
69

CHAPTER 3
Using Java Development Tools

Eclipse provides a first-class set of Java Development Tools (JDT) for develop-
ing Java code. These tools include a Java perspective, a Java debug perspec-
tive, a Java project definition, editors, views, wizards, refactoring tools, a Java
builder (compiler), a scrapbook for evaluating Java expressions, search tools,
and many others that make writing Java code quick, fun, and productive.

The JDT views and editors provide an efficient and effective way to
quickly and intuitively navigate through Java source code and view Javadoc.
The Java editor supports syntax highlighting, content assist, error cluing,
state of the art refactoring, type-ahead assistance, and code generation
among a host of other capabilities. The Java compiler is an incremental com-
piler; it compiles only what it must based on your changes. It supports JDK
1.3 and 1.4. JDT can be configured with different JREs. You can develop
code with one JRE and debug with another.

The Java editor is more than a source code editor. It builds and maintains
indexed information about your code, enabling you to quickly search for ref-
erences to classes, methods, and packages. The incremental compiler is con-
stantly running in the background and will alert you to potential errors in
your code before you save it. In many cases JDT will propose several solu-
tions to the problems it detects, such as adding an import statement that was
omitted, suggesting typographical corrections, or even creating a new class
or interface. This allows you to focus on your code and not be distracted by
compiler demands.

In the following sections we’re going to look in more detail at the capa-
bilities and use of the Java tools. We’ll start with an overview of the JDT user
interface and the fundamentals you’ll need for creating and navigating Java
resources. We’ll then look in much more detail at JDT capabilities for coding

Shavor_ch03.qxd 4/22/03 3:02 PM Page 69

CHAPTER 3 Using Java Development Tools

Java. Then we’ll see how to run Java code. In the final sections of this chapter
we’ll get into more detail on working with Java elements, tuning the perfor-
mance of JDT, and specific functions in the JDT views and perspectives.

Getting Started

Let’s go. We’ll start with a quick overview of the JDT user interface. We’ll
then cover the fundamentals, like opening a class, navigating to a method or
field, and running a Java program. We’ll also discuss how to search Java code.

Overview of the JDT User Interface

The Java perspective is the default perspective for Java development and the
one that comes up when you create a new Java project (see Figure 3.1).

The left pane contains the Package Explorer view and Hierarchy view.
The Package Explorer view does for the Java perspective what the Navigator
view does for the Resource perspective. Use the Package Explorer view to
navigate in your Java projects, perform operations on resources, and open
files for editing. The middle pane contains open editors, Java and other-
wise. The active editor is the one on top. In Figure 3.1, an editor has
PrimeNumberGenerator.java open in it. The right pane is the Outline view,
which presents a structured, hierarchical view of the contents of the active
editor. On the bottom right is the Tasks view, the same one we saw in the sec-
tion “Working with Tasks” in Chapter 2. As you navigate in the user inter-
face, selecting Java files for editing and selecting Java elements, all the views
and the editor stay synchronized with your actions.

The Java views display Java elements with icons for a package and for
public methods. Some of these icons are decorated to provide further infor-
mation with overlays, such as to indicate a class has a main method or to in-
dicate a method overrides a method in a superclass. For a complete list of the
JDT icons and decorations, refer to the “Icons” section in the “Reference”
section in the Java Development User Guide.

You have two options for how code appears in the editor as you navigate
in the user interface. Show Source of Selected Element Only on the toolbar
controls this. The default is to show the contents of the entire file. If you pre-
fer to focus on smaller portions of code, toggling this option will only show
the source for the selected class, method, field, or import statement. This is
mostly a matter of personal preference.

70

P
A

R
T

I

Shavor_ch03.qxd 4/22/03 3:02 PM Page 70

Getting Started

The Fundamentals

Here are the fundamental tasks you need to understand to create and navi-
gate through Java resources. These are available when you are in one of the
Java perspectives.

Creating a Java Project

All Java elements must exist in a Java project. To create a Java project, select
File > New > Project… > Java Project from the menu or select Create a Java
Project from the toolbar.

When creating Java projects and other elements, if you get the names
wrong or later decide you want to change them, the JDT refactoring capabili-
ties make it easy to rename elements and update references to them (refactor-
ing will be discussed in more detail later in this chapter).

71

R
unning Eclipse

Figure 3.1 Java Perspective

Shavor_ch03.qxd 4/22/03 3:02 PM Page 71

CHAPTER 3 Using Java Development Tools

Creating a Package

Java types, that is, classes and interfaces, must exist in a package. If you do
not create one, a default will be created for you. To create a package, select
the containing project and select File > New > Package from the menu or
select Create a Java Package from the toolbar.

Creating a Type

To create a type, select the containing project or package and select File >
New > Class or File > New > Interface from the menu or select Create a Java
Class or Create a Java Interface from the toolbar.

Opening a Type

To open a Java class or interface, do one of the following.

• Double-click on a Java source file, class, or interface, or select one of
these in a view and press F3 or Enter. You can do this from any Java
view.

• From the editor, select the name of a class or interface in the source
code (or simply position the insertion cursor in the name), and then se-
lect Open Declaration from the context menu or press F3.

• Select Ctrl+Shift+T and enter the name of a class or interface in the
Open Type dialog.

Opening a Method or Field

To open a method or field definition, do one of the following.

• Double-click on a method or field, or select a method and press F3 or
Enter to see its definition. You can do this from any Java view.

• From the editor, select the name of a method or field in the source code
(or simply position the insertion cursor in the name) and then select Open
Declaration from the context menu or press F3 to see its definition.

Viewing Supertypes and Subtypes

To view the supertypes or subtypes for a class or interface in the Hierarchy
view, do one of the following.

• Select a Java element, such as a Java source file, class, method, or field,
and then select Open Type Hierarchy from the context menu or press
F4. You can do this from any Java view.

72

P
A

R
T

I

Shavor_ch03.qxd 4/22/03 3:02 PM Page 72

Getting Started

• From the editor, select the name of a Java element in the source code
(or simply position the insertion cursor in the name) and then select
Open Type Hierarchy from the context menu or press F4.

• Select Ctrl+Shift+H and enter the name of a class or interface in the
Open Type in Hierarchy dialog.

Navigating to a Type, Method, or Field

You can navigate to class, interface, method, and field definitions in your
Java code simply by selecting one of these elements in a view, such as the
Outline or Type Hierarchy view. The editor and open views scroll to your
selection.

NOTE If you select an element and you do not see it in an editor, it means the file con-
taining the definition is not open. You must then first open the file using one of
the methods described above.

Locating Elements in Projects

As you use the views and editor to navigate in your code, you can locate ele-
ment definitions in projects by selecting a Java element in one of the views or
the editor (or positioning the insertion cursor in the element name) and then
selecting Show in Package Explorer from the context menu. The Package
Explorer scrolls to the selected element. The element must be defined in an
open project in your workspace.

Running a Java Program

To run a Java program, select a class with a main method and then select Run >
Run As > Java Application from the menu. Output is shown in the Console view.

Searching

There are two types of searches: a general Eclipse file search for text strings,
and a Java-specific search of your workspace for Java element references.
The search capability uses an index of Java code in your workspace that is
kept up-to-date in the background, independent of Java builds. This means
that you don’t have to have the auto-build preference selected or save your
modifications in order to do a search.

73

R
unning Eclipse

Shavor_ch03.qxd 4/22/03 3:02 PM Page 73

CHAPTER 3 Using Java Development Tools

Searching a File

To search the file in the active editor for any text, select Edit > Find/Replace,
or press Ctrl+F. Eclipse also has an “incremental find” feature that provides
a keystroke-efficient way to do this. Select Edit > Incremental Find from the
menu or press Ctrl+J and note the prompt in the message area to the left on
the bottom margin (see Figure 3.2). Start typing the text you’re searching for.
The message area displays the text you’re searching for and the first match is
selected in the editor. Press Ctrl+K to find the next occurrence of the text.

