CHAPTER 4
The Standard Tag Library

Chapter 3 explained how to get values from beans to pages with the jsp:
getProperty tag, along with a number of limitations in this process. There was no
good way to display the tracks on a CD, because the page has no way to know how
many tracks a bean will be holding. The quiz was unable to determine whether the
user’s answer was correct, because the page has no way to compare two values in a
bean.

Both of these problems can be solved by a new set of tags: the standard tag
library. Although these tags are not technically a portion of the JSP specification,
they are closely related and can be used in any application server that supports
JSPs. This chapter looks at what these tags can do, after a few words on how tags
in JavaServer Pages work in general.

4.1 Tag Libraries

We have already seen tags that deal with things ranging from including other JSPs
to manipulating beans. These tags are all useful and perform their specific tasks
well, but almost from the beginning, the authors of the JSP specification realized
that no set of tags could possibly do everything that everyone would need from
JSPs. To address that issue, those authors provided a mechanism for programmers
to create new tags that could do anything possible and an easy way for pages to use
these custom tags. The topic of the creation of new tags is covered in Chapter 13.
Listing 4.1 illustrates how a page loads and uses a tag.

69

70 The Standard Tag Library

Listing 4.1 A JSP that uses a custom tag

<%@ taglib prefix="awl"
uri="http://jspbook.awl.com/samples" %>

The time, in two different formats:<p>

<awl:date format="EEEE, MMMM dd yyyy 'at' hh:mm"/>

<awl:date format="hh:mm:ss MM/dd/yy"/>

The tag library is loaded with the first line. The URI (Uniform Resource Iden-
tifier) specifies the location of the tag library definition, and the prefix specifies the
name that will be used to access the tags. Here, the prefix is aw1, but it could be
anything, as long as it is used consistently. One of the tags from this library, t ime,
is used twice in the last two lines. The name of the tag is prepended by the prefix
specified at the top.!

The awl : time tag itself simply sends the current time to the page, in a format
specified by the format property. If this looks familiar, it is because this does
essentially the same thing as Listing 3.2. That example used a bean with an input
for the format and an output for the time. Using a custom tag, the input is specified
as a named property, and the output is implicit in the way the tag works.

Technically, neither example was particularly good. Because they play the part
of models in the model/view/controller paradigm, beans should not be concerned
with how their data will be presented. Hence, the bean used in Listing 3.2 should
not have had to deal with formatting issues. Similarly, tags are intrinsically part of
the view portion and so should not deal directly with data, but the awl : t ime tag in
Listing 4.1 holds data in the form of the current time. With some effort, the standard
tag library can help make such separations of roles between tags and beans easier
to manage, as will be seen later in this chapter.

4.2 Tags with Bodies

Custom tags can do more than output data controlled by parameters. A custom
tag can have a body, which it can control in arbitrary ways. Recall a similar tag,
jsp:useBean, which renders its body only when the bean it is accessing is created.
Listing 4.2 shows such a custom tag that can be used to display its body, hide it, or
even reverse it. The result is shown in Figure 4.1.

'Formally, the tag lives in an XML namespace specified by the prefix. Custom tags can be loaded
with any namespace; formally, the portion before the colon is not part of the name. In the text however,
this prefix will always be included to avoid possible confusion between tags, such as c¢:param and
sql :param.

4.2. Tags with Bodies 71

Fie Bt View! Go! Bookmarks! Dools! Window | Help |

g! S http://localhost:8080/jspbook/chapter04/tagbody.jsp] !gﬂ

The time is: 02:43:14 03/27/03
30/72/30 41:34:20 :si emit ehT

Figure 4.1. The result of a custom tag.

Listing 4.2 A custom tag with a body

<%@ taglib prefix="awl"
uri="http://jspbook.awl.com/samples" %>

<awl :maybeShow show="no">

You can't see me!

</awl :maybeShow>

<awl :maybeShow show="vyes">

The time is:

<awl:date format="hh:mm:ss MM/dd/yy"/>
</awl :maybeShow>

<awl :maybeShow show="reverse">
The time is:
<awl:date format="hh:mm:ss MM/dd/yy"/>

</awl :maybeShow>

This example loads the same tag library used in Listing 4.1 and again specifies
that it will be using the awl prefix to access the tags. The tag used this time is called

72 The Standard Tag Library

awl :maybeShow, and it has a parameter, show, that controls what the tag should
do with its body. This parameter may be set to no, in which case the body is hidden
from the page; ves, in which case the body is displayed; or reverse, in which case
the body is shown backward.

