
7

CHAPTER 1

Widget Fundamentals

This chapter provides an overview of the classes contained in the packages
org.eclipse.swt.widgets and org.eclipse.swt.events. We begin by defining what
a widget is, then cover the fundamental relationships between widgets, and
finally cover how widgets interrelate with each other and the user.

1.1 What Is a Widget?

A widget is a graphical user interface element responsible for interacting with
the user. Widgets maintain and draw their state using some combination of
graphical drawing operations. Using the mouse or the keyboard, the user can
change the state of a widget. When a state change occurs, whether initiated by
the user or the application code, widgets redraw to show the new state. This
is an important distinguishing feature that all widgets share. It means that
when you set a property on a widget, you are not responsible for telling the
widget to redraw to reflect the change.

1.1.1 Life Cycle

Widgets have a life cycle. They are created by the programmer and disposed
of when no longer needed. Because the widget life cycle is so fundamental to
the understanding of the Standard Widget Toolkit (SWT), we are going to
cover it in detail here.

Northover.book Page 7 Saturday, June 19, 2004 7:40 AM

8 Widget Fundamentals

1.1.2 Creating a Widget

Widgets are created using their constructor, just like any other Java object.
Some widget toolkits employ the factory pattern to instantiate their widgets.
For simplicity, SWT does not.

When a widget is instantiated, operating system resources are acquired by
the widget. This simplifies the implementation of SWT, allowing most of the
widget state to reside in the operating system, thus improving performance
and reducing memory footprint.1 There is another important benefit of acquir-
ing operating system resources in the constructor. It gives a clear indication
when resources have been allocated. We will see that this is critical in the dis-
cussion of widget destruction (see Disposing of a Widget).

Finally, constructors take arguments that generally cannot be changed
after the widget has been created. Note that these arguments are create-only
from the point of view of the operating system and must be present when the
widget is created.

Standard Constructors

Widget is an abstract class, so you will never create a Widget instance. In the
discussion that follows, note that references to the class Widget actually apply
to the subclasses of Widget. This is because subclasses of Widget share the
same constructor signatures, giving widget creation a strong measure of con-
sistency, despite the different kinds of widgets and their implementation.

There are four general forms of widget constructor implemented by the
subclasses of the class Widget.

1. Widget ()

2. Widget (Widget parent)

3. Widget (Widget parent, int style)

4. Widget (Widget parent, int style, int index)

1. If this were not the case, fields would be needed to keep track of values not yet stored in the
operating system. When the operating system widget was created, state would need to be copied
back and forth between SWT and the operating system, slowing things down and introducing
potential inconsistencies. The same application code operating on a widget that has been created
in the operating system must not behave differently when that widget has yet to be created.
Although different behavior can be characterized as a bug, the potential for these kinds of prob-
lems is large, especially when multiplied by the number of platforms.

Northover.book Page 8 Saturday, June 19, 2004 7:40 AM

1.1 What Is a Widget? 9

The concept of hierarchy (see Widget Hierarchy) is very important in SWT,
so much so that the parent widget is the first parameter in most widget con-
structors.2 The following sections describe each of the parameters in detail.

The Parent Parameter

Widgets cannot exist without a parent, and the parent cannot be changed after
a widget is created.3 This is why the parent is present in almost every construc-
tor. The type of parent depends on the particular widget. For example, the
parent of a menu item must be a menu and cannot be a text editor. Strong typ-
ing in the constructor enforces this rule. Code that attempts to create a menu
item with a text editor parent does not compile, making this kind of program-
ming error impossible.

It is also possible to query the parent of a widget using getParent() but this
method is not found in the class Widget.

A Word About Parameters, Exceptions, and Error Checking

In SWT, methods that take parameters that are Objects check for null and
throw IllegalArgumentException (“Argument cannot be null”) when the argu-
ment can’t be null. Besides being more informative, checking for null helps to
ensure consistent behavior between different SWT implementations. Barring
unforeseen circumstances, such as catastrophic virtual machine failure, an SWT
method will throw only three possible exceptions and errors: IllegalArgument-
Exception, SWTException, and SWTError. Anything else is considered to be a
bug in the SWT implementation.

2. Note that the no-parameter version of the constructor is very rare and occurs only as a conve-
nience constructor in the class Shell, so it will not be discussed here.

3. For an exception to this rule, see Control.setParent(), which allows you to change the parent on
some platforms.

Why Is getParent() Not Implemented in Widget?

