

1

CHAPTER 1

The Big Picture

The typical relationship between the programmer and the programming envi-
ronment is one where the environment nurtures the programmer. In return for
this support, the programmer works within the constraints created by the
environment.

In the early seventies, Smalltalk was written with a different philosophy.
Every user of every application was considered a potential programmer. The
classic example is, you could be editing a document and decide you didn’t like
how the editor worked. Pressing a button would show you the inner workings
of the document editor and provide you with tools to change the editor’s
behavior.

User-as-programmer may seem far-fetched, but Smalltalk saw many cases
where non-programming professionals wrote applications uniquely suited to
their own needs by learning programming a little at a time and by example.
The key to enabling user programming is to structure the environment to
encourage learning, giving the user a little payoff for a little investment and a
little more payoff for a little more investment.

Eclipse structures the computing experience similarly. Its goals are much
the same as the goals of Smalltalk: Give the users an empowering computing
experience and provide a learning environment as a path to greater power. In
Eclipse, moving up the pyramid requires investment and will be attempted by
fewer people (see Figure 1.1).

❍ Users—Daily Eclipse users. Currently this is restricted to programmers,
but there is no reason in principle why Eclipse couldn’t be used to struc-
ture other computing work.

Gamma-Beck.book Page 1 Tuesday, October 14, 2003 7:21 PM

2 The Big Picture

❍ Configurers—Users who customize their experience of Eclipse, either by
rearranging perspectives, setting preferences, or deciding which views to
show. Configuration is limited to changes envisioned by the original
programmer.

❍ Extenders—Programmers who make changes not envisioned by the orig-
inal Eclipse programmers. Eclipse provides a rich set of places to “plug
in” new functionality, because Eclipse itself is built entirely by plugging
in functionality.

❍ Publishers—Once you’ve written something useful, other folks may want
it, too. Eclipse is consciously structured so you can easily bundle
together extensions so others can load them.

❍ Enablers—Eclipse is built out of “places-to-plug-functionality-in”
(extension points) and “functionality-to-be-plugged-in” (extensions).
Once you have published a contribution, the next step is to enable others
to extend it in ways you don’t foresee. You do this by publishing your
extension points.

❍ Committers—Eclipse is an open source project. If there is a change you
want to make that is outside the scope of the available extension points,
you can change the source code itself. Getting your changes incorporated
into the global Eclipse release requires that you gain the trust of the
existing community of committers. Becoming a committer is outside the
scope of this book, although we will look at lots of the Eclipse source
code so you can get an idea of what would be involved.

We can also map these levels onto a circle as shown in Figure 1.2.
What makes this circle interesting is the final arrow, from Enabler back to

User. In Eclipse, you don’t just invest more and more and receive more and
more. When you take the step to become an enabler with your own extension
points, you create for yourself the opportunity to be nourished by the work of
others. Sometime later, someone may extend your contribution in ways you

Figure 1.1 Increasing Commitment and Reward

Configurers

Extenders

Publishers

Enablers

Users

Committer

Gamma-Beck.book Page 2 Tuesday, October 14, 2003 7:21 PM

1.1 Book Goals 3

find useful. By creating and sharing your own extension points you can get the
benefit of their work without further effort on your part.

We intend for this book to be your guide around the Contribution Circle.

1.1 Book Goals

We’ve been talking about writing a book together for nearly a decade. We
share an interest in software design, in the design of software for widespread
adaptation (frameworks), and in discovering the “universal” rules that lie
behind design. We first met at Bruce Anderson’s Architecture Handbook
workshop at OOPSLA-93 in Washington, D.C, where we began discussing
software design. We discovered that, while we generally shared a common
aesthetic of design, we disagreed in enough interesting ways to fuel years of
debate and joint exploration. The chance to write this book gave us a good
reason to continue and deepen our discussion of design.

We want to help you around the Contribution Circle as far as you want
to go. For you to learn your way around the circle to become a enabler, we
need to help you learn two things:

❍ About Eclipse. There is far more to Eclipse than would fit into any ten
books, but there are some basic concepts and details you simply cannot
live without. By following the examples here, you will see these basics in
action.