Searching Your Workspace

Select Search or press Ctrl+H and then select the Java page to search your en-
tire workspace, or a subset of it, for references to Java elements. There are
three aspects to a Java search: what kind of reference, what kind of Java
element, and within what scope. You can specify these by using Limit To,
Search For, and Scope, respectively, in the Search dialog, as shown in Fig-
ure 3.3. To restrict a search, first select one or more Java elements in the
Package Explorer, Outline, or Type Hierarchy view and then select Search,
or define a Working Set and then specify that working set under Scope. (For

74

P
A

R
T

I

Figure 3.2 Incremental Find

Shavor_ch03.qxd 4/22/03 3:02 PM Page 74

Writing Java Code

more information on Working Sets, refer to the section “Working Sets” in
Chapter 2.) For example, if you want to search for methods returning void in
your projects, select the projects in the Package Explorer view, select Search,
specify the Search string “* void”, select Search For Method and Limit To
Declarations, select Selected Resources, and then select the Search button
(or press Enter).

Java search results are shown in the Search view (see Figure 3.4). Matches
are indicated in the editor with entries on the marker bar. Navigate to matches
from the Search view by double-clicking an entry or by selecting Show Next
Match and Show Previous Match.

In all of the JDT views, including the Search view and the editor, you can se-
lect an entry or Java element and then search on that element from the context
menu by selecting References > or Declarations >. This ability to successively
search for Java elements from the views, especially the Type Hierarchy and Search
views, provides a simple, efficient way to explore and understand Java code.

Writing Java Code

Now that you’ve seen how to create and navigate Java resources, let’s get to the
real cool stuff, writing Java. The Java editor provides a wealth of functions to
help you write Java code more efficiently with greater productivity, and, quite

75

R
unning Eclipse

Figure 3.3 Searching for Java Elements

Shavor_ch03.qxd 4/22/03 3:02 PM Page 75

P
A

R
T

I

CHAPTER 3 Using Java Development Tools

frankly, while having more fun. Among the capabilities provided by the Java
editor are content assist for Java expression completion, code generation, real
time-error detection, quick-fix remedies for coding errors, the ability to work
with different JREs, and Javadoc generation.

The organization of the Java editor pane is straightforward and similar
to other editors (see Figure 3.5). On the left border is the marker bar, which
shows tasks, bookmarks, compiler errors, and quick fixes. The right margin
is the overview ruler, which shows error indicators to help you quickly scroll
to errors that are currently not visible. On the left of the bottom margin is the
message area; on the right are three fields. From left to right these fields indi-
cate if the file is writable or read-only, the toggle status of the Insert key, and
the line and column number of your position in the editor.

The editor is, as you would expect, completely integrated. This means Java
views, such as Type Hierarchy and Outline, update in realtime as you type in
the editor. It allows a great deal of customization. The behavior of the editor is
specified in your Java preferences under the Editor, Code Generation, Code
Formatter, and Refactoring pages.

The editor provides unlimited Undo/Redo through Edit > Undo and Edit >
Redo, or Ctrl+Z and Ctrl+Y. View the other keyboard shortcuts by selecting

76

Figure 3.4 Search View

Shavor_ch03.qxd 4/22/03 3:02 PM Page 76

R
unning Eclipse

Writing Java Code 77

Figure 3.5 Java Editor

Window > Keyboard Shortcuts. Format your code by selecting Source >
Format, or by pressing Ctrl+Shift+F. You can double-click on the editor title
bar to maximize it.

Position your cursor in the parameters for a method invocation and then
press Ctrl+Shift+Space to see parameter hints (see Figure 3.6). If there are
multiple parameters, the editor will highlight the type of the parameter you
are editing.

Many of the code generation and refactoring operations require a valid Java
expression to be selected. To do so, select Edit > Expand Selection To, with the
options Enclosing Element, Next Element, Previous Element, and Restore
Last Selection. To select an expression using keyboard shortcuts, press
Alt+Shift and then an arrow key (Up, Right, Left, and Down respectively).

To reference Java elements declared outside your current project, you
need to set your project’s build path to include their declarations. We’ll see
how to do this later in this chapter in the section “Creating Java Projects.”
You will know that you need to do this, for example, when you attempt to
add an import statement and the type or package you want to import does
not appear in the dialog.

Shavor_ch03.qxd 4/22/03 3:02 PM Page 77

CHAPTER 3 Using Java Development Tools

Content Assist

As you edit Java code, you can press Ctrl+Space to see phrases that complete
what you were typing. This is done based on an ongoing analysis of your Java
code as you edit it. You can do this for both Java source and Javadoc. For ex-
ample, to quickly enter a reference to class ArrayIndexOutOfBoundsException,
type arr, press Ctrl+Space, then continue typing ayi to narrow the list to that
class and press Enter. The complete reference is inserted. Content assist can
also be activated automatically by setting this preference on the Code Assist
page of the Java Editor preferences. Automatic invocation works based on a
character activation trigger and a delay. The default activation trigger for Java
is the period (.), and for Javadoc it’s the “at” sign (@). If you type the activa-
tion trigger character as you are entering Java source or Javadoc and then
pause, content assist will display suggestions (see Figure 3.7).

NOTE If you have trouble using content assist, be sure to check your preferences, specif-
ically the Java Code Generation page and the Java Editor Code Assist page, to
verify it isn’t disabled.

The content assist pop-up lists matching templates and Java references
on the left along with their respective icons (class, interface, and method); on
the right is the proposed code. These suggestions come from two places: Java
references based on an analysis of your code and your defined code tem-
plates. Your defined code templates are part of your Java preferences under
Templates. We’ll see how to edit these later in this chapter in the section

78

P
A

R
T

I

Figure 3.6 Parameter Hints

Shavor_ch03.qxd 4/22/03 3:02 PM Page 78

Writing Java Code

“Using Code Templates.” Code templates match what you are typing by tem-
plate name. Pressing Enter will insert the selected proposal.

In some cases, you can save typing if you have an idea what you want next
or what the suggestion should be. Keep typing with the content assist prompt
displayed and you will see the list narrowed to match your typing. At any
point, select an entry and press Enter. Or, continue typing and when no sug-
gestions apply, the content assist prompt will disappear. This is useful when
you have auto content assist enabled, since you can choose to ignore prompts
that come up by simply continuing to type what you had been typing.

You can use content assist in a variety of situations. Figure 3.7 shows
generation of a stub for a for loop from a template. You can also generate
public method templates, while loops, and try/catch expressions. Take a
look at the templates in your Java preferences to see what’s available. In addi-
tion, content assist works for the following.

• Overriding Inherited Methods. Position the insertion cursor within a
class definition, but outside any method, and activate content assist.
You’ll see a list of methods this class can override or must define based
on an interface implementation (see Figure 3.8).

79

R
unning Eclipse

Figure 3.7 Content Assist Prompt

Shavor_ch03.qxd 4/22/03 3:02 PM Page 79

CHAPTER 3 Using Java Development Tools

• Import Statements. Type in a Java reference that is unresolved and
then activate content assist. As shown in Figure 3.9, you’ll see a list of
applicable types. Select one and it completes the reference and includes
the required import statement.

You can also type import and begin typing the name of a package or
type, and then activate content assist to see a list of types and packages.

• Variable References. Begin to type the name of a variable or field in an
expression and then activate content assist. It provides a list of possible
references, including variables within the scope of the expression (see
Figure 3.10).

• Anonymous Inner Classes. Activate content assist within the body of
an anonymous inner class and it will present a list of methods to define
(see Figure 3.11).

80

P
A

R
T

I

Figure 3.8 Content Assist Override Method

Figure 3.9 Content Assist Import Statement

Shavor_ch03.qxd 4/22/03 3:02 PM Page 80

Writing Java Code

• Parameter Hints. Content assist provides another way to see informa-
tion about parameter types for a method invocation, in addition to
Ctrl+Shift+Space. Position the insertion cursor in the parameters of a
method invocation and activate content assist. It displays the parame-
ter types. As you enter parameters or move your cursor over them, it
highlights the type of the parameter (see Figure 3.12).

