
3
MARS, Asynchronous
Commands, and ObjectSpaces

TH E D ATA A C C E S S C L A S S E S introduced into ADO.NET version 1.0
and the techniques for using them are aimed at the needs of modern

applications—in particular the two distinct requirements that these appli-
cations encounter. The first is to be able to operate in a disconnected envi-
ronment, where data needs to be remoted to clients across a network. The
second is to provide fast, simple, and clean access to data in read-only
fashion for populating controls and other data consumers.

However, there will always be many more specific scenarios in which
your code will operate. To provide more opportunities for extracting bet-
ter performance from your applications and to add new features that have
been requested by users, ADO.NET version 2.0 supports some new ap-
proaches to accessing and updating data. The features we’ll be covering in
this chapter include the following:

• Multiple Active Results Sets (MARS), which provide the opportu-
nity to open more than one results set over the same connection and
access them concurrently

• Asynchronous access to the results of multiple commands over the
same Connection instance, plus the ability to open connections
asynchronously

51

• The new ObjectSpaces technology added to ADO.NET, which al-
lows data to be defined as instances of a class but handled just like
other intrinsic data types

The first two of these topics are related in that the ability to execute
multiple commands asynchronously and to have more than one set of re-
sults active over the same connection provides huge opportunities for in-
creasing performance when complex multiquery processes are required.
We start this chapter with an overview of these two technologies and how
they fit in with the existing data access capabilities of ADO.NET.

Expanded and Improved Data Access Features
To understand what the topics covered in this chapter are really about,
how they fit together, and what kinds of problems they are designed to
solve, you need to think about how existing data access methods are used
when all the data an application needs resides in a single database and
when it is in more than one database. These issues are becoming more
common as applications have to work with multiple sources of data.

While the existing techniques from version 1.x of ADO.NET can easily
accomplish the required tasks, both ease of access and performance can be
improved. In particular, when the data sources are not local (as is becom-
ing increasingly common in modern client-side applications and multiple-
server Web farms), the procedural synchronous nature of current data
access techniques can cause processing bottlenecks. You have to consider
the individual steps that the code must go through to access the data when
more than one query to the database is required.

Accessing a Single Data Source
In the simplest case, where data comes from a single server, the same con-
nection can be used for all the commands that need to be executed to read
or update data. Taking a DataSet as an example, the commands would be
those required to fetch data from the database (the SelectCommand) and to
update the data (the InsertCommand, UpdateCommand, and DeleteCommand).
Figure 3.1 shows a simple scenario.

This process supports only synchronous access to the data. You can’t
read data through the connection while concurrently updating rows, and
you can’t execute concurrent insert, delete, and update operations. When
the Fill method is called, no other access is possible through the connec-
tion until the method completes. And the Update operation automatically

MARS, ASYNCHRONOUS COMMANDS, AND OBJECTSPACES52

executes the commands sequentially when pushing updates back into the
database. In most cases, however, this behavior is perfectly satisfactory
and matches the requirements of the application.

Executing Multiple Commands Sequentially
An alternative situation is when you use several object instances to access
data (here multiple DataReader instances, but it could be a mix of
DataReader and DataSet instances) over the same connection. Again,
only one of these can be executing a query over the single connection at a
time. But because the ADO.NET code you write will usually call methods
on the DataReader or other objects sequentially and will block on each
method call until it is complete, there is no problem with using the same
connection. Figure 3.2 shows this scenario.

In this case, however, there are two areas where performance and us-
ability issues can arise:

1. If you open a rowset with a DataReader over the connection, you
must close it before you attempt to open another DataReader or
execute another command—if not, you’ll get a “Connection is busy . . .”

EXPANDED AND IMPROVED DATA ACCESS FEATURES 53

Command

Command

DataSet Connection

Command

Database

Figure 3.1. Multiple commands to the same database through a single connection

Command

CommandDataReader

Command

DataReader

DataReader

Connection
Database

Figure 3.2. Multiple commands for separate DataReader instances through a single
connection

error. To be able to open more than one rowset concurrently in
ADO.NET version 1.x requires that each command have its own
separate connection to the database. Because the number of data-
base connections available is limited and they are expensive in
terms of resource usage, this often isn’t a feasible approach.

2. If one of the commands you’re executing takes a long time to return
results, the code in the application will block and wait until the
query process is complete before it can execute the next command.
So your code may be standing idle when it could be doing some-
thing else in the meantime.

The Requirements for Asynchronous Execution
It would be nice to be able to start the three commands together, allowing
them to execute asynchronously and then handling the results as they are
returned. That way the data or the results can be processed and/or dis-
played as they are received—making the applications appear more re-
sponsive and usable. But that requires two changes to the existing classes
to make it work, and (not coincidentally) these are two of the new features
in ADO.NET that we’re covering in this chapter.

1. The MARS feature in ADO.NET 2.0 allows you to have more than
one rowset or command open over a single connection. In other
words, you can open a rowset with a DataReader and then send
other commands to the database over the same connection while the
DataReader is open. You can even have more than one rowset open
in separate DataReader instances at the same time and read from
either one as required.

2. The introduction of asynchronous processing in ASP.NET 2.0 for the
Command class allows you to start more than one command execut-
ing concurrently and then wait until one or all of them have com-
pleted. You can also open connections asynchronously, though only
a single connection request can be outstanding at any one time.

The combination of the two techniques means that, using only a single
database connection, you can execute multiple commands concurrently
and have the rowsets they return open at the same time. And, of course,
update commands can also be executed over the same connection at the
same time, even when rowsets are open on that connection. This provides
a huge opportunity for increased performance and responsiveness for

MARS, ASYNCHRONOUS COMMANDS, AND OBJECTSPACES54

The MARS feature may not provide any advantage in this situation be-
cause each command will use its own dedicated connection. However, it
may be that you have some hybrid scenario, where some commands are to
the same database (in which case they can share a connection) while others
are to a different database through a different connection (see Figure 3.4).

EXPANDED AND IMPROVED DATA ACCESS FEATURES 55

Command Connection

DataReader Connection

Connection

Database

Database

Database

Command

Command

Figure 3.3. Multiple commands to different databases through separate connections

Command

Command Connection

DataSet

Connection

CommandDataReader

Database

Database

Figure 3.4. A mix of commands and connections for different databases

your applications and Web pages. However, bear in mind that there are
scenarios, such as when working with multiple separate data sources,
when MARS is not directly useful.

Accessing Multiple Data Sources
When it comes to accessing multiple different data sources in an applica-
tion, you have no option but to use separate connections. Of course, a con-
nection can be to only a single database. So, for multiple data access
operations against separate databases, you end up with something like the
situation shown in Figure 3.3.

