

Team Development with
Visual Studio® .NET and
Visual SourceSafe™

Information in this document, including URL and other Internet Web site
references, is subject to change without notice. Unless otherwise noted, the
example companies, organizations, products, domain names, e-mail addresses,
logos, people, places and events depicted herein are fictitious, and no association
with any real company, organization, product, domain name, e-mail address, logo,
person, place or event is intended or should be inferred. Complying with all
applicable copyright laws is the responsibility of the user. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in or
introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Microsoft Corporation.

Microsoft, MS-DOS, Windows, Visual C#, Visual Basic, Visual C++, Visual Studio, and
Win32 are either registered trademarks or trademarks of Microsoft Corporation in
the United States and/or other countries.

© 2002 Microsoft Corporation. All rights reserved.

Version 1.0

The names of actual companies and products mentioned herein may be the
trademarks of their respective owners.

Contents
Introduction viii

Who Should Read This Guide . ix
What You Must Know. ix
Terminology. ix

System . ix
Inner and Outer System Boundaries . ix
Solution . x
Project . x

Chapter 1
Introducing the Team Environment 1

Team Development Servers and Workstations. 2
The VSS Server . 3
The Build Server . 3
Development Workstations . 3
Database Servers . 4
Web Services Server . 4

Chapter 2
ASP.NET Web Application Development Models 5

Isolated . 5
Semi-Isolated . 5
Non-Isolated . 6
Use an Isolated Development Model . 7
Avoid Semi-Isolated and Non-Isolated Development Models. 7

More Information. 8

Chapter 3
Structuring Solutions and Projects 9

Visual Studio .NET Solutions and Projects . 9
Visual Studio .NET Projects . 9
Visual Studio .NET Solutions . 10
Solutions and Build Dependencies . 11
Files Subject to Source Control . 11
Files Not Subject to Source Control . 12
Always Use Visual Studio .NET for Source Control Operations 12

Partitioning Solutions and Projects . 13
Use a Single Solution Model Whenever Possible . 13
Consider a Partitioned Single Solution Model for Larger Systems. 15
Use a Multi-Solution Model Only if Absolutely Necessary . 17
Considerations for Grouping Projects into Solutions . 19

iv Contents

Use a Consistent Folder Structure for Solutions and Projects. 20
Define a Common Root Folder . 20
Adopt a Parent-Child Folder Structure for Solutions and Projects 20
How to Create a New ASP.NET Web Project . 21
How to Split a Web Application into Multiple Projects . 22
How to Create a New Non-Web Project . 23

Carefully Consider Naming Conventions . 23
Use Common Names for Projects and Assemblies . 24
Use a Common Root Namespace Name . 24
Use Common Names for VSS and Local Folders . 24

Chapter 4
Managing Dependencies 25

Referencing Assemblies. 25
Use Project References . 25
Use File References Only Where Necessary . 26
Use Copy Local = True for Project and File References. 27
Using File References in Single and Partitioned Single Solution Systems 27
Using File References in Multi-Solution Systems . 28
Consider an Isolated Development Approach . 29
Use a Virtual Drive Letter for Greater Flexibility . 29
Always Reference Release Builds with File References . 29
Use the Reference Path to Assist Isolated Development and Debugging. 30
How to Set the Reference Path for a Specific Project. 32
Include Outer System Assemblies within Projects . 32
Consider Sharing Outer System Assemblies in VSS. 33
Using the .NET Tab of the Add Reference Dialog Box . 33

Referencing Web Services . 33
Versioning Web Services in Development . 34
Always Use Dynamic URLs . 34
How to Use Dynamic URLs and a User Configuration File. 35
Updating a Web Service Reference. 36

Referencing Databases . 36
How to Use User Configuration Files for Database Connection Strings 37

Database Development . 37
Central Database Servers . 38
Local Databases . 38
Use Database Scripts for Managing Change . 38
Consider Visual Studio .NET Database Projects . 39

Referencing COM Objects. 39
Always Generate Compatible Interop Assemblies . 39
Use Primary Interop Assemblies Whenever Possible . 40
Use TLBIMP if you don’t have a Primary Interop Assembly . 41
Register COM Classes Locally . 41
Calling Serviced Components. 41

 Contents v

Chapter 5
The Build Process 43

Handling Dependency Relationships . 43
Controlling Assembly Version . 44
Using Auto-Increment Version Numbers . 44
Using Static Version Numbers . 45

Build Server Folder Structure . 46
Consider Maintaining Previous Builds . 46
Don’t Alter the Build Output Path . 48

The Build Script . 48
Generating Build Version Numbers . 50
Labeling Source Files. 50
Extracting the Latest Source File Set . 50
Creating a New Latest Folder . 51
Building Solutions with Devenv.exe. 51
Copying Output to the Latest Folder . 51
Copying the Latest Folder to a Build Number Folder. 52
Renaming the Latest Folder as LatestBroken . 52
Resolving a Broken Build . 52
Emailing Build Results . 53
Packaging the Build . 53

Creating Build Script Accounts . 54

Chapter 6
Working with Visual SourceSafe™ 55

Creating a New Solution and Project . 57
How to Check In a New Solution to VSS . 57

Working on an Existing Solution for the First Time . 58
Working on an Existing Solution for a Subsequent Time. 60
Adding a New Project to an Existing Solution. 61
Checking In Source Files to VSS. 61

Only Check In Files When They Are Ready to Build. 61
Renaming and Deleting Files and Folders . 62

Renaming a File . 62
Renaming a Project . 63
Deleting a File from VSS . 65
Deleting a Project from VSS . 65
Deleting a Solution from VSS . 66

Multiple Checkout . 66
Checking Out Solution Files . 67

vi Contents

Chapter 7
Setting Up and Maintaining the Team Environment 68

Creating a Development Domain . 69
Standalone Domain with No Trust Relationship . 70
Standalone Domain with Trust Relationships. 70
Part of the Corporate Domain. 71
The VSS Server . 71
Build Server . 72
Developer Workstations . 73
Visual Studio Enterprise Templates . 74
Backup Server. 74
SQL Servers . 74
Web Server . 75

Installing and Administering VSS . 75
Create a Shared Database on the Server . 75
Share the VSS Installation Folder with Read Access . 75
Create at Least One New Database for your .NET Development Project 76
Consider Creating Additional VSS Databases . 76
Share the Database Folder and Establish the Appropriate Permissions 76
Consider Using VSS Project Security. 77
Add User Accounts for Developers and the Build Script . 77
Restrict Access to Administration Tools . 77
Finding and Repairing Data Corruption . 77
Consider Installing Fault Tolerant Storage . 78
Installing VSS on Clients . 78
Consider Using VSS Shadow Directories . 79

Appendix
BuildIt—An Automated Build Tool for Visual Studio .NET 80

Downloading and Installing BuildIt . 81
Testing Your Installation . 81
User’s Guide . 83

Maintaining Build Numbers . 83
Building Solutions . 84
Reviewing the Build Report . 84
Rebuilding a Solution. 85
Archiving Builds . 85
Emailing Build Results . 86
Versioning Assemblies. 86

Deployment and Operations . 87
Deploying BuildIt . 87
Configuring BuildIt . 88
Securing BuildIt . 91
Troubleshooting BuildIt. 91

Known Issues . 92

 Contents vii

Design and Implementation . 92
Problem Description . 93
Design Goals . 93
Solution Description . 93
Enhancements . 99

Class Reference . 101
BuildInitializer . 101
BuildItSectionHandler . 102
BuildManager . 102
SourceSafeHelper . 105
BuildItResourceManager . 106
BuildItCommandLineArgs . 106

Frequently Asked Questions . 107
Can I modify the BuildIt source code?. 107
Do I need to have Visual Studio installed where BuildIt runs? 107

Appendix Summary . 107
About the Author . 107
About Sapient . 108
Collaborators . 108
Feedback . 108

Collaborators 109

Additional Resources 110

Introduction

This guide provides guidance and recommendations to enable you to set up a team
development environment and work successfully within it.

If you are beginning a .NET team development project, you first need to understand
how to establish development processes that work in a team environment. You need
to know how to set up and work with the team development features supported by
the Microsoft® Visual Studio® .NET integrated development environment (IDE),
and you also need to be aware of the development techniques (such as how to set
assembly references in the correct way) that must be followed by your development
team members to ensure successful team working.

The guide is divided into the following chapters:
● Chapter 1, “Introducing the Team Environment.“ This chapter presents an

overview of the team environment and introduces the key building blocks and
processes. Read this chapter to gauge the scope of the guide and to understand
the team development model upon which the document is based.

● Chapter 2, “ASP.NET Web Application Development Models.“ This chapter
describes the approach you should adopt to build Web applications within a team
development environment.

● Chapter 3, “Structuring Solutions and Projects.“ This chapter explains how you
should organize and structure Visual Studio .NET solutions and projects and
presents the tradeoffs associated with single-solution and multi-solution
development models. It also recommends folder structures that you can use
to store projects locally and within Microsoft Visual SourceSafe™ (VSS).

● Chapter 4, “Managing Dependencies.“ This chapter explains how you should
handle assembly references, Web references, database references, and COM object
references.

● Chapter 5, “The Build Process.“ This chapter covers the build process and the role
of the build server and automated build script that is used to generate system
builds.

● Chapter 6, “Working with Visual SourceSafe™.“ This chapter provides a series of
step by step procedures that walk you through common development tasks such
as how to add solutions and projects to Visual SourceSafe, how to retrieve
solutions from VSS, and how to check files in and out on a daily basis. This
chapter gets you up to speed quickly on the essential tasks.

● Chapter 7, “Setting Up and Maintaining the Team Environment.“ This chapter
describes the infrastructure and the hardware and software requirements for all
of the workstations and servers within the team environment. It also provides
guidance on how to create and maintain a VSS database.

To get the most from this guide, you are encouraged to read all chapters in order.

 Introduction ix

Who Should Read This Guide
This guide provides team-development guidelines for lead developers, developers,
test team members, and system administrators. Read this guide if you plan to, or
currently work on, a team-based .NET development project.

What You Must Know
To use this guide to establish a team development environment and a development
process suited to .NET, you must have some development experience with
Visual Studio .NET. This guide assumes you have either created or are familiar
with .NET assemblies and Web services.

You should also be aware of the general issues and challenges traditionally associated
with team-based software development projects. Ideally, you will have some
experience with a source control system, preferably VSS.

Note: This guide focuses on the use of VSS version 6.0c (the version that ships with Visual Studio
.NET) as the source control system. However, much of the guidance and many of the discussed
processes apply equally well to other change management systems, many of which can be directly
integrated into the Visual Studio .NET IDE.

Terminology
Terms such as “system,” “solution,” and “project,” which are used extensively in this
guide, tend to be heavily overloaded. The following sections describe the context in
which this guide uses these terms.

System
The term “system” refers to the overall application that you are developing. Your
system ultimately consists of the combined set of assemblies that you release into a
production environment.

Inner and Outer System Boundaries
This guide also introduces the idea of an inner and outer system boundary. This
division becomes important when you start to consider which components of your
system are built in-house by your central build process and which components fall
outside of the domain of the build process and are simply referenced as external
dependencies. The following describes the system boundaries:
● Inner system assemblies are built as part of your system build process.
● Outer system assemblies are all other assemblies, including third-party

components and .NET Framework assemblies.

x Team Development with Visual Studio .NET and Visual SourceSafe

Figure 1 illustrates the idea of the inner and outer system boundaries.

System
Boundary

Inner System
Subject to system build process

Outer System

External
Assemblies

e.g. Third Party
Components

Assembly References

Figure 1
Inner and Outer System Boundaries

Solution
If you are new to Visual Studio .NET, the term “solution” will also be new. A solution
essentially represents everything you are currently working on. Visual Studio .NET
uses solutions as containers for individual projects—these generate your system
components (.NET assemblies). Solution files maintain project dependency
information and are primarily used to control the build process. Solutions are
discussed further in Visual Studio .NET Solutions in Chapter 3, “Structuring
Solutions and Projects.”

Project
In the context of this guide, there are three types of projects:
● General development projects. The term “project” in its loosest sense refers to

your team’s current development effort.
● Visual Studio .NET projects. Project files are used by Visual Studio .NET as

containers for configuration settings that relate to the generation of individual
assemblies. These are discussed further in Visual Studio .NET Projects in
Chapter 3, “Structuring Solutions and Projects.”

● Visual SourceSafe Projects. A project in a VSS database is simply a collection of
(usually logically related) files. A VSS project is similar to an operating system
folder, with added version control support.

1
Introducing the Team Environment

There are many elements, processes, and roles that combine to enable successful
team-based software development projects. This document concentrates on two of
the core processes:
● The development process
● The build process

Although these are separate processes, they share much in common and as a result,
it’s essential to develop working practices and project structures that work well for
both scenarios.

The team development environment is illustrated in Figure 1.1. The shaded region
of the diagram illustrates the areas that this document addresses. Study the diagram
carefully because it defines the working model for the remaining chapters of the
document.

2 Team Development with Visual Studio .NET and Visual SourceSafe

VSS Server

Workstation Workstation

Build Server

Automated
Product Builds

Build Process

Admin Team

IT Resource
Source Control Admin

Build Manager

Issue Tracking

Test Process

Development
Team

Test
Results

Release Process

Deployment Process
Test Team

Database Server

Development Process

Web Services Server

In Scope

Check In / Out / Get Latest

G
et Latest

R
eference

Reference

Build O
utput

Reference

MSI Package

MSI Package

Figure 1.1
The Team Development Environment

Team Development Servers and Workstations
The roles and responsibilities of the key servers and workstations illustrated in
Figure 1.1 are defined in the following sections. Other essential servers, such as the
backup server, are omitted from the diagram for the sake of clarity. For detailed
information about the infrastructure within the team environment that includes
hardware and software requirements, see Chapter 7, “Setting Up and Maintaining
the Team Environment.”

 Chapter 1: Introducing the Team Environment 3

The VSS Server
This is a central server that hosts one or more Microsoft® Visual SourceSafe™ (VSS)
databases used to provide versioned controlled access to project source files. As a
developer, you interact with it on a daily basis as you check project files in and out
through the Microsoft Visual Studio® .NET integrated development environment
(IDE). It is also accessed by the build script to obtain the latest source code required
for the current system build.

More Information
For information about how VSS projects should be structured, see Use a Consistent
Folder Structure for Solutions and Projects in Chapter 3, “Structuring Solutions and
Projects.”

For more information about how to configure the VSS server, see Installing and
Administering VSS in Chapter 7, “Setting up and Maintaining the Team
Environment.”

The Build Server
An automated build script that is used to compile and build your entire system runs
on this server. The build script is a critical element for all software development
projects. It allows you to generate successive versions of your system in an
automated and consistent, repeatable fashion.

The output assemblies generated by the build process are maintained in folders on
this server.

More Information
For more information about referencing external assemblies, see Referencing
Assemblies in Chapter 4, “Managing Dependencies.”

For more information about the build process, see Chapter 5, “The Build Process.“

Development Workstations
All workstations should be configured in a similar way. This includes the installation
and configuration of the Visual Studio .NET IDE. Enterprise Templates can help
with this.

More Information
For more information about the benefits of Enterprise Templates, see Visual Studio
Enterprise Templates in Chapter 7, “Setting Up and Maintaining the Team
Environment.”

4 Team Development with Visual Studio .NET and Visual SourceSafe

Database Servers
These servers host instances of Microsoft SQL Server™ and provide a central location
to which developers can connect to databases whose schemas match the current
system database design. In some scenarios, you also need local SQL Server databases
on development workstations to perform isolated unit testing. For example, local
servers allow you to govern the current set of test data, and when you manipulate
this data, you do not impact other team members.

More Information
For more information about working with databases in the team environment,
see Database Development in Chapter 4, “Managing Dependencies.”

For more information about how to most flexibly manage connection strings in a
team environment, see Referencing Databases in Chapter 4, “Managing
Dependencies.”

Web Services Server
The primary function of the Web services server in the team development
environment is to host Extensible Markup Language (XML) Web services that are
currently under development. While the development teams responsible for Web
services develop them on their local workstations using local instances of Microsoft
Internet Information Server (IIS), the central Web server allows the services to be
published for other developers or development teams to reference from client
projects.

More Information
For more information about working with Web services, see Referencing Web
Services in Chapter 4, “Managing Dependencies.”

2
ASP.NET Web Application
Development Models

This chapter describes how you should approach Web application development in
a team environment. It recommends an isolated model for Web development but
contrasts this with alternate approaches.

There are three main models for developing Web applications:
● Isolated (recommended)
● Semi-Isolated
● Non-Isolated

Isolated
With this model you develop (edit, debug and run) in complete isolation on your
own development workstation using your local Web server (http://localhost). Access
to the master source files is controlled via a Microsoft® Visual SourceSafe™ (VSS)
database located on a network file share. You may or may not choose to allow
developers to check out the same file simultaneously. For more information, see
Multiple Checkout in Chapter 6, “Working with Visual SourceSafe.”

Semi-Isolated
With this model, you use a common Web server (http://remoteserver) for application
development and debugging. You check files in and out via a VSS database located
on a network file share. Your working copy of the project is located on the common
Web server in a specified project folder, which is also a Microsoft Internet Information
Server (IIS) virtual root. Each developer has a unique project folder on the common
Web server.

6 Team Development with Visual Studio .NET and Visual SourceSafe

Note: When you obtain a Web project from VSS for the first time, Microsoft Visual Studio® .NET does
not allow you to place working files in a folder that already contains another Web project.

Developers can check out and edit the same file simultaneously if the VSS multiple
checkout feature is enabled, but only one developer can debug the application on the
Web server at any one time. This is because when you debug an application, IIS is
blocked. This prevents other Web requests for any other application being serviced.

Non-Isolated
With this model, you again use a common Web server (http://remoteserver) for
application development and debugging. However, you do not have your own
working copy of files and all developers use a single folder and virtual root on the
server; for example, http://remoteserver/projectname.

When you save changes to a file, the in-memory version of the file on your
workstation is transferred to the server using Hypertext Transfer Protocol (HTTP).
This overwrites the existing copy on the server. When you subsequently check in
your changes by using the Visual Studio .NET integrated source control services,
Microsoft FrontPage® Extensions are used to update the master copy of the file
within a VSS database.

The three models are illustrated in Figure 2.1.

VSS

VSS

VS .NET

Developer 1

Web Application

VS .NET

Developer 2

Web Application

VSS

Web App

Common Web
Server

VS .NET

Developer 1

VS .NET

Developer 2

Web App

Common Web
Server

VS .NET

Developer 1

VS .NET

Developer 2

Isolated Non-IsolatedSemi-Isolated

Web App

Figure 2.1
Web Development Models

 Chapter 2: ASP.NET Web Application Development Models 7

Use an Isolated Development Model
You are strongly advised to adopt the isolated development model for team
developments because it offers a number of significant advantages.

Advantages of Isolated Development
Adopting an isolated development model provides the following advantages:
● You and your fellow team members develop independently of one another using

separate (local) instances of the Web application.
● You can both develop and debug the application without inadvertently interfering

with one another.
● It provides superior support for source-code control (compared to the non-isolated

model that uses FrontPage Extensions).
● It is slightly faster in a local area network (LAN) environment (compared to

FrontPage Extensions).

Avoid Semi-Isolated and Non-Isolated Development Models
It is difficult to use semi-isolated and non-isolated models in a team development
environment. These should be avoided whenever possible.

Disadvantages of Semi-Isolated and Non-Isolated Models
Semi-isolated and non-isolated models suffer from the following disadvantages:
● It is very easy to inadvertently affect another developer. For example, when you

debug an application, the debug process locks the common Web server and
impacts other team members.

● In a non-isolated model, developers can also impact each other as there is only a
single code behind dynamic-link library (DLL) per Web application.

● FrontPage Extensions (with no VSS integration) offer only limited source control
capabilities. With the non-isolated development model, all developers work with
a master copy located on the Web server. The source control functionality of
FrontPage Extensions offers a “last check-in wins” development model. If users
A and B both check out the same file in close succession, user A makes changes
and then saves them, and then user B saves changes, user A’s changes are lost.

The one occasion where you might be forced to adopt a semi-isolated or non-isolated
model is when specific resources required by your Web application are available only
on the common Web server. You may encounter this situation if you develop with
Microsoft .NET Passport.

8 Team Development with Visual Studio .NET and Visual SourceSafe

If you are forced to use FrontPage Extensions, you can configure Visual Studio .NET
to use this mode of operation for all new Web projects and you can change the mode
of an existing Web project.

�

�

To configure Visual Studio .NET to use FrontPage Extensions

1. On the Tools menu, click Options.
2. Click the Projects folder.
3. In the Projects folder, click Web Settings.
4. In the right pane, select the FrontPage Extensions option.
5. Click OK to accept the changes.

To change the access mode of an existing Web project

1. Right-click the project within Solution Explorer, and then click Properties.
2. Expand the Common Properties folder, and then click Web Settings.
3. Change the Web Access Mode setting.
4. Click OK to accept the changes.

More Information
For more information about developing source controlled Web projects
in Visual Studio.NET, see Web Projects and Source Control Integration in
Visual Studio.NET at http://msdn.microsoft.com/library/en-us/dv_vstechart/html
/vetchWebProjectsSourceControlIntegrationInVisualStudioNET.asp.

http://msdn.microsoft.com/library/en-us/dv_vstechart/html/vetchWebProjectsSourceControlIntegrationInVisualStudioNET.asp
http://msdn.microsoft.com/library/en-us/dv_vstechart/html/vetchWebProjectsSourceControlIntegrationInVisualStudioNET.asp

3
Structuring Solutions and Projects

To ensure that your development and build processes work effectively in a team
environment, it’s essential to start with a correct project structure that is consistent
across all of your development workstations and build server.

This chapter presents guidelines on:
● Partitioning Microsoft® Visual Studio® .NET solutions and projects.
● Managing the local file system and Microsoft Visual SourceSafe™ (VSS) folder

structure.
● Applying naming conventions for projects, assemblies and namespaces.

Visual Studio .NET Solutions and Projects
Before discussing how to organize Visual Studio .NET solutions and projects, it’s very
important that you understand their basic mechanics and how they are managed
locally and by your source control provider—typically VSS.

If you are already familiar with Visual Studio .NET solutions and projects and you
understand the various file types comprising a project, you can skip this section and
jump to Always Use Visual Studio .NET for Source Control Operations.

Visual Studio .NET Projects
Visual Studio .NET uses project files as containers for all of the build and
configuration settings required to generate a .NET assembly. Project files have either
a .csproj or .vbproj file extension, depending upon the project’s language. There are
many different project types [and associated Rapid Application Development (RAD)
templates] although these can be divided broadly into two categories. The two
categories of project types are:

10 Team Development with Visual Studio .NET and Visual SourceSafe

● Web projects. A Web project is one that is created with a Hypertext Transfer
Protocol (HTTP) location (for example, http://localhost/MyWebProject).
Web projects include ASP.NET Web Applications used to deliver content to Web
browsers and ASP.NET Web Services used primarily for data integration over the
Internet.

● Non-Web or local projects. Non-Web or local projects are created with a
file system location (for example, C:\Projects\MySystem\MySolution
\MyWinProject).
The most common local project types are Windows applications and class
libraries, although there are many others, including services, console applications,
database projects, and so on.

Visual Studio .NET Solutions
Solution files (with the .sln file extension) are used to group related projects together
and are primarily used to control the build process. You can use solutions to control
build dependency issues and control the precise order in which contained projects are
built.

Important: A project can be part of one or more solutions but solutions can’t be included within
other solutions.