We could have implemented getParent() in class Widget but the method would
need to return a Widget. This would require the programmer to cast the result

Northover.book Page 9 Saturday, June 19, 2004 7:40 AM

10 Widget Fundamentals

The Style Parameter

Styles are integer bit values used to configure the behavior and appearance of
widgets. They specify create-only attributes, such as choosing between multi-
ple- and single-line editing capability in a text widget. Because these attributes
cannot be changed after creation, the style of a widget cannot be changed after
it has been created. Style bits provide a compact and efficient method to
describe these attributes.

All styles are defined as constants in the class org.eclipse.swt.SWT.

As expected, you can combine styles by using a bitwise OR operation. For
example, the following code fragment creates a multiline text widget that has
a border and horizontal and vertical scroll bars.

Text text = new Text (parent,
 SWT.MULTI | SWT.V_SCROLL | SWT.H_SCROLL | SWT.BORDER);

The list of the style constants that are applicable to each widget is
described in the Javadoc for the widget. Styles that are defined in a given
superclass are valid for the subclasses unless otherwise noted. The constant
SWT.NONE is used when there are no applicable style bits.

The widget style can be queried after it has been created using getStyle().

getStyle() Returns the actual style of the widget represented using a
bitwise OR of the constants from class SWT. Note that this can be dif-
ferent from the value that was passed to the constructor because it can

to the appropriate type, despite the fact that the correct type was provided in
the constructor. By implementing getParent() in each subclass, the type informa-
tion that was specified when the widget was created is preserved. One of the
design goals of SWT is to preserve as much type information as possible in the
API, reducing the need for application programs to cast.

Class SWT

SWT uses a single class named (appropriately) SWT to share the constants that
define the common names and concepts found in the toolkit. This minimizes the
number of classes, names, and constants that application programmers need to
remember. The constants are all found in one place.

Northover.book Page 10 Saturday, June 19, 2004 7:40 AM

1.1 What Is a Widget? 11

include defaults provided by the widget implementation. In addition,
if a style requested in the constructor cannot be honored, the value
returned by getStyle() will not contain the bits. This can happen when
a platform does not support a particular style.

The following code fragment uses a bitwise AND to test to see whether a
text widget displays and can edit only a single line of text.

if ((text.getStyle () & SWT.SINGLE) != 0) {

 System.out.println ("Single Line Text");

}

The Position Parameter

The position parameter allows you to create a widget at a specific index in the
list of children or by the parent.4 The other children in the list are shifted to
make room for the new widget. For example, the position parameter could be
used to create a menu item and make it the third item in a menu. By default, if
the position parameter is not provided, the child is placed at the end of the list.

Why is there no widget “add()” method to add a child to the children list
of its parent? For an add() method to do something reasonable, it would
require that you be able to remove a widget from the children list without
destroying it. Given that a widget cannot exist without a parent, this would
leave the child in a state where it knows about its parent but the parent does
not know about the child.

4. The position parameter is the natural expression of the rule that widgets cannot exist without a
parent. Because the parent-child relationship is specified in the constructor, the child will be
placed in the list of children when it is created.

Convenience Constructors—Just Say No

Some programmers demand convenience constructors using arguments such
as, “Every time a button is created, I always set the text so there should be a button
constructor that takes a string.” Although it is tempting to add convenience con-
structors, there is just no end to them. Buttons can have images. They can be
checked, disabled, and hidden. It is tempting to provide convenience construc-
tors for these properties, as well. When a new API is defined, even more con-
venience constructors are needed. To minimize the size of the widget library and
provide consistency, SWT does not normally provide convenience constructors.

Northover.book Page 11 Saturday, June 19, 2004 7:40 AM

12 Widget Fundamentals

1.1.3 Disposing of a Widget

When a widget is no longer needed, its dispose() method must be explicitly
called.

dispose() Hides the widget and its children, and releases all associ-
ated operating system resources. In addition, it removes the widget
from the children list of its parent. All references to other objects in
the widget are set to null, facilitating garbage collection.5

SWT does not have a widget remove() method for the same reason that
there is no add() method: It would leave the child in a state where it knows
about its parent but the parent does not know about the child. Because wid-
gets are alive for exactly the duration that they are referenced by their parents,
implicit finalization (as provided by the garbage collector) does not make
sense for widgets. Widgets are not finalized.6

Accessing a widget after it has been disposed of is an error and causes an
SWTException (“Widget is disposed”) to be thrown. The only method that is
valid on a widget that has been disposed of is:

isDisposed() Returns true when the widget has been disposed of.
Otherwise, returns false.

