: “ << *myInt;
83:          delete myInt;
84:    }

4. Modify the program from Exercise 3 to have three levels of function calls.

The following is one possible answer:
0:    // Exercise 20.4
1:    #include <iostream>
2:    using namespace std;
3:    // Abstract exception data type
4:    class Exception
5:    {
6:      public:
7:        Exception(){}
8:        virtual ~Exception(){}
9:        virtual void PrintError() = 0;
10:    };
11:
12:    // Derived class to handle memory problems.
13:    // Note no allocation of memory in this class!
14:    class OutOfMemory : public Exception
15:    {
16:      public:
17:        OutOfMemory(){}
18:        ~OutOfMemory(){}
19:        virtual void PrintError();
20:      private:
21:    };
22:
23:    void OutOfMemory::PrintError()
24:    {
25:       cout << “Out of Memory!!\n”;
26:    }
27:
28:    // Derived class to handle bad numbers
29:    class RangeError : public Exception
30:    {
31:      public:
32:        RangeError(unsigned long number){badNumber = number;}
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33:        ~RangeError(){}
34:        virtual void PrintError();
35:        virtual unsigned long GetNumber() { return badNumber; }
36:        virtual void SetNumber(unsigned long number) {badNumber = 

➥number;}
37:      private:
38:        unsigned long badNumber;
39:    };
40:
41:    void RangeError::PrintError()
42:    {
43:       cout << “Number out of range. You used “;
44:       cout << GetNumber() << “!!” << endl;
45:    }
46:
47:    // func. prototypes
48:    void MyFunction();
49:    unsigned int * FunctionTwo();
50:    void FunctionThree(unsigned int *);
51:
52:    int main()
53:    {
54:       try
55:       {
56:          MyFunction();
57:       }
58:       // Only one catch required, use virtual functions to do the
59:       // right thing.
60:       catch (Exception& theException)
61:       {
62:          theException.PrintError();
63:       }
64:       return 0;
65:     }
66:
67:    unsigned int * FunctionTwo()
68:    {
69:       unsigned int *myInt = new unsigned int;
70:      if (myInt == 0)
71:        throw OutOfMemory();
72:      return myInt;
73:   }
74:
75:    void MyFunction()
76:    {
77:          unsigned int *myInt = FunctionTwo();
78:          FunctionThree(myInt);
79:          cout << “Ok. myInt: “ << *myInt;
80:          delete myInt;
81:   }
82:
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83:   void FunctionThree(unsigned int *ptr)
84:   {
85:          long testNumber;
86:          cout << “Enter an int: “;
87:          cin >> testNumber;
88:          // this weird test should be replaced by a series
89:          // of tests to complain about bad user input
90:          if (testNumber > 3768 || testNumber < 0)
91:             throw RangeError(testNumber);
92:          *ptr = testNumber;
93:   }

5. BUG BUSTERS: What is wrong with the following code?
#include “stringc.h”          // our string class

class xOutOfMemory
{
public:

xOutOfMemory( const String& where ) : location( where ){}
~xOutOfMemory(){}
virtual String where(){ return location };

private:
String location;

}

main()
{

try {
char *var = new char;
if ( var == 0 )

throw xOutOfMemory();
}
catch( xOutOfMemory& theException )
{

cout << “Out of memory at “ << theException.location() << ;
}

}

In the process of handling an “out of memory” condition, a string object is cre-
ated by the constructor of xOutOfMemory. This exception can only be raised when
the program is out of memory, and so this allocation must fail.

It is possible that trying to create this string will raise the same exception, creating
an infinite loop until the program crashes. If this string is really required, you can
allocate the space in a static buffer before beginning the program, and then use it as
needed when the exception is thrown. 

You can test this program by changing the line if (var == 0) to if (1), which
forces the exception to be thrown.
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1. What is an inclusion guard?

Inclusion guards are used to protect a header file from being included into a pro-
gram more than once.

2. How do you instruct your compiler to print the contents of the intermediate file
showing the effects of the preprocessor?

This quiz question must be answered by you, depending on the compiler you are
using.

3. What is the difference between #define debug 0 and #undef debug?

#define debug 0 defines the term debug to equal 0 (zero). Everywhere the word
“debug” is found, the character 0 is substituted. #undef debug removes any defini-
tion of debug; when the word debug is found in the file, it is left unchanged.

4. Consider the following macro:

#define HALVE(x) x / 2

What is the result if this is called with 4?

The answer is 4 / 2, which is 2.

5. What is the result if the HALVE macro in Question 5 is called with 10+10?

The result is 10 + 10 / 2, which is 10 + 5, or 15. This is obviously not the result
desired.

6. How would you modify the HALVE macro to avoid erroneous results?

You should add parentheses:

HALVE (x) ((x)/2)

7. How many bit values could be stored in a two-byte variable?

Two bytes is 16 bits, so up to 16 bit values could be stored.

8. How many values can be stored in five bits?

Five bits can hold 32 values (0 to 31).

9. What is the result of 0011 1100 | 1111 1111?

The result is 1111 1111.

10. What is the result of 0011 1100 & 1111 1111?

The result is 0011 1100.

72 Appendix D

0672327112_webxd.qxd  11/17/04  8:10 AM  Page 72



Answers 73

D

Exercises
1. Write the inclusion guard statements for the header file STRING.H.

The inclusion guard statements for the header file STRING.H would be:
#ifndef STRING_H
#define STRING_H
...
#endif

2. Write an assert() macro that prints an error message and the file and line number
if debug level is 2, just a message (without file and line number) if the level is 1,
and does nothing if the level is 0.

The following is one possible answer:
0:    #include <iostream>
1:    
2:    using namespace std;
3:    #ifndef DEBUG
4:    #define ASSERT(x)
5:    #elif DEBUG == 1
6:    #define ASSERT(x) \
7:                 if (! (x)) \
8:                 { \
9:          cout << “ERROR!! Assert “ << #x << “ failed” << endl; \
10:                 }
11:    #elif DEBUG == 2
12:    #define ASSERT(x) \
13:                if (! (x) ) \
14:                { \
15:         cout << “ERROR!! Assert “ << #x << “ failed” << endl; \
16:         cout << “ on line “ << __LINE__  << endl; \
17:         cout << “ in file “ << __FILE__ << endl;  \
18:                 }
19:    #endif

3. Write a macro DPrint that tests whether debug is defined, and if it is, prints the
value passed in as a parameter.

The following is one possible answer:
#ifndef DEBUG
#define DPRINT(string)
#else
#define DPRINT(STRING) cout << #STRING ;
#endif
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4. Write the declaration for creating a month, day, and year variable all stored within
a single unsigned int variable.

The following is one possible answer:
class myDate
{
public:
// stuff here...

private:
unsigned int Month : 4;
unsigned int Day   : 8;
unsigned int Year  : 12;

}
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