
1
ADO.NET and System.Xml
Version 2.0

ON E O F T H E F U N D A M E N TA L design goals of ADO.NET and the
classes from the System.Xml namespaces is to give the developer

complete control over how data is accessed and used. In designing
ADO.NET, Microsoft concentrated on providing the right core building
blocks by factoring functionality into discrete, optimized objects, with the
idea that classes could be built in later versions that use these building
blocks to make common tasks easier. 

When Microsoft first introduced version 1.0 of the .NET Framework,
many developers familiar with ADO initially found this new factoring of
classes for accessing and working with data unfamiliar. The one-size-fits-
all Recordset object that formed the core of ADO and previous data access
technologies was replaced with a series of new objects optimized for spe-
cific scenarios, such as the DataReader and DataSet. Meanwhile, a raft of
new classes was added to the Framework for working with Extensible
Markup Language (XML) documents and XML-formatted data. While this
factoring provides added flexibility and control, many common tasks re-
quire understanding and tying together multiple independent objects, as
opposed to the simplicity of the single Recordset object in ADO. 

Now, in version 2.0 of the Framework, we get some exciting new addi-
tions to the ADO.NET and XML classes that build on the original version
1.0 classes, adding ease of use for common scenarios as well as introducing

1



a host of new features. There is also support for the new features in the
forthcoming version of SQL Server (code-named “Yukon”) and the intro-
duction of many core data access techniques that developers have been
asking for since version 1.0. 

This book covers all these new features. However, bear in mind that, as
we described in the introduction to the book, the version of the Framework
being released at the time of writing (late 2003) is a Technology Preview
edition rather than a final release. 

So, in this first chapter, we will:

• Overview the version 2.0 Technology Preview release

• Summarize the new data management features in version 2.0

• Look at the reasons for the growing importance of XML

• Summarize how the techniques for binding to data in ASP.NET are
changing

• Provide a roadmap for the remainder of the book

We start with an overview of the Technology Preview release of version
2.0 of the .NET Framework. Bear in mind that this book is about what’s
new in version 2.0 of the .NET Framework, so we’ll be assuming that you
are familiar in general with the version 1.0 data access techniques and
classes.

The Version 2.0 Technology Preview Release
The Technology Preview version contains the core changes planned for
version 2.0 of the .NET Framework, including the provision of new fea-
tures prompted both by Microsoft’s own development team’s inspirations
and by feedback from the version 1.0 customer base. It also, of course, in-
cludes fixes to known issues with the version 1.0 classes and in some
places a tidying up of the class interfaces.

But this is by no means a definitive view of what the final product will
contain. It is a good general guide to the way the product is changing and
to the kinds of features that will be encompassed in the release version
(due toward the end of 2004). 

So, the Technology Preview release—and this book—will help you as a
developer to understand how data access in .NET is moving and to be
more prepared for the changes when they arrive. It means that you can see
how the Microsoft team is thinking about the future of the product and

ADO.NET AND SYSTEM.XML VERSION 2.02



will also allow you to design your applications to suit this evolution. Just
bear in mind the proviso that the final release version will no doubt be sub-
tly different from what you see here.

Enhancements in Relational Data Management
Although some developers initially struggled with the move away from
the simplicity of the single ADO Recordset object in version 1.0 of the
Framework, the .NET relational data access model offers proven advan-
tages in several key areas.

• As application development has moved from the connected client/
server model toward Web-based applications, the focus has increas-
ingly been on a disconnected data access approach. The .NET
relational data access techniques provide a rich disconnected
environment that makes it easy to remote data to clients, access 
data server-side, and perform staged or bulk data updates.

• The explicit factoring between objects that connect to and use data-
base resources and objects that contain pure state provides the de-
veloper with more control over database interactions, performance
characteristics, and application behavior.

• Programming in the .NET environment predominantly involves
managed code, which runs under the control of the Framework
runtime. The ADO.NET classes within the .NET Framework are
exposed as fully managed code, providing a safe, consistent devel-
opment platform with excellent error handling and debugging
capabilities.

• The DataSet object introduced in version 1.0 provides a “container”
for storing data from multiple tables, and optionally the relation-
ships between these tables, together with associated classes and
methods that provide easy updating of the source data and seriali-
zation to XML for transmission across networks. In version 2.0, 
new classes are added to the Framework to make this approach
even more flexible.

• The use of data binding to display data from a variety of sources
has grown in importance, especially when building Web applica-
tions. ASP.NET provides a range of controls that can perform data
binding in different ways, and the DataReader object introduced in
ADO.NET makes this a highly efficient approach for displaying
relational data in grid or free-form formats.

THE VERSION 2.0 TECHNOLOGY PREVIEW RELEASE 3



• New classes provide a tighter integration with XML data and com-
ponents. 

These are only a few of the reasons that the .NET data access model is
proving successful. There are plenty more new features in version 2.0 of
the Framework. We’ll be summarizing them later in this chapter, and then
we’ll go on to examine them in more depth in later chapters.

