
C H A P T E R 1

An Overview

This chapter puts Microsoft SQL Server 2000 Reporting Services in
context. You’ll learn about its architecture and its place in the world

and get a brief overview of its features and functionality. This is an
important chapter because it helps you understand why Reporting
Services is more than just an alternative (or supplement) to Crystal
Reports and how it can make your life easier.

We know you’re chomping at the bit to get started—and perhaps
you’ve already installed the software, snooped around, and tried out a
report or two. Hopefully you’ve extracted a copy of the symmetric
encryption key and have the backup off-site, along with the backup file
password. Yes? Good. Now we’re ready to dispel any prejudices or mis-
conceptions your explorations have generated.

Security is (or should be) very important to you; at least we know
your boss is concerned with security. All along the way, we’ll show you
how to secure your data and reports in ways that the documentation
doesn’t mention or only touches upon. We’ll discuss encryption and top-
ics that seem pretty far removed from “reporting,” but without these
protections, you might as well post reports exposing your company
secrets on the 20-foot newsreader board in Times Square.

NOTE We’ve spent quite a bit of time creating audio-annotated screen
capture demonstrations of aspects of Reporting Services. You’ll find
these demos on the accompanying DVD. We call these Guide me!
videos. If you need help on a section, look for the Guide me! icon in
the margin.

1

Guide me!

8288_01.qxd 9/8/04 10:41 AM Page 1

What Is Microsoft SQL Server 2000
Reporting Services?

At long last, developers have a brand-new server-based report-
ing solution from Microsoft built from the ground up, almost com-
pletely but not entirely in .NET managed code. Without being too
enthusiastic, we can say that Reporting Services enables extremely
straightforward, centrally managed, rapidly developed, easily ex-
tended, scalable, secure, fixed as well as interactive, proactive as well
as passive database reporting to a variety of (extensible) output for-
mats, from any database or data source (and not just SQL Server)
whose learning curve is hardly a curve; it’s almost flat. <Whew!>
Best of all, it’s free! Well, let’s qualify that statement a little: it’s
included with the SQL Server Standard or better license at no addi-
tional cost.

Not having taken the Microsoft red pill,1 we can freely draw
comparisons to other reporting products on the market. One of the
first that undoubtedly flashes into everyone’s minds is Crystal
Reports. In contrast to Crystal Reports, Reporting Services is a
product that Microsoft definitely got right from the outset. We see a
new age dawning of assault on Crystal practitioners. Stand by to be
assimilated—resistance is futile.

Okay, if you are at the pinnacle of pushing Crystal to its func-
tional feature limits, you may well find that Crystal offers additional
functionality over Microsoft Reporting Services, even if it’s expen-
sive and awkward to learn and use. However, we think that the vast
majority of developers and power users in the market want reporting
that’s easy to use, learn, and develop with. Microsoft Reporting
Services certainly delivers that.

What Is the Source of the Report Data?

Before we go any further, we want to reinforce the message that
although the product name includes the moniker “SQL Server 2000”
as in “Microsoft SQL Server 2000 Reporting Services,” in fact SQL

It is difficult to
contain my genuine
heartfelt enthusiasm
and appreciation
when I attempt
to succinctly
encapsulate what
Microsoft SQL
Server 2000
Reporting Services
is and provides. Just
bear in mind that I
don’t do marketing
doublespeak; I am
British, and we
are the modest
world masters of
understatement.

–Peter

2 Chapter 1 An Overview

1 Or been on their payroll.

I first saw what
Microsoft was
hatching with
Reporting Services
(code-named Rosetta)
in February 2003.
Back then it was
planned as a release
feature of the next
version of SQL Server
(code-named Yukon).
After we and the other
folks privileged with
this sneak preview
had relocated the
shreds of our blown-
off socks, we gave
our feedback and
petitioned to have
Reporting Services

8288_01.qxd 9/8/04 10:41 AM Page 2

Server 2000 is required only as the catalog repository for the
deployed (managed) reports and their metadata, and not necessarily
as the only data source that those reports can be based on.

In fact, right out of the box Reporting Services includes built-in
support to generate reports from a number of data sources through
what the Reporting Services folks call Data Processing extensions.
Think of them as another form of .NET Data Providers; they’re
based on the same technology. Data is extracted from SQL Server
and Oracle as well as any other database management system
(DBMS) that can be accessed via either OLE DB providers or
ODBC drivers using Data Processing extensions. This means that
most commercial data stores are accessible because there are man-
aged .NET Data Providers as well as OLE DB or ODBC drivers for
virtually every serious data source. These providers are available
from Microsoft or from the DBMS manufacturers and third-party
data provider vendors such as DataDirect (and others).

Reporting Services is designed with an open architecture. No,
Microsoft does not publish the source code,2 but under the covers,
Reporting Services’ Data Processing extensions utilize a subset of
easily understood .NET Data Provider interfaces. If you can get or
write a .NET Data Provider for a custom data source (something
that’s moderately easy), Reporting Services can connect to and gen-
erate reports on that custom data source.3 We’ll discuss this in more
detail in Chapter 13 where we’ll show you our implementation to
report on the Windows system event logs.

Reporting Services: The Main Components

In a nutshell, to author a report, the developer creates a report defi-
nition using the Report Designer add-in to Visual Studio .NET 2003
or a third-party authoring tool.4 While under development, each

Reporting Services: The Main Components 3

released now, as in
right now, with the
current version of
SQL Server 2000.
Microsoft appeared
to take that feedback
to heart, and in June
2003 it was publicly
announced at the
TechEd Conference
in Dallas: Rosetta for
SQL Server 2000
would indeed be
released at the end of
2003. We’re both
glad that Rosetta was
untied from Yukon
because we don’t
expect this innovative
version of SQL Server
to appear for another
year (or so).

–Peter

2 Like that will happen…
3 Writing a .NET Data Provider in managed code is much easier than writing an

ODBC driver, unlike writing an OLE DB data provider, which requires a Ph.D.
in nuclear physics and abstract reasoning.

4 See the DVD for a list of these tools as well as working examples of their RDL
generators.

8288_01.qxd 9/8/04 12:38 PM Page 3

report definition is maintained in its own XML file, which is given
the file extension of “RDL”. We’ll tell you more about RDL later on;
however, succinctly, RDL files contain the layout, graphics, connec-
tion, and query information as well as Report Parameter definitions
and almost all other report logic. Using the Report Designer, devel-
opers can author, tune, and refine reports without having to access
the Report Server. At design time, reports can be “previewed”
using the Report Designer, which provides a close approximation
of what the finished report will look like when rendered by the
Report Processor.

Once a report definition is complete, the report is published, or
“deployed,” to a Report Server where it becomes a compiled man-
aged report. At this point, the DBA or report administrator can
decide how and to whom a report is to be made available.

The Report Server exposes a SOAP5 interface, through which
these managed reports can be programmatically manipulated.
Straight out of the box, there is a fully functional Report Manager.
This is an ASP-based application that sits on top of the Report
Server’s SOAP interface and provides a user-friendly GUI environ-
ment with which to manage reports. Additionally, there is a Report
Scripting Utility (rs.exe) that enables you to execute scripts that
make calls to the SOAP interface.