If you never dispose of a widget, eventually the operating system will run
out of resources. In practice, it is hard to write code that does this. Program-
mers generally do not lose track of their widgets because they require them to
present information to the user. Users generally control the life cycle of top-
level windows—and the widgets they contain—by starting applications and
clicking on “close boxes.”

When a widget is disposed of, a dispose event is sent, and registered lis-
teners are invoked in response. For more on this, see the section Events and
Listeners.

5. Of course, your application has to have no references to the objects for them to be garbage col-
lected.

6. This is covered in great detail in the article SWT: The Standard Widget Toolkit—PART 2: Man-
aging Operating System Resources at Eclipse.org (see http://www.eclipse.org/articles/swt-design-
2/swt-design-2.html).

Northover.book Page 12 Saturday, June 19, 2004 7:40 AM

1.1 What Is a Widget? 13

1.1.4 Rules for Disposing of Widgets

There are only two rules that you need to know to determine when to dispose
of a particular widget. Please excuse the references to specific classes and
methods that have yet to be discussed. They will be described in detail later in
the book. It is more important at this time that the “rules” are complete.

Rule 1:

If you created it, you dispose of it. SWT ensures that all operating system
resources are acquired when the widget is created. As we have already seen,
this happens in the constructor for the widget. What this means is that you are
responsible for calling dispose() on SWT objects that you created using new.
SWT will never create an object that needs to be disposed of by the program-
mer outside of a constructor.

Rule 2:

Disposing a parent disposes the children. Disposing of a top-level shell will dis-
pose of its children. Disposing of a menu will dispose of its menu items. Dis-
posing of a tree widget will dispose of the items in the tree. This is universal.

There are two extensions to Rule 2. These are places where a relationship
exists that is not a parent-child relationship but where it also makes sense to
dispose of a widget.

Rule 2a:

Disposing a MenuItem disposes the cascade Menu.

MenuItem.setMenu() Disposing of a MenuItem that has a submenu
set with the setMenu() method disposes of the submenu. This is a nat-
ural extension of Rule 2. It would be a burden to the programmer to
dispose of each individual submenu. It is also common behavior in
most operating systems to do this automatically.7

Rule 2b:

Disposing a control disposes the pop-up Menu.

7. Windows and X/Motif dispose submenus when a cascading menu item is disposed. GTK and the
Macintosh employ a reference-counting scheme that normally disposes of the menu, provided
that there are no more references.

Northover.book Page 13 Saturday, June 19, 2004 7:40 AM

14 Widget Fundamentals

Control.setMenu() Disposing of a control that has a pop-up menu
assigned using the setMenu() method disposes the pop-up menu. Many
application programmers expected this behavior, even though the oper-
ating systems do not do it automatically. We added this rule because too
many application programs temporarily leaked pop-up menus.8

Another way to remember the extensions to Rule 2 is to notice that both
extensions concern instances of the class Menu when used with the setMenu()
method. For more information about menus, see Classes Menu and MenuItem
in the ToolBars and Menus chapter.

1.2 Widget Hierarchy

The class Widget is the root of an inheritance hierarchy of diverse user inter-
face elements such as buttons, lists, trees, and menus. Subclasses, both within
the widgets package and outside it, extend the basic behavior of widgets by
implementing events and adding API that is specific to the subclass. The inher-
itance hierarchy of the class Widget is static. For example, the class Button will
always inherit from its superclass, Control.9 Instances of Button will always
respond to messages that are implemented in the class Control.

The containment hierarchy of a widget is defined by the parent/child rela-
tionship between widgets. It is built dynamically at runtime. For example, the
parent of an instance of Button might be a group box or tab folder but instances
of the class Button do not inherit from the classes that represent these widgets.
As we have already seen, the containment hierarchy of a widget is defined when
the widget is created, using the parent argument of the constructor.

1.2.1 Subclassing in SWT

Generally speaking, subclassing is not the safest way to extend a class in an
object-oriented language, due to the fragile superclass problem.