Here, MARS can provide the opportunity for improved access, for ex-
ample, being able to open a rowset with a DataReader and then execute
commands against the same database while the DataReader is open. But
what is also useful, in both of these scenarios (Figures 3.3 and 3.4), is the
ability to execute commands asynchronously. For example, you can start
execution of the command that fetches the rows for the DataReader,
then—while it is running—execute the Fill method for the DataSet.

Opening Connections Asynchronously
In ADO.NET 2.0 it’s now also possible to open connections asynchro-
nously. This offers even more opportunity to increase efficiency, especially
when access to different data sources is required. It means that your code
can continue to execute while waiting for a connection to be established—
particularly useful when connecting to a remote data source rather than a
local one.

When multiple connections are required, a common scenario is for the
code to open these one by one. In fact, there’s no alternative to this in
ADO.NET 1.x. Being able to open each one asynchronously means that
you can start to retrieve or update the data over that connection while
waiting for other connections to open. You may even end up actually using
fewer connections because you may be able to close some and return them
to the connection pool before the last one has opened. Running the same
code synchronously would mean holding all of the connections open until
all of the processing completes.

Of course, you can open the connection asynchronously in situations
where you need only one connection, but the advantage is not as obvious
unless you start the opening process at the beginning of the code and then
do some other work while you wait for it to open. The danger here is that
you may hold on to the connection for longer than necessary, robbing other
applications (and other instances of this application) of available connec-
tions and producing no overall advantage.

MARS in Action
ADO.NET 2.0 provides a great new feature called MARS. We discussed
how useful this is in the first sections of this chapter, and here you’ll see an
example of it in action.

Listing 3.1 demonstrates how useful MARS can be when dealing with
related tables (though this is not, of course, the only way it can be used).
The sample Northwind database we’re using here contains an Orders table

MARS, ASYNCHRONOUS COMMANDS, AND OBJECTSPACES56

and a related Order Details table. The example fetches the first five rows from
the Orders table, displays a couple of column values, and then—while this
rowset is open over the connection—executes another command that re-
turns a rowset of the related Order Details rows for the current order.

The code starts in the usual way by creating a single Connection and
then two Command instances. The first Command selects the first five rows
from the Orders table. The second selects the details of each line on an order,
using a parameter named @orderid that will be set to the ID of the current
order when this statement is executed. A parameter that corresponds to the
@orderid parameter in the SQL statement is then added to the Command
object’s Parameters collection.

Listing 3.1. An Example of MARS in Action

' get connection string and specify SQL statements

Dim sConnectString As String = "your-connection-string"

Dim sOrderSQL As String = "SELECT TOP 5 OrderID, ShipName FROM Orders"

Dim sOrderLineSQL As String = "SELECT OrderID, Quantity, " _

& "[Order Details].UnitPrice As Price, ProductName " _

& "FROM [Order Details] JOIN Products " _

& "ON [Order Details].ProductID = Products.ProductID " _

& "WHERE OrderID = @orderid"

' create connection and two commands

Dim oConn As New SqlConnection(sConnectString)

Dim oCmdOrder As New SqlCommand(sOrderSQL, oConn)

Dim oCmdOrderLine As New SqlCommand(sOrderLineSQL, oConn)

' add parameter to second command to use for selecting order

oCmdOrderLine.Parameters.Add("@orderid", SqlDbType.Char, 5)

...

MARS IN ACTION 57

In future releases (following the Technology Preview release) you won’t
have to do anything to enable MARS. As long as you have version 9.0
of the Microsoft Data Access Components (MDAC) library on the client
machine, MARS will just work transparently. However, for the Technol-
ogy Preview version, you must include in the connection string for
your database the token "use mdac9=true;". For Windows Forms
(compiled) applications, see the topic Using New ADO.NET Features
That Require MDAC 9.0 in the Overview of ADO.NET section of the SDK
for details of how to create an application manifest that specifies
MDAC 9.0.

Fetching the Orders Rows
In Listing 3.2 the code continues by declaring a couple of DataReader vari-
ables and executing the command to get the Orders rowset. The While con-
struct then starts by reading the first row and displaying the order ID and
customer name.

Listing 3.2. Executing the Command to Get the Orders Rowset

...

' declare two DataReader variables and open connection

Dim oDROrder, oDROrderLine As SqlDataReader

oConn.Open()

' get rowset from Orders table

oDROrder = oCmdOrder.ExecuteReader(CommandBehavior.CloseConnection)

' iterate through orders

While oDROrder.Read()

' display order ID and name

lblResult.Text &= oDROrder("OrderID").ToString() & " " _

& oDROrder("ShipName") & "
"

...

Fetching the Order Details Rows
Having discovered the ID of the current order, the code in Listing 3.3

now sets the value of the @orderid parameter and executes the second
command to fetch the matching rows from the Order Details table. It iterates
through this rowset, displaying the product name and quantity, and then
closes this DataReader. However, the first DataReader is still open against
the Orders table, so when the While loop ends, the code goes back and
reads the next Orders row, then repeats the process.

Listing 3.3. Executing the Command to Get the Order Details Rowset

...

' set parameter for second command to value of order ID

oCmdOrderLine.Parameters("@orderid").Value = oDROrder("OrderID")

' get list of lines for this order from Order Details table

oDROrderLine = oCmdOrderLine.ExecuteReader()

' iterate through order lines displaying details

While oDROrderLine.Read()

lblResult.Text &= oDROrderLine("Quantity") & " " _

& oDROrderLine("ProductName") & " at " _

MARS, ASYNCHRONOUS COMMANDS, AND OBJECTSPACES58

ASYNCHRONOUS COMMAND EXECUTION 59

& oDROrderLine("Price") & "
"

End While

' close DataReader for Order Details table

oDROrderLine.Close()

lblResult.Text &= "
"

End While

' close DataReader for Orders table

oDROrder.Close()

Once all the Orders rows have been read and the related Order Details

rows for each one fetched and displayed, this DataReader is closed. Be-
cause the CloseConnection option was specified when this DataReader
was opened, the connection to the database is closed automatically at this
point.

Asynchronous Command Execution
When accessing data in a data store such as a database using ADO or
ADO.NET 1.x, each query is executed in turn, and the code waits for each
one to complete before processing the next one. This allows the same con-
nection to be used if the queries access the same data store or a different
connection if they access different data stores.