Figure 3.1 illustrates the relationship between projects and solutions and indicates the
file types used by VSS to maintain solution and project level settings:

User Specific File
(Not Version
Controlled)

Solution

ProjectA

ProjectB

ProjectC

Non-User Specific File
(Version Controlled)

AppName.suo AppName.sln

ProjectA.csproj.user
.vbproj.user

ProjectB.csproj.user
.vbproj.user

ProjectC.csproj.user
.vbproj.user

ProjectA.csproj
.vbproj

ProjectB.csproj
.vbproj

ProjectC.csproj
.vbproj

Dependencies

Figure 3.1
Visual Studio .NET Projects and Solutions

 Chapter 3: Structuring Solutions and Projects 11

Solutions and Build Dependencies
The solution file also contains project dependency information used by the build
process. For example, in the preceding diagram, the dependency information
indicates that Project A depends upon Project B and Project B depends upon
Project C. As a result, the build order must be Project C, then Project B, and then
Project A. When project references are used within a single solution, Visual Studio
.NET ensures the correct build order.

Important: There are two basic types of references—project references and file references. You set
both types by using the Add References dialog box in Visual Studio .NET. Because project references
also establish build order dependencies, you should use them whenever possible. For more
information, see Referencing Assemblies in Chapter 4, “Managing Dependencies.”

Files Subject to Source Control
The following list identifies the key file types that are automatically added to VSS
when a solution is added to source control by using the Visual Studio .NET
integrated development environment (IDE):
● Solution files (*.sln). The key items maintained within these files include a list

of constituent projects, dependency information, build configuration details, and
source control provider details.

● Project files (*.csproj or *.vbproj). The key items maintained within these files
include assembly build settings, referenced assemblies (by name and path), and
a file inventory.

● Application configuration files. These are configuration files based on Extensible
Markup Language (XML) used to control various aspects of your project’s run
time behavior.

Note: For Web applications, the source controlled configuration file is called Web.config. For
non-Web applications, the source controlled file is called app.config and is contained within the
project folder. At run time, the Visual Studio .NET build system copies App.config to the Bin folder
and renames it to Yourappname.exe.config.

For non-Web applications, a configuration file is not automatically added to a new project. If you
require one, add it manually. Make sure you call it App.config and locate it within the project
folder.

● Source files (*.cs, *.vb, *.aspx, *.asax, *.resx, *.vsdisco, *.css, and so on). All
project source files are subject to source control.

12 Team Development with Visual Studio .NET and Visual SourceSafe

Files Not Subject to Source Control
The following files are not added to source control because they are developer
specific:
● Solution user option files (*.suo). These contain personalized customizations

made to the IDE by an individual developer.
● Project user option files (*.csproj.user or *.vbproj.user). These contain developer

specific project options and an optional reference path that is used by the IDE to
locate referenced assemblies. The section Referencing Assemblies in Chapter 4,
“Managing Dependencies,” explains how assembly references should be managed
in a team environment.

● WebInfo files (*.csproj.webinfo or *.vbproj.webinfo). This file keeps track of
a project’s virtual root location. This is not added to source control to allow
individual developers to specify different virtual roots for their own working
copy of the project. While this capability exists, you and all team members are
recommended to use a consistent (local) virtual root location when you develop
Web applications. The recommended structure for Web and non-Web applications
is discussed in Use a Consistent Folder Structure for Solutions and Projects.

● Build outputs that include assembly dynamic-link libraries (DLLs), Interop
assembly DLLs and executable files. However, note that you are advised to add
outer-system assemblies that are not built as part of your system build process
(such as third-party controls and libraries) to VSS within the projects that reference
them. For details, see Include Outer System Assemblies within Projects in
Chapter 4, “Managing Dependencies.”

Always Use Visual Studio .NET for Source Control Operations
All project creation and manipulation within VSS should be performed by using the
integrated VSS support menus within Visual Studio .NET—don’t use VSS Explorer
for this. The Visual Studio .NET functionality guarantees that:
● Only the appropriate files are added to source control.
● Your Visual Studio .NET project and solution files are updated with appropriate

VSS specific details. For example, the VSS functionality within Visual Studio .NET
updates solution (.sln) files with (among other items):
1. A count of projects in the solution that are under source-control (this count

includes the solution itself)
2. The VSS server for each project
3. The location on the server for each project
4. The name of each project’s source-control provider
5. Each project’s location relative to the solution file

 Chapter 3: Structuring Solutions and Projects 13

Other files including the solution user file (.suo) and project file (.csproj or .vbproj)
are also updated.

Important: Always interact with VSS through the Visual Studio .NET interface instead of through the
VSS Explorer. The tight integration of the products ensures that files are managed correctly in a team
environment.

Partitioning Solutions and Projects
The way you partition solutions and projects has a big impact on the way your
development efforts and build process function in a team environment.

There are three main models to consider for partitioning solutions and projects.
In order of preference, these are:
1. Single solution
2. Partitioned single solution
3. Multi-solution

Important: Unless you have very good reasons to use a multi-solution model, you should avoid this
and adopt either a single solution model, or in larger systems, a partitioned single solution model.
These are simpler to work with and offer a number of significant advantages over the multi-solution
model, which are discussed in the following sections.

Use a Single Solution Model Whenever Possible
With the single solution model, you create a single Visual Studio .NET solution and
use it as a container for all of the projects defined by your application. Note the
following when you use a single solution model:
● If one project needs to reference an assembly generated by another, use project

references.
● File references should be used only to reference outer-system assemblies (such as

.NET Framework assemblies and third-party assemblies) that are not built with
the rest of your system.

14 Team Development with Visual Studio .NET and Visual SourceSafe

Project
A

Project
B

Project
C

Solution 1

Inner System
Boundary

External
Assemblies
Third Party

Components

File Reference

Project Reference

Outer System
Boundary

Project
D

Project
E

Figure 3.2
The Single Solution Model

Use a single solution model whenever possible because it offers a number of
significant advantages.

Advantages
The single solution model offers the following advantages:
● When you need to reference another assembly generated by a separate project,

you can use a project reference. Project references are the preferred way to
establish references to other assemblies and they are guaranteed to work on all
development workstations in a team environment. The many advantages of
project references and guidance on when to use file references are discussed in
Referencing Assemblies in Chapter 4, “Managing Dependencies.”

● Assembly versioning issues are avoided, because Visual Studio .NET detects when
a client of a referenced assembly needs to be rebuilt.

● Project references are sensitive to changes in the configuration of the referenced
project. This means that you can automatically switch from Debug and Release
builds across projects without having to reset references.

● The system build process and build script is much simpler.

 Chapter 3: Structuring Solutions and Projects 15

Disadvantages
You are advised to adopt the single solution model whenever possible. However:
● The model scales only so far. If you want to work on a single project within the

solution, you are forced to acquire all of the source code for all projects within the
solution.

● Even minor (nonbreaking) changes to a single source file within a single project
can result in a rebuild of many projects within the solution, due to project
dependencies. If an assembly’s interface changes within a referenced project,
you want the client project to be rebuilt. However, unnecessary rebuilds can be
very time consuming, especially for solutions containing many projects.

Consider a Partitioned Single Solution Model for Larger Systems
For larger systems where you want to reduce the number of projects and source files
required on each development workstation, consider grouping related sets of projects
together within separate subsolution files.

This allows you and fellow developers to work on separate and smaller subsystems
within the inner-system boundary.

Note: A single project file can be included within one or more solution files. Solutions cannot be
included within other solutions.

Figure 3.3 illustrates the partitioned single solution model. Notice how separate
solution files are used to allow you to work on smaller subsystems contained within
the inner system boundary. Also note how this results in projects being contained
within more than one solution file. For example, Projects D and H are in a total of
three solution files including the master solution.

16 Team Development with Visual Studio .NET and Visual SourceSafe

Project
A

Project
B

Solution

Inner System Boundary

External
Assemblies
Third Party

Components

File Reference

Project Reference

Outer System
Boundary

Project
C

Master Solution

Project
D

Project
E

Project
F

Project
G

Project
H

Solution

Solution

Figure 3.3
The Partitioned Single Solution Model

In the partitioned single solution model:
● All projects are contained within a master solution file. This is used by the system

build process to rebuild the entire system. If you need to work on the top level
project file, you also work with the master solution.

● Project references are used between individual projects.
● Separate solution files are introduced for selected project files. If you want, you

can introduce a solution file for each project within your system. Each solution file
contains the main project file, together with any downstream project it depends on
and any further projects it depends on, and so on down the dependency chain.

● Separate solution files allow you to work on smaller subsystems within your
overall system but retain the key benefits of project references. Within each
subsolution file, project references are used between constituent projects.

Note: You should not separate two projects that reference one another into separate solutions,
because this would necessitate the use of a file reference which should be avoided wherever
possible. For more information, see Referencing Assemblies in Chapter 4, “Managing
Dependencies.”

 Chapter 3: Structuring Solutions and Projects 17

Advantages
The partitioned single solution model offers the following advantages:
● You can work on small subsystems. You do not require the source code and project

files for the entire system on every development workstation. As a result, the
Solution Explorer within Visual Studio .NET remains less cluttered and easier to
work with.

● You can use project references within each solution.
● The master solution allows you to easily rebuild the entire system. The master

solution file is used by the build process on the build server.

Disadvantages
The partitioned single solution model suffers from the following disadvantages:
● When new projects are added, you must potentially add them and update any

project references in multiple solution files; for example, the master solution file
and one or more others.

● You are limited in the way you can partition your system. This is driven by project
dependency relationships. As a result, if you work on the top level project, for
example, an ASP.NET Web application within your presentation tier, you are
forced to copy all dependent projects to your development workstation. This is
likely to include projects from your business and data tiers. On the other hand,
if you work on the development of a class library or data access component with
few if any further dependencies, you require only those individual projects.

Use a Multi-Solution Model Only if Absolutely Necessary
The multi-solution model is similar to the partitioned single solution model except:
● There is no master solution file.
● File references are used between projects in separate solutions (although project

references are still used between projects within an individual solution).
● The system build script that runs on the build server builds each solution in turn,

based on known dependency relationships. The build script places output
assemblies in a fixed location on the build server.

18 Team Development with Visual Studio .NET and Visual SourceSafe

The multi-solution model is illustrated in Figure 3.4.

Project
A

Project
B

Project
C

Solution 1

Project
D

Project
E

Solution 2

Project
F

Solution 3

Inner System
Boundary

External
Assemblies
Third Party

Components

Assembly (File)
Reference

Project
Reference

Outer System
Boundary

Figure 3.4
The Multi-Solution Model

Advantages
The multi-solution model offers the following advantages over the partitioned single
solution model:
● Each project is contained only within a single solution. This means that adding

and removing projects to and from your system is easier.
● You are able to subdivide your system into multiple solutions based on logical

boundaries and you are not driven by project dependencies. For example,
the division that you choose may be based on areas of business functionality.

Disadvantages
The multi-solution model suffers from the following disadvantages:
● You are forced to use file references when you need to reference an assembly

generated by a project in a separate solution. These (unlike project references) do
not automatically set up build dependencies. This means that you must address
the issue of solution build order within the system build script. While this can be
managed, it adds extra complexity to the build process.

 Chapter 3: Structuring Solutions and Projects 19

● You are also forced to reference a specific configuration build of a DLL (for
example, the Release or Debug version). Project references automatically manage
this and reference the currently active configuration in Visual Studio .NET.

● When you work with single solutions, you can get the latest code (perhaps in
other projects) developed by other team members to perform local integration
testing. You can confirm that nothing breaks before you check your code back into
VSS ready for the next system build. In a multi-solution system this is much
harder to do, because you can test your solution against other solutions only by
using the results of the previous system build.

You should easily be able to work with a single solution that contains 10, 20, or even
30, projects. The maximum number of workable projects within a solution is difficult
to precisely define, because it depends on the specification of your build server and
development workstations and the size and number of source files associated with
individual projects.

Considerations for Grouping Projects into Solutions
The best way to approach the problem of grouping projects into solutions is to
consider the overall architecture of your application. For example:
● Start by identifying the constituent assemblies (or components) within your

system; this defines the individual projects that your system requires. Remember
that each assembly is generated by a separate Visual Studio .NET project.

● Aim for a single solution model. If you want to break up your projects to provide
a greater level of isolation and control, you can use the partitioned single solution
model. Think about which groups of projects you want to work on in isolation,
for example a set of middle-tier business components, and create separate
solutions accordingly.

If you break your projects into multiple solutions and cannot do so using the
partitioned single solution model, carefully consider your cross solution
dependencies, and the nature of the interfaces that separate the two dependent
assemblies. When you organize projects into separate solutions you should:
● Identify the external interfaces that separate the constituent parts of your system.

Try to identify those that are least likely to change. If an interface that is exposed
by one project changes frequently, any dependent projects should ideally be
placed in the same solution.

● If you are using Web services to connect some components of your system
together, the Web service interface provides a good dividing line. For example,
the projects on the client side of the Web service interface and the projects on the
server side are good candidates for separate solutions.

20 Team Development with Visual Studio .NET and Visual SourceSafe

Use a Consistent Folder Structure for Solutions and Projects
Life in a team development environment is a whole lot easier if you use a common
structure for storing Visual Studio .NET solutions and projects. To keep things
symmetrical (and as a result, simpler), set up a folder structure within VSS that
matches your local file system structure.

Define a Common Root Folder
Define a common root folder—for example, C:\Projects on your file system and
$/Projects within VSS. This acts as a container for all of your development systems.

Beneath the common root folder, create a system root folder for each of
your systems—for example, C:\Projects\MyCompanysInsuranceApp and
$/Projects/MyCompanysInsuranceApp respectively.

Adopt a Parent-Child Folder Structure for Solutions and Projects
You should adopt a parent-child folder structure for solutions and projects.
To do this:
● Create a subfolder beneath the system root folder for your Visual Studio .NET

solution.
● Create additional child subfolders beneath the solution folder for each constituent

project.
● Adopt this common structure for Web and non-Web applications
● Do not add the Bin folder or its contents to VSS.

Note: If you use the partitioned single solution model, place project folders beneath the folder that
contains the main solution file. For any subsolutions that you create, include project files directly
from this location.

Figure 3.5 demonstrates the recommended structure.

C:\Projects
SystemName

WebSolution

Project1

Project2

Project3

Bin

Bin

Bin

$/Projects
SystemName

WebSolution

Project1

Project2

Project3

VS .NET Folder Structure VSS Folder Structure

Figure 3.5
Visual Studio .NET and VSS Folder Structure

 Chapter 3: Structuring Solutions and Projects 21

The following subsections describe how to use the Visual Studio .NET IDE to create
the appropriate structures for Web and non-Web applications.

How to Create a New ASP.NET Web Project
By default, when you create a new ASP.NET Web application, the project file
is located in a nominated virtual root beneath your default Web site (usually
\inetpub\wwwroot) and the associated solution file is located beneath
\My Documents\Visual Studio Projects. This default arrangement is not ideal
in a team development environment because it breaks the symmetrical structure
between your VSS projects and local files.

The following steps guide you through the creation of a new ASP.NET Web
application in accordance with the recommended solution and project folder
structure. The steps assume a solution called MyWebAppSolution and a project
call MyWebApp.

If you include the word Solution (or Soln) in the solution name, this helps to clearly
differentiate it from the project file name.

The desired structure is shown in Figure 3.6. Note that the project folder and
Microsoft Internet Information Server (IIS) virtual root are one and the same.

Local File System

.sln
.csproj, *.cs, *.resx, *.aspx
web.config, global.asax

Project folder AND IIS Virtual Root

\Projects
MySystem

MyWebAppSolution
MyWebApp

\Bin

VSS Project Structure

$/Projects
MySystem

MyWebAppSolution
MyWebApp

Figure 3.6
Recommended Web Application Structure

To create a new Web application with this structure �

1. Open Visual Studio .NET, and on the File menu, point to New, and then click
Blank Solution.

2. Enter MyWebAppSolution as the solution name, and then set its location to
\Projects\MySystem.

3. Click OK. Visual Studio .NET creates the MyWebAppSolution folder beneath the
specified root folder location.

4. Use Windows Explorer to create a new subfolder called MyWebApp beneath the
\Projects\MySystem\MyWebAppSolution folder.

22 Team Development with Visual Studio .NET and Visual SourceSafe

5. Use either Windows Explorer or Internet Services Manager to establish the
MyWebApp folder as an IIS virtual root.

Note: Visual Studio .NET requires that the virtual root name match the project folder name.

6. Return to Visual Studio .NET, and on the File menu, point to Add Project, and
then click New Project.

7. Add an ASP.Net Web Application project.
8. In the Location field, enter http://localhost/MyWebApp, and then click OK.

The project and Web source files will be created in the specified virtual root.

How to Split a Web Application into Multiple Projects
In some cases, you may want to divide your Web application into multiple projects
within the same solution to facilitate team development. For example, if you have
separate teams responsible for different aspects of the same Web application, it is
useful to be able to divide the application into multiple projects. This capability is not
supported natively by Visual Studio .NET, but it can be achieved with some manual
manipulation of virtual roots.

Important: A single project approach is simpler, so split a Web application up into multiple projects
only if absolutely necessary—typically for very large Web applications.

More Information
For more detailed information about creating sub Web projects, see article Q307467,
“HOWTO: Create an ASP.NET Application from Multiple Projects for Team
Development,” in the Microsoft Knowledge Base at http://search.support.microsoft.com/.

Working with ASP.NET Code-Behind Files
You should be aware that when you check out a Web form (aspx) file or a
code-behind file (aspx.cs or aspx.vb), Visual Studio .NET automatically checks
out both files. This is by design because user interface changes generally involve
an aspect of coding within the code-behind file.

For example, if you add a new control to a Web form, Visual Studio .NET
automatically creates a member variable for the control in the code-behind file.

http://search.support.microsoft.com/

 Chapter 3: Structuring Solutions and Projects 23

How to Create a New Non-Web Project
The following steps guide you through the creation of a new non-Web project type
such as a Windows-based or console application, a class library or a service. The steps
assume a solution called MyWinAppSolution and a project call MyWinApp. The
desired structure is shown in Figure 3.7.

Local File System

.sln
.csproj, *.cs, *.resx, *.ico ...

VSS Project Structure

\Projects
MySystem

MyWinAppSolution
MyWinApp

Bin
Debug
Release

$/Projects
MySystem

MyWinAppSolution
MyWinApp

Figure 3.7
Recommended Project Structure for non-Web Projects

To create a new non-Web application with this structure �

1. Open Visual Studio .NET, and on the File menu, point to New, and then
click Project.

2. Select the appropriate project type and template.
3. Enter the project name in the Name field (in this example MyWinApp).
4. Set the Location field to \Projects\MySystem.
5. Click the More button.
6. Select the Create directory for solution check box. This causes the project file to be

created in a project sub folder beneath the solution folder.
7. Enter MyWinAppSolution into the New Solution Name field.
8. Click OK to complete the project and solution creation process.

For information about how to add the newly created project and solution to Visual
SourceSafe, see How to Check In a New Solution to VSS in Chapter 6, “Working with
Visual SourceSafe.”

Carefully Consider Naming Conventions
Give careful and early consideration to the way you name projects, assemblies,
folders, and namespaces. While it is possible to rename these items later on in the
development cycle, you should avoid this if possible. For information about how to
rename a project, see Renaming a Project in Chapter 6, “Working with Visual
SourceSafe.”

You should also aim for a consistent set of names because this can greatly simplify
project organization.

24 Team Development with Visual Studio .NET and Visual SourceSafe

Use Common Names for Projects and Assemblies
Your output assembly name should always match the project name from which it
is generated. For example, you should be able to assume that an assembly called
MyCompany.Utilities.Data.dll is generated by a project called
MyCompany.Utilities.Data.

If you change the name of an output assembly, consider changing the project name
to match, and vice-versa.

Use a Common Root Namespace Name
The root namespace into which you place your types (structures, classes, interfaces,
and so on) should match the project and assembly name.

For example, use MyCompany.Utilities.Data as the root namespace within the
MyCompany.Utilities.Data.dll assembly.

While .NET does not require this alignment, it makes sense to synchronize names
because it then becomes easy to tell which types live in which assemblies.

Note: Microsoft Visual Basic® .NET projects expose the root namespace via project properties.
By default, any type created within the Visual Basic project will be placed inside this namespace.
If you use explicit namespace statements in your Visual Basic .NET project, delete the root
namespace entry, otherwise the explicit namespace name is appended to the root namespace
name.

C# projects expose a default namespace property via project properties. This is again used to
determine the namespace into which new types added to the project are placed. However, unlike
Visual Basic .NET projects, the root namespace is explicitly stated via namespace statements
within your source files.

Use Common Names for VSS and Local Folders
As mentioned earlier, keep your local solution and project folder names in
synchronization with their equivalent VSS folder names.

4
Managing Dependencies

The information in this chapter helps you:
● Manage dependencies and references between projects and solutions.
● Work with dependencies on .NET assemblies, Web services, databases, serviced

components, and COM Interop libraries.

You need a consistent and maintainable approach to managing dependencies in a
team environment. Dependencies inevitably change over time and as a result they
impact the build process (and the build order) of your application.

For example, when a dependency changes, client assemblies must be rebuilt in order
to stay in step with the latest version. Depending upon the type of dependency and
the way it is referenced, the Microsoft® Visual Studio® .NET build system may or
may not be able to automatically handle build ordering issues.

Referencing Assemblies
When you need to use a type (such as a class or structure) contained in another
assembly, you must set a reference to that assembly. This creates an assembly
reference within the client assembly’s manifest that identifies the name and version
of the dependency. Visual Studio .NET supports two types of references: project
references and file references.

Use Project References
The Projects page within the Visual Studio .NET Add Reference dialog box lists all of
the other projects in the current solution. This allows you to create a project reference
to another project in the same solution. Project references are the recommended way
to set references because they offer many advantages.

Note: Project references are the main reason you should adopt a single solution or partitioned single
solution model wherever possible.

26 Team Development with Visual Studio .NET and Visual SourceSafe

Advantages of Project References
The advantages of using project references are:
● They work on all development workstations where the solution and project set are

loaded. This is because a project Globally Unique Identifier (GUID) is placed in
the project file, which uniquely identifies the referenced project in the context of
the current solution.

● They enable the Visual Studio .NET build system to track project dependencies
and determine the correct project build orders.

● They avoid the potential for referenced assemblies to be missing on a particular
computer.

● They automatically track project configuration changes. For example, when
you build using a debug configuration, any project references refer to debug
assemblies generated by the referenced projects, while they refer to release
assemblies in a release configuration. This means that you can automatically
switch from debug to release builds across projects without having to reset
references.

● They enable Visual Studio .NET to detect and prevent circular dependencies.

Use File References Only Where Necessary
If you can’t use a project reference because you need to reference an assembly outside
of your current solution’s project set, you must set a file reference. The following are
the two ways to set a file reference:
● To reference a .NET Framework assembly, you select the assembly from the list

displayed on the .NET tab of the Add References dialog box.
● You can use the Browse button in the Add Reference dialog box.

If you set a file reference, the path to the assembly is stored in the source controlled
project file. A relative path is stored for local assemblies, while the full network path
is stored for server-based assemblies, as demonstrated by the following project file
snippet. Notice the HintPath attributes.

<References>
 <Reference
 Name = "System.XML"
 AssemblyName = "System.Xml"
 HintPath =
"..\..\..\..\WINDOWS\Microsoft.NET\Framework\v1.0.3423\System.XML.dll"
 />
 <Reference
 Name = "Lib1"
 AssemblyName = "Lib1"
 HintPath = "\\BuildServer\Latest\Release\SharedComponent\SomeControl.dll"
 />
</References>

 Chapter 4: Managing Dependencies 27

Note: Assemblies such as System.XML.dll are located in the Global Assembly Cache (GAC). However,
you never directly refer to an assembly within the GAC. Instead, when you select an assembly on the
.NET tab of the Add References dialog box, you actually reference a copy of the assembly, located
within the %windir%\Microsoft.NET\Framework\<version>\ folder.

Use Copy Local = True for Project and File References
Every reference has an associated copy local attribute. Visual Studio .NET determines
the initial setting of this attribute (true or false) when the reference is initially added.
It is set to false if the referenced assembly is found to be in the GAC; otherwise, it is
set to true.

You should not change this default setting. With copy local set to true, the Visual
Studio .NET build system copies any referenced assembly (and any dependent
downstream assemblies) to the client project’s output folder when the reference is set.