• Javadoc. Activate content assist in Javadoc. You can add Javadoc
HTML tags and keywords. What’s slick about this is that content
assist can make smart suggestions based on an understanding of your
code. For example, typing @param and then activating content assist
will display a list of method argument names. Typing @exception and

81

R
unning Eclipse

Figure 3.10 Content Assist Variable Reference

Figure 3.11 Content Assist Anonymous Inner Class

Shavor_ch03.qxd 4/22/03 3:02 PM Page 81

CHAPTER 3 Using Java Development Tools

then activating content assist will display a list of exceptions a method
throws.

Code Generation

In addition to content assist, JDT provides other code generation capabilities.
These are options available under the Source menu item or from the editor’s
context menu.

• Code Comments. You can quickly add and remove comments in a
Java expression with Source > Comment (or Ctrl+/) and Source >
Uncomment (Ctrl+\). Adding comments generates line comments,
which are prefaced by two backslashes (//) on the lines with the se-
lected expression.

• Import Statements. To clean up unresolved references, select Source >
Organize Imports to add import statements and remove unneeded
ones. You can also select an unresolved reference and use Source >
Add Import to add an import statement for that reference only. The
keyboard equivalents are Ctrl+Shift+O and Ctrl+Shift+M, respectively.

• Method Stubs. You can create a stub for an existing method by drag-
ging it from one class to another. You can also select Source > Override
Methods... to see a list of methods to override. Select one or more to
have stubs generated.

• Getters and Setters. A quick way to create getter and setter methods is
to select a field and then select Source > Generate Getter and Setter....
Figure 3.13 shows the Generate Getter and Setter dialog.

82

P
A

R
T

I

Figure 3.12 Content Assist Parameter Hints

Shavor_ch03.qxd 4/22/03 3:02 PM Page 82

Writing Java Code

• try/catch statements. If you select an expression and then Source >
Surround with try/catch, the code is analyzed to see if any exceptions
are thrown within the scope of the selection and try / catch blocks are
inserted for each. This works well with the Alt+Shift+Up and Alt+
Shift+Down expression selection actions to accurately select the code
to which you want to apply try/catch blocks.

• Javadoc Comments. You can generate Javadoc comments for classes
and methods with Source > Add Javadoc Comment. The Javadoc is
generated based on template definitions in your Java Templates prefer-
ences. Customize these by modifying the typecomment or filecomment
template. For more information on this, refer to the section “Using
Code Templates” later in this chapter.

• Superclass constructor. When you create a class, you have the option
to generate constructors from its superclass. If you elect not to do this,
you can come back later and add the superclass constructors with
Source > Add Constructor from Superclass.

83

R
unning Eclipse

Figure 3.13 Generating Getter and Setter Methods

Shavor_ch03.qxd 4/22/03 3:02 PM Page 83

CHAPTER 3 Using Java Development Tools

Navigating Java Errors and Warnings

JDT displays two types of errors in your Java code. The first are errors and
warnings resulting from compiling your code. These are shown as entries in
the Tasks view, as markers on the marker bar, and as label decorations in the
views (refer back to Figure 3.5). The second are errors detected as you edit
Java code, before it’s compiled. These are shown as error clues (red underlin-
ing) in the source and on the overview ruler on the right border (small red
rectangles). A quick fix icon is displayed for errors for which JDT can suggest
a solution. We’ll get to quick fix in the section “Fixing Java Errors with
Quick Fix” later in this chapter.

Hovering over an error indicator in the marker bar or over text under-
lined in red displays the error message. Position the text cursor in red under-
lined text and press F2 to see the error message. Click on an error indicator
in the overview ruler to cause the code in error to be selected. Clicking on the
error indicator again scrolls the editor to the error and selects the text. You
can also select Go to Next Problem (Ctrl+.) or Go to Previous Problem
(Ctrl+,) to scroll through and select compiler errors. When you do so, the
error message is displayed in the message area.

In the Tasks view, double-click on an error to go to that line in the file
with the error. If the file is not open, it is opened in an editor. If the error mes-
sage is truncated in the Tasks view because of the width of the column, hover
over it to display the full message or select the task to see the full text in the
message area.

Fixing Java Errors with Quick Fix

For errors having suggested corrections, you will see a quick fix icon on the
marker bar. You can use quick fix to correct a wide variety of problems, from
spelling errors and missing import statements to declaring local variables and
classes. Click on the icon to see a list of possible solutions (see Figure 3.14).
You can also position the cursor within the red underlined text and then
press Ctrl+1 to display the suggestions. Select an item in the pop-up to see
the proposed fix or a description. Press Enter make the correction.

If the file you are editing is marked as read-only, quick fix will not work
correctly. You’ll see the quick fix icon on the marker bar, but clicking on it
will not result in any suggested fixes.

84

P
A

R
T

I

Shavor_ch03.qxd 4/22/03 3:02 PM Page 84

Writing Java Code

Refactoring

Refactoring refers to a class of operations you use to reorganize and make
other global changes to your code. You may need to do this in response to
API changes, to improve maintainability, or to make naming more consistent.
JDT provides state-of-the-art Java refactoring capability that allows you to
make changes and update references, including string literals and Javadoc
comments. This includes the ability to do the following.

• Move
You can move Java elements and, optionally, modify references to the
element being moved. This can be used for fields, methods, classes, in-
terfaces, packages, source files, and folders.

• Rename
You can rename Java elements and, optionally, modify references to the
element being renamed. This can be used for fields, variables, methods,
method parameters, classes, interfaces, packages, source files, and folders.

85

R
unning Eclipse

Figure 3.14 Quick Fix Suggestions

Shavor_ch03.qxd 4/22/03 3:02 PM Page 85

CHAPTER 3 Using Java Development Tools

• Pull Up
This moves a field or method to a superclass.

• Extract Method
This creates a new method from the selected expressions.

• Modify Parameters
This lets you change parameter names and order and update all refer-
ences to the method being modified.

• Extract Local Variable
This creates a new variable from the selected expression and replaces
all occurrences of the expression with a reference to the variable within
the scope of the enclosing method.

• Inline Local Variable
This does the opposite of Extract Local Variable. You can use a vari-
able’s initialization expression to replace references to it.

• Self Encapsulate
You can replace references to a field with calls to its getter and setter
methods. This refactoring operation assumes the getter and setter
methods do not yet exist.

To refactor your code, select a Java element in one of the views (or the
name of an element in the editor) or an expression in the editor, then select
Refactor > from the context menu or the main menu. You can also refactor
by dragging and dropping Java elements in the Java views, for example,
dragging a type from one package to another in the Package Explorer view,
or dragging a type onto another class to create a nested type. Some of the
refactoring operations require a valid expression to be selected. The Expand
Selection To > menu choices and Alt+Shift keyboard shortcuts we discussed
earlier at the beginning of the “Writing Java Code” section make this easy.

When you request a refactoring operation, the Refactoring wizard ap-
pears (see Figure 3.15). The first page displays the minimum information
needed to complete the operation. Typically this is a new name or destination
and options, for example, to update references to the changed element. Spec-
ify this information and select Finish to perform the refactoring, or select
Next > for more options.

Selecting Next displays a list of warnings and potential errors that will
occur if you apply the proposed changes to your code. If you select Finish,
this list of warnings and potential errors will only be displayed if your code
contains an error or warning of greater severity than you’ve specified in your
Java Refactoring preferences. The page after that, shown in Figure 3.16,

86

P
A

R
T

I

Shavor_ch03.qxd 4/22/03 3:02 PM Page 86

R
unning Eclipse

Writing Java Code 87

Figure 3.15 Refactoring Wizard

Figure 3.16 Previewing Refactoring Changes

Shavor_ch03.qxd 4/22/03 3:02 PM Page 87

CHAPTER 3 Using Java Development Tools

shows each of the changes and a before-and-after view of the code. You can
select to apply none, some, or all of the changes. Expand the elements in the
top pane and select an element or subelement to see only the source code for
that element.

To undo or redo a refactoring operation, use Refactor > Undo and
Refactor > Redo. These operations are different from Edit > Undo and Edit >
Redo. The refactoring undo is aware of all of the changes made across all
projects; the edit undo is aware only of changes made as a result of the refac-
toring operation in the active editor.

NOTE When you drag and drop elements in the views to affect refactoring, the
Refactor > Undo and Redo actions are not available.