Enhancements in XML Data and Document Management
While the move toward Web-based application development has changed
the requirements we have for relational data access, there have been more
fundamental changes in the area of document and unstructured data man-
agement. Over the last few years, XML has become the de facto way to
persist this kind of data in a way that is human-readable, can be machine-
processed, and avoids custom binary representations.

Since its introduction, XML has evolved in several different directions.
While the unstructured information storage paradigm is still extremely im-
portant, we’ve also come to see XML as a way to serialize and persist struc-
tured and hierarchical data (for example, rows and columns from a data
table, or more than one related data table). 

Prior to .NET, the usual way to manage XML was through the MSXML
component, either via the XML Document Object Model (DOM) class,
used to build an in-memory tree representation, or through the Simple API
for XML (SAX) model, which “pushes” events to the application. Although
this works well enough, .NET version 1.0 introduced several exciting new
alternatives for manipulating XML data.

• A fast, forward-only, “pull” model XML parser named XmlReader
that is able to read streams of XML in a highly efficient manner. This
innovative API provides a simpler and more intuitive approach to
reading XML documents. The complementary class XmlWriter is
used to generate XML to a stream, including automatic indentation
of the output and white-space control.

• An XML data store that is used to load XML documents into mem-
ory for editing and updating. This is the XmlDocument class, and it
provides full standardization with the World Wide Web Consortium
(W3C) recommendations for the XML DOM level 2. 

• A cursor-style API for navigating through XML documents. The
XPathNavigator class implements the XPath 1.0 specification for

ADO.NET AND SYSTEM.XML VERSION 2.04



SUMMARY OF NEW FEATURES IN VERSION 2.0 5

querying XML documents. This is combined with a read-only store
optimized for XPath queries, called the XPathDocument. In version
2.0 of the Framework, the XPathDocument is extended to provide
more features, including change tracking and the ability to update
data stores in a manner similar to the ADO.NET DataSet. The
XPathNavigator is also extended to support the more powerful
XML query languages for XPath 2.0 and XML Query Language
(XQuery).

• The XmlDataDocument object, which acts as a bridge between XML
and relational data by allowing data to be viewed and manipulated
as XML or as a DataSet. While this class is useful, the new features
of the XPathDocument will probably prove to be more flexible in this
area, as well as allowing the data to be remoted across a network. 

• A series of objects that allow developers to create XML schemas and
validate XML documents against supplied XML schemas, along
with objects such as the XslTransform class to perform transforma-
tions using XML Stylesheet Language Transformations (XSLT)
stylesheets. 

In version 2.0 of the Framework, there are many enhancements in the
XML data management arena. In addition to improvements to the XPath
Document class, there are new features for working with XQuery and bet-
ter integration with the new version of SQL Server (“Yukon”) to be re-
leased around the same time as version 2.0 of the Framework. 

Summary of New Features in Version 2.0
The remainder of this book looks in detail at what’s new and the funda-
mental changes to existing techniques for working with relational and
XML data in version 2.0 of the .NET Framework. We’ve divided the con-
tent into the two obvious sections:

1. The relational data management features in ADO.NET, covering the
namespace System.Data and its subsidiary namespaces

2. The XML data management features in the .NET Framework, cover-
ing the namespace System.Xml and its subsidiary namespaces

These two sections provide a summary of what is new in both
ADO.NET and System.Xml. However, bear in mind that one of the aims in



the .NET Framework is to integrate data from independent data sources
and data in different formats, so the distinction between the two ap-
proaches listed above is not absolute. Often you will work with XML data
through the various ADO.NET objects or manipulate a relational data store
using objects from the System.Xml namespaces.

Summary of New Features in ADO.NET
The new features of ADO.NET that are covered in this book are listed below.

• Multiple Active Results Sets (MARS) allows a connection to support
multiple concurrent commands and multiple open sets of results (for
example, multiple open DataReader instances). You can open a results
set from a query, and then execute subsequent commands over the
same connection while the previous one is still open and being accessed.

• The addition of truly asynchronous operations for connections and
commands, allowing code to concurrently fetch and process data from
multiple sources. This can provide a considerable performance boost in
many situations—particularly when combined with the MARS feature.

• Support for paging data rows is now built in. The new ExecutePage
Reader method of the Command class provides more efficient access
to data that is displayed in separate pages, rather than as a single list.

• New features for executing SQL batched commands. Commands that
contain more than one SQL statement can now be executed in a more
efficient manner with no extra work required from the developer.

• The provision of in-process server-side cursors for programmatic
processing of data within a stored procedure. Because SQL Server
“Yukon” can host the Common Language Runtime (CLR), you can
write code that uses server-side cursors without losing out on per-
formance to the same extent as traditional ADO methods.

• The addition of change notifications for SQL Server, allowing code
to cache data and results sets, but automatically react to any
changes that invalidate the original data within the database.

• SQL Server “Yukon” now supports User-Defined Types (UDTs),
allowing you to build your own data types as .NET assemblies and
install them into the database server and client so that information
can be accessed in a more natural and efficient manner. 

• A set of new classes, called ObjectSpaces, that allow data to be han-
dled directly as objects, rather than as individual values.

