

47

CHAPTER 2

Introduction to JMX

1

The Java Management Extensions (JMX) specification

2

 defines a Java optional
package for J2SE

3

 that provides a management architecture and API set that
will allow any Java technology–based or accessible resource to be inherently
manageable. By using JMX, you can manage Java technology resources. You
can also use Java technology and JMX to manage resources that are already
managed by other technologies, such as SNMP

4

 and CIM/WBEM.

5

JMX introduces a JavaBeans model for representing the manageability of
resources. The core of JMX is the simple, yet sophisticated and extensible,
management agent for your Java Virtual Machine (JVM) that can accommo-
date communication with private or acquired enterprise management sys-
tems. JMX also defines a set of services to help manage your resources. JMX
is so easy to use and is so suited for the Java development paradigm that it is
possible to make an application manageable in three to five lines of code.

Basically, JMX is to management systems what JDBC (Java Database
Connectivity)

6

 is to databases. JDBC allows applications to access arbitrary
databases; JMX allows applications to be managed by arbitrary management
systems. JMX is an isolation layer between the applications and arbitrary
management systems. So why do we need this layer anyway?

Kreger.book Page 47 Wednesday, December 11, 2002 11:38 AM

48 Chapter 2 Introduction to JMX

2.1 Why We Need JMX

2.1.1 Choosing a Management Technology

As we saw in Chapter 1, many different management technologies are being
used in different areas of the industry. CMIP

7

 dominates the telephony man-
agement market. SNMP dominates the device and network management
market. Because this book is about developing Java applications and systems,
let’s narrow our focus to those technologies used by Java-based resources.
Most Java-based resources today will be part of applications.

Even though SNMP is supported by some applications and middleware,
it is not widely used for application management. One of the most commonly
cited reasons for this is that many application vendors and management ven-
dors have felt that the granularity of security in SNMP is not sufficient to use
it for configuration updates and sensitive information. Therefore SNMP is
often seen as useful only for

read-only

 management of more or less public
data and events. SNMP also does not have a natural model for operations on
managed resources. Operations must be represented as a settable attribute.
Sometimes this can be a difficult representation to map. Dependencies and
associations can also be difficult to represent in SNMP.

CIM defines a more natural way to represent management data and
addresses some of the weaknesses just described. It has extensive models for
systems and devices, but the application management models are still emerg-
ing. The fact remains that there is no dominant management technology for
the management of applications.

This would not be such a big problem if there were a single, dominant
management systems vendor. If that were the case, you could use the man-
agement technology chosen by that vendor. Unfortunately, life is not that
simple. Today the enterprise and application management market is pretty
evenly split between Tivoli Systems

8

 and Computer Associates,

9

 who use
their own proprietary technology for their manager-agent infrastructure.

If you have to manage an application or resource that runs on only one
operating system, or on one vendor’s systems, then choosing a management
technology can be guided (or dictated) by the preferences of that vendor.
Microsoft’s Windows,

10

 IBM’s AIX,

11

 Sun’s Solaris,

12

 and Hewlett-Packard’s
HP-UX

13

 each has its own management system. However, one of the great
things about Java has been the ease in which applications can be ported to
and supported on many different vendors’ systems. This means that most
Java-based applications run on many platforms. If you are developing man-
aged software products, you may be pressured to support multiple management

Kreger.book Page 48 Wednesday, December 11, 2002 11:38 AM

2.1 Why We Need JMX 49

technologies and systems because every vendor will want you to make your
Java resources manageable by its management system.

Just to add to the list of management technologies you need to support,
customers may have installed enterprise management systems that they will
want to use to manage

your application. In fact, they may or may not buy
your application, depending on whether or not it can be managed by their
existing enterprise management software. Your customers cannot be
expected to replace their existing enterprise management systems just to
accommodate your application. If you supply your own management system,
your customers may still not be happy. They may not want yet another man-
agement console to watch and understand just to manage your application.
Adding another console mitigates the console consolidation benefits of their
enterprise management systems.

If you are a developer or architect working for a vendor of cross-plat-
form applications, you will find yourself between a rock and a hard place.
The rock is that your marketplace may be demanding that your software be
manageable. To appease that marketplace, the software will need support for
multiple management technologies. The hard place is that the cost of devel-
oping support for one management technology is expensive. This cost
includes the learning curve, design and development, and maintaining cur-
rency with those technologies as they continue to advance. The cost of devel-
oping support for multiple technologies may very well exceed the potential
new sales. This makes the business case for creating manageable applications
and systems very hard to maintain and contain.

As a result, the potential return on investment may not motivate you to
instrument appropriately for manageability. In fact, you may choose to write
your own application-specific management system to solve a particular prob-
lem quickly, and not implement it for any external management technology.
You can see how this adds to the populations of unique, nonstandard man-
agement systems and unmanageable applications.

A single suite of uniform instrumentation for manageability, like JMX,
makes it cost effective to develop new applications with management capa-
bility. You can use JMX to instrument your Java applications. You can also
use JMX to provide access to the manageability capabilities of your non-Java
applications via Java Native Interface (JNI) and wrappers. Because JMX is
centered on an architecture for pluggable adapters that allow any manage-
ment technology to manage your resources, you have the best of both
worlds: instrumenting your application with one management technology,
and being manageable by many different management systems.

Kreger.book Page 49 Wednesday, December 11, 2002 11:38 AM

50 Chapter 2 Introduction to JMX

2.1.2 Dealing with Diversity

One of the primary challenges in managing applications is their diversity.
This diversity is also a challenge for developers! Applications today vary widely
in purpose, size, architecture, and criticality. Very little is common across all
application types. Application architecture trends are increasing the diversity
rather than settling the industry on a few de facto standard approaches.

JMX can be used to enable management of a wide variety of application
architectures. JMX allows you as a developer to build your skills on one man-
agement technology that you can then apply to lots of application projects,
today and in the future. Using JMX to enable this variety of application types
benefits management systems vendors as well. They can support JMX well
and be able to manage a wide variety of applications. Some of the application
types that JMX is suited for are centralized applications, distributed applications,
Internet applications, e-business applications, and service-oriented applications.

2.1.2.1 Centralized Applications

Centralized applications, such as payroll and accounting, are backed by a
database on a high-end server and usually accessed by a limited set of users,
like a financial department. Managing centralized applications entails ensur-
ing high availability and performance throughput because they can be a sin-
gle point of failure. The clients of these distributed systems are usually other
programs, which expect lightning-fast response times.

2.1.2.2 Distributed Applications

Distributed applications, such as mail systems, usually require groups of
small and midrange server systems to be running at all times, and they are
accessed throughout the enterprise. Managing distributed applications is
often a scaling problem: Many, many servers must be managed (i.e., avail-
able, connected, and performing well), as well as the networks that connect
them, in order to simply ensure the application is available to its users. Gen-
erally the clients require proprietary software, so client software distribution
and configuration must be managed as well.

2.1.2.3 Internet Applications

The introduction of the intranet/Internet concept precipitated a new class of
application that connects the end user to existing, traditional, centralized
applications. The new application facilities range from Web-accessible corporate

Kreger.book Page 50 Wednesday, December 11, 2002 11:38 AM

2.1 Why We Need JMX 51

personnel directories to Web-based order-tracking systems that benefit cus-
tomers and reduce order management costs. These types of applications
make it easier to access corporate information inside traditional applications,
and they reduce the number of personal contacts necessary. Managing Inter-
net applications entails keeping several layers of applications available to
each other and the network: Web servers, application servers, back ends.
Browsers must be appropriately configured.

2.1.2.4 E-Business Applications

The next generation of autonomous, Web-based applications is rapidly being
developed and deployed in the new business environment. These applications
embody e-commerce in the form of catalogs, shopping, marketplaces, and
auctions. The move of the supply chain to the Internet will drive the next set
of critical, distributed business-based applications. These applications move
the heart of the business—buying supplies and selling products—to the Inter-
net. Managing e-business applications is challenging because applications
may span enterprise boundaries and use unreliable protocols like HTTP.

2.1.2.5 Service-Oriented Applications

Service-based architectures are currently emerging where IT resources across
the network appear, move, and disappear. Relationships between applica-
tions can be just-in-time and fleeting. Managing the dynamic topologies,
dependencies, and availability of these applications in this environment will
be difficult at best.

Each of these classes of applications has its own management challenges.
However, all of these application types execute across multiple hosts, operat-
ing systems, and corporations. They incorporate existing traditional and
emerging application models. They are no longer just client-server, they are
now client-middleware-server. These new application types are business criti-
cal, creating the need for them to be uniformly controlled and managed by a
business’s existing management systems with the same diligence as tradi-
tional applications. JMX is flexible and extensible enough to be taken advan-
tage of in all of these diverse types of application architecture.

2.1.3 Being Managed by Multiple Management
Applications

As we discussed in Chapter 1, there are many different types of management
applications: distribution, inventory, topology, configuration, operations,

Kreger.book Page 51 Wednesday, December 11, 2002 11:38 AM

52 Chapter 2 Introduction to JMX

event, automation, monitoring, and performance. You will probably want
your application to be managed by several of these. Without JMX, you might
have to implement explicit support for each type of management application.
If you’re using JMX combined with JMX adapters, the same instrumentation
can be used to support and interact with most or all of these applications.