For example, if your client project references an assembly called Lib1, and Lib1
depends on Lib2 and Lib3, then Lib1, Lib2, and Lib3 are copied to your project’s local
output folder automatically by Visual Studio .NET at build time.

Automated Dependency Tracking
Each time you build your local project, the build system compares the date and
time of the referenced assembly file with the working copy on your development
workstation. If the referenced assembly is more recent, the new version is copied
to the local folder. One of the benefits of this approach is that a project reference
established by a developer does not lock the assembly dynamic-link library (DLL)
on the server and does not interfere in any way with the build process.

Using File References in Single and Partitioned Single Solution
Systems
Use project references wherever possible and aim to minimize the use of file
references.

If you adopt either the single solution or partitioned single solution model, you need
to use file references only to reference outer-system assemblies (that is, those not built
by your system build process). Specifically, these include:
1. .NET Framework assemblies that are referenced on the .NET tab of the Add

References dialog box. This does not present an issue within the team
environment because .NET Framework assemblies are located in a common
location on all development workstations.

2. Outer system assemblies referenced by using the Browse button on the Add
References dialog box. These include third-party components and assemblies
built elsewhere within your company outside of your current system. For
information about how to manage this type of outer system assembly, see
Include Outer System Assemblies within Projects.

28 Team Development with Visual Studio .NET and Visual SourceSafe

Using File References in Multi-Solution Systems
If you adopt a multi-solution model, this forces you to use file references on one
further occasion—when you reference an assembly that is generated by a project
within a separate solution.

Consider Your Reference Locations
When you are forced to reference a cross-solution assembly, you have the following
two choices:
● You can reference an assembly on the build server by using either a virtual drive

letter or Universal Naming Convention (UNC) path.
● You can copy the set of assemblies that are generated by the build process on the

build server to your local development workstation and then establish a local
reference with a virtual drive letter. For more information about using a virtual
drive letter, please see Use a Virtual Drive for Greater Flexibility.

Advantages of Referencing Assemblies from a Build Server
The advantages of this approach are:
● You guarantee to reference the latest version of a particular assembly as the build

process updates these assemblies at regular (for example, daily) intervals.
● The paths within your project files that contain virtual drive letters or UNC paths

work across all development workstations and the build server.

Disadvantages of Referencing Assemblies from a Build Server
This approach does suffer from a couple of drawbacks which may be significant in
some development environments (particularly the larger ones). The following are
some disadvantages of this approach:
● You are not in direct control of when an assembly that you reference is updated.

As a result, it’s possible that a new version of an assembly on the server could
break your local build process at an inconvenient time when you are in the middle
of developing and debugging a different area of the system. Although the central
build process usually runs overnight, on occasion, interim builds need to be
generated during the day. These interim builds have the potential to cause
problems.

● This approach does not support disconnected development. You are required to
have a direct connection to the build server whenever you build a local project
that references an assembly on the build server.

 Chapter 4: Managing Dependencies 29

Consider an Isolated Development Approach
If you require a high level of isolation during your development work, you can adopt
an isolated development approach. With this approach, you:
1. Copy the build output from the build server to a common location on your

development workstation. This can be performed manually or with the help of
a script.

2. Establish a common virtual drive (for example, drive R) so that all developers
reference assemblies with the same path.

3. Set references to the local assemblies by using the virtual drive letter (drive R).
4. Periodically check for new build output on the build server and manually copy it

locally at your convenience.

Use a Virtual Drive Letter for Greater Flexibility
If you reference a local assembly that has been copied from the build server, you
should do so with a virtual drive letter established with the subst command.

Important: All developers within the team must adopt the same drive letter because it is maintained
within the source controlled project file as illustrated in the following code.

<References>
 <Reference
 Name = "Lib1"
 AssemblyName = "Lib1"
 HintPath = "R:\Latest\Release\SharedComponent\SomeControl.dll"
 />
</References>

An additional advantage of using the virtual drive letter is that it enables you to
easily remap it to different locations. For example, you may want to map it to the
build server for the majority of your development time, but when you need a period
of isolated development you can remap it locally

Always Reference Release Builds with File References
The build script updates the build server on a regular (typically daily) basis with
current assemblies. The build script typically generates debug and release versions of
your assemblies. Developers use the debug DLLs and testers use the release DLLs, as
follows:
● As a developer, you install the debug DLLs to perform your development and unit

testing work.
● Members of the test team install a release version of the system and always test

with release DLLs. Do not delay the generation of a release build until your
product release date is imminent because the release build could potentially
exhibit problems not present within the debug build.

30 Team Development with Visual Studio .NET and Visual SourceSafe

To accommodate debug and release builds, the build script copies assemblies
to Release and Debug folders on the build server. For detailed information,
see Chapter 5, “The Build Process.“

As a developer, you should always reference assemblies from the Release folder for
the following reasons:
● These ultimately represent the versions of dependent assemblies that are deployed

into production.
● You never need to change file references from the Debug folder to the Release

folder in order to generate a release build. File references do not dynamically
change to track configuration changes in the same way that project references do.

Use the Reference Path to Assist Isolated Development and Debugging
The one issue with referencing release assemblies is that you are unable to debug and
step into the assembly. If you need to debug a referenced assembly contained within
a separate solution:
1. Copy the solution to your development workstation
2. Rebuild a debug version of the assembly.
3. Set the reference path within the client project to point to the debug output folder

of the referenced assembly.
4. Rebuild and run the client project. This results in the local debug version of the

referenced assembly being copied to the client’s project output folder. You can
then debug and step into the referenced assembly.

5. When you complete debugging and want to revert back to referencing the
assembly from its usual location, remove the reference path entry.

What is the Reference Path?
The reference path is a per-computer, per-developer setting that is maintained as
an Extensible Markup Language (XML) element in the project user options file
(*.csproj.user or *.vbproj.user). It is used by Visual Studio .NET to help locate
assembly references at build time.

Important: If you follow the guidelines presented earlier and use either project references or file
references (with virtual drives) to reference assemblies, all references are directly resolved by
Visual Studio .NET on any computer and the reference path will not usually be required. However,
the reference path can be useful on occasion because it allows you to override the path maintained
by the <HintPath> element in the source controlled project file.

 Chapter 4: Managing Dependencies 31

Resolving Assembly References at Build Time
At build time, Visual Studio .NET resolves assembly references by searching the
following locations in the following order:
1. Look for the assembly in one of the project folders. This assumes that you have

added the assembly to the project by using the Add Existing Item menu option.
Project folders include any folder displayed by Solution Explorer (except when
Show All Files is in effect).

2. Look in the folders listed in the ReferencePath attribute of the <Settings> element
within the project user options file. This attribute can contain a comma delimited
list of folders.

3. Use the <HintPath> element in the project file.
4. Look in a set of folders identified by registry settings. These are the ones that

contain assemblies displayed on the .NET tab of the Add references dialog box.
For more details, see Using the .NET Tab of the Add Reference Dialog Box.

5. Look for COM Interop assemblies in the obj sub folder beneath the project folder.
For more details, see Referencing COM Objects.

Notice that the reference path in the project user options file takes precedence over
the hint path established when you set a file reference.

Performing Isolated Development and Unit Testing
The reference path can also help you perform isolated development and unit testing
within multi-solution systems. Consider solution SA and solution SB where a project
within SA named PA depends upon a library project within SB called PB. If you want
to perform some isolated development and unit testing on these two solutions in
advance of the next system build, you can change PA’s reference path to point to the
output folder of PB. This allows you to make changes to PB, rebuild it locally, and
then test against it in SA.

You can do this without checking in SB again and waiting for the next build process
to regenerate its assemblies.

Because the reference path is a per-developer setting in the project user options file
(which is not added to source control), when you next check the solutions back into
VSS, you will not impact the build process or fellow developers.

32 Team Development with Visual Studio .NET and Visual SourceSafe

How to Set the Reference Path for a Specific Project
Use the following steps to set the reference path property for a specific project.

�

�

To alter the reference path for a specific project

1. Right-click the project within Solution Explorer, and then click Properties.
2. Expand the Common Properties folder, and then click Reference Path.
3. For C# projects, click the New Line icon and enter the new reference path.

–or–
For Visual Basic .NET project, enter the reference path into the Folder field, and
then click Add Folder.

4. Click OK to close the Properties dialog box.

Include Outer System Assemblies within Projects
The best way to handle outer system assemblies such as third-party Web controls or
components that are not rebuilt by your build process is to include them directly into
those projects that need to reference them. Conceptually, think of outer system
assemblies the same way as .bmp or .gif files.

To include and then reference an outer-system assembly

1. In Solution Explorer, right-click the project that needs to reference the
assembly,,and then click Add Existing Item.

2. Browse to the assembly, and then click OK. The assembly is then copied into the
project folder and automatically added to VSS (assuming the project is already
under source control).

3. Use the Browse button in the Add Reference dialog box to set a file reference to
assembly in the project folder.

Advantages
There are a couple of advantages to this approach:
● Outer system assemblies remain source controlled alongside the project files.

When a new version of the assembly is available, the file can be added to VSS as
a new file version complete with its own file history.

● Most importantly, your entire system is contained within VSS; this includes
all outer-system assemblies, such as third party controls. You can retrieve an
earlier version of the system from VSS, including all source code and external
dependencies. This allows you to have a complete snapshot of the earlier system
version.

 Chapter 4: Managing Dependencies 33

Consider Sharing Outer System Assemblies in VSS
If a particular outer system assembly is referenced by multiple projects, it is
maintained within every project. This makes updating the assembly to a later version
a more difficult task.

You can address this issue by sharing the outer system assembly in VSS between the
projects that use it. This allows the file to be updated within one project. You can
refresh the copies maintained within other projects by right-clicking the project
within Solution Explorer, and then clicking Get Latest Version (Recursive).

Using the .NET Tab of the Add Reference Dialog Box
The .NET tab of the Add Reference dialog box displays system assemblies and
Primary Interop Assemblies that are supplied with the .NET Framework and
optionally other assemblies. These are usually (but not necessarily) those installed
in the GAC.

You can enable your own assemblies to appear in this list, but this requires a registry
modification to designate the folder or folders that contain your assemblies.

For example, you could apply registry updates to point to the folders that contain
assemblies built by your build script (either locally or on the build server). This
allows developers to reference these assemblies from the .NET tab and avoids the
use of the Browse button.

� To add your own assemblies to the .NET tab

1. Create a new registry key (for example, one called InnerSystemAssemblies)
beneath either of the following registry keys:

HKEY_LOCAL_MACHINE\Software\Microsoft\.NETFramework\AssemblyFolders
HKEY_CURRENT_USER\Software\Microsoft\.NETFramework\AssemblyFolders

2. Set the new key’s default value to point to the folder that contains your
assemblies.

3. If you have Visual Studio .NET open, you must close it and then launch it again
for the changes to take effect.

Referencing Web Services
In single solution systems, all developers end up with local working copies of all
Web services because they are defined by projects within the single solution. When
you open a solution from VSS for the first time, all projects (including any Web
services) are installed locally. Similarly, if a Web service is added to the solution by
another developer, you install the Web service the next time you refresh your solution
from VSS. In the single-solution world, there is no need to publish Web services on a
central Web server within the team environment.

34 Team Development with Visual Studio .NET and Visual SourceSafe

For Web services developed as part of a multi-solution system, not all developers
need to locally install the Web service.

Within a multi-solution system, the developer of the Web service should publish the
service on the central development Web server to allow other developers to access it
from their client projects.

Versioning Web Services in Development
The Web services that you currently have in development will evolve over time.
You should aim to keep the Web server up to date with the latest versions.

In many respects, the versioning issues associated with Web services are similar to
those associated with databases. When a database schema is updated, the change
must be planned and coordinated so that dependent client applications can be
updated in synchronization with the schema change.

You should handle updates to Web services in a similar way. When you change the
interface of a Web service, the team responsible for the service must publicize the
change so that other dependent teams can update their client-side references.

Note: Implementation changes require less coordination than interface changes. However, in both
cases, the team responsible for the Web service should publish change details to other developers
and development teams.

Always Use Dynamic URLs
If you want to call a Web service, you must first add a Web reference to your project.
This generates a proxy class through which you interact with the Web service. The
proxy code initially contains a static Uniform Resource Locator (URL) for the Web
service, for example http://localhost or http://SomeWebServer.

Important: For Web services in your current solution that execute on your computer, always use
http://localhost rather than http://MyComputerName to ensure the reference remains valid on all
computers.

The static URL that is embedded within the proxy is usually not the URL that you
require in either the production or test environments. Typically, the required URL
varies as your application moves from development to test to production. You have
two options to address this issue:
● You can programmatically set the Web service URL when you create an instance of

the proxy class.

 Chapter 4: Managing Dependencies 35

● A more flexible approach that avoids a hard coded URL in the proxy, is to set
the URL Behavior property of the Web service reference to dynamic. This is the
preferred approach. When you set the property to dynamic, code is added to the
proxy class to retrieve the Web service URL from the <appSettings> section of
the application configuration file, Web.config for a Web application or
SomeApp.exe.config for a Windows application.
The dynamic URL approach also lets you provide a user configuration file,
which can override the main application configuration file. This allows separate
developers (and members of the test team) to temporarily redirect a Web service
reference to an alternate location.

How to Use Dynamic URLs and a User Configuration File
Set the URL Behavior property of your Web service references to dynamic to gain
maximum configuration flexibility both within the development and production
environments. Set the production URL of the Web service in the application
configuration file and provide a user configuration file for development and test
purposes. The absence of the user configuration file results in the application
configuration file being used.

� To specify a Web Service URL in a user configuration file

1. Add a file="user.config" attribute to the appSettings element of your main
application configuration file. This silently redirects the runtime to the named user
configuration file when it accesses information from the appSettings section. If the
user configuration file is missing, the settings from the main application
configuration file are used instead and no runtime error is generated.

<configuration>
 <appSettings file="user.config">
 <add key="ClientApplication.SomeServer.SomeService"
 value="http://ProdWeb/myXmlWebService/Service1.asmx"/>
 </appSettings>
</configuration>

In the preceding example, ClientApplication.SomeServer.SomeService is the
qualified name of the Web service proxy class. ClientApplication.SomeServer is
the namespace and SomeService is the proxy class name.

2. Create a User.config file (located in the same folder as the application
configuration file), and add an appSettings entry that contains a key-value pair
that identifies the Web service URL, as illustrated in the following code. Notice
that in this example, the URL references the local Web server. Also notice that the
<configuration> element is missing from the User.config file.

<appSettings>
 <add key="ClientApplication.SomeServer.SomeService"
 value="http://localhost/myXmlWebService/Service1.asmx"/>
</appSettings>

36 Team Development with Visual Studio .NET and Visual SourceSafe

3. Don’t check in the User.config file to VSS. In this way, each developer (and the test
team) can explicitly bind to specific URLs through their own User.config file entry.
The main application configuration file should maintain the production Web
service address. This is used in the absence of a User.config file.

Tip: By default, the user configuration file is automatically added to VSS. To prevent this, right-
click the file within Solution Explorer, and then click Exclude From Project. To subsequently view
the file within Solution Explorer, click the Show All Files icon at the top of the Solution Explorer
window.

Important: For Web applications that employ a user configuration file, any changes made to the
file do not result in the Web application being automatically recycled. This only happens for the
Web.config file. As a result any changes to the user configuration file are not immediately seen by
the application. You must manually stop and restart the Web application. This is another reason why
you should use the Web.config file for production settings and use the User.config file for only
development and test settings.

Updating a Web Service Reference
To update an existing Web Service reference, in Visual Studio .NET Solution Explorer,
right-click the file, and then click Update. The next time you rebuild your project,
new service information in the form of a Web Services Description Language (WSDL)
document is downloaded and a new local Web service proxy class is created.

Referencing Databases
Database references in the form of connection strings can also be managed by using
the User.config file. The advantage of this is that each developer can easily specify his
own connection string is his own private User.config file. Any changes made by one
developer, such as redirecting the connection to a local database for unit testing
purposes, does not affect other developers.

User configuration files can also be used to control environmental-specific settings,
such as those required by a test environment. The test environment can also use a
User.config file which references the test database.

The procedure is similar to the preceding Web references example, except that in that
example the Web service proxy contains the code to retrieve the Web service URL
from the configuration file. For database connection strings, you must provide the
code to read the connection string.

 Chapter 4: Managing Dependencies 37

How to Use User Configuration Files for Database Connection Strings
The following procedure explains how to store and then reference a database
connection string within a user configuration file.

� To use a user configuration file to store database connection strings

1. Add a file="user.config" attribute to the appSettings element of your main
application configuration file and include a default connection string in the main
configuration file. This is used in the absence of any user-specific override.

<configuration>
 <appSettings file="user.config">
 <add key="DBConnStr"
 value="server=PRODDB;Integrated Security=SSPI;database=Accounts"/>
 </appSettings>
</configuration>

2. To override the main application configuration file, create a User.config file
(located in the same folder as the application configuration file), and then add a
similar appSettings entry to the file. Notice that the following connection string
references a local database.

 <appSettings>
 <add key="DBConnStr"
 value="server=(local);Integrated Security=SSPI;database=Accounts"/>
 </appSettings>

3. Within your project, use the following code to obtain the connection string
from the user configuration file (if it is present) or the application configuration
file if it is not. This code uses the static AppSettings property of the
System.Configuration.ConfigurationSettings class.

using System.Configuration;
private string GetDBaseConnectionString()
{
 return ConfigurationSettings.AppSettings["DBConnStr"];
}

Database Development
There are two basic approaches for database development in the team environment:
● Central database server(s)
● Central database servers(s) and local databases on developer workstations

38 Team Development with Visual Studio .NET and Visual SourceSafe

Central Database Servers
The central database server or servers in the team environment mirror the production
schema—or if the system is not yet in production, they reflect the most up-to-date
schema. The following guidelines govern the use of database servers within the team
environment:
● Do not give developers administrative access to the database server and do not

allow changes to the schema to be made by individual developers. You need to
have careful control over the environment because changes made by one
developer can easily impact others.

● Grant developers specific permissions; for example, grant developers the
permission to write stored procedures, functions, and (possibly) views.

● Manage schema changes and other objects such as stored procedures with source
controlled database scripts.

● Use database scripts to ease the creation and recreation of databases.
● Provide separate database instances for separate development efforts because

configuration settings may be different for each development project.

Local Databases
The main problem with working solely against one or more central development
database servers is that it is difficult to maintain a consistent set of test data. The unit
testing efforts of one developer can easily impact another because test data is likely to
change at frequent intervals.

As a result, it is common to install Microsoft SQL Server™ Developer Edition on each
development workstation to provide an isolated test environment for each developer.

Use Database Scripts for Managing Change
You should manage all changes to the database on either the local server or on the
central server through source controlled database scripts. You should provide scripts
for any changes you might make manually through Enterprise Manager. You should
use database scripts (that contain as much auditing and error logging as possible) to:
● Enable a database (including stored procedures and so on) to be installed from

scratch.
● Enable a fresh set of test data to be loaded.
● Apply updates to database schema and database objects.

 Chapter 4: Managing Dependencies 39

Consider Visual Studio .NET Database Projects
Database scripts should be source controlled and maintained within VSS. You have
two options for handling scripts:
● Handle scripts outside of the Visual Studio .NET integrated development

environment (IDE) and manually create a suitable folder structure within VSS. For
example, you could create a subproject folder beneath $/Projects/SystemName
called Database Objects to maintain database specific code and objects and then
use separate subfolders such as Tables and Views, Diagrams and
Documentation, and Stored Procedures and Functions as containers for the
various object types.

● Use Visual Studio .NET Database Projects. These are simple file based projects
that allow you to store and execute database scripts, and store other information
associated with your databases, such as database documentation or build files.
Visual Studio .NET provides an integrated editor for Transact-SQL code, a visual
Query Builder and T-SQL debugging support. The advantage of this approach is
that it provides tight and automatic integration with VSS, in common with other
project types.

For more information about database projects, refer to the section, “Managing Data
with Database Projects within the Developing with Visual Studio .NET,” of the
Microsoft MSDN® Library. Also search for “Large Database Projects” within MSDN.

Referencing COM Objects
When your code calls a COM object, an Interop assembly is used to handle the type
conversions between the .NET world and the COM world. When the COM object is
called from managed code, a proxy within the Interop assembly is actually called.
The proxy initially performs the necessary type conversion and then invokes the
COM object to perform the required work.

Always Generate Compatible Interop Assemblies
In a team development environment, if you and another developer reference the
same COM DLL from two different projects, the result is two Interop assemblies—
one for each project.

In most circumstances, the type of the two assemblies that are created are the same,
and as a result you can safely pass a reference to the COM object (via the Interop
assembly) from one project to another.

40 Team Development with Visual Studio .NET and Visual SourceSafe

To guarantee that the type of any generated Interop assembly is the same, you
must ensure that the following conditions are met. Failure to do so results in a type
mismatch exception at runtime when the reference is passed from one project to
another even if the Interop Assembly was generated from the same COM DLL.
The conditions that must be met are:
1. All Interop assemblies must be generated from exactly the same version of the

COM type library.
2. The identity of all Interop assemblies must be the same. The assembly identity

includes:
a. The file name without extension.
b. The public key, which may be null.
c. The version.
d. The culture (usually neutral for code).

The preceding conditions are generally met when you generate the Interop assembly
from the Visual Studio .NET project system, by selecting the COM type library from
the Add References dialog. The only exception is that it is possible (for C# projects)
for the Visual Studio .NET project system to assign a strong name to Interop
assemblies (the project properties dialog supports a Wrapper Assembly Key File
property). In this case it is possible that two different developers could generate
two Interop assemblies that are incompatible with one another.

In a team development environment, to guarantee that only one Interop assembly
exists for any given version of a COM type library, you should adopt one of two
approaches:
1. Always use Primary Interop Assemblies (PIAs).
2. If you cannot obtain a PIA, manually generate a single Interop assembly (by using

tlbimp.exe) and then:
a. Optionally assign the assembly a strong name
b. Include it directly into those projects that need to reference it.

The following section describes both of these approaches.

Use Primary Interop Assemblies Whenever Possible
A Primary Interop Assembly (PIA) is an Interop assembly that is officially signed by
the provider of the COM object and is the Interop assembly to use in all cases. If you
don’t have a PIA, you should request one from the provider of the COM object.

If you have a PIA, treat it like an outer-system assembly and include it directly into
the project that references it. This results in the assembly being copied to the project
folder. Set a file reference to the assembly in the project folder. The process is the
same as the one described earlier, in Include Outer-System Assemblies within
Projects.

 Chapter 4: Managing Dependencies 41

Note: The PIAs that are supplied with the .NET Framework are located in the \Program Files
\Microsoft.NET\Primary Interop Assemblies folder. When you obtain new PIAs, do not place them in
this folder; if you do, you need to update all of the development workstations and build server in the
team development environment. Instead, include them directly into the specific projects that need to
reference them.

Use TLBIMP if you don’t have a Primary Interop Assembly
If you don’t have a PIA, create a single Interop assembly by using the Tlbimp.exe tool
and optionally assign it a strong name. Like a PIA (and outer system assemblies),
include the manually generated Interop assembly in any project that needs to
reference it. This results in the assembly being copied to the local project folder
from where you can reference it with a file reference.

Register COM Classes Locally
If you add an Interop assembly to a project, it does not result in the associated COM
DLL being copied locally (and registered) and so you must register the COM DLL on
each developer workstation. This unfortunate consequence is a result of interacting
with the unmanaged world of COM.

Calling Serviced Components
A serviced component is a .NET managed class that derives from the
ServicedComponent class within the System.EnterpriseServices namespace. Such
classes can be hosted by COM+ applications and can use COM+ services.

In a team development environment, adopt the following recommendations when
using serviced components.