• New classes in ADO.NET support programmatic batch updates and
bulk data loading from various data sources into SQL Server.

ADO.NET AND SYSTEM.XML VERSION 2.06



Summary of New Features in System.Xml
The System.Xml namespaces have been extended considerably in version
2.0, in order to implement the main aims listed below.

• Integrating XML data with a range of data sources, and exposing a
programming model that follows the same paradigm as that used in
ADO.NET for reading and updating data. This is, in many ways, a
parallel with the DataAdapter techniques used with the ADO.NET
DataSet class but based on the XML data model rather than the
relational data model.

• Adding built-in support for XQuery and XML Views. This provides
a technique for distributed query processing over multiple different
data sources, though for the current release this is targeted at SQL
Server and XML documents. This is in effect the migration to .NET
of the SQLXML 3.0 technology available in SQL Server 2000 today,
but with several enhancements in the mapping technology and the
query capabilities. Updates via XML Views are supported through
the use of declarative “updategrams” that detail the changes that
have occurred to the data.

• Providing better support for the storage of XML data and the inte-
gration of relational and XML data management techniques for the
new version of SQL Server (“Yukon”).

• Enhancing existing version 1.0 XML classes to support recent W3C
standards to provide closer integration between the components in
System.Xml; significantly improve the performance of XML pars-
ing, XML schema validation, and XSLT transformations; and enable
XML schema types for the classes.

To meet these aims, the System.Xml and subsidiary namespaces in version
2.0 of .NET contain several new classes and improvements to existing ones.

• There are major changes to the XPathDocument class. The content
can now be edited, and change control is built in so that updates,
inserts, and deletes are automatically tracked. It can also be remoted
while preserving the XML data model and XML schema types.

• A new XPathChangeNavigator class is introduced to allow code to
access the changes in an XPathDocument, and a new class named
XPathEditor can be used to perform changes.

• The introduction of XML Views, a mapping between relational data
types and XML data type definitions, allows relational data stored
in SQL Server to be viewed and handled as XML.

SUMMARY OF NEW FEATURES IN VERSION 2.0 7



• A new XmlAdapter class mirrors the concepts of the ADO.NET
DataAdapter class. It connects an XML document to a database via
an XML View, allowing data to be read and changes to be persisted
to the database through auto-generation of SQL statements. 

• Updates to the XmlReader and XmlWriter classes support the XML
schema types, and a new XmlFactory class provides a mechanism
for generating XmlReader, XmlWriter, and XPathNavigator in-
stances based on user-defined settings.

• XQuery is supported through the new XQueryProcessor class, used
in conjunction with an XPathNavigator class to query and return
information from XML documents using the W3C XQuery
language. This language has a more readable (non-XML) syntax for
ease of authoring. XQuery is to XML what SQL is to relational data-
bases. XQuery is set to become the preferred query language when
querying over XML documents, XML Views, or any data source
exposed as XML.

• The latest version of SQL Server (“Yukon”) adds features that inte-
grate with version 2.0 of System.Xml. This includes the provision of
a new first-class data type for XML, the xml data type, allowing SQL
Server to be used as a store for XML documents. This allows
columns in a table to be marked as an xml data type, and XQuery
queries can be performed over the XML and associated schema to
provide type information.

These brief listings of the new features should whet your appetite to
learn more, and that’s what we’ll be doing in the remainder of this book.
To help you find what you need, a later section of this chapter presents a
roadmap of the contents of the remaining chapters. 

The Growing Importance of XML
You can see from the list of new data-oriented features in version 2.0 of the
.NET Framework that there is considerable emphasis on XML as a data
persistence, transmission, and manipulation format. XML was originally
seen as a way to expose information that may or may not follow some
structured or hierarchical format, and the XML standards allow XML to be
used in a huge range of ways for storing information of almost any type. 

ADO.NET AND SYSTEM.XML VERSION 2.08



The Changing XML Landscape
The System.Xml version 1.0 APIs were developed at a time when XML
standards were quite different than those that exist today. The predomi-
nant standards at the end of 1999 and early 2000, when the initial APIs for
version 1.0 were laid down, were XML 1.0, DOM 1.0 and 2.0, XPath 1.0,
and XSLT 1.0. Significant standards such as the XML Information Set (Oc-
tober 24, 2001, http://www.w3.org/TR/xml-infoset/), XML Schema (May 2001,
http://www.w3.org/TR/xmlschema-1/), and SOAP 1.2 (CR December 2002,
http://www.w3.org/TR/SOAP/) subsequently emerged. These standards are
having a positive impact across the industry.

In the last two years there has been a significant shift from viewing
XML purely as a text-based format to a data representation format epito-
mized by the XML Information Set specification, which was developed in
recognition of the fact that the DOM API did not define the relationships
between the information item types found within an XML document. An
XML Information Set (often described just as an XML InfoSet) refers to the
data types that can be found in an XML document after it has been parsed
by an XML parser. This shift of emphasis toward XML defined in terms of
information items now appears in many of the W3C specifications. For ex-
ample, to quote from the SOAP 1.2 specification:

A SOAP message is specified as an XML Information Set or XML
InfoSet (http://www.w3.org/TR/soap12-part1/#XMLInfoSet#XMLInfoSet). While
all SOAP message examples in this document are shown using XML
1.0 syntax, other representations MAY be used to transmit SOAP mes-
sages between nodes (see SOAP Protocol Binding Framework,
http://www.w3.org/TR/soap12-part1/#transpbindframew#transpbindframew).