The term fragile superclass comes from the C++ programming world. It
normally refers to the fact that when a new method or field is added to a
superclass, subclasses need to be recompiled or they might corrupt memory.
Java solves the static or binary compatibility portion of the problem using a

8. The leak was only temporary because the pop-up menu was eventually disposed of when the top-
level Shell was closed.

9. Controls are discussed in the section Controls, Composites, Shells, and the Display. Although we
tend to use the terms widget and control somewhat interchangeably, there are differences. See the
section Widgets That Are Not Controls for more on this.

Northover.book Page 14 Saturday, June 19, 2004 7:40 AM

1.2 Widget Hierarchy 15

name-lookup mechanism that is transparent to the programmer. However,
there is also a dynamic portion of the problem where subclasses can inadver-
tently depend on the implementation of a superclass. For example, a subclass
may depend on the fact that the internal implementation of the superclass calls
a certain public method that is reimplemented in the subclass. Should the
superclass be changed to no longer call this method, the subclass will behave
differently and might be subtly broken. In SWT, where the implementation of
most classes differs between platforms, the chances of this happening are
increased. For this reason, subclassing in arbitrary places in the Widget class
hierarchy is discouraged by the implementation.

In order to allow subclassing where it is normally disallowed, the Widget
method checkSubclass() must be redefined.

checkSubclass() Throws an SWTException(“Subclassing not allowed”)
when the instance of the class is not an allowed subclass.

The protected method checkSubclass() is called internally by SWT when
an instance of a widget is created. Subclasses can override this method to
avoid the check and allow the instance to be created. The following code frag-
ment defines an inner class that is a subclass of the class Label and reimple-
ments the setText() method.

Label label = new Label(shell, SWT.NONE) {

 protected void checkSubclass() {

 }

 public void setText(String string) {

 System.out.println("Setting the string");

 super.setText(string);

 }

};

Why Aren’t the Widget Classes “final”?

Java allows the programmer to tag a class as final, disallowing subclasses. In fact,
in very early versions of SWT, classes that should not be subclassed were clearly
marked as such using the final keyword. Unfortunately, this proved to be too
inflexible. In particular, it meant that if a problem was found in an SWT class,
only the SWT team could fix it. There was no way to temporarily “patch” the
class by creating a subclass to override the problem method(s). Customers who
needed to ship their product before a fix could be integrated into the next SWT
release were willing to risk the dynamic fragile superclass problem in order to

Northover.book Page 15 Saturday, June 19, 2004 7:40 AM

16 Widget Fundamentals

In SWT, user interfaces are constructed by composition of widget
instances. Event listeners (see Events and Listeners, below) are added to wid-
gets to run application code when an event occurs, rather than overriding a
method. Application programmers use listeners instead of subclassing to
implement the code that reacts to changes in the user interface.

Subclassing is allowed in SWT but only at very controlled points, most
notably, the classes that are used when implementing a custom widget: Com-
posite or its subclass Canvas. To indicate this, the checkSubclass() method in
Composite does not constrain the allowable subclasses. To create a new kind
of widget in SWT, you would typically subclass Canvas, then implement and
use event listeners to give it the required appearance and behavior. Note that
you should still not reference internal details of the superclasses, because they
may vary significantly between platforms and between subsequent versions of
SWT. For an example of creating a custom widget, see MineSweeper in the
Applications part of the book.10

1.2.2 Controls, Composites, Shells, and the Display

A control is a user interface element that is contained somewhere within a top-
level window, called a Shell. Controls are common in all user interfaces. But-
tons, labels, progress bars, and tables are all controls. Users are familiar with
the standard set of controls that come with the operating system. In SWT,
operating system controls are, by definition, instances of subclasses of the
abstract class Control.

Taking a bottom-up view of the world, every control has a parent that is
an instance of the class Composite or one of its subclasses. The class Shell,
which represents the top-level windows of your application, is a subclass of
Composite. Shells are created on a Display, which represents the “screen.”

have the freedom to make this kind of patch. The checkSubclass() method is a
compromise that allows them to do this without removing all constraints on
subclassing.

It is important to note that this really is the only reason why the checkSub-
class() method was added. Well-written SWT programs should never override
checkSubclass().

10. A good article that describes how to create custom widgets, entitled Creating Your Own Widgets
Using SWT, can be found in the “articles” area at www.eclipse.org.

Northover.book Page 16 Saturday, June 19, 2004 7:40 AM

1.3 Events and Listeners 17

Stated another way, this time from the top down, a display contains a list
of top-level shells, where each shell is the root of a tree composed of compos-
ites and controls. Composites can contain other composites, allowing the tree
to have arbitrary depth. If the child of a shell is another shell, the child is com-
monly called a dialog shell. A dialog shell always stays in front of the parent
shell.