Browsing Javadoc

There are several ways to browse Javadoc. In the editor, position the cursor
in a Java element and then select Edit > Show Tooltip Description or press
F2. A small pop-up displays the Javadoc for the selected element, as shown in
Figure 3.17. With Show Text Hover selected (the default), move your mouse
over a Java element to see its Javadoc.

You can display the Javadoc for a Java element in a browser by selecting
a Java element in the editor and then selecting Navigate > Open External
Javadoc or by pressing Shift+F2.

88

P
A

R
T

I

Figure 3.17 Displaying Javadoc

Shavor_ch03.qxd 4/22/03 3:02 PM Page 88

Writing Java Code

To browse Javadoc from the editor, you need to provide JDT with a start-
ing point. To point to Javadoc for a JRE, use your Java Installed JREs prefer-
ences as shown in Figure 3.18. Edit an Installed JRE entry and specify the
Javadoc URL. You can use a file: URL to point to Javadoc on your file sys-
tem or an http: URL to point to Javadoc on another machine. This should
point to the root folder containing the Javadoc; that is, the folder containing
the java, javax, and org folders.

To specify the Javadoc location for code in a Java project, from the
Navigator context menu, open the Properties dialog on the project. Set the
Javadoc location property for the project. If you are referencing declarations
in Java code in a JAR file, set the Javadoc location in the properties on the
JAR file. This approach also works for the JRE rt.jar file.

Using Code Templates

Templates are code outlines for common Java code or Javadoc patterns. Tem-
plates allow you to quickly insert and edit code expressions with a minimum
number of keystrokes. They help ensure more consistent code. Templates can

89

R
unning Eclipse

Figure 3.18 Specifying Javadoc for a JRE

Shavor_ch03.qxd 4/22/03 3:02 PM Page 89

CHAPTER 3 Using Java Development Tools

contain Java or Javadoc source, variables that are substituted when the tem-
plate is inserted in the Java code, and a specification of where the cursor
should be positioned when editing of the template is complete. JDT suggests
variable substitutions based on the template, your Java source, and where in
your Java source you are inserting the template. For example, if you select to
insert the template to use a for statement to iterate over an array, and your
method has an array as a local variable or parameter, JDT will assume this lo-
cal variable or parameter is the array to use and substitute its name for the
template variable.

You insert a template in your Java source through content assist, that is,
by pressing Ctrl+Space. Based on what you had just typed and your context
(whether you’re in a Java code or Javadoc section of the file), you will get a
list of possibilities for completing what you had been typing. If what you had
just typed matches the name of a template, the template appears as a choice.
The Code Assist page of the Java Editor preferences lists several options for
code generation such as Insert single proposals automatically and Enable
auto activation (see Figure 3.19).

NOTE Code Assist is the term used in Eclipse 2.0. The Eclipse team plans to change this
to Content Assist in 2.1, as this is the more commonly used term.

After you insert a template, if there were variables in the template, the
first one is selected to allow you to modify the variable. Use the Tab key to
navigate to the next variable in the template. After you navigate through the
variables, another Tab will place the cursor in what the template designer be-
lieved to be the next logical place where you’d want the cursor in order to
continue coding. For example, in the for template, the cursor will be placed
in the body of the for statement.

It’s easy to create your own templates or to modify those provided. For
instance, you might want to change the filecomment or typecomment tem-
plate to add a copyright or legal notice or add your own template for a try/
catch block to invoke a special error handling routine. You do this in your
Java preferences under Templates.

In Figure 3.20 you can see a list of templates that come with Eclipse. Se-
lect a template to preview it in the bottom pane. Templates can be enabled
and disabled. Disabling a template will cause it not to appear as a suggestion
in the content assist prompt. To share templates with your team, use the

90

P
A

R
T

I

Shavor_ch03.qxd 4/22/03 3:02 PM Page 90

Writing Java Code

Import... and Export... buttons on the Java Templates preferences page to
read and write templates as *.xml files. The Use Code Formatter option in-
dicates you wish to format your code after the template has been inserted ac-
cording to your Code Formatter preferences.

You can create and edit templates in the Edit Template dialog, shown in
Figure 3.21, by selecting New... or Edit.... Name is mandatory, and Descrip-
tion is optional, though useful. Both appear in the content assist prompt.
Context indicates whether the template is for Java or Javadoc generation and
affects when a template appears in the content assist prompt. To insert a vari-
able, use the Insert Variable… button on the dialog, or press Ctrl+Space in
the Pattern field to see a list of possible variables. $(cursor) is the variable
that indicates where the cursor is placed after the user has tabbed through the
variable fields.

91

R
unning Eclipse

Figure 3.19 Java Editor Code Assist Preferences

Shavor_ch03.qxd 4/22/03 3:02 PM Page 91

CHAPTER 3 Using Java Development Tools

Externalizing Strings

JDT allows you to externalize strings in your Java code, that is, to remove
string literals from your Java code to separate files and replace them with ref-
erences. This is most often done in order to have the strings translated into
other languages. The Externalize Strings wizard scans your code for string lit-
erals and allows you to indicate which string literals are to be externalized
and which are not. JDT also provides support for finding unused and im-
properly used references to externalized strings. You can use a preference set-
ting to flag strings that have not been externalized as compile errors or
warnings. This is on the Errors and Warnings page of the Java Compiler
preferences.

92

P
A

R
T

I

Figure 3.20 Java Templates Preferences

Shavor_ch03.qxd 4/22/03 3:02 PM Page 92

Writing Java Code

To begin the process, select a project, package, or folder and then select
Source > Find Strings to Externalize... from the menu to display the Find
Strings to Externalize dialog, which shows *.java files containing strings
that have not been externalized (see Figure 3.22).

Select a file and then Externalize... to go to the Externalize Strings wiz-
ard. Alternatively, select a *.java file and then select Source > Externalize
Strings... from the menu to display the wizard.

On the first page of the Externalize Strings wizard, shown in Figure 3.23,
you specify which strings are to be externalized (for translation) and keys for
accessing the strings. Select an entry and then Translate to externalize the
string. Select Never Translate if you do not want the string externalized. In

93

R
unning Eclipse

Figure 3.21 Edit Template Dialog

Figure 3.22 Finding Strings to Externalize

Shavor_ch03.qxd 4/22/03 3:02 PM Page 93

CHAPTER 3 Using Java Development Tools

each of these cases, JDT annotates your source code with comments indicat-
ing your choice. Selecting Skip goes to the next string without taking any ac-
tion. If you have your preferences set to flag nonexternalized strings as errors
or warnings, and you select Translate or Never Translate for the string, it
will no longer be flagged as an error or warning. If you select Skip, the error
or warning will remain. You can specify a prefix that will be added to the key
(when your code is modified, not in the dialog). You can also edit the key to
specify a different value by selecting the entry and then clicking on the key.
Even if you do not intend to translate a string, it still may by useful to exter-
nalize it if you reference the same string value in several places in your code,
for example, strings that show up in your user interface. This way, you can
be certain they remain the same.

On the second page of the wizard, shown in Figure 3.24, you specify the
name and location of the file that contains the externalized strings and a class

94

P
A

R
T

I

Figure 3.23 Specifying Strings to Externalize

Shavor_ch03.qxd 4/22/03 3:03 PM Page 94

Writing Java Code

to access the strings. JDT generates this class and the specified method and
adds it to your project.

The final page of the wizard is a before-and-after view of your code (see
Figure 3.25). In the top pane, you select to apply or not apply changes for
each of the proposed modifications. Select Finish to make the changes to
your code. This replaces the selected strings with references based on the ac-
cessor class, generates the accessor class, and creates the file containing the
strings.

To undo string externalizations, select Refactor > Undo. This will also
remove the generated accessor class.

Generating Javadoc

You generate Javadoc by exporting it. To do so, you first need to set your
Java Javadoc preferences to point to javadoc.exe. This program performs the
Javadoc generation. The javadoc.exe program is not shipped as part of
Eclipse; it comes with a JDK distribution.