We’ll show you how to launch managed reports from code or
simply tune up or customize the existing Report Manager. When it’s
time to view a managed report, the compiled report definition is fed
to the Report Processor, which fetches the data, merges it with the
report layout, renders the report into a selected format, and streams
back the result. Reports can be processed on demand or according
to customizable schedules. It’s all really very simple. But don’t close
the book yet. There are a few more details that you’ll want to know.

Reporting Services is composed of a number of well-integrated
components, most of which are written in .NET managed code.
Some of these components we’ll be exploring, and we shall see that
they consist of open and extensible subcomponents. The overall look
and feel of the Reporting Services Report Designer is reminiscent of
web (ASP) application development in Visual Studio .NET or the

Delving into the
intermediate language
(IL) of these compo-
nents (which is, of
course, expected of a
potty-trained geek like
me) leads one to
conclude that C# was
the developer’s
language of choice.

–Peter

Yes, but those folks
were C++ geeks and
not smart enough
to learn Visual
Basic .NET.

–Bill

OK, Bill, I’ll let you
win. The Visual
Basic .NET geeks can
be smarter, if that’s
what you want, but
the C# geeks will
remain richer.
“Developers who
program primarily in
C# earn 26 percent
more than those who
develop primarily in
Visual Basic .NET.”
(www.fawcette.com/
vsm/2003_06/
magazine/features/
salarysurvey/)

–Peter

Yes, but C# programs
take 28 percent longer
to write, so they spend
more time at the office
while the Visual Basic
programmers are out
having a life.

–Bill

Nice try, but if you
read the article, this
was based on hourly
rates.

–Peter

4 Chapter 1 An Overview

5 We discuss how to manipulate reports through SOAP in Chapter 93/4.

8288_01.qxd 9/8/04 10:41 AM Page 4

Report Designer in Microsoft Access—but it’s far more flexible. To
build a report you first define the location of the source of its data,
lay out some controls on the report surface, and bind those controls
to the data. For much of this, it’s all drag and drop. When the report
is generated, the Report Server extrudes the report in much the
same way that the ASP.NET engine returns HTML from a web
page. But Reporting Services does not stop there. It can also render
reports in a variety of other ways, as we’ll soon explain.

Here are the main components of Reporting Services:

� A Visual Studio .NET 2003 add-in Report Designer for
authoring reports. As we’ll show you in Chapters 3, 6, and 7,
this is alarmingly reminiscent of the Report Designer in
Microsoft Access.6 It extends Visual Studio .NET 2003 to per-
mit developers to define Reporting Services DataSets, spec-
ify a query and layout, and preview and deploy the report
definitions, which are saved to report definition (RDL) files
in the project and then when deployed, are saved to the
Report Server database as intermediate language (IL).

� An ASP.NET XML Web Service–based Report Server
works in conjunction with a .NET Windows System
ReportServer Service to process and provide managed reports
in a variety of rendered output streams and stores its configu-
ration, processing information, and other metadata in SQL
Server.

� An ASP.NET web application–based Report Manager for
centralized report management is an important tool for
DBAs, developers, and users. It’s designed for report man-
agement and is an ideal and secure platform for users to
select and launch reports. The Report Manager permits
developers or database administrators (DBAs) to define or
modify Data Sources, locate and organize reports, and create
Subscriptions, which permit reports to be e-mailed on a
scheduled basis. We detail the Report Manager in Chapter 4.

Figure 1.1 gives you the basic idea how the basic Reporting
Services components fit together.

Reporting Services: The Main Components 5

6 It’s almost as if both SQL Server Reporting Services and Access were written by the
same company.

8288_01.qxd 9/8/04 10:41 AM Page 5

Figure 1.1 SQL Server Reporting Services Overview

Writing Reports: The Report Designer

Reporting Services comes with a WYSIWYG Report Designer add-in
to Visual Studio .NET 2003 (as shown in Figure 1.2) to aid in the con-
struction of report definitions. The Report Designer provides a new set
of Business Intelligence Project types containing two out-of-the-box
templates: a Report Project wizard and a blank report project—we’ll
show you how to create your own Report Templates in Chapter 9. No,
Visual Studio .NET doesn’t have to be the Rolls Royce (or Cadillac)
version to host the Reporting Services add-in. The inexpensive Visual
Basic .NET 2003 Standard (or Academic) version is sufficient.

The Report Designer is as intuitive and easy to use as the Microsoft
Access Report Designer, but it’s far more powerful. The typical report-
authoring approach is to create a Reporting Services DataSet (which,
by the way, is not to be confused with an ADO.NET DataSet). This
DataSet is connected to the source of the data through a Reporting
Services Data Source, which is effectively a Connection string. Once
the underlying data is provided for the report, the next step is to visu-
ally lay out the report controls, binding them to the underlying data,

WYSIWYG—what you
see is what you get.
Goodness, haven’t we
come a long way since
the Apple Macintosh?

–Peter

Peter does not
remember (he was in
primary school) when
WYSIWYG appeared
on CPT word
processors, which
predate the Apple
Macintosh.

–Bill

6 Chapter 1 An Overview

8288_01.qxd 9/8/04 10:41 AM Page 6

customize their properties, and preview the report. All of this can be
done without having to involve the Reporting Services server.

Once you’re ready, you can ask the Report Designer add-in to
“deploy” either the report definition or the whole report project,
which might contain several report definitions, to the designated IIS7

server (where your Reporting Services virtual directories are
hosted). This creates one or more managed reports on your server—
one for each report in your project—and creates any Data Sources
that are needed. At this point, users can execute any reports your
report DBA has enabled to be visible. This chapter gives you an
overview of this process, and Chapters 6 through 9 deal with the
process in greater depth.

Figure 1.2 The Visual Studio .NET Report Designer Previewing a Report—Rendered in
the UK

Writing Reports: The Report Designer 7

7 Folks, we assume you know what most of the acronyms like IIS, ODBC, and ASP
mean. If you don’t, you’re going to have considerable trouble with what we’re talk-
ing about. We’ll define the new ones, but the rest can be Googled pretty easily.

8288_01.qxd 9/8/04 10:41 AM Page 7

Define the Data Source

Usually, when creating a new report definition, you first wire up
the report to its data source or sources. Data sources are typically
SQL Server, Oracle, or other DBMS-style servers, but they can be
anything exposed with a .NET Data Provider, or by ODBC or
OLE DB. This means you can get report data from flat text files,
spreadsheet files, Microsoft Access MDB files, or virtually any
source of data. Sure, a report can extract information from several
independent data sources, but if you need to JOIN data together
from different data sources you’ll need to do that through SQL
Server’s linked database facility.

Once you choose your data source, you need to create a report
Data Source that connects to it and manages the credentials needed
to access its data. Building a report’s Data Source is very similar to
creating an ADO.NET Connection string, and the Report Designer
makes intuitive use of the very same Visual Studio .NET 2003 Data
Link applet8 dialog when creating report Data Sources. This applet
assists in the validation and testing of the Connection string, driver
choice, user credentials, and other driver-specific or provider-specific
options. Sure, a report can have several Data Sources. A report’s Data
Source can also be created as a stand-alone object that can be shared
among several reports (a “shared” Data Source), or alternatively it
can be directly embedded and thus specific to a report. In Chapter 5,
and again in Chapter 6, we’ll discuss the security implications of
embedded passwords in Data Sources and managed reports. Frankly,
you won’t see a single chapter that doesn’t mention security in one
context or another.