❍ Learning about Eclipse. We aren’t going to pretend that we have memo-
rized all the details of Eclipse. When we program in Eclipse, we search

Figure 1.2 The Contribution Circle

User

Enabler Configurer

Publisher Extender

Gamma-Beck.book Page 3 Tuesday, October 14, 2003 7:21 PM

4 The Big Picture

for examples from which to copy. As we develop our code, we’ll tell you
how we found our examples.

❍ Design principles. Okay, this is our secret third agenda. As we go along,
we’ll tell you about the underlying principles of design behind the struc-
ture of Eclipse in particular, but also behind platforms of all kinds.

The book is organized as four concentric circles, each taking you around the
Contribution Circle in increasing detail.

1. Circle Zero, Chapter 2 and Chapter 3, gets you set up for plug-in devel-
opment and takes you as quickly as possible from a tiny plug-in idea to
its implementation.

2. Circle One, Chapter 4 through Chapter 12, introduces the content of our
plug-in and running test cases, and makes and deploys the simplest pos-
sible test-running plug-in.

3. Circle Two, Chapter 13 through Chapter 30, takes the basic test-running
plug-in and adds all the capabilities expected of Eclipse contributions,
acquiring an interesting twist of metaphor halfway through.

Pedagogical Structure

When we want to describe an Eclipse concept, we will always place it in the
context of our example application. We’ll start with the idea of what feature we
want to add, describe the general concept in Eclipse that fits the idea best, show
an example in Eclipse that uses that concept, show how the concept is used in
our example, then give forwarding pointers to other places in Eclipse you can
look for more examples. This is how we develop in Eclipse ourselves, by copying
examples, so it’s good practice to see it here.

Book Example Eclipse

Idea Describe Concept

Find Example

Mimic Example

Forwarding Pointers

Gamma-Beck.book Page 4 Tuesday, October 14, 2003 7:21 PM

1.3 Eclipse in a Nutshell 5

4. Circle Three, Chapter 31 through Chapter 37, tours Eclipse designer-to-
designer, highlighting areas of Eclipse worth exploring early. These
essays use design and implementation patterns as their basic vocabulary,
showing how the patterns play out in a variety of contexts.

1.2 Plug-In

Because this chapter and the following
chapters constitute a complete circle, we
should have a little bit of background
about the plug-in architecture of Eclipse.
Eclipse is a collection of places-to-plug-
things-in (extension points) and things-
plugged-in (extensions). The powerstrip
is a kind of extension point. Multiple
extensions (in this case, power plugs) can plug into it, and although the exten-
sions are different shapes and have different purposes, they all must share a
common interface.

1.3 Eclipse in a Nutshell

Here is a bit of the Eclipse architecture to get you started. Then we will start
programming. We get back to some key architectural elements of Eclipse in
Circle Three. If you are more comfortable having an overall picture before
looking at details, you may want to read Circle Three now.

 Figure 1.3 shows the three layers of Eclipse.

❍ Platform—The Eclipse platform defines the common programming-
language-neutral infrastructure.

❍ Java Development Tools (JDT)—The Java development tools add a full-
featured Java IDE to Eclipse.

Figure 1.3 The Three Layers of Eclipse

Plug-In Development Environment

Java Development Tools

Platform

Gamma-Beck.book Page 5 Tuesday, October 14, 2003 7:21 PM

6 The Big Picture

❍ Plug-In Development Environment (PDE)—The PDE extends the JDT
with support for developing plug-ins.

The platform consists of several key components that are layered into a user
interface (UI)-independent core and a UI layer, as shown in Figure 1.4.

❍ Runtime—The run-time component defines the plug-in infrastructure. It
discovers the available plug-ins on start-up and manages the plug-in
loading.

❍ Workspace—A workspace manages one or more top-level projects.
A project consists of file and folders that map onto the underlying file
system.