The previous section of this chapter demonstrates how MARS can be
used to enable a single connection to handle multiple sets of results from
the same data store, but this still doesn’t solve the issue of executing more

In future releases (following the Technology Preview release) you
won’t have to do anything to enable the asynchronous command ex-
ecution feature. As long as you have version 9.0 of the MDAC library
on the client machine, asynchronous command execution will just
work transparently. However, for the Technology Preview version, you
must include in the connection string for your database the token
"use mdac9=true;". For Windows Forms (compiled) applications,
see the topic Using New ADO.NET Features That Require MDAC 9.0 in
the Overview of ADO.NET section of the SDK for details of how to cre-
ate an application manifest that specifies MDAC 9.0.

than one command concurrently. Neither does it help when you want to
access different data stores concurrently.

However, ADO.NET 2.0 now includes features that allow multiple
commands to execute concurrently and asynchronously. This means, in
essence, that code can create and start execution of several commands
without having to wait for them to complete individually. However, unless
you use the MARS feature described earlier in this chapter, you must pro-
vide a separate connection for each one.

The asynchronous model adopted in ADO.NET 2.0 aims to give maxi-
mum flexibility when using this feature by implementing three distinct
techniques:

1. The polling model, where you start all the processes and then re-
peatedly test each one for completion. Other tasks can be accom-
plished between each test.

2. The callback model, where you specify a routine that will be exe-
cuted when each process is complete.

3. The wait model, where a wait handle is created for each method
that starts the command execution. This allows control of the time-
out for each process, and the code can sleep while waiting for a
result to be returned or for a process to time out.

It’s also possible to open connections to a data source asynchronously,
allowing code to continue with other work while waiting for the connec-
tion to be made. The process is much the same as executing a command,
and we look at this topic later in the chapter. But before we examine the ac-
tual code required to perform asynchronous command execution, the next
section lists the classes, properties, and methods used. At present, this fea-
ture is implemented only for the classes in the SqlClient namespace.

Asynchronous Classes, Methods, and Properties
To a greater extent, all three asynchronous execution techniques use the
same methods that are added to the SqlCommand class in ADO.NET 2.0 to
start a process and then capture the results. These methods are listed in
Table 3.1.

MARS, ASYNCHRONOUS COMMANDS, AND OBJECTSPACES60

ASYNCHRONOUS COMMAND EXECUTION 61

Method Description

BeginExecuteNonQuery Starts an asynchronous query to the data source that is not
expected to return any rows. The return value is a reference
to an object that implements the IAsyncResult interface,
in this case an instance of the SqlAsyncResult class,
which is used to monitor and access the process as it runs
and when it is complete. There are two overloads for this
method:

async-result = command.BeginExecuteNonQuery()

Starts execution of this command and returns a reference
to a SqlAsyncResult instance for this process.

async-result = command.BeginExecuteNonQuery(callback, state)

As above, but takes an AsyncCallback instance that
specifies the callback routine to be executed when the
process is complete, plus an Object that defines state
information for the process.

EndExecuteNonQuery Once the command execution started by a BeginExecute
NonQuery call has completed, this method is called to
access the results. The single parameter is a reference
to the SqlAsyncResult for the command, and the
method returns an Integer that is the number of
rows affected (in the same way the ExecuteNonQuery
method does for synchronous processes).

rows-affected = command.EndExecuteNonQuery(async-result)

BeginExecuteReader Starts an asynchronous query to the data source that is
expected to return some rows. The return value is a refer-
ence to an object that implements the IAsyncResult
interface, in this case an instance of the SqlAsyncResult
class, which is used to monitor and access the process as it
runs and when it is complete. There are four overloads for
this method:

async-result = command.BeginExecuteReader()

Starts execution of this command and returns a reference
to a SqlAsyncResult instance for this process.

async-result = command.BeginExecuteReader(command-behavior)

Starts execution of this command using the specified
command behavior value, such as CloseConnection,
and returns a reference to a SqlAsyncResult instance
for this process.

async-result = command.BeginExecuteReader(callback, state)

As above, but takes an AsyncCallback instance that
specifies the callback routine to be executed when the
process is complete, plus an Object that defines state
information for the process.

Table 3.1. Asynchronous Execution Methods of the SqlCommand Class

continues

MARS, ASYNCHRONOUS COMMANDS, AND OBJECTSPACES62

Method Description

async-result = command.BeginExecuteReader(callback, state, command-behavior)

As above, but using the specified command behavior
value, such as CloseConnection.

EndExecuteReader Once the command execution started by a BeginExecute
Reader call has completed, this method is called to access
the results. The single parameter is a reference to the
SqlAsyncResult for the command, and the method
returns a DataReader that references the rowset(s) re-
turned by the query (in the same way the ExecuteReader
method does for synchronous processes). The single over-
load is:

data-reader = command.EndExecuteReader(async-result)

BeginExecuteXmlReader Starts an asynchronous query to the data source that is
expected to return some rows as XML elements. The
return value is a reference to an object that implements
the IAsyncResult interface, in this case an instance of
the SqlAsyncResult class, which is used to monitor
and access the process as it runs and when it is complete.
There are two overloads for this method:

async-result = command.BeginExecuteXmlReader()

Starts execution of this command and returns a reference
to a SqlAsyncResult instance for this process.

async-result = command.BeginExecuteXmlReader(callback, state)

As above, but takes an AsyncCallback instance that
specifies the callback routine to be executed when the
process is complete, plus an Object that defines state
information for the process.

EndExecuteXmlReader Once the command execution started by a BeginExecute
XmlReader call has completed, this method is called to
access the results. The single parameter is a reference to
the SqlAsyncResult for the command, and the method
returns an XmlReader that references the XML data
returned by the query (in the same way the ExecuteXml
Reader method does for synchronous processes). The
single overload is:

xml-reader = command.EndExecuteXmlReader(async-result)

Table 3.1. Asynchronous Execution Methods of the SqlCommand Class (continued)

The IAsyncResult Interface and SqlAsyncResult Class
All of the methods for the SqlCommand class listed in the previous section
that start an asynchronous process return a reference to an object that ex-
poses the IAsyncResult interface. The specific class used for asynchro-
nous command execution is SqlAsyncResult, and the properties of this
class are shown in Table 3.2.

ASYNCHRONOUS COMMAND EXECUTION 63

Property Description

AsyncState Returns an Object that describes the state of the
process. Read-only.

AsyncWaitHandle Returns a WaitHandle instance that can be used to
set the timeout, force code to wait for completion,
and test when and how the process completed.
Read-only.

CompletedSynchronously Returns a Boolean value indicating whether the
process was executed synchronously (True) or
asynchronously (False). Read-only.