2.1.4 Supporting Application-Specific Management
Systems

Your application will need to be installed, configured, monitored, and main-
tained. This means that you must implement your own management sys-
tem—that is, an application-specific management system—that supports
these tasks. Otherwise, you will be dependent on a management system being
available in your customer’s environment. This dependency may limit sales if
some of your customers have a different management system, or even no
management system. Applications in the market today have their own pro-
prietary instrumentations to communicate with their internal management
systems, as well as instrumentation to connect to other management systems.
We’ve seen how JMX can be used to interact with multiple management
technologies and management applications. In the same vein, JMX can be
used to drive an internal or application-specific management system, as well
as an external management system.

2.2 Which Applications Should Be Manageable?

Not all Java applications and resources should be managed. Let’s talk about
some considerations for deciding whether or not you should enable your
application to be managed by an external or third-party management system.

How extensive your application’s manager is, and how well it is inte-
grated with an enterprise management system, will depend on a number of
different characteristics of your application. These include how critical your
application is, how complex your application is, how scalable your applica-
tion needs to be, what policy your corporation has on application manage-
ment, and what your application’s target market is.

2.2.1 Complex Applications

If your application has a very complex architecture or configuration, you
may need a reasonably extensive and comprehensive management applica-
tion. It doesn’t necessarily need to be integrated with enterprise management

Kreger.book Page 52 Wednesday, December 11, 2002 11:38 AM

2.2 Which Applications Should Be Manageable? 53

systems, unless they are mission critical or if several of them might be execut-
ing simultaneously. J2EE application servers

14

 are a good example of mis-
sion-critical, complex applications that must have their own managers and
be integrated with an enterprise management system.

2.2.2 High-Volume Applications

If your application will have a great many simultaneously executing installa-
tions in an enterprise, it may require distributed management support. Such
applications are also excellent candidates for integration with the enterprise
management system because they will benefit from both software distribu-
tion and centralized configuration. Because there will be so many images,
operations staff will need topologies with status indicators and event man-
agement systems to distill the management information into events they can
take action on.

2.2.3 Mission-Critical Applications

If your application is mission critical, you are going to need availability and
performance management. Your application may be mission critical if it is an
integral part of a business-critical system, like a database, router, application
server, or name server. Mission-critical applications may be singletons or one
of many instances. Your mission-critical application will need to have its own
manager and be very well integrated with the enterprise management system.
It must have very good availability and performance monitoring, with status
reflected in a topology application.

2.2.4 Corporate Applications

If your application is being developed for use in a specific organization

,

 cor-
porate policies may dictate the degree of management support that you need
to develop for the application. If the application is being developed for an
organization that has invested in an enterprise management system, certain
business policies may govern which applications are supported by the enter-
prise management system, and how extensive that support must be.

2.2.5 Applications with Expectant Customers

If your application is being developed to sell, you must consider the needs
and expectations of your target market. Some applications have a target cus-
tomer base that expects application management. These customers may buy

Kreger.book Page 53 Wednesday, December 11, 2002 11:38 AM

54 Chapter 2 Introduction to JMX

only

 manageable applications. For example, owners of mainframes will
expect applications that execute on those mainframes to be integrated with
the management systems on those mainframes. If you are developing an
application intended to execute on a mainframe, you must plan on enabling
it to be well managed by the appropriate management application. If a large
percentage of your target market uses a particular enterprise management
system, then your application should be supported by the same system. If
your target market expects that one or more enterprise managers will sup-
port your application, you will want to be sure that your application satisfies
those expectations.

To summarize, if your application has a large, diverse target market, you
may be forced to support multiple management systems on multiple plat-
forms. This diversity can lead to significant, perhaps unsupportable, develop-
ment costs. Developing and maintaining support for any one of the standard
or proprietary management technologies requires you to tackle a steep learn-
ing curve and commit to a significant development effort. JMX mitigates
your investment in management during application development by allowing
you to concentrate on supporting one management technology: JMX. Multi-
ple enterprise management systems can interact with the JMX agent in order
to manage your application.

2.3 The Goals of JMX

There has been incredible growth in the number of mission-critical Web

-

based and Java applications being developed. The Web applications bring
new business to the enterprise. Java e-business applications actually conduct
business transactions on the Web, including catalog and shopping cart appli-
cations. E-business applications that generate income for the enterprise
become mission critical in a hurry. When these applications are not available
or responding quickly, customers shop elsewhere and income is lost. There-
fore, enterprises are demanding end-to-end application manageability for e-
business applications. The manageability requirement applies to the device,
system, network, middleware, and any other applications that the e-business
applications depend on.

In order for Java applications to make this transition from “cool” Web
applications to “critical” e-business applications, they must be well behaved,
reliable, and manageable. These requirements, along with the need for end-
to-end management of these applications, mean that customers and develop-
ers will demand that products be manageable out of the box. These products

Kreger.book Page 54 Wednesday, December 11, 2002 11:38 AM

2.3 The Goals of JMX 55

include application servers, distributed application infrastructures, compo-
nent toolkits, and the applications themselves.

Ideally, development tools and environments would provide wizards and
tools to make it easy to develop manageability along with the product. These
tools need a standard, portable, flexible API in order to be able to generate or
modify applications so that they are manageable.

JMX defines a set of APIs to address management of and through Java.
Three main influencing forces on the success of JMX are (1) having a simple
API for the developer, (2) ensuring enough information for management sys-
tems to manage the resource “generically,” and (3) providing an architecture
to support the management of diverse, dynamic applications. Figure 2.1
shows the relationship of the JMX MBeanServer to the resources it manages
and the management systems it communicates with. The following para-
graphs will explain further.

Figure 2.1

JMX Overview

Managed
System

Memory
System

Resource

Ports

Printers

MemoryMBean

Catalog
Application

MBean

Enterprise
Manager

SNMP
SubAgent

Local
Manager

Enterprise
Adapter

SNMP
Adapter

Local
Adapter

MBeanServer

JVM

PortMBean

PrintersMBean

Kreger.book Page 55 Wednesday, December 11, 2002 11:38 AM

56 Chapter 2 Introduction to JMX

2.3.1 Simple API

JMX provides a simple, straightforward management API for Java applica-
tion developers. You can use this API to bring attributes, operations, and
notifications to management systems from within your application. The API
is easy to understand because it is similar to one you already know: Java-
Beans. JMX uses Management Beans (MBeans) to represent the management
interface for the managed resource (see Section 2.5.2). As you can see in Fig-
ure 2.1, the MBeans interact with the resources they manage: memory, ports,
and printers. You can use your existing JavaBeans as MBeans, like the cata-
log MBean in Figure 2.1, or you can easily develop new ones as facades for
your existing Java applications.

2.3.2 Dynamic Management

JMX provides a “management container” called an

MBeanServer

. The
MBeanServer is a registry and a “traffic cop” in that it is always between the
MBeans and their users. You can see this relationship in Figure 2.1. You can
register your MBean with the MBeanServer at any time. You can also dereg-
ister your MBean at any time. Therefore, the MBeanServer represents an
accurate inventory of all the resources to be managed. If resources are perma-
nently removed from the system, you can remove them from JMX without
reconfiguring or recycling the MBeanServer. JMX also provides for manage-
ment services to be registered as MBeans. This means that additional func-
tionality can be added or removed at any time. This flexibility makes JMX a
dynamic and easily extensible architecture to use for management.

2.3.3 Isolation

The MBeanServer acts as the isolation or mediation layer between your
application and management system vagaries, including protocols, behavior,
platforms, and so on. The management system is encapsulated away from
the managed resources by JMX adapters. JMX adapters, as seen in Figure
2.1, translate from the MBeanServer’s MBeans to the management systems’
native protocols and object models, and back again.

In fact, these adapters don’t have to be provided by the management sys-
tem; they could be developed by anyone. If the adapters communicate with a
local management agent on the system, like an SNMP agent, then the man-
agement system will never “see” JMX. This means that the management sys-
tem may not be aware if JMX is providing access to the manageability of
your application.

Kreger.book Page 56 Wednesday, December 11, 2002 11:38 AM

2.4 History 57

2.3.4 Generic Management

Many current management systems require a custom module to be written
for every application they are to manage. This module integrates the applica-
tion’s management into the management system. One of the goals of JMX
was to provide sufficient information to the management systems so that
management support could be generated or provided generically (i.e., with-
out developers having to create custom integration modules for their applica-
tions for every management system). Ideally, the management system would
provide a tool, along with its adapter, that would generate these integration
modules if they were needed.

When information is being provided to management systems, either a man-
agement model or metadata must be supplied. JMX is a model-less manage-
ment architecture; it deliberately does not define an information model or the
structure of management information (SMI) like the IETF did for its Network
Management Framework.

15

 Instead, JMX provides metadata in

MBeanInfo

objects associated with every MBean. Management system adapters and tools
can use the information in the

MBeanInfo

 object to create integration mod-
ules or feed dynamic management architectures.

2.4 History

This section presents a historical perspective on JMX, covering the precursor
specifications and products, Sun’s JMAPI and JDMK, the JMX JSR and cur-
rent specifications, compliance levels, and a review of some of the current
implementations.