Note that the body of the awl : maybeShow tag may include anything, including
other JSP tags. This was also true of the jsp:useBean tag and in fact is true of
any custom tag that has been properly programmed. This property is described by
saying that JSP tags can be nested. From here on, it will simply be assumed, unless
otherwise noted, that the body of any tag can contain any other tag.

4.3 Dynamic Attributes in Tags

For the standard tag library to be able to do all the wonderful things it claims to do,
the tags will need to take parameters that are more complicated than such simple
instructions as “yes” and “no.” In fact, the parameters to the standard tag library
comprise a full language, although one that is significantly simpler than Java itself
and much better suited for building pages.

This language is built into the very core of JSPs in the latest version of the JSP
specification. This means that programmers creating new tags may use this language
for their own purposes; this will also be illustrated in Chapter 13.

Expressions in this language are surrounded by braces and preceded by a dollar
sign. The simplest kinds of expressions in the language are constants, such as strings
or numbers:

${23}
${98.6}
S{'hello'}

These expressions don’t mean anything on their own, but when used as the
value of a parameter, they are evaluated by the expression language before they are
sent to the tag. Because numbers and strings evaluate to themselves, this means that
the following two expressions mean the same thing:

<awl :maybeShow show="${'yes'}">

<awl :maybeShow show="yes">

Note that within an expressions, literals are surrounded by single quotes and
that the whole expression is surrounded by double quotes.

4.3. Dynamic Attributes in Tags 73

If an expression is written incorrectly, such as leaving off a closing quote or a
brace, a JSP page error will report something like

An error occurred while parsing custom action

Now for the fun part: The scripting language can also refer to beans and prop-
erties of beans. Listing 3.1 used a bean to display some static properties, including
the seventh prime number. Suppose that bean were loaded into a page with this tag:

<jsp:useBean id="beanl" class="com.awl.jspbook.ch03.Beanl"/>

In that case, then the scripting language would refer to the seventh prime number
property as

S{beanl.seventhPrimeNumber}

Note the pattern: first, the name of the bean as defined in the jsp:useBean
tag, then a dot, then the name of the property. This is not exactly equivalent to
the jsp:getProperty tag, as dropping this script fragment into a page will not
display the value. In fact, it will not do anything at all. However, this would serve
perfectly as a way to send the seventh prime number to a custom tag. Admittedly,
there would probably never be any need to do such a thing, but often it will be
necessary to send a value from a form to a tag. We now have the means to do this:
Send the form inputs into a bean with the jsp:setProperty tag and then send
the value from the bean to a tag with a scripted parameter.

If an attempt is made to access a property that does not exist, a page error
that looks like the following will be generated:

Unable to find a value for "property"

in object of class "beanClass"

74 The Standard Tag Library

Listing 4.3 shows a simple form that lets the user choose whether to show, hide,
or reverse a block of text.

Listing 4.3 A form that will be used by a tag

<html>
<body>

<form action="show_result.jsp" method="post">
Shall I display the tag body?

<select name="shouldShow">

<option>yes

<option>no

<option>reverse

</select>

<input type="Submit" name="Go" value="Go">

</form>

</body>
</html>

The page that will use this form is shown in Listing 4.4. It combines many of
the things that have been discussed so far: a bean, the awl : maybeShow tag, and a
scripted parameter.

Listing 4.4 Using a bean and a tag together

<%@ taglib prefix="awl"
uri="http://jspbook.awl.com/samples" %>
<jsp:useBean
id="form"
class="com.awl . jspbook.ch04.FormBean" />

<jsp:setProperty name="form" property="*"/>

<awl :maybeShow show="${form.shouldShow}">
The time is:
<awl:date format="hh:mm:ss MM/dd/yy"/>

</awl :maybeShow>

The first portion of this example should be old hat by now: First, a tag library
is loaded, and then a bean is obtained and fed the form values. The second part

4.4. Displaying Expressions 75

uses the tag almost exactly as in Listing 4.2. The only difference is that the show
parameter is not a fixed value but comes from the bean via a script. Using a bean,
a custom tag, and the scripting language, we can now dynamically control a whole
block of text!

4.4 Displaying Expressions

The ability to use a bean to control a tag is certainly powerful, but often such values
must be shown to the user rather than used by a tag. A standard tag, c: out, renders
values to the page, and the use of this tag is quite straightforward. Listing 4.5 revisits
the example from Listing 3.1, which displayed various values from a bean. Listing
4.5 use the same bean but now displays values using the new tag.