IsCompleted Returns a Boolean value indicating whether the
process is complete (True) or is still executing
(False). Read-only.

Table 3.2. Asynchronous Execution Properties of the SqlCommand Class

The AsyncCallback Delegate
The AsyncCallback delegate is a system class that is not specifically allied to
ADO.NET but is used by many objects within the Framework. It is used to
specify the callback routine or function that will be executed when the asyn-
chronous process completes. The only member of this class that’s important
here is the constructor, shown in Table 3.3, which is used to generate an in-
stance of the class to pass to the BeginExecuteNonQuery, BeginExecute
Reader, and BeginExecuteXmlReader methods of the Command.

Constructor Description

AsyncCallback(callback-handler) Creates a new AsyncCallback instance
that defines the name of the method,
function, or routine that will be called
when the process is complete.

Table 3.3. The AsyncCallback Constructor

See the section on the asynchronous callback model later in this chap-
ter for more details.

The WaitHandle Class
The WaitHandle class is an abstract system class used for many purposes
within the Framework. By calling the methods of the WaitHandle, you

Method Description

WaitOne Waits for a single process to complete or time out. Re-
turns a Boolean value that is True if the process com-
pleted or False if it timed out. There are three overloads
of this method:

completed = WaitHandle.WaitOne()

Starts the wait process using the default value for the
timeout.

completed = wait-handle.WaitOne(milliseconds, exit-context)

Starts the wait process, with the timeout set to the number
of milliseconds specified as an Integer. The exit
-context parameter specifies whether the method will
reacquire a synchronized context and should be set to
False for the ADO.NET asynchronous execution.

completed = WaitHandle.WaitOne(time-span, exit-context)

Starts the wait process, with the timeout specified using a
TimeSpan instance that describes the timeout in terms of
the time unit and value. The exit-context parameter is
as described above.

WaitAny A Static method that waits for any one of the processes
in an array of WaitHandle instances to complete or time
out. Returns an Integer value that is the index within
the array of the first process that completed. If any of the
processes times out, the method returns the value of the
timeout instead of the handle index. There are three
overloads of this method:

Table 3.5. The Methods of the WaitHandle Class

MARS, ASYNCHRONOUS COMMANDS, AND OBJECTSPACES64

effectively tell the code to wait for the specified process to complete. If
there are multiple processes involved, you can create an array of Wait-
Handle instances and then tell the code to “sleep” until any one of them
completes. The WaitHandle class exposes a Static property, shown in
Table 3.4, for the timeout that will be allocated to the process.

There are also three methods that allow you to start the wait process
and one to close and release the handle afterwards, as shown in Table 3.5.

Property Description

WaitTimeout An Integer value that is the timeout for the process in
milliseconds.

Table 3.4. The Properties of the WaitHandle Class

ASYNCHRONOUS COMMAND EXECUTION 65

Method Description

index = WaitHandle.WaitAny(wait-handle-array)

Starts the wait process for any of the WaitHandles,
using the default value for the timeout.

index = WaitHandle.WaitAny(wait-handle-array, milliseconds,

exit-context)

Starts the wait process for any of the WaitHandles, with
the timeout in milliseconds and the exit-context
parameter as described for the WaitOne method.

index = WaitHandle.WaitAny(wait-handle-array, time-span,

exit-context)

Starts the wait process for any of the WaitHandles, with
the timeout specified as a TimeSpan instance and the
exit-context parameter as described for the WaitOne
method.

WaitAll A Static method that waits for all of the processes in an
array of WaitHandle instances to complete or time out.
Returns a Boolean value that is True if all the processes
completed or False if any one of them timed out. There
are three overloads of this method:

completed = WaitHandle.WaitAll(wait-handle-array)

Starts the wait process for all the WaitHandles, using
the default value for the timeout.

completed = WaitHandle.WaitAll(wait-handle-array, milliseconds,

exit-context)

Starts the wait process for all the WaitHandles, with the
timeout in milliseconds and the exit-context parame-
ter as described for the WaitOne method.

completed = WaitHandle.WaitAll(wait-handle-array, time-span,

exit-context)

Starts the wait process for all the WaitHandles, with
the timeout specified as a TimeSpan instance and the
exit-context parameter as described for the WaitOne
method.

Close Closes and releases the WaitHandle instance and any
resources it is using.

Table 3.5. The Methods of the WaitHandle Class (continued)

See the section on the asynchronous wait model later in this chapter for
more details.

The Asynchronous Polling Model
The simplest approach to handling asynchronous execution of one or more
commands is through the polling model. It simply involves starting off the
process (in Listing 3.4 this is a SQL UPDATE statement, but it could be any
statement or stored procedure that does not return rows) and then repeat-
edly checking the IsCompleted property of the SqlAsyncResult instance
until it returns True.

Of course, the code can go off and do other things between checking to
see whether the process is complete. However, this approach is not recom-
mended unless it is a simple and “tight” loop that handles a specific re-
quired task and uses only minimal processing time. If there are large or
unrelated tasks to accomplish, you should consider using the callback or
wait models instead.

Listing 3.4. An Example of the Asynchronous Polling Model

' create connection and command as usual

Dim oConn As New SqlConnection("your-connection-string")

oConn.Open()

Dim oCmd As New SqlCommand("UPDATE table SET", oConn)

' start the command execution, and collect the AsyncResult instance

Dim oResult As SqlAsyncResult = oCmd.BeginExecuteNonQuery()

While Not oResult.IsCompleted

' do something else

End While

' must now be complete, so get result from AsyncResult instance

Dim iRowsAffected As Integer = oCmd.EndExecuteNonQuery(oResult)

MARS, ASYNCHRONOUS COMMANDS, AND OBJECTSPACES66

If the query you execute will return rows, you just swap the
BeginExecuteNonQuery and EndExecuteNonQuery method calls
with BeginExecuteReader and EndExecuteReader, then access
the DataReader that’s returned after the EndExecuteReader call.
Similar logic applies if you want to return an XmlReader, whereupon
you would use the BeginExecuteXmlReader and EndExecute
XmlReader methods.

All this assumes that you want to execute only one command and that
you need to wait for it to complete. It’s also possible to start off more than
one Command execution process; however, in this case you must execute
each one over a separate connection unless you are using the MARS fea-
ture of ADO.NET 2.0.

The Asynchronous Callback Model
The second approach to asynchronous execution involves providing a rou-
tine in the code that will act as a callback. It will be executed when the ac-
tion you specify occurs, rather like the way that an event handler is called
to handle a user’s interaction with an application.