1.2.3 Widgets That Are Not Controls

Unfortunately, the picture is not quite that simple. Some of the user interface
elements that make up an SWT application are not represented by controls. In
general, these are objects that are interesting enough to warrant being repre-
sented by instances of some class but do not have the operating system
resource requirements of controls. For example, operating systems do not rep-
resent each of the items in a tree using other controls. Instead, to improve per-
formance, the tree is responsible for drawing the items. Because the items no
longer behave like controls, it would be a mistake to model them as such. The
set of widgets that are not controls are exactly those that are not modeled as
controls on all operating systems.11

1.3 Events and Listeners

An event is simply an indication that something interesting has happened.
Events, such as “mouse down” and “key press,” are issued when the user
interacts with a widget through the mouse or keyboard. Event classes, used to
represent the event, contain detailed information about what has happened.
For example, when the user selects an item in a list, an event is created, cap-
turing the fact that a “selection” occurred. The event is delivered to the appli-
cation via a listener.

A listener is an instance of a class that implements one or more agreed-
upon methods whose signatures are captured by an interface. Listener meth-
ods always take an instance of an event class as an argument. When something
interesting occurs in a widget, the listener method is invoked with an appro-
priate event.

Most widgets track sequences of events and redraw based on them, some-
times issuing a higher-level event to indicate a state change. For example, a

11. Restrictions in Windows, for example, prevented us from making menus and scroll bars into
controls.

Northover.book Page 17 Saturday, June 19, 2004 7:40 AM

18 Widget Fundamentals

button may track “mouse press,” “move,” and “release” in order to issue a
“selection” event when the mouse is released inside the button.

Some widget methods generate events. For example, when you call setFo-
cus() on a control, “focus” events are issued. The rules governing which meth-
ods cause events and which do not are largely historical, based on the
behavior of the Windows and X/Motif operating systems. In order to be able
to write portable applications, these rules have been standardized across plat-
forms.

SWT has two kinds of listeners: untyped and typed.

1.3.1 Untyped Listeners

Untyped listeners provide a simple, generic, low-level mechanism to handle
any type of event. There are only two Java types involved: a single generic
interface called Listener and a single event class called Event. Untyped listen-
ers are added using the method addListener().

addListener(int event, Listener listener) Adds the listener to the col-
lection of listeners that will be notified when an event of the given type
occurs. When the event occurs in the widget, the listener is notified by
calling its handleEvent() method.

The type argument specifies the event you are interested in receiving. To
help distinguish them from all the other SWT constants, type arguments are
mixed upper- and lowercase by convention. All other constants in SWT are
uppercase. The following code fragment uses addListener() to add a listener
for SWT.Dispose.

widget.addListener(SWT.Dispose, new Listener() {
 public void handleEvent(Event event) {
 // widget was disposed
 }
});

When multiple listeners are added, they are called in the order they were
added. This gives the first listener the opportunity to process the event and
possibly filter the data before the remaining listeners are notified (see Event
Filters in the chapter Display). Adding the same instance of a listener multiple
times is supported, causing it to be invoked once for each time it was added.12

12. We can’t think of any reason you would want to add the same listener multiple times but there is
no restriction to stop you from doing this.

Northover.book Page 18 Saturday, June 19, 2004 7:40 AM

1.3 Events and Listeners 19

It is also possible to remove listeners using removeListener().

removeListener(int type, Listener listener) Removes the listener
from the collection of listeners that will be notified when an event of
the given type occurs.

In order for a listener to be removed, you must supply the exact instance
of the listener that was added. If the same listener instance is added multiple
times, it must be removed the same number of times it was added to remove
it from the listener collection completely.

Generally speaking, removing listeners is unnecessary. Listeners are gar-
bage collected when a control is disposed of, provided that there are no other
references to the listener in the application program.

Application code can send events using notifyListeners().

notifyListeners(int type, Event event) Sets the type of the event to the
given type and calls Listener.handleEvent() for each listener in the col-
lection of listeners.

An important point to note is that notifyListeners() does not cause the cor-
responding operating system event to occur. For example, calling notifyListen-
ers() with SWT.MouseDown on a button will not cause the button to appear
to be pressed. Also, notifyListeners() does not ensure that the appropriate
fields for the event have been correctly initialized for the given type of event.
You can use notifyListeners() to invoke listeners that you define but it is prob-
ably easier simply to put the code in a helper method.