What’s more, this has been reflected in all of the significant emerging
W3C specifications, such as XQuery, XPath 2.0, and XML Schema 1.0. Each
of these specifications is dependent on the definition of XML as InfoSet
items. 

THE GROWING IMPORTANCE OF XML 9

As XML becomes more mainstream, it fulfills an increased role as an
information integrator. XML is the bridge between relational data,
objects, documents, Web Services, and more.



To draw a parallel: When working with a relational database, the way
the data is actually written to disk (serialized) is completely hidden from
the developer and the database administrator. This is desirable because it
means that the method in use can be changed over time to make storage
more efficient without breaking existing code. Rather than having to know
about tracks and sectors on the disk, the developer or database adminis-
trator deals with the database through a level of abstraction that consists of
tables, rows, and columns. This is the relational data model. 

The XML InfoSet performs the same role of abstraction. The data may
or may not be written as serialized XML 1.0 with angle brackets, but either
way the data types that are exposed always appear consistent to the pro-
cessing application. Handling XML InfoSets provides the ability to expose
a multitude of data sources as XML, a technique often referred to as virtu-
alization. The XPathNavigator class provides XML virtualization over a
data source in System.Xml today, based on the XPath 1.0 data model,
which uses the XML InfoSet item types.

Perhaps one of the most significant specifications to emerge recently is
the XQuery and XPath 2.0 Data Model (http://www.w3.org/TR/query-data

model/), which, being based on the XML InfoSet, defines the data model for
the XQuery language in the same fashion as the relational data model does
for the SQL query language. In many ways this should really be consid-
ered the XML data model, since its importance goes beyond the bounds of
just the XQuery and XPath 2.0 languages.

XML and Relational Databases
Relational databases such as SQL Server are the origin of much of the data
that is interchanged today and then typically stored again in other rela-
tional databases. Since relational systems today are overwhelmingly used
to manage structured data, most of the XML exchanged also fits the rela-
tional model of structured data. Hence it is becoming increasingly com-
mon for XML to be focused in scenarios that involve structured data
storage and transmission, for example, exposing relational data (the tradi-
tional “rows and columns” format), and hierarchical data (such as multiple
related data tables).

This movement has also tended to simplify the XML content by con-
centrating mainly on the use of elements and attributes and avoiding what
might be considered the more “esoteric” capabilities of XML (such as enti-
ties, notations, and so on). This is the domain of XML as a data inter-
change format rather than as a document markup language (which was
the original driving force behind the introduction of XML). 

ADO.NET AND SYSTEM.XML VERSION 2.010



An XML View is a mapping of a data source, which typically is in a
non-XML format, through to an XML document—such as mapping a set of
relational tables from a database. These XML Views virtualize the data, in
that it isn’t actually converted into an XML (serialized) format but merely
shaped and transformed into a structure as if it were XML, based on the
XML InfoSet data types. The use of XML Views over relational databases
allows generation of XML documents and the hierarchical data structure,
and also enables the use of XML technologies such as XQuery to provide
heterogeneous queries over disparate data sources. 

XML is also a more flexible data format than its relational equivalent
because it has the ability to express the semi-structured and unstructured
format that applies to much of the data lying outside of relational data-
bases. Semi-structured refers, for example, to properties that appear only
on a certain number of elements and not in a regular repeating (structured)
fashion. Unstructured format is like that of a Microsoft Word document,
typically consisting of “marked-up” data such as the content of the para-
graphs in the text. XML has both the simplicity and flexibility to easily rep-
resent these differing data structures, and as a result XML has established
itself as the lingua franca of data interchange for business and applications.

XML in Web Applications
XML as a data format is well suited to the environment in which Web-
based applications live, being a platform-independent syntax for which
simple and efficient parsers are widely available. In particular, any situa-
tion that involves remoting data (moving it across the network to a client
or another server, as we describe in more detail later) can benefit from the
use of XML. For example, clients or servers that run on disparate operating
systems or software platforms can share XML-formatted data easily. Being
persisted as Unicode means that even a 7-bit wire format (such as the
“text-only” nature of the Web) for the intervening network does not im-
pede simple and efficient data transmission.

In contrast to this, application- or operating system–specific data for-
mats, particularly binary formats, may well cause all kinds of issues when
used with disparate clients. As a simple example, some operating systems
may treat 16-bit numbers as big-endian (the leftmost byte, at the lower
memory address, is the most significant) while others treat them as little-
endian (the leftmost byte is the least significant). 