To specify the callback routine you create a new instance of the Async
Callback class, providing the name of that routine as the parameter, and
pass this AsyncCallback instance into the method you use to start execu-
tion of the command. In Listing 3.5, we use a query that returns some
rows, so it is executed with the BeginExecuteReader method.

Listing 3.5. An Example of the Asynchronous Callback Model

' create connection and command as usual

Dim oConn As New SqlConnection("your-connection-string")

oConn.Open()

Dim oCmd As New SqlCommand("SELECT * FROM table", oConn)

' start the command execution, and collect the AsyncResult instance

oCmd.BeginExecuteReader(New AsyncCallback(AddressOf DisplayRows), _

CommandBehavior.CloseConnection)

' do something else here

' ...

' and then finish

Code can continue to do other things after the query in the Command has
been executed. During this period, as soon as the query has completed, the
callback handler named DisplayRows is called (on an arbitrary thread,
which is unlikely to be the same thread as the rest of the code). The callback
event handler receives a reference to an AsyncResult instance that is cre-
ated automatically by the BeginExecutexxx method, from which it can ob-
tain a reference to the results of the query by calling the appropriate
EndExecutexxx method, as shown in Listing 3.6.

ASYNCHRONOUS COMMAND EXECUTION 67

Listing 3.6. The DisplayRows Callback Event Handler

' callback handler routine to display results

Sub DisplayRows(oResult As SqlAsyncResult)

' must now be complete, so get result from AsyncResult instance

Dim oReader As DataReader = oResult.EndExecuteReader(oResult)

' display results using oReader - which is a normal DataReader

' ...

End Sub

The Asynchronous Wait Model
The most complex of the asynchronous methods is also the most efficient
if all you want to do is start some commands running against one or more
data sources (they can all use separate connections and therefore different
databases if required) and not execute other code in the meantime. You
simply want to wait until one, more, or all of the commands have com-
pleted and then perhaps display some results.

In this case, you start each process in the same way as the previous ex-
amples but then use the AsyncResult to create a WaitHandle that you use
to monitor each process. If there is more than one process and you want to
wait for one or all of these to complete, you use an array of WaitHandle
references. The code in Listing 3.7 shows the simplest case of waiting for
one command to complete.

Listing 3.7. A Simple Example of the Asynchronous Wait Model

' create connection and command as usual

Dim oConn As New SqlConnection("your-connection-string")

oConn.Open()

Dim oCmd As New SqlCommand("UPDATE table SET ...", oConn)

' execute command and get back AsyncResult instance

Dim oResult As SqlAsyncResult = oCmd.BeginExecuteNonQuery()

' use AsyncResult instance to create a WaitHandle

Dim oHandle As WaitHandle = oResult.AsyncWaitHandle

' tell code to sleep here until process is complete

oHandle.WaitOne()

' process is complete, so get results

Dim iRowsAffected As Integer = com.EndExecuteNonQuery(oResult)

MARS, ASYNCHRONOUS COMMANDS, AND OBJECTSPACES68

Checking Whether the Process Timed Out
In the code in Listing 3.7, there is no check to see whether the process com-
pleted successfully or failed through a timeout. It’s easy enough to specify
the timeout you want and then to detect whether the process actually did
complete within that period, as shown in Listing 3.8.

Listing 3.8. Waiting for a Single Process to Complete or Time Out

...

' use AsyncResult instance to create a WaitHandle

Dim oHandle As WaitHandle = oResult.AsyncWaitHandle

' set the timeout to 10 seconds

oHandle.WaitTimeout = 10000

' tell code to sleep here until the process is complete

' on return, check the status of the process

If oHandle.WaitOne() = True Then

' process is complete, so get results

Dim iRowsAffected As Integer = oCmd.EndExecuteNonQuery(oResult)

Else

' process timed out

lblError.Text = "Process failed to complete within 10 seconds"

End If

Using Multiple Wait Handles
If you are executing more than one process at a time, you use an array of
WaitHandle instances to detect when one or all of the processes have com-
pleted. First you need to create the separate Connection and Command in-
stances (unless you are using MARS over a single connection), as shown in
Listing 3.9.

Listing 3.9. An Example of Multiple Wait Handles

' create three connections and three commands, and open connections

Dim oConnA As New SqlConnection("connection-string-A")

Dim oCmdA As New SqlCommand("SELECT * FROM tableA", oConnA)

oConnA.Open()

Dim oConnB As New SqlConnection("connection-string-B")

Dim oCmdB As New SqlCommand("UPDATE tableB SET ...", oConnB)

oConnB.Open()

ASYNCHRONOUS COMMAND EXECUTION 69

continues

Dim oConnC As New SqlConnection("connection-string-C")

Dim oCmdC As SqlCommand

oCmdC = New SqlCommand("SELECT * FROM tableC FOR XML AUTO", oConnC)

oConnC.Open()

...

Now the code can start the three processes running, collecting an
AsyncResult instance for each one (Listing 3.10). These AsyncResult in-
stances are queried to get the three WaitHandles, and they are assigned to
an array named aHandle. In Listing 3.10, the code will wait for all three
processes to complete because it uses the static WaitAll method of the
WaitHandle class and passes in the array of three WaitHandle instances.
At the point where all are complete, the code “wakes up” and retrieves the
three results using the appropriate EndExecutexxx methods.

Listing 3.10. Executing the Commands with Multiple Wait Handles

...

' execute commands and get back AsyncResult instances

Dim oResultA As SqlAsyncResult = oCmdA.BeginExecuteReader()

Dim oResultB As SqlAsyncResult = oCmdB.BeginExecuteNonQuery()

Dim oResultC As SqlAsyncResult = oCmdC.BeginExecuteXmlReader()

' use all three AsyncResult instances to create WaitHandle array

Dim aHandle(2) As WaitHandle

aHandle(0) = oResultA.AsyncWaitHandle

aHandle(1) = oResultB.AsyncWaitHandle

aHandle(2) = oResultC.AsyncWaitHandle

' tell code to sleep here until all the processes are complete

WaitHandle.WaitAll(aHandle)

' processes are all complete, so get results

Dim oDataReader As DataReader = oCmdA.EndExecuteNonQuery(oResultA)

Dim iRowCount As Integer = oCmdB.EndExecuteNonQuery(oResultB)

Dim oXmlReader As XmlTextReader = oCmdC.EndExecuteXmlReader(oResultC)

If you want to test whether any of the processes did not complete be-
cause of a timeout, you just check the returned value from the WaitAll
method. If it’s False, at least one of the processes timed out. And if you
want to specify the timeout, you can do so in the call to the WaitAll
method. The following code sets the timeout to 10 seconds:

WaitHandle.WaitAll(aHandle, 10000, False)

Handling Multiple Processes as Each One Completes
Rather than waiting for all processes to complete, you can improve your
code efficiency even more by using the WaitAny method. This wakes up

MARS, ASYNCHRONOUS COMMANDS, AND OBJECTSPACES70

your code as soon as any one of the processes completes. You handle the re-
sults of this process and then put the code back to sleep again until the next
process completes. This must be repeated until all the processes in the array
of WaitHandle instances are complete or have timed out.