❍ Standard Widget Toolkit (SWT)—The SWT provides graphics and
defines a standard set of widgets.

❍ JFace—A set of smaller UI frameworks built on top of SWT supporting
common UI tasks.

❍ Workbench—The workbench defines the Eclipse UI paradigm. It centers
around editors, views, and perspectives.

Let’s take a brief look at the workbench and its components, shown in Figure
1.5.

Figure 1.4 Eclipse Architecture Overview

UI

JFace

SWT

Workbench

Runtime

Workspace

Core

Gamma-Beck.book Page 6 Tuesday, October 14, 2003 7:21 PM

1.3 Eclipse in a Nutshell 7

The Eclipse workbench is presented in one or more windows. A workbench
window contains a set of workbench parts. These can be either views or edi-
tors. A perspective defines the visual arrangement of the workbench parts.

Finally, since you are about to start extending Eclipse, you should famil-
iarize yourselves with the Eclipse UI guidelines.1

Figure 1.5 Eclipse User Interface Vocabulary

1. www.eclipse.org/articles/Article-UI-Guidelines/Index.html

Gamma-Beck.book Page 7 Tuesday, October 14, 2003 7:21 PM

Gamma-Beck.book Page 8 Tuesday, October 14, 2003 7:21 PM

9

PART I

Circle Zero:
Hello World

This circle will take you through the entire contribution process as quickly as
possible. We will skip many details in the name of brevity, but fortunately we
have three more circles in which to make up for our haste. Our goal is to get
you over the inertia of not having made a contribution. Once you’ve contrib-
uted to Eclipse, you’ll be ready to learn to contribute well.

Our example will contribute a button to the toolbar. When we press the
button, a dialog will appear announcing, “Hello World.” First, though, we
need to set Eclipse up for plug-in development.

Gamma-Beck.book Page 9 Tuesday, October 14, 2003 7:21 PM

Gamma-Beck.book Page 10 Tuesday, October 14, 2003 7:21 PM

11

CHAPTER 2

Setting Up Eclipse for Plug-In
Development

Developing plug-ins is a little different than developing vanilla Java applica-
tions. First, you need to be able to refer to Eclipse’s own internal structure to
extend that structure. Second, you will spend much of your early hours as an
Eclipse contributor reading source code, so you need access to all the source.

One way to solve these problems is to load the entire source (around one
million lines of code) into the workspace. Managing this huge amount of
source can expand the memory footprint of Eclipse. However, we will typi-
cally only read existing code and not modify or compile it. Fortunately, PDE
offers a quick and space-efficient way to set up a workspace where existing
plug-ins cannot be modified, but can be browsed. The trick is to represent
existing plug-ins as binary projects. Binary projects cannot be modified, but
are fully searchable for references and declarations.

The distinction is between working with and working on. A project you
are working with can be represented as a binary project, saving space. A
project you are working on must be represented as source.

2.1 Setting Up a Workspace

Here is how to set up a workspace with binary projects for all the plug-ins
shipped with Eclipse:

1. If you don’t want to pollute your existing workspace, start Eclipse with
an empty workspace (use -data new_workspace_location on the
command line).

Gamma-Beck.book Page 11 Tuesday, October 14, 2003 7:21 PM

12 Setting Up Eclipse for Plug-In Development

2. Switch to the Java perspective by selecting Window > Open Perspective >
Java.

3. Choose File > Import... > External Plug-ins and Fragments. Accept the
defaults on the next page. On the third page click Select All to import all
plug-ins from your host workspace.

4. Click Finish. The plug-ins will be imported into binary projects, their
build class paths initialized, as shown in Figure 2.1.

2.2 Browsing and Searching Source

You can now browse and search the full Eclipse source. Choose Navigate >
Open Type… and type in *. You should see thousands of classes. You will
have around 60 Eclipse plug-in projects in your workspace.