XML is also the ideal format for simply sending data to a client or re-
ceiving it from a client. For example, the Web site or application can pro-
vide a browser client with an XML document that is downloaded to the

THE GROWING IMPORTANCE OF XML 11



user’s browser. Then it can be manipulated within the browser to display
the data and (if required) edited and submitted back to the server for sub-
sequent processing. Because the data is in a platform- and operating sys-
tem–independent format, the code or application at either end of the
network can be adapted and changed without reference to changes at the
other end, as long as the data format remains the same. 

Data Description through Schemas
Even more useful is the ability to use an XML schema with the XML data.
A schema specifies the structure and allowable content of the XML docu-
ment. This permits applications to be built where the client or recipient
uses the schema to interpret the structure of the data, with the result that
this data format can be changed independently as long as an appropriate
schema is available.

An example of this approach is found in the new XML-format meta-
base used by Internet Information Services (IIS) 6.0. Each time the configu-
ration of IIS is changed, an XML file containing the complete configuration
of all the installed services is written to disk. However, as you install and
remove services or add sites or virtual roots to IIS, the structure of this file
changes in subtle ways to reflect the content it will store. 

So, as well as writing the XML data file to disk, IIS also writes the cur-
rent schema to disk. This means that, irrespective of which services are in-
stalled and how the current configuration looks, the saved configuration
data can be correctly interpreted and restored each time.

Transformation and Presentation through XSLT Stylesheets
The concept of applying presentation information to an XML document
has been one of the core aims of W3C almost since the inception of XML.
The original proposals concentrated on two aspects: (1) transformations,
which can change the content, structure, and ordering of the XML (to pro-
duce, for example, HTML output), and (2) the definition of a formatting
language used by specialist client applications to apply style and layout
information directly to the XML content.

In data management terms, the first of these two scenarios is the inter-
esting one. The ability to apply a transformation that optionally can
change the content, structure, and ordering of the elements means that an
XSL or XSLT stylesheet can not only generate output that is aimed at pre-
sentation (for example, adding style definitions or HTML elements to the
content) but also output a different XML document from that applied as
the input.

ADO.NET AND SYSTEM.XML VERSION 2.012



THE GROWING IMPORTANCE OF XML 13

XSLT is increasingly being used to “process” XML documents. Its re-
cursive nature and reasonably simple syntax mean that it’s possible to
write generic stylesheets that can process different documents, and it has
found a home in many areas and applications that need to convert XML
data from one format to another (for example, Microsoft BizTalk).

XML Data Querying through XQuery
One of the more recent areas of development for XML is XML Query
Language, or XQuery. This is a project aimed at deriving a technique for
applying queries to an XML document that (in the broadest sense) more
closely resemble SQL statements. While SQL is ideal as the query language
for relational data, it is not designed to be a query language for XML data,
since a query language should have as little impedance mismatch to the
data model it queries as possible. As mentioned earlier, XQuery is to the
XML data model what SQL is to the relational data model and is set to
become the preferred query language for XML data querying. This will
make XML much more approachable to those developers and administra-
tors more used to working in a relational data environment.

Although XSLT can already perform most of the tasks that XQuery is
aimed at, it’s already becoming clear that XQuery can provide more op-
tions, as well as broader and simpler techniques for accessing multiple
documents, than XSLT does. However, the choice between the two is more
likely in the long term to be based on the developer’s grasp of the tech-
niques and language choice, in an identical manner to the language choice
available in the .NET Framework today. 

In a nutshell, XQuery provides support for:

• A more readable, SQL-like syntax designed to support query
expressions across several XML data sources

• Type checking so that, for example, all the Order types defined in
an XML schema can be found in an XML document

• A set of functions and operators defined for the built-in XML
Schema (XSD) types (for example, the result of adding an XSD
integer type to an XSD string type)

The current recommendations and guides to all the specifications
we’ve mentioned here (XML, XSLT, XQuery, and XML Schema) can be
found at the W3C Web site at http://www.w3.org.



XML Content Publishing
While Web applications are a major beneficiary of XML, they are not alone.
Another arena where XML is growing is in content publishing. This is a
wide and difficult area to define exactly, but in general the term applies to
application and service integration that is aimed at exposing data or infor-
mation to users.

Microsoft’s own Content Management Server is an example, including
features to build and deploy Web sites and Web Services, manage updates,
perform workflow management, and integrate with Microsoft Office ap-
plications. It uses XML to transport and expose information in conjunction
with templates, and to package content objects.

Similarly, SharePoint Server and Microsoft Office 2003 contain many
features based on XML. In fact, XML is at the forefront of integration in Of-
fice 2003, with the new InfoPath data collection application storing data as
XML and exposing it to the other “traditional” Office applications such as
Word and Excel through Smart Documents based on XML.

XML in the .NET Framework
XML has been at the heart of the .NET Framework since version 1.0. Many
aspects of data persistence, storage, and transmission depend wholly or
partly on XML. For example, while the ADO Recordset object provided a
custom binary format by default for persisted data, XML is the only data
persistence format supported by the ADO.NET DataSet. The GetXml and
WriteXml methods always return XML-formatted data.