2.4.1 JMAPI

Java Management API (JMAPI) was an effort led by Sun. It was intended to
arrest the proliferation of management platforms by developing a standard
Java management platform infrastructure. There were two parts to JMAPI:

16

the Admin View Module and the Admin Runtime Module. The Admin View
Module was an infrastructure to be used to build management consoles. The
Admin Runtime Module was an API and infrastructure to be used to build
management systems and applications. Most of the management system ven-
dors were involved, including Tivoli and Computer Associates. An early
implementation of this specification was developed and used by a few ven-
dors. In late 1998 this work stalled. An “arms race” developed among the
vendors to get their management agents on the most systems. JMAPI was not

Kreger.book Page 57 Wednesday, December 11, 2002 11:38 AM

58 Chapter 2 Introduction to JMX

focused on helping developers make their resources manageable. But that is
precisely where JMX is focused.

2.4.2 JDMK

Java Dynamic Management Kit (JDMK) 2.0

17

 was a Sun product that was
the precursor to JMX and provided the starting point for the JMX specifica-
tion. Today it is Sun’s product version of JMX. The JMX Reference Imple-
mentation is independently licensed and contains quite a bit of additional
functionality that is not in the specification. It contains a remote JMX man-
ager, tools to support the creation of MBeans from SNMP MIBs, and Java
SNMP manager APIs.

2.4.3 JMX

Sun opened JSR 3

18

 in December 1998 using its then brand-new Java Com-
munity Process.

19

 JMX’s initial name was Java Management API (JMAPI)
2.0, although it had no relationship to the first JMAPI’s goals, APIs, or imple-
mentation (see Section 2.4.1). The first action of the JMX Expert Group was
to change the name to Java Management Extensions to eliminate confusion
between JMX and JMAPI.

The expert group consisted of Sun, IBM/Tivoli, Computer Associates,
Groupe Bull (Evidian),

20

 TIBCO,

21

 and Powerware.

22

 Eventually Borland,

23

Motorola,

24

 BEA,

25

 IONA,

26

 Lutris,

27

 and JBoss

28

 also joined, as it became
obvious that this new technology could be very relevant to J2EE application
servers. The interesting thing about this expert group was its cross-industry
mix. Not only were enterprise management system vendors represented, but
so were telecommunications device and system vendors, as well as applica-
tion server vendors. This diversity created a very important balance in inter-
ests and a willingness to focus on the needs of the Java resource developer
rather than the management system.

The initial specification contribution from Sun was based on its Java
Dynamic Management Kit (JDMK) 3.0

29

 product, which was gaining some
following in the telecommunications industry. Sun intended the next release
of JDMK (4.0)

30

 to be the first JMX-compliant product.
The JMX mailing list is jmx-forum@java.sun.com, and the Web site is

http://java.sun.com/products/JavaManagement. The JMX Reference Imple-
mentation and Technology Compatibility Kit (TCK) are available from Sun
Microsystems through this same site.

Sun was the specification lead and is now the maintenance lead. Here are
some of the JSRs that pertain to JMX:

Kreger.book Page 58 Wednesday, December 11, 2002 11:38 AM

2.4 History 59

•

JMX 1.5

.

31

 JSR 160: “Java Management Extensions (JMX) Remoting
1.2” (http://www.jcp.org/jsr/detail/160.jsp), led by Sun Microsystems.
This specification extends the JMX 1.0 specification by adding distrib-
uted capabilities to support remote JMX managers, remote MBeans, and
JMX agent discovery. At the time of this writing, this expert group is
actively working on a new specification that should be available in 2002.

•

JMX and CIM/WBEM

.

32

 JSR 146: “WBEM Services: JMX Provider Pro-
tocol Adapter” (http://www.jcp.org/jsr/detail/146.jsp), led by Sun Micro-
systems. This specification defines how JMX instrumentation can be
mapped to CIM and provides the definition of a JMX provider protocol
adapter for WBEM Services. This JSR provides a bridge from JMX into
WBEM though a JMX adapter. Although an expert group has formed,
little progress is being made on this specification and there are currently
no reliable availability dates.

•

JMX and TMN

.

33

 JSR 71: “JMX-TMN Specification” (http://www.jcp.org/
jsr/detail/071.jsp), led by Evidian. This specification specifies interopera-
bility between the Telecommunication Management Network (TMN)
standards and JMX. This JSR defines bidirectional integration between
JMX and TMN. In the end, a JMX-manageable application would be
manageable by a TMN manager or agent. Likewise, a JMX manager
would be able to manage a TMN environment. This JSR was withdrawn
in June 2001.

•

JMX and IIOP

.

34

 JSR 70: “IIOP Protocol Adapter for JMX Specification”
(http://www.jcp.org/jsr/detail/070.jsp), led by IONA. This specification
will establish an IIOP-based

35

 adapter for the JMX agent, to allow
CORBA

36

 clients to access JMX agents. This specification will allow non-
Java environments, such as CORBA applications, access to JMX infor-
mation using IIOP. This expert group has been formed; however, when a
specification and reference implementation will be available is unknown.

•

JMX and SNMP

. A JSR for an adapter from JMX to SNMP agents was
discussed frequently within the JMX Expert Group, but the JSR was
never opened. There is quite a bit of SNMP support available in the JMX
Reference Implementation, and from products such as Sun’s JDMK and
AdventNet.

Figure 2.2 shows how the adapters being defined by these JSRs are
related to the JMX MBeanServer and the original management systems. The
Mof2MBean and MIBGen tools take other definitions of management
objects (for CIM and SNMP, respectively) and generate JMX MBeans to
match them. The data going over the network is in the native management
system’s format.

Kreger.book Page 59 Wednesday, December 11, 2002 11:38 AM

60 Chapter 2 Introduction to JMX

Other JSRs use or reference JMX as well, including the Java Integrated
Networks (JAIN) JSRs and “J2EE Management” (JSR 77).

37

2.4.4 The Specification and Compliance

The final

Java Management Extensions (JMX) v1.0 Specification

 is available
from http://jcp.org/aboutJava/communityprocess/final/jsr003. This specifica-
tion was narrowed to define only the agent and instrumentation layers. The
JMX 1.1 maintenance release specification and reference implementation are
available at http://java.sun.com/products/JavaManagement. This release fixed
specification ambiguities and reference implementation problems. Future ver-
sions of the specification (hopefully JMX 1.5) will address the distributed
management layers.

The agent layer defines the MBeanServer and service MBeans that coop-
erate to implement the agent role in the manager-agent architecture. The
instrumentation layer consists of the MBeans that are used by resources to
expose their manageability.

Figure 2.2

JSR Adapters

Managed
System

IIOP
Adapter
JSR070

TMN
Adapter
JSR071

SNMP
Adapter
NoJSR

JMX-CIM
Adapter
JSR146

Other MBean

Corba
ORB

TMN
Agent

SNMP
Subagent

CIMOM

MBeanServer

JVM

SNMPMBean

CIM-MBean
MOF-to-Bean

Tool

MIBGen
Tool

Kreger.book Page 60 Wednesday, December 11, 2002 11:38 AM

2.4 History 61

The manager layer in the original JMX specification included Java APIs
for communicating with agents and managers that are based on existing
management technologies. These APIs do not communicate with JMX
MBeanServers directly. In order for these APIs to communicate with an
MBeanServer, an adapter to communicate with the native management tech-
nology would need to be loaded. For example, if you had an MBean you
wanted to access using the Java SNMP manager APIs, you would communi-
cate with an SNMP agent, which would communicate with an SNMP sub-
agent that is also a JMX adapter, which would communicate with the
MBean. This chain of communication is illustrated in Figure 2.2. The JMX
Expert Group considered three Java APIs for managers, the Java API for
interacting with SNMP agents, the Java API for interacting with a CIMOM
using WBEM, and the Java API for interacting using TMN managers.

Some of these “manager APIs” in the original specification were spun off
into separate JSRs so that they would have their own specification and refer-
ence implementation because they had no direct dependency on the JMX
agent or MBeanServer. Figure 2.3 shows the relationship of these manager

Figure 2.3

Manager-Level API JMX JSRs

RMI
Adapter
JSR160

HTTP
Adapter
JSR160

TMN
Adapter
JSR071

SNMP
Adapter
NoJSR

JMX-CIM
Adapter
JSR146

TMN
Manager

SNMP
Agent

SNMP
Manager

API

WBEM
JSR048

TMN
JSR071

JMX
Manager

Browser
Applet

CIMOM

CIM
Provider

CIM
Provider

SNMP
SubagentSNMP

Subagent
SNMP

Subagent

MBeanServer

Kreger.book Page 61 Wednesday, December 11, 2002 11:38 AM

62 Chapter 2 Introduction to JMX

JSRs to the MBeanServer. The JMX Java APIs for WBEM specification and
libraries became JSR 146.

38

 The JMX Java APIs for TMN became JSR 71.

39

The JMX Java APIs for SNMP are not associated with a JSR. However,
JDMK does ship the SNMP Manager Java APIs.

JMX

compatibility

is defined to be an implementation of some or all of
the JMX 1.0 specification that has not passed Sun’s JMX TCK test suite.
JMX

compliance

 is defined in levels. These levels are defined in terms of what
parts of JMX are supported. We will cover these terms and components in
depth throughout this book, so if you are new to JMX, this section will make
more sense when you revisit it.