If you do not want to see these binary projects, hide the binary projects in
the Package Explorer by turning on a filter for binary projects. Select Filters
from the Package Explorer view pull-down menu, as shown in Figure 2.2 and

Figure 2.1

Gamma-Beck.book Page 12 Tuesday, October 14, 2003 7:21 PM

2.2 Browsing and Searching Source 13

select Binary plug-in and feature projects in the subsequent dialog, as shown
in Figure 2.3.

If you started Eclipse in a clean workspace, the Package Explorer will be
empty after you invoke the filter because you haven’t created any source plug-
in projects yet.

One thing to keep in mind when you install a new version of Eclipse: Do
not forget to reimport the plug-ins that come with this build. To do so, click
the Existing Binary Projects button on the import wizard’s plug-in selection

Figure 2.2

Figure 2.3

Gamma-Beck.book Page 13 Tuesday, October 14, 2003 7:21 PM

14 Setting Up Eclipse for Plug-In Development

page. This will replace your existing binary projects with the code for the new
versions.

Now Eclipse is ready to say “hello” to the world.

2.3 Forward Pointers

❍ Workspace set up with binary projects but linked contents—If you have
a large number of plug-ins and you don’t want to create a copy of all
plug-ins in your workspace, you can uncheck the Copy plug-in contents
into the workspace location check box when you import the plug-ins. In
this case, PDE creates the plug-in projects in your workspace, but it
“links” their contents instead of making a copy.

Gamma-Beck.book Page 14 Tuesday, October 14, 2003 7:21 PM

15

CHAPTER 3

Hello World

Our “Hello World” plug-in will contribute a button to the toolbar. When the
button is pressed, we will pop up a dialog box containing the text “Hello
World.”

The developers at Eclipse.org share a consistent set of rules for design.
Here’s the first rule of Eclipse:

CONTRIBUTION RULE Everything is a contribution.

The whole of Eclipse—the Java development tools, the CVS repository
explorer, every single tool—is contributed. That is, none of them is “built
into” Eclipse. There is no monolithic tool to which a few things are added.
There is a tiny little kernel to which many things are contributed, as shown in
Figure 3.1.

As a consequence of making everything a contribution you will have lots
of contributions. The Java environment and the Eclipse base together are
more than 60 large plug-ins. The IBM WebSphere Application Development
environment, for example, adds another 500 plug-ins. Assume that you have
a system built out of thousands of contributions. If you want the system to
start up this century, you can’t do much work per contribution on start-up. In
particular, the end user should not pay in start-up time for plug-ins that are
installed but not used.

While we speak of performance as being the last thing you should pay
attention to in development, performance often has profound impact on the
architecture. Eclipse is shaped by the need to process thousands of contribu-
tions at start-up, yielding a budget of a few milliseconds each.

Gamma-Beck.book Page 15 Tuesday, October 14, 2003 7:21 PM

16 Hello World

Now we come to a dilemma. The logic contained within a contribution can
be substantial. The compiled form of this logic, Java class files (collected in a
Java Archive [JAR] file), can easily take seconds to load. Making Java classes
that are guaranteed to load quickly is more work than most people want to
do. If we want to guarantee snappy start-up, we can’t load classes. This leads
to the Lazy Loading Rule:

LAZY LOADING RULE Contributions are only loaded when they are
needed.

Good rule, but how is it implemented?

3.1 Declaration/Implementation Split

If you only know which contributions are present, even if you haven’t loaded
their implementation you can already give the user a picture of what opera-
tions are available. The plug-in architecture implements this split between
declaration and implementation by declaring the “shape” of a contribution in
an Extensible Markup Language (XML)-based manifest. The implementation
of the contribution is in Java (see Figure 3.2).

Figure 3.1 Some Extensions Versus All Extensions

IDE

Extensions

Extensible IDE

IDE

Extensions

Run-time kernel

Eclipse

Gamma-Beck.book Page 16 Tuesday, October 14, 2003 7:21 PM

3.1 Declaration/Implementation Split 17

Figure 3.2 The Manifest Describes Your Plug-In’s Contribution

The Basic Plug-In Structure

A plug-in is a piece of behavior that is outside the run-time kernel. A plug-in is
represented as a directory containing

❍ plugin.xml—The manifest, a description of the contributions of the plug-in

❍ Resources, like icons (optional)

❍ Java code, in a JAR (optional)

The directory structure for the plug-in org.eclipse.jdt.ui is shown below.