Create a DataSet

Typically, with a Data Source in place, you can create a query to pop-
ulate a Reporting Services DataSet with data on which to base a
report. So, as in ADO.NET, you need to create a SELECT query to
return data from one or more tables (or views) or (better still) name
a stored procedure and its parameters. One point to keep in mind:
until the SQL Server 2005 version, the Reporting Services “DataSet”

8 Chapter 1 An Overview

8 The Data Link applet is the dialog that appears when you create a new connection
in the Server Explorer or double-click on a UDL file.

8288_01.qxd 9/8/04 10:41 AM Page 8

does not expose the same functionality as the ADO.NET DataSet.
You can’t “just” take an existing ADO.NET DataSet and pass it to a
Reporting Services Report—at least not yet (unless you build a cus-
tom Data Processing extension, as we discuss in Chapter 13).

The Report Designer offers two ways to help build the SQL for
your query: the default “generic” query designer, and the more
familiar GUI-based Visual Design Tools’ Query Builder. Figure 1.3
shows the generic query designer. It permits you to enter any ad hoc
SQL query desired, including stored procedures—just change the
command type on the toolbar over to stored procedure. To execute
the SQL entered, click on the red ! icon. The generic designer might
not be as easy to use as its GUI-based cousin, but it does not balk at
complex queries as long as the syntax is understood by the target
DBMS that the Data Source connects to.

Figure 1.3 The Generic Query Designer

Writing Reports: The Report Designer 9

8288_01.qxd 9/8/04 10:41 AM Page 9

You toggle the designer of choice by clicking the icon on
the toolbar, as shown in Figure 1.3. The problem with this icon is
that its tool tip always says “generic query designer” instead of tog-
gling as it should. We expect this problem to disappear quietly in a
Service Pack, although it didn’t appear to be fixed in Service Pack 1.

The GUI-based query designer—which you may already
be familiar with if you’ve used Access, Visual Basic 6.0, or
Visual Studio .NET—makes it a breeze to create simple table-based
DataSets (see Figure 1.4). Once you venture beyond the bounds of
the GUI-based designer’s ability to parse your query, you’ll have to
go back to the generic designer or resort to using stored procedures
or views.

You get an A if you noticed we said DataSets, plural. Yes, a
report definition can use any number of separate DataSet objects—
each obtaining data from the DBMS to which they are connected
through their respective Data Sources. And yes, their underlying
queries can have input and output parameters, which can be bound
to lookups, can be fixed values, can be strongly typed, can have
defaults, can have configurable prompt strings, can be included in
expressions, and much, much more.

Figure 1.4 The GUI-Based Data Tools Query Designer

10 Chapter 1 An Overview

8288_01.qxd 9/8/04 10:41 AM Page 10

The cognoscenti9 who read our last book, ADO.NET Examples
and Best Practices for C# Programmers, might have thought that the
DataSet we’re talking about here is the classic10 ADO.NET DataSet.
However, the Reporting Services DataSet doesn’t implement all the
features you may have seen before in an ADO.NET DataSet; it
implements only the streamlined subset of the features that the
development team needed immediately. For the next version release
of Reporting Services, we are confident that the DataSet element
will be more fully implemented.

One of the features that isn’t there at the moment is DataSet
support for multiple resultsets. However, you can take several
approaches if you want to work with multiple resultsets; for example,
you might write a custom Data Processing extension or deal with this
entirely on the server in a stored procedure by performing an ugly
call out to a middleware component.

Visually Lay Out the Report Controls

The Visual Studio .NET Report Designer add-in provides nine
report “controls” (called Report Items) on the Toolbox palette (see
Figure 1.5). The spec and BOL usually refer to these as controls, so
we will too. Just understand that these “items” are not the same as
the controls you use with other Visual Studio projects, and so you
can’t, at present, add custom controls to the toolbox and use them
within a report definition. We understand that extensibility is a fea-
ture that’s not too far off.

These report controls can be dragged and dropped from the
Toolbox palette onto the report definition layout surface. (Behind
the scenes, the report’s RDL definition is synchronized as the report
design is visually manipulated and configured.)

Writing Reports: The Report Designer 11

9 cognoscenti (noun): A person with superior, usually specialized knowledge or
highly refined taste; a connoisseur.

10 Ha! DataSets have formally been around only since October 2001, and already
we’re calling them classic.

8288_01.qxd 9/8/04 10:41 AM Page 11

Figure 1.5 The Report Designer Toolbox Report Controls

The Layout tab is where you can most easily set the properties of
your report’s controls, just as you might do when designing a web or
Windows form. Reporting Services permits you to place these con-
trols virtually anywhere on the report. Be careful, though. Sizing the
report can be tricky, as we’ll discuss in Chapter 7.

Thankfully, there are enough report controls to build most types
of report. For example, you’ll find a Chart control that can build
charts for every appetite, including line, column, area, and carbo-
rich (bar, pie, and doughnut), along with the scatter, bubble, and
stock types, including colorful 3D and explosive effects. Yes, these
are the same chart types you’ve feasted on for years. We dedicate all
of Chapter 8 to the Chart control.

You’ll also find ways to lay out your report data using tabular lay-
outs. For example, Reporting Services includes a Table control
(shown in Figure 1.6) that lets you merge cells, create and sort mul-
tiple grouping rows, and enable report interaction with compelling
drilldown into other areas of the same report and drill through onto
other reports. For example, if you wanted the rendered report to be
filtered on a particular postal code, you’ll find it’s easy to create a
dropdown list or simple dialog to enter this parameter at runtime,
just before the report is rendered. That’s because, just like programs,
these reports can be interactive. Yes, we also said “merge cells,” and,
what’s more, it’s possible to embed charts within tables, or tables
within tables.

12 Chapter 1 An Overview

8288_01.qxd 9/8/04 10:41 AM Page 12

Figure 1.6 The Table Control in the Visual Studio .NET IDE

Another slick feature of the Visual Studio .NET 2003 Reporting
Services Report Designer is that it supports dragging a Field into a
cell in the Detail, Header, or Footer section of a Table control.
When you do, the Designer does a lot of the binding legwork for
you. For example, if you drag a Field into a cell in the Footer sec-
tion, the Report Designer places the Field name in the Header cell
and binds a sensible aggregate into the Footer cell; if it’s not the
aggregate you had in mind, you can always override it.

Oh, Fields! We forgot to mention that once a report has one or
more DataSets, the Designer places their columns (AKA Fields) into
a palette indexed by a DataSet combo box (as shown in Figure 1.7).
This makes it easy to drag and drop selected Fields directly onto the
report definition, at which time the Report Designer automatically
wires up the bindings for you—just as with the Table control. Nope,
there’s nothing preventing you from the drudgery of manually bind-
ing controls to DataSet Fields if that’s what helps you sleep better (or
if you’re being paid by the hour).

Figure 1.7 The Fields Palette Window

Writing Reports: The Report Designer 13

8288_01.qxd 9/8/04 10:41 AM Page 13

There’s also another tabular data layout report control: the
Matrix control (see Figure 1.8). And no, it’s not supplied or
licensed from the Wachowski Brothers, although it does provide a
somewhat transcendental interactive user experience to intuitively
drill into columns and rows. And no, it does not show data in long,
scrolling columns of unrecognizable green characters, unless Mr.
Smith gets involved.11 Chapter 8 discusses the Matrix control.

