

163

C H A P T E R

7

Understanding Entity Beans

A

N

 entity bean is a component that encapsulates the implementation of a business
entity or a business process. The encapsulation of a business entity or process is typ-
ically independent of the client application that uses the entity bean. As a result, an
entity bean can be reused by many client applications.

This chapter focuses on the basics of entity beans from a programming point
of view. The chapter describes the client view of an entity beanÑthe view of the
application developer who uses an entity beanÑand the view of the developer of
the entity bean itself. We also describe the life cycle of entity bean class instances
and show how the container manages the instances at runtime.

Clients of entity beans, similar to session bean clients, use the methods of the
home and component interfaces. However, because the life cycles of an entity
object and a session object differ, an entity bean client takes a different approach
to using the home interface methods for creating and removing entity objects. In
addition, each entity object has a unique identity, which allows the home interface
to deÞne Þnd methods for locating entity bean instances.

A bean developer must write the implementation of the entity beanÕs business
logic in addition to the life-cycle-related methods. The bean developer is also con-
cerned about entity object persistence. The state of an entity object is stored in a
resource manager, such as a database or other persistent storage. The entity bean
methods access the state in the resource manager, using either container-managed
persistence (CMP) or bean-managed persistence (BMP).

This chapter also explains how the container manages entity bean instances.
Although not all developers need to know this information, it is interesting to see
what happens beneath the surface during the various method invocations, passiva-
tion and activation, and transactions.

matena7.fm Page 163 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS

164

7.1 Client View of an Entity Bean

We begin by describing the client view of an entity bean: the view seen by an appli-
cation developer who uses an entity bean in a client application. Note that the client
application developer is typically different from the developerÑor companyÑthat
developed the bean.

An entity bean is a component that gives its client a true object-oriented
abstraction of a business entity or a business process. For example, a real-life busi-
ness entity may be an account, employee, customer, and so forth. A business pro-
cess, on the other hand, can be the sequence involved in granting a loan approval,
opening a bank account, scheduling a meeting, and so forth. When an entity bean
is used to implement a business entity or a process, each individual business entity
or process is represented by an entity object.

In most cases, entity beans are used with a local client view. Such entity beans
are developed with local interfaces, which enable the bean to take advantage of
the complete range of the EJB 2.0 and 2.1 architectural features. For example, an
entity bean implemented with container-managed persistence can participate in
container-managed relationships with other entity beans. With container-managed
relationships, the EJB container manages the persistent relationships between
entity beans much like it manages a beanÕs persistence.

Entity beans with local interfaces make the most use of the resources of the
EJB environment. However, the beans are restricted to being colocated on the
same JVM as their clients. When an entity beanÕs application is such that the bean
must provide a remote client view, the developer can take steps to use the local-
view advantages and still retain distributed capabilities. Principally, the developer
can provide a session bean with a remote client view as a facade to entity beans
with local views. Or, the developer can provide the entity bean itself with a remote
interface in addition to its local interface.

Four concepts deÞne the client view of an entity bean:

1. Home interface

2. Component interface: local and remote interfaces

3. Primary key and object identity

4. Life cycle of an entity object

matena7.fm Page 164 Tuesday, January 7, 2003 4:30 PM

CLIENT VIEW OF AN ENTITY BEAN

165

In the following sections, we explain and illustrate how a client uses the home and
component interfaces to manipulate entity objects. We also discuss the role of the
primary key in the client view and explain the life cycle of an entity bean.

7.1.1 Home Interface

A client uses the home interface to manage the life cycle of individual entity objects.
Life-cycle operations involve creating, Þnding, and removing entity objects. Specif-
ically, the client uses the home interface methods to create new entity objects and to
Þnd and remove existing ones.

A client can also use business methods on the home interface to perform
aggregate operations on entity objects. Keep in mind that these aggregate opera-
tions are not speciÞc to any particular entity object.

In addition, a client can use the home interface to obtain the

javax.ejb.EJB-

MetaData

 interface for the entity bean and to obtain a handle for the home inter-
face. These functions apply only to entity beans implementing a remote home
interface.

Although the signatures of the create and Þnd methods may be different for
each entity bean, the life-cycle operations are uniform across all entity beans. This
uniformity makes it easier for a client developer to use entity beans supplied by
other developers.

LetÕs look at the example

AccountHome

 interface, which was used in Chapter
2. Code Example 7.1 shows the

AccountHome

 interface with a local client view:

import javax.ejb.CreateException;

import javax.ejb.FinderException;

public interface AccountHome extends javax.ejb.EJBLocalHome {

 // create methods

 Account create(String lastName, String firstName)

 throws CreateException, BadNameException;

 Account createBusinessAcct(String businessName)

 throws CreateException;

 ...

 // find methods

 Account findByPrimaryKey(AccountKey primaryKey)

 throws FinderException;

 Collection findInactive(Date sinceWhen)

 throws FinderException, BadDateException;

matena7.fm Page 165 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS

166

 ...

 // home methods

 public void debitAcctFee(float fee_amt)

 throws OutofRangeException;

 ...