Declarative
Definition
(manifest)

Procedural
Implementation

(Java JAR)

Gamma-Beck.book Page 17 Tuesday, October 14, 2003 7:21 PM

18 Hello World

3.2 Hello Button

We want to contribute a button to Eclipse. First we have to create a project.
Eclipse has wizards to automate tedious work, but if you haven’t done it
before, the work is hardly tedious. We’ll build our examples as much as pos-
sible by hand, then you can use the wizards once you understand what they
are doing for you. We’ll only use the wizard to give us the basic structure, and
we’ll explain what it did for us (Figures 3.3–3.7).

1. Open the new wizard.

2. Select Plug-in Project.

3. Define the name of the plug-in project.

Figure 3.3

Figure 3.4

Gamma-Beck.book Page 18 Tuesday, October 14, 2003 7:21 PM

3.2 Hello Button 19

4. Define the settings related to the plug-in structure.

Figure 3.5

Figure 3.6

Gamma-Beck.book Page 19 Tuesday, October 14, 2003 7:21 PM

20 Hello World

5. Create a blank plug-in project without using any of the code generation
wizards.

Note that on the last step we selected Create a blank plug-in project so we
could have the joy of filling in as many details as possible by hand. When you
click Finish, answer No to the dialog asking you if you want to switch to the
plug-in development perspective. We prefer to do our plug-in development in
the Java perspective.

The result is the basic plug-in project structure shown in Figure 3.8.

We have a nearly empty manifest file describing the appearance and structure
of the plug-in, a build.properties file that tells the Plug-in Development Envi-
ronment where to find the source code for building the JAR, and an empty src
folder.

Figure 3.7

Figure 3.8 Plug-In Project Structure

Gamma-Beck.book Page 20 Tuesday, October 14, 2003 7:21 PM

3.2 Hello Button 21

The manifest file, plugin.xml (shown in its entirety in Section 3.3.2), con-
tains the top-level plug-in description. Opening plugin.xml will show you the
manifest editor, a friendly interface to all the details in the manifest. Since we
want to explore the whole manifest, click on the Source tab to show the raw
XML. You’ll see something like this:

org.eclipse.contribution.hello/plugin.xml
<plugin
id="org.eclipse.contribution.hello"
name="org.eclipse.contribution.hello"
version="1.0.0">

</plugin>

You’ll also see a run-time entry in the manifest that defines where Eclipse will
look for classes in this plug-in.

IDs in manifests are globally unique. Names, however, are expected to be
read by humans. Our first change is to make the name of our plug-in a bit
friendlier:

org.eclipse.contribution.hello/plugin.xml
<plugin
id="org.eclipse.contribution.hello"
name="Hello World"
version="1.0.0">

The version is mandatory because plug-ins can rely on each other (remember
that nearly everything is a plug-in) and you can refer to the particular version
of a plug-in you depend on.

Plug-In Development Environment (PDE)

Because plug-ins are so important to Eclipse, Eclipse has evolved tools for devel-
oping Java projects that are plug-ins. You will see a wizard for creating plug-in
projects, specialized editors for the manifest file (plugin.xml), and support for
running a second workbench with plug-ins under development.

Running with PDE will be confusing at times because you have to remember
whether you are working in the workbench that is editing the plug-in (host work-
bench) or working in the workbench that is running the plug-in under develop-
ment (run-time workbench). For example, if you write to System.out from
inside a plug-in under development, the text appears in the workbench editing
the plug-in, not the workbench in which the plug-in is running.

Gamma-Beck.book Page 21 Tuesday, October 14, 2003 7:21 PM

22 Hello World

Now we have a plug-in, but it doesn’t do anything. We will be able to see it
when we start a run-time workbench (see Figure 3.9).