Listing 4.5 The out tag

<%@ taglib prefix="c"
uri="http://java.sun.com/jstl/core" %>
<jsp:useBean
id="beanl"

class="com.awl.jspbook.ch03.Beanl"/>
<p>Here is some data that came from beanl:</p>

<1li>The name of this bean is:

<c:out value="${beanl.name}"/>

<1i>The 7th prime number is:

<c:out value="S${beanl.seventhPrimeNumber}"/>

The current time is:

<c:out value="${beanl.currentTime}"/>

Because this does exactly the same thing as Listing 3.1, it may not be immediately
clear why anyone would use the c:out tag instead of the jsp:getProperty tag.
Although c:out is somewhat shorter, the real reason to use it is that it has many
advantages, all of which are derived from the fact that what is being shown is the
result of a script, not a simple property.

76 The Standard Tag Library

The expression language allows page developers to manipulate properties in
many ways. For example, it is possible to write an expression that will add two
numbers right in the page, without needing to rely on the bean to do it. Listing 4.6
shows another version of our calculator from Listing 3.6, only doing the addition
in the page.

Listing 4.6 Addition in the expression language

<%@ taglib prefix="c"
uri="http://java.sun.com/jstl/core" %>
<jsp:useBean
id="calc"
class="com.awl. jspbook.ch04.CalcBean" />

<jsp:setProperty name="calc" property="*"/>

The sum is:

<c:out value="${calc.valuel + calc.value2}"/>

It is now possible to extend this easily to do more complex calculations, such as find-
ing the average of the two numbers or raising one to the power of the other, and so on.

Note that although this is very powerful, it also breaks the model/view/controller
paradigm, as the model is now being manipulated directly from the view. Sometimes,
this is worth doing, but as a general rule of thumb, it is better to leave such calcu-
lations in the bean.

Another advantage to the c : out tag is that it can display things other than beans.
Every JSP has available a number of zmzplicit objects, that is, objects that the system
provides without the developer’s needing to load or name them explicitly. One of
these is the pageContext object, which contains a great deal of information about
the action currently being performed, such as the name of the page being generated,
the name of the computer from which the request came, and so on. Listing 4.7
uses the pageContext object to display some of the available information.

Listing 4.7 The request object

<%@ taglib prefix="c"
uri="http://java.sun.com/jstl/core" %>

Your computer is called

<c:out value="${pageContext.request.remoteHost}"/>

4.4. Displaying Expressions 77

<1i>This page came from server

<c:out value="${pageContext.request.serverName}"/>

<1i>This page came from port

<c:out value="${pageContext.request.serverPort}"/>

This example illustrates a new kind of syntax: expressions with multiple dots.
This will make more sense following the discussion of compound data later in this
chapter.

Another important implicit variable is param, and it holds all the values that
have been sent to a page by a form. This variable acts like a special bean in that it
does not have a predefined set of properties but instead has a property for every
value in the form.? Suppose, for example, that a form has an input like this:

<input type="text" name="color">
The user’s response could be displayed on a page using the following:
<c:out value="${param.color}"/>

This feature of the expression language provides a fix for a problem with the
Java News Today site. Recall that the page title appears in top . sp, which is shared
by every page, but this title really should change to identify each page. This can be
accomplished as follows:

<title>
Java News Today: <c:out value="${param.title}"/>
</title>

Here, the parameter tit1e will not come from a form but instead can be passed
in through a variation of the jsp: include tag. For example, the index page will
now include the top portion of the page with

<jsp:include page="top.jsp">
<jsp:param name="title" value="Welcome!"/>

</jsp:include>

2For readers familiar with Java, param is in instance of a class that implements the java.util. Map
interface. The expression language handles the dot operator following the name of a map by treating
the identifier after the dot as a key.

78 The Standard Tag Library

The availability of param also means that the bean isn’t needed in Listing 4.4
at all! The whole page can be reduced to

<awl :maybeShow show="${param.shouldShow}">
The time is:
<awl:date format="hh:mm:ss MM/dd/yy"/>
</awl :maybeShow>

Likewise, the calculator could do without its bean, reducing the page to

The sum is:

<c:out value="S${param.valuel + param.value2}"/>

Most of the comments about possible errors when using the jsp:
getProperty tag also apply to c: out and other tags that use expressions. In
particular, trying to reference a property that the bean does not possess will
result in an error.

In addition, trying to reference a bean that does not exist, such as c: out
value="${someBean.someProperty}"ifsomeBeanhasnotbe@]kmded
will not result in an error but simply in nothing being displayed. This can
result in problems that may be difficult to find and fix, for example, if the
name of a bean is simply misspelled.