}

Code Example 7.1

AccountHome

 Interface

Recall that the

AccountHome

 interface previously implemented a remote client view
and thus extended the

javax.ejb.EJBHome

 interface. A home interface for an entity
bean that implements a local client view extends the

javax.ejb.EJBLocalHome

interface. See Section 2.3.2, Enterprise Bean Home Interfaces, on page 33. The next
sections explain the clientÕs use of the home interface.

Locating the Home Interface

The client must Þrst obtain the home interface to use it. A client obtains the local
home interface for the AccountEJB entity bean from the clientÕs environment, using
the JNDI API, casting the returned value to the home interface type. The deployer
has conÞgured the home interface in the JNDI namespace (Code Example 7.2):

Context initCtx = new InitialContext();

AccountHome accountHome = (AccountHome) initCtx.lookup(

“java:comp/env/ejb/CheckingAccountEJB”);

Code Example 7.2

Obtaining a Local Home Interface

If the AccountEJB entity bean uses a remote client view, a client also obtains
the remote home interface for the bean from the clientÕs environment, using JNDI.
However, the client must use the

PortableRemoteObject.narrow

 method to cast
the value returned from JNDI to the home interface type (Code Example 7.3):

Context initCtx = new InitialContext();

AccountHome accountHome = (AccountHome)PortableRemoteObject.narrow(

matena7.fm Page 166 Tuesday, January 7, 2003 4:30 PM

CLIENT VIEW OF AN ENTITY BEAN

167

 initCtx.lookup(“java:comp/env/ejb/CheckingAccountEJB”),

 AccountHome.class);

Code Example 7.3

Obtaining a Home Interface for a Bean with a Remote View

Using Create Methods

An entity bean home interface deÞnes zero or more create methods, each represent-
ing a different way to create a new entity object. Each create method must begin
with the word

create

 and may be followed by a descriptive word. The number and
types of the input parameters of the create methods are entity bean speciÞc. The
return value type for all create methods is always the entity beanÕs component inter-
face.

Returning to our example, the client can use the

AccountHome

 interface to
create new

Account

 objects, as follows:

Account account1 = accountHome.create(“Matena”, “Vlada”);

Account account2 = accountHome.create(“Stearns”, “Beth”);

Account businessAcct = accountHome.createBusinessAcct(

“ComputerEase Publishing”);

It is important to understand that when the client invokes a create operation,
the entity bean creates the representation of the entity objectÕs state in a persistent
store, such as a relational database. This is in contrast to invoking a create method
on a session bean. Invoking a create method on a session bean results only in the
creation of a session bean instance; it does not result in the creation of persistent
state in a persistent store.

It is possible for a home interface to deÞne no create methods, and sometimes
this approach is useful and preferable. Because the entity objectÕs state exists in
the resource manager independently from the entity bean and its container, it is
possible to create or remove an entity object directly in the resource manager.
(The section Entity Object State and Persistence on page 176 explains how a
resource manager manages the state of an entity object.)

An application is not limited to going through the entity bean and its container
to create or remove the object. For example, an application can use SQL state-
ments to create or remove an

Account

 object in a relational database. In some situ-
ations, the bean developer does not want to allow the entity bean clients to create
entity objects and instead wants to ensure that the entity objects are created solely

matena7.fm Page 167 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS

168

by other means. In such a case, the entity beanÕs home interface would have zero
create methods. This is discussed in more detail in Section 7.2.7, Using Entity
Beans with Preexisting Data, on page 235.

Using Find Methods

The home interface deÞnes one or more Þnd methods. A client uses the Þnd
methods to look up entity objects that meet given criteria.

All entity bean home interfaces deÞne a

findByPrimaryKey

 method to allow
the client to Þnd an entity object by its primary key. The

findByPrimaryKey

method takes a single input parameter with a type that is the entity beanÕs
primary-key type. The return value type is the entity beanÕs component interface.

Our example AccountEJB client may use the

findByPrimaryKey

 method, as
follows:

AccountKey pk = new AccountKey();

pk.setAccountNumber(“100-300-423”);

try {

Account account = accountHome.findByPrimaryKey(pk);

} catch (ObjectNotFoundException ex) {

// account with the given primary key does not exist

}

If the

findByPrimaryKey

 method completes successfully, the client knows that
the entity object with the given primary key exists. If the entity object does not
exist when the client invokes the

findByPrimaryKey

 method, the method throws

javax.ejb.ObjectNotFoundException

 to the client.
In addition to the required

findByPrimaryKey

 method, the home interface may
include additional Þnd methods. The number and types of the input arguments of
these additional Þnd methods are entity bean speciÞc. A Þnd methodÕs return
value type is either the entity beanÕs component interface or

java.util.Collec-

tion

. Any Þnd methods that can potentially Þnd more than one entity object
should deÞne the return value type as

java.util.Collection

; those that can
return at most one entity object should deÞne the return value type as the compo-
nent interface type.

The following example illustrates using a Þnd method,

findInactive

, that
may return more than one entity object:

matena7.fm Page 168 Tuesday, January 7, 2003 4:30 PM

CLIENT VIEW OF AN ENTITY BEAN

169

Date sinceDate = ...;

Collection inactiveAccounts = accountHome.findInactive(sinceDate);

Iterator it = inactiveAccounts.iterator();

while (it.hasNext()) {

Account acct = (Account) it.next(),

// do something with acct

 acct