
Chapter 5. All about Plug-Ins
Part I discussed the Eclipse ecosystem: how to run it, how to use it, and how to
extend it. In this chapter, we revisit the topic of plug-ins and lay the groundwork
for all plug-in development topics to be discussed in later chapters. This chapter
answers questions about the core concepts of the Eclipse kernel, including
plug-ins, extension points, fragments, and more. All APIs mentioned in this
chapter are found in the org.eclipse.core.runtime plug-in.

What is a plug-in?

In retrospect, plug-in, perhaps wasn’t the most appropriate term for the
components that build up an Eclipse application. The term implies the existence
of a socket, a monolithic machine or grid that is being plugged into. In Eclipse,
this isn’t the case. A plug-in connects with a universe of other plug-ins to form a
running application. The best software analogy compares a plug-in to an object in
object-oriented programming. A plug-in, like an object, is an encapsulation of
behavior and/or data that interacts with other plug-ins to form a running program.

A better question in the context of Eclipse is, What isn’t a plug-in? A single Java
source file, Main.java, is not part of a plug-in. This class is used only to find and
invoke the plug-in responsible for starting up the Eclipse Platform. This class
will typically in turn be invoked by a native executable, such as eclipse.exe on
Windows, although this is just icing to hide the incantations required to find and
launch a Java virtual machine. In short, just about everything in Eclipse is a
plug-in.

More concretely, a plug-in minimally consists of a plug-in manifest file,
plugin.xml. This manifest provides important details about the plug-in, such as
its name, ID, and version number. The manifest may also tell the platform what
Java code it supplies and what other plug-ins it requires, if any. Note that
everything except the basic plug-in description is optional. A plug-in may
provide code, or it may provide only documentation, resource bundles, or other
data to be used by other plug-ins.

A plug-in that provides Java code may specify in the manifest a concrete subclass
of org.eclipse.core.runtime.Plugin. This class consists mostly of
convenience methods for accessing various platform utilities, and it may also

85

94
FAQ

Arthorne/Laffra − Eclipse Faqs − PDF generated 2004/06/09 15:16:20

implement startup and shutdown methods that define the lifecycle of the
plug-in within the platform.

 FAQ 96 What is the plug-in manifest file (plugin.xml)?
FAQ 98 What are extensions and extension points?

Do I use plugin or plug-in?

That depends. Those with a slavish devotion to the dictates of the English
language—copy editors, English teachers, and automatic spellcheckers—will
insist that because “plugin” is not a recognized word, the hyphenated plug-in is
required. Others—writers, hackers, and the general public—recognize that
language is an organic structure that must adapt and evolve to remain relevant.
This latter group welcomes the introduction of new words into the lexicon and,
thus, will happily adopt the new word plugin. While we use plug-in in this book,
here is a more practical answer: If you are searching in the documentation, use
plug-in. If you are grepping or writing code, use plugin. If you do not think
grepping is a word, you are a lost cause.

What is the plug-in manifest file (plugin.xml)?

The plug-in manifest file, plugin.xml, describes how the plug-in extends the
platform, what extensions it publishes itself, and how it implements its
functionality. The manifest file is written in XML and is parsed by the platform
when the plug-in is loaded into the platform. All the information needed to
display the plug-in in the UI, such as icons, menu items, and so on, is contained
in the manifest file. The implementation code, found in a separate Java JAR file,
is loaded when, and only when, the plug-in has to be run. This concept is referred
to as lazy loading. Here is the manifest file for a simple plug-in:

 <?xml version="1.0" encoding="UTF−8"?>
 <?eclipse version="3.0"?>
 <plugin id="com.xyz.myplugin" name="My Plugin"
 class="com.xyz.MyPlugin" version="1.0">
 <runtime>
 <library name="MyPlugin.jar"/>
 </runtime>
 <requires>

86 Chapter 5. All about Plug-Ins

95
FAQ

Arthorne/Laffra − Eclipse Faqs − PDF generated 2004/06/09 15:16:20

96
FAQ

Arthorne/Laffra − Eclipse Faqs − PDF generated 2004/06/09 15:16:20

 <import plugin="org.eclipse.core.runtime"/>
 </requires>
 </plugin>

The processing instructions at the beginning specify the XML version and
character encoding and that this plug-in was built for version 3.0 of the Eclipse
Platform. The plugin element specifies the basic information about the plug-in,
including, in this case, the optional class attribute to specify an instance of the
Plugin class associated with this plug-in. Because it contains a subclass of
Plugin, this plug-in must include a runtime element that specifies the JAR file
that contains the code and a requires element to import the
org.eclipse.core.runtime plug-in where the superclass resides. The manifest
may also specify extensions and extension points associated with the plug-in. Of
all this, only the plugin element with the id, name, and version attributes are
required.

 FAQ 94 What is a plug-in?
FAQ 98 What are extensions and extension points?
FAQ 101 When does a plug-in get started?

How do I make my plug-in connect to other
plug-ins?

Like members of a community, plug-ins do not generally live in isolation. Most
plug-ins make use of services provided by other plug-ins, and many, in turn, offer
services that other plug-ins can consume. Some groups of plug-ins are tightly
related, such as the group of plug-ins providing Java development tools—the
JDT plug-ins—and other plug-ins, such as SWT, stand-alone without any
awareness of the plug-ins around them. Plug-ins can also expose a means for
other plug-ins to customize the functionality they offer, just as a handheld drill
has an opening that allows you to insert other attachments such as screwdrivers
and sanders. When designing a plug-in, you need to think about what specific
plug-ins or services it will need, what it will expose to others, and in what ways it
wants to allow itself to be customized by others.

To rephrase all this in Eclipse terminology, plug-ins define their interactions with
other plug-ins in a number of ways. First, a plug-in can specify what other
plug-ins it requires, those that it absolutely cannot live without. A UI plug-in will
probably require the SWT plug-in, and a Java development tool will usually

Chapter 5. All about Plug-Ins 87

97
FAQ

Arthorne/Laffra − Eclipse Faqs − PDF generated 2004/06/09 15:16:20

require one or more of the JDT plug-ins. Plug-in requirements are specified in the
plug-in manifest file (plugin.xml). The following example shows a plug-in that
requires only the JFace and SWT plug-ins:

 <requires>
 <import plugin="org.eclipse.jface"/>
 <import plugin="org.eclipse.swt"/>
 </requires>

Your plug-in can reference only the classes and interfaces of plug-ins it requires.
Attempts to reference classes in other plug-ins will fail.

Conversely, a plug-in can choose which classes and interfaces it wants to expose
to other plug-ins. Your plug-in manifest must declare what libraries (JARs) it
provides and, optionally, what classes it wants other plug-ins to be able to
reference. This example declares a single JAR file and exposes classes only in
packages starting with the prefix com.xyz.*:

 <runtime>
 <library name="sample.jar">
 <export name="com.xyz.*"/>
 </library>
 </runtime>

Finally, a plug-in manifest can specify ways that it can be customized (extension
points) and ways that it customizes the behavior of other plug-ins (extensions).

 FAQ 96 What is the plug-in manifest file (plugin.xml)?
FAQ 98 What are extensions and extension points?
FAQ 104 What is the classpath of a plug-in?

What are extensions and extension points?

A basic rule for building modular software systems is to avoid tight coupling
between components. If components are tightly integrated, it becomes difficult to
assemble the pieces into different configurations or to replace a component with
a different implementation without causing a ripple of changes across the system.

Loose coupling in Eclipse is achieved partially through the mechanism of
extensions and extension points. The simplest metaphor for describing extensions

88 Chapter 5. All about Plug-Ins

98
FAQ

Arthorne/Laffra − Eclipse Faqs − PDF generated 2004/06/09 15:16:20

and extension points is electrical outlets. The outlet, or socket, is the extension
point; the plug, or light bulb that connects to it, the extension. As with electric
outlets, extension points come in a wide variety of shapes and sizes, and only the
extensions that are designed for that particular extension point will fit.

When a plug-in wants to allow other plug-ins to extend or customize portions of
its functionality, it will declare an extension point. The extension point declares a
contract, typically a combination of XML markup and Java interfaces, that
extensions must conform to. Plug-ins that want to connect to that extension point
must implement that contract in their extension. The key attribute is that the
plug-in being extended knows nothing about the plug-in that is connecting to it
beyond the scope of that extension point contract. This allows plug-ins built by
different individuals or companies to interact seamlessly, even without their
knowing much about one another.

The Eclipse Platform has many applications of the extension and extension point
concept. Some extensions are entirely declarative; that is, they contribute no
code at all. For example, one extension point provides customized key bindings,
and another defines custom file annotations, called markers; neither of these
extension points requires any code on behalf of the extension.

Another category of extension points is for overriding the default behavior of a
component. For example, the Java development tools include a code formatter
but also supply an extension point for third-party code formatters to be plugged
in. The resources plug-in has an extension point that allows certain plug-ins to
replace the implementation of basic file operations, such as moving and deletion.

Yet another category of extension points is used to group related elements in the
user interface. For example, extension points for providing views, editors, and
wizards to the UI allow the base UI plug-in to group common features, such as
putting all import wizards into a single dialog, and to define a consistent way of
presenting UI contributions from a wide variety of other plug-ins.

 FAQ 85 How do I declare my own extension point?
FAQ 94 What is a plug-in?
FAQ 96 What is the plug-in manifest file (plugin.xml)?
FAQ 97 How do I make my plug-in connect to other plug-ins?
FAQ 99 What is an extension point schema?
Go to Platform Plug-in Developer Guide > Programmer’s Guide > Platform
architecture

Chapter 5. All about Plug-Ins 89

What is an extension point schema?

Each extension point has a schema file that declares the elements and attributes
that extensions to that point must declare. The schema is used during plug-in
development to detect invalid extensions in the plugin.xml files in your
workspace and is used by the schema-based extension wizard in the plug-in
Manifest Editor to help guide you through the steps to creating an extension.
Perhaps most important, the schema is used to store and generate documentation
for your extension point. The schema is not used to perform any runtime
validation checks on plug-ins that connect to that extension point. In fact,
extension point schema files don’t even need to exist in a deployed plug-in.

The exact format of the schema file is an implementation detail that you probably
don’t want to become familiar with. Instead, you should use the graphical schema
editor provided by the Plug-in Development Environment.

 FAQ 85 How do I declare my own extension point?
FAQ 88 Can my extension point schema contain nested elements?
FAQ 98 What are extensions and extension points?

How do I find out more about a certain
extension point?

To find out more about a given extension point, try the following.

Consult Platform Plug-in Developer Guide > Reference > Extension
Points Reference. Here you will find the official documentation for all
extension points, including extension point schema descriptions and
examples.

•

While adding a plug-in in the PDE Manifest Editor, click the Details
button (Figure 5.1). It will take you to the page discussed above.

•

Perform Search > Plug-in Search (the keyboard shortcut is Ctrl+H).
You can search for a given extension point and also find all contributors
to a given extension point. This gives you valuable access to examples of
how the rest of the platform uses that extension point.

•

90 Chapter 5. All about Plug-Ins

99
FAQ

Arthorne/Laffra − Eclipse Faqs − PDF generated 2004/06/09 15:16:20

100
FAQ

Arthorne/Laffra − Eclipse Faqs − PDF generated 2004/06/09 15:16:20

Figure 5.1 The Details button with more extension point information

When does a plug-in get started?

A plug-in gets started when the user needs it. In UI design, an often cited rule is
that the screen belongs to the user. A program should not make changes on the
screen that the user didn’t somehow initiate. Making users feel that they are in
control of what is happening builds their confidence in the UI and results in a
much pleasanter user experience. This rule is followed by the Eclipse UI, but the
underlying principle has been applied to a much broader scope. In Eclipse, one of
the goals is to have the screen, the CPU, and the memory footprint belong to the
user; that is, the CPU should not be doing things the user didn’t ask it to do, and
memory should not be bloated with functions that the user may never need.

This principle is enforced in the Eclipse Platform through lazy plug-in activation.
Plug-ins are activated only when their functionality has been explicitly invoked
by the user. In theory, this results in a relatively small start-up time and a
memory footprint that starts small and grows only as the user begins to invoke
more and more functionality.

The extension point mechanism plays an important role in lazy activation. Each
plug-in can be viewed as having a declarative section and a code section. The
declarative part is contained in the plugin.xml file. This file is loaded into a
registry when the platform starts up and so is always available, regardless of

Chapter 5. All about Plug-Ins 91

101
FAQ

Arthorne/Laffra − Eclipse Faqs − PDF generated 2004/06/09 15:16:20

whether a plug-in has started. This allows the platform to present a plug-in’s
functionality to the user without going through the expense of loading and
activating the code segment. Thus, a plug-in can contribute menus, actions, icons,
editors, and so on, without ever being loaded. If the user tries to run an action or
open a UI element associated with that plug-in, only then will the code for that
plug-in be loaded.

To get down to specifics, a plug-in can be activated in three ways.

If a plug-in contributes an executable extension, another plug-in may run
it, causing the plug-in to be automatically loaded. For more details, read
the API javadoc for IExecutableExtension in the
org.eclipse.core.runtime package.

1.

If a plug-in exports one of its libraries (JAR files), another plug-in can
reference and instantiate its classes directly. Loading a class belonging to
a plug-in causes it to be started automatically.

2.

Finally, a plug-in can be activated explicitly, using the API method
Platform.getPlugin(). This method returns a fully initialized plug-in
instance.

3.

In all these cases, if the plug-in contributes a runtime plug-in object (subclassing
org.eclipse.core.runtime.Plugin), its class initializer, constructor, and
startup method will be run before any other class in the plug-in gets loaded. Of
course, if the plug-in’s constructor or startup method references any of its own
classes, they will be loaded and, possibly, instantiated before the plug-in is fully
initialized.

It is a common misconception that adding a plug-in to your requires list will
cause it to be activated before your plug-in. This is not true. Your plug-in may
very well be loaded and used without plug-ins in your requires list ever being
started. Never assume that another plug-in has been started unless you know you
have referenced one of its classes or executed one of its extensions.

92 Chapter 5. All about Plug-Ins

To play along with the rule of lazy activation, plug-in writers should follow some
general rules.

Do an absolute minimum of work in your Plugin.startup method.
Does the code in your startup method need to be run immediately? Do
you need to load those large in-memory structures right away? Consider
deferring as much work as possible until it is needed.

•

Avoid referencing other plug-ins during your Plugin.startup. This can
result in a sequence of cascading plug-in activations that ends up loading
large amounts of unneeded code. Load other plug-ins—either through
executable extensions or by referencing classes—only when you need
them.

•

When defining extension points, make the extension declarative as much
as possible. Keep in mind that extensions can contribute text strings,
icons, and simple logic statements via plugin.xml, allowing you to
defer or possibly completely avoid plug-in activation.

•

 FAQ 96 What is the plug-in manifest file (plugin.xml)?
FAQ 182 Can I activate my plug-in when the workbench starts?

Where do plug-ins store their state?

Plug-ins store data in two standard locations. First, each plug-in has its own
install directory that can contain any number of files and folders. The install
directory must be treated as read-only, as a multi-user installation of Eclipse will
typically use a single install location to serve many users. However, your plug-in
can still store read-only information there, such as images, templates, default
settings, and documentation.

The second place to store data is the plug-in state location. Each plug-in has
within the user’s workspace directory a dedicated subdirectory for storing
arbitrary settings and data files. This location is obtained by calling the method
getStateLocation on your Plugin instance. Generally, this location should be
used only for cached information that can be recomputed when discarded, such
as histories and search indexes. Although the platform will never delete files in
the plug-in state location, users will often export their projects and preferences
into a different workspace and expect to be able to continue working with them.

Chapter 5. All about Plug-Ins 93

102
FAQ

Arthorne/Laffra − Eclipse Faqs − PDF generated 2004/06/09 15:16:20

If you are storing information that the user may want to keep or share, you should
either store it in a location of the user’s choosing or put it in the preference store.
If you allow the user to choose the location of data, you can always store the
location information in a file in the plug-in state location.

Plug-ins can store data that may be shared among several workspaces in two
locations. The configuration location is the same for all workspaces launched on
a particular configuration of Eclipse plug-ins. You can access the root of this
location by using getConfigurationLocation on Platform. The user location
is shared by all workspaces launched by a particular user and is accessed by
using getUserLocation on Platform.

Here is an example of obtaining a lock on the user location:

 Location user = Platform.getUserLocation();
 if (user.lock()) {
 // read and write files
 } else {
 // wait until lock is available or fail
 }

Note that these locations are accessible to all plug-ins, so make sure that any data
stored here is in a unique subdirectory based on your plug-in’s unique ID. Even
then, keep in mind that a single user may open multiple workspaces
simultaneously that have access to these areas. If you are writing files in these
shared locations, you must make sure that you protect read-and-write access by
locking the location.

 FAQ 103 How do I find out the install location of a plug-in?
FAQ 111 What is a configuration?
FAQ 123 How do I load and save plug-in preferences?

How do I find out the install location of a
plug-in?

You should generally avoid making assumptions about the location of a plug-in
at runtime. To find resources, such as images, that are stored in your plug-in’s
install directory, you can use URLs provided by the Platform class. These URLs
use a special Eclipse Platform protocol, but if you are using them only to read
files, it does not matter.

94 Chapter 5. All about Plug-Ins

103
FAQ

Arthorne/Laffra − Eclipse Faqs − PDF generated 2004/06/09 15:16:20

The following snippet opens an input stream on a file called sample.gif located
in a subdirectory, called icons, of a plug-in’s install directory:

 Bundle bundle = Platform.getBundle(yourPluginId);
 Path path = new Path("icons/sample.gif");
 URL fileURL = Platform.find(bundle, path);
 InputStream in = fileURL.openStream();

If you need to know the file system location of a plug-in, you need to use
Platform.resolve(URL). This method converts a platform URL to a standard
URL protocol, such as HyperText Transfer Protocol (HTTP), or file. Note that
the Eclipse Platform does not specify that plug-ins must exist in the local file
system, so you cannot rely on this method’s returning a file system URL under
all circumstances in the future.

 FAQ 102 Where do plug-ins store their state?

What is the classpath of a plug-in?

Developers coming from a more traditional Java programming environment are
often confused by classpath issues in Eclipse. A typical Java application has a
global namespace made up of the contents of the JARs on a single universal
classpath. This classpath is typically specified either with a command-line
argument to the VM or by an operating system environment variable. In Eclipse,
each plug-in has its own unique classpath. This classpath contains the following,
in lookup order:

The OSGi parent class loader. All class loaders in OSGi have a common
parent class loader. By default, this is set to be the Java boot class loader.
The boot loader typically only knows about rt.jar, but the boot
classpath can be augmented with a command-line argument to the VM.

•

The exported libraries of all imported plug-ins. If imported plug-ins
export their imports, you get access to their exported libraries, too.
Plug-in libraries, imports, and exports are all specified in the
plugin.xml file.

•

Chapter 5. All about Plug-Ins 95

104
FAQ

Arthorne/Laffra − Eclipse Faqs − PDF generated 2004/06/09 15:16:20

The declared libraries of the plug-in and all its fragments. Libraries are
searched in the order they are specified in the manifest. Fragment
libraries are added to the end of the classpath in an unspecified order.

•

In Eclipse 2.1, the libraries from the org.eclipse.core.boot and
org.eclipse.core.runtime were also automatically added to every plug-in’s
classpath. This is not true in 3.0; you now need to declare the runtime plug-in in
your manifest’s requires section, as with any other plug-in.

 FAQ 96 What is the plug-in manifest file (plugin.xml)?
FAQ 97 How do I make my plug-in connect to other plug-ins?
FAQ 105 How do I add a library to the classpath of a plug-in?
FAQ 106 How can I share a JAR among various plug-ins?
FAQ 107 How do I use the context class loader in Eclipse?

How do I add a library to the classpath of a
plug-in?

In FAQ 104, we explained how the classpath for a plug-in is computed. To
access a given library from a plug-in, the library needs to be added to the
classpath of the plug-in.

A JAR can be added to the classpath of a plug-in in four ways.

The JAR can be added to the boot classpath. This is generally a bad idea,
however, as it requires an extra VM argument, and it also affects the
classpath of all other installed plug-ins. If the JAR adds types—classes or
interfaces—that mask types declared in other plug-ins, you will probably
break those other plug-ins. Nonetheless, if you are looking for a quick
and dirty hack, this is the easiest approach.

1.

The JAR can be added to the declared libraries for a plug-in. This is fine
if you don’t anticipate a need for other plug-ins also to use that JAR.

2.

A new plug-in can be created that is a wrapper for the library; then the
new plug-in is added to the list of required plug-ins for all plug-ins that
want access to the library.

3.

96 Chapter 5. All about Plug-Ins

105
FAQ

Arthorne/Laffra − Eclipse Faqs − PDF generated 2004/06/09 15:16:20

The OSGi parent loader can be changed by setting the
osgi.parentClassloader system property on startup. This is also
generally a bad idea, for the same reasons listed for changing the boot
classpath. Valid values for the parent loader property are:

boot. The Java boot class loader. This is the default OSGi parent
loader, and has access to all JARs on the VM’s boot classpath.

♦

ext. The Java extension class loader. This class loader has
access to the JARs placed in the ext directory in the JVM’s
install directory. The parent of the extension loader is typically
the boot class loader.

♦

app. The Java application class loader. This class loader has
access to the traditional classpath entries specified by the
−classpath command-line argument. In Eclipse this typically
includes only the bootstrap classes in startup.jar. The parent
of the application class loader is the extension class loader.

♦

fwk. The OSGi framework class loader. This is the class loader
that is responsible for starting the OSGi framework. Typically
you will not want to use the class loader, as its classpath is not
strictly specified.

♦

4.

Using a separate plug-in to contain a library is the most powerful approach
because it means that other plug-ins can make use of that library without having
to load your plug-in or add the library to their own classpath explicitly. This
approach is used throughout the Eclipse Project to add third-party libraries, such
as Xerces, Ant, and JUnit.

Of course, because this is Java, there is always a way to load classes outside the
scope of your classpath. You can instantiate your own class loader that knows
how to find the code you need and use that to load other classes. This is a very
powerful mechanism because it can change dynamically at runtime, and it can
even load classes that aren’t in your file system, such as classes in a database or
even classes generated on the fly. Manipulating class loaders is a bit outside the
scope of this book, but plenty of information is available in Java programming
books or at the Java Web site (http://java.sun.com).

 FAQ 106 How can I share a JAR among various plug-ins?
FAQ 109 What is a plug-in fragment?

Chapter 5. All about Plug-Ins 97

http://java.sun.com

How can I share a JAR among various
plug-ins?

Suppose that plug-in A and plug-in B both use xmlparser.jar. In your
workspace are two projects (for A and B), each containing a copy of the
xmlparser.jar library. This is clearly not ideal: Two copies of the JAR are
loaded at runtime, and classes from those JARs will not be compatible with each
other, as they are loaded by different class loaders. (You will get a
ClassCastException if you try to cast a type from one library into a type from
the other library.)

Declaring xmlparser.jar as an external JAR does not work, as there is no easy
way during deployment of your plug-ins to manipulate your plug-in’s classpath
so that they can see the library. The best way to share libraries is to create a new
plug-in that wraps the library you want to share.

Declare a new plug-in, C, to contain the library JAR, and make both plug-in A
and plug-in B dependent on plug-in C. Make sure that plug-in C exports its
library so other plug-ins can see it:

 <runtime>
 <library name="xmlParserAPIs.jar">
 <export name="*"/>
 </library>
 </runtime>

When you deploy these three plug-ins, they will all share the same library. Note
that in some situations, sharing libraries between plug-ins is not possible. If two
plug-ins require different or incompatible versions of the same library, they have
no choice but to each have a copy of the library.

 FAQ 104 What is the classpath of a plug-in?
FAQ 105 How do I add a library to the classpath of a plug-in?

98 Chapter 5. All about Plug-Ins

106
FAQ

Arthorne/Laffra − Eclipse Faqs − PDF generated 2004/06/09 15:16:20

How do I use the context class loader in
Eclipse?

In Java, each thread can optionally reference a context class loader. This loader
can be set at any time by an application and is used for loading classes only when
it is explicitly requested to do so. Many code libraries, in particular Java
Database Connectivity (JDBC) and Xerces, use the context class loader in factory
methods to allow clients of the library to specify what class loader to use.
Although the context loader is not used by Eclipse itself, you may need to be
aware of it when referencing third-party libraries from within Eclipse.

By default, the context loader is set to be the application class loader, which is
not used in Eclipse. Because Eclipse has a separate class loader for each installed
plug-in, a default class loader generally does not make sense as the context loader
for a given thread. If you are calling third-party libraries that rely on the context
loader, you will need to set it yourself. The following code snippet sets the
context class loader before calling a library. Note that the code politely cleans up
afterward by resetting the context loader to its original value:

 Thread current = Thread.currentThread();
 ClassLoader oldLoader = current.getContextClassLoader();
 try {
 current.setContextClassLoader(getClass().getClassLoader());
 //call library code here
 } finally {
 current.setContextClassLoader(oldLoader);
 }

 FAQ 104 What is the classpath of a plug-in?

Why doesn’t Eclipse play well with Xerces?

Many plug-ins in the Eclipse Platform require an XML parser for reading and
storing various data in XML format. In particular, the platform uses an XML
parser to read each plug-in’s plugin.xml file during start-up. Because the JDK
before 1.4 did not provide an XML parser, Eclipse used to ship with a plug-in
containing a Xerces parser. Xerces is one of the two XML parser
implementations maintained by the Apache Project.

Chapter 5. All about Plug-Ins 99

107
FAQ

Arthorne/Laffra − Eclipse Faqs − PDF generated 2004/06/09 15:16:20

108
FAQ

Arthorne/Laffra − Eclipse Faqs − PDF generated 2004/06/09 15:16:20

The first problems began to appear when users tried to start Eclipse using a JDK
that also contained an implementation of Xerces. Prior to JDK 1.4, it was
common practice to throw a copy of Xerces or Xalan into the JDK’s ext

directory so that it could be used by all applications. Thus, two copies of Xerces
were available when Eclipse was starting up, one in the ext directory and one in
the org.apache.xerces plug-in. Because libraries provided by the JDK always
appear at the beginning of the runtime classpath, the one in the JDK is always
found first. If this copy of Xerces was slightly different from the one the platform
expected, various linkage errors or ClassCastExceptions occurred on start-up,
often preventing Eclipse from starting up at all. The workaround in this case was
pretty straightforward: Omit the ext directory from the classpath when starting
Eclipse:

 eclipse −vmargs −Djava.ext.dirs=

The situation became worse with JDK 1.4, which added a specification for XML
called Java API for XML Processing (JAXP). The exact parser implementation
was left unspecified, so each JDK was free to choose its own, as long as it was
compliant with the interfaces defined by JAXP. Sun decided to use the Apache
Crimson parser, and IBM went with the Apache Xerces parser. Worst of all,
because these packages were now part of the standard JDK libraries, there was no
easy workaround as there has been for the ext problem. The JDK people,
realizing that they had messed up by bundling such widely used packages in their
JDKs, thereby breaking any application that used slightly different versions of
those packages, plan to prefix the implementation package names with a unique
prefix to prevent these collisions in the future. However, it was too late to fix this
problem for JDK 1.4. The bottom line: You cannot use Eclipse 2.1 or earlier with
an IBM 1.4 VM.

For Eclipse 3.0, the problem was solved by tossing out the Xerces plug-in and
simply using JAXP for any XML processing. Now at most one Xerces is on the
classpath, so there cannot be any collisions. Of course, this means that you need
at least JDK 1.4 to run Eclipse 3.0.

100 Chapter 5. All about Plug-Ins

What is a plug-in fragment?

Sometimes it is useful to make part of a plug-in optional, allowing it to be
installed, uninstalled, or updated independently from the rest of the plug-in. For
example, a plug-in may have a library that is specific to a particular operating
system or windowing system or a language pack that adds translations for the
plug-in’s messages. In these situations, you can create a fragment that is
associated with a particular host plug-in. On disk, a fragment looks almost
exactly the same as a plug-in, except for a few cosmetic differences.

The manifest is stored in a file called fragment.xml instead of
plugin.xml.

•

The top-level element in the manifest is called fragment and has two
extra attributes—plugin-id and plugin-version—for specifying the
ID and version number of the host plug-in.

•

The fragment manifest does not need its own requires element. The
fragment will automatically inherit the requires element of its host
plug-in. It can add requires elements if it needs access to plug-ins that
are not required by the host plug-in.

•

Apart from these differences, a fragment appears much the same as a normal
plug-in. A fragment can specify libraries, extensions, and other files. When it is
loaded by the platform loader, a fragment is logically, but not physically, merged
into the host plug-in. The end result is exactly the same as if the fragment’s
manifest were copied into the plug-in manifest, and all the files in the fragment
directory appear as if they were located in the plug-in’s install directory. Thus, a
runtime library supplied by a fragment appears on the classpath of its host
plug-in. In fact, a Java class in a fragment can be in the same package as a class
in the host and will even have access to package-visible methods on the host’s
classes. The methods find and openStream on Plugin, which take as a
parameter a path relative to the plug-in’s install directory, can be used to locate
and read resources stored in the fragment install directory.

 FAQ 94 What is a plug-in?

Chapter 5. All about Plug-Ins 101

109
FAQ

Arthorne/Laffra − Eclipse Faqs − PDF generated 2004/06/09 15:16:20

Can fragments be used to patch a plug-in?

A common misconception is that a fragment can be used to patch or replace
functionality in its host plug-in. Although this is possible to a certain extent, this
is not what fragments were designed for. A plug-in and its fragments each
contribute a manifest, and each may also contribute native libraries, Java code
libraries, and other resources. At runtime, these contributions are all merged into
a single manifest and a single namespace of libraries and resources. If a fragment
defines the same library as its host, whether the fragment’s library will be found
over the host’s library is undefined. This makes it impractical to use fragments as
a way of replacing libraries or other resources defined by a plug-in.

Nonetheless, it is possible to design a plug-in so that it allows a portion of its
functionality to be implemented or replaced by a fragment. Let’s look at a
notable example of how this is applied in the org.eclipse.swt plug-in. The
SWT plug-in manifest declares a runtime library by using a special
path-substitution variable:

 <library name="ws/swt.jar">

When the plug-in manifest is loaded, the platform will substitute the ws

variable with a string describing the windowing system of the currently running
operating system. Each windowing system has a separate SWT plug-in fragment
that will provide this library. For example, when running on windows, ws will
resolve to ws/win32. You can make use of this path-substitution facility in your
own plug-in code by using the Plugin.find methods. The fragment
org.eclipse.swt.win32 supplies the swt.jar library at the path
org.eclipse.swt.win32/ws/win32/swt.jar. Thus, in this case the fragment
will supply a library that was specified by its host plug-in.

The same principle can be used to allow a fragment to provide a patch to a host
plug-in. The host plug-in can specify both its own library and a patch library in
its plug-in manifest:

 <runtime>
 <library name="patch.jar">
 <export name="*"/>
 </library>
 <library name="main.jar">
 <export name="*"/>
 </library>
 </runtime>

102 Chapter 5. All about Plug-Ins

110
FAQ

Arthorne/Laffra − Eclipse Faqs − PDF generated 2004/06/09 15:16:20

The host plug-in puts all its code in main.jar and does not specify a patch.jar

at all. When no patch is needed, the patch.jar library is simply missing from
the classpath. This allows a fragment to be added later that contributes the
patch.jar library. Because the host plug-in has defined patch.jar at the front
of its runtime classpath, classes in the patch library will be found before classes
in the original library.

This technique is used in Eclipse 3.0 to provide backward-compatibility support
for plug-ins based on Eclipse 2.1 or earlier. The plug-in
org.eclipse.ui.workbench defines a library called compatibility.jar at the
start of its classpath. When the platform detects a plug-in written prior to Eclipse
3.0, a fragment called org.eclipse.ui.workbench.compatibility containing
compatibility.jar is automatically added to the plug-in’s classpath. This
library adds back some old API that was moved in Eclipse 3.0. The beauty of this
mechanism is that it allows the backward-compatibility support to be added or
removed with no impact on the host plug-in.

 FAQ 104 What is the classpath of a plug-in?

What is a configuration?

A configuration is the set of plug-ins available in a particular instance of the
Eclipse Platform. A given installation of Eclipse may contain hundreds or even
thousands of plug-ins. More than one Eclipse-based application can share this
same install location, but they don’t always want to use all the same plug-ins.
When Eclipse is started, a configurator determines what subset of the installed
pool of plug-ins will be used for that particular instance of the platform. By
default, all installed plug-ins will be in the configuration, but a configuration can
be customized to contain different groups of plug-ins. Go to Help > Software
Updates > Manage Configuration to see and modify what plug-ins are in your
configuration.

 FAQ 243 What is the minimal Eclipse configuration?

Chapter 5. All about Plug-Ins 103

111
FAQ

Arthorne/Laffra − Eclipse Faqs − PDF generated 2004/06/09 15:16:20

How do I find out whether the Eclipse Platform
is running?

If you have a library of code that can be used within both the Eclipse Platform
and a stand-alone application, you may need to find out programmatically
whether the Eclipse Platform is running. In Eclipse 3.0, this is accomplished by
calling Platform.isRunning. In 2.1, call BootLoader.isRunning. You will
need to set up the classpath of your stand-alone application to make sure that the
boot or runtime plug-in’s library is reachable. Alternatively, you can reference
the necessary class via reflection.

You can find out whether an Ant script is running from within Eclipse by
querying the state of the variable eclipse.running. You can use this
information to specify targets that are built only when Ant is invoked from within
Eclipse:

 <target name="properties" if="eclipse.running"/>

 FAQ 315 What is Ant?

Where does System.out and System.err output
go?

Most of the time, the answer is nowhere. Eclipse is simply a Java program, and it
acts like any other Java program with respect to its output streams. When
launched from a shell or command line, the output will generally go back to that
shell. In Windows, the output will disappear completely if Eclipse is launched
using the javaw.exe VM. When Eclipse is launched using java.exe, a shell
window will be created for the output.

Because the output is usually lost, you should avoid using standard output or
standard error in your plug-in. Instead, you can log error information by using the
platform logging facility. Other forms of output should be written to a file,
database, socket, or other persistent store. The only common use of standard
output is for writing debugging information, when the application is in debug
mode. Read up on the platform tracing facility for more information.

104 Chapter 5. All about Plug-Ins

112
FAQ

Arthorne/Laffra − Eclipse Faqs − PDF generated 2004/06/09 15:16:20

113
FAQ

Arthorne/Laffra − Eclipse Faqs − PDF generated 2004/06/09 15:16:20

 FAQ 121 How do I use the platform logging facility?
FAQ 122 How do I use the platform debug tracing facility?

How do I locate the owner plug-in from a given
class?

You can’t. Some known hacks were used prior to Eclipse 3.0 to obtain this
information, but they relied on implementation details that were not strictly
specified. For example, you could obtain the class’s class loader, cast it to
PluginClassLoader, and then ask the class loader for its plug-in descriptor. This
relied on an assumption about the class loading system that is subject to change
and, in fact, has changed in Eclipse 3.0. The correct answer to this question is
that there is no way to reliably determine this information. If you are exploiting
knowledge of the Eclipse runtime’s implementation to obtain this information,
expect to be foiled when the runtime implementation changes.

How does OSGi and the new runtime affect
me?

Just when you thought you were beginning to understand how the Eclipse kernel
worked, those pesky Eclipse developers replaced it all for Eclipse 3.0. The kernel
is now built on another Java component framework, the Open Services Gateway
initiative (OSGi). The reasons for this convergence between Eclipse and OSGi
are manifold. The two frameworks had many similarities to begin with, and each
framework had many features that the other lacked.

By bringing the two together, Eclipse gained the infrastructure for many new
features, especially dynamic addition and removal of plug-ins and a more robust
security model. Eclipse in turn has a powerful declarative model—extensions and
extension points—that OSGi lacked, in addition to more advanced support for
multiple versions, fragments, a commercial-quality open source implementation,
and great tooling support. Rather than creating a derivative OSGi++, the Eclipse
community is contributing a number of important Eclipse features back into the
OSGi specification, paving the way for better interoperability between the two
frameworks. All in all, it’s what the marketing types like to call a win-win
situation.

Chapter 5. All about Plug-Ins 105

114
FAQ

Arthorne/Laffra − Eclipse Faqs − PDF generated 2004/06/09 15:16:20

115
FAQ

Arthorne/Laffra − Eclipse Faqs − PDF generated 2004/06/09 15:16:20

Now, to the question of how plug-ins are affected: The new runtime is 100
percent backward compatible with the runtime that existed in all versions before
Eclipse 3.0. Plug-ins written prior to 3.0 will continue to run without requiring
any modification. When you port a plug-in to 3.0, you can still make use of the
old runtime API by explicitly importing the backward-compatibility layer, which
is found in a separate plug-in. Although the boot and runtime plug-ins were
imported automatically prior to Eclipse 3.0, the runtime must now be imported
explicitly. The new runtime compatibility plug-in contains the deprecated
portions of the API from the boot and runtime plug-ins and also exports the new
runtime plug-in. In short, all you now have to import is the new runtime
compatibility plug-in, and you will get access to both the new runtime API and
the old. The following example from a plugin.xml file imports both the old and
new runtimes:

 <requires>
 <import plugin="org.eclipse.core.runtime.compatibility"/>
 </requires>

Apart from that one change, you can continue using runtime facilities as you did
prior to Eclipse 3.0. Over time, more elements of the old runtime will likely
become deprecated, and plug-ins will begin to use the equivalent OSGi APIs
instead. However, for release 3.0, the focus is on getting the technology in place
with minimal disruption to the rest of the platform. For now, the fact that Eclipse
is running on OSGi is an implementation detail that will not significantly affect
you.

 FAQ 116 What is a dynamic plug-in?
The OSGi Web site (http://www.osgi.org)

What is a dynamic plug-in?

Prior to Eclipse 3.0 the platform had to be restarted in order for added, removed,
or changed plug-ins to be recognized. This was largely owing to the fact that the
plug-in registry was computed statically at start-up, and no infrastructure was
available for changing the registry on the fly. In Eclipse 3.0, plug-ins can be
added or removed dynamically, without restarting. Dynamicity, however, does
not come for free. Roughly speaking, plug-ins fall into four categories of
dynamicity.

106 Chapter 5. All about Plug-Ins

116
FAQ

Arthorne/Laffra − Eclipse Faqs − PDF generated 2004/06/09 15:16:20

http://www.osgi.org

Nondynamic plug-ins do not support dynamicity at all. Plug-ins written
prior to Eclipse 3.0 are commonly in this category. Although they can
still often be dynamically added or removed, there may be unknown side
effects. Some of these plug-ins’ classes may still be referenced,
preventing the plug-ins from being completely unloaded. A nondynamic
plug-in with extension points will typically not be able to handle
extensions that are added or removed after the plug-in has started.

1.

Dynamic-aware plug-ins support other plug-ins being dynamic but do
not necessarily support dynamic addition or removal of themselves. The
generic workbench plug-in falls into this category. It supports other
plug-ins that supply views, editors, or other workbench extensions being
added or removed, but it cannot be dynamically added or removed itself.
It is generally most important for plug-ins near the bottom of a
dependency chain to be dynamic aware.

2.

Dynamic-enabled plug-ins support dynamic addition or removal of
themselves, but do not necessarily support addition or removal of
plug-ins they interact with. A well-behaved plug-in written prior to
Eclipse 3.0 should already be dynamically enabled. Dynamic enablement
involves following good programming practices. If your plug-in registers
for services, adds itself as a listener, or allocates operating system
resources, it should always clean up after itself in its inherited
Plugin.shutdown method. A plug-in that does this consistently is
already dynamic enabled. It is most important for plug-ins near the top of
a dependency chain to be dynamic enabled.

3.

Fully dynamic plug-ins are both dynamic aware and dynamic enabled. A
system in which all plug-ins are fully dynamic is very powerful, as any
individual plug-in can be added, removed, or upgraded in place without
taking the system down. In fact, such a system would never have any
reason to shut down as it could heal itself of any damage or bug by doing
a live update of the faulty plug-in. OSGi, the Java component
architecture that is used to implement the Eclipse kernel, is designed
around this goal of full dynamicity.