Because c:out acts like an enhanced version of jsp:getProperty, it is not
surprising that an equivalent of the jsp : set Property tagisin the standard library.
This tag, c: set, looks like this:

<c:set
target="bean"
property="property name"

value="property value"/>

This tag sets the property called property name in the bean identified as
bean name to value. Unlike the jsp:setProperty tag, the c:set tag can not
set all the properties in a bean at once by using the special property *. However,
each of the parameters to c: set may be a script, which allows properties to be set
with dynamic values.

4.5. Formatting Output 79

When using the ¢ : set tag, itis very important to mind the distinction between
something like target="bean" and target="¢{bean}". The former is a
name that has no properties; the latter is a bean obtained from the name
by the expression language. This can be a natural source of confusion, as the
jsp:setProperty tag does use the name. Even if the reason is not completely
clear at this point, remember that the target should always take an expression,
not simply a name.

4.5 Formatting Output

Consider once again the calculator from Listing 4.6. If the user enters large
numbers—say, 1264528 and 9273912—the sum will be 10538440. This is certainly
the right answer, but it is not in a particularly readable format. It would be much
better if it could be displayed as 10,538,440. The issue of formatting comes up fre-
quently when designing Web pages, as there are often particular rules about how
numbers, currencies, and dates should be displayed.

Another portion of the standard library provides tags for displaying formatted
values. This library can be imported by using

<%$@ taglib prefix="fmt"
uri="http://java.sun.com/jstl/fmt" %>

Once loaded, a number of new tags are available, some of which work similarly
to the c:out tag but allow a format to be specified. For example, the c:out tag
from Listing 4.6 could be replaced with

<fmt : formatNumber
value="S${calc.valuel + calc.value2}"
pattern="###,6 ###" />

The pattern indicates that there should be a comma after every three digits. It
would also be legal to provide a decimal point, as in ###, ### . ##, which would
indicate that a comma should be placed every three digits, with two digits following
the decimal point.

80 The Standard Tag Library

A number of examples have contained custom mechanisms for formatting dates.
Now a more general solution to this problem is available: the fmt : formatDate
tag. This tag works very much like fmt : formatNumber tag but expects its value to
be a date. If the bean from Listing 3.1 were loaded with jsp:useBean, the date
property could be formatted with

<fmt:formatDate
value="${beanl.date}"

pattern="hh:mm:ss MM/dd/yy"/>

The valid expressions for pattern can be found in the documentation for the
java.text.SimpleDateFormat class, but note for the moment that any of the
expressions from Listing 3.2 would work.

The formatting tags can do a great deal more than has been shown here. Differ-
ent countries have different standard ways to express numbers and dates, and the
format tags can ensure that data is formatted in an appropriate way for each country,
through a mechanism called internationalization. The format tags can also be used
to parse values, which would allow the calculator to accept inputs with commas and
decimal points. These topics are beyond the scope of this book, but now that the
basic functionality of these tags is clear, interested readers can see the remaining de-
tails in section 9 of the JavaServer Pages Standard Tag Library specification, which
is available from http://java.sun.com/products/jsp/.

4.6 Compound Data in the Expression Language

Up until now, all the bean properties have have been simple types: strings of text
or numbers. This feature of the examples that have appeared is not a fundamental
restriction on beans themselves. Beans can contain compound values as well.

Compound values, as the name implies, contain multiple pieces of data. If this
sounds familiar, it should; beans themselves hold multiple pieces of data. Indeed,
beans can contain other beans, which can contain yet other beans, and so on,
indefinitely.

As an example of how this might be useful, consider how a bean would be
used to model a home entertainment system, which may contain many individual
components, such as an amplifier, CD player, cassette player, and radio tuner. The
system as a whole may have certain properties, such as which component is currently
playing and the overall color and size of the system. In addition, each individual
component has its own set of properties. The CD player has a property representing
the name of the disc it currently contains, the tuner has a property indicating the
station it is currently tuned to, and so on.

4.6. Compound Data in the Expression Language 81

It would in principle be possible to give all the properties of the components to
the system as a whole, but this is bad design. It is much better to encapsulate logical
units as separate beans. This design allows more complex beans to be constructed
incrementally by using the individual building blocks, in the same way that using
the sp:include tag allows complex pages to be built up from smaller ones.