The code in Listing 3.11 shows how this works. The code that creates
the three connections and three commands, executes these commands, and
creates the array of WaitHandle instances is not repeated here. All this is
the same as in Listings 3.9 and 3.10.

What differs is that the code calls the WaitAny method this time. The
Integer value this method returns is either the index within the WaitHandle
array of the process that completed successfully or the value of the timeout
if one of the processes timed out before it was complete. Note that the or-
der in which processes complete or time out will probably not be the same
as the order of their WaitHandle instances within the array.

To be sure of handling every one of the commands that are executing
asynchronously, you must force the code to call the WaitAny method once
for every command that is executing. If you call WaitAny only once, you’ll
get only one indication of a process completion. Trying to access all the re-
sults at this point is likely to cause an error because the rest of the com-
mands may not have completed when you call the respective End
Executexxx method.

So, in Listing 3.11, a For..Next loop executes the WaitAny method
three times. As each process completes, the code checks the index value to
see which process just finished and calls the appropriate EndExecutexxx
method. (The results can also be displayed at this point to take maximum
advantage of the asynchronous processing model.)

Listing 3.11. Handling Completion of Multiple Asynchronous Processes

' code as before to create and execute three commands

...

' code here to create array of WaitHandle instances

...

' following code is executed once for each WaitHandle instance

' so that all three end up being handled at some point

For iLoop As Integer = 1 To 3

' tell code to sleep here until any one of the processes completes

' collect the index of the next one to complete successfully

' NB: this will be the (Static) timeout value if one times out

Dim iIndex As Integer = WaitHandle.WaitAny(aHandle, 5000, False)

ASYNCHRONOUS COMMAND EXECUTION 71

continues

' one of the processes has completed or timed out

Select Case iIndex

Case 0:

' command A completed successfully

Dim oDataReader As DataReader

oDataReader = oCmdA.EndExecuteReader(oResultA)

Case 1:

' command B completed successfully

Dim iRowCount As Integer

iRowCount = oCmdB.EndExecuteNonQuery(oResultB)

Case 2:

' command C completed successfully

Dim oXmlReader As XmlTextReader

oXmlReader = oCmdC.EndExecuteXmlReader(oResultC)

Case WaitHandle.WaitTimeout:

' this one timed out - could use Case Else here instead

lblError.Text &= "One process has timed out"

End Select

Next

Canceling Processing for Asynchronous Commands
There may be an occasion where a process is executing asynchronously
and you want to provide the user with the opportunity to cancel it part-
way through. To do so, all you have to do is call the Cancel method of the
Command instance, as shown in Listing 3.12.

Listing 3.12. Canceling Asynchronous Command Execution

...

Dim oResult As SqlAsyncResult = oCmd.BeginExecuteNonQuery()

' ... do something else here ...

If (some-condition-is-met) Then

oCmd.Cancel()

End If

Asynchronously Opening Connections
As well as executing a Command asynchronously, ADO.NET 2.0 also allows
you to open connections asynchronously. This is useful, of course, when
you are accessing more than one database at a time so that you can execute

MARS, ASYNCHRONOUS COMMANDS, AND OBJECTSPACES72

ASYNCHRONOUS COMMAND EXECUTION 73

Property Description

Asynchronous Returns a Boolean value indicating whether the connec-
tion has been opened asynchronously. Read-only.

State Returns a value from the System.Data.Connection
State enumeration indicating the state of the connec-
tion. The possible values are:

Closed, Connecting, Open, Executing, Fetching,
and Broken.

Table 3.6. The Asynchronous Properties of the SqlConnection Class

multiple asynchronous commands. The principle for asynchronous con-
nections is the same as that we looked at for commands, with the same
three options of using the polling, callback, or wait approaches. And, like
the asynchronous command execution feature, asynchronous connection
opening applies only to the SqlClient namespace classes—in this case,
SqlConnection.

The SqlConnection class exposes a couple of properties that are useful
when working asynchronously, as shown in Table 3.6.

There is also a method that allows you to start the process of opening
the connection and one to complete the process, as shown in Table 3.7.

Method Description

BeginOpen Starts opening a connection asynchronously. The return value is a
reference to an object that implements the IAsyncResult
interface, in this case an instance of the SqlAsyncResult class,
which is used to monitor and access the process as it runs and
when it is complete. There are two overloads for this method:

async-result = connection.BeginOpen()

Starts opening the connection as detailed above.

async-result = connection.BeginOpen(callback, state)

As above, but takes an AsyncCallback instance that specifies
the callback routine to be executed when the process is complete,
plus an Object that defines state information for the process.

EndOpen Ends the process of opening the connection specified in the
IAsyncResult class instance passed to the method. The
single overload is:

connection.EndOpen(async-result)

Table 3.7. The Asynchronous Methods of the SqlConnection Class

Asynchronous Connection Examples
The code in Listings 3.13, 3.14, and 3.15 demonstrates the three asynchro-
nous models for opening a connection. The polling model, shown in List-
ing 3.13, collects the AsyncResult instance from the BeginOpen method.
Then it repeatedly tests the connection state until the connection is open
and calls the EndOpen method with the AsyncResult instance.

Listing 3.13. Opening a Connection Using the Asynchronous Polling Model

' create a new connection and open asynchronously

Dim oConn As New SqlConnection("your-connection-string")

Dim oResult As SqlAsyncResult = oConn.BeginOpen()

While Not oConn.State = ConnectionState.Open

' do something else

End While

oConn.EndOpen(oResult)

The callback model, shown in Listing 3.14, creates a new AsyncCallback
instance that defines the name of the callback routine and passes this to the
BeginOpen method to start opening the connection. Once the connection is
open, the callback routine (named ConnectionOpened in this example) is
called.

Listing 3.14. Opening a Connection Using the Asynchronous Callback Model

' create a new connection and open asynchronously

Dim oConn As New SqlConnection("your-connection-string")

oConn.BeginOpen(New AsyncCallback(AddressOf ConnectionOpened))

' do something else here

' ...