Figure 1.8 The Matrix Control Rendered in a Report

14 Chapter 1 An Overview

11 Now, if you haven’t heard of The Matrix, and the characters Neo, Trinity, and
Mr. Smith mean nothing to you, then you have certainly led a geek-sheltered
life and have missed out on a great trilogy of films. Take a look at http://
whatisthematrix.warnerbros.com/.

8288_01.qxd 9/8/04 10:41 AM Page 14

We almost forgot to mention the most fundamental report con-
trols from the Report Items toolbar because we simply took them for
granted. As you know, no report would be complete without Line
and Rectangle controls as well as data-bindable Textbox and Image
controls.

In traditional report writers (such as Microsoft Access or Crystal
Reports), you work with horizontal bands in the report that span the
page and repeat for each row of data being shown. In contrast,
Reporting Services uses a more Visual Basic forms-like approach.
Here report controls can be hosted, or “parented,” in data regions,
which grow at runtime while other controls are automatically reposi-
tioned to make room. The advantage of this approach is that you can
define multiple floating data regions, and not just above and below
each other, as you do in banded reports. These data regions can
appear virtually anywhere in the body of a report in any configura-
tion (as shown in Figure 1.9). Think of the report definition as simply
a container, or “form,” for the parts of a report (the display controls)
that sit between the report header and footer.

Figure 1.9 The Layout View with Two Side-by-Side Table Controls, an Image Control, and
a Chart Control

Writing Reports: The Report Designer 15

8288_01.qxd 9/8/04 10:41 AM Page 15

As is to be expected, in Reporting Services, Report Designer can
specify PageHeader and PageFooter sections in the report defini-
tion. These go at the top and bottom of report pages, and, naturally,
a main Body section is positioned between the page header and
page footer. Chapter 7 has a diagram (Figure 7.3) that shows how
these areas are laid out. It’s worth emphasizing that the body is not
bindable to a DataSet, so the body can’t repeat once for each record
as the body does in Microsoft Access reports. Although this takes
some folks by surprise, it’s one of the most empowering features of
Reporting Services.

We’ve mentioned the Table and Matrix tabular controls, and
these certainly repeat for each record within themselves. However,
not all reports call for tabular representations; many have a free-
form repeating requirement, which Reporting Services provides via
the List control. List controls can host other controls, and the List
repeats once for each record in the DataSet to which it is bound.

In Reporting Services jargon, List, Table, and Matrix Report
Items (controls) are data regions. What makes the tool so powerful
is that these data regions can be laid out side by side (as shown in
Figure 1.9), or even defined hierarchically within one another. The
latter feature supports data that you want to be independently
sorted, grouped, and filtered at the data region level.

You can lay out reports that need snaking columns (like a news-
paper) by setting the Columns property on the report definition
to the number of columns you want. Reports can also contain
Subreport controls, which are basically reports within reports—and
the nesting can get several layers deep before choking. There’s also a
wizard that takes the tough work out of translating and importing
reports from Microsoft Access. A minor disappointment for us is
that there isn’t any out-of-the-box wizardry to translate, import, and
then flush Crystal Reports out of our systems. We’ll be happy to dis-
cuss converting your Crystal Reports (and Access Reports). See the
website 12 for details.

Advanced Features: Programmability in
the Report Designer

What a report looks like on the screen (how it’s rendered) is controlled
by a plethora of report definition and report control properties and

16 Chapter 1 An Overview

12 See www.SQLReportingServices.NET.

8288_01.qxd 9/8/04 10:41 AM Page 16

the chosen Rendering extension. Although you can set many of
these properties to permanent fixed values at design time, you can
also set many of them to Visual Basic .NET expressions, which are
evaluated when a managed report is prepared for rendering. It’s also
possible to make custom Visual Basic .NET code methods for use in
any expression; to do this, you create Visual Basic .NET shared func-
tions and paste them into the report’s Code property. We show how
to do that in Chapters 7 and 9.

This programmability makes it possible to do convoluted things,
such as conditionally changing the text color in a Textbox control,
but only when rendered by a specific user, only when the values are
within certain ranges, or only when rendered on a Thursday after-
noon between 3 and 4 PM by a certain user. This would be handy if
you are a report programmer going into a review meeting with your
boss at 3:30 and want to make an impact. Of course, the business
logic possibilities are endless, and you’ll probably have more serious
requirements to implement!

Why use Visual Basic .NET and not C# (or both)? Well, behind
the scenes a single .NET assembly is created for each managed
report (using System.CodeDom). This assembly contains all the
expressions and properties as property methods. It was a lot easier
for Microsoft’s developers to require that one and only one language
assembly be compiled and used. Visual Basic .NET was chosen as
being a slightly more user-friendly expression language, especially
with paraprogrammers. By default, these expressions embedded in
the report definition are given only Execute permission; this helps to
prevent someone from creating a Trojan report by using an expres-
sion squirreled away that deletes files in the background, installs a
virus, or bumps up your salary by 45 percent. By default, the Report
Server does not permit access to the file system from custom code in
expressions. Yes, a System Administrator might relax this, but this
breach of the security dike would then apply to all expressions in all
managed reports. We strongly advise against it, because there are
other, more controlled ways to solve this problem.

What if you want to create some custom code that can be used
by all reports? Well, the facility exists to create your own custom
code class library assemblies in any Common Language Runtime
(CLR) language, strongname them, reference them in the report

No, you don’t need to
be jump qualified to be
considered a
“paraprogrammer.”

–Bill

But it sure helps to
be jump qualified if
you are going to write
poor queries for
reports that take
every cycle of CPU—
so that when the DBA
and supporting
security officers
show you the exit on
the 42nd floor (the
window) you can
survive to bring
another corporation’s
servers to its knees.
So it’s a good idea to
either learn how to
program properly or
how to jump.

–Peter

Writing Reports: The Report Designer 17

8288_01.qxd 9/8/04 10:41 AM Page 17

definition’s References Collection property, instantiate any specific
classes, and subsequently use the class methods, or shared functions,
in report expressions. The System Administrator must install each of
these assemblies and grant them specific permissions. These can be
as restrictive as None, denying any ability to run; can be Execute
only, which relaxes a little more to permit the code to run in a
restricted sandbox; can be completely unrestricted Full Trust; or any
combination of specific permissions. All this is achieved through
code access security (CAS). If a System Administrator granted suffi-
cient privileges to an assembly, a Mission Impossible–style report
could be created that, when rendered, would promptly fdisk the sys-
tem in 30 seconds. But such a scenario is enabled only if the System
Administrator has permitted it by breaching the security seals and
leaving the door open. In Chapter 9 we’ll show in detail how to work
with expressions and custom assemblies and how to assign strong-
names, and set code access security permissions.

We suggest using the principle of least privilege—that is, grant
only the permissions needed to do the immediate tasks and no others.
Full Trust permission should not be given arbitrarily, and this requires
administrators to use fine-grained permissions. For example, if an
assembly needs permission to open a certain file, it should be granted
permissions only to that file and not to the whole hard drive, nor
should it be fully trusted.