Given the home entertainment system bean, there is no way in which the
jsp:getProperty tag could be used to determine the name of the CD in the
CD player. The whole CD player bean could be obtained with

<jsp:getProperty
id="homeEntertainment"

property="cdPlayer" />

However, this will display the whole CD player bean. Beans as a whole have no
standard representation; this might display as something cryptic, such as com. aw1 .
ch04.jspbook.CdBean10b053, or it might display as a list of all the properties
of the bean or anything else that the bean programmer has chosen. In any case, it
is unlikely to display only the name of the current disc. What is needed is a way to
traverse a set of compound data. Fortunately, the expression language provides a
mechanism to do this.

As discussed previously, within the expression language, a single dot between
two names indicates that the name on the left should be a bean and the name on
the right a property. This extends in a natural way; if a property is itself a bean, it
is legal to add another dot followed by the name of a property within that bean,
and so on. Getting the name of CD from a CD player within a home entertainment
system would therefore look something like

${homeEntertainment.cdPlayer.currentDisk}

The meaning of the multiple dots in Listing 4.7 should make more sense now.
An object called pagecontext holds information about the page currently being
generated. Within this object is another object, called request, which holds infor-
mation pertaining to the request being processed. Finally, the request object has
such data as the name of the local computer, the remote computer, and so on.

4.6.1 Repeating a Section of a Page

Another important kind of compound data is a collection of an arbitrary number
of values. A CD has a number of tracks, but as this number is different for different
CDs, a CD bean cannot simply have a different property for each track. Similarly, a

82 The Standard Tag Library

shopping cart bean will contain a number of items, but this number will change as
the bean is used.

Java has many ways to manage collections of varying size, but the simplest is
called an array. Arrays are lists of objects of the same type, such as arrays of strings,
arrays of numbers, and arrays of CDs. Within these arrays, items are referenced by
a number called the /ndex, starting with 0.

The expression language makes it possible to pull a particular element out of
such an array by placing its index within brackets. Obtaining the first track of a CD
could be done with an expression like this:

S{cd.tracks[0]}
Again, note how this logically follows from the way properties work: ${cd.

tracks} would return the entire array; following this with (0] pulls out a par-
ticular element from that array.

If a request is made for an index beyond the number of elements in the array,

the result will be empty.

Itis unusual to need to access a particular element in an array; it is more common
to need to repeat some action for every element, regardless of how many there are.
This process is known as zteration, and it should come as no surprise that a tag
in the standard library handles it: sp: forEach. Recall that Listing 3.13 obtained
information about a CD from a serialized bean. At that point, however, there was
no way to list the tracks, because the page could not know in advance how many
there would be. Listing 4.8 uses the c: forEach tag to solve this problem, and the
resulting page is shown in Figure 4.2.

Listing 4.8 The forEach tag

<%@ taglib prefix="c"
uri="http://java.sun.com/jstl/core" %>
<jsp:useBean
id="album"
beanName="tinderbox4"

type="com.awl. jspbook.ch04.AlbumInfo"/>

4.6. Compound Data in the Expression Language 83

File Edit View Go Bookmarks Tools Window Help

S http://localhost:8080/jspbook/chapter04/if_and foreach.jsp

Tinderbox

Artist: Siouxsie and the Banshees
Year: 1986
Here are the tracks:

e Candyman

o The Sweetest Chill

® This Unrest

o Cities In Dust

+ Cannons

e Partys Fall

® 92 Degrees

Lands End

o The Quarterdrawing Of The Dog
« An Execution

e Lullaby

o Umbrella

Cities In Dust (Extended Version)

‘0 & & B [Done T E=ry

Figure 4.2. Iteration used to display every element in an array.

<hl><c:out value="S${album.name}"/></hl>

Artist: <jsp:getProperty name="album"
property="artist"/><p>

Year: <c:out value="${album.year}"/></p>

Here are the tracks:

<c:forEach items="S${album.tracks}" var="track">
<c:out value="s${track}"/>

</c:forEach>

The c: forEach tag takes a number of parameters. The first is the items to
iterate over, which is specified by a script. The second is a name to use as a variable;
within the body of ¢ : forEach, this variable will be set to each element in the array
in turn. This variable can be accessed by the expression language as a bean, which
means, among other things, that the c: out tag can be used to display it.

84 The Standard Tag Library

If something other than an array is used as the 1 tems parameter, the ¢ : forEach

tag will treat it as if it were an array with one element.

4.6.2 Optionally Including Sections of a Page

Iteration allows a page to do one thing many times. The other major type of con-
trol a page may need is determining whether to do something at all. The custom
awl :maybeShow tag introduced at the beginning of this chapter handled a limited
version of that problem, but the standard tag library provides a number of much
more general mechanisms, called collectively the conditional tags. The most basic
of these tags is called c: 1 f.