Once you have set the location of javadoc.exe, you can export Javadoc
by selecting Export... from the Package Explorer context menu and then

95

R
unning Eclipse

Figure 3.24 Specifying Location of Externalized Strings

Shavor_ch03.qxd 4/22/03 3:03 PM Page 95

CHAPTER 3 Using Java Development Tools

selecting Javadoc as the export destination. You have a number of options for
generating Javadoc for one or more of your Java projects. Figure 3.26 shows
the first page of options. Select Finish to generate the Javadoc or Next > for
more options.

For the visibility settings, Private generates Javadoc for all members;
Package for all default, protected, and public members; Protected for all
protected and public members; and Public for only public members. For
more information on all the Javadoc generation options, refer to the “Java
Preferences” information in the “Reference” section of the Java Develop-
ment User Guide.

When you generate the Javadoc, you will see a prompt asking if you want
to update the Javadoc Location properties of the projects you are generating
Javadoc for. You should select to do so. This will enable you to browse the
generated Javadoc in the Java editor. Output from the generation shows up in
the Console view. You should review this to ensure there were no errors.

Writing Java for Nondefault JREs

Eclipse uses a JRE for two purposes: to run Eclipse itself and to run your
Java code. This can be the same JRE or different JREs. The specifications are

96

P
A

R
T

I

Figure 3.25 Externalize Strings Code Changes

Shavor_ch03.qxd 4/22/03 3:03 PM Page 96

Writing Java Code

independent; that is, you can write JRE 1.4 dependent code in an Eclipse run-
ning on a 1.3 JRE and vice versa. However, by default the JRE you use to run
Eclipse is the same one the JDT uses to run your Java code. If you want to de-
velop Java code that uses a different JRE from the one that runs Eclipse, you
need to reconfigure Eclipse to define the JRE you are going to use and to set
your JDK compliance preferences.

You specify the JRE your code needs in the Installed JREs preferences un-
der Java (see Figure 3.27). Set the default JRE (with the associated check box)
to be the one you just installed. This specifies the JRE used when you develop
Java code. It does not affect the JRE used to run Eclipse.

Set your Compiler compliance level setting, on the JDK Compliance
page of the Java Compiler preferences, to either 1.3 or 1.4, depending on
what your code requires (see Figure 3.28). This is a global preference that
applies to all projects. We do not recommend attempting to manage JRE 1.3

97

R
unning Eclipse

Figure 3.26 Generating Javadoc

Shavor_ch03.qxd 4/22/03 3:03 PM Page 97

CHAPTER 3 Using Java Development Tools

dependent code and JRE 1.4 dependent code in the same workspace. See the
section “Multiple JREs, Differing JDK Level” later in this chapter for more
information.

Each Java project maintains its own classpath. JDT sets a Java project’s
classpath based on the project’s Java Build Path properties, which includes a
JRE. If you have multiple projects that depend on different JREs, you have
several configuration options. Your options depend primarily on the JDK
level of the JREs your code requires.

Multiple JREs, Same JDK Level

You can have multiple Java projects that require different JREs, but the JREs
are the same JDK compliance level, either 1.3 or 1.4. You have two options:
You can configure to run multiple workspaces, one for each different JRE
your code requires, or you can configure to run one workspace containing
code requiring different JREs. We recommend the multiple workspace ap-
proach because it is simpler and less error prone.

To configure to run with multiple workspaces, use the following procedure.

1. Use the –data command line parameter to specify a different work-
space for each different JRE. Create scripts and/or shortcuts to invoke
Eclipse with your different workspaces.

98

P
A

R
T

I

Figure 3.27 Setting Installed JREs Preferences

Shavor_ch03.qxd 4/22/03 3:03 PM Page 98

Writing Java Code

2. In each of your workspaces, if the JRE your code needs is not the one
Eclipse is running on, specify the required JRE in your Installed JREs
preferences. Set the default JRE (with the associated check box) to be
the one you installed.

3. In each of your workspaces, set the Compiler compliance level set-
ting in your Java Compiler preferences.

To configure to run with multiple JREs in one workspace, do the following.

1. Install all JREs required by the code you plan to develop in your
workspace in your Installed JREs preferences.

2. Set the Compiler compliance level setting in your Java Compiler
preferences.

3. For each project, set the project’s build path to use the correct JRE
through the Java Project Properties dialog by selecting Properties
from the Package Explorer view context menu. Select Java Build Path
and then the Libraries page. Remove the existing JRE entry (rt.jar
file). Select Add External Jars… or Add Variable… to add the rt.jar
of the JRE you want to use.

99

R
unning Eclipse

Figure 3.28 Java Compiler JDK Compliance Preferences

Shavor_ch03.qxd 4/22/03 3:03 PM Page 99

CHAPTER 3 Using Java Development Tools

Multiple JREs, Differing JDK Levels

If you need to work in one workspace on code that requires different JREs at
different JDK levels, practically speaking, you only have one choice. You
need to separate the code into different workspaces, according to the steps
outlined above. Given that the Compiler compliance level preference is
global, and that each project maintains its own build path and classpath in-
formation, changing from 1.3 JDK compliance to 1.4 or vice versa will cause
all open Java projects to be recompiled. If the compliance is set to JDK 1.4
level and your 1.3 dependent projects are rebuilt, your files may compile, but
the generated .class files will not run with a 1.3 JRE (more precisely, be un-
derstood by a 1.3 JVM). If the compliance is set to JDK 1.3 level and your
1.4 JRE dependent projects are rebuilt, the compiler will not understand 1.4-
specific syntax and you will not be able to produce 1.4 format .class files.

Running Java Code

To run Java code, you must be in one of the Java perspectives. There are
three basic ways to run code in your Java projects: You can run (launch) a
Java program with the Run action, you can run a Java program with the
Debug action, and you can evaluate (execute) an Java expression in a scrap-
book page. With the Run action, your program executes and you do not have
an opportunity to suspend its execution or examine variable or field values.
In debug mode, you suspend, resume, and examine a program’s execution.
We’ll look more at debugging in Chapter 4.

You can run code even if it still has compiler errors. If the scope of an
error is limited to a method, you can run code in the class, except for the
method with the error. If the scope of an error is at the class level, for ex-
ample, a problem with a static declaration, you can run code in other classes
but not the one with the error.

Using the Run Action

Java programs, that is, classes with main methods, are identified with the Run
label decoration. To run a Java program, select a class or a Java element con-
taining a class, and select Run from the menu or the Run pull-down menu,
and then select Run As > Java Application. JDT executes the main method and
sends output to the Console view. If you have previously run Java programs,
you will have entries under Run > Run History and Run from the toolbar.

100

P
A

R
T

I

Shavor_ch03.qxd 4/22/03 3:03 PM Page 100

Running Java Code

Select from these to re-run programs. You can also press Ctrl+F11 or simply
select Run from the toolbar to re-run the last program you ran.

When you run a Java program, you run it as a Java application, JUnit
test, or run-time workbench. We’re going to focus on Java applications here.
Running as a run-time workbench is for testing extensions to Eclipse. We’ll
get to that in Chapter 8. Running as a JUnit test is beyond the scope of this
book. For more information on this, refer to “Using JUnit” in the “Tasks”
section of the Java Development User Guide.

To run a Java program, JDT needs two things: a main method and a launch
configuration. Depending on what view was active and what you had selected
when you requested to run a program, if a unique class with a main method
can be determined, that main method will be run. For example, if the Java edi-
tor is active on an element with a main method, that main method will be run. If
you have a project selected in the Package Explorer view and there are multiple
classes in that package with main methods, you will be prompted to select one.

If the program encounters a run-time error, the exception information
goes to the Console view and is displayed in error text color to distinguish it
from other output types. Color-coding for output text in the Console view is
defined in your Console preferences under Debug.

Managing Launch Configurations

Launch configurations define information for running Java programs. With
launch configurations you can specify input parameters, JVM arguments, and
source for your code, and set the run-time classpath and JRE. If you do not
specify a launch configuration when you run a Java program with the Run
action, a default is created for you. To define a launch configuration, select
the Run pull-down menu and then Run…. In the Launch Configurations dia-
log (see Figure 3.29), select Java Application for Launch Configurations and
then select New. If you had previously run Java programs with the Run ac-
tion, you will see the default launch configurations that were created for you
(see Figure 3.29).