2.4.4.1 Compliance at the Instrumentation Level

Resources and applications that want to be managed through JMX and
claim JMX compliance must implement an MBean and provide for its regis-
tration with an MBeanServer. The application can provide any of the four
types of MBeans: standard MBean, dynamic MBean, open MBean, or model
MBean.

The JMX Technology Compatibility Kit (TCK) does not test for accurate
compliance of MBeans. But the JMX Reference Implementation does come
with an MBean verifier.

2.4.4.2 Compliance at the Agent Level

Implementers of JMX agents can be JMX agent-level compliant if they
implement the MBeanServer and the four required services: monitoring, tim-
ing, relation, and class loading (MLet). There is a formal compliance test
Technology Compatibility Kit from Sun Microsystems that an implementa-
tion must pass to be declared compliant. If you implement the entire JMX
specification and do not pass the compliance tests, you are JMX compatible.

2.4.4.3 Support at the Agent Level

There is also the concept of providing JMX support at the agent level. This
means that the agent supports managing resources through MBeans, but not
necessarily as an MBeanServer. There is no formal qualification or test for
JMX support. This level of support was specified to allow existing propri-
etary product agents to detect and support new management objects,
MBeans, without exposing their agents as MBeanServers to adapters.

Kreger.book Page 62 Wednesday, December 11, 2002 11:38 AM

2.4 History 63

2.4.4.4 Compliance at the Distributed Services Level

This level of JMX has not yet been defined. The recently opened JSR “Java
Management Extensions (JMX) Remoting 1.2” (JSR 160) is considering
defining this level. The distributed services level would define how JMX
agents work cooperatively across a distributed network, as well as how a man-
ager would discover and interact with groups of agents and cascaded agents.

2.4.4.5 Compliance at the Management Level

JMX was intended to be an umbrella JSR and include a set of manager-side
management APIs. The previous three levels describe JMX for instrumenta-
tion and management. The management APIs define Java APIs for manage-
ment of other existing management technologies using Java. Currently Java
APIs are being defined for SNMP, WBEM, and TMN. These Java APIs will
be defined in other JSRs.

2.4.5 The Reference Implementation

Version 1.0 of the JMX Reference Implementation from Sun Microsystems
was released in December 2000. The reference implementation source code41

is licensed under the Sun Community Source License (SCSL).41 The binary
version of the reference implementation is available for free. The JMX Tech-
nology Compatibility Kit (TCK)42 must be purchased from Sun, and the price
can be substantial. Vendors who implement the JMX agent specification
must purchase and pass the TCK in order to claim JMX compliance.

JMX 1.1, a maintenance release, is available from the same Web site. For
more information and access to the source or binary versions of the reference
implementation, see http://java.sun.com/products/JavaManagement.

Sun also provides a Web site called the JMXperience at http://
java.sun.com/products/JavaManagement/JMXperience.html, where Sun and
other vendors can contribute interesting tools, MBeans, and components for
JMX. Sun has contributed a remoting component that provides a remote
MBeanServer for use by JMX clients (usually JMX managers) and an
Mof2MBean tool that generates MBean skeletons from CIM MOF (Man-
aged Object Format) files.

The appendix of this book lists a short summary of some of the JMX
agent implementation vendors, including Sun’s JDMK, Tivoli’s TMX4J,
AdventNet’s Agent ToolKit, and MX4J. The appendix also lists JMX man-
ager vendors, including those from Tivoli, Dirig Software, AdventNet, and

Kreger.book Page 63 Wednesday, December 11, 2002 11:38 AM

64 Chapter 2 Introduction to JMX

Jamie. In addition, the appendix lists some of the JMX manageable products,
including WebSphere, WebLogic, iPortal, JBoss, SonicXQ, hawkEye, and
Pramati Server.

2.5 JMX Overview
In its instrumentation and agent specification, the JMX architecture consists
of four components (see Figure 2.4) that map to the management system
components discussed earlier:

1. Managed resources and management beans (MBeans) that expose the
management interfaces that make up the instrumentation level.

2. Agents, including MBeanServers and the monitoring, timing, relation,
and class-loading services, that constitute the agent level.

3. Adapters that translate between JMX capabilities and APIs, and between
their respective management systems.

Figure 2.4 JMX Architecture

MBeansMBeansMBeans

Advanced
Dynamic
Loading

Timers
Service

SNMP
Adapter

Adapter

MBean
Server

Adapter
ToolsMonitoring

Service

Relationship
Service

SNMP
Manager

Management
System

Mgt
Files

Simple
Notification

Simple
Query

Repository
Services

Metadata
ServicePersistent

Storage

JMX

Kreger.book Page 64 Wednesday, December 11, 2002 11:38 AM

2.5 JMX Overview 65

4. Adapter tools that generate the files required by the management system
through JMX APIs. Examples of these file types are Tivoli’s AMS file,43
SNMP’s MIB file,44 and CIM’s MOF file.45

Let’s take a closer look at each of these elements.

2.5.1 JMX-Managed Resources

JMX-managed resources are instrumented with management beans (MBeans).
You, the application developer, use MBeans to expose the management inter-
face of the managed resource. The management interface of a resource consists
of the attributes, operations, and notifications that are used to manage it.

2.5.2 MBeans

JMX specifies four types of MBeans: standard MBean, dynamic MBean, open
MBean, and model MBean. Each MBean has metadata in MBeanInfo. MBeanInfo
defines the attributes, operations, and notifications supported by the MBean.

2.5.2.1 Standard MBeans

A standard MBean can be any JavaBean or JavaBean-style program that has
been registered with the MBeanServer. You, the application developer, define
these MBeans and their management interfaces at development time. The
only requirement is that your MBean class must implement a Java interface
named classnameMBean that you must define for them. For example, an
MBean class named CatalogManager would implement an interface called
CatalogManagerMBean. This interface defines the management interface for
the MBean. The interface might include all or just a subset of the methods in
the actual MBean class.

When your MBean is registered with the MBeanServer, the MBeanServer
will create an MBeanInfo metadata object for it by introspecting the class-
nameMBean interface. It will create attributes and operations in the MBean by
looking for the JavaBean pattern. Each getAttributeName() method with a
matching setAttributeName(attributeValue) method will create an
attribute for the MBean. All other public methods will create operations for
the MBean. The MBeanServer will use MBeanInfo to make sure only the
attributes and operations you have exposed are invoked on your MBean.

Standard MBeans can be useful if your application already has manage-
ment-oriented classes to support its own manager. You can simply register
these instances with the MBeanServer after minor modifications to add
“implements MBean.” Chapter 3 explains standard MBeans thoroughly.

Kreger.book Page 65 Wednesday, December 11, 2002 11:38 AM

66 Chapter 2 Introduction to JMX

2.5.2.2 Dynamic MBeans

Dynamic MBeans allow your application or domain-specific manager to
define or generate the management interface for your resource at runtime.
This provides a simple way for you to wrap existing nonbean-style or even
non-Java resources.

A dynamic MBean can be any Java class that implements the dynamic
MBean interface. The dynamic MBean interface is similar to the CORBA
Dynamic Invocation Interface (DII).46 The most important thing to remember
about dynamic MBeans is that they must provide their own management
interfaces during runtime by maintaining their own MBeanInfo objects. The
MBeanServer requests MBeanInfo from your dynamic MBean whenever it
needs that information. This means that a classnameMBean interface is not
used by the MBeanServer to create an MBeanInfo object. Your dynamic
MBean is also responsible for implementing and validating correct invoca-
tion of the interfaces it defines in MBeanInfo. The MBeanServer delegates
invocations of getAttribute(), setAttribute(), and invoke() directly to
your dynamic MBean. Your dynamic MBean satisfies the request and returns
it to the MBeanServer.

You can develop dynamic MBean implementations for your applications
directly, have them generated, or allow a management application developer
to create them. You can also develop an MBean service that will instantiate
or generate the dynamic MBeans.

The next two types of MBeans we will look at are standardized types of
dynamic MBeans: open MBeans and model MBeans. However, the fact that
JMX defines standard types of dynamic MBeans does not mean that you can-
not write your own dynamic MBeans, nor does it in any way restrict how
you implement them. See Chapter 3 for a more detailed discussion of diag-
nostic MBeans.

2.5.2.3 Open MBeans

Open MBeans are dynamic MBeans that are restricted to accepting and
returning a limited number of data types. If you use open MBeans and these
basic data types, you eliminate the need for class loading. Removing the need
for class loading can make it easier for you to deploy the MBean and support
a highly distributed system. However, it does not remove the need for your
application or a management application to understand the semantics of the
data to be passed or returned. The open Mbean data types that are allowed are

• Primitive data types: int, boolean, float, double, and so on

Kreger.book Page 66 Wednesday, December 11, 2002 11:38 AM

2.5 JMX Overview 67

• Class wrappers for primitive data types: Integer, Boolean, Float,
Double, String, and so on

• Table: An array of rows of the same type
• Composite: An object that can be decomposed into other open data types

Your open MBeans must return an OpenMBeanInfo object from the get-
MBeanInfo() method. OpenMBeanInfo extends MBeanInfo, adding some
additional metadata that you may supply, such as legal values, and default
values. The open MBean support is optional in JMX 1.0, and the classes are
not available in the current Sun JMX 1.0 Reference Implementation. See
Chapter 3 for an explanation of open MBeans.