Use Delayed Signing
Serviced components must have a strong name. To assign a strong name, you need
a public and private key-pair that can be generated by the Sn.exe tool. In many
companies, the private key is a closely guarded secret and is not available to
developers on a daily basis. As a result, you should use delayed or partial signing
which can be performed with only access to the public key.

The partial signing process results in a place holder being created within the
assembly portable executable (PE) file for the strong name signature. The actual
signing is deferred until a later stage, between system testing and product release.
The build coordinator is generally responsible for finally signing assemblies.

42 Team Development with Visual Studio .NET and Visual SourceSafe

Use Dynamic Registration
You should add the relevant assembly attributes (for example, ApplicationName,
ApplicationID, and ApplicationActivation) to support dynamic registration. This
allows the COM types associated with your serviced components to be automatically
installed into the COM+ catalog on all development workstations, as soon as an
instance of the serviced component is created.

Control the CLSID Used Within the COM+ Catalog
By default, when you rebuild an assembly it is assigned a new version number. This
is because Visual Studio .NET sets the AssemblyVersion attribute to “1.0.*” for new
projects. As a result, a new Class Identifier (CLSID) is generated for serviced
components each time the assembly is rebuilt.

Note: This behavior is slightly different between C# and Visual Basic .NET projects. For C# projects,
the assembly version is incremented every time it is rebuilt. For Visual Basic .NET projects, the
assembly version is incremented the first time the project is rebuilt after it is loaded into Visual
Studio .NET. Subsequent rebuilds within the same instance of Visual Studio .NET do not result in
the assembly version being incremented.

This does not represent a problem, because the assembly version is for information only in
assemblies that do not have a strong name. For strong named assemblies, you should use static
version numbers that are manually maintained. This and other versioning issues are discussed
further in Controlling Assembly Version in Chapter 5, “The Build Process.”

In order to control the CLSID that serviced components end up with in the COM+
catalog and avoid multiple versions appearing each time a developer rebuilds the
serviced component, use either of the following approaches:
1. Explicitly control the CLSID by using the following Guid attribute:

[Guid("2136360E-FEBC-475a-95B4-3DDDD586E52A")]
public interface IFoo
{
}

[TransactionAttribute(TransactionOption.Required),
Guid("57F01F20-9C0C-4e63-9588-720D5D537E66")]
public class Foo: ServicedComponent, IFoo
{
}

2. Maintain a static assembly version number for the serviced component’s assembly
and don’t use the Visual Studio .NET default “1.0.*” version numbering scheme.
For more information about assembly versioning, see Controlling Assembly
Version in Chapter 5, “The Build Process.”

5
The Build Process

This chapter will help you:
● Manage versioning and dependency relationships.
● Automate builds using the appropriate scripts and tools.
● Organize and distribute build output.

The build process is a critical element for all software development projects. Do not
be tempted to get by without one—particularly in a team development environment.
You should configure a build server and create the necessary build scripts as early as
possible in the development cycle—certainly well before you are ready to begin
integration testing.

The main function of a build script is to provide an automated way to generate
system builds in a repeatable and consistent manner. Under normal circumstances,
you schedule the build script to run at night, to avoid placing unwanted stress on the
build server, Microsoft® Visual SourceSafe™ (VSS) server and the network during
development hours.

The build script accesses VSS by using the VSS automation model or by calling VSS
from the command line. It labels and extracts the latest versions of source and project
files and then it uses Microsoft Visual Studio® .NET (by executing devenv.exe from
the command line) to build your solution or solutions. The build script typically
builds both a debug and release version of your system.

Handling Dependency Relationships
In single solution or partitioned single solution systems, project references take care
of dependencies and build order. The build script for these types of systems is simple
because it can execute Devenv.exe once against a single solution.

The build script is more complex for multi-solution systems because it must build
solutions in the correct order, based on known dependency relationships. This is to
ensure that when an assembly is updated (and its version changes), all client
assemblies that reference it are also updated and rebuilt against the latest version.

44 Team Development with Visual Studio .NET and Visual SourceSafe

Controlling Assembly Version
An assembly’s version is specified via the AssemblyVersion attribute (which is
defined within the AssemblyInfo.cs or AssemblyInfo.vb file). The version number is
physically represented as a four part number separated with periods:

<major version>.<minor version>.<build number>.<revision>

You do not have to set and update each part explicitly because you can use wild
characters (*) to automatically generate the build and revision numbers. Visual Studio
.NET generates an AssemblyInfo source file with the AssemblyVersion attribute
defined as follows:

[assembly: AssemblyVersion("1.0.*")]

The result of this is a build number set to the number of days since a random,
designated start date and the revision based on the number of seconds since
midnight.

You can either use auto-increment version numbers or opt to manually control
version numbers as part of the build process. Each approach has associated benefits
and drawbacks.

Note: For a Microsoft Visual Basic® .NET project with an AssemblyVersion set to “1.0.*”, the
assembly version is only updated the first time the project is rebuilt within the Visual Studio .NET
integrated development environment (IDE). The version number remains constant for subsequent
rebuilds within the same instance of Visual Studio .NET. This does not represent a problem because
the assembly version is for information only in assemblies that do not have a strong name. For
strong named assemblies, you should avoid the use of wild characters in the AssemblyVersion
attribute, as explained in the following section.

For C# projects with an AssemblyVersion set to “1.0.*”, the assembly version is updated every time
the project is rebuilt.

Using Auto-Increment Version Numbers
An auto-increment version number is established by adopting the default “1.0.*”
pattern for the AssemblyVersion attribute.

Advantages
Using auto-increment version numbers has the following advantages:
● The build and revision numbers are handled automatically by Visual Studio .NET

and do not have to be handled by the build script or build coordinator.
● You guarantee never to have different builds of an assembly with the same version

number.

 Chapter 5: The Build Process 45

Disadvantages
Using auto-increment version numbers has the following disadvantages:
● The internal assembly build number does not match your system build number,

which means there is no easy way to correlate a particular assembly with the build
that generated it. This may be particularly problematic when you need to support
your system in a production environment.

● Build and revision numbers are not increased by one but are based on the time an
assembly is built.

● A new version of an assembly is generated each time it is built regardless of
whether any changes have been made to the assembly. For strongly named
assemblies, this means that all clients of that assembly must also be rebuilt to point
to the correct version. However, if the build process rebuilds the whole system this
should not be an issue.

Using Static Version Numbers
With this approach, you use a static version number, for example “1.0.1001.1”, and
update the major or minor numbers only when a new version is shipped with your
next system release.

Advantages
Using static version numbers has the following advantages:
● You have complete control over the exact version number.
● Assembly build numbers can be synchronized with the system build number.

Disadvantages
Using static version numbers has the following disadvantages:
● The version numbers must be manually updated by the build coordinator or by

the build script.
● If the version is not incremented with every build, you may end up with multiple

builds of the same assembly with the same strong name. This is undesirable and
can be problematic for assemblies that are installed in the Global Assembly
Cache (GAC).

Important: If you do not change the version of a strongly named assembly and attempt to install it
into the GAC using the Microsoft Windows® operating system Installer, the latest dynamic-link library
(DLL) does not install if a previous version exists in the GAC with the same version number.

If you use Gacutil.exe instead of Windows Installer to install the assembly, the updated DLL is
installed even if the assembly version number is the same.

46 Team Development with Visual Studio .NET and Visual SourceSafe

Consider Centralizing Assembly Version Numbers
To update the assembly version information for multiple assemblies, the build
script or build coordinator must check out and update multiple AssemblyInfo files.
To centralize the version information and enable a single file checkout and update,
consider the following approach:
1. Place the AssemblyVersion attribute in a single source file, for example

AssemblyVersionInfo.cs or AssemblyVersionInfo.vb.
2. Share the file across any projects that need to share the same version number

within VSS.

This approach assumes that you want the same assembly version assigned to all
assemblies generated by a particular system build. This may or may not be
appropriate for your particular system.

Build Server Folder Structure
You should set up the same basic folder structure on the build server as your
development workstations. Therefore, the basic folder structure discussed within
Use a Consistent Folder Structure for Solutions and Projects in Chapter 3,
“Structuring Solutions and Projects,” remains the recommended structure for
the build server.

Consider Maintaining Previous Builds
You may also want to create a folder structure based on build numbers to maintain
the output from previous system builds. The benefit of this is that it allows the test
team to easily install and test specific versions of your system without being affected
by ongoing development changes.

 Chapter 5: The Build Process 47

The build server folder structure is illustrated in Figure 5.1.

C:\Projects

SystemName

Solution1

Solution2

BuildOutput

1000

Latest

Project1

Project2

Project1

Project2

Project3

Project4

Release

Debug

Release

Debug

1001

Release

Debug

Build Process

Developer Workstation

Developer Workstation

File references to
build server
with virtual
drive letter

Latest Source Extracted
From VSS

ProjectName1

ProjectName1

ProjectName2

ProjectName2

DLL1

DLL2

DLL1

DLL2

Latest Build
Output

Latest Build
Output

Previous Builds

Copy Output

Local file references
with virtual drive letter

Isolated Development

Referencing Assemblies
From the Build Server

For multi-solution systems with file
references only

Figure 5.1
Build Server Folder Structure

Note the following points from Figure 5.1:
● Builds are organized by build number. A simple approach for generating build

numbers is described later in this chapter.
● The Latest folder always contains the output from the latest build—this matches

the binaries contained in the current highest build number folder.

48 Team Development with Visual Studio .NET and Visual SourceSafe

● The contents of each project’s output folder is copied by the build script to a
subfolder beneath the Latest\Release folder, the name of which is based on the
project name.

● In a multi-solution system, you can reference assemblies built in other solutions
from folders beneath the Latest\Release folder. These folders are repopulated
after each build; this guarantees that you always reference the most up-to-date
assemblies with the latest version numbers.

● If isolated (and potentially disconnected) development is required within
a multi-solution system, developers copy the build output to their local
workstations and reference local assemblies by using a virtual drive letter.

Don’t Alter the Build Output Path
You might be tempted to alter the output paths of your projects in order to build to a
single folder and then establish file references to that folder. Do not do this for the
following reasons:
● It causes the build process to fail with file lock errors when a referenced assembly

exceeds 64 KB in size. This problem is likely to be fixed in a future version of
Visual Studio .NET.

● You can encounter another problem when you reference an assembly from a folder
that is designated as your project’s output folder. In this event, Visual Studio .NET
cannot take a local copy of the assembly because the source and destination
folders for the copy operation are the same. If you subsequently remove the
reference from your project, Visual Studio .NET deletes the “local” working copy.
Because the local folder is the same as the assembly’s original folder, the original
assembly is deleted.

The Build Script
Figure 5.2 illustrates the individual steps that should be performed by your build
script.

 Chapter 5: The Build Process 49

Label source file
set with current

build number

Extract latest
labeled source file
set from VSS to
the build server

Build solution file
with devenv.exe

Copy \bin output
to \Latest\Debug

OR
\Latest\Release

folder

More
solutions?

All solutions
succesful?

Rename Latest folder
to LatestBackup and

create new
Latest folder

Copy contents of Latest
to correct build number

folder

Create
BuildVersion.txt in

Latest folder

Manual or
automatic
initiation of

build
process

Rename Latest as
LatestBroken and

rename LatestBackup as
Latest

Yes

No

Yes No

Generate and
Send Build

Summary Email
with attached build

log

NOTE:
Only For

Multi-Solution Systems

Repeat for required
configurations e.g.

Debug and Release

Delete
LatestBackup

folder

Fix broken
build

Generate and
Send Build

Summary Email

Re-execute build
script using the

same build
number

Generate build
number

Figure 5.2
The Build Process

50 Team Development with Visual Studio .NET and Visual SourceSafe

The following subsections describe the main steps performed by the build process.

Generating Build Version Numbers
Successive builds are identified by unique build numbers. Build numbers are used
to name the output folder that contains the results of a particular build and to label
source files within VSS.

Build numbers are generally incremental numbers that are unique across the system.
There are many ways to generate build numbers. One simple approach is to maintain
a text file in the Latest folder whose file name represents the latest build number; for
example, 2021.txt. The build script can access this file to generate the next number.

Labeling Source Files
It’s important to establish a relationship between a particular build and the set of
project and source files that are used to generate that build. The simplest way to do
this is to label the latest source file set with the current build number.

This allows you to recreate the exact build at any time in the future if the need arises.
It also helps when you need to resolve a broken build, as described later in this
chapter.

The following script fragment shows how to use the VSS command line to label a set
of files within a given VSS project folder. To label all source files within your system,
the top level VSS folder should be set to $/Projects/SystemName.

' Run VSS with the Label command with options to disable UI and answer Yes
' to any prompts. Specify output log file location, label to write and VSS project
to label. Label is recursive therefore only one command is needed against the
' top-level VSS project.
' Current version number is held within the Version variable
WSHShell.Run "ss Label -I-Y -O@..\SSafeOut_Label.txt -LVersion1." & Version &
SSafeProj, 1, true

Extracting the Latest Source File Set
The build script performs a get operation to extract the latest set of source files from
VSS. It uses the assigned label to pull the correct set of source files. Source files are
extracted into the common folder structure on the build server, as illustrated earlier
in Figure 1.

The following script fragment shows how to perform the get operation by using the
VSS command line.

' Current version number is maintained in the Version variable
WSHShell.Run "ss Get -I-Y -O@..\SSafeOut_Get.txt -VLVersion1." & Version &
SSafeProj, 1, true

 Chapter 5: The Build Process 51

Creating a New Latest Folder
The build process always copies generated assemblies into the Latest folder, to ensure
that any file references used within multi-solution systems resolve to the latest
assembly versions.

The build script initially renames the current Latest folder to LatestBackup and then
creates a new (and empty) Latest folder. This allows the script to roll back to the
output of the previous build if the current one fails.

Building Solutions with Devenv.exe
The script builds individual solutions by executing Devenv.exe, supplying at
minimum the solution file name, the /rebuild switch (which ensures all output
and temporary output files are deleted at the start) and the required solution
configuration. The build script should execute Devenv.exe twice, once to generate
a release build and once to generate a debug build. The following script fragment
shows how to execute Devenv.exe.

' Call devenv with the rebuild option (clean up previous build leftovers),
' the specified build configuration, the out option to enable logging to a file
' and finally the solution file to build specified via the command line. A count
' is used when deriving the log file name to ensure a separate log is generated
' for each solution build in a multi-solution system
WSHShell.Run "devenv /rebuild " & Config & " /out buildoutput"&Count&".txt " &
SolutionName, 1, true

The build script parses the output build log generated by Devenv.exe to see whether
or not the latest solution build was successful.

For multi-solution systems that include cross solution file references, the release build
of a particular solution must always be generated before the debug build to ensure
that any file references can be resolved. This assumes that you set file references to
the Release version of assemblies as advocated within Always Reference Release
Builds with File References in Chapter 4, “Managing Dependencies.”

Copying Output to the Latest Folder
Single solution or partitioned-single solution systems do not require a Latest folder
because you use project references rather than file references to refer to inner-system
assemblies. For these types of system, the build script can simply archive assembly
output beneath the relevant build number folder.

For multi-solution systems however, after each solution is built, the output
assemblies for all constituent projects must be copied to the Latest\Release or
Latest\Debug folders in order to guarantee that projects that are built subsequently
within other solutions reference the latest assembly versions.

52 Team Development with Visual Studio .NET and Visual SourceSafe

Note: The build script can use the number of solutions passed via the command line to infer
whether or not it is dealing with a multi-solution system. If the solution count is greater than one, it
must copy assembly output to the Latest folder. Otherwise, it can omit this step.

Organize Assembly Output beneath the Latest Folder
Assemblies are actually copied to subfolders beneath Latest\Release and
Latest\Debug, the names of which are based on the project names. The reason
that this approach is preferred to placing all output assemblies directly into the
Latest\Release folder is that it clearly organizes the output and it allows two versions
of outer system assemblies (such as third-party assemblies) with the same name to be
included in different projects.

Remember that outer system assemblies are not built as part of the build process and
should be included in the projects that need to reference them. It is possible (although
unlikely) that two projects reference different versions of the third-party assembly
(with the same name). If you separate build output into distinct subfolders, you can
ensure that these DLLs do not overwrite one another when the build script copies its
output to the Latest folder.

Copying the Latest Folder to a Build Number Folder
If the build of a multi-solution system is successful, the contents of the Latest folder
are copied to a folder named with the current build number. This allows successive
builds to be archived.

Renaming the Latest Folder as LatestBroken
If the build fails, the build script renames the Latest folder as LatestBroken and
reinstates the LatestBackup folder as the Latest folder. This allows any developers
who are currently referencing the Latest folder on the build server to continue with
their local development.

Resolving a Broken Build
The build coordinator must work to resolve a broken build as quickly as possible.
Typically one or more source files are at fault and these either need to be updated
within VSS or the latest changes need to be backed out all together.

If you update source files within VSS, you must manually label them with the current
build number using VSS Explorer. This ensures that the updated files are associated
with the correct build.

After you update the relevant files and you want to rerun the current build, the build
script should be supplied with the current build number as a command line
argument. The absence of a build number signifies a new build. If a build number is
supplied, the number (which matches the source code labels) can be used to extract
the relevant source files from VSS.

 Chapter 5: The Build Process 53

Rebuilding Multi-Solution Systems
While a build is running, you may experience problems compiling locally if you are
working on a multi-solution system that uses file reference to reference assemblies on
the build server because the build process starts by clearing the Latest folder.

To avoid this issue, you should switch to an isolated development model as described
in Consider an Isolated Development Approach in Chapter 4, “Managing
Dependencies,” particularly when working on multi-solution systems. In this way,
you are protected from builds that may run during the day.

Emailing Build Results
Build results should be sent via e-mail to the development team for successful
and unsuccessful builds. The e-mail message should include the build log as an
attachment to enable developers to help diagnose build failures or identify warnings
generated from their code.

To avoid hard coding e-mail aliases in the build script, you should set up distribution
lists based on project or solution names.

Packaging the Build
To facilitate the installation of the latest build into the test (or development)
environment, the build script can package the output within a Microsoft Installer
(MSI) file.

For single solution (or partitioned single solution) systems, you can include a Visual
Studio .NET Setup and Deployment project within the solution. This can be used to
automatically generate an MSI file as part of the solution build.

Note: You can prevent the Setup and Deployment project from building each time you build the
solution on your local workstation by excluding it through the Configuration Manager (on the Build
menu) within Visual Studio .NET. If you exclude a project from a solution build using this method,
you do not affect the source controlled solution file. Changes are maintained within the solution user
option file, which is developer specific and not under source control.

Whenever new projects are added to your solution you must remember to update
and configure the deployment project to ensure that the output of the new project
is included within the MSI file and that any project specific installation steps are
performed. This is generally the responsibility of the build coordinator, who should
be informed by developers when new projects are added. All developers must be
familiar with this process, so make sure it’s part of your development process
guidelines.

For multi-solution systems, things are once again more complex because a single
Setup and Deployment project can be used only to package the output generated by
projects in a single solution. In this scenario, the build script can generate an MSI by
using third party software or the Windows Installer software development kit (SDK).

54 Team Development with Visual Studio .NET and Visual SourceSafe

Creating Build Script Accounts
You must create a Windows account for the specific purposes of executing the build
script on the build server. This account must have access to the shared folder or
folders on the VSS server that host the VSS databases.

You must also create a build script user within each of the VSS databases that the
build script requires access to. This is used by the script while accessing the VSS
database.

More Information
For more information about VSS automation, see ”Visual SourceSafe 6.0 Automation”
at http://msdn.microsoft.com/library/default.asp?URL=/library/techart/vssauto.htm.

http://msdn.microsoft.com/library/default.asp?URL=/library/techart/vssauto.htm

6
Working with Visual SourceSafe™

This chapter will help you work with the integrated source control features provided
by Microsoft® Visual Studio® .NET in order to perform the following development
tasks:
● Creating solutions and projects
● Working on existing solutions and projects
● Adding a new project to an existing solution
● Checking source files into Microsoft Visual SourceSafe™ (VSS)
● Renaming and deleting projects, files and folders

This chapter presents a series of mini-walk through procedures that guide you
through a set of common tasks that you are likely to perform on a daily basis.

Note: This chapter describes procedures that apply to Visual SourceSafe version 6.0c.

Visual Studio .NET provides fully integrated VSS support. It’s essential that you
use Visual Studio .NET when checking projects and files in and out of VSS on a daily
basis because Visual Studio .NET is aware of the various file types that constitute
different types of .NET projects. It automatically places the appropriate files under
source control, while leaving user-specific files untouched. The Visual Studio .NET
source control functionality also adds its own specific information to both Visual
Studio .NET solution and project files. If you use the VSS Explorer directly, this
functionality is bypassed.

Figure 6.1 illustrates a high level overview of the development process and shows
four common tasks that you will need to perform when interacting with VSS.

56 Team Development with Visual Studio .NET and Visual SourceSafe

Developer creates
new solution

Create new VS
.NET solution and

project

Develop Initial
code

Add solution to
source control VSS

Developer works
on existing

solution for first
time

Open from source
control

Check out
required source

files

Develop and test
code

Check files in

Developer works on
existing solution for
subsequent time

Open local
solution file

Developer adds new
project to existing

solution

Open local solution
file

Add Project to
current solution

C:\Projects
\SystemName

\Solution1
\Project1
\Project2

Figure 6.1
Interacting with VSS

As illustrated in Figure 6.1, there are four basic tasks that you regularly perform as a
developer: You need to:
● Create a new solution and project and add these to VSS.
● Work on an existing solution for the first time.
● Work on an existing solution that you have worked on before.
● Add a new project to an existing solution.

This chapter explains how you must perform each of these tasks together with some
other tasks that you may occasionally need to perform, such as renaming projects,
files and folders within source controlled VSS projects and using VSS in a multiple
checkout mode.

 Chapter 6: Working with Visual SourceSafe™ 57

Creating a New Solution and Project
In this scenario, you want to create a brand new solution that initially contains a
single project and then add the solution and project to VSS. The process of creating
both Web and non-Web project types and adopting the recommended folder structure
is described in Chapter 3, “Structuring Solutions and Projects.” The following
procedures assume you have created solutions and projects in accordance with the
prescribed structure.

Note: Each project file contains a Globally Unique Identifier (GUID) to uniquely identify that project
within a solution. Therefore, you should never copy and rename an existing project file to create a
new project, as both will share the same GUID and cannot be distinguished from one another by
Visual Studio.NET. Problems will ensue if you include both projects in the same solution.

How to Check In a New Solution to VSS
After you use Visual Studio .NET to create a new solution and project file, and after
some initial development, you must check in the solution and project to VSS.

To add a new solution to source control �

1. On the File menu, point to Source Control, and then click Add Solution to Source
Control. If you are adding an ASP.NET Web application to VSS, the following
Source Control message box appears.

2. Select the Don’t show this dialog box again check box, and then click Continue to
close this dialog box.

3. You may then be prompted with the VSS login dialog box. This happens only if
your VSS administrator has not configured VSS to use automatic network user
login. Enter your VSS user name, and then click the Browse button to locate the
VSS database on the VSS server. Select the Srcsafe.ini file that identifies your
development database on your VSS server’s file share.

Note: If automatic network user login is configured, you do not see the VSS login dialog box.
In this event, if you want to change VSS database, run the VSS Explorer, and then click Open
SourceSafe Database on the File menu. Then browse to the appropriate Srcsafe.ini file.

58 Team Development with Visual Studio .NET and Visual SourceSafe

4. You can then enter a meaningful name for the database—one that represents the
name of the system that you are currently working on. Click Open, and then click
OK to connect to the database.

5. In the Add to SourceSafe Project dialog box, expand Projects, and then select
your system name.

6. Click the Create button. This creates a VSS project folder specifically for your
solution file. The VSS folder has the same name as your Visual Studio .NET
solution.

7. Click OK.

Important: If you are adding an ASP.NET Web application to VSS, you are prompted to add each
Visual Studio .NET project to VSS. For Web applications only (the following two steps are not
required for non-Web applications):

a. Expand Projects, expand your system name, and then click your solution name. Click OK.

b. You are prompted to create a new VSS folder to contain the project. Click Yes to create the
new folder. This process repeats for all Web projects in the solution.