Conversions between Relational and XML Data
Figure 1.1 demonstrates some of the ways that XML is used within the
.NET Framework for access to and conversion of relational data. The
ADO.NET objects SqlCommand and DataSet can export or expose their
content as XML, and the DataSet can also export the matching schema.

You can also see that the XmlDataDocument can be used to expose XML
from relational data, using an existing DataSet as the source of the
XmlDataDocument instance. What’s new and exciting in version 2.0, how-
ever, is shown in the lower section of the schematic. These are the new fea-
tures of the XPathDocument and its associated new classes. An XmlAdapter
provides the link between the XPathDocument and a relational database.
The XPathChangeNavigator and XPathEditor are used to navigate

ADO.NET AND SYSTEM.XML VERSION 2.014



Relational
Database

XML
Document

SqlCommand

DbTable

DataSet

XML
Schema

XmlDataDocument

XmlAdapter XPathDocument

XPathChangeNavigator XPathEditor

Fill
Update

ReadXml
WriteXml

ReadXmlSchema, WriteXmlSchema

ReadXml
WriteXml

ReadXmlSchema
WriteXmlSchema

ExecuteXmlReader

Load
WriteTo

Load
WriteTo

Validate

XML
Schema

Validate

DataAdapter

Fill
Update

Figure 1.1. Access to and conversion of relational data as XML

XML
Document

Network

Custom
Class

XmlSerializer XmlSerializer
Custom
Class

Figure 1.2. Serialization of XML data over a network

through and update the XML content, after which the XmlAdapter can
push the changes back into the database.

XML Serialization and Remoting
The .NET Framework also includes a class called XmlSerializer (see Fig-
ure 1.2) that can be used to serialize objects and class instances to XML—
including custom classes you declare—and deserialize them from XML.
This makes it easy to build applications that interchange data represented
as objects, such as a purchase order or invoice object generated from cus-
tom classes.

THE GROWING IMPORTANCE OF XML 15



XML serialization is useful when you need to remote objects (rather
than just plain data) to another location, or even just to another tier of your
application. However, if you want to remote only the data itself, another
useful feature of the XML classes is that the XmlDataDocument can be used
as an alternative to a DataSet. It will maintain all of the schema informa-
tion required to resurrect the data after transmission — including the data
types, relations, and so on. The XmlDataDocument can be filled directly
with XML of the required format, which can include nested or related data.
Alternatively, it can be instantiated from an existing DataSet, as long as a
schema is available. 

However, as mentioned earlier, the XPathDocument can also be re-
moted. Because it implements change tracking, the remoting format has to
be able to persist the changes as well as the “current” values of nodes in
the document in case this information is required to be persisted in an
XPathDocument regenerated from the serialized data. Three scenarios are
supported.

1. Save or serialize just the data content, not details of the changes
made to the values.

2. Save or serialize all the data and all details of the changes made to
the values.

3. Save or serialize only the values where changes have occurred, not
the “unchanged” values.

The XPathDocument serializes values at Node level. In other words,
every node in the document gets serialized and is then available when the
document is rebuilt. In an XML document, every element and attribute is a
node, so the complete data content of the document is maintained.

Serialization is actually useful not only when remoting data but also for
supporting off-line data access and editing. After using an XmlAdapter to
fill an XPathDocument, you can save the data to a local disk and disconnect
from the database, then work with the data without maintaining a connec-
tion. Later you can reconnect and resynchronize the data in the database
using the changes in the XPathDocument in much the same way as you
would in the relational world. 

Migration of the SQLXML 3.0 Technology to .NET
One of the aims of version 2.0 of the .NET Framework is to move the exist-
ing SQLXML technology to the .NET platform. SQLXML was originally

ADO.NET AND SYSTEM.XML VERSION 2.016



developed as an add-on for SQL Server 7.0. The aim was to make it easy to
extract data from SQL Server as XML and to use specially formatted XML
updategrams to push data updates back into SQL Server.

The original Technology Preview of SQLXML involved installing a “fil-
ter” that sits in SQL Server and responds to queries that contain the FOR
XML keywords. SQL Server 2000 has the SQLXML version 3.0 technology
built in, and it automatically detects and processes SQL statements that are
XML queries. For example, the following SQL statement:

SELECT * FROM Country WHERE Name LIKE 'U%' FOR XML AUTO

returns a series of XML elements that represent each matching row in the
database table, with each column represented as an attribute of the row:

<Country Name="USA" Continent="America" Size="Very large"/>

<Country Name="UK" Continent="Europe" Size="Quite small" />

... etc ...

These elements can easily be wrapped in a suitable preamble and root ele-
ment to turn them into an XML document. In .NET, SQLXML queries that
return XML elements are handled by an XmlReader returned from a call to
the ExecuteXmlReader method of a Command object connected to the data-
base.

However, it would be useful to be able to use this type of data query,
and return XML, with databases other than SQL Server and to make it
more compatible with the techniques used in the Framework. This is
achieved in version 2.0 of the .NET Framework through the XmlAdapter
and XPathDocument you saw in Figure 1.1, though in the current release
this is limited to the SQL Server “Yukon” version. Instead of having to
learn complex rules for specifying the format of the data returned from the
database and all the different options available for updategrams, you use
an approach and a syntax that are similar to those used in relational data
access through the ASP.NET DataAdapter.