On the Main page, Project is optional. If you specify it, its build path is
used to set the classpath, source lookup, and JRE. Use Search... to search a
project’s build path for Java programs. If a valid project is specified, the build
path of that project is searched for classes with main methods matching the
search pattern (you can use wildcards) in Main class. If a project is not speci-
fied, the build paths of all the projects in your workspace are searched for
classes with main methods matching the search pattern.

101

R
unning Eclipse

Shavor_ch03.qxd 4/22/03 3:03 PM Page 101

CHAPTER 3 Using Java Development Tools

On the Arguments page, you can set the input parameters for the Java
program and any JVM parameters. The Java program parameters are strings
separated by spaces. For more information on JVM arguments, see “Running
Eclipse” in the “Tasks” section of the Workbench User Guide.

On the JRE page, you set the JRE used to execute the Java program. Use
this to override the JRE defined in the build path properties of the project
containing the program. Choose from the list of choices, which is populated
with the JREs you have defined in your Installed JREs preferences, or add a
new JRE. This is useful, for example, to specify a 1.4 JRE in order to do hot
code replace when you debug your code.

On the Classpath page, the classpath is set based on the build path infor-
mation from the project specified on the Main page. To override or add to
this, deselect Use default classpath. If you do not have a project specified,
you need to do this and specify classpath information. If you choose not to
use the default classpath, add references in the classpath to those projects and
JAR files containing declarations the Java program references, including the
project or JAR file containing the main method being executed.

On the Common page you specify information about how to save the
launch configuration. By default, launch configurations are saved as metadata

102

P
A

R
T

I

Figure 3.29 Creating a Launch Configuration

Shavor_ch03.qxd 4/22/03 3:03 PM Page 102

Running Java Code

in your workspace. If you select Shared, you specify a Java project into
which to save the launch configuration as a .launch file. In this way, it’s easy
to keep and manage launch configurations with the code they run and to
share them with others accessing the project; this is especially important for
teams. The Run mode and Debug mode selections allow you to specify the
perspective to display when the launch configuration is used to run or de-
bug, respectively, the Java program. You can also indicate which favorites
list displays the launch configuration, the Run or the Debug toolbar pull-
down menus.

Evaluating Expressions in Scrapbook Pages

Java scrapbook pages (*.jpage files) allow you to edit and evaluate Java code
expressions and display or inspect the results. They are a quick and easy way
to test code and experiment with Java code expressions. You can evaluate an
expression that’s a partial statement, a full statement, or a series of state-
ments. To create a scrapbook page, select Create a Scrapbook Page or use
the New wizard. Scrapbook pages can be located in Java projects, folders,
source folders, and packages.

Enter an expression in the Scrapbook page. This could be something simple
like System.out.println("Hello World"), or an invocation of your Java code,
for example, its main method. Content assist (Ctrl+Space) is available in scrap-
book pages. Select the expression and then select Display from the toolbar or
the context menu. JDT evaluates the expression, sends output to the Console
view, and displays the toString value returned by the expression you selected in
the scrapbook page. Select Inspect to display the results in the Expressions view.
(We’ll discuss the Expressions view in more detail in Chapter 4.) Run Snippet
simply runs the code and sends the output to the Console view.

There are a couple of scrapbook page properties worth noting. To view
or change these, select a scrapbook page and then Properties from the con-
text menu. Working directory by default is the Java project in your work-
space containing the scrapbook page. This is for relative file references. You
can also change the JRE used for the scrapbook page. The default JRE is the
one specified in your Java preferences under Installed JREs.

Scrapbook pages get their classpath from the containing project’s build
path. If in a scrapbook page you want to reference a Java element that is not
on the build path of the containing Java project, you need to add to the Java
project’s build path. Scrapbook pages also allow you to specify import state-
ments. You do this by selecting Set Imports from the context menu of a
scrapbook page or Set Import Declarations for Running Code from the

103

R
unning Eclipse

Shavor_ch03.qxd 4/22/03 3:03 PM Page 103

CHAPTER 3 Using Java Development Tools

toolbar. You need to set import statements for references to Java declarations
in your projects. This is a common oversight. If the type or package you are
attempting to import is not listed in the Add dialog, it means you need to add
it to the build path of the project containing the scrapbook page. If you are
referencing an element that has multiple declarations, you will need to add
an import statement to uniquely identify the element.

Each scrapbook page has its own associated JVM. The JVM is started
the first time you evaluate an expression in a scrapbook page after it is cre-
ated or opened. The JVM for a scrapbook page runs until the page is closed
or explicitly stopped with Stop Evaluation from the context menu or the
toolbar. When a scrapbook page is in the process of evaluating, the icon
changes to a red J on a gray background. If the expression you’re evaluating
results in a loop or a hang, select Stop Evaluation. In some cases this may not
stop execution. If it doesn’t stop, simply close the scrapbook page and then
re-open it.

Working with Java Elements

In the “Fundamentals” section earlier in this chapter, we presented an
overview of how to create different kinds of Java elements. In this section
we’ll go into more depth on Java projects, creating and importing Java ele-
ments, and details on local history for Java elements.

More on Java Projects

Java projects add a number of properties to projects, including external tool
builders, the Java build path, and the Javadoc location. We discussed Javadoc
location earlier in the “Generating Javadoc” section in this chapter, and ex-
ternal tools builders in the section “Customizing Eclipse” in Chapter 2. A
Java project’s build path property specifies how JDT organizes Java code,
output files, and other resources in your project.

Java Source Code Organization

Within a Java project, there are two basic ways to organize your code. For
small projects, you may choose to have everything in the same package or
folder, *.java source files, *.class output files, and other files required by
your program. With this organization, when you save a .java file and the file
and project are built (compiled), the resulting .class files are put with source
files in the same folder.

104

P
A

R
T

I

Shavor_ch03.qxd 4/22/03 3:03 PM Page 104

Working with Java Elements

For projects having lots of modules, you may choose to organize your
*.java source and *.class output files in separate folders in a project. In this
case, each project has one or more source folders and one output folder. The
build process takes inputs from one or more source folders, or folders under
them, builds them if necessary, and puts the results in the output folder. For
example, when you save a .java file and the file and project are built, the re-
sulting .class file or files are put in the output folder. Other files in the
source folders are copied to the output folder, unless you specify otherwise in
your Java Compiler preferences. This approach allows you to organize and
subdivide your Java packages, while the output folder contains all run-time
resources.

There are two preference settings that allow you to customize this source
code organization and build processing. Java New Project preferences allow
you to specify the default organization for when you create new Java proj-
ects. You can later override this organization on the New Project wizard’s
Source page. If you have already created a project, you can change this orga-
nization on the Source page of the project’s Java Build Path properties. You
can also change the policy for which files do not get copied to the output
folder when a project is built. This is the Filtered Resources preference on
the Other page of Java Compiler preferences.

Build Path

A project’s build path serves two purposes: It specifies the search sequence
for Java references in the code in the project, and it defines the run-time
classpath for the code. When you first create a project, its build path is set to
contain the project itself and the default JRE. The default JRE is defined in
your Java Installed JREs preferences. At runtime, you can modify a project’s
classpath that was generated from its build path information by defining a
launch configuration.

Classpath errors show up with other errors in the Tasks view. If you have
classpath errors and have trouble diagnosing them, open the properties on
the project and check the Java Build Path pages. The icons for the entries in-
dicate if they cannot be found.

Project References

Project references indicate other projects a given project refers to and dictate
how projects in your workspace are built. This property is set based on the

105

R
unning Eclipse

Shavor_ch03.qxd 4/22/03 3:03 PM Page 105

CHAPTER 3 Using Java Development Tools

projects you include on the Projects page of a project’s Java Build Path prop-
erties. For example, if you specify in project A’s Java Build Path properties that
it refers to project B, project A’s Project References properties are updated.
Then, whenever project B is built, project A is (re)built as well, because A ref-
erenced B. You affected this when you set the build path properties for A. You
do not affect this if you simply set project A’s Project References properties to
refer to B. Doing so will not cause A to be (re)built when B is built. The bot-
tom line is that project references for Java projects are managed by JDT. You
can examine them, but making changes will have no impact.