Class Event has a number of fields that are applicable only for a subset of
the event types. These fields are discussed as each type of event is described.
Table 1.1 shows the fields that are valid for all event types.

Table 1.2 shows the type constants that describe all of the untyped events
that SWT implements. More details are available in the descriptions of the
individual widgets.

Table 1.1 Public Fields in Class Event That Are Applicable to All Untyped Events

Field Description

display the Display on which the event occurred

widget the Widget that issued the event

type the event type

Northover.book Page 19 Saturday, June 19, 2004 7:40 AM

20 Widget Fundamentals

Table 1.2 Untyped Events

Event Type Constant Description

SWT.KeyDown A key was pressed

SWT.KeyUp A key was released

SWT.MouseDown A mouse button was pressed

SWT.MouseUp A mouse button was released

SWT.MouseMove The mouse was moved

SWT.MouseEnter The mouse entered the client area of the control

SWT.MouseHover The mouse lingered over a control

SWT.MouseExit The mouse exited the client area of the control

SWT.MouseDoubleClick A mouse button was pressed twice

SWT.Paint A control was asked to draw

SWT.Move The position of the control was changed

SWT.Resize The size of the client area of the control changed

SWT.Dispose The widget was disposed

SWT.Selection A selection occurred in the widget

SWT.DefaultSelection The default selection occurred in the widget

SWT.FocusIn Keyboard focus was given to the control

SWT.FocusOut The control lost keyboard focus

SWT.Expand A tree item was expanded

SWT.Collapse A tree item was collapsed

SWT.Iconify The shell was minimized

SWT.Deiconify The shell is no longer minimized

SWT.Close The shell is being closed

SWT.Show The widget is becoming visible

SWT.Hide The widget is being hidden

SWT.Modify Text has changed in the control

SWT.Verify Text is to be validated in the control

Northover.book Page 20 Saturday, June 19, 2004 7:40 AM

1.3 Events and Listeners 21

If you are writing your own widget, you may want to use notifyListeners()
to support the built-in untyped events in SWT since this allows your widget to
behave like the native widgets with respect to the mapping between untyped
and typed listeners. However, for events that are particular to your widget,
you will also typically implement typed listeners.

1.3.2 Typed Listeners

A typed listener follows the standard JavaBeans listener pattern. Typed listen-
ers and their corresponding event classes are found in the package
org.eclipse.swt.events. For example, to listen for a dispose event on a widget,
application code would use addDisposeListener().

addDisposeListener(DisposeListener listener) Adds the listener to
the collection of listeners that will be notified when a widget is dis-
posed. When the widget is disposed, the listener is notified by calling
its widgetDisposed() method.

The following code fragment listens for a dispose event on a widget.

widget.addDisposeListener(new DisposeListener() {
 public void widgetDisposed(DisposeEvent event) {
 // widget was disposed
 }
});

SWT.Activate The control is being activated

SWT.Deactivate The control is being deactivated

SWT.Help The user requested help for the widget

SWT.DragDetect A drag-and-drop user action occurred

SWT.MenuDetect The user requested a context menu

SWT.Arm The menu item is drawn in the armed state

SWT.Traverse A keyboard navigation event occurred

SWT.HardKeyDown A hardware button was pressed (handhelds)

SWT.HardKeyUp A hardware button was released (handhelds)

Table 1.2 Untyped Events (continued)

Event Type Constant Description

Northover.book Page 21 Saturday, June 19, 2004 7:40 AM

22 Widget Fundamentals

DisposeListener is an interface. If there is more than one method defined
by the listener, SWT provides an adapter class that contains no-op implemen-
tations of the methods.13 For example, the interface SelectionListener has two
methods, widgetSelected() and widgetDefaultSelected(), that take Selection-
Events as arguments. As a result, the class SelectionAdapter is provided that
provides no-op implementations for each method.

Typed listeners are removed using the corresponding remove method for
the listener. For example, a listener for a dispose event is removed using
removeDisposeListener().

removeDisposeListener(DisposeListener listener) Removes the lis-
tener from the collection of listeners that will be notified when the
widget is disposed.

Table 1.3 shows all of the typed events that SWT implements. These are
described in more detail in the descriptions of the individual widgets.