In its most common form, the c: i f tag takes a single parameter, test, whose
value will be a script. This script should perform a logical check, such as comparing
two values, and facilities are provided to determine whether two values are equal,
the first is less than the second, the first is greater than the second, and a number
of other possibilities. Listing 4.9 shows how the c: if tag can work with a bean to
determine whether to show a block of text.

Listing 4.9 The if tag

<%@ taglib prefix="c"
uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="awl"
uri="http://jspbook.awl.com/samples" %>
<jsp:useBean
id="form"
class="com.awl. jspbook.ch04.FormBean" />

<jsp:setProperty name="form" property="*"/>

<c:1f test="${form.shouldShow == 'yes'}">
The time is:
<awl:date format="hh:mm:ss MM/dd/yy"/>

</c:1if>

Note the expression in the script for the test parameter. Two equal signs, ==,
are used to check two values for equality. Here, the first value comes from a property

4.6. Compound Data in the Expression Language 85

and is obtained with the normal dotted notation. The second value, yes, is a con-
stant, or literal, which is reflected by the single quotes around it in the script.
If these quotes were not present, the expression language would look for a bean
called "yes"; as no such bean exists, the result would be an error.

Listing 4.9 is similar to Listing 4.3; the major difference is that Listing 4.9 uses
the standard tag instead of the custom awl :maybeShow. The downside is that the
c:1if tag cannot reverse a block of text; all it can do is decide whether to include
its body content in the final page.

This may seem like a shortcoming but in fact reflects a good design pattern.
Note that awl : maybeShow does two completely unrelated things: checks whether
avalue is yes, no, or reverse and reverses a block of text. Rather than making one
tag do two things, it is better to have two different tags. According to the so-called
UNIX philosophy of software, each piece of code should do only one thing and do
it well, and there should be easy ways to knit these small pieces together. For tags,
this means that each tag can be used independently or combined with other tags. In
this case, if an awl : reverse tag did nothing but reverse its body content, it could
be combined with the c:if tag to do the same thing as Listing 4.3. This is shown
in Listing 4.10.

Listing 4.10 Splitting tags

<%@ taglib prefix="c"
uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="awl"
uri="http://jspbook.awl.com/samples" %>
<jsp:useBean
id="form"
class="com.awl . jspbook.ch04.FormBean" />

<jsp:setProperty name="form" property="*"/>

<c:1f test="${form.shouldShow == 'yes'}">
The time is:
<awl:date format="hh:mm:ss MM/dd/yy"/>

</c:1if>

<c:1if test="${form.shouldShow == 'reverse'}">
<awl:reverse>

The time is:

86 The Standard Tag Library

<awl:date format="hh:mm:ss MM/dd/yy"/>
</awl:reverse>

</c:if>

Note that two c:if tags are used here: one to check whether the value is yes
and another to check whether it is reverse. The body content of both of these tags
is the same, which is rather wasteful. It means that if the body ever needs to change,
it will need to be modified in two places in order to keep everything consistent. It
would be better in this case to put the body in a separate file and then have both
of the if tags include that file with a jsp: include tag. Now that the functionality
of awl :maybeShow has been divided into two pieces, the c: 1 f tag can be used for
many other things, and the awl : reverse tag can be used to reverse unconditionally
a block of text, should such a thing ever be useful.

Listing 4.10 imports two tag libraries: the standard one, which is installed as
c and provides the c:if tag, and the custom one installed as aw1, which provides
the awl : reverse tag. This is perfectly valid; often a page will need many different
tags from different libraries, and it will then need to import all of them. The only
catch is that each tag library must be given a different prefix.

4.7 Browser Detection

Web programmers face many difficult decisions, not the least of which is how to
deal with the fairly horrible state of modern browsers. A popular Web site is likely to
receive requests from versions of Internet Explorer 3 through 6, Mozilla, Netscape
4.7, Opera, various AOL browsers, and numerous custom browsers now available
in consumer devices, such as phones and PDAs (personal digital assistants). Each
of these is likely to render HTML slightly differently, support different media types,
and handle JavaScript differently, if at all.

One way of dealing with this variability is to use the “lowest common de-
nominator,” that is, only those features that are supported and work the same in
every browser. This makes things easier for the Web developer but means that the
user will be getting a site that looks like something from the early 1990s, which
may disappoint many users. Alternatively, Web developers may design a site for
one browser—perhaps Mozilla 1.0—and put up a note encouraging other users to
switch to this browser. This is likely to infuriate many users who either don’t want
to or can’t change browsers simply to get to one site.