Creating Java Projects

Eclipse maintains information for Java projects, including build path infor-
mation, the Javadoc location, and external tools builder information. You
have the opportunity to set this information when you create a new project
on the New Java Project wizard (see Figure 3.30). To set the information, se-
lect Next > on the first page of the New Java Project wizard rather than Fin-
ish. You can also go back later after the project is created to modify this
information by editing the project’s properties.

On the Source page, you can specify the organization of your source
code and output folders. Use the project as source folder is the organization
described above in which output (*.class) files are put with source (*.java)
files. Use source folders contained in the project allows you to separate
source from output files. If you select this, you need to specify which folders
contain Java source and/or resources; otherwise, the files will not be built.
Use Create New Folder... to add source folders. Use Add Existing Folders...
after the project has been created to add an existing folder to the project as a
source folder. The build (compile) process takes inputs from source folders
you add or designate and from folders they contain. In this way, as your proj-
ect grows, you can subdivide your source to make it more manageable.

The Projects page allows you to add other Java projects to the build path
of the new project (see Figure 3.31). You need to do this if you are going to
make references from the project you are creating to Java declarations in
other projects.

The Libraries page allows you to add other Java resources to your proj-
ect’s build path (see Figure 3.32). JDT automatically adds the default JRE.
Select Add Jars... to add JAR or *.zip files from other projects, as opposed to
adding references to resources in projects not contained in JARs or *.zip
files, as you do on the Projects page. Generally, if you have the resources in a

106

P
A

R
T

I

Shavor_ch03.qxd 4/22/03 3:03 PM Page 106

Working with Java Elements

project, you should reference them that way, not within the JAR. Select Add
External JARs... to add JAR or *.zip files from your file system. For example,
if you wanted to develop a Java servlet, you would need to add servlet.jar
to the project’s build path. Use Add Variable... to add a classpath variable to
your project’s build path. The options under Advanced... allow you to add
other source folders to the build path. Attach Source... allows you to add
source to the selected build path entry. Do this to enable source-level debug-
ging when the build path entry does not include source.

When you want to reference JAR files on your file system, especially if
you do so in multiple projects, you should consider defining a classpath vari-
able to refer to the JAR file and then including the variable in your projects’
build paths. In this way, if the location of the JAR file changes, you only need
to update the classpath variable and not the build paths of each of the proj-
ects. To define a classpath variable, use your Java preferences and select
Classpath Variables.

107

R
unning Eclipse

Figure 3.30 Java Build Path Properties Source Page

Shavor_ch03.qxd 4/22/03 3:03 PM Page 107

CHAPTER 3 Using Java Development Tools

If the build path icon is a hollow circle, it means that the library or file
could not be found. Look for this when you have classpath errors.

The Order and Export page (see Figure 3.33) serves two purposes. First,
it allows you to change the order of references to entries in your project’s
build path. This order becomes important if you have the same declarations
in multiple build path entries. Second, it allows you to select an entry (that is,
add a check mark) to cause its declarations to be visible outside the project.

Creating Folders

There are two types of folders in Java projects: Source Folders and Nonsource
(“simple”) Folders. This is an important distinction because it affects how
builds are performed. When you create a source folder, JDT adds the source

108

P
A

R
T

I

Figure 3.31 Java Build Path Properties Projects Page

Shavor_ch03.qxd 4/22/03 3:03 PM Page 108

Working with Java Elements

folder to the project’s build path. Nonsource folders are not added to the
project’s build path. If you create a folder and later want to make it a source
folder, do so from the Java Project Properties dialog, Java Build Path proper-
ties, on the Source page. When in doubt, check the project’s .classpath file.
You can put nonsource folders in Java projects and folders; you can put
source folders only in Java projects.

If you create a Java project and select to have your Java source and out-
put files in the same folder, and then decide later to create a source folder, this
forces JDT to change the organization of the project to have separate source
and output folders. If you already have Java files in the project, you will have
to move these manually to a source folder. It may be easier to create a new
project with the folder and package organization you desire, and then use the
Refactoring actions to move the Java elements.

109

R
unning Eclipse

Figure 3.32 Java Build Path Properties Libraries Page

Shavor_ch03.qxd 4/22/03 3:03 PM Page 109

CHAPTER 3 Using Java Development Tools

Creating Classes and Interfaces

The options available when creating a new class or interface are straightfor-
ward. Several are worth noting. Enclosing Type is used for nested classes and
specifies the class that will contain the class you are creating. As you type the
Name of the class, watch the message at the top of the wizard page—it will
flag invalid class names. An easy way to create a subclass is to select a class in
one of the Java views, and then select to create a new class. The Superclass of
the new class is the one you had selected. If you elect to not generate stubs for
superclass constructors or inherited methods, you can later generate the code
from the editor by selecting Source > from the context menu, or by using con-
tent assist and a code template. If you do not select to have Inherited abstract
methods generated, you will see errors in the Tasks view indicating the meth-
ods you still need to create. Once the class is created, you can generate stubs

110

P
A

R
T

I

Figure 3.33 Java Build Path Properties Order and Export Page

Shavor_ch03.qxd 4/22/03 3:03 PM Page 110

Working with Java Elements

for these by selecting the class in one of the Java views and then selecting
Override Methods… from the context menu.

Importing Java Elements

In the section “Resource Management” in Chapter 2, we discussed importing
resources with the Import wizard. Recall that you see the Import wizard by
selecting Import… from the Navigator or Package Explorer context menu or
by selecting File > Import…. With Java projects and Java elements, there are
additional considerations. Generally, it is easier to deal with projects than in-
dividual Java elements because Java projects contain build path and tool
builder information in the project’s .classpath and .project files. When you
select to import Existing Project into Workspace in the Import wizard, a
folder structure is a valid Eclipse project if it includes a .project file. Recall
that importing an existing project into your workspace does not cause the
contents of the project to be moved into your workspace folder. Rather, a de-
finition for the project is added with a reference to its existing location. So, if
you import an existing project from one workspace to another and you don’t
intend to work on it further in the original workspace, be sure to delete the
project definition there, but not the contents. This would delete the project’s
contents for both workspaces.

The easiest way to import and export code and in general share it is to do
so with an SCM repository and by means of a Team Project Set. We’ll see this
in Chapter 5.

Local History for Java Elements

The section “Resource Management” in Chapter 2 described how you could
compare and replace a file with another edition of it from local history, com-
pare two files, compare two projects, and recover files deleted from a project.
In addition to this, with JDT you can compare and replace individual ele-
ments, including methods and fields. You can select an element in one of the
Java views and then select Compare With >, Replace With >, or Restore
from Local History... from the context menu. Figure 3.34 shows comparing a
single method, generatePrimeNumbers(), with a previous edition.

When you compare Java elements, you can select an element in the Java
Structure Compare pane to see only its differences. You can restore a deleted
method or field by selecting a type in the Outline view and then selecting Re-
store from Local History from the context menu.

111

R
unning Eclipse

Shavor_ch03.qxd 4/22/03 3:03 PM Page 111

CHAPTER 3 Using Java Development Tools

Tuning the Performance of JDT

In the section “Customizing Eclipse” in Chapter 2, we discussed a number of
factors that affect performance of Eclipse, including startup time and memory
usage. These included the number of installed tools; how many views, editors,
and projects are open; and the number of resources they contained. There are
several other factors that can also affect the performance of the JDT. These re-
late to the amount of real-time processing JDT does to analyze and build code
you’re editing. If your performance degrades, there are a number of things
you can do to improve performance. Some of these things apply across all
projects, while others are specific to the JDT. Obviously, each also involves
tradeoffs of performance for capability.

• Reduce the amount of Java code in your workspace. Do this by parti-
tioning code into multiple workspaces and/or closing projects you’re
not currently working on.

• Under Workbench preferences, deselect Perform build automatically
on resource modification. If you do this, you will need to perform
builds manually by selecting Project > Rebuild Project from the menu.

112

P
A

R
T

I

Figure 3.34 Comparing a Java Element from Local History

Shavor_ch03.qxd 4/22/03 3:03 PM Page 112

More on JDT Views and Perspectives

• Under Java preferences, for Update Java views, select On save only.
• Under Java > Editor preferences, on the Code Assist page, deselect En-

able auto activation. On the Problem Identification page, deselect any
of the three options.