13. Adapter classes are provided for convenience and to adhere to JavaBeans listener conventions.

Table 1.3 Typed Events

Event Listener Methods Untyped Event

ArmEvent ArmListener widgetArmed(ArmEvent) SWT.Arm

ControlEvent ControlListener
(and ControlAdapter)

controlMoved(ControlEvent)
controlResized(ControlEvent)

SWT.Move
SWT.Resize

DisposeEvent DisposeListener widgetDisposed(DisposeEvent) SWT.Dispose

FocusEvent FocusListener
(and FocusAdapter)

focusGained(FocusEvent)
focusLost(FocusEvent)

SWT.FocusIn
SWT.FocusOut

HelpEvent HelpListener helpRequested(HelpEvent) SWT.Help

KeyEvent KeyListener
(and KeyAdapter)

keyPressed(KeyEvent)
keyReleased(KeyEvent)

SWT.KeyPressed
SWT.KeyReleased

MenuEvent MenuListener
(and MenuAdapter)

menuHidden(MenuEvent)
menuShown(MenuEvent)

SWT.Hide
SWT.Show

ModifyEvent ModifyListener modifyText(ModifyEvent) SWT.Modify

MouseEvent MouseListener
(and MouseAdapter)

mouseDoubleClick(MouseEvent)
mouseDown(MouseEvent)
mouseUp(MouseEvent)

SWT.MouseDoubleClick
SWT.MouseDown
SWT.MouseUp

MouseEvent MouseMoveListener mouseMove(MouseEvent) SWT.MouseMove

Northover.book Page 22 Saturday, June 19, 2004 7:40 AM

1.3 Events and Listeners 23

1.3.3 Why Are There Two Listener Mechanisms?

In early versions of SWT, there were only untyped listeners. After considerable
discussion between the Eclipse implementers, the SWT user community, and
the developers, it was decided to include a more “JavaBeans-like” listener
mechanism. It was felt that this would ease the transition to SWT for devel-
opers who were already familiar with AWT/Swing. The untyped listeners
remain as the implementation mechanism for event handling in SWT. The
typed listeners are defined in terms of them.

We recommend that SWT applications always be implemented in terms of
the typed listener mechanism, although this is largely based on the more famil-
iar pattern they represent. Because of the simplicity of the untyped mechanism
and our closeness to the implementation, we tend to use it in many of the small
examples we write. To see a clear example of the typed mechanism in action,
take a look at the FileExplorer example in the Applications part of the book.

Effectively, the trade-off between the two listener models is one of space
versus ease of use and adherence to a standard pattern. Using untyped listen-
ers, it is possible to minimize the number of classes and methods used to listen
for events. The same listener can be used to listen for many different event
types. For example, the following code fragment listens for dispose as well as
mouse events.

MouseEvent MouseTrackListener
(and MouseTrackAdapter)

mouseEnter(MouseEvent)
mouseExit(MouseEvent)
mouseHover(MouseEvent)

SWT.MouseEnter
SWT.MouseExit
SWT.MouseHover

PaintEvent PaintListener paintControl(PaintEvent) SWT.Paint

SelectionEvent SelectionListener
(and SelectionAdapter)

widgetDefaultSelected(SelectionEvent)
widgetSelected(SelectionEvent)

SWT.DefaultSelection
SWT.Selection

ShellEvent ShellListener
(and ShellAdapter)

shellActivated(ShellEvent)
shellClosed(ShellEvent)
shellDeactivated(ShellEvent)
shellDeiconified(ShellEvent)
shellIconified(ShellEvent)

SWT.Activate
SWT.Close
SWT.Deactivate
SWT.Deiconify
SWT.Iconify

TraverseEvent TraverseListener keyTraversed(TraverseEvent) SWT.Traverse

TreeEvent TreeListener
(and TreeAdapter)

treeCollapsed(TreeEvent)
treeExpanded(TreeEvent)

SWT.Collapse
SWT.Expand

VerifyEvent VerifyListener verifyText(VerifyEvent) SWT.Verify

Table 1.3 Typed Events (continued)

Event Listener Methods Untyped Event

Northover.book Page 23 Saturday, June 19, 2004 7:40 AM

24 Widget Fundamentals

Listener listener = new Listener() {

 public void handleEvent(Event event) {

 switch (event.type) {

 case SWT.Dispose: break;

 case SWT.MouseDown: break;

 case SWT.MouseUp: break;

 case SWT.MouseMove: break;