Server-Side Data Binding to XML
In version 2.0, the .NET Framework also supports server-side UI data
binding in Web Forms (ASP.NET) and Windows Forms (executable) appli-
cations to XML documents stored in the XPathDocument and XmlDocument
classes. This provides a fast and efficient technique for displaying data that
is persisted as XML in Web pages and Web applications and in your .NET
executable programs. 

THE GROWING IMPORTANCE OF XML 17



Relational Data Binding in ASP.NET
One of the great features introduced into ASP.NET in version 1.0 was
server-side data binding, through a range of ASP.NET server controls and
to many different kinds of data structures. This includes the ADO.NET
DataTable and DataReader, as well as other collection-based structures.

In version 2.0 of ASP.NET, this concept has been extended to allow de-
velopers to build data-bound pages that no longer require any code to be
written—even for complex operations such as paging, sorting, and updat-
ing the original data.

ASP.NET server controls expose a property named DataSource to
which you assign the source data structure. For example, if you have an ac-
tive instance of a DataReader, you simply assign it to the DataSource
property of the control and then call the DataBind method (on the control
or on the Page object that contains it) to cause the control to iterate through
the data rows and generate the output in the page:

MyDataGrid.DataSource = MyDataReader

MyDataGrid.DataBind()

If the data source contains more than one table, for example, when us-
ing a DataSet, the DataMember property of the control is used to specify
which table is to be bound:

MyDataGrid.DataSource = MyDataReader

MyDataGrid.DataMember = "TableName"

MyDataGrid.DataBind()

ASP.NET Data Source Controls and the GridView Control
In version 2.0, ASP.NET introduces a range of new server controls to han-
dle data management and server-side data binding. These controls fall into
two distinct groups: 

1. Data source controls that connect to a data source and expose the data

2. The new GridView and DetailsView controls that consume the
data and display it in a Web page

Several data source controls are included with ASP.NET, all residing in
the System.Web.UI.WebControls namespace. These include controls de-
signed to work with relational data from SQL Server, OLE-DB and ODBC

ADO.NET AND SYSTEM.XML VERSION 2.018



databases, Microsoft Access, and Oracle. There is also a special data source
control designed to work with the new ObjectSpaces technology to enable
server-side data binding to custom business objects. Some data source con-
trols consume XML from a stream or disk file. The XML Data Source Con-
trols and Data Binding section in Chapter 7 briefly discusses the controls
that consume XML, and the companion book to this one, A First Look at
ASP.NET v. 2.0 (Boston, MA: Addison-Wesley, 2004, ISBN 0-321-22896-0),
contains full details of all the data source controls.

The new ASP.NET GridView and DetailsView controls expose Data
Source and DataMember properties, just like most other “bindable” server
controls. However, they also expose a DataSourceID property, which can
be set to the ID of a data source control that exposes data in relational
(columns and rows) format. When this is done, the two controls work to-
gether to extract the data and perform the server-side data binding auto-
matically, with no code required.

You’ll also be pleased to know that all the ASP.NET server controls that
support data binding now expose the DataSourceID attribute in version
2.0, so they can be used interchangeably with any data source control that
exposes the data in the appropriate format.

An Example of the Data Source and GridView Controls
As an example of how these two controls change the whole approach to
server-side data binding, the code in Listing 1.1 (taken from the book re-
ferred to above) shows the complete <form> section of an ASP.NET page
that extracts some rows from the Northwind database and displays it in a
GridView control.

Listing 1.1. Using a Data Source Control and a GridView Control

<form runat="server">

<asp:SqlDataSource id="ds1" runat="server"

ConnectionString="server=localhost;database=Northwind;uid=x;pwd=x"

SelectCommand="SELECT ProductID, ProductName, QuantityPerUnit,

UnitPrice, UnitsInStock, Discontinued FROM Products"

/>

<asp:GridView id="grid1" DataSourceID="ds1" runat="server" />

</form>

The SqlDataSource control uses a connection string and a SQL state-
ment (it could alternatively be a stored procedure name), plus “sensible”

RELATIONAL DATA BINDING IN ASP.NET 19



Do I Still Need to Write ADO.NET Code?
In ASP.NET, you may be able to avoid writing code to interact with a data-
base and just rely on the data source controls to do all the work. However,
that doesn’t mean you can stop reading now! As is always the case, know-
ing more about how the data access technologies actually work, as well as
being able to take advantage of the features they offer to tailor performance
and behavior to suit your requirements, is part of the development process. 

In particular, you may prefer to take advantage of specific new features
in ADO.NET such as MARS, asynchronous processing, and batch

ADO.NET AND SYSTEM.XML VERSION 2.020

Figure 1.3. A data source and GridView control in action

default settings, to connect to a database and extract the data rows. It reacts
to the page-level events that occur when the page is requested and internally
builds the usual ADO.NET objects it needs (Connection, DataAdapter,
DataSet, and so on). 