Document Maps

For large reports that extend over many pages, it’s possible to cre-
ate a navigable hierarchical tree view called a Document Map.
Populating the nodes of this tree is as easy as putting a value into
the Label property on any of the controls to be included in the
Document Map (see Figure 1.10). This can be a fixed literal value,
or, as just discussed, it can result from a calculated expression. If any
labels have been set in any of the controls, the Document Map is
deployed in a pane when the generated report is rendered in a
browser. The Label property can also be bound to a DataSet Field.
We’ll show you this in action in Chapter 7.

18 Chapter 1 An Overview

8288_01.qxd 9/8/04 10:41 AM Page 18

Figure 1.10 A Document Map and Report as Rendered in a Browser

Previewing in the Designer

After you have visually laid out the report controls on the report def-
inition, the Report Designer lets you render and debug the report
locally using data collected from the Data Source(s). When using the
Preview tab in the designer as shown in Figure 1.11, the Report
Designer does not access the Reporting Services server—it uses its
own renderer. After you deploy your reports, recheck how the
Reporting Services Rendering extension displays the report—we’ve
noticed some subtle (and some not so subtle) differences.

TIP When you design reports, be sure to limit the number of rows to
be used when previewing the report in the Report Designer. If you
don’t, there’s a good chance you’ll lock up Visual Studio .NET while
it tries to render a 50,000-page report. In Chapter 3 we discuss
how to limit the number of rows returned in a query, but while
you’re practicing, be sure to use a parameter-focused query or a TOP
expression. If you really do want all 50,000 pages, don’t forget to
remove any row restriction before you deploy the report.

Writing Reports: The Report Designer 19

8288_01.qxd 9/8/04 10:41 AM Page 19

Figure 1.11 Previewing a Report in the Visual Studio .NET IDE

Previewing with the RSReportHost Utility

You can preview your report in the Report Designer Preview pane
(as shown in Figure 1.11) by clicking the Preview tab in the
Designer. This is great most of the time, but if you’re developing
with custom assemblies that you are also editing and redeploying,
you won’t want to use this technique. That’s because the Visual
Studio .NET process loads the custom assembly and doesn’t unload
it until you close down the Visual Studio .NET development envi-
ronment. As a result, you won’t be able to update the custom assem-
bly you’re working on until you’ve restarted Visual Studio. To
address this issue, Microsoft provides the RSReportHost utility,
which you call by setting the Solution Configuration to DebugLocal
and selecting Debug on the project, or on a specific report. (Note
that if you try this out with the Microsoft-supplied samples, there is
not a “DebugLocal” Solution Configuration option, so you may have
to create one—the crucial part is ensuring that the TargetServerURL
property on the project remains blank. This ensures that when you
try to debug, the RSReportHost starts instead. Figure 1.12 shows
the Project properties page for the “Charting” project setup to use
RSReportHost to preview the report design.

20 Chapter 1 An Overview

8288_01.qxd 9/8/04 10:41 AM Page 20

Figure 1.12 Setting the Report Project Properties for the “Charting” Report

When the RSReportHost utility starts, it loads itself and your cus-
tom assembly into a new process space, and it renders the report (as
shown in Figure 1.13). When you close RSReportHost, that process
space is unloaded, along with your custom assembly, so you’ll then
be able to work on any desired changes to your custom assembly.

Note that in rendered generated reports, currency formatting
can adapt automatically to the current locale of the user browsing
the report. That’s the way that the Microsoft-supplied samples have
been setup in the sample report definitions, but it is not the way we
advise working. Guess where Figure 1.11 and Figure 1.13 were ren-
dered? Unfortunately, these values are stored in the database using
the currency datatype, not even as dollar amounts and not British
pounds sterling. If you manage different types of currencies, we rec-
ommend that you explicitly embed any currency symbol directly into
the Textbox control’s Format property, possibly even based on the
result of evaluating a report expression. If you are going to format a
Textbox as “currency,” placing a “c” in the Textbox’s Format property
(as Microsoft did in its samples) has the following effect: If the
Language property is not set on that textbox, or it’s set to “default,”
the report renderer defers to the Language property setting on the

Writing Reports: The Report Designer 21

8288_01.qxd 9/8/04 10:41 AM Page 21

report definition. If the Language property is not set or left as
“default,” the language of the user’s web browser is used as the lan-
guage from which the currency symbol and formatting would be
used. Clear? Leaving the rendering choice of currency symbol to the
browser could be problematic, to say the least—especially if the ren-
dered report is an invoice!

Figure 1.13 Previewing in the RSReportHost Utility

RDL: Report Definition Language

As we mentioned earlier, while you’re designing a report, the Report
Designer maintains the definition of the report in an “open” human-
readable Report Definition Language (RDL) file (see Figure 1.14).
RDL files are laid out in an XML format using an open published
XSD schema. (Developers can indeed extend RDL by adding their
own elements and attributes.) When a report definition is being
edited visually in the Report Designer, the underlying RDL file is
automatically kept synchronized. Sure, it’s also possible to edit the
RDL file directly, and those changes are immediately reflected in
the Designer. Diehard gurus won’t use the Report Designer; they’ll
use Visual Notepad, or even Edlin!13

22 Chapter 1 An Overview

13 Edlin, for the young whippersnappers, was an old command-line text editor. In
fact, it still works in the command prompt shell.

8288_01.qxd 9/8/04 10:41 AM Page 22

The more serious corollary of an open RDL standard is that other
report design tools can be built that extrude RDL or translate other
proprietary reporting file formats to RDL. You’ll then be able to ver-
ify the resulting RDL against the published XSD schema. You may
even have ideas about enabling your own custom application to cre-
ate or modify RDL files.

Figure 1.14 A Sample of RDL Code in a Report Definition

RDS: Report Data Source Files

Report Data Source (RDS) files provide a mechanism to share Data
Sources on a Report Server scale. Like report Data Sources, shared
Data Sources hold a Connection string and user credentials. These
user credentials provide access to the underlying data—they’re
simply the User ID and Password or options that prompt the user
for user name and password. These credentials determine whether
the DBMS permits your report’s DataSets to access the database
and further grant or deny access to the underlying database tables,
views, functions, or stored procedures. Shared Data Sources can be
created in the Report Designer (in Visual Studio .NET), in the
Report Manager, or programmatically through the SOAP interface
(as we describe in Chapter 93/4). However, the Report Designer only

Writing Reports: The Report Designer 23

8288_01.qxd 9/8/04 10:41 AM Page 23

permits a restricted subset of Report Data Source features to be
configured. There is much greater capability (albeit a more awkward
interface) when configuring deployed report-specific or shared Data
Sources with the Report Manager.

There are a number of mechanisms you can use to specify, manip-
ulate, and persist connection credentials. In Chapter 3 we show you
how to create a shared Data Source using the Report Designer wiz-
ard, and in Chapter 4 we illustrate how to manipulate Data Sources in
the Report Manager. Chapter 5 discusses serious security issues in a
deployed production environment, and Chapters 6 and 7 discuss the
use of Data Sources in the development environment. After reading
these chapters, you’ll see that each credential persistence approach
has far-reaching consequences. To ensure that you don’t leave the
door open to Trojan reports or other security risks, you should get a
good handle on this information before launching your first produc-
tion environment.