Clicking Run As > Run-time Workbench will bring up another instance of
Eclipse, but this one (the run-time workbench) has our new plug-in loaded.
You can verify that our plug-in is present by choosing Help > About Eclipse
Platform > Plug-in Details in the run-time workbench. Our plug-in is at the
top of the list, as shown in Figure 3.10.

Next we need to contribute a button. Here’s how we specify our button’s
appearance:

Figure 3.9

Figure 3.10

Gamma-Beck.book Page 22 Tuesday, October 14, 2003 7:21 PM

3.2 Hello Button 23

org.eclipse.contribution.hello/plugin.xml
<extension point="org.eclipse.ui.actionSets">
<actionSet
id="org.eclipse.contribution.hello.actionSet"
label="Hello Action Set">
<action
id="org.eclipse.contribution.hello.HelloAction"
label="Hello">

</action>
</actionSet>

</extension>

Each button is supported by an Action, the object that will be invoked when
the button is pressed. The buttons in the toolbar are grouped into action sets,
sets of related actions, as shown in Figure 3.11. For example, the buttons that
create Java elements are an action set. The above declaration states that we are
contributing a new action set, point=”org.eclipse.ui.actionSets”,
which contains a single action, labelled “Hello”. Note once again that the IDs
are globally unique but the names of elements are intended for human
consumption.

When we start a new run-time workbench (clicking the Running Guy will rerun
what was run previously), we can see our action set in Window > Customize
Perspective... > Other as shown in Figure 3.12.

Figure 3.11

Figure 3.12

Gamma-Beck.book Page 23 Tuesday, October 14, 2003 7:21 PM

24 Hello World

Notice that the values of the label elements in the declaration are used to
present our contribution to the user.

Selecting our action set and clicking OK doesn’t cause a button to appear.
Why? To appear as a button, each action has to be associated with a toolbar
path, a hint to Eclipse as to where to put the action. In our case, we don’t want
to put the action near any other particular actions, so we can make up a tool-
bar path:

org.eclipse.contribution.hello/plugin.xml
<action
id="org.eclipse.contribution.hello.HelloAction"
label="Hello"
toolbarPath="helloGroup">

</action>

If there were already actions with the toolbar path helloGroup, our Hello
action would appear nearby. Since this action is the only one with this toolbar
path, our button appears in a group by itself. Because we didn’t specify an
icon, the button appears as the default red square, as shown in Figure 3.13.

The button placement behavior leads us to the Sharing Rule:

SHARING RULE Add, don’t replace.

When you contribute to Eclipse, your contributions will be added to the
contributions already in place. There isn’t a way to replace existing function-
ality. It’s your job to find a way to think of your contribution as an addition
to the existing functionality and it’s Eclipse’s job to harmoniously combine the
contributions.

Before we implement the functionality behind the button, notice that we
have been able to present our contribution to the user purely declaratively.
The manifest defines how the contribution appears; the Java code defines how
it behaves.

Figure 3.13 Our Button Appears as a Red Square

our button

Gamma-Beck.book Page 24 Tuesday, October 14, 2003 7:21 PM

3.3 Saying “Hello” 25

3.3 Saying “Hello”

We have finished the user-visible appearance of our plug-in. Now it is time to
fill in the implementation side, actually opening a dialog containing the string
“Hello”. According to the Lazy Loading Rule, contributions are only loaded
when they are first invoked. Eclipse waits until the button is clicked, then
looks for code to invoke. The code is represented as a Java class, so the name
of the class has to be part of the definition of the action.

Each action has the name of a Java class associated with it. When the action
is invoked, an instance of that class is created to process the button click. The
Java class is represented as an element of the action declaration:

org.eclipse.contribution.hello/plugin.xml
<action
id="org.eclipse.contribution.hello.HelloAction"
label="Hello"
toolbarPath="helloGroup"
class="org.eclipse.contribution.hello.HelloAction">

</action>

Figure 3.14 The Appearance Is Finished, Now the Implementation

Declarative
Definition
(manifest)

Procedural
Implementation

(Java JAR)

Gamma-Beck.book Page 25 Tuesday, October 14, 2003 7:21 PM

26 Hello World

When we start the run-time workbench and click our button, the console in
the host workbench (the one where we are developing the plug-in) tells us that
the class can’t be found:

Could not create action delegate for id: org.eclipse.contribution.
hello.HelloAction
Reason:
Plug-in org.eclipse.contribution.hello was unable to load class org.
eclipse.contribution.hello.HelloAction.