 }

 System.out.println("Something happened.");

 }

};

shell.addListener(SWT.Dispose, listener);

shell.addListener(SWT.MouseDown, listener);

shell.addListener(SWT.MouseUp, listener);

shell.addListener(SWT.MouseMove, listener);

In practice, unless space usage is the overwhelming constraint, we expect
that most programmers will use the typed listener mechanism.14 Note that
typed events have very specific listener APIs, whereas the untyped events have
only handleEvent(). Using untyped events can lead to switch logic that is more
complicated. Refer to Table 1.3 to see the mapping between typed and
untyped events.

1.3.4 Widget Events

SWT.Dispose (DisposeEvent)

Table 1.4 shows the dispose events that are provided by SWT.

14. All of the typed listeners provided by the native widgets in SWT are found in the package
org.eclipse.swt.events. When space is extremely limited, this package and all of the correspond-
ing addXXXListener() and removeXXXListener() methods in org.eclipse.swt.widgets can be
safely removed.

Table 1.4 Dispose Events

Untyped Event Description

SWT.Dispose The widget was disposed

Typed Event Listener Methods

DisposeEvent DisposeListener widgetDisposed(DisposeEvent)

Northover.book Page 24 Saturday, June 19, 2004 7:40 AM

1.4 Application Data 25

The SWT.Dispose event (typed event DisposeEvent) is sent when a widget
is disposed of. Dispose events contain meaningful values in only the display,
widget, and type fields.

1.4 Application Data

Using application data, you can associate arbitrary named and unnamed data
with a widget. In some situations, this can be a useful alternative to subclass-
ing. Given that subclassing at arbitrary places in the Widget hierarchy is
strongly discouraged, if you are subclassing in order to add fields to a widget,
application data can be used instead.

The setData() method is used to set application data. To allow any object
to be associated with a widget, setData() and getData() accept and return
objects.

setData(Object data) Sets the unnamed application data. The data
parameter is associated with the widget and stored in a single
unnamed field. This field is for use by the application.

getData() Answers the unnamed application data or null if none has
been set.

setData(String key, Object data) Sets the named application data.
The data is stored as a “key/value” pair in the widget. These key/value
pairs are for use by the application. The “value” can be any object. If
the “key” is null, an IllegalArgumentException (“Argument cannot be
null”) is thrown.

getData(String key) Answers the named application data. The key is
used to find the key/value pair. If no such pair exists, null is returned.

The following code fragment associates an unnamed object (the string
“Picard”) with a widget. The string is then retrieved and the message “Found
the captain!” is printed.

widget.setData("Picard");
if ("Picard".equals(widget.getData())) {
 System.out.println("Found the captain!");
}

The following code fragment associates the key “Android” with the object
“Data” and the key “Captain” with the object “Picard”. The key “Captain”

Northover.book Page 25 Saturday, June 19, 2004 7:40 AM

26 Widget Fundamentals

is used to find the object “Picard”, and the message “Found the captain
again!” is printed.

widget.setData("Android", "Data");
widget.setData("Captain", "Picard");
if ("Picard".equals(widget.getData("Captain"))) {
 System.out.println("Found the captain again!");
}

Application data is optimized for space over speed. This means that stor-
ing keys and values is memory-efficient, with the result that adding, removing,
and retrieving values is somewhat slower. In general, this is a good design
trade-off, because most applications tend to store little or no data with their
widgets. When data is stored with a widget, it is often a single named or
unnamed value. When storing thousands of named values, if you experience
performance problems, store a hash table or another data structure as data
with the widget and look the values up in the table instead of in the widget.

1.5 Querying the Display

Widgets provide the method getDisplay() that is used to query the Display.

getDisplay() Answers the display where the widget was created.

Display is such an important class in SWT that every widget knows on
which Display it was created. Display is described in full detail in the chapter
Display.

1.6 Summary

In this chapter, you have learned the fundamental behavior of widgets. Wid-
gets are created using standard constructor patterns and explicitly disposed of
when no longer needed. User interfaces are built in SWT by the composing
instances of widgets to form containment hierarchies. Rather than subclassing
and overriding methods, Listeners are used to notify an application when
something interesting has happened. Methods of the class Widget were
described as they relate to events, application data, and the Display.

Northover.book Page 26 Saturday, June 19, 2004 7:40 AM