The Report Server

After you’ve used the Report Designer to design and build a report
definition or report project (which might contain any number of
report definitions, shared Data Sources, and resources such as graphic
files), you deploy it by sending its RDL (or RDS if a shared Data
Source, or the resource file if a graphic) to the ASP.NET-based Report
Server. Before attempting to deploy a report, it’s crucial to configure
two properties on each report project in Visual Studio .NET 2003: the
target URL of the Report Server, and the notional folder to which you
wish to deploy. You’ll also want to reference an appropriate StartItem
report, as shown in Figure 1.15.

To deploy a project or a single report within a project, right-click
the project or report name and choose Deploy. Once a report defini-
tion is complete and deployed to the Report Server, it becomes a
managed report.

24 Chapter 1 An Overview

8288_01.qxd 9/8/04 10:41 AM Page 24

Figure 1.15 The Project Properties Page—Ready for Deployment

The Report Server exposes Reporting Services’ SOAP end-
point, and Visual Studio .NET deploys the report and shared Data
Sources and resource files by simply making calls to SOAP meth-
ods. All these report definitions, shared Data Sources, and resource
files are organized in the Report Server in a logical folder hierarchy,
over which is an extensive role-based security system integrated
with Computer/Domain Users and Groups.

If you’re developing your own tools or being paid by the hour
and you want to build your own .NET application to deploy reports,
you can call the SOAP interface from your own programs. We’ll
show you how in Chapter 93/4.

The Report Server uses a SQL Server 2000 database to retain
almost all of its metadata. In fact, the only modifiable metadata
retained outside SQL Server are any custom assemblies and sup-
porting files you may have written that the report references, along
with a handful of XML-like configuration files for the web and
Windows services and security policies.

I say “XML-like”
because although
some of these files
look like XML, if you
try to put in XML
comments—for
example, <!--A
Comment-->—
this can choke SQL
Server, and the
exception messages
can be pretty cryptic.
We’ll discuss these
configuration files
later in this chapter.

–Peter

The Report Server 25

8288_01.qxd 9/8/04 10:41 AM Page 25

SQL Server and SOAP

Although Reporting Services uses SQL Server as its own data store and you can
get at the Reporting Services’ own tables and stored procedures, we should
warn you that the only officially supported interface is SOAP. The reason is that
as the product progresses, Microsoft might (is likely to) change/tune/alter/
repair/enhance/refine the underlying schema of the Reporting Services database
and the definitions of the stored procedures. Microsoft has confirmed that the
SOAP interfaces will be backwardly supported but says that the use of SQL
Server by Reporting Services for its data store is a (publicly undocumented)
implementation detail subject to change. So if you feel inclined to fiddle directly
within the Reporting Services ReportServer database with T-SQL, be warned that
a next version or Service Pack could (and probably will) break your code. This is a
little frustrating because calling out to a SOAP interface from T-SQL in SQL
Server 2000 is not as trivial as it will be in the next version of SQL Server (SQL
Server 2005).

Rendering Extensions

In addition to SOAP-type HTTP and HTTPS calls, the Report
Server’s ASP.NET web server component dutifully responds to spe-
cially formatted URL Request Strings by streaming requested
reports over HTTP or HTTPS in an amazing number of rendering
formats. The rendering formats that a Report Server can generate
are governed by the Rendering extension assemblies installed and
registered on the system. Out of the box there are six Rendering
extensions: HTML (3.2, 4.0, MHTML), XML, CSV, IMAGE (BMP,
EMF, GIF, JPEG, PNG, TIFF), EXCEL, and PDF.14

Stop and think for a moment about where we are. At this point,
we have the ability to design and render a report in a variety of for-
mats, which can target a number of potential platforms and devices.
We should also emphasize that there is no additional separate
license fee to pay to Adobe for the PDF report generation, and there
is a way to extract an HTML table fragment stream, which you can

26 Chapter 1 An Overview

14 Sometimes we assume too much—as in we assume you know what these
acronyms mean. If you don’t, try this website: www.geocities.com/

ikind_babel/babel/babel.html. It defines all of them.

8288_01.qxd 9/8/04 10:41 AM Page 26

incorporate directly into one of your own web pages without having
to use an IFrame control.15

But as if that were not enough, in true TV shopping style—“Wait!
There’s more!”—you also get the ability to create and register any of
your own custom Rendering extensions. So, for example, if you have
a commercial requirement that your reports be rendered on Wireless
Application Protocol (WAP)-enabled phones, you can write a .NET
Rendering extension assembly for Reporting Services to do so. But
be warned—developing Rendering extensions is hard, at least in our
opinion. Configuring the Report Server to use a new Rendering
extension is as simple as placing your custom rendering assembly in
the right folder and delicately editing a few XML configuration files.
We suggest you investigate the existing Rendering extensions, such as
using Extensible Stylesheet Language Transformations (XSLT) with
an XML-rendered report. This might satisfy your requirements with-
out the need to write a new extension.

Delivery Extensions

So far we’ve talked about being able to extract a rendered report
stream in response to a specially formatted URL, but the Report
Server need not always be shy and passive. Reporting Services does
have the ability to break out of its box and start spamming preconfig-
ured and presumably consenting recipients over SMTP16 at preset
scheduled times or only when the data changes.

And if benevolent spam is not enough, the Report Server can
even proactively save rendered reports onto a UNC17 file share on a
certain schedule or when data changes. Yes, it even takes care of any
credentials it might need to use to access that share, and it can set
access credentials on the saved file to restrict access to a certain
computer or domain user or group. It can also be configured to over-
write any previous file or to incrementally number files so as not to
overwrite any previous file.

Does anyone
still have a WAP
phone? Do yourself
a favor and get a
Smartphone or
PocketPC phone. I
was one of the first
to use WAP tech-
nology and blew a
load of dough writing
WML servers and
translators. Thanks,
Nokia, for nothing!

–Peter

The Report Server 27

15 An IFrame is a pesky little web control that enables you to host one web page inside
another. Not all web browsers support IFrames.

16 SMTP stands for Simple Mail Transfer Protocol (e-mail).
17 UNC stands for Universal Naming Convention. These are shares that start with
\\<Server>\<share>.« X t a g s e r r o r : N o
s u c h f o n

8288_01.qxd 9/8/04 10:41 AM Page 27

Both delivery features are provided through what are called
Delivery extensions, and yes, you can write your own .NET
Delivery extension assembly to proactively deliver reports else-
where. For example, you can send to an FTP18 service, post it using
NNTP19 to a newsgroup, or dispatch an SMS message to a WAP-
enabled phone, with the embedded link pointing to where you use
your WAP Rendering extension. The extensible delivery possibilities
are endless, and they are, for the most part, much easier to develop
than Rendering extension assemblies.

What About Printing Delivery Extensions?

We have, however, discovered a small fly in the ointment. In the ini-
tial release version there isn’t an out-of-the-box Delivery extension
to send reports directly to a printer. Thankfully, the Microsoft devel-
opment team has not left us completely high and dry; they provide
project code samples in C# and Visual Basic .NET that show how to
make a Delivery extension that targets a printer.