Your solution, project, and source files are now placed under source control within
VSS. Notice that a padlock symbol is displayed in the Solution Explorer window next
to all of the files that have been added to VSS. This indicates that they are currently
locked within VSS. Your local working files have been assigned the read-only
attribute to prevent you from working with them until you check out the files
from VSS.

Check Out on Edit
If you subsequently start to edit a locked file, Visual Studio .NET has an automatic
check out on edit feature that prompts you to check out the file. If you decide you
want to continue and edit the file, click the Check Out button in the Check Out For
Edit dialog box. The file will be automatically checked out for you. You can
subsequently right-click the file within Solution Explorer and click Check In,
to check in the file to VSS.

Working on an Existing Solution for the First Time
In this scenario, another team member has created a solution and added it to VSS.
You now need to obtain the solution for the first time in order to work on one of the
projects contained within that solution.

� To obtain an existing solution from VSS

1. Start Visual Studio .NET.
2. On the File menu, point to Source Control, and then click Open From Source

Control. You are prompted with the VSS login dialog box.

 Chapter 6: Working with Visual SourceSafe™ 59

3. Enter your VSS user name, and then click the Browse button to locate the
VSS database on the VSS server. Select the Srcsafe.ini file that identifies your
development database on your VSS server’s file share. If you have previously
connected to this database and selected Open this database the next time I run
Visual SourceSafe, the database will be pre-selected.

4. Click OK to connect to the database. The Create local project from SourceSafe
dialog box displays.

5. Expand Projects, expand your system name folder, and then click the solution
you want to obtain. In the Create a new project in the folder edit box, enter
\Projects\SystemName\SolutionName, where SolutionName is the name of
your particular solution. This ensures that you have the correct local file system
structure.

6. Click OK. If the local solution folder doesn’t exist, you will be prompted to create
it. Click Yes to All to create the solution folder. For non-Web applications, this also
creates the project subfolders.

7. For ASP.NET Web applications, you are prompted by the Set Project Location
dialog box to enter a working location for the Web application. This allows you to
specify a URL which identifies the path to the Web application’s virtual root. By
default, Visual Studio .NET assumes http://localhost/<projectname>. If you click
OK to accept the default location, the new virtual root is created beneath your
default Web site (typically \Inetpub\wwwroot). This is not the recommended
location when you are in a team environment, although you do want to create
the application locally. To create a virtual root in a project subfolder beneath the
solution folder, perform the following steps before you click OK to accept the
Set Project Location dialog box:
a. Use Microsoft Windows Explorer to create a project subfolder

beneath the solution folder which has been created for you at
\Projects\SystemName\SolutionName. Use the project name to name
this subfolder.

b. Use Windows Explorer or Microsoft Internet Information Services (IIS) to set
this folder as an IIS virtual root.

c. Return to Visual Studio .NET and enter http://localhost/projectname/ as the
working location.

Important: You must overtype and change the existing Uniform Resource Locator (URL) or the
dialog box assumes the address still maps to a folder beneath \inetpub\wwwroot).

d. Click OK to close the Set Project Location dialog box. This places the project
and Web application files in the virtual root, which maps to a subfolder one
level beneath your solution folder.

60 Team Development with Visual Studio .NET and Visual SourceSafe

8. The solution, project, and source files are now downloaded to your hard disk.
However, note that they remain locked in VSS. The padlock symbol next to each
file in Solution Explorer confirms this.

9. You can now either select one or more of the files within Solution Explorer, right-
click, and click Check Out, or simply start editing the source files because the
check out on edit feature of Visual Studio automatically prompts you when a file
needs to be checked out.

10. After you complete your local development, you can either check in each file
individually or use the Pending Checkins window within the integrated
development environment (IDE). You may need to click Pending Checkins from
the View menu to display this window.

Note: If you exit the solution without checking in the files, you are not prompted. The files remain
checked out in your name.

Working on an Existing Solution for a Subsequent Time
In this scenario, you want to work on an existing source controlled solution that you
have worked on at least once before. As a result, your local file system contains a
solution and project folder with read-only solution and project files.

� To obtain an existing solution from VSS

1. Start Visual Studio .NET.
2. If the required solution is displayed on the start page, click the solution.

Otherwise, open the solution by browsing to the solution (.sln) file on your local
file system.

3. To ensure you have the most up-to-date set of project files, you can select the
solution within Solution Explorer, right-click it, and then click Get Latest Version
(Recursive).

Important: When working on an existing solution that you have previously obtained from VSS, you
should open the local solution file. Do not use the Open From Source Control menu item in this
scenario. If you do so, Visual Studio .NET detects the presence of local solution and project files and
you are prompted to overwrite these files. Also, if you have one or more of these files checked out,
you are prompted to either replace the local files with versions from VSS, or to leave the local
versions untouched. Opening the local solution file is a simpler and less error prone approach.

 Chapter 6: Working with Visual SourceSafe™ 61

Adding a New Project to an Existing Solution
In this scenario, you want to add a new project to an existing solution. The following
procedure assumes that you have obtained the solution from VSS as described earlier.

� To add a new project and add it to VSS

1. On the File menu, point to Add Project, and then click New Project.
2. Select the appropriate project type and template, and then enter a name for the

project.
3. For ASP.NET Web projects, you must manually create a project subfolder beneath

the solution folder and mark it as an IIS virtual root. For non-Web applications, the
new project folder defaults to a location one level beneath the solution folder.

4. Click OK. Visual Studio .NET automatically prompts you to check out the solution
file (if you haven’t already got it checked out) because it needs to add the new
project details to that file.

5. Click Check Out. The new project is added to the solution and appears in Solution
Explorer. Notice that each file in the new project has a tick symbol displayed next
to it. This indicates that the files are not locked and are available for edit.

6. After you complete your initial development work with the new project files, they
must be checked in to VSS. To add the entire solution (with the new project) back
into VSS, right-click the solution in Solution Explorer, and then click Check In.

7. The Check In dialog box displays all the files currently checked out. This includes
the new project file and source files. To check in all the files, click Check In.

Checking In Source Files to VSS
After your solution and project are in VSS, you need to check-in only those files that
you have updated. To do this you can right-click an individual file within Solution
Explorer and click Check In. Alternatively, you can see a list of all files that need to be
checked in by using the Pending Checkins page that is displayed at the bottom of the
IDE. You can easily check in multiple files using this page.

Only Check In Files When They Are Ready to Build
Generally, you should check in projects and files to VSS only when you are confident
that they are fully unit tested and are unlikely to cause integration problems when
built alongside other project updates made by fellow team members.

Important: This may mean that some files are not checked in to VSS for several days. As a result,
make sure you have adequate daily backup procedures in place for all of your development
workstations.

62 Team Development with Visual Studio .NET and Visual SourceSafe

Note: If you work with a change management system that natively supports the concept of
promotion levels, you may prefer to check in files at regular intervals, regardless of their current
state of completeness. Change management systems that support promotion levels usually provide
an initial “Development” level specifically for this purpose. The build process never extracts source
files from this level. Instead, it operates with source files associated with a higher promotion level
such as “Integration.” Developers or the build coordinator promote files to this level only when they
are ready to be integrated with the overall system build.

Renaming and Deleting Files and Folders
On occasion, you may need to rename and/or delete individual files or folders that
are within source controlled VSS projects. Rename or deletions that are performed
with the Visual Studio .NET IDE are not automatically propagated to VSS and
vice-versa. As a result you must use VSS Explorer in conjunction with Visual
Studio .NET.

Renaming a File
The following procedure describes how to rename a file in a Visual Studio .NET
project.

� To rename an existing file contained within a Visual Studio .NET project

1. Use VSS Explorer to ensure that the file you want to rename is not checked out.
2. Use VSS Explorer to rename the file.
3. Use Visual Studio .NET to open the solution that contains the project with the file

to rename. The file that you have renamed within VSS appears checked out within
Solution Explorer. If you already have the project loaded within Visual Studio
.NET, select the project file within Solution Explorer, right-click it, and then click
Get Latest Version (Recursive).

4. Select the file within Solution Explorer, right-click it, and then click Rename.
Rename the file to match the new name within VSS.

5. You will be prompted to check out the project file because it contains a file
inventory. In the Check Out For Edit dialog box, click Check Out.

6. In the Source Control message box, click Continue with Change.
7. The file now appears locked within Solution Explorer. Check in the project file

to VSS.

 Chapter 6: Working with Visual SourceSafe™ 63

Renaming a Project
When you rename a project you should rename the following items to retain a
consistent naming convention, as described in Carefully Consider Naming
Conventions in Chapter 3, “Structuring Solutions and Projects”:
● The Visual Studio .NET project file
● The local file system folder that contains the project file
● The VSS project folder
● The output assembly name
● The root namespace used for the project

� To rename a project

1. Ensure that the following files are not checked out: the project file, the solution file
that contains the project file, or any file within the project.

2. Check out the solution file. Select the solution within the Visual Studio .NET
Solution Explorer, right-click it, and then click Check Out. Make sure that only the
solution file (and no project files) is selected in the Check Out dialog box, and then
click Check Out.

3. You must now unbind the project from the VSS database. Within Visual Studio
.NET, point to Source Control on the File menu, and then click Change Source
Control.

4. Select the project you want to rename (this may also automatically select the
solution) and then click the Unbind button. In the resulting Source Control
message box, click Unbind.

5. Click OK to close the Change Source Control dialog box. The project file
(and possibly the solution file) is now no longer bound to the VSS database.

6. Within Solution Explorer, right-click the project you want to rename, and then
click Rename. Type the new project name.

7. On the File menu, click Save All to ensure the local solution file is updated.
8. You must now temporarily remove the project from the solution to allow you to

rename the local project folder. Right-click the renamed project within Solution
Explorer and select Remove. In the resulting Microsoft Development
Environment message box, click OK.

9. Use Windows Explorer to rename the local file system project folder to match the
renamed project file name.

10. If you are renaming a Web application, use Windows Explorer or IIS to establish
the renamed folder as an IIS virtual root. Also, use Notepad to edit the .webinfo
file within the project folder and set the URLPath attribute to point to the project’s
new virtual root folder.

64 Team Development with Visual Studio .NET and Visual SourceSafe

11. Return to Visual Studio .NET. Right-click the solution file within Solution
Explorer, point to Add, and then click Existing Project. Browse to the renamed
local project folder, select the renamed project file, and then click Open.

12. Use VSS Explorer to rename the VSS project folder to match the renamed project.
13. You can now rebind the project to the VSS database. Return to Visual Studio .NET,

point to Source Control on the File menu, and then click Change Source Control.
14. If the solution file is currently unbound, select it within the Change Source

Control dialog box, and then click Bind. You may need to log into VSS at this
point. Navigate to the solution folder within VSS, select it, and then click OK.

15. Select the renamed project within the Change Source Control dialog box, and
then click Bind. Log into VSS if required.

16. Navigate to the renamed project folder within VSS, select it, and then click OK.
17. Click OK to close the Change Source Control dialog box. In the resulting Source

Control message box, click OK.
18. Use the Pending Checkins window to check in the solution and renamed project

file to VSS.
19. You should now check out the relevant source files and update the root namespace

to match the project name.
20. You should also check out the project file and update project properties, including

the Assembly Name which controls the name of the output dynamic-link library
(DLL) or executable file. Also, for C# projects, update the Default Namespace and
for Microsoft Visual Basic® .NET projects, the Root Namespace, because these
govern the default namespaces into which new types are added.

� To tidy up the old project files

The old project file, the associated source control metadata file and for Web
applications, the Web service dynamic discovery file remain in the renamed VSS
project folder and also within the renamed project folder on your local file system.
You should tidy up these items by deleting them:
1. Use VSS Explorer to delete the old project file (*.csproj.proj), the old Visual Studio

Source Control Project Metadata file (*.csproj.vspcc) and for Web applications, the
old Web service dynamic discovery file (*.vsdisco) from the renamed project
folder. You may need to refresh the view within VSS Explorer to see the new
project files.

2. Use Windows Explorer to delete the old Visual Studio Source Control Project
Metadata file (*.csproj.vspcc) and for Web applications, the old Web service
dynamic discovery file (*.vsdicso) from the locally renamed file system project
folder. Note that these files are read-only on your local file system.

3. For Web applications, use IIS to remove the old virtual root that has now been
renamed.

 Chapter 6: Working with Visual SourceSafe™ 65

Deleting a File from VSS
This procedure assumes that you have opened a solution from VSS that contains at
least one project and the file you want to delete is contained within a project.

�

�

To delete the file

1. Ensure that the file you want to delete is not checked out.
2. In Solution Explorer, right-click the file you want to delete, and then click

Check Out.
3. In the Check Out confirmation dialog box, click Check Out. If the file is already

checked out by someone else, you must wait until the file is available exclusively
to you.

4. In Solution Explorer, right-click the file, and then click Delete.
5. In the resulting Microsoft Development Environment message box that confirms

you want the file to be deleted permanently, click OK.
6. You will be prompted to check out the project file because it contains a file

inventory. In the Check Out For Edit dialog box, click Check Out.
7. Check in the project file to VSS.
8. Use VSS Explorer to delete the file (which appears checked out) from the VSS

database. In the resulting Microsoft Visual SourceSafe message boxes, click Yes
to confirm that the file should be deleted.

Deleting a Project from VSS
The following procedure describes how to delete a project from VSS.

To delete a project from VSS

1. In Solution Explorer, right-click the project you want to delete, and then
click Remove.

2. In the Microsoft Development Environment confirmation message box, click OK.
3. You will be prompted to check out the solution file because it contains a project

list. In the Check Out for Edit dialog box, click Check Out.
4. Check in the solution to VSS.
5. Use VSS Explorer to delete the project from the VSS database.
6. Delete the project folder from your local hard disk and for a Web application,

use IIS to remove the corresponding virtual root.

66 Team Development with Visual Studio .NET and Visual SourceSafe

Deleting a Solution from VSS
The following procedure describes how to delete a solution from VSS.

� To delete a solution (and all contained projects) from VSS

1. In VSS Explorer, make sure none of the following files are checked out:
the solution file, any subproject, or the project file.

2. Use VSS Explorer to delete the solution from VSS.
3. Delete the solution from your local hard disk.

Note: You should communicate the fact that you are about to delete a solution to other team
members to allow them to unload the solution if they currently have it loaded within Visual Studio
.NET. If any team member has the solution loaded (not checked out) when you delete it, they will
receive VSS errors if they subsequently attempt to check out a file that is contained within the
solution.

Multiple Checkout
Usually, only one user at a time is allowed to check out a file from VSS. However, you
can use the VSS Administration tool to configure VSS to allow multiple users to check
out the same file simultaneously.

This can be useful in a team environment because it can help to relieve contention
on commonly accessed files such as project files. However, if you use this feature,
it requires careful coordination between individual team members, and you must
be careful to merge changes correctly when you check in the file to VSS.

� To work with a file in multiple checkout mode

1. Use Solution Explorer to check out the required file. Visual Studio .NET warns you
that the file is checked out by another user. In the resulting Microsoft Visual
SourceSafe message box, click Yes.

2. Make changes to your copy of the file and then compile and unit test your project.
3. Before you check in the file, you should merge any changes made by other

developers and locally test those changes in conjunction with your own. To do
this, right-click the file in Solution Explorer, and then click Get Latest Version.
In the resulting Microsoft Visual SourceSafe message box, click Merge. VSS
automatically merges the version from VSS with your local working copy. You can
now compile and test the merged file.

4. When your tests are complete, use Visual Studio .NET to check in the file to VSS.
If the file has been merged, VSS prompts you to check whether all conflicts have
been properly resolved. Click Yes in response to the prompt and the file is checked
back into VSS.

 Chapter 6: Working with Visual SourceSafe™ 67

Checking Out Solution Files
Solution files are particularly difficult to check out simultaneously because they
contain a project count which can make the merge process difficult and prone to
error. You should generally avoid checking out solution files if another developer
already has the file checked out.

Instead, aim to check out a solution file (for example, to add new projects) for short
periods at a time to reduce contention on the file. Coordinate with other developers if
contention arises and wait for the solution file to become exclusively available before
checking it out.

More Information
For more information about multiple check out, see “Check Out Multiple Files“
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/guides/html
/vstskCheck_Out_Multiple_Files.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/guides/html/vstskCheck_Out_Multiple_Files.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/guides/html/vstskCheck_Out_Multiple_Files.asp

7
Setting Up and Maintaining the
Team Environment

This chapter provides guidance to help you set up your team development
environment. In summary, the environment building blocks consist of all of the
following:
● Developer workstations
● A Microsoft® Visual SourceSafe™ (VSS) server to maintain the source code control

database or databases
● A backup server to maintain VSS database backups
● Computers running Microsoft SQL Server™ for development and test databases
● Web servers for development and test Web services
● A build server on which an automated build script is used to generate daily builds

You will also typically require one or more separate test environments; for example,
a physically isolated stress test environment that can be used to run scalability and
performance tests. The test environments are out of the scope of this document and
are not discussed further.

 Chapter 7: Setting Up and Maintaining the Team Environment 69

The infrastructure for a team development environment is illustrated in Figure 7.1.

100Mb Ethernet

Developer Workstations

IIS
DC

Workstation Workstation Workstation

Server Server ServerServer

VSS
MSDN

BackupBuild

SQL Servers

Server

Dev

Server

Test

Web Servers

Server

Dev

Server

Test

100Mb Ethernet

Stress Test
Environment

Stress Hub

Figure 7.1
Team Development Environment—Infrastructure

Creating a Development Domain
Defining the development environment for your organization is not a simple task.
You want to adhere closely to your existing corporate standards for user accounts
and workstation builds, but at the same time you know that developers need more
privilege on their workstations in order to:
● Install updates or operating system service packs.
● Manage Microsoft Internet Information Services (IIS) locally for application testing

and fine-tuning.
● Debug ASP.NET Web applications.

70 Team Development with Visual Studio .NET and Visual SourceSafe

The first step is to decide whether or not to put the development team in the
corporate domain or in its own domain. There is no single right or wrong answer.
To a large degree, the decision depends upon your corporate security policy.
The desirable model is one that your organization is willing to accept and invest
in and one that can be maintained properly by existing systems administrators.

Use the following scenarios as guidance to help you during your design process:

Standalone Domain with No Trust Relationship
The following are some of the features of using a standalone domain with no trust
relationship:
● This offers the best security model because your corporate users are not able to

access the development environment.
● A separate network means that you have flexibility and isolation when you need

to perform load testing for capacity planning. You don’t need to worry about
impacting critical services.

● To use services in the corporate domain, for example e-mail and the intranet,
developers can use a virtual private network (VPN) connection to connect to the
corporate network.

● You can create a VPN server with Microsoft Windows® 2000 operating system
and Routing and Remote Access Services, or you can deploy Microsoft Internet
Security and Acceleration (ISA) Server, or third-party solutions.

● This model is more expensive because separate infrastructure servers—domain
controllers, DNS, WINS, DHCP, and so on, are required (possibly with additional
redundancy configurations).

Standalone Domain with Trust Relationships
The following are some of the features of using a standalone domain with trust
relationships:
● This model is more convenient because no VPN solution is necessary.
● If you set up development user accounts within the development domain, the

corporate domain has to trust the development domain in order to give access to
services, which may be against your corporate security policy. Corporate users
cannot access the development environment.

● If you set up development user accounts within the corporate domain, the
development domain has to trust the corporate domain, which opens up the
potential for hacking.

● With proper planning and pilot-testing, this option should work in most
organizations.

 Chapter 7: Setting Up and Maintaining the Team Environment 71

Part of the Corporate Domain
The following are some of the features of using the corporate domain:
● This is the most convenient option because there is no domain separation.
● Developers can use all of the existing corporate infrastructure and services.
● Users might not be granted local administrator rights on their workstations under

corporate security policy. This causes problems for developers because you must
be a local administrator in order to be able to debug an ASP.NET Web application
on your development workstation.

● Standard corporate network and security policies could hinder the development
process. For example, developers may be not be allowed to install service packs
unless they pass the corporate operations model.

The remainder of this section describes the roles of each of the computers in the
development environment.

The VSS Server
This server is used to maintain one or more VSS databases that contain the source
controlled solutions, project files, and source files for all of your team developments.

The VSS server is also a good candidate to host the Microsoft MSDN® Library for
developer reference material. For more information, see article Q271776, “HOWTO:
Create an MSDN Library Shared Install Point on the Network,” in the Microsoft
Knowledge Base at http://search.support.microsoft.com/.

Hardware Requirements
The minimum recommended system specification for a VSS server is documented in
the VSS readme file. However, in anything but the very smallest team environments,
you will want a more powerful system, closer to the recommended specification for a
Visual Studio .NET developer workstation. This is documented in the Build Server
section later in this chapter.

Remember that the amount of time taken to perform routine VSS database
administration tasks is greatly affected by the processor speed and amount of
available RAM. You should also aim for a hard disk capacity approximately twice
the size of your VSS database.

Software Requirements
The following software is required on the VSS server:
● VSS version 6.0c. This ships with Visual Studio .NET Enterprise Architect and

Enterprise Developer versions. It is also available via MSDN on CD/DVD or as
a subscriber download.

● Appropriate backup software. The VSS database must be backed up on a regular
basis, due to its critical role in the team development process. Use your current
backup software and procedures to backup the VSS database.

http://search.support.microsoft.com/

72 Team Development with Visual Studio .NET and Visual SourceSafe

Build Server
The build server hosts the build script that allows you to generate specific versions of
your system. In addition to the build script, the build server also maintains a set of
shared folders that contain the latest output from the most recent build operation,
together with previous versions, organized by build number. This allows developers
to reference the latest inner-system assembly versions.

For more information about how developers must reference assemblies in a team
development environment, see Referencing Assemblies in Chapter 4, “Managing
Dependencies.”

A recommended folder structure for organizing build output is discussed in
Chapter 5, “The Build Process.” The local folder structure used to maintain Visual
Studio .NET solutions, projects, and source files should be consistent across the build
server and developer workstations. For more information, see Chapter 3,
“Structuring Solutions and Projects.”

Hardware Requirements
The following table lists the minimum recommended requirements for Visual Studio
.NET that the build server must meet.

Build Server Minimum Requirements
Computer/Processor PC with a Pentium II-class processor, 450 MHz

(recommended: Pentium III-class, 600 MHz)

Memory Microsoft Windows NT® 4.0 Workstation—64 MB,
Windows NT 4.0 Server—160 MB
(recommended: 96 for Workstation, 192 for Server)

Windows 2000 Professional—96 MB;
Windows 2000 Server—192 MB
(recommended: 128MB for Professional, 256 MB for Server)

Windows XP Professional—160 MB
(recommended: 192 MB)

Available Hard Disk Space 600 MB on system drive, 3 GB installation drive

Drive CD-ROM drive

Display 800 x 600, 256 colors (recommended: high color 16-bit)

Operating System Windows 2000, Windows XP, and Windows NT 4.0

Peripherals CD-ROM or DVD-ROM Drive. Microsoft mouse or compatible pointing
device

 Chapter 7: Setting Up and Maintaining the Team Environment 73

Software Requirements
The following software is required on the build server:
● Visual Studio .NET
● Visual SourceSafe 6.0c (client)
● Any additional resource required by the system, such as IIS or Message Queuing.

Developer Workstations
Individual developer workstations must be set up with a consistent file system folder
structure and one that matches the build server structure—particularly for the folders
that contain Visual Studio .NET solutions and projects.

Use Imaging to Create Developer Workstations
To save time with the configuration of multiple identical development workstations,
after you install all of the required applications and tools, consider using Sysprep.exe
to create an image of the workstation. You can then deploy the workstation image to
other computers with third-party disk-imaging software. The advantage of using
Sysprep.exe is that it includes a mini-setup wizard, which detects the actual hardware
installed in the new workstation, and can therefore handle hardware inconsistencies,
such as different video adapters or network adapters.