2.5.2.4 Model MBeans

A model MBean is an extension of a dynamic MBean. However, where you
must write all of a dynamic MBean, you don’t have to implement the model
MBean. A model MBean is more than a set of interfaces; it is a customizable,
standardized, dynamic MBean implementation. An implementation class of a
model MBean named RequiredModelMBean must come with the JMX agent.
This model MBean instance is immediately useful because your application
can instantiate and customize a RequiredModelMBean instance with its own
management interface information. This reuse of an existing implementation
drastically reduces the amount of code you need to write to achieve manageabil-
ity, and it protects your resource from JVM version and JMX agent implemen-
tation variances. Using RequiredModelMBean instances can allow your managed
resources to be installed in a range of JVMs, from embedded environments to
enterprise environments, without affecting your instrumentation.

The MBeanServer functions as a factory and delegator for RequiredModel-
MBean instances. Because RequiredModelMBean instances are created and main-
tained by the JMX agent, the RequiredModelMBean class implementation can
vary, depending on the needs of the environment and the JVM in which the
JMX agent is installed. An application that requests the instantiation of a
RequiredModelMBean object does not have to be aware of the implementa-
tion specifics of a RequiredModelMBean class. The RequiredModelMbean class
is responsible for implementing and managing the implementation differ-
ences between JMX and JVM environments internally. These differences may
include persistence, transactional behavior, caching, performance require-
ments, location transparency, and remotability.

Because the RequiredModelMBean model MBean implementation is pro-
vided by the JMX agent, your application does not have to implement
RequiredModelMBean; it just needs to instantiate it, customize it, and use it.

Kreger.book Page 67 Wednesday, December 11, 2002 11:38 AM

68 Chapter 2 Introduction to JMX

Your instrumentation code is consistent and minimal. Your application gains
the benefit of support for and default policies concerning logging events, data
persistence, data caching, and notification handling. Your application initial-
izes its RequiredModelMBean’s ModelMBeanInfo with its identity, manage-
ment interface, and policy overrides.

You can add custom attributes to the model MBean during execution.
Your application-specific information can be modified without interruption
during runtime. The RequiredModelMBean instance then sets the behavior
interface for the MBean and does any setup necessary for event logging and
handling, data persistence and currency, and monitoring for your applica-
tion’s model MBean instance. The model MBean default behavior and simple
APIs will satisfy the management needs of most applications, but they will
also allow complex application management scenarios. More details on the
model MBean are given in Chapter 4.

2.5.3 JMX Agents

Your managed resources will communicate data and events to management
systems with their MBeans through the JMX agent. JMX agents consist of an
MBeanServer and a set of service MBeans.

2.5.3.1 The MBeanServer

The MBeanServer runs in the JVM local to the managed resources’ MBeans.
The MBeanServer is a registry for MBeans. It is also a repository of the cur-
rent set of MBean names and references, but it is not necessarily a repository
for your MBeans. The MBeanServer provides a query service for the
MBeans. Upon a query, it returns the names of the MBeans, not the refer-
ences. Because only names are returned, all operations on all MBeans must
go through the MBeanServer. The MBeanServer acts as a delegator to the
MBeans, returning the results to the requester.

The MBeanServer can be a factory for any MBean, even those you create.
You have the option of instantiating MBeans directly and then registering
them, or having the MBeanServer return an instance of the MBean to your
application. The MBeanServer should always be a factory for RequiredMod-
elMBean instances. The MBeanServer also provides access to the metadata
about the MBeans in the MBeanInfo instance. The metadata includes the
attributes, operations, and notifications provided by the MBean. The
MBeanServer provides notification registration and forwarding support to
MBeans representing adapters, services, and resources. The MBeanServer is
discussed thoroughly in Chapter 5.

Kreger.book Page 68 Wednesday, December 11, 2002 11:38 AM

2.5 JMX Overview 69

2.5.3.2 Required Services

The JMX agent includes a set of required services: the monitoring service, the
timer service, the relation service, and the MBean class loader. Services are
MBeans registered with the MBeanServer that provide some generic func-
tionality that can be used by MBeanServers, MBeans, and adapters. Addi-
tional management services can be added dynamically as service MBeans by
applications or management systems, making the JMX agent flexible and
extensible.

• The monitoring service runs monitoring MBeans on a scheduled basis.
It must support basic monitoring MBeans, including Gauge, Counter,
StringMatch, and StateChange. Additional or specialized monitoring
MBeans can also be developed and used.

• The timer service executes an operation on a timed basis. It is used by the
monitoring service.

• The relation service supports relationship MBeans. Relationship MBeans
contain the names of a set of MBeans that are related in some way. Some
kinds of possible relationships include “contains” and “depends on.”

• The MLet (management applet) service is an MBean class-loading service
that loads an MBean across a network when an MLET tag in an HTML
page is encountered.

These services are covered in more detail in Chapter 7.

2.5.4 JMX Adapters

Adapters communicate between the JMX agent and their corresponding man-
agement systems. The adapter is responsible for translating from JMX MBean
types to its manager’s types and taking care of any remoteness issues. Because
the adapter can be implemented to mimic the manager’s supported agent tech-
nology, the management system may not even be aware that JMX is in the pic-
ture. Generally, there is at least one specific adapter for each management
protocol or technology required to support different management systems.

Adapters are also MBeans, and they are registered with the MBeanServer.
Given that this is the case, it is possible to find out all of the adapters that are
currently registered with an MBeanServer. Because adapters are MBeans, they
can register for JMX notifications from the MBeanServer or other MBeans. In
this case the adapter would have to implement the NotificationListener
interface, and it might provide a filter to limit the notifications it receives.

Because the MBeanServer returns only names of MBeans and not instances,
adapters invoke methods on MBeans only through the MBeanServer. The

Kreger.book Page 69 Wednesday, December 11, 2002 11:38 AM

70 Chapter 2 Introduction to JMX

type of MBean that represents the resource does not affect how the adapter
invokes operations on the MBean. The type of MBean does affect how much data
is available to the adapter in MBeanInfo. Adapters use the MBeanServer’s
interface directly. Adapters are responsible for “translating” JMX manage-
ment information to their native representation of the management informa-
tion, so JMX provides some hints on how to do that translation using
ProtocolMap instances for attributes in model MBeans. Common, though
nonstandard, adapters are RMI,47 HTTP,48 and SNMP.49 CIM and IIOP
adapters are in the process of standardization. Adapters are discussed in
depth in Chapter 5.

2.5.5 Adapter Tools

Adapter tools typically accompany a particular adapter for a particular man-
agement system. Adapter tools will interact with the MBeanServer to create
any files to represent the available management data in the MBeans in a for-
mat that the management system can consume. For example, an SNMP
adapter tool might create a MIB file from the available MBeanInfo instance.
This MIB file would be used by an SNMP management system to represent
the management data on its console.

2.6 Quick Tour of JMX
The easiest way to understand JMX is with a simple but thorough example.
This example uses Tivoli’s TMX4J JMX implementation, but the code
should be identical regardless of who the JMX vendor is. The remainder of
this chapter is dedicated to demonstrating the major features of JMX—
MBeans, the MBeanServer, monitors, and notifications—via the design and
implementation of a simple manageable server application.1

2.6.1 todd, the Time of Day Daemon

todd is a simple daemon that does a simple job. It accepts client connections
and sends them the current date and time whenever they ask for it. Figure 2.5
shows todd’s static structure.

Three classes form todd’s core: Server, Listener, and Session. The
Server class is responsible for starting a listener and assigning sessions to

1. Please note that whenever you see “. . .” there is code missing for illustrative purposes.
Complete code examples are available at http://www.awprofessional.com/titles/0672374083.

Kreger.book Page 70 Wednesday, December 11, 2002 11:38 AM

2.6 Quick Tour of JMX 71

incoming connections. The Listener class accepts incoming connections and
queues them for the server. The Session class is responsible for responding
to client messages received via a connection. Figure 2.6 illustrates the interac-
tion among todd’s classes.

2.6.2 todd Management

todd satisfies its basic functional requirements by accepting client connec-
tions and supplying the current date and time on demand, but it’s not man-
ageable. We have no way of knowing the total number of sessions that todd
has handled, how many sessions are active, how many connections are
queued, how long each session has been running, and so on. We can’t stop
and start the listener without killing todd, and any active sessions along with
it. We can’t change the size of the connection queue or session pool without
recompiling the code. If todd were to become a popular service, our adminis-
trator colleagues would not be happy with us.