If you stop to think for a moment about how many printers
there are in the world and how many different printer drivers there
are to take advantage of the plethora of hardware-specific config-
urable options—such as duplex printing, paper size selection,
input and output trays, color printing, margin settings, collation,
stapling, binding, faxing, scaling, even the number of copies that
should be printed—it would have been a mammoth undertak-
ing for the development team to have created a generic printer
Delivery extension that would cater to every possible option, and
time constraints pushed this part of the development out to the
next version. Our guess is that printer manufacturers and third-
party ISVs20 will write their own printer Delivery extensions that
take advantage of their hardware’s features to make them fully
available to Reporting Services. The Delivery extension sample
provided by the Reporting Services developers works by rendering
the report as an image and sending that to the printer. This is cer-
tainly not the most efficient way to solve the problem—being more

28 Chapter 1 An Overview

18 File Transfer Protocol
19 Network News Transport Protocol
20 Independent software vendors

8288_01.qxd 9/8/04 10:41 AM Page 28

“crude but effective,” as Seven of Nine might say.21 All of this said,
we are working on a server-side printing extension that can be
called directly from the Report Manager when viewing a report, so
be sure to check our website www.SQLReportingServices.NET
for news.

The SQL Server Agent and ReportingServicesService.exe
Windows Service

The Report Server is not alone when it comes to its ability to push
report content through Delivery extensions. It’s aided and abetted
by two friends: the SQL Server Agent and another Windows system
service that you’ll see in your task manager as the tautological
ReportingServicesService.exe, which is a .NET Windows system
service. These provide an infrastructure that enables possible load
balancing in a web farm environment when you’re pushing sched-
uled content out via Delivery extensions. (For more on web farms,
see Chapter 2.)

While the SQL Server Agent creates entries in the
ReportServer database’s Event table at scheduled times, it’s the
ReportingServicesService.exe Windows system service that polls the
database every 10 seconds to see if there are any entries in this table
and takes appropriate action. Chapter 2 tells you how you can con-
figure the polling interval.

The Report Processor

The Report Processor is the thoroughbred workhorse22 of the
Reporting Services team (see Figure 1.16). It’s only used to process
managed (deployed) reports. It’s responsible for querying data,
assembling the report into the Intermediate Format (IF) Binary
Large Object (BLOB), and extruding the report to the client. This is
where the various extensions come into play. For example, a Data
Processing extension is used during report processing to query the
report’s Data Sources. Data and layout are combined by the Report

The Report Server 29

21 Don’t know what the ASP.NET guru Doug Seven would say, though.
22 It’s not a donkey or obstinate ass that’s difficult to get to do what you want.

8288_01.qxd 9/8/04 10:41 AM Page 29

Processor and saved to the database in the IF. Only at this stage
does the Rendering extension come into play. The benefit of this
approach is that all the querying and processing work is done once,
after which different renderers can be called—all of which can work
from the same IF BLOB. This Intermediate Format can be per-
sisted behind the scenes in the ReportServer database to enable
reports to be rendered from cached versions, historic versions, or
Snapshots. The fundamental difference between immediate in-
demand, cached Snapshots and history is simply where and how
long a generated report is stored and managed. (You’ll learn more
about report history and Snapshots shortly.) The key to the
Intermediate Format is that all the heavy lifting is done once, and
that it’s device (renderer) independent.

Figure 1.16 The Report Processor

Caching Intermediate Format

To obtain some performance gains and scalability, the Report Server
can cache the generated report IF in a SQL table within the Report
Server database—assuming that the credentials used in the report’s
Data Sources are not derived from Windows Authentication security

30 Chapter 1 An Overview

8288_01.qxd 9/8/04 10:41 AM Page 30

(SSPI) or by prompting the user. If caching is enabled on a managed
report, the report can be delivered much more quickly after it has
been requested the first time because the Report Server doesn’t
have to query all the Data Sources again; it need only render the IF
into the requested stream type. Reports can be cached for a config-
urable number of integer minutes to a maximum of 2,147,483,647—
approximately 4,083 years, by which stage we doubt you’ll still be
bothered (assuming your system stays up that long). For a higher
degree of control, the cache can be expired on a report-specific
schedule or on a schedule shared with other objects.

For parameterized cache-enabled reports, the Report Server
creates IF images and caches the report each time it’s requested by
means of parameter values that have not already been used, com-
piled, and cached. In other words, the cache is uniquely indexed on
a report and on the parameter values with which it was executed.
Reports remain in the cache until they expire or are explicitly
flushed from the cache.

Caching Snapshots

The first time a report is executed, it can take a very long time, espe-
cially if a lot of number crunching is required in the report’s queries
or if you asked for all 50,000 customers. Microsoft has provided an
alternative to deal with this contingency: the ability to populate the
cache with an Intermediate Format Snapshot from a report exe-
cuted at a scheduled time. Again, the schedule can be specific to a
report or can be shared with other objects and must use hard-coded
credentials. This approach is designed to support preparation of
reports in off-peak hours.

Caching History

The Report Server can maintain a historic archive of Intermediate
Format report Snapshots that can be repeatedly rendered at any time
in the future—assuming that the system is still up when it’s time to
render the report. This history can be unlimited—or, more accu-
rately, limited—by what SQL Server can provide in storage space.
The Report Server can generate Snapshot reports on shared sched-
ules or on a report-specific schedule.

The Report Server 31

8288_01.qxd 9/8/04 10:41 AM Page 31

The Report Execution Timeout Governor

Preparing the Intermediate Format for reports can take consider-
able time, especially if there is a lot of data to collect or if complex
processing is required. Fortunately, the Report Server provides the
option to time out the execution of a report and cancels it with a
polite23 message to the user. This Report Execution Timeout setting
is set in seconds, and there is a default for the whole Report Server;
this default can be overridden on a report-by-report basis.

The default timeout is close to 60 seconds. The Report Server
evaluates running jobs at 60-second intervals. Every 60 seconds, the
server compares actual process time against the report execution
timeout value. If the processing time for a report exceeds the report
execution timeout value, report processing stops. If you specify a
timeout value that is less than 60 seconds, the report may execute in
full if processing starts and ends during the quiet part of the cycle
when the Report Server is not evaluating running jobs. For
example, if you set a timeout value of 10 seconds for a report that
takes 20 seconds to run, the report will process in full if report
execution starts early in the 60-second cycle. You can set the
RunningRequestsDbCycle setting in the RSReportServer.config file
to change how often running jobs are evaluated.

The Report Manager

So far we’ve given an overview of designing reports and deployment
to a Report Server. We’ve said little about how these deployed
reports can be managed while in the Report Server, nor how a user
might choose a report to run. Well, to do this Microsoft provides a
Report Manager ASP.NET web application. The Report Manager
provides an attractive interface that acts as a wrapper to the URL
calls and SOAP methods of the Report Server.

32 Chapter 1 An Overview

23 Perhaps a politically correct translation of what the DBA would really like to say
to users who execute queries that bring their 8-way processor/3-terabyte RAM
system to its knees.

8288_01.qxd 9/8/04 10:41 AM Page 32

The Report Manager can be accessed on its default URL of
http/https://<server>/Reports. What users see rendered in their
web browsers depends on the security permissions they have been
assigned; reassuringly, users can perform administrative functions
only if they have Administrative privileges. In Chapter 4 we’ll discuss
Report Manager security and explain how to setup Administrative
and User account roles. The Report Manager really comes into its
own as a user application that enables users to choose from and exe-
cute the managed reports that they have permissions to access.