It is recommended that you store all user data (including solutions and projects) on
a separate partition or physical disk. This way, when there is a major update to the
image, you can re-install the image over the existing drive C. You can deploy minor
updates and additional software through Group Policy in Windows 2000 Active
Directory Services.

Hardware Requirements
Workstations must meet the minimum recommended requirements for Visual Studio
.NET. As a result, developer workstations have the same hardware requirements as
the build server, as discussed in the Build Server section earlier in this chapter.

Software Requirements
The following software is required on development workstations:
● Visual Studio .NET
● Visual SourceSafe 6.0c client components
● SQL Server 2000 Developer Edition
● MSDN Library (Client)

Note: If your development workstations run Windows XP, make sure IIS is installed to allow local Web
development. A default installation of Windows XP doesn’t result in the installation of IIS.

74 Team Development with Visual Studio .NET and Visual SourceSafe

Visual Studio Enterprise Templates
You can use Visual Studio Enterprise Templates to help encourage good development
procedures and standard practices across development projects. They are particularly
useful when applied to large scale distributed system developments in situations
where multiple projects will be constructed using a common application architecture.

Enterprise Templates provide architects with three capabilities they can use to help
developers be more successful building applications on the .NET platform:
1. Package an architect supplied framework of existing code and components in

a way that integrates it into Visual Studio .NET, providing developers with a
familiar design experience. Architects can use this capability to provide
application infrastructure that should be common and consistent across projects,
in areas such as security, error handling, and application instrumentation.

2. Capture architecture and implementation rules and apply them as “active”
guidance while developers are building the application. Architects can use these
rules to filter out options that are not relevant to the project at hand. These rules
can provide immediate reminders when developers add items, references,
interfaces, class members, or property values to inappropriate parts of the
application, helping them avoid common problems.

3. Help architects provide developers with relevant Help topics on a “just-in-time”
basis to reduce the need to read mountains of documentation before they can
begin to write code.

For more information about Enterprise Templates, see the “Enterprise Templates
for Distributed Applications” topic in the Visual Studio .NET section of the MSDN
library.

Backup Server
The backup server is used to maintain a backup of the VSS database. You should
backup your VSS databases on a regular (for example, daily) basis.

SQL Servers
SQL Server 2000 Enterprise Edition is installed on these servers. They are used to
maintain the individual databases required by the systems that are currently under
development, support, and maintenance.

Note that an individual server may be used to host several database instances, for
example an integration test and a user test database. This depends to a large degree
on the size of your databases and the capacity of your servers.

For further information about how database versioning issues should be addressed
and how developers are recommended to connect to databases on this server, see
Referencing Databases in Chapter 4, “Managing Dependencies.”

 Chapter 7: Setting Up and Maintaining the Team Environment 75

Web Server
Web servers host XML Web services that are currently under development. While
the development teams responsible for Web services develop them on their local
workstations using local instances of IIS, the Web server allows the services to be
published centrally, for other developers or development teams to access from client
projects. For more information about working with Web services, see Referencing
Web Services in Chapter 4, “Managing Dependencies.”

Web servers within the team development environment are also used to host Web
applications to support integration, system testing, and user testing.

Operating System Requirements
The operating system requirements for a Web server that hosts ASP.NET Web
applications and Web services developed with Visual Studio .NET are the following:
● Windows 2000, Windows XP, or Windows .NET Server.
● It is also recommended that you install the Web server on a computer formatted

with the NTFS file system.
● The Web server must be running IIS 5.0 or 6.0.

For further details, see setup\WebServer.htm on the Visual Studio .NET CD1
or DVD.

Installing and Administering VSS
VSS 6.0c is supplied on a separate disc within the Visual Studio .NET Enterprise box
and is not installed by default. You must install VSS on the server and then install the
VSS client components on each computer that requires access to a VSS database—
typically the development workstations and build server.

The following sections outline guidelines you should follow when installing VSS on
your server.

Create a Shared Database on the Server
Run the Setup program on your server and select the shared database installation
option. This installs administration tools and the network setup program
(Netsetup.exe) that allows VSS users to install the client software.

Share the VSS Installation Folder with Read Access
Share out your VSS installation folder with read access. This allows developers to run
Netsetup.exe from the VSS folder. Note that the default VSS installation folder is
\Program Files\Microsoft Visual Studio\Vss.

76 Team Development with Visual Studio .NET and Visual SourceSafe

Create at Least One New Database for your .NET Development Project
Use the VSS Administration tool to create a new database for your .NET development
project. It is recommended that you create a new database (rather than use the default
one) so that you can secure the default database and administration tools (located in
the Vss\Win32 folder) separately. This allows you to restrict who has access to the
administration tools. Most users should be allowed to connect only to the new
database and should be prevented from accessing the administration tools.

Don’t create new databases beneath \Program Files. Create VSS databases beneath a
separate shared folder, such as \VSS Databases.

Consider Creating Additional VSS Databases
Consider creating additional VSS databases (on the same server but within separate
file shares) when the size of a single database approaches 5 GB in size. With this size
of database, the administration tools begin to take an excessive amount of time
(several hours) to perform their work.

You should also consider using separate databases for completely independent
development projects. If you split your Visual Studio .NET solutions and projects into
separate VSS databases, you benefit from the following advantages:
● It allows you to improve security by more precisely defining which users can

access which projects. A user that has access to a single VSS database is able to
view and manipulate all of the VSS projects it contains.

● Routine maintenance does not impact all projects. Maintenance such as backup
requires that the database be locked, which prevents regular (non-administrators)
from accessing the database.

● If you experience corruption within a database, you need to take it offline to
rectify the corruption. With separate databases, you impact only the developers
who access the affected database and you do not stop the workflow of all of your
developers.

● When a development project ends, you can easily archive the project’s database.

Share the Database Folder and Establish the Appropriate Permissions
Share the new database folder and grant your VSS users the full control permission.
Your VSS users include developers and an account used by the automated build
process.

Create a Windows group for all users who are allowed access to the VSS
development database. Allow members of this group to access the development
database, by securing your database folder.

If you don’t want to grant users the full control permission and require
tighter security control, see article Q131022, “INFO: Required Network Rights
for the SourceSafe Directories,” in the Microsoft Knowledge Base at
http://search.support.microsoft.com/.

http://search.support.microsoft.com/

 Chapter 7: Setting Up and Maintaining the Team Environment 77

Consider Using VSS Project Security
Consider using the VSS Administration tool to enable project security and remove
the Destroy right for all developers. This prevents developers from permanently
destroying projects within VSS. The VSS administrator is able to recover any project
that a developer may delete.

With project security enabled, the administrator must purge the database of all
deleted items as part of regular maintenance, although this can be automated by
a maintenance script.

For more information about default and project security, see “Security Access Rights“
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/guides/html
/vstskSecurity_Access_Rights.asp.

Add User Accounts for Developers and the Build Script
Use the VSS Administration tool to open the new database or databases and add the
required users with appropriate passwords.

Remember to set up one VSS user for each developer and another for the build
process. If you are in a domain environment, it is recommended that you make the
user name the same as the domain name. Be sure the network name is used for user
login. On the Tools menu, click Options, and then select the Use network name for
automatic user login check box.

Restrict Access to Administration Tools
Create a Windows VSS administration group and use this to restrict access to the
Vss\Win32 folder. This folder contains the VSS administration tools and you should
restrict developer access to these tools.

Finding and Repairing Data Corruption
VSS ships with the Analyze tool (located in the Vss\Win32 folder) that can be used
to check for and correct data corruption problems. You should use Analyze as
frequently as is practical—once a week is recommended, or at a minimum, once
a month. Analyze checks all the files in the VSS Data directory for corruption or
disconnected links and often repairs these with proper switch settings.

There are a number of reasons why you may experience database corruption.
The most common reasons include:
● General network problems, such as using an unreliable remote connection and

dropping the connection mid-way through a file check in.
● Running out of disk space.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/guides/html/vstskSecurity_Access_Rights.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/guides/html/vstskSecurity_Access_Rights.asp

78 Team Development with Visual Studio .NET and Visual SourceSafe

Analyze can be slow to run although this depends on the content and structure of the
database, such as the amount of sharing and branching, and the total number of files.
For best performance, all users should log off VSS before you run Analyze.exe. If you
use the -F switch to repair problems, users must log off.

Note: Due to the amount of file I/O required, you can dramatically improve performance by running
Analyze locally (that is, on the server) rather than across the network. You should also ensure that
no virus protection software is currently running.

More Information
For a full list of command line switches accepted by Analyze.exe, see “Analyze“
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/guides/html
/vsgrfSS_ANALYZE.asp.

Consider Installing Fault Tolerant Storage
Redundant array of independent disks (RAID) technology minimizes data loss due to
problems accessing a hard disk. RAID is a fault-tolerant disk configuration in which
part of the physical storage capacity contains redundant information about the data
stored on the disks. You can regenerate the data using this redundant information if
one of the disks or the access path to it fails, or if a sector on the disk cannot be read.
● Install RAID Level 1 for the operating system and logs.
● Install RAID Level 5 or RAID 0+1 for data such as your VSS database.

More Information
For information about how to make your server more reliable, see the following
resources:
● “Increasing System Reliability and Availability with Windows 2000” at

http://www.microsoft.com/windows2000/techinfo/howitworks/management/relavail.asp
● “Deploying Windows NT Server for High Availability” at

http://www.microsoft.com/ntserver/techresources/deployment/ntserver/highavail1.asp
● “HOW TO: Set up SourceSafe for Replication under Windows NT” at

http://support.microsoft.com/support/kb/articles/q128/6/36.asp

Installing VSS on Clients
To install the VSS client, simply run Netsetup.exe from the network share on any
computer that requires VSS access (for example, development workstations and the
build server). This enables the integrated source control features within the Visual
Studio .NET integrated development environment (IDE). This also enables the
Source Control menu on the File menu.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/guides/html/vsgrfSS_ANALYZE.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/guides/html/vsgrfSS_ANALYZE.asp
http://www.microsoft.com/windows2000/techinfo/howitworks/management/relavail.asp
http://www.microsoft.com/ntserver/techresources/deployment/ntserver/highavail1.asp
http://support.microsoft.com/support/kb/articles/q128/6/36.asp

 Chapter 7: Setting Up and Maintaining the Team Environment 79

Consider Using VSS Shadow Directories
A VSS shadow is a directory on a central server that mirrors the latest contents of
a VSS project. Whenever a developer updates a file within the VSS project, it is
automatically copied to the shadow directory.

If you need users who do not have access to VSS to be able to view source code,
consider using shadow directories. For example, you may want members of your
test team to be able to view source code to assist with the testing process.

More Information
For a full list of command line switches accepted by Analyze.exe, see “Analyze“
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/guides/html
/vsgrfSS_ANALYZE.asp.

For general VSS best practices, see “Microsoft Visual SourceSafe Best Practices” at
http://msdn.microsoft.com/library/?url=/library/en-us/dnvss/html/vssbest.asp?frame=true.

Microsoft occasionally updates the Analyze tool to include more checking or to
improve performance. For the latest version of Analyze, visit the Microsoft Visual
SourceSafe Web site located at http://msdn.microsoft.com/ssafe/default.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/guides/html/vsgrfSS_ANALYZE.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/guides/html/vsgrfSS_ANALYZE.asp
http://msdn.microsoft.com/library/?url=/library/en-us/dnvss/html/vssbest.asp?frame=true
http://msdn.microsoft.com/ssafe/default.asp

Appendix
BuildIt—An Automated Build Tool
for Visual Studio .NET

Summary: BuildIt is a Microsoft® .NET console application that automates the
build process outlined in the patterns & practices article “Team Development
with Visual Studio .NET and Visual SourceSafe” in the MSDN® Library at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp.
BuildIt is designed, developed, and tested by Sapient Corporation and it is reviewed
by Microsoft, including team members of Microsoft patterns & practices and Visual
Studio® .NET development system.

Using BuildIt:
● Eliminates the time required to create, test, and maintain a custom build script.
● Makes a team’s build process more repeatable and consistent.

BuildIt is designed to jump-start the build process used for development of .NET
distributed applications. The downloadable program provides full source code and
comprehensive documentation for Microsoft Visual C#® development tool and
Microsoft Visual Basic® .NET development system.

Note: BuildIt currently supports building solutions that contain setup projects developed with Visual
Basic .NET, Visual C#, and Visual Studio .NET. It has not been tested with projects written in other
.NET languages or with other setup projects (for example, setup projects from Wise or InstallShield).

While BuildIt has undergone testing and reviews and is considered a robust code set,
the code and documentation is provided “as-is” for you to use and extend.

This document includes the following sections:
● Downloading and Installing BuildIt
● Testing Your Installation
● User’s Guide
● Deployment and Operations

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp

 Appendix: BuildIt—An Automated Build Tool for Visual Studio .NET 81

● Known Issues
● Design and Implementation
● Class Reference
● Frequently Asked Questions
● Appendix Summary

Downloading and Installing BuildIt
To download BuildIt, go to http://microsoft.com/downloads/details.aspx?FamilyId=
B32497B0-77F7-4831-9C55-58BF3962163E&displaylang=en.

The installation process creates a Microsoft Application Blocks for .NET submenu
on your Programs menu. On the Microsoft Application Blocks for .NET submenu,
there is a Sapient BuildIt submenu that includes options to launch the BuildIt Visual
Studio .NET solution.

Testing Your Installation
The following steps to build two sample solutions found in Program
Files\BuildIt\Code\BuildItTest help verify that BuildIt is working properly.

� To add items to source control

1. In Visual SourceSafe® (VSS) version control system, create a new project named
BuildItTest.

2. Set the working folder on $/BuildItTest to Program Files\BuildIt\Code
\BuildItTest.

3. Add assembly version files to VSS:
a. Add Program Files\BuildIt\Code\BuildItTest\AssemblyVersionInfo.cs to

$/BuildItTest.
b. Repeat for AssemblyVersionInfo.vb.

4. Create a virtual directory for the Web project (Project2):
a. Browse to Program Files\BuildIt\Code\BuildItTest\Solution2\Project2.
b. Right-click Project2, and then click Properties.
c. Click the Web Sharing tab, and then click Share this folder.
d. Accept the default alias, and then click OK to close the Edit Alias dialog box.
e. Click OK to close the Properties dialog box.

http://microsoft.com/downloads/details.aspx?FamilyId=B32497B0-77F7-4831-9C55-58BF3962163E&displaylang=en
http://microsoft.com/downloads/details.aspx?FamilyId=B32497B0-77F7-4831-9C55-58BF3962163E&displaylang=en

82 Team Development with Visual Studio .NET and Visual SourceSafe

5. Add solutions to VSS:
a. Open Program Files\BuildIt\Code\BuildItTest\Solution1\Solution1.sln.
b. In Solution Explorer, right-click Solution1, and then click Add Solution to

Source Control.
c. Browse to $/BuildItTest, and then click OK (click Yes to create the VSS project).
d. If prompted to specify the location for Project1, browse to $/BuildItTest

/Solution1, and then click OK.
e. Repeat Steps a–d for Solution2.

6. Share assembly version files in VSS:
a. Share $/BuildItTest/AssemblyVersionInfo.cs to $/BuildItTest/Solution1

/Project1.
b. Share $/BuildItTest/AssemblyVersionInfo.vb to $/BuildItTest/Solution2

/Project2.

� To add assembly version files to projects

1. Add AssemblyVersionInfo.cs to Project1 found in Solution1:
a. Open Program Files\BuildIt\Code\BuildItTest\Solution1\Solution1.sln.
b. In Solution Explorer, right-click Project1, point to Add, and then click

Add Existing Item.
c. Browse to Program Files\BuildIt\Code\BuildItTest\Solution1\Project1

\AssemblyVersionInfo.cs, and then click Open.
d. In the Check Out for Edit dialog box, click Check Out to check out

Project1.csproj.
e. Open AssemblyVersionInfo.cs and note the version number (1.0.0.*).
f. Press CTRL+SHIFT+B to build the solution.
g. In Solution Explorer, right-click Project1, and then click Check In Now

(Recursive).
h. Repeat Steps a–g to add AssemblyVersionInfo.vb to Project2 found in

Solution2.
2. Update configuration settings:

a. Open Program Files\BuildIt\Code\BuildItTest\BuildIt.exe.config.
b. Update the sourceControl settings.

3. Deploy BuildIt:
a. Open Program Files\BuildIt\Code\BuildIt.sln.
b. Press CTRL+SHIFT+B to build the solution (make sure you build a Release

version).
c. Copy the .exe file and all .dll files from Program Files\BuildIt\Code

\BuildIt\bin\Release to Program Files\BuildIt\Code\BuildItTest.

 Appendix: BuildIt—An Automated Build Tool for Visual Studio .NET 83

4. Execute BuildIt and verify:
a. Open Program Files\BuildIt\Code\BuildItTest\BuildNumber.xml and note

that the next build number is 1.
b. Open Program Files\BuildIt\Code\BuildItTest\BuildIt.bat to review the

BuildIt command line.
c. Run BuildIt.bat to build the solutions.
d. Open Program Files\BuildIt\Code\BuildItTest\BuildIt.log to check for errors.
e. Open Program Files\BuildIt\Code\BuildItTest\BuildReport.log to review

results of the build.
f. Open BuildNumber.xml and note that the next build number was

incremented to 2.
g. Open AssemblyVersionInfo.cs and AssemblyVersionInfo.vb and note that the

version numbers were updated from 1.0.0.* to 1.0.1.*.
h. Browse to Program Files\BuildIt\Code\BuildItTest\Archive\1 to see that the

generated assemblies were archived to a folder named after the build number.
i. Browse to Program Files\BuildIt\Code\BuildItTest\Latest to see that the

generated assemblies were copied to the latest folder.
j. Show history on $/BuildItTest to see that the VSS project was labeled with the

build number.

User’s Guide
The following topics provide more information about using BuildIt:
● Maintaining Build Numbers
● Building Solutions
● Reviewing the Build Report
● Rebuilding a Solution
● Archiving Builds
● Emailing Build Results
● Versioning Assemblies

Maintaining Build Numbers
BuildIt uses build numbers to label solutions that are source controlled in VSS and to
update assembly version numbers (if the appropriate build option is enabled). At the
end of each successful build, BuildIt generates a new build number by incrementing
the current build number by one (if the build fails, the build number is not
incremented). The new build number is then saved to an XML file whose name
and location is defined by the buildNumberFilePath attribute contained in the
BuildIt.exe.config file.

84 Team Development with Visual Studio .NET and Visual SourceSafe

The following example shows the contents of a build number XML file called
BuildNumber.xml.

<buildNumber>1000</buildNumber>

Note: The build number XML file must be created and initialized with a starting build number before
running BuildIt. Also note that build numbers must be positive integers.

Building Solutions
BuildIt can be configured to build a single solution or multiple solutions. For multi-
solution systems that include cross-solution file references, the solutions must be
listed in the correct order. For example, if Solution2 depends on Solution1, make
sure that Solution1 gets built first by listing it before Solution2.

The following sample from BuildIt.exe.config shows how to configure the build tool
to build a multi-solution system:

<solutions latestRootFolderFullName="c:\System"
 buildNumberFilePath="c:\System\BuildNumber.xml">
 <solution path="c:\System\Solution1\Solution1.sln"/>
 <solution path="c:\System\Solution2\Solution2.sln"/>
</solutions>

Reviewing the Build Report
BuildIt generates a build report called BuildReport.log in the working folder at the
end of each build. The build report can be viewed with any text editor. The build
report contains summary information along with a list of solutions that succeeded
and a list of those that failed. If any solutions fail to build, Visual Studio .NET can be
used to manually build those solutions to find out exactly why they failed.

===
Build Report Generated by BuildIt
===
Build Number: 8016
Build Start: 9/12/2002 6:50:09 PM
Build End: 9/12/2002 6:50:43 PM
Build Duration: 1 minute(s)
Archive Folder: c:\System\Archive\8016\
Latest Folder: c:\System\Latest\
Build Results: 1 succeeded, 0 failed

===
Succeeded
===
c:\System\Solution1\Solution1.sln

===
Failed
===

 Appendix: BuildIt—An Automated Build Tool for Visual Studio .NET 85

Rebuilding a Solution
A rebuild is required if a build break occurs during a build. You must complete the
following steps before rebuilding the solution.

� To rebuild after a build break

1. If the fix requires a code change, manually check out the necessary files from VSS
to the build computer.

Note: Use the same VSS credentials specified in the build tool configuration file when checking
out files. This helps identify the files that were modified to fix a break.

2. Make the code change, recompile using Visual Studio .NET, and then test the
recompiled files.

3. After the problem is resolved, check in the modified files.
4. Manually update the label on each checked-in file with the label that was

generated by the previous build, as follows:
a. Right-click the file name, and then click Show History.
b. In the History Options dialog box, click OK.
c. Click the version of the file whose label you want to update, and then click

Details.
d. Update the Label field with the label used during the build (for example,

“Build 100”).
5. Manually run BuildIt with the /rebuild option.

Archiving Builds
BuildIt can be configured to archive previous builds to a specified location,
as described in the “Consider Maintaining Previous Builds” section of the
“Team Development with Visual Studio .NET and Visual SourceSafe“ article in
the MSDN Library at http://msdn.microsoft.com/library/en-us/dnbda/html/tdlg_ch5.asp.

When the archiveBuild build option is enabled, the build tool copies generated
assemblies to a folder named after the current build number located beneath the
archive root folder specified by the archiveRootFolderFullName attribute in the
configuration file.

By default, BuildIt archives output generated from only Visual C# and Visual Basic
.NET projects. To archive output from other projects such as Visual Studio .NET setup
projects, add folder elements to the additionalFoldersToArchive element.

http://msdn.microsoft.com/library/en-us/dnbda/html/tdlg_ch5.asp

86 Team Development with Visual Studio .NET and Visual SourceSafe

The following sample from BuildIt.exe.config shows how to enable this option.

<options>
 <archiveBuild mode="on" archiveRootFolderFullName="c:\System\Archive">
 <additionalFoldersToArchive>
 <folder fullName=" c:\System\Solution1\Setup1\Debug"
 destFolderName=“Debug\Setup1" />
 <folder fullName=" c:\System\Solution1\Setup1\Release"
 destFolderName=“Release\Setup1" />
 </additionalFoldersToArchive>
 </archiveBuild>
</options>

Emailing Build Results
BuildIt can be configured to send the build results, by way of an e-mail message,
to a specified e-mail address, as described in the “Emailing Build Results” section of
the “Team Development with Visual Studio .NET and Visual SourceSafe“ article at
http://msdn.microsoft.com/library/en-us/dnbda/html/tdlg_ch5.asp.

When the sendBuildReport build option is enabled, the build tool sends a generated
e-mail message that contains a build report called BuildReport.log to an e-mail
address specified by the toAddress attribute.

The following sample from BuildIt.exe.config shows how to enable this option:

<options>
 <sendBuildReport mode="on" smtpServer="255.255.255.255”
 toAddress="you@yourcompany.com"/>
</options>

Versioning Assemblies
BuildIt can be configured to update an assembly’s version with the current build
number stored in an XML file specified by the buildNumberFilePath attribute as
follows:

<solutions buildNumberFilePath="c:\System\BuildNumber.xml">

An assembly’s version is typically specified in the AssemblyVersion attribute (which
is defined within the AssemblyInfo.cs or AssemblyInfo.vb file). However, when the
build tool is configured to update an assembly’s version, the AssemblyVersion
attribute should be defined in a separate file (for example, AssemblyVersionInfo.cs
or AssemblyVersionInfo.vb) that is shared in VSS across all of the .NET projects in
the solution. This allows BuildIt to update one file and have the change propagate
to all of the projects in the solution. For more information, see the “Consider
Centralizing Assembly Version Numbers” section of the “Team Development with
Visual Studio .NET and Visual SourceSafe“ article at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp.

http://msdn.microsoft.com/library/en-us/dnbda/html/tdlg_ch5.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp

 Appendix: BuildIt—An Automated Build Tool for Visual Studio .NET 87

Note: Two example files called AssemblyVersionInfo.cs and AssemblyVersionInfo.vb are copied to
the BuildItTest directory when BuildIt is installed.