To make the action work, we need to create a class called org.eclipse.
contribution.hello.HelloAction. How will the action be invoked? Eclipse
needs a protocol common to all actions. This protocol is defined in the inter-
face IWorkbenchWindowActionDelegate.1 As an extender you are required
to conform to this interface, the Conformance Rule (see Figure 3.15):

CONFORMANCE RULE Contributions must conform to expected interfaces.

Before we can define an implementor of IWorkbenchWindowActionDelegate,
we have to help Eclipse find it from within our plug-in. Eclipse doesn’t use the
usual classpath mechanism of Java to find classes. Instead, each plug-in has its
own class lookup path. This “classpath” is defined by a plug-in declaring
which other plug-ins it depends on. At runtime, these prerequisite plug-ins
will be searched whenever a class needs to be found. This mechanism is more
efficient than Java’s classpath, and more predictable, since each plug-in can
precisely specify the context in which it is intended to be run.

1. The convention in Eclipse is to name interfaces beginning with an “I.”

Figure 3.15 Eclipse Calls Our Contribution Through the Expected Interface

HelloWorld Plug-In

implements calls

Eclipse

HelloAction

IWorkbenchWindowActionDelegate

Gamma-Beck.book Page 26 Tuesday, October 14, 2003 7:21 PM

3.3 Saying “Hello” 27

The interface we want to implement, IWorkbenchWindowActionDelegate, is
defined in the org.eclipse.ui plug-in, so our plug-in needs to depend on it.
We add the following to our manifest:

org.eclipse.contribution.hello/plugin.xml
<requires>
<import plugin="org.eclipse.ui"/>

</requires>

At this point, we also have to update the build class path. Go to the Depen-
dency tab of the manifest editor. Select Compute Build Path from the context
menu. PDE will now look in org.eclipse.ui for classes referenced by our
code.

Now we can define our HelloAction.

1. Create a package org.eclipse.contribution.hello in the source
folder src of our project.

2. Create the class HelloAction implementing the interface IWorkbench-
WindowActionDelegate.

Eclipse fills in default implementations for the four methods in the signature
of IWorkbenchWindowActionDelegate:

org.eclipse.contribution.hello/HelloAction
public void init(IWorkbenchWindow window) {
}
public void selectionChanged(IAction action, ISelection selection) {
}
public void dispose() {
}
public void run(IAction action) {
}

Extension implementations usually have a zero-argument constructor and are
declared public because the extension objects will be created by reflection. In
this case, we are lucky. Because we inherit from Object and define no other
constructor, the default constructor is generated automatically. In most cases,
we will have to define a zero-argument constructor explicitly.

When we bring up the run-time workbench and click the little red square
nothing happens. We want to bring up a dialog with a cheery greeting. We
replace the implementation of HelloAction.run() with the following:

org.eclipse.contribution.hello/HelloAction
public void run(IAction action) {
MessageDialog.openInformation(null, null,
"Hello, Eclipse world");

}

Gamma-Beck.book Page 27 Tuesday, October 14, 2003 7:21 PM

28 Hello World

Spider

In the book we make use of the Spider to draw diagrams of live objects. We
contributed Spider while we wrote this book to help us understand and
illustrate how Eclipse works. For example, here are some objects behind a
WorkbenchWindow captured with the Spider:

In the Spider diagram we see that a WorkbenchWindow has an active
WorkbenchPage which has a collection of IEditorParts and IViewParts.