Finally, developers can create parallel versions of all the browser-specific HTML
and JavaScript and so on and send out the appropriate version, based on which
browser is being used. The browser makes this possible by identifying itself with

4.7. Browser Detection 87

every request, and JSPs make this possible through the conditional tags. A skeleton
of code that accomplishes this is shown in Listing 4.11.

Listing 4.11 Browser detection

<%@ taglib prefix="c"
uri="http://java.sun.com/jstl/core" %>
<jsp:useBean
id="browser"

class="com.awl.jspbook.ch04.BrowserBean" />

<c:set
target="S${browser}"
property="request"

value="${pageContext.request}"/>

You are using a browser that identifies itself as

<c:out value="${browser.fullName}"/><p>

<c:if test="${browser.type == 'Gecko'}">
include Mozilla code here

</c:if>

<c:if test="${browser.type == 'MSIE'}">

include IE code here

</c:if>

This example uses BrowserBean, a utility bean that extracts browser informa-
tion from the request. In order to obtain this information, BrowserBean must have
access to the request object. This object is obtained from the pageContext, as
was done in Listing 4.7, and passed with a c: set tag to the bean.

A bean such as BrowserBean is needed for two reasons: first, because the
browser name is not available as a simple property, such as the ones shown in Listing
4.7; second, because the full name of the browser is likely to be something unwieldy,
such as Mozilla/5.0 (X11; U; FreeBSD 1386; en-US; rv:1.0rc3) Gecko/20020607,
which contains information about the specific revision and operating system on
which the browser is running. This is generally more information than needed to
select the appropriate browser-specific code for a page. This second problem is
solved by having the bean recognize major browser types, and it is this type that is
used by the c: if tags.

88 The Standard Tag Library

4.8 Combining Tags

As mentioned previously, the bodies of JSP tags can contain anything, including
other JSP tags. An example is the c:out tag within the c: forEach tag in Listing
4.8. To demonstrate this further, the c:if and c: forEach tags work together in
the following example.

If given an empty array, a c: forEach tag will not render its body content at
all. This is fine but can lead to some odd-looking pages. In Listing 4.8, if the CD is
empty, the page will display “Here are the tracks” and then stop. This is technically
correct but to the user may look as though the page stopped generating halfway
through. It would be better to inform the user that the CD is empty rather than to
display alist with no elements. This can be accomplished by putting the ¢ : forEach
tag inside a c: i f tag, as shown in Listing 4.12.

Listing 4.12 Tags working together

<%@ taglib prefix="c"
uri="http://java.sun.com/jstl/core" %>
<jsp:useBean id="album" beanName="tinderbox4"

type="com.awl.jspbook.ch04.AlbumInfo" />
<hl><jsp:getProperty name="album" property="name"/></hl>

Artist: <jsp:getProperty name="album"
property="artist"/><p>

Year: <jsp:getProperty name="album" property="year"/></p>

<c:if test="${empty album.tracks}">
There are no tracks! What a boring CD.

</c:1if>

<c:1if test="${! (empty album.tracks)}">
Here are the tracks:

<c:forEach items="${album.tracks}" var="track">
<c:out value="${track}"/>
</c:forEach>

</c:1if>

4.9. Selecting among Multiple Choices 89

Conceptually, the only new thing about this example is the check that is done
in the c:if tag. The empty in the test checks whether the named property exists,’
and if it does exist and is an array, whether it has any elements. The exclamation
point in the test should be read as “not.” It means that if the following test would
be true, it returns false, and vice versa.

4.9 Selecting among Multiple Choices

Once again, the preceding example had to use two c: i f tags, although the bodies
are different in this case. However, this is still somewhat clumsy, as the same check
is being performed twice: once to see whether it is true and once to see whether
the reverse is true. This double check is needed because the c:if tag is capable
of deciding only between two alternatives: to include its body or not to include
it. Another set of tags allows #zultiway branching, or choosing from among several
mutually exclusive possibilities.

Unlike the other tags seen so far, three tags work together to obtain the desired
result. The outermost tag, ¢ : choose, has no parameters; it merely serves as a con-
tainer for a collection of two other tags: ¢ : when and ¢ : otherwise. Each individual
c:when tag acts a lot like a ¢ : i f tag. Both tags take a parameter called test, which
should be a script, and render their body content if the condition in the script is
true. The difference is that multiple c : 1 f tags will each be checked in turn, whereas
a c:choose tag will stop after finding the first ¢ : when tag with a test thatis true.