The version number is physically represented as a four part number separated with
periods, as shown in the following code sample.

<major version>.<minor version>.<build number>.<revision>

When the updateAssemblyVersion build option is enabled, the build tool updates
the build number segment of the AssemblyVersion attribute with the current build
number.

The following sample from BuildIt.exe.config shows how to enable this option.

<options>
 <updateAssemblyVersion mode="on"
 csAssemblyVersionVSSPath="$/System/AssemblyVersionInfo.cs"
 vbAssemblyVersionVSSPath="$/System/AssemblyVersionInfo.vb" />
</options>

Deployment and Operations
This section includes the following administrative topics:
● Deploying BuildIt
● Configuring BuildIt
● Securing BuildIt
● Troubleshooting BuildIt

Deploying BuildIt
When deploying any application, it’s important to identify any dependencies that
exist. BuildIt, which is implemented as a single assembly named BuildIt.exe, has the
following dependencies:
● BuildIt.exe.config for configuration settings
● BuildNumber.xml for maintaining the next build number

Note: The name and location of the build number XML file is defined by the buildNumberFilePath
attribute in the BuildIt.exe.config file. Also note that the build number XML file must be created
and initialized with the starting build number before running BuildIt. For more information, see the
“Maintaining Build Numbers“ section at http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnbda/html/emab-rm.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/emab-rm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/emab-rm.asp

88 Team Development with Visual Studio .NET and Visual SourceSafe

● Microsoft.ApplicationBlocks.ExceptionManagent.dll and
Microsoft.ApplicationBlock.ExceptionManagent.Interfaces.dll for exception
management

● Interop.SourceSafeTypeLib.dll for interoperating with the VSS API (SSAPI.dll)
● Visual SourceSafe 6.0c client programs for accessing a remote VSS database
● Visual Studio .NET for building .NET solutions

Armed with this information, a deployment method can be chosen based on the
needs of the development team. For BuildIt, there are two deployment methods to
consider: XCOPY or Windows Installer deployment. The following sections describe
these options in more detail.

Deploying with XCOPY
Deploying BuildIt with the XCOPY command is the easiest method; however, it
requires more knowledge from the person deploying the tool. To deploy with this
method, use XCOPY to copy the required assemblies, along with the application
configuration file (BuildIt.exe.config), to a directory on the target computer. Next,
invoke the ExceptionManagerInstaller class using the Installutil.exe system utility to
create the event sources required by the default exception publisher when it writes to
the Windows Event Log. For example, use the following command-line:

Installutil.exe Microsoft.ApplicationBlocks.ExceptionManagement.dll

For more information about the Exception Management Application Block,
see “Microsoft Application Blocks for .NET“ in the MSDN library at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/emab-rm.asp.

Deploying with Windows Installer
Deploying BuildIt with Windows Installer requires more work up front than XCOPY,
but it requires little knowledge from the person deploying the tool. To deploy using
a Visual Studio.NET Setup and Deployment project, add the BuildIt, Exception
Management, and Exception Management Interfaces project output to the
application folder along with the BuildIt.exe.config file. Next, add the
Exception Management project output as a custom action to ensure the
ExceptionManagerInstaller class is instantiated at installation time.

Configuring BuildIt
The behavior of the build tool is controlled using an application configuration file.
Application configuration files are XML-based documents stored in the root directory
of the application folder hierarchy. The application configuration file name takes the
form applicationname.applicationextension.config. For the build tool, the application
configuration file is called BuildIt.exe.config.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/emab-rm.asp

 Appendix: BuildIt—An Automated Build Tool for Visual Studio .NET 89

This section includes the following topics about configuring BuildIt:
● Setting Build Options
● Configuring Tracing
● Configuring Exception Management
● Running with Multiple Versions of Visual Studio .NET

Note: When the configuration file is modified, the changes do not take effect until BuildIt is executed
again.

Setting Build Options
You can enable or disable any build option by setting its mode attribute to on/off,
as shown in the following code sample:

<options>
 <sendBuildReport mode="on" smtpServer="255.255.255.255"
 toAddress="you@company.com"/>
</options>

Note: If the mode attribute is omitted or has any value other than on/off, an exception is raised.
Also note that the mode attribute values are not case sensitive.

Configuring Tracing
BuildIt uses the Trace class in the System.Diagnostics namespace to generate trace
output to the console and to a file called BuildIt.log in the working directory. The
following is an example of the trace output.

Validating command-line arguments
Reading BuildIt settings from configuration file
Starting build 100 at 11/1/2002 1:57:53 PM
Updating assembly version file $/System/AssemblyVersionInfo.cs
Labelling source
Getting source from label
Backing up latest folder
Building Debug version of solution C:\System\Solution1\Solution1.sln
Building Release version of solution C:\System\Solution1\Solution1.sln
Building Debug version of solution C:\System\Solution2\Solution2.sln
Building Release version of solution C:\System\Solution2\Solution2.sln
2 solution(s) succeeded, 0 failed
Deleting latest backup folder
Archiving additional folders
Generating build report
Not sending build report because the option was not enabled
Ending build at 11/1/2002 1:58:40 PM - 0 minute(s) to complete

90 Team Development with Visual Studio .NET and Visual SourceSafe

Tracing can be enabled and disabled using a TraceSwitch named traceLevel defined
in the BuildIt.exe.config file. Tracing is disabled by setting the TraceSwitch to 0 and
enabled by setting the switch to 3. Setting the TraceSwitch to 4 enables more detailed
trace output (verbose mode).

The following code sample shows how to enable tracing.

<system.diagnostics>
 <switches>
 <add name="traceLevel" value="3"/>
 </switches>
</system.diagnostics>

In addition, BuildIt can be configured to append trace output to the trace file (if one
already exists) or it can be configured to overwrite the trace file. The recommended
setting is to overwrite the trace file to prevent it from becoming too large. The
following code sample shows how to do this.

<appSettings>
 <add key="appendTraceOutput" value="off" />
</appSettings>

Note: If the appendTraceOutput key is omitted, BuildIt overwrites the trace file by default.

Configuring Exception Management
BuildIt uses Microsoft’s Exception Management Application Block, which can be
configured with XML settings in the configuration file. If the settings are omitted, the
Exception Management Application Block publishes exceptions to the application log
by default. However, additional publishers can be specified.

At the time of this writing, the configuration file does not contain Exception
Management settings. Therefore, all exceptions are published to the application
log, which can then be view using the Event Viewer. For more information, see
“Exception Management Application Block Overview“ in the MSDN Library at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/emab-rm.asp.

Running with Multiple Versions of Visual Studio .NET
By default, BuildIt uses the latest installed version of Visual Studio .NET to build
solutions. However, if multiple versions are installed on the same computer,
developers may want BuildIt to use a specific version. To force BuildIt to use a
specific version of Visual Studio .NET, include a visualStudioProgID key in the
appSettings section of the configuration file. The following code sample shows
how to do this.

<appSettings>
 <add key="visualStudioProgID" value="VisualStudio.Solution.7" />
</appSettings>

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/emab-rm.asp

 Appendix: BuildIt—An Automated Build Tool for Visual Studio .NET 91

Note: If the visualStudioProgID key is omitted, BuildIt uses the latest installed version of Visual
Studio .NET by default.

Securing BuildIt
As with any application, you must ensure that all sensitive data and resources are
protected from unauthorized access. With respect to BuildIt, there are two main areas
to consider:
● Preventing Unauthorized Access to Application Configuration Files
● Access Permissions Required by BuildIt

Preventing Unauthorized Access to Configuration Files
Because the build tool configuration file contains sensitive data such as the VSS user
name and password, you should ensure that only authorized users can view or
change those settings. You can secure the configuration file by using Windows NTFS
file permissions.

Access Permissions Required by BuildIt
BuildIt uses Microsoft’s Exception Management Application Block to publish
exceptions to the event log. In addition, the BuildIt reads/writes to the file system.
Therefore, you need to ensure that the security principal used by BuildIt has
appropriate permissions to conduct these operations.

Troubleshooting BuildIt
There are two mechanisms available to help developers troubleshoot the build tool:
tracing and exception management. When tracing is enabled, BuildIt generates a
trace file in the working folder called BuildIt.log that can be used to determine which
steps were performed by the build tool. This is useful when trying to determine why
the build tool is not behaving as expected.

When an exception occurs, BuildIt uses Microsoft’s Exception Management
Application Block to publish exceptions to the application log. Developers can
then use the Event Viewer to view detailed information about the exception.

When used together, the two mechanisms provide information that can be used to
troubleshoot the build tool.

92 Team Development with Visual Studio .NET and Visual SourceSafe

Known Issues
BuildIt is very effective in most cases- but there are a few situations in which it has
some known issues. Table 1 lists known issues with BuildIt.
Table 1: Known issues with BuildIt

Issue Description Resolution
BuildIt throws an error
when building two or
more solutions that have
projects with the same
name.

An error occurs when BuildIt tries
to copy project output to the latest
folder if that output already exists.
This can happen if BuildIt
encounters two projects with the
same name, even though they
reside in different solutions. It can
also happen if BuildIt encounters
the same solution a second time
during a single run of the tool.

Make sure all projects are uniquely
named across your system and
make sure the App.config file does
not contain duplicate solution
entries.

Set Project Location
dialog box appears
during build.

The Set Project Location dialog
box appears during the build,
prompting the user to set the
location for the working copy of a
Web project. This happens when
trying to load a Web project that is
not mapped to a corresponding
virtual directory.

To prevent the dialog box from
appearing while BuildIt is running,
make sure all Web projects are
mapped to virtual directories
before running BuildIt. One easy
way to check is to manually open
each solution in Visual Studio .NET
before running BuildIt.

If the dialog box does appear while
BuildIt is running, simply respond
to the dialog box by setting the
location for the working copy of the
Web project. Visual Studio .NET
then creates the virtual directory
automatically.

Design and Implementation
This section includes the following design and implementation topics:
● Problem Description
● Design Goals
● Solution Description
● Enhancements

 Appendix: BuildIt—An Automated Build Tool for Visual Studio .NET 93

Problem Description
BuildIt is designed to solve the following problems:
● Developers lose precious development time creating, testing, and maintaining

custom build scripts that are often not reusable from one project to the next.
● Developers are often under tight timeframes, leaving little time for thorough

testing and documentation of their build scripts.

Design Goals
The design goals of BuildIt are:
● The solution must adhere to the steps outlined in the article “Team Development

with Visual Studio .NET and Visual SourceSafe“ in the MSDN Library at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html
/tdlg_ch5.asp.

● The solution must be well-documented, maintainable, and easy to use.
● The solution must be flexible; it should be configurable without needing to re-code

and re-compile.
● The solution must be robust; it must handle any exceptions that occur during the

build process.

Solution Description
BuildIt is a console application that consists of a number of classes that work together
to automate the build process. For example:
● BuildInitializer. Validates command-line options, retrieves build tool settings by

way of the BuildItSectionHandler and initiates the build process by way of the
BuildManager.

● BuildItSectionHandler. Retrieves settings from the tool’s configuration file. These
settings are used to alter runtime behavior.

● BuildManager. Orchestrates the build process.
● SourceSafeHelper. Exposes VSS operations (for example, Check-in and Checkout)

used during the build process.
● BuildItResourceManager. Provides type-safe access to error messages stored in a

resource file.
● BuildItCommandLineArgs. Encapsulates the command-line arguments

supported by BuildIt.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp

94 Team Development with Visual Studio .NET and Visual SourceSafe

Figure 1 illustrates how these classes work together.

Main1 BuildInitializer BuildManager

Start(args)

AreCommandLineArgsValid:=AreCommandLineArgsValid(args)

Build(buildType)

BuildManager(settings, resourceManager)

BuildInitializer()

Figure 1
Build process flow diagram

The flow of logic is as follows:
1. BuildIt is launched with the appropriate command-line arguments.
2. The Main1 class calls the Start method of the BuildInitializer class.
3. The BuildInitializer class validates the command-line arguments and then uses

the BuildItSectionHandler class to retrieve settings from the tool’s configuration
file. The BuildItSectionHandler returns the settings by way of a type-safe
structure called BuildItSettings.

4. The BuildInitializer creates an instance of the BuildManager, passing the
BuildItSettings structure to the Constructor.

5. The BuildInitializer then calls Build on the BuildManager to initiate either a
build or a rebuild, dictated by the command-line arguments.

Configuration File Settings
The BuildIt configuration file, called BuildIt.exe.config, contains settings that are read
at runtime. This allows the tool’s behavior to be modified without the need to
recompile the solution.

Settings in the file indicate:
● The solutions being built.
● Information needed to connect to a specified VSS database.
● Whether to update assembly versions with the build number.
● Whether to archive previously built assemblies to a specified location.
● Whether to send the build results in an e-mail message to a specified e-mail

address.

 Appendix: BuildIt—An Automated Build Tool for Visual Studio .NET 95

Note: BuildIt throws an exception if any of the settings are missing or specified incorrectly, unless
stated otherwise in this document.

The following code sample shows the format of the configuration file settings.

<configuration>
 <configSections>
 <section name="BuildIt"
 type="Sapient.Framework.Tools.BuildIt.BuildItSectionHandler,
 BuildIt"/>
 </configSections>

 <appSettings>
 <add key="appendTraceOutput" value="off" />
 <add key="enableCustomMessageFilter" value="on"/>
 <add key="visualStudioProgID" value="VisualStudio.Solution.7"/>
 </appSettings>

 <buildIt>
 <sourceControl username="username" password="password"
 iniFilePath="c:\Program Files\Microsoft Visual Studio\VSS\srcsafe.ini"
 srcVSSRootFolder="$/System" srcFileRootFolder="c:\System"/>

 <solutions latestRootFolderFullName="c:\System"
 buildNumberFilePath="c:\System\BuildNumber.xml">
 <solution path=" c:\System\Solution1\Solution1.sln"/>
 <solution path=" c:\System\Solution2\Solution2.sln"/>
 </solutions>

 <options>
 <sendBuildReport mode="on/off" smtpServer="255.255.255.255"
 toAddress="you@yourcompany.com"/>
 <archiveBuild mode="on/off"
 archiveRootFolderFullName="c:\System\Archive">
 <additionalFoldersToArchive>
 <folder fullName="c:\System\Solution1\Setup1\Debug"
 destFolderName=“Debug\Setup1" />
 <folder fullName=" c:\System\Solution1\Setup1\Release"
 destFolderName=“Release\Setup1" />
 </additionalFoldersToArchive>
 </archiveBuild>
 <updateAssemblyVersion mode="on/off"
 vbAssemblyVersionVSSPath="$/System/AssemblyVersionInfo.vb"
 csAssemblyVersionVSSPath="$/System/AssemblyVersionInfo.cs"/>
 </options>
 </buildIt>
</configuration>

96 Team Development with Visual Studio .NET and Visual SourceSafe

ConfigSections Element

The configSections element is used to link a section in the configuration file with a
particular configuration section handler class. The section element in the preceding
code is used to link the BuildIt section with the BuildItSectionHandler class in the
Sapient.Framework.Tools.BuildIt namespace.

AppSettings Element

The appSettings element contains application-specific settings that can be
represented as key-value pairs. BuildIt currently defines three specific settings:
● appendTraceOutput. When this key is set to on, BuildIt appends trace output to

the trace file named BuiltIt.log.

Note: If this key is omitted or if the value is not set to on, BuildIt overwrites the trace file.

● enableCustomMessageFilter. When this key is set to on, BuildIt enables a custom
message filter to handle outgoing COM messages while waiting for a response
from synchronous calls. The implementation of this filter retries rejected calls to
Visual Studio .NET automation in the event that the objects are busy. If the Visual
Studio .NET automation objects are busy and this filter is not enabled, an
exception occurs.

Note: If this key is omitted or if the value is not set to on, BuildIt does not enable the message
filter.

● visualStudioProgID. When the value of this key is set to a progID, BuiltIt.NET is
forced to use a specific version of Visual Studio .NET when building solutions.

Note: If this key is omitted, BuildIt uses the latest installed version of Visual Studio .NET.

SourceControl Element

The sourceControl element contains information about the VSS database used during
the build process. This element has the following attributes:
● username. The name of the VSS user used to log on to the database.
● password. The password of the VSS user.
● iniFilePath. The VSS .ini file path used to locate the database (for example,

C:\Program Files\Microsoft Visual Studio\VSS\srcsafe.ini).
● srcVSSRootFolder. The VSS root folder that contains the source code being built

(for example, $/System). BuildIt does a recursive Get operation from this VSS
project.

● srcFileRootFolder. The file system root folder where the source code is built
(for example, C:\System). BuildIt copies files from the recursive Get operation to
this directory.

 Appendix: BuildIt—An Automated Build Tool for Visual Studio .NET 97

Solutions Element

The solutions element contains information about the solutions being built. This
element has the following attributes:
● latestRootFolderFullName. The name of the root folder that contains the

latest generated assemblies after the build is complete (for example, C:\System).
For more information, see the “Copying Output to the Latest Folder” section of
the article “Team Development with Visual Studio .NET and Visual SourceSafe“
in the MSDN Library at http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/dnbda/html/tdlg_ch5.asp.

Note: The article “Team Development with Visual Studio .NET and Visual SourceSafe“ in the
MSDN Library at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html
/tdlg_ch5.asp states that “single solution or partitioned-single solution systems do not require
a Latest folder because you use project references rather than file references to refer to
assemblies.” However, because a single solution system can become a multi-solution system,
BuildIt always copies build output to a latest folder. This allows developers to use file references
when referring to assemblies generated from another solution.

● buildNumberFilePath. The XML file used to generate the next build number
(for example, C:\System\BuildNumber.xml). For more information, see the
“Generating Build Version Numbers section” of the article “Team Development
with Visual Studio .NET and Visual SourceSafe“ in the MSDN Library at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html
/tdlg_ch5.asp.

Note: The article “Team Development with Visual Studio .NET and Visual SourceSafe“ at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp
does not dictate the way in which build numbers should be generated. BuildIt does it by
incrementing the build number stored in a specified XML file at the end of each successful build.
A successful build is one that does not contain any build errors.

Solution Element

The solution element contains information about a specific solution. This element has
one attribute:
● path. The solution file being built (for example, C:\System\Solution1

\Solution1.sln).

Options Element

The options element contains child elements that correspond to various build
options. Each build option is represented by a different element.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp

98 Team Development with Visual Studio .NET and Visual SourceSafe

SendBuildReport Element

The sendBuildReport element controls whether the build report is sent to a specified
e-mail address when the build completes. For more information, see the “Email Build
Results” section of the article “Team Development with Visual Studio .NET and
Visual SourceSafe“ in the MSDN Library at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp.

This element contains the following attributes:
● mode. If “on,” BuildIt sends the build report to the specified e-mail address.
● smtpServer. If IP address of the SMTP server used to forward the e-mail message.
● toAddress. The e-mail address to receive the build report.

Archive Build Element

The archiveBuild element controls whether the generated assemblies are archived to
a folder named after the build number. For more information, see the “Consider
Maintaining Previous Builds” section of the article “Team Development with Visual
Studio .NET and Visual SourceSafe“ in the MSDN Library at http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp.

This element contains the following attributes:
● mode. If “on,” BuildIt copies generated assemblies to a folder named after the

build number.
● archiveRootFolderFullName. The name of the root folder containing previously

archived builds (for example, C:\System\Archive).

Additional Folders to Archive Element

By default, BuildIt archives output from only Visual C# and Visual Basic .NET
projects. To archive output from other projects such as Visual Studio .NET setup
projects, add folder elements to the additionalFoldersToArchive element.

The folder element contains the following attributes:
● fullName. The full name of the source folder being archived (for example,

C:\System\Solution1\Setup1\Debug).
● destFolderName. The name of the destination folder to archive to (for example,

Debug\Setup1).

Note: If the archiveBuild option is enabled, BuildIt archives the files in each specified folder to the
specified destination folder under the archive root folder.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp

 Appendix: BuildIt—An Automated Build Tool for Visual Studio .NET 99

UpdateAssemblyVersion Element

The updateAssemblyVersion element controls whether the generated assemblies
are versioned using the build number. For more information, see the “Controlling
Assembly Version” section of the article “Team Development with Visual Studio
.NET and Visual SourceSafe“ in the MSDN Library at http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp.

This element contains the following attributes:
● mode. If “on,” BuildIt versions the generated assemblies with the build number.
● vbAssemblyVersionVSSPath. The VSS path containing the assembly version

file shared across all of the Visual Basic .NET projects being built (for example,
$/System/AssemblyVersionInfo.vb). Leave this attribute value blank if your
solution does not contain any Visual Basic projects. For more information, see
the “Consider Centralizing Assembly Version Numbers” section of the article
“Team Development with Visual Studio .NET and Visual SourceSafe“ in the
MSDN Library at http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnbda/html/tdlg_ch5.asp.

● csAssemblyVersionVSSPath. The VSS path containing the assembly version
file shared across all of the Visual C# projects being built (for example,
$/System/AssemblyVersionInfo.cs). Leave this attribute value blank if your
solution does not contain any Visual C# projects. For more information, see
the “Consider Centralizing Assembly Version Numbers” section of the article
“Team Development with Visual Studio .NET and Visual SourceSafe“ in the
MSDN Library at http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnbda/html/tdlg_ch5.asp.

Enhancements
This section contains a list of enhancements that were considered but ultimately
scoped out of the first release of BuildIt due to time constraints. These are shared to
expose the underlying thinking involved with the development of BuildIt, to suggest
areas where you could expand BuildIt, and to invite you as a member of the
community to contribute ideas—and code—using the feedback section at the end of
the document. Potential enhancements include:
● Define an interface to allow BuildIt to work with source control providers other

than Visual SourceSafe (for example, ISourceControlProvider). In doing so,
developers could configure BuildIt to use another source control provider such as
Rational ClearCase.

● Simplify the configuration of BuildIt by implementing default behavior if a
particular setting is missing. Currently, BuildIt throws an error if a particular build
setting is missing from the application configuration file. A more forgiving version
of BuildIt would simply implement some default behavior if a setting were
omitted.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdlg_ch5.asp

100 Team Development with Visual Studio .NET and Visual SourceSafe

● Further simplify the configuration of BuildIt by utilizing relative paths instead of
using fully qualified ones. Currently, all file paths must be fully qualified. Fully
qualified paths are more flexible than relative ones, but at the expense of being
cumbersome. Instead, simply configure by making some paths relative to the
source root folder (for example, solution files, build number XML file, and so on).

● Allow developers to specify an indefinite number of assembly version files
with the updateAssemblyVersion build option. Currently, BuildIt allows
developers to specify one Visual C# and one Visual Basic .NET assembly version
file. This limitation is based on the assumption that developers will share the
Visual C# assembly version file with all Visual C# projects and the Visual Basic
.NET assembly version file with all Visual Basic .NET projects in VSS. However,
developers may prefer to update individual assembly version files rather than
relying on VSS file sharing.

● Define a “post-build” event that developers can use to extend the build process.
Currently, the only way to extend the build process is to alter the BuildIt source
code. A more flexible design would be to implement an event that is raised at the
end of the build. Developers could then wire event-handlers to this event
to execute custom logic. This strategy could also be used to allow developers to
customize other parts of the build process (for example, pre-build, build,
post-build).

● Allow developers to specify the name of the BuildIt configuration file. Currently,
BuildIt looks for configuration settings in the standard application configuration
file called BuildIt.exe.config. Because of this, developers cannot use BuildIt to
build two different solutions at the same time. Instead, developers have to copy
the BuildIt assemblies to a different directory. A more friendly solution would be
to allow developers to specify the name of the configuration file as a command-
line argument, rather than using the standard application configuration file.

● Have BuildIt automatically create a virtual directory for any Web project that is
not already mapped to one. Currently, Visual Studio .NET prompts the user to set
the location for the working copy of a Web project if one does not exist. Instead of
prompting the user to accept the default, BuildIt could simply create the virtual
directory automatically.