' and then finish

'----------------

' callback handler routine

Sub ConnectionOpened(oResult As SqlAsyncResult)

oConn.EndOpen(oResult)

End Sub

Finally, the wait model, shown in Listing 3.15, creates a new WaitHandle
for the process from the AsyncResult instance and calls its WaitOne method

MARS, ASYNCHRONOUS COMMANDS, AND OBJECTSPACES74

to “sleep” the code until the connection is open, then calls the EndOpen
method.

Listing 3.15. Opening a Connection Using the Asynchronous Wait Model

' create a new connection and open asynchronously

Dim oConn As New SqlConnection("your-connection-string")

Dim oResult As SqlAsyncResult = oConn.BeginOpen()

' use AsyncResult instance to create a WaitHandle

Dim oHandle As WaitHandle = oResult.AsyncWaitHandle

' tell code to sleep here until process is complete

oHandle.WaitOne()

' process is complete

oConn.EndOpen(oResult)

Catching Asynchronous Processing Errors
One thing that the examples of asynchronous processing do not demon-
strate is handling any errors that might occur. Connection errors are partic-
ularly common in data access applications, and you will probably decide to
use a Try..Catch construct and error handling code in every case.

However, remember that in asynchronous processing situations, the er-
ror will be raised somewhere between calling the Beginxxx and Endxxx
methods—rather than at the specific point where you call the Open method
(for a Connection) or the Executexxx method (for a Command) when using
synchronous processing. This means that you must enclose the complete
section of code in a Try..Catch construct and then use smaller nested con-
structs to catch specific errors as and where required.

An Overview of ObjectSpaces
ObjectSpaces is probably one of the most revolutionary and exciting of the
new techniques being introduced into .NET as far as data access is con-
cerned. At the moment it is less than fully mature, but it already provides
a useful framework for building applications that access real-world data.

The concept of ObjectSpaces is to allow you to access, manipulate, and
update data in a relational database using standard .NET “objects,” rather
than having to write stored procedures or build SQL statements that specif-
ically match the data you want to work with to the structure of the source
table in the database. And, in the future, the technology will be extended to

AN OVERVIEW OF OBJECTSPACES 75

support access to information in other types of data stores, not just rela-
tional databases. However, in the current release, support extends only to
SQL Server 2000 and SQL Server “Yukon.”

The objects you use to store your data are ordinary .NET classes that
can contain public and private methods and properties and expose one or
more constructors. The ObjectSpaces technology then maps these objects
to the tables and columns in the database and automatically wires them up
so that you can read, manipulate, and update the data in the tables simply
by calling methods within the ObjectSpaces interface.

For all this to work, ObjectSpaces exposes a series of classes that include
the following:

• A base class called ObjectSpace that performs the basic operations
on the data and from which the class instances you require to manip-
ulate the data can be created

• A class named ObjectSources that contains the connection and
transaction information to be used when accessing databases

• A class named ObjectQuery, together with a language called OPath
(broadly based on XPath), which is used to select objects from a
results set

• A class named ObjectReader that follows the same broad principles
as other Reader classes and is used to fetch objects from the database
and expose them as a stream

• A class named ObjectSet that broadly mirrors the DataSet but is
used to hold copies of objects, allowing them to be remoted or
accessed in a disconnected environment

• Two classes named ObjectList and ObjectHolder, which are used to
manage delayed loading for objects and hence maximize performance

Basic ObjectSpaces Techniques
The basic principles for using ObjectSpaces are much the same as the ex-
isting .NET data access approaches. You create an ObjectSpace instance,
specifying the mappings to the data and the ObjectSources connection
and transaction information:

Dim oSpace As ObjectSpace

oSpace = New ObjectSpace(mappings-file, connection)

The mappings-file parameter can be the path to a file containing the
mappings or a MappingSchema instance that defines the mappings. The

MARS, ASYNCHRONOUS COMMANDS, AND OBJECTSPACES76

connection parameter can be a standard database connection (Sql
Connection or DbConnection) or an instance of an ObjectSources object
that defines connection and transaction information.

Then you can create an ObjectReader instance from the ObjectSpace.
Any filtering or selection operation you need to accomplish is specified in
an ObjectQuery instance that indicates the object type and uses OPath as
the query language. The following code retrieves objects of type Customer,
where the region value is Europe:

Dim oQuery As New ObjectQuery(Customer, "region='Europe'")
Dim oReader As ObjectReader = oSpace.GetObjectReader(oQuery)

The Customer object instances can then be retrieved from the DataReader
using the Read method. Each instance is cast (converted) to the correct
Customer type as it is retrieved from the ObjectReader (see Listing 3.16).

Listing 3.16. Retrieving and Accessing a Customer Object

...

Dim oCust As Customer

While oReader.Read()

' retrieve object and cast to Customer type

oCust = CType(oReader.Current, Customer)

' display or use values in Customer object

lblResult.Text &= oCust.CustomerName

End While

oReader.Close

In future releases, ObjectSpace will also be able to return an Object
Reader that uses paging, rather like the new ExecutePageReader method
does for a standard DataReader. However, the exact details of how or
when this will be implemented are still under discussion.

Using an ObjectReader
An ObjectReader provides stream-based access to objects, rather like a
DataReader does to data rows when executing a normal SQL query. You
can use it for data binding to Windows Forms and Web Forms controls.
However, bear in mind that, like all Reader objects, it works in the con-
nected scenario only, and you must be sure to close it when you have fin-
ished using it.

AN OVERVIEW OF OBJECTSPACES 77

Filling and Manipulating an ObjectSet
To hold copies of objects for remoting, processing, and updating, you use
an ObjectSet. The ObjectSet is basically a collection of your objects, but
it also performs other tasks like tracking the original values when objects
are updated and allowing the collection to be sorted.

An ObjectSet is created using the GetObjectSet method of the cur-
rent ObjectSpace instance. The objects you require can be specified using
an existing ObjectQuery instance:

Dim oSet As ObjectSet = oSpace.GetObjectSet(oQuery)

or by specifying the object type as a Type instance, and an OPath query as
a String:

Dim oSet As ObjectSet = oSpace.GetObjectSet(object-type, query)

The ObjectSet also exposes methods that allow you to add objects to the
collection or remove them from the collection. The Add method takes either a
single object instance or a collection of object instances and adds them to the
ObjectSet collection. To remove an object you use the MarkForDeletion
method. As the name suggests, the object remains in the ObjectSet but is
marked as being deleted. When the changes to the ObjectSet are persisted
to the database, the object is removed from the database (this is, of course, just
the same as the way the standard ADO.NET DataSet works).