Managing Security Permissions

The Reporting Services security permissions system is extensive and
is based on assigning roles to Windows domain, local machine user,
or group accounts. Here’s how it works. At the lowest level of granu-
larity, the various tasks that can be performed are identified, and
these tasks can be aggregated into various defined roles by an
Administrator or someone with appropriate privileges.

Out of the box there are four defined roles—Browser, Content
Manager, My Reports, and Publisher—providing permissions very
much along the lines of what their names imply. Because these roles
are constructed from a selectable list of task operations that can be
performed, it is possible to define new roles consisting of different
subsets of tasks. Keep in mind that by default ordinary users have no
rights; only those who have Administrator rights can access these
roles unless you modify the permissions for your selected accounts.

Managing Folders

As mentioned earlier, the Report Server maintains managed reports
and shared Data Sources in notional folders, and the Report
Manager lets users navigate these folders. Depending on security
permissions, the person browsing can create new folders and can
delete, move, hide, rename, and edit the descriptions of folders or
reports. Of course, if the person browsing doesn’t have permission to
see a report or folder, then it isn’t visible when the user views the
Report Manager. In addition, it is possible to set permissions for

The Report Manager 33

8288_01.qxd 9/8/04 10:41 AM Page 33

users and configure the Report Server to maintain folders on a
per-user basis on a model similar to the My Documents folder on the
Windows file system. This model enables users to have their own
My Reports folders for their own reports (independent of other
users) that they alone can see.

Managing Shared Data Sources

Subject to permissions, any shared Data Sources can be managed by
a user through the Report Manager. Users can change credentials
and Connection strings in the Data Sources on a live Report Server
without invoking a development tool.

Managing Linked Reports

One of the cool Report Server features that the Report Manager
exposes is the ability to create, name, delete, and manage linked
reports. This is a report description that doesn’t have any RDL of its
own. The concept here is very similar to the way a shortcut operates
in the Windows file system. The Report Manager enables linked
reports to have different default values, different visibility for
parameters, and different security than those of the underlying
report to which they are linked, and it provides a placeholder for a
user to execute. Alas, for a linked report, it is not possible to establish
Data Sources or credentials that differ from the ones used by the
real underlying report. Now that would be interesting.

Managing Shared Schedules

We have referred to schedules several times in different contexts.
The Report Manager provides a mechanism for creating system-
wide schedules that can be shared wherever a schedule can be used
and can be managed from a central point.

Managing the Cache, Snapshots, History,
and Report Execution Timeout

When we discussed the Report Server, we mentioned caching
Snapshots and creating historic Snapshots. Yes, you can use the
Report Server SOAP interface to configure these, but you’ll probably

34 Chapter 1 An Overview

8288_01.qxd 9/8/04 10:41 AM Page 34

be relieved to know that the Report Manager provides a UI wrapper
around the SOAP interface to let you easily configure these and many
other features without needing to resort to programming.

At the site level, someone with Administrator privileges can cre-
ate defaults using the Report Manager to set the maximum execu-
tion time in seconds that a server should spend rendering each
report before it decides to abandon it and return a message to the
user. This site default can also be overridden on each report.

Subscriptions

Users with the requisite permissions can subscribe to managed
reports using the Report Manager. This means that selected users
can configure a managed report to be delivered to them via one of
the installed Delivery extensions (such as Report Server File Share)
or by e-mail on a personal or a shared schedule. With additional per-
missions a user can configure a data-driven subscription, where
configuration information and distribution lists can be derived from
a query on a table.

Help

All the pages that constitute the Report Manager have context URL
links to HTML help pages. If the Report Manager is going to be
deployed in the default location where users select and execute
reports, it is reassuring to know that an out-of-the-box help system is
provided. If you are going to build your own report management sys-
tem, you’ll need to budget time to explain how it works and possibly
provide your own online help system.

Extending the Report Manager

The Report Manager is intended to be a closed, black-box solution.
Because of this Microsoft has not released the source code. In our
opinion, the Report Manager is a delightful application, but there
are some rough edges that you may find that you want to smooth out.
In this respect, not all the settings that one might like to adjust from
the Report Manager are provided. Although some of these may be
added at a later stage, at the moment a System Administrator may
have to delicately futz around with the XML-like configuration files

The Report Manager 35

8288_01.qxd 9/8/04 10:41 AM Page 35

or find a custom application that does it. Another irritation that
comes to mind is that there is very little control over the layout of the
ASP.NET controls that are used to collect the parameters in a
report.

Microsoft’s official position is that you should make your own
Report Manager if you don’t like the way the Report Manager
works. To some extent, Microsoft helps by providing some sample
starter applications. The problem is that it’s a heck of a lot of work to
build all the functionality that the Report Manager application pro-
vides when you want to add only a few bells and whistles.

Well, because we are not on the red pill we spoke of earlier,
we can be mischievous and tell you how to pry open the Report
Manager black box and provide the degree of customization you
might want. This certainly takes much less effort than creating a
whole Report Manager application. Of course this approach is
hostage to Microsoft changing things, as it is at liberty to do in the
future. However, the approach we’ll show you in Chapter 11 enables
you to make easy modifications now, and if Microsoft comes back
and breaks your toys later (as we told you it might), at least you’ll be
able to incorporate them into your own Report Manager should you
be forced to build one.

Versions of Reporting Services

There are four versions of Reporting Services to choose from: the
Standard Edition, the Enterprise Edition, the Developer Edition,
and the Evaluation Edition. Except for the Standard Edition, all
provide the same feature set and differ only in EULA24 license terms
and time-bomb duration before the code stops working:

� The Evaluation Edition stops working after 120 days and is
licensed only for evaluating the product.

� The Developer Edition differs from the Enterprise Edition
only in that it’s licensed for development but not for produc-
tion use.

36 Chapter 1 An Overview

24 End-User License Agreement

8288_01.qxd 9/8/04 10:41 AM Page 36

� The Standard Edition and the Enterprise Edition are the only
editions licensed for production use and for using the features
described in this chapter.

� The Standard Edition is limited in that it does not support
web farms, custom security extensions, report history, and
data-driven subscriptions, and it’s limited to not more than
four processors and 2 GB of RAM.

Summary

This chapter gives you a brief tour of Reporting Services and enough
detail to get you started toward a better understanding of the tech-
nology. Reporting Services runs on an IIS system and requires a SQL
Server 2000 system to manage its databases. Visual Studio .NET
plays a role as the host for the Report Designer add-in, and it can be
used to build Data Sources, queries, and report definitions and to
deploy them. The underlying Report Server and its Data Processing
and Rendering extensions help capture report data from a variety of
data sources and publish managed reports in a variety of formats.
Next, we’ll show you how to install Reporting Services.

NOTE Microsoft recommends that you avoid use of the underscore
character in computer names as the Report Server does not persist
the session state information on these systems—unless they have
been patched with Internet Explorer Patch MS01-055. See “Preparing to
Install” in the Reporting Services documentation for more information.25

Summary 37

25 http://msdn.microsoft.com/library/default.asp?url=/library/

en-us/RSinstall/htm/gs_installingrs_v1_8k82.asp

8288_01.qxd 9/8/04 10:41 AM Page 37

8288_01.qxd 9/8/04 10:41 AM Page 38