More on JDT Views and Perspectives

Let’s end this chapter with a little more detail on some of the views and per-
spectives that comprise JDT, and some cool stuff that may not be immedi-
ately obvious.

Filtering View Contents

The JDT views allow you to filter the elements that are displayed. You can
select to have static members, fields, and nonpublic members hidden. These
filtering criteria are useful if your workspace contains a significant amount
of code, and navigating (especially in the Package Explorer view) becomes
cumbersome. From the pull-down menu on the title bar of the Package Ex-
plorer view, you can filter the contents by working set or by a number of Java-
specific criteria (see Figure 3.35). This is useful, for example, if you want to
suppress the display of a project’s referenced libraries.

Package Explorer View

If the package names in the Package Explorer view are long and/or you have
the width of the view sized so that you often find yourself scrolling the view
horizontally to find the right package, you can abbreviate the package names
in the view. In your Java Appearance preferences, select Compress package
name segments (except the last one) and enter a pattern to represent the
compression scheme. The pattern is a number followed by one or more op-
tional characters specifying how each segment of the package name is to be
compressed. The pattern number specifies how many characters of the name
segment to include, and the pattern characters become the segment separa-
tors. The compression is applied to all package name segments, except the
last one. For example, for the package name org.eclipse.jface,

1. causes to it be compressed to o.e.jface,
0 results in jface, and
2. results in or.ec.jface.

113

R
unning Eclipse

Shavor_ch03.qxd 4/22/03 3:03 PM Page 113

CHAPTER 3 Using Java Development Tools

If you have compressed names, you can quickly determine the full name
of a resource by selecting it in the Package Explorer view. The full name is
displayed in the message area.

In addition to filters, you can use Go Into or Forward to focus the contents
on the selected containing element, thereby reducing the content in the view. If
you do this often, select Go into the selected element in your Java preferences
to make this the default, instead of expanding the element in the view.

Finally, if you work with JAR files in your projects, in your File Associa-
tions preferences, add a file compression program that understands *.jar
files to make it easy to view their contents.

Hierarchy View

The Hierarchy view is an exceptionally useful one, especially for exploring
Java code (see Figure 3.36). There are three presentations available from the

114

P
A

R
T

I

Figure 3.35 Filtering the Package Explorer View

Shavor_ch03.qxd 4/22/03 3:03 PM Page 114

More on JDT Views and Perspectives

toolbar: the Type Hierarchy (Ctrl+1), the Supertype Hierarchy (Ctrl+2), and
the Subtype Hierarchy (Ctrl+3). These three presentations revolve around a
focal point type in the view, indicated by the label decoration. This is the type
you opened the view on. Change this with Focus On... from the context menu.
For classes, the Type presentation shows a single slice of the class hierarchy
from Object through to all of the subclasses in a class. For interfaces, it
shows all classes that implement the interface and their subtypes. The Super-
type presentation shows classes that are extended and interfaces that are im-
plemented. The Subtypes presentation shows a class and its subclasses or an
interface and the classes that implement it.

Lock View and Show Members in Hierarchy locks the contents of the
bottom pane and prevents it from changing as you select elements in the top
pane. With this and Show All Inherited Members, it’s easy to get a handle on
where fields are defined and what classes and interfaces implement which
methods.

You can drag a Java element from one of the Java views and drop it on the
Hierarchy view to open it there. The view maintains a list of the elements you
have opened here. Rather than opening an element again, you can select Pre-
vious Hierarchy Inputs to see a list of those available. Change the orientation

115

R
unning Eclipse

Figure 3.36 Hierarchy View

Shavor_ch03.qxd 4/22/03 3:03 PM Page 115

CHAPTER 3 Using Java Development Tools

of the view from vertical to horizontal by selecting Horizontal View Orien-
tation from the Menu pull-down on the Hierarchy view toolbar.

Tasks View

If you end up with a lot of errors and warnings, say after you’ve imported
a chunk of code, the errors can be easier to manage if you filter them. Select
Filter... on the title bar and then select On selected resource only or On
selected resource and its children.

Search View

In addition to displaying the results of a search, you can use the Search view
to quickly navigate through Java references and declarations. Once you have
a set of search results, select a declaration, reference, and implementer, then
select References > or Declarations > from the context menu to execute an-
other search. The view also maintains a history of your search results. Rather
than executing a search again, select Previous Search Results and then select
from the list.

Java Type Hierarchy Perspective

The Java Type Hierarchy Perspective is a perspective optimized for use with
the Hierarchy view (see Figure 3.37). When you select Open Type Hierarchy,
JDT replaces the contents of the Hierarchy view if it is open or opens a new
one in the current perspective. Preferences provide a useful alternative to this
default behavior. In the Java preferences, select Open a New Type Hierarchy
Perspective. This causes the Java Type Hierarchy perspective to open in a
new window. VisualAge for Java users, who like the ability to double-click
on a class to open it in a window, may find this useful.

Java Browsing Perspective

The Java Browsing perspective, shown in Figure 3.38, provides a slightly
more structured approach to navigating through Java resources than the Java

116

P
A

R
T

I

Shavor_ch03.qxd 4/22/03 3:03 PM Page 116

More on JDT Views and Perspectives

perspective. In addition to an editor pane, it contains Projects, Packages, Types,
and Members views. The editor pane is set to Show Source of Selected Ele-
ment Only. The organization of this view will be familiar to VisualAge for
Java users. In fact, it’s intended to mimic the VisualAge for Java user interface.

The navigation model is to select an element (by single-clicking it) in a
pane to see its contents in the next pane. Open and Open Type Hierarchy
actions are available from all the views and the editor. You can specify differ-
ent filters for the contents of each of the views. The default orientation of
the Java Browsing perspective is shown in Figure 3.38. You can also orient
the views vertically on the left with the editor on the right by changing your
Java Appearance preferences to Stack views vertically in the Java Browsing
perspective.

117

R
unning Eclipse

Figure 3.37 Java Type Hierarchy Perspective

Shavor_ch03.qxd 4/22/03 3:03 PM Page 117

CHAPTER 3 Using Java Development Tools

Exercise Summary

The exercise in Chapter 29 accompanies this chapter. The exercise is broken
down into a number of parts, each demonstrating different concepts and
building on the previous part.

1. Hello World

You’ll create the ubiquitous “Hello World” program, and you will see
how to run it, including using a scrapbook page.

2. Quick Fix

You’ll use JDT’s quick-fix capabilities to fix a series of errors in a Java
program

3. Code Generation

You’ll see how to significantly improve your productivity by generating
Java code to complete expressions, including the use of code templates.

118

P
A

R
T

I

Figure 3.38 Java Browsing Perspective

Shavor_ch03.qxd 4/22/03 3:03 PM Page 118

Chapter Summary

4. Refactoring

In this part, you’ll really start to see the power of JDT when using
refactoring to clean up, reorganize, and extend a program.

5. Launch Configurations

You’ll see how to use launch configurations to run Java programs,
and you’ll pass parameters to a program, pass JVM parameters, and
reference declarations in a JAR file.

6. JRE 1.4 Code

In the final part of the exercise, you’ll see how to configure JDT in
order to develop code that requires JRE 1.4.

Chapter Summary

This chapter provided a comprehensive overview of using the Java Develop-
ment Tools (JDT) to explore, write, and run Java. It described how to create
different kinds of Java elements, how to navigate and search them with the
different views, and how to write Java code using content assist, code genera-
tion, and refactoring. It covered how different kinds of errors are marked
and how to fix errors with quick fix. The chapter discussed how to set Java-
doc locations and view Javadoc. It looked in some detail at Java projects and
their properties, how these properties impact your projects, and how to use
different JREs and reference declarations in other projects and JAR files. The
chapter also described editing code templates used in code generation and ex-
ternalizing strings. It explained how to run Java code and how to evaluate
Java expressions in a scrapbook page, run Java programs using the Run ac-
tion, and use launch configurations to run Java programs, including specify-
ing program and JVM parameters.

119

R
unning Eclipse

Shavor_ch03.qxd 4/22/03 3:03 PM Page 119