In other words, consider a set of possible values for a bean property, such as
the colors red, green, and blue. The following snippet of code would check each of
these possibilities regardless of the value:

<c:1f test="${bean.color == 'red'}">...</c:if>
<c:1f test="${bean.color == 'green'}">...</c:1if>
<c:if test="${bean.color == 'blue'}">...</c:if>

The following snippet will check whether the color is red; if so, it will stop and
will not then have to check whether it is green and then blue:

<c:choose>

<c:when test="${bean.color == 'red'}">...</c:when>
<c:when test="S${bean.color == 'green'}">...</c:when>
<c:when test="${bean.color == 'blue'}">...</c:when>

</c:choose>

>Technically, it tests whether the value equals nul1, as will be discussed in Chapter 9.

920 The Standard Tag Library

Clearly, the second option is more efficient. In addition, using the c: choose tag
groups related code in one place and so makes JSPs easier to read and understand.

The c:choose tag works with another tag: c:otherwise. This tag also has
no parameters; its body will be evaluated if none of the c:when tags has a true
condition.

It is now clear how it would be possible to avoid doing the check twice in Listing
4.11—Dby using one c:when and a c¢: otherwise—rather than by using two c: if
tags. This is shown in Listing 4.13.

Listing 4.13 The choose tag

<c:choose>
<c:when test="${empty album.tracks}">
There are no tracks! What a boring CD.

</c:when>

<c:otherwise>
Here are the tracks:

<c:forEach items="${album.tracks}" var="track">
<c:out value="s${track}"/>
</c:forEach>

</c:otherwise>

</c:choose>

This code is a little more verbose than Listing 4.12 but has the advantage of
avoiding one redundant test. Using the c: choose tag also makes it clear that the
conditions are mutually exclusive, and hence only one of the bodies will ever be
rendered.

Chapter 2 briefly mentions the jsp: forward tag, which sends the user from
one page to another. This tag can be combined with the c: choose tag to provide a
type of control called dispatching, whereby one page determines where the appro-
priate content lives and sends the user to that page. This is illustrated in Listing 4.14.

Listing 4.14 Using the choose tag as a dispatcher

<%@ taglib prefix="c"

uri="http://java.sun.com/jstl/core" %>

4.10. Summary and Conclusions 91

<c:choose>
<c:when test="${param.whichPage == 'red'}">
<jsp:forward page="red.jsp"/>

</c:when>

<c:when test="${param.whichPage == 'green'}">
<jsp:forward page="blue.jsp"/>

</c:when>

<c:when test="${param.whichPage == 'blue'}">
<jsp:forward page="blue.jsp"/>

</c:when>

<c:otherwise>
<jsp:forward page="select_page.jsp"/>
</c:otherwise>

</c:choose>

This page looks for a form parameter, whichPage, which should be red,
green, or blue, and, based on this value, sends the user to one of three pages.
If no value has been provided, the otherwise tag forces the user to

"select_page.jsp", which contains the form to be filled out.

92 The Standard Tag Library

4.11 Tags Learned in this Chapter

c: forEach Repeats a section of the page for every item in an array
Parameters:
items: An expression specifying the array to use, most likely a bean property

var: The name of the variable with which each element in the array will be
referred

Body: Arbitrary JSP code

c:out Displays a value
Parameters:
value: An expression to be evaluated and displayed
Body: Arbitrary JSP code; the body content will be displayed if value is null

c:1f Conditionally include a portion of the page
Parameters:
test: An expression that should be a logical test of a property

var: If present, names a variable where the result of the expression will be
stored
Body: Arbitrary JSP code

c:choose Includes one of several portions of a page
Parameters: None
Body: Arbitrary number of ¢ :when tags and, optionally, one c:otherwise tag

c:when One possibility for a c: choose tag
Parameters:

test: An expression that should be a logical test of a property
Body: Arbitrary JSP code

c:otherwise The catch-all possibility for a ¢ : choose tag. If none of the expres-
sions in the c:when tags evaluates to true, the body of the c:otherwise will be
included.

Parameters: None

Body: Arbitrary JSP code

c:set Set a property in a bean
Parameters:
target: The name of a bean
property: The property within the bean to set

value: The value to assign; may be a script

Body: None

4.11. Tags Learned in this Chapter

fmt : formatNumber Format a number for output
Parameters:
value: The value to be formatted; may be a script

pattern: A pattern specifying how the number should be formatted
Body: None

fmt : formatDate Format a date and/or time for output
Parameters:
value: The value to be formatted; may be a script

pattern: A pattern specifying how the date should be formatted
Body: None

93