Saving the Changes to an ObjectSet
One of the features that make ObjectSpaces such an exciting technology is
that the ObjectSet, like the ADO.NET DataSet, provides methods that
push changes to the objects back into the database. The PersistChanges
method of the ObjectSpace pushes the changes made in an ObjectSet

MARS, ASYNCHRONOUS COMMANDS, AND OBJECTSPACES78

If you only want to retrieve a single instance of an object from the
database, you can use the GetObject method of the ObjectSpace
instead. It uses the same combination of parameters as the Get
ObjectSet method but just returns a new instance of the object.
However, GetObject will raise an error if the query results in more
than one object being returned.

back into the database, and the Resync method synchronizes the Object
Set and the database. Both methods can be applied to a single object or to
a collection of objects (or the complete ObjectSet contents).

Listing 3.17 shows a simple example of the ObjectSet in action. It col-
lects a set of Customer objects from the database into an ObjectSet using
the GetObjectSet method. Then, for each one, it updates the value of the
Status field to Checked. Next, one of the Customer objects is marked for
deletion, and a new one added, before the changes are persisted to the
database.

Listing 3.17. Manipulating Customer Objects

' get ObjectSpace using mappings and connection

Dim oSpace As ObjectSpace = New ObjectSpace(mappings-file, connection)

' create ObjectSet from ObjectSpace using OPath query

Dim oSet As New ObjectSet _

= oSpace.GetObjectSet(Customer, "State='WA'")

' iterate through objects in ObjectSet setting the Status field

For Each oCust As Customer In oSet

oCust.Status = "Checked"

Next

' mark the Customer object at index 7 for deletion

oSet.MarkForDeletion(oSet(7))

' add a new Customer object

oSet.Add(New Customer("name", "address", "status"))

' persist the changes into the database

oSpace.PersistChanges(oSet)

Object Mappings
The ObjectSpaces technology seems like a natural progression from exist-
ing ADO.NET data management techniques, and indeed it is. The power
comes from the mappings that are created between the objects and the
columns and tables in the source database. These mappings are defined in
XML and take advantage of a new approach that Microsoft has introduced
to help blur the distinctions between different types of data and different
types of data stores.

AN OVERVIEW OF OBJECTSPACES 79

This new approach uses a three-part mapping system to map different
types of data sources and data consumers. The details of the generic three-
part mapping technology are described in Chapter 7, where they are ap-
plied to mapping XML to relational data. However, exactly the same
approach is taken to map objects to relational data stores.

The process involves three mapping files. The relational database
schema model describes the way data is stored in the relational database,
and an object schema model describes how the objects themselves store
and view the data they hold. The third file actually maps the elements in
each of the other two to each other, to provide the “bridge” between the
two disparate models.

Hierarchical Data
In this brief introduction we’ve concentrated on the way that ObjectSpaces
can be used and what the technology offers to developers. We haven’t
spent time looking at the actual details of the objects it can manipulate be-
cause in essence they are just standard .NET classes. The important feature
of ObjectSpaces is that it is designed from the ground up to make it much
easier to work with hierarchical or related data in the form of objects.

What Are Hierarchical Objects?
As an example of hierarchical objects, a Customer object may be related to
one or more Contact objects, each of which describes a person at the com-
pany defined by the Customer object. A property exposed on the Customer
class—for example a Contacts property—can define this relationship. The
Contacts property is simply a reference to a collection of Contact objects.

Looked at from the relational database point of view, however, the
Customer object is the parent in a one-to-many relationship with child
Contact objects. ObjectSpaces provides methods to work with related ob-
jects like these; for example (using the description of the objects in the pre-
vious paragraph), you can add a new Contact object as a child of an
existing Customer object using the following code:

Dim oCust As Customer = oSpace.GetObject(Customer, "ID=2756")

oCust.Contacts.Add(New Contact("name", "position", "phone"))

More than that, ObjectSpaces is designed to handle graphs of interre-
lated objects. Even in cases where an XML-type hierarchy is not natural
(because of multiple parents for a given object), you can easily represent
and build the data model using ObjectSpaces. Likewise, it can handle

MARS, ASYNCHRONOUS COMMANDS, AND OBJECTSPACES80

many-to-many relationships that are not always expressed naturally as a
hierarchy, for example, a Customers to Products relationship.

Loading Child Objects
One issue that springs to mind where hierarchical or related-object data ac-
cess is concerned is performance. By default, a request that fetches objects
matching an OPath query (such as "State=NV") will return only the objects
that match the query, not any child or related objects. However, this means
that you have to go back to the database each time you want to access a
child object.

ObjectSpaces addresses this by using the concept of a span. Basically a
span is a comma-delimited list of the objects you want to retrieve and is
used in conjunction with the ObjectQuery class. So, if you specify
Customer, Customer.Contact as the span for the operation, the related
child objects are extracted and returned as well, without requiring a further
query to the database.

A third option, called lazy loading, is also worth considering. In this
case, where objects are stored in an ObjectHolder and ObjectList, a re-
quest for an object will be intercepted and all of the related target objects
are automatically retrieved as well.

SUMMARY

This chapter has taken a focused look at three new topics in ADO.NET 2.0
that can really improve the performance of your data access code—in a va-
riety of ways. As discussed at the start of the chapter, accessing multiple
databases, or executing multiple commands against the same database,
can lead to code blocking as it waits for expensive processes like opening a
database connection or fetching rows from a database to complete.

Instead, the new MARS and asynchronous command execution fea-
tures in ADO.NET 2.0 can be used individually or together, in a range of
scenarios, to reduce the occurrence of code blocking and to minimize the
number of connections required by your code.

We also looked at one of the most exciting of the new technologies to
come to ADO.NET—ObjectSpaces. This technology allows developers to
work easily with objects that expose data in a structured and natural way.
On top of this, objects can be reusable, and this approach suits modern ap-
plication design methodologies. ObjectSpaces removes the need for devel-
opers to build complex code into their objects to support serialization, data

SUMMARY 81

store persistence, and interaction with Web Services. By simply defining
mappings between the objects and the data source (tools will be available
to automate this), you can retrieve, manipulate, and persist data as pure
.NET objects.

The next chapter completes our tour of the ADO.NET relational data
features in version 2.0 of the Microsoft .NET Framework with a look at
some more new topics. This time, however, they are all related to the new
version of SQL Server, code-named “Yukon.”

MARS, ASYNCHRONOUS COMMANDS, AND OBJECTSPACES82