JMX lets us build manageability into our Java applications. MBeans cap-
ture the management interface of the resources that management systems

Figure 2.5 Class Structure of the Unmanaged Time of Day Daemon

Server

Listener

SessionPool

Session

Message

Message.HELLO

Message.TOD

Message.GOODBYE

Connection

«interface»
MessageListener

«interface»
Message.Dispatcher

MessageAdapter MessageEvent

MessageAdapter.READY MessageAdapter.ESTABLISHED

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«generates»

Kreger.book Page 71 Wednesday, December 11, 2002 11:38 AM

72

F
ig

ur
e

2.
6

to
dd

 C
om

po
ne

nt
 In

te
ra

ct
io

ns
 D

ur
in

g
a

C
lie

nt
 S

es
sio

n

cl
ie

nt
:C

lie
nt

l:L
is

te
ne

r

c:
C

on
ne

ct
io

n

m
:M

es
sa

ge

m
:M

es
sa

ge

m
:M

es
sa

ge

cq
:S

or
te

dS
et

se
rv

er
:S

er
ve

r

sp
:S

es
si

on
Po

ol
s:

Se
ss

io
n

H
EL

LO O
K O

K

TO
D

G
O

O
D

BY
E

Tu
e

M
ar

 0
5

14
:2

1:
16

 C
ST

 2
00

2

ad
d(

c)

re
ce

iv
eM

sg
()

re
ce

iv
eM

sg
()

re
ce

iv
eM

sg
()

di
sp

at
ch

()

di
sp

at
ch

()

di
sp

at
ch

()

se
nd

M
sg

()

se
nd

M
sg

()

se
nd

M
sg

()

w
ai

t(
)

no
tif

y(
)

fir
st

()
c

re
se

rv
e(

)
s

ac
tiv

at
e(

c)

m m m

cr
ea

te

cr
ea

te

cr
ea

te
cr

ea
te

cr
ea

te

cr
ea

te

cr
ea

te

Kreger.book Page 72 Wednesday, December 11, 2002 11:38 AM

2.6 Quick Tour of JMX 73

need to monitor and control. The MBeanServer provides a common registry
and naming model for all of an application’s MBeans. MBean services exist
to autonomously monitor MBean attribute values and fire notifications when
constraints are violated. Notifications provide both a means to alert an
administrator of a problem, and an implicit invocation mechanism that
developers can use to make an application self-managing.

In the next few sections we will apply JMX to todd and transform it into
a manageable application that will delight the system administration staff, or
at least keep them from paging us in the middle of the night. Because the goal
of this tour is to demonstrate the major features of JMX in an application,
we will introduce them without a lot of explanation. Subsequent chapters
will provide details of all the features we use in our example.

Before we start, it would be good to have an idea of the sort of man-
ageability requirements the new version of todd has to satisfy. Table 2.1 pro-
vides a minimal list. Modifying todd to satisfy these requirements will
involve the following activities: designing and implementing the necessary
MBeans, incorporating an MBeanServer into todd, and wiring up the moni-
tors and NotificationListener instances that are needed to complete the
implementation.

Table 2.1 Basic todd Management Requirements

Aspect Requirement Description

Server control Stop/start Stop and start the server without killing the todd
process or any active sessions.

Shutdown Shut down the server, killing the todd process
and any active sessions.

Server data Total connections Show how many connections the server has
handled so far.

Uptime Show how long the server has been running.

Active sessions Show how many sessions are currently active.

Session pool
management

Grow pool Increase the size of the session pool by a speci-
fied amount.

Empty pool
management

Stop the server when the pool becomes empty;
restart the server when the pool contains at least
two sessions.

Kreger.book Page 73 Wednesday, December 11, 2002 11:38 AM

74 Chapter 2 Introduction to JMX

2.6.3 todd’s MBeans

From the requirements in Table 2.1, it’s pretty clear that we’re concerned
with only a couple of todd’s resources: the server itself, and the pool of ses-
sions that todd uses to service connections. Because JMX uses MBeans to
represent managed resources, it follows that we need to make the Server and
SessionPool classes MBeans. There are several ways to accomplish that
goal; the simplest is to make them standard MBeans. In general a standard
MBean for a given resource is defined by a Java interface named
MyResourceMBean and a Java class, MyResource, which implements the
MyResourceMBean interface. MyResourceMBean defines the MBean’s manage-
ment interface—that is, the attributes and methods that JMX makes avail-
able to management applications.

It’s clear from the requirements what the server’s management interface
should look like:

A JMX management interface contains attributes and operations. In a
standard MBean those attributes and operations are expressed as methods in
a Java interface. Methods that have the following form:

define an attribute named AttributeName that takes values of type
AttributeType. If the setAttributeName() method is missing, the attribute
is read-only; if the getAttributeName() method is missing, the attribute is
write-only. Any method in the MBean interface that doesn’t define an
attribute defines an operation for the management interface.

The first three methods in the ServerMBean interface define operations
that a management application can invoke on ServerMBean instances. The
remaining methods define attributes; specifically they define three read-only
attributes: Connections, Sessions, and Uptime.

public interface ServerMBean {
 void shutdown();
 void start();
 void stop();
 Integer getConnections();
 Integer getSessions();
 Long getUptime();
}

AttributeType getAttributeName();
void setAttributeName();

Kreger.book Page 74 Wednesday, December 11, 2002 11:38 AM

2.6 Quick Tour of JMX 75

The implementation of the ServerMBean interface in the Server class is
straightforward:

public class Server implements ServerMBean, NotificationListener {
 private SessionPool sessions;
 private SortedSet connectionQueue;
 private Listener listener;
 private int connections; // incremented for each new connection
 private int tzero; // System.currentTimeMillis at Server start
 …
 // Other Server methods that aren't part of the MBean interface

 /**
 * Shut down the server, killing the process and any active sessions
 */
 public void shutdown() {
 System.exit(0);
 }

 /**
 * Start a listener thread that will queue incoming connections
 */
 public void start() {
 listener = new Listener(connectionQueue);
 listener.start();
 }

 /**
 * Stop the server's listener thread; active sessions continue to
 * handle requests
 */
 public void stop() {
 listener.stopListening();
 }

 /**
 * Connections attribute getter
 * @returns total number of connections handled
 */
 public Integer getConnections() {
 return new Integer(connections);
 }

 /**
 * Sessions attribute getter

Kreger.book Page 75 Wednesday, December 11, 2002 11:38 AM

76 Chapter 2 Introduction to JMX

The shape of the SessionPool management interface requires a little
more thought. Clearly it needs a grow operation to satisfy the first session
pool management requirement. What about the empty pool management
requirement? We could specify a monitorPoolSpace operation that would
provide the necessary behavior, but as we’ll see in a moment, that would be
reinventing a perfectly good JMX wheel. Instead, let’s just satisfy the under-
lying data requirement by providing access to the number of sessions left in
the pool. A glance back at the ServerMBean implementation will reveal that
we’ve already assumed that this information, along with the session pool
size, is available, so we have this:

todd uses java.util.Set as the underlying data structure for the Ses-
sionPool implementation:

 * @returns number of active sessions
 */
 public Integer getSessions() {
 int as = sessions.getAvailableSessions().intValue();
 int sz = sessions.getSize().intValue();
 return new Integer(sz – as);
 }

 /**
 * Uptime attribute getter
 * @returns number of milliseconds since the server was started
 */
 public Long getUptime() {
 return new Long(System.currentTimeMillis() – tzero);
 }
}

public interface SessionPoolMBean {
 void grow(int increment);
 Integer getAvailableSessions();
 Integer getSize();
}

public class SessionPool implements SessionPoolMBean {
 private static final int DEFAULT_POOLSIZE = 8;
 private Set sessions;
 private int size;

Kreger.book Page 76 Wednesday, December 11, 2002 11:38 AM

2.6 Quick Tour of JMX 77

 /**
 * Default constructor creates a SessionPool instance of size
 * DEFAULT_POOLSIZE
 */
 public SessionPool() {
 this(DEFAULT_POOLSIZE);
 }

 /**
 * Creates a SessionPool instance of the specified size and
 * fills it with Session instances
 */
 public SessionPool(int size) {
 this.size = size;
 sessions = new HashSet(size);
 fill();
 }

 /**
 * Increase the number of Session instances in SessionPool by
 * increment
 * @param increment the number of Session instances to add to
 * the pool
 */
 public synchronized void grow(int increment) {
 for (int i = 0; i < increment; i++) {
 Session s = new Session(this);
 sessions.add(s);
 }
 size = size + increment;
 }

 /**
 * AvailableSessions attribute getter
 * @returns number of sessions remaining in the pool
 */
 public Integer getAvailableSessions() {
 return new Integer(sessions.size());
 }

 /**
 * Size attribute getter
 * @returns size of the session pool
 */

Kreger.book Page 77 Wednesday, December 11, 2002 11:38 AM

78 Chapter 2 Introduction to JMX

You’ve probably noticed that all of our attribute getters return Java
numeric wrapper types—Integer, Long, and so on. We do that so that we
can use JMX monitors such as GaugeMonitor, which we’ll use in the imple-
mentation of the empty pool management requirement, to observe the values
taken by those attributes. Note also that we have kept the operations in the
ServerMBean and SessionPoolMBean interfaces very simple.