When you click an object in Spider, a set of handles pops-up around the
object. In the above example you see four handles attached to the Work-
benchPage. Clicking a handle allows you to invoke an action on the selected
object. From left to right the following handles are shown:

❍ Goto source—locates the source of the object’s class and opens it in an
editor.

❍ Expand a field—shows a pop-up menu with all the fields of the object.
Selecting a field adds its value to the drawing.

❍ Expand an attribute—shows a pop-up menu with all no-argument meth-
ods in the object. Selecting a method invokes it and adds the returned
value to the drawing.

❍ Delete—deletes the object from the drawing

To find a starting point for exploration the Spider provides a Spider Navigator.
It shows a set of top-level Eclipse objects that serve as entry points for
exploration.

Gamma-Beck.book Page 28 Tuesday, October 14, 2003 7:21 PM

3.3 Saying “Hello” 29

Now when we start the run-time workbench and click the button, we see the
message we’ve been expecting, shown in Figure 3.16.

Before leaving our delightful little example, let’s see how the Lazy Loading Rule
plays out. Here are the objects of the toolbar item after the HelloAction has been
made visible, but before the button has been clicked. The WWinPluginAction
(for “Workbench Window”) is the Proxy for our action (see Figure 3.17).

When we click the button, the proxy creates the delegate and forwards the
request to the delegate, which causes the dialog to appear. Afterwards, our
action delegate has been loaded, as shown in Figure 3.18.

Following the Lazy Loading Rule, our HelloAction class is not loaded
until the first time it is invoked. Then the class is loaded, the instance is cre-
ated, and the instance is invoked.

Double clicking an object in the Spider Navigator adds it to the Spider drawing.
You can download the Spider from www.javaspider.org. Once you have the

Spider plug-in installed you can start to explore Eclipse by opening the Spider
perspective (Window > Open Perspective > Spider). The Spider perspec-
tive shows both the Spider Navigator and the Spider drawing view.

Figure 3.16

Gamma-Beck.book Page 29 Tuesday, October 14, 2003 7:21 PM

30 Hello World

With a dozen lines of Java and a dozen lines of specification in XML we were
able to contribute to Eclipse.

The complete contents of the two files are shown in Section 3.3.1 and Sec-
tion 3.3.2.

3.3.1 HelloAction.java

package org.eclipse.contribution.hello;

import org.eclipse.jface.action.IAction;
import org.eclipse.jface.dialogs.MessageDialog;
import org.eclipse.jface.viewers.ISelection;
import org.eclipse.ui.IWorkbenchWindow;
import org.eclipse.ui.IWorkbenchWindowActionDelegate;

public class HelloAction implements IWorkbenchWindowActionDelegate {

public void dispose() {
}

public void init(IWorkbenchWindow window) {
}

Figure 3.17 The Proxy Action

Figure 3.18 After Clicking the Button, the Real Action Has Been Loaded

Gamma-Beck.book Page 30 Tuesday, October 14, 2003 7:21 PM

3.4 Forward Pointers 31

public void run(IAction action) {
MessageDialog.openInformation(null, null,
"Hello, Eclipse world");

}

public void selectionChanged(IAction action,
ISelection selection) {

}

}

3.3.2 plugin.xml

<?xml version="1.0" encoding="UTF-8"?>
<plugin
id="org.eclipse.contribution.hello"
name="Hello World"
version="1.0.0">

<runtime>
<library name="hello.jar"/>

</runtime>
<requires>
<import plugin="org.eclipse.ui"/>

</requires>

<extension
point="org.eclipse.ui.actionSets">
<actionSet
label="Hello Action Set"
id="org.eclipse.contribution.hello.actionSet">
<action
label="Hello"
class="org.eclipse.contribution.hello.HelloAction"
toolbarPath="helloGroup"
id="org.eclipse.contribution.hello.HelloAction">

</action>
</actionSet>

</extension>
</plugin>

3.4 Forward Pointers

❍ Plug-ins don’t need to contain code. Documentation plug-ins are written
as a combination of XML and HTML.

Gamma-Beck.book Page 31 Tuesday, October 14, 2003 7:21 PM