 Appendix: BuildIt—An Automated Build Tool for Visual Studio .NET 101

Class Reference
This section includes information about the following class references:
● BuildInitializer
● BuildItSectionHandler
● BuildManager
● SourceSafeHelper
● BuildItResourceManager
● BuildItCommandLineArgs

BuildInitializer
The BuildInitializer class validates command-line options, retrieves build tool
settings by way of the BuildItSectionHandler and initiates the build process by way
of the BuildManager.

Remarks
The BuildInitializer class implements a single public method named Start that is
called from the console application’s static/Shared Main method. The Start method
first validates any command-line arguments by calling a private method named
AreCommandLineArgsValid. If the arguments are valid, the BuildInitializer
retrieves build tool settings using the BuildItSectionHandler class. The final step is
to initiate the build process by calling Build on the BuildManager.

Constructors

BuildInitializer Initializes a new instance of the BuildInitializer class.

Public Methods

Start Reads settings from the build tool configuration file using
the BuildItSectionHandler class and then starts the build
process by way of the BuildManager class.

Private Methods

AreCommandLineArgsValid Determines whether the given command-line arguments are
valid.

IsCommandLineArgValid Determines whether the given command-line argument is
valid.

Usage Writes usage information to the console. Called if any of the
command-line arguments are invalid.

102 Team Development with Visual Studio .NET and Visual SourceSafe

BuildItSectionHandler
The BuildItSectionHandler class populates and returns a BuildItSettings structure
with settings read from the build tool configuration file.

Remarks
The BuildItSectionHandler class, which implements the
IConfigurationSectionHandler interface, parses the configuration settings in the
BuildIt element of the build tool configuration file. It loads the information in the
BuildIt element into a structure named BuildItSettings.

The BuildItSettings structure defines several properties that provide type-safe access
to the configuration settings defined in the configuration file. For example, the
BuildItSettings structure defines three properties that return different build options:
OptionSendBuildReport, OptionArchiveBuild, and
OptionUpdateAssemblyVersion. The BuildItSettings structure also defines a
property called Solutions and one called SourceControlInfo that correspond to
specific elements in the configuration file.

Constructors

BuildItSectionHandler Initializes a new instance of the BuildItSectionHandler
class.

Public Methods

Create Populates and returns a BuildItSettings structure with
settings read from the build tool configuration file.

Private Methods

CreateBuildOption Creates and populates a BuildOption structure with settings
read from the build tool configuration file.

BuildManager
The BuildManager class orchestrates the build process.

Remarks
The BuildManager class is used by the BuildInitializer to coordinate the build
process. The BuildManager implements a constructor that takes two parameters: one
of type BuildItSettings and one of type BuildItResourceManager. When an instance
of the BuildManager class is created, it initializes private member variables with the
parameters passed to its constructor. This makes settings and error messages
available to the BuildManager during the build process.

 Appendix: BuildIt—An Automated Build Tool for Visual Studio .NET 103

The BuildManager also exposes a single public method named Build that takes a
BuildType enum used to determine whether to initiate a Build or a Rebuild. The
BuildType enum is defined as follows.

[C#]
public enum BuildType {Build, Rebuild};

A Rebuild is defined as a system build that takes place after a build break is resolved.
The distinction is made because some steps are omitted when doing a Rebuild. For
example, the BuildManager creates a new label in VSS when doing a Build, but not
when doing a Rebuild.

After the BuildType is determined, the BuildManager calls several private methods
that perform various parts of the build process.

Constructors

BuildManager Initializes a new instance of the BuildManager class.

Public Methods

Build Orchestrates the build process.

Private Methods

ArchiveAdditionalFolders Copies the contents of folders specified in the
additionalFoldersToArchive section of the build tool
configuration file to the archive root folder.

BackupLatestFolder Backs up the latest folder that contains the latest generated
assemblies. The location of the latest folder is specified in
the build tool configuration file.

BuildAssemblyVersionRegEx Builds a regular expression that is used to replace the build
number component of an AssemblyVersion attribute. The
expression is dependent upon whether the AssemblyVersion
attribute is a Visual Basic or Visual C# attribute.

BuildSolutionAndCopyOutput Builds a solution and copies the generated output to the
given destination directories.

BuildSolutionConfig Builds the given solution using the specified build
configuration (for example, Release, Debug, and so on).

BuildSolutions Builds the given solution(s).

CopyFiles(string, string) Copies all files from the given source folder to the given
destination folder by calling the overloaded version of the
method with excludeDebugFiles flag set to false.

(continued)

104 Team Development with Visual Studio .NET and Visual SourceSafe

(continued)
CopyFiles(string, string, bool) Copies all files from the given source folder to the given

destination folder. If the excludeDebugFiles flag is set to
true, copies all files except debug files.

CopyVSProjectOutput Copies output (Release or Debug) for all Visual Basic and
Visual C# projects to the given destination root folder.

CopySolutionOutput Copies solution output (Release or Debug) to the given
destination root folders.

DeleteArchiveFolder Deletes the archive folder if it exists. The location of the
archive folder is specified in the build tool configuration file.

DeleteLatestBackupFolder Deletes the latest backup folder if it exists. The latest
backup folder is located in the same place as the latest
folder.

DeleteLatestFolder Deletes the latest folder if it exists.

GenerateBuildReport Generates a build report called BuildReport.log and saves
the report to the working folder.

GenerateLabel Generates a label based on the build number.

GetSourceFromLabel Gets the source root project from VSS using the given label.

GetVSProjectLangType Determines the language used to create the specified file
(Visual Basic or Visual C#). Uses the file extension to make
this determination.

IncrementBuildNumber Increments the build number by one and then writes it to the
build number XML file by calling WriteBuildNumber.

LabelSource Labels the source root project in VSS with the given label.

ReadBuildNumber Reads the build number from the build number XML file.
The name and location of this file is specified in the build
tool configuration file.

RestoreLatestFolder Restores the latest folder from the latest backup folder if it
exists.

SendBuildReport Send the given build report to the appropriate email recipient
if the option is enabled in the build tool configuration file.

UpdateAssemblyVersionInfo Gets the VSS path of the Visual Basic and Visual C#
AssemblyVersion files (specified in the build tool
configuration file) and calls the overloaded version of the
method once for each file if the option is enabled in the
build tool configuration file.

UpdateAssemblyVersionInfo(string) Gets the specified AssemblyVersion file from VSS, updates
the AssemblyVersion attribute with the build number using a
regular expression, and then checks the file back into VSS.

WriteBuildNumber Writes the given build number to the build number XML file.

 Appendix: BuildIt—An Automated Build Tool for Visual Studio .NET 105

SourceSafeHelper
The SourceSafeHelper wraps VSS automation objects to make it easier to work
with VSS.

Remarks
The SourceSafeHelper class is used by the BuildManager to interact with VSS
during the build process. It exposes several public methods, such as Checkin and
Checkout, that hide the implementation details of working with VSS automation
objects.

Note: The SourceSafeHelper class does not expose methods for every VSS operation. It exposes
only those operations needed by the build tool.

Constructors

SourceSafeHelper Initializes a new instance of the SourceSafeHelper class.

Public Methods

Checkin Checks the given item back into VSS.

Checkout Checks the given item out from VSS.

GetFromLabel Gets a specific version of a given item from VSS. If the item
is a project, the get operation is recursive.

Label Labels the given VSS item with the specified label.

UndoCheckout Removes checkout status on a given VSS item.

Private Methods

GetItemsRecursively Recursively gets items from a versioned VSSItem (a project
or file). The versioned item can be a project or a file. If the
VSSItem is a file, this method simply gets the file.
Otherwise, it recursively gets all items in the project.

GetVSSItem Gets a reference to a VSSItem (that is, a project or file).

106 Team Development with Visual Studio .NET and Visual SourceSafe

BuildItResourceManager
The BuildItResourceManager class provides type-safe access to error messages
stored in a resource file.

Remarks
The BuildItResourceManager class, derived from the ResourceManager class in the
System.Resources namespace, is used to retrieve error messages from the resource
file contained in the build tool assembly called BuildIt.exe. It exposes several public
methods, such as GetBuildSolutionFailedString, that provide type-safe access to
resource values. This helps eliminate errors that can occur when calling the
ResourceManager.GetString(string name) method with an invalid resource name.

Constructors

BuildItResourceManager Initializes a new instance of the BuildItResourceManager
class.

Public Methods

GetBuildSolutionFailedString Gets the BuildSolutionFailed error message from the build
tool resource file. The rest of the get methods perform a
similar function; they provide type-safe access to error
messages stored in the build tool resource file.

Private Methods

None

BuildItCommandLineArgs
The BuildItCommandLineArgs class encapsulates a collection of command-line
arguments supported by the build tool.

Remarks
The BuildItCommandLineArgs class, derived from the StringCollection class in the
System.Collections.Specialized namespace, represents the set of command-line
arguments supported by BuildIt. It is used by the BuildInitializer to determine
whether or not a command-line argument is valid.

Constructors

BuildItCommandLineArgs Initializes a new instance of the BuildItCommandLineArgs
class.

 Appendix: BuildIt—An Automated Build Tool for Visual Studio .NET 107

Public Methods

ToString Overrides the System.Object::ToString() method by providing a
string representation of the valid command-line arguments.

Private Methods

None

Frequently Asked Questions

Can I modify the BuildIt source code?
Yes, you can modify and extend the BuildIt source code. For example, you could
change the Visual Source Safe-specific calls and build a Helper class that works with
your Source Code Control product. Please tell us what changes you made! See the
Feedback section below to share your experience with us.

Do I need to have Visual Studio installed where BuildIt runs?
Yes, you need to have Visual Studio installed on the server or workstation where you
do the builds with BuildIt—having just the .NET Framework redistributable installed
is not enough.

Appendix Summary
This appendix has described how BuildIt is built with simplicity and extensibility in
mind so that you can adapt it to your specific build-process needs. Please use the e-
mail address provided under “Feedback” to tell us your thoughts about BuildIt.

About the Author
Michael Monteiro is a technology consultant for Sapient Corporation and .NET
Microsoft Certified Professional with more than eight years of experience. He
currently works on a team responsible for providing architectural guidance to the
technical community within Sapient. He can be reached at mmonte@sapient.com.

mailto:mmonte@sapient.com

108 Team Development with Visual Studio .NET and Visual SourceSafe

About Sapient
Sapient, a leading business and technology consultancy, helps Global 2000 clients
achieve measurable business results through the rapid application and support of
advanced technology on a fixed-price basis. Founded in 1991, Sapient employs
more than 1,500 people in offices in Atlanta, Cambridge (Mass.), Chicago, Dallas,
Dusseldorf, London, Los Angeles, Milan, Munich, New Delhi, New York, San
Francisco, Toronto and Washington, D.C. More information about Sapient can be
found at http://www.sapient.com/.

Collaborators
Many thanks to the following contributors and reviewers: Bernard Chen (Sapient
Corporation), Brett Keown, Craig Skibo, David Lewis, Deyan Lazarov, Dimitris
Georgakopoulos (Sapient Corporation), Edward Jezierski, Filiberto Selvas Patiño,
Jeff Pflum, Joe Hom (Avanade), Ken Hardy, Kenny Jones, Korby Parnell, Martin Born,
Mick Das, Mike Pietraszak, Niel Sutton, Oded Ye Shekel, Rajiv Sodhi (Sapient
Corporation), Ray Escamilla, Rich Knox, Russell Christopher, and Sumit Sharma
(Sapient Corporation).

Feedback
Questions? Comments? Suggestions? To give feedback on BuildIt, please e-mail
buildit@sapient.com.

If you want to contact Microsoft for feedback, please e-mail devfdbck@microsoft.com.

http://www.sapient.com/
mailto:buildit@sapient.com
mailto:devfdbck@microsoft.com

Collaborators

Many thanks to the following contributors and reviewers:

Michael Day, Martyn Lovell, Brad Bartz, Izzy Gryko, Bill Hiebert, Jeff Pflum, Bernard
Chen (Sapient), Michael Monteiro (Sapient), Dimitris Georgakopoulos (Sapient),
Korby Parnell, Susan Warren, Chris Falter, Joel West, Dave Quick, Allan Hirt, Cathan
Cook, Chong Lee, Milind Lele, Chris Brooks, Martin Petersen-Frey, J.D. Meier,
Edward Jezierski, Jacquelyn Schmidt, Jeremy Bostron, Frank Hackländer (Siemens),
Reinhold Kienzle-Press (Siemens), Sharon Bjeletich, Andrew Roubin (Voresite)

p
a

tt
e

rn
s

 &
 p

ra
c
ti

c
e

s
Pr

ov
en

 p
ra

ct
ic

es
 f

or
 p

re
di

ct
ab

le
 r

es
ul

ts

pat ter ns & pract ices

Proven practices for predictable results

Patterns & practices are Microsoft’s recommendations for architects, software developers,
and IT professionals responsible for delivering and managing enterprise systems on the
Microsoft platform. Patterns & practices are available for both IT infrastructure and software
development topics.

Patterns & practices are based on real-world experiences that go far beyond white papers
to help enterprise IT pros and developers quickly deliver sound solutions. This technical
guidance is reviewed and approved by Microsoft engineering teams, consultants, Product
Support Services, and by partners and customers. Organizations around the world have
used patterns & practices to:

Reduce project cost
� Exploit Microsoft’s engineering efforts to save time and money on projects

� Follow Microsoft’s recommendations to lower project risks and achieve predictable outcomes

Increase confidence in solutions
� Build solutions on Microsoft’s proven recommendations for total confidence and predictable

results

� Provide guidance that is thoroughly tested and supported by PSS, not just samples, but
production quality recommendations and code

Deliver strategic IT advantage
� Gain practical advice for solving business and IT problems today, while preparing companies

to take full advantage of future Microsoft technologies.

To learn more about patterns & practices visit: msdn.microsoft.com/practices

To purchase patterns & practices guides visit: shop.microsoft.com/practices

pat ter ns & pract ices

Proven practices for predictable results

p
a

tt
e

rn
s

 &
 p

ra
c
ti

c
e

s
Pr

ov
en

 p
ra

ct
ic

es
 f

or
 p

re
di

ct
ab

le
 r

es
ul

ts

Patterns & practices are available for both IT infrastructure and software development
topics. There are four types of patterns & practices available:

Reference Architectures

Reference Architectures are IT system-level architectures that address the business
requirements, operational requirements, and technical constraints for commonly occurring
scenarios. Reference Architectures focus on planning the architecture of IT systems and
are most useful for architects.

Reference Building Blocks

References Building Blocks are re-usable sub-systems designs that address common technical
challenges across a wide range of scenarios. Many include tested reference implementations to
accelerate development.

Reference Building Blocks focus on the design and implementation of sub-systems and are most
useful for designers and implementors.

Operational Practices

Operational Practices provide guidance for deploying and managing solutions in a production
environment and are based on the Microsoft Operations Framework. Operational Practices focus on
critical tasks and procedures and are most useful for production support personnel.

Patterns

Patterns are documented proven practices that enable re-use of experience gained from solving
similar problems in the past. Patterns are useful to anyone responsible for determining the
approach to architecture, design, implementation, or operations problems.

To learn more about patterns & practices visit: msdn.microsoft.com/practices

To purchase patterns & practices guides visit: shop.microsoft.com/practices

p
a

tt
e

rn
s

 &
 p

ra
c
ti

c
e

s
Pr

ov
en

 p
ra

ct
ic

es
 f

or
 p

re
di

ct
ab

le
 r

es
ul

ts

pat ter ns & pract ices cur rent t i t les

December 2002

Reference Architectures
Microsoft Systems Architecture—Enterprise Data Center 2007 pages
Microsoft Systems Architecture—Internet Data Center 397 pages
Application Architecture for .NET: Designing Applications and Services 127 pages
Microsoft SQL Server 2000 High Availability Series: Volume 1: Planning 92 pages
Microsoft SQL Server 2000 High Availability Series: Volume 2: Deployment 128 pages
Enterprise Notification Reference Architecture for Exchange 2000 Server 224 pages
Microsoft Content Integration Pack for Content Management Server 2001

and SharePoint Portal Server 2001 124 pages
UNIX Application Migration Guide 694 pages
Microsoft Active Directory Branch Office Guide: Volume 1: Planning 88 pages
Microsoft Active Directory Branch Office Series Volume 2: Deployment and

Operations 195 pages
Microsoft Exchange 2000 Server Hosting Series Volume 1: Planning 227 pages
Microsoft Exchange 2000 Server Hosting Series Volume 2: Deployment 135 pages
Microsoft Exchange 2000 Server Upgrade Series Volume 1: Planning 306 pages
Microsoft Exchange 2000 Server Upgrade Series Volume 2: Deployment 166 pages

Reference Building Blocks
Data Access Application Block for .NET 279 pages
.NET Data Access Architecture Guide 60 pages
Designing Data Tier Components and Passing Data Through Tiers 70 pages
Exception Management Application Block for .NET 307 pages
Exception Management in .NET 35 pages
Monitoring in .NET Distributed Application Design 40 pages
Microsoft .NET/COM Migration and Interoperability 35 pages
Production Debugging for .NET-Connected Applications 176 pages
Authentication in ASP.NET: .NET Security Guidance 58 pages
Building Secure ASP.NET Applications: Authentication, Authorization, and

Secure Communication 608 pages

Operational Practices
Security Operations Guide for Exchange 2000 Server 136 pages
Security Operations for Microsoft Windows 2000 Server 188 pages
Microsoft Exchange 2000 Server Operations Guide 113 pages
Microsoft SQL Server 2000 Operations Guide 170 pages
Deploying .NET Applications: Lifecycle Guide 142 pages
Team Development with Visual Studio .NET and Visual SourceSafe 74 pages
Backup and Restore for Internet Data Center 294 pages

For current list of titles visit: msdn.microsoft.com/practices

To purchase patterns & practices guides visit: shop.microsoft.com/practices

	Title Page
	Contents
	Introduction
	Who Should Read This Guide
	What You Must Know
	Terminology
	System
	Inner and Outer System Boundaries
	Solution
	Project

	Chapter 1: Introducing the Team Environment
	Team Development Servers and Workstations
	The VSS Server
	The Build Server
	Development Workstations
	Database Servers
	Web Services Server

	Chapter 2: ASP.NET Web Application Development Models
	Isolated
	Semi-Isolated
	Non-Isolated
	Use an Isolated Development Model
	Avoid Semi-Isolated and Non-Isolated Development Models
	More Information

	Chapter 3: Structuring Solutions and Projects
	Visual Studio .NET Solutions and Projects
	Visual Studio .NET Projects
	Visual Studio .NET Solutions
	Solutions and Build Dependencies
	Files Subject to Source Control
	Files Not Subject to Source Control
	Always Use Visual Studio .NET for Source Control Operations

	Partitioning Solutions and Projects
	Use a Single Solution Model Whenever Possible
	Consider a Partitioned Single Solution Model for Larger Systems
	Use a Multi-Solution Model Only if Absolutely Necessary
	Considerations for Grouping Projects into Solutions

	Use a Consistent Folder Structure for Solutions and Projects
	Define a Common Root Folder
	Adopt a Parent-Child Folder Structure for Solutions and Projects
	How to Create a New ASP.NET Web Project
	How to Split a Web Application into Multiple Projects
	How to Create a New Non-Web Project

	Carefully Consider Naming Conventions
	Use Common Names for Projects and Assemblies
	Use a Common Root Namespace Name
	Use Common Names for VSS and Local Folders

	Chapter 4: Managing Dependencies
	Referencing Assemblies
	Use Project References
	Use File References Only Where Necessary
	Use Copy Local = True for Project and File References
	Using File References in Single and Partitioned Single Solution Systems
	Using File References in Multi-Solution Systems
	Consider an Isolated Development Approach
	Use a Virtual Drive Letter for Greater Flexibility
	Always Reference Release Builds with File References
	Use the Reference Path to Assist Isolated Development and Debugging
	How to Set the Reference Path for a Specific Project
	Include Outer System Assemblies within Projects
	Consider Sharing Outer System Assemblies in VSS
	Using the .NET Tab of the Add Reference Dialog Box

	Referencing Web Services
	Versioning Web Services in Development
	Always Use Dynamic URLs
	How to Use Dynamic URLs and a User Configuration File
	Updating a Web Service Reference

	Referencing Databases
	How to Use User Configuration Files for Database Connection Strings

	Database Development
	Central Database Servers
	Local Databases
	Use Database Scripts for Managing Change
	Consider Visual Studio .NET Database Projects

	Referencing COM Objects
	Always Generate Compatible Interop Assemblies
	Use Primary Interop Assemblies Whenever Possible
	Use TLBIMP if you don’t have a Primary Interop As
	Register COM Classes Locally
	Calling Serviced Components

	Chapter 5: The Build Process
	Handling Dependency Relationships
	Controlling Assembly Version
	Using Auto-Increment Version Numbers
	Using Static Version Numbers

	Build Server Folder Structure
	Consider Maintaining Previous Builds
	Don’t Alter the Build Output Path

	The Build Script
	Generating Build Version Numbers
	Labeling Source Files
	Extracting the Latest Source File Set
	Creating a New Latest Folder
	Building Solutions with Devenv.exe
	Copying Output to the Latest Folder
	Copying the Latest Folder to a Build Number Folder
	Renaming the Latest Folder as LatestBroken
	Resolving a Broken Build
	Emailing Build Results
	Packaging the Build

	Creating Build Script Accounts

	Chapter 6: Working with Visual SourceSafe™
	Creating a New Solution and Project
	How to Check In a New Solution to VSS

	Working on an Existing Solution for the First Time
	Working on an Existing Solution for a Subsequent Time
	Adding a New Project to an Existing Solution
	Checking In Source Files to VSS
	Only Check In Files When They Are Ready to Build

	Renaming and Deleting Files and Folders
	Renaming a File
	Renaming a Project
	Deleting a File from VSS
	Deleting a Project from VSS
	Deleting a Solution from VSS

	Multiple Checkout
	Checking Out Solution Files

	Chapter 7: Setting Up and Maintaining the Team Environment
	Creating a Development Domain
	Standalone Domain with No Trust Relationship
	Standalone Domain with Trust Relationships
	Part of the Corporate Domain
	The VSS Server
	Build Server
	Developer Workstations
	Visual Studio Enterprise Templates
	Backup Server
	SQL Servers
	Web Server

	Installing and Administering VSS
	Create a Shared Database on the Server
	Share the VSS Installation Folder with Read Access
	Create at Least One New Database for your .NET Development Project
	Consider Creating Additional VSS Databases
	Share the Database Folder and Establish the Appropriate Permissions
	Consider Using VSS Project Security
	Add User Accounts for Developers and the Build Script
	Restrict Access to Administration Tools
	Finding and Repairing Data Corruption
	Consider Installing Fault Tolerant Storage
	Installing VSS on Clients
	Consider Using VSS Shadow Directories

	Appendix: BuildIt—An Automated Build Tool for Visual Studio
	Downloading and Installing BuildIt
	Testing Your Installation
	User’s Guide
	Maintaining Build Numbers
	Building Solutions
	Reviewing the Build Report
	Rebuilding a Solution
	Archiving Builds
	Emailing Build Results
	Versioning Assemblies

	Deployment and Operations
	Deploying BuildIt
	Configuring BuildIt
	Securing BuildIt
	Troubleshooting BuildIt

	Known Issues
	Design and Implementation
	Problem Description
	Design Goals
	Solution Description
	Enhancements

	Class Reference
	BuildInitializer
	BuildItSectionHandler
	BuildManager
	SourceSafeHelper
	BuildItResourceManager
	BuildItCommandLineArgs

	Frequently Asked Questions
	Can I modify the BuildIt source code?
	Do I need to have Visual Studio installed where BuildIt runs?

	Appendix Summary
	About the Author
	About Sapient
	Collaborators
	Feedback

	Collaborators
	Additional Resources