2.6.4 Incorporating an MBeanServer

Now that we’ve got some MBeans, what do we do with them? Because a
JMX-based management application can access MBeans only if they are reg-
istered with an MBeanServer, we should register them. Unfortunately, we
don’t have an MBeanServer in todd to register any MBeans with at the
moment. That problem can be solved with a single line of code in todd’s
main() method:

MBeanServer mbs = MBeanServerFactory.createMBeanServer();

In the interest of minimizing the impact of incorporating the MBean-
Server, we will instantiate both the Server and the SessionPool MBeans and
then register them, rather than creating and automatically registering them
via the MBeanServer. Server is instantiated in main(), and SessionPool is
created as part of the Server instantiation:

 public Integer getSize() {
 return new Integer(size);
 }
 …
 // Other SessionPool methods that are not part of the MBean
 // interface
}

public static void main(String[] args) throws Exception {
 MBeanServer mbs = MBeanServerFactory.createMBeanServer();

 Server server = new Server(mbs);
 ObjectName son = new ObjectName("todd:id=Server");
 mbs.registerMBean(server, son);

…

Kreger.book Page 78 Wednesday, December 11, 2002 11:38 AM

2.6 Quick Tour of JMX 79

The MBeanServer associates an ObjectName instance with each MBean.
We’ve registered Server and SessionPool under the names todd:id=Server
and todd:id=SessionPool. The portion of the name to the left of the colon
is the domain, which is an arbitrary string that is opaque to the MBeanServer
but may have meaning to one or more management applications. On the
right are the key properties, a set of name/value pairs that help distinguish
one MBean from another. Together they must form a unique name, within a
given MBeanServer, for the associated MBean.

2.6.5 Monitoring todd

We still haven’t satisfied the SessionPool empty pool management require-
ment. The SessionPool MBean tells us how many sessions are left in the
pool. What we need is a way to react to these two events: (1) AvailableSes-
sions has become zero, and (2) AvailableSessions has increased from zero
to one or more.

In JMX, events are called notifications. Every JMX notification has a
class and a type; its class is either javax.management.Notification or one
of its subclasses; its type is String expressed in dot notation—for example,
jmx.mbean.registered. Notifications are handled by calls to one of the
MBeanServer’s addNotificationListener() methods:

 while (server.isActive()) {
 Connection k = server.waitForConnection()
 server.activateSession(k);
 }
}

public Server(MBeanServer mbs) throws Exception {
 this.mbs = mbs;

 connectionQueue = new TreeSet();
 connections = 0;

 sessions = new SessionPool();
 ObjectName spon = new ObjectName("todd:id=SessionPool");
 mbs.registerMBean(sessions, spon);

 active = true;
 tzero = System.currentTimeMillis();
}

Kreger.book Page 79 Wednesday, December 11, 2002 11:38 AM

80 Chapter 2 Introduction to JMX

The only difference between the two method calls is the second parameter.
In the first version the second parameter is a reference to a Notification-
Listener instance—that is, an instance of a class that implements the
NotificationListener interface. In the second version the second parame-
ter is the ObjectName instance of an MBean that implements Notification-
Listener.

Careful readers will have noticed that the Server class implements Server-
MBean and NotificationListener. Satisfying the empty pool management
requirement involves stopping and starting the server that makes the Server
class. These actions provide the stop() and start() methods with a natural
place to handle the notifications that trigger those actions. The Notification-
Listener interface declares a single method, handleNotification(). Here
is the Server implementation of the method:

Now all that’s required is a mechanism for generating notifications at the
appropriate times. We need something that will monitor SessionPool’s
AvailableSessions attribute, send a notification when it becomes zero, and
then send another notification later when AvailableSessions increases to
one or more.

public void addNotificationListener(ObjectName objname,
 NotificationListener listener,
 NotificationFilter filter,
 Object handback);

public void addNotificationListener(ObjectName objname,
 ObjectName listener,
 NotificationFilter filter,
 Object handback);

public void handleNotification(Notification n, Object hb) {
 String type = n.getType();
 if (type.compareTo
 (MonitorNotification.THRESHOLD_LOW_VALUE_EXCEEDED) == 0) {
 stop();
 } else if (type.compareTo
 (MonitorNotification.THRESHOLD_HIGH_VALUE_EXCEEDED) == 0) {
 if (isActive() == false) start();
 }
}

Kreger.book Page 80 Wednesday, December 11, 2002 11:38 AM

2.6 Quick Tour of JMX 81

The JMX GaugeMonitor class provides just such a mechanism. A Gauge-
Monitor instance is configured to monitor a specific attribute of an
MBean registered with the MBeanServer. The GaugeMonitor class has two
thresholds: high and low. A MonitorNotification instance with type
jmx.monitor.threshold.high is sent when the attribute value increases to
or past the high threshold value. Similarly, when the attribute value decreases
to or below the low threshold value, a MonitorNotification instance with
type jmx.monitor.threshold.low is sent.

The Server.configureMonitor() method sets up a GaugeMonitor
instance that completes the implementation of the empty pool management
requirement:

public static void configureMonitor(MBeanServer mbs) throws
 Exception {
 ObjectName spmon = new ObjectName("todd:id=SessionPoolMonitor");
 mbs.createMBean("javax.management.monitor.GaugeMonitor",
spmon);

 AttributeList spmal = new AttributeList();
 spmal.add(new Attribute("ObservedObject", new
 ObjectName("todd:id=SessionPool")));
 spmal.add(new Attribute("ObservedAttribute",
 "AvailableSessions"));
 spmal.add(new Attribute("GranularityPeriod", new Long(10000)));
 spmal.add(new Attribute("NotifyHigh", new Boolean(true)));
 spmal.add(new Attribute("NotifyLow", new Boolean(true)));
 mbs.setAttributes(spmon, spmal);

 mbs.invoke(
 spmon,
 "setThresholds",
 new Object[] { new Integer(1), new Integer(0)},
 new String[] { "java.lang.Number", "java.lang.Number" });

 mbs.addNotificationListener(
 spmon,
 new ObjectName("todd:id=Server"),
 null,
 new Object());

 mbs.invoke(spmon, "start", new Object[] {}, new String[] {});
}

Kreger.book Page 81 Wednesday, December 11, 2002 11:38 AM

82 Chapter 2 Introduction to JMX

The first two lines here create and register a GaugeMonitor MBean
named todd:id=SessionPoolMonitor. The next seven lines set attributes
that tell GaugeMonitor which attribute of which MBean should be monitored
(ObservedAttribute or ObservedObject), how often (GranularityPeriod,
in milliseconds), and whether or not to send a notification on high-threshold
and low-threshold violations. Then we invoke the setThresholds() method,
via the MBeanServer, to set the actual high and low threshold values. Finally,
we make the server listen for session pool monitor notifications and start the
gauge monitor.

2.6.6 Browser Control

The new version of todd satisfies all of the management requirements speci-
fied in Table 2.1. There is, however, one more issue to address: We would like
to be able to control todd interactively. For example, an administrator should
be able to connect to todd from home to check the values of key MBean
attributes, stop the server, increase the size of the session pool, and restart the
server if necessary.

Although there are as many ways to address this issue as there are com-
munication protocols, most JMX implementations provide an HTTP adapter
that allows a user to “surf” an MBeanServer—inspecting MBean attributes,
invoking operations, and so on—using a standard Web browser. Here’s the
code necessary to start the TMX4J HTTP adapter:

Once the adapter has been started, you can connect to the MBeanServer
via a Web browser. In the case of the TMX4J HTTP adapter, you would
direct your browser to http://<your-server>:6969. You can change the port
the adapter listens on in the jmx.properties file that the TMX4J implemen-
tation reads on startup. Figure 2.7 shows the TMX4J view of the todd
MBeans.

ObjectName httpon = new ObjectName("adapters:id=Http");
mbs.createMBean("com.tivoli.jmx.http_pa.Listener", httpon);
mbs.invoke(httpon, "startListener",
new Object[] {}, new String[] {});

Kreger.book Page 82 Wednesday, December 11, 2002 11:38 AM

2.7 Summary 83

2.7 Summary
In the course of this tour we have illustrated the use of JMX in the context of
a simple Java-based service. Although the service itself may be straightfor-
ward, the process we went through to make it manageable is a common
approach and does work in practice. Working with a set of management
requirements, we developed a set of resources that we must monitor and con-
trol to satisfy those requirements. We reflected the management interface for
each of our managed resources in an appropriate MBean, and then brought
instances of those MBeans together in an MBeanServer. Finally, we used
JMX services like monitors and notification to implement the policy mecha-
nism that enabled us to satisfy our management requirements.

Figure 2.7 The TMX4J HTTP Adapter’s MBean View

Kreger.book Page 83 Wednesday, December 11, 2002 11:38 AM

84 Chapter 2 Introduction to JMX

2.8 Notes
1. This chapter is generally attributable to the following article: H. Kreger,
“Java Management Extensions for Application Management,” IBM Systems
Journal 40(1) (March 2001), http://www.research.ibm.com/journal/sj/401/
kreger.pdf.

2. “Java Management Extensions (JMX) Specification,” JSR 3, http://
www.jcp.org/jsr/detail/3.jsp.

3. J2SE stands for Java 2 Platform, Standard Edition, which is Sun Micro-
systems’ Java platform. More information is available at http://java.sun.com/
j2se. Java and all Java-based marks are trademarks of Sun Microsystems,
Inc., in the United States and other countries.

4. SNMP stands for Simple Network Management Protocol, which is an
IETF (Internet Engineering Task Force) standard. More information on
SNMP is available at http://www.ietf.org.

5. CIM/WBEM stands for Common Information Model/Web-Based Enter-
prise Management. It is defined by the Distributed Management Task Force
(DMTF). More information is available at http://www.dmtf.org.

6. JDBC (Java Database Connectivity) is an API that isolates database clients
from database vendors. It is a Sun Microsystems technology. JDBC is a trade-
mark of Sun Microsystems, Inc., in the United States and other countries.