4.

The dynamicity of a plug-in depends on the dynamic capabilities of the plug-ins
it interacts with. Even if a plug-in is fully dynamic, it may not be possible to
cleanly remove it if a plug-in that interacts with it is not dynamic aware. As long
as someone maintains a reference to a class defined in a plug-in, that plug-in
cannot be completely removed from memory. When a request is made to

Chapter 5. All about Plug-Ins 107

dynamically add or remove a plug-in, the platform will always make a best effort
to do so, regardless of the dynamic capabilities of that plug-in. However, there
may be unexpected errors or side effects if all plug-ins in the system that
reference it are not well-behaved, dynamic citizens.

 FAQ 117 How do I make my plug-in dynamic enabled?
FAQ 118 How do I make my plug-in dynamic aware?

How do I make my plug-in dynamic enabled?

Most of the effort required to make a plug-in dynamic enabled can be summed up
as doing what you should be doing anyway as part of good programming
practice. Most importantly, to be dynamic enabled, your plug-in has to properly
clean up after itself in the Pluginshutdown method. You need to keep in mind
the following checklist for your plug-in’s shutdown method.

If you have added listeners to notification services in other plug-ins, you
need to remove them. This generally excludes any listeners on SWT
controls created by your plug-in. When those controls are disposed of,
your listeners are garbage collected anyway.

•

If you have allocated SWT resources, such as images, fonts, or colors,
they need to be disposed of.

•

Any open file handles, sockets, or pipes must be closed.•

Any metadata stored by other plug-ins that may contain references to
your classes needs to be removed. For example, session properties stored
on resources in the workspace need to be removed.

•

Other services that require explicit uninstall need to be cleaned up. For
example, the runtime plug-in’s adapter manager requires you to
unregister any adapter factories that you have manually registered.

•

If your plug-in has forked background threads or jobs, they must be
canceled and joined to make sure that they finish before your plug-in
shuts down.

•

108 Chapter 5. All about Plug-Ins

117
FAQ

Arthorne/Laffra − Eclipse Faqs − PDF generated 2004/06/09 15:16:20

Prior to Eclipse 3.0, the consequences of failing to clean up properly were not as
apparent as plug-ins were shut down only when the VM was about to exit. In a
potentially dynamic world, the consequence of not being tidy is that your plug-in
cannot be dynamic enabled.

 FAQ 116 What is a dynamic plug-in?
FAQ 118 How do I make my plug-in dynamic aware?

How do I make my plug-in dynamic aware?

Dynamic awareness requires extra steps that were not required prior to the
introduction of dynamic plug-ins. Dynamic awareness requires that you remove
all references to classes defined in other plug-ins when those plug-ins are
removed from the system. In particular, if your plug-in defines extension points
that load classes from other plug-ins—executable extensions—you need to
discard those references when other plug-ins are dynamically removed. The
extension registry allows you to add a listener that notifies you when extensions
are being added or removed from the system. If your plug-in maintains its own
cache of extensions that are installed on your extension point, your listener
should update this cache for each added or removed extension.

The following is an example of a simple class that maintains its own cache of the
set of extensions installed for a given extension point. This example is a bit
contrived as simply caching the extension objects has no value. Typically, your
plug-in will process the extensions to extract useful information and possibly
load one or more classes associated with that extension. The basic structure of
this cache example is as follows:

 public class ExtCache implements IRegistryChangeListener {
 private static final String PID = "my.plugin";
 private static final String PT_ID =
 PID + "." + "extension.point";
 private final HashSet extensions = new HashSet();
 ...
 }

The extensions field stores the set of installed extensions for a particular
extension point.

Chapter 5. All about Plug-Ins 109

118
FAQ

Arthorne/Laffra − Eclipse Faqs − PDF generated 2004/06/09 15:16:20

The cache has a startup method that loads the initial set of extensions and then
adds an extension registry listener in order to be notified of future changes:

 public void startup() {
 IExtensionRegistry reg = Platform.getExtensionRegistry();
 IExtensionPoint pt = reg.getExtensionPoint(PT_ID);
 IExtension[] ext = pt.getExtensions();
 for (int i = 0; i < ext.length; i++)
 extensions.add(ext[i]);
 reg.addRegistryChangeListener(this);
 }

The class implements the IRegistryChangeListener interface, which has a
single method that is called whenever the registry changes:

 public void registryChanged(IRegistryChangeEvent event) {
 IExtensionDelta[] deltas =
 event.getExtensionDeltas(PID, PT_ID);
 for (int i = 0; i < deltas.length; i++) {
 if (deltas[i].getKind() == IExtensionDelta.ADDED)
 extensions.add(deltas[i].getExtension());
 else
 extensions.remove(deltas[i].getExtension());
 }
 }

This class is now dynamic aware but is not yet dynamic enabled; that is, the class
does not yet support itself being dynamically removed. The final step is to
implement a shutdown method that clears all values from the cache and removes
the listener from the extension registry:

 public void shutdown() {
 extensions.clear();
 IExtensionRegistry reg = Platform.getExtensionRegistry();
 reg.removeRegistryChangeListener(this);
 }

This shutdown method must be called from the shutdown method of the plug-in
that defines the cache. For the complete source code of this example, see the
ExtCache class in the FAQ Examples plug-in.

Note that not only extensions points acquire and maintain references to classes
defined in other plug-ins. You need to be especially aware of static fields and
caches that contain references to objects whose class is defined in other plug-ins.

110 Chapter 5. All about Plug-Ins

If you hold onto classes defined in other plug-ins through different mechanisms,
you also need to discard those references when those other plug-ins are removed.

 FAQ 116 What is a dynamic plug-in?
FAQ 117 How do I make my plug-in dynamic enabled?

Chapter 5. All about Plug-Ins 111

This page intentionally blank