The GridView control performs the data binding and displays the data.
The screenshot in Figure 1.3 shows the result. It displays all the rows from
the Products table in the Northwind database, just as specified in the SQL
statement. However, notice the Discontinued column. This is a Boolean field
in the table, and the control automatically displays it using read-only (dis-
abled) checkboxes.



command execution to access and expose your data in exactly the way you
require. In this case, having generated your data structure, you can con-
tinue to benefit from server-side data binding by using the new or existing
controls through their DataSource and DataMember properties.

A Roadmap for This Book
The remainder of this book is divided into two sections, along the same
lines as the feature summaries you saw earlier in this chapter. In the next
three chapters, we look in more detail at the new features in ADO.NET
version 2.0. 

• Chapter 2, Bulk Loading, Batch Execution, and Paging, looks at the
new classes, methods, and other additions to ADO.NET in version
2.0 that enable some exciting new techniques to be applied. This
includes bulk inserts and updates in SQL Server, batched execution
of commands, and data paging support. 

• Chapter 3, MARS, Asynchronous Commands, and ObjectSpaces,
looks at three more of the new core data access techniques and fea-
tures added to ADO.NET 2.0. MARS provides the opportunity to
open more than one result set over the same connection and access
them concurrently, while asynchronous execution of multiple com-
mands over the same Connection instance is also possible now.
This chapter also introduces the new ObjectSpaces technology
added to ADO.NET, which allows data to be defined as instances 
of a class but handled just like other intrinsic data types.

• Chapter 4, ADO.NET and SQL Server “Yukon,” looks at ADO.NET
integration with the new version of Microsoft SQL Server (code-
named “Yukon”). It examines notifications, managed code within
SQL Server, user-defined data types, and the new feature that allows
server-side cursors to be used to directly access and modify data.

Then, in the final four chapters, we look at the changes in the
System.Xml and subsidiary namespaces.

• Chapter 5, New Features of System.Xml, explores and overviews
the main basic concepts—such as XML programming and the 
XML data model, disconnected XML database access, XML Views,
XQuery—and how to get started using them.

A ROADMAP FOR THIS BOOK 21



• Chapter 6, The XPathDocument2 Class, concentrates in more depth
on the new features of the updated XPathDocument class and its
associated classes, such as XPathChangeNavigator and
XPathEditor, that provide read/write access to XML documents. 

• Chapter 7, The XmlAdapter and SqlXml Classes, is a detailed look
at the XmlAdapter class that, together with the XPathDocument,
enables disconnected data manipulation in XML. It also covers XML
schemas and the three-part mapping technology that links relational
and XML data. This chapter also looks at the .NET replacements for
the unmanaged SQLXML technology implemented in SQL Server
2000. 

• Finally, Chapter 8, XQuery and SQL Server, looks at what XQuery
is, and the support for it in version 2.0 of the .NET Framework. This
includes examination of the XQuery architecture, the new
XQueryProcessor class, and query composition. This chapter also
looks at the new mapping format for defining XML Views over 
data sources that enable queries and updates and briefly discusses
the XML data type in SQL Server “Yukon.”

SUMMARY

This short first chapter aims to get you familiar with the overall enhance-
ments to version 2.0 of the .NET Framework over version 1.0 that concern
data management using ADO.NET and the classes from the System.Xml
and subsidiary namespaces. As well as summarizing these as simple lists,
we’ve attempted to fill out the picture a little by including some back-
ground on why they have come about and Microsoft’s aims as far as de-
velopers are concerned.

We also spent some time looking at the area of XML data management
within the .NET Framework, to make sure you appreciate the growing im-
portance and widening acceptance of XML as a data persistence, manipu-
lation, and transmission format. As new business applications and
software suites appear (such as Microsoft Office System, SharePoint, and
so on), the use of and dependence on XML can only continue to grow. 

We then briefly overviewed the way that XML is managed within .NET,
in both versions 1.0 and 2.0, to reinforce the direction in which develop-
ment of the Framework is moving. The concept of relational and XML data
as being two different entities is rapidly disappearing, and the forthcom-

ADO.NET AND SYSTEM.XML VERSION 2.022



ing opportunities to construct XML data and schema repositories based on
SQL Server will only help to accelerate this change.

Finally, after a quick look at how the changes to ADO.NET affect (or, in
fact, do not affect) ASP.NET data binding, we ended the chapter with a
brief outline of the content in the remainder of this book. This should help
you to dive in and see the areas that are of particular interest to you.

As we stated earlier, the Technology Preview release of the .NET
Framework version 2.0 is by no means a complete view of all the features
that will be present in the final release. One area that Microsoft is working
on, but which has not been finalised yet, is a new class that simplifies rela-
tional data management. Early prototypes indicate that it will remove the
need for developers to explicitly create intermediate class instances such as
Connection, Command, and DataAdapter by using sensible default values
and internal heuristics. This feature, providing characteristics similar to
but extending the existing DataTable class, should find its way into forth-
coming Beta releases of the Framework.

SUMMARY 23