7. CMIP stands for Common Management Information Protocol and is usu-
ally referred to in conjunction with CMIS (Common Management Information
Services). This management standard was defined by OSI (Open Systems Inter-
connection) as an ISO standard: ISO 9595/2 and 9596/2 (http://www.iso.ch).
More information on CMIP/CMIS can be found at http://www.iso.ch.

8. Tivoli Systems, Inc., 9442 Capital of Texas Highway North, Arboretum
Plaza One, Austin, TX 78759 (http://www.tivoli.com). Tivoli is a trademark
of Tivoli Systems in the United States, other countries, or both.

9. Computer Associates International, Inc., One Computer Associates Plaza,
Islandia, NY 11749 (http://www.cai.com).

10. Microsoft Windows is Microsoft’s workstation operating system family,
including Windows 95, Windows 98, Windows NT, Windows 2000, and
Windows XP. More information is available at http://www.microsoft.com.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks
of Microsoft Corporation in the United States, other countries, or both.

Kreger.book Page 84 Wednesday, December 11, 2002 11:38 AM

2.8 Notes 85

11. IBM AIX is a UNIX-based operating system available from IBM Corpo-
ration, Armonk, NY (http://www.ibm.com/servers/aix).

12. Solaris is Sun Microsystems’ UNIX-based operating system. More infor-
mation is available at http://www.sun.com/solaris.

13. HP-UX is Hewlett-Packard’s UNIX-based operating system. More infor-
mation is available at http://www.hp.com/products1/unix/operating.

14. J2EE stands for Java 2 Platform, Enterprise Edition, which is Sun Micro-
systems’ Java platform. J2EE application servers are vendor products that
support the J2EE specification. More information is available at http://
java.sun.com/j2ee. Java and all Java-based marks are trademarks of Sun
Microsystems, Inc., in the United States and other countries.

15. RFC 1514 (http://www.ietf.org/rfc/rfc1514.txt) dictates that, “The Inter-
net-standard Network Management Framework consists of three [four] com-
ponents. They are: STD 16, RFC 1155 [1] which defines the SMI, the
mechanisms used for describing and naming objects for the purpose of man-
agement. http://www.ietf.org/rfc/rfc1155.txt; STD 16, RFC 1212 [2] defines
a more concise description mechanism, which is wholly consistent with the
SMI. http://www.ietf.org/rfc/rfc1212.txt; STD 17, RFC 1213 [3] which
defines MIB-II, the core set of managed objects for the Internet suite of pro-
tocols.; STD 15, RFC 1157 [4] which defines the SNMP, the protocol used
for network access to managed objects.”

16. JMAPI .08, Java Management API specification. These specifications are
no longer available from Sun Microsystems; however, this book contains an
overview of the JMAPI technologies: “Java 1.2 Unleashed,” Sams Publishing
(http://www.szptt.net.cn/9810dnwl/new/jdk1.2/index.htm). This chapter covers
JMAPI (see http://www.szptt.net.cn/9810dnwl/new/jdk1.2/ch36/ch36.htm).

17. JDMK 2.0 is available from Sun Microsystems, Inc., 901 San Antonio Rd.,
Palo Alto, CA 94303. More information is available at http://java.sun.com/
products/jdmk.

18. Source: “Java Management Extensions (JMX) Specification,” JSR 3,
http://www.jcp.org/jsr/detail/3.jsp, which was led by Sun Microsystems to
create a management API for Java resources.

19. Java Community Process (http://www.jcp.org) is Sun Microsystem’s pro-
cess for allowing the Java community to participate in the development of
Java language extensions and new Java APIs.

Kreger.book Page 85 Wednesday, December 11, 2002 11:38 AM

86 Chapter 2 Introduction to JMX

20. Groupe Bull was the original company name for the representative. This
company is now referred to as “Evidian: A Groupe Bull Company” (http://
www.evidian.com).

21. TIBCO Software is a provider of business integration solutions (http://
www.tibco.com).

22. Powerware, an Invensys Company, Powerware Corporation, designs and
manufactures innovative, end-to-end power protection and management
solutions (http://www.powerware.com).

23. Borland Software Corporation is a provider of technology used to develop,
deploy, and integrate software applications (http://www.borland.com).

24. Motorola, Inc., is a provider of integrated communications solutions
and embedded electronic solutions (http://www.motorola.com).

25. BEA Systems, Inc., is an application infrastructure software company
(http://www.bea.com).

26. IONA iPortal J2EE is an application server by IONA. According to
IONA, the iPortal Application Server has been incorporated into the Orbix
E2A Application Server Platform as the Orbix E2A J2EE Technology Edi-
tion. More information is available at www.iona.com.

27. Produced by Lutris Technologies, Lutris EAS 4 is a J2EE application
server that introduces a services architecture, in which J2EE services are
pluggable modules, that incorporates JMX manageability into every service,
as well as full versioning of service components for complete configuration
and product packaging control. More information is available at http://
www.lutris.com.

28. JBoss is an open-source J2EE application server. It is inherently JMX
based. More information is available at http://www.jboss.org.

29. Java Dynamic Management Kit (JDMK) 3.0 is available from Sun Micro-
systems, Inc., 901 San Antonio Rd., Palo Alto, CA 94303, http://java.sun.com/
products/jdmk.

30. Java Dynamic Management Kit (JDMK) 4.0 is available from Sun Micro-
systems, Inc., 901 San Antonio Rd., Palo Alto, CA 94303 (http://java.sun.com/
products/jdmk).

31. “Java Management Extensions (JMX) Remoting 1.2,” JSR 160, http://
www.jcp.org/jsr/detail/160.jsp, led by Sun Microsystems.

Kreger.book Page 86 Wednesday, December 11, 2002 11:38 AM

2.8 Notes 87

32. JSR 146: “WBEM Services: JMX Provider Protocol Adapter” (http://
www.jcp.org/jsr/detail/146.jsp), led by Sun Microsystems.

33. JSR 71: “JMX-TMN Specification,” (http://www.jcp.org/jsr/detail/071.jsp),
led by Evidian.

34. JSR 70: “IIOP Protocol Adapter for JMX Specification,” (http://www.jcp.org/
jsr/detail/070.jsp), led by IONA.

35. IIOP stands for Internet Inter-Operability Protocol. More information is
available at http://www.omg.org and http://www.omg.org/technology/docu-
ments/corba_spec_catalog.htm.

36. CORBA stands for Common Object Request Broker Architecture. More
information is available at http://www.omg.org and http://www.omg.org/get-
tingstarted/corbafaq.htm.

37. The specification in JSR 77, “J2EE Management” (http://www.jcp.org/
jsr/detail/077.jsp), led by Sun, defines the object model and JMX implemen-
tation for managing J2EE application servers.

38. JSR 146: “WBEM Services: JMX Provider Protocol Adapter” (http://
www.jcp.org/jsr/detail/146.jsp), led by Sun Microsystems.

39. JSR 71: “JMX-TMN Specification,” (http://www.jcp.org/jsr/detail/071.jsp),
led by Evidian.

40. Java Management Extensions Instrumentation and Agent Specification
v1.0 (Final Release, April 2000), Sun Microsystems, Inc., 901 San Antonio
Road, Palo Alto, CA 94303; available at http://java.sun.com/products/Java-
Management.

41. According to the Free Software Foundation (http://www.gnu.org/philos-
ophy/license-list.html#SunCommunitySourceLicense) and numerous editori-
als at the time of the SCSL release, this license is not well thought of in the
free-software and open-source communities.

42. Java Management Extensions Technology Compatibility Kit 1.0 (April
2000), Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303;
available at http://java.sun.com/products/JavaManagement.

43. Tivoli’s Application Management Specification is used to define the char-
acteristics of a managed application.

44. The MIB file is the Management Information Base data format used by
SNMP to describe its object model. Source: M. Rose and K. McCloghrie,

Kreger.book Page 87 Wednesday, December 11, 2002 11:38 AM

88 Chapter 2 Introduction to JMX

"Concise MIB Definitions,” STD 16, RFC 1212 (March 1991), http://
www.ietf.org/rfc/rfc1212.txt?number=1212.

45. MOF stands for Managed Object Format. This format is used to
describe CIM information and is defined by the DMTF in the CIM specifica-
tion. More information is available at http://www.dmtf.org/standards/
cim_schema_v23.php.

46. The Dynamic Invocation Interface for CORBA description can be found
at http://www.omg.org. Java and all Java-based marks are trademarks or reg-
istered trademarks of Sun Microsystems, Inc., in the United States and other
countries.

47. RMI stands for Remote Method Invocation, a Java API to support dis-
tributed programming with Java technology. More information is available
at http://java.sun.com/products/jdk/rmi.

48. HTTP stands for Hypertext Transfer Protocol. See “Hypertext Transfer
Protocol -- HTTP/1.1,” RFC 2068 (January 1997), http://www.ietf.org/rfc/
rfc2068.txt?number=2068.

49. SNMP stands for Simple Network Management Protocol, the protocol
used for network access to managed objects. The SNMP is defined in RFC
1157 (“A Simple Network Management Protocol (SNMP),” May 1990,
http://www.ietf.org/rfc/rfc1157.txt).

Kreger.book Page 88 Wednesday, December 11, 2002 11:38 AM

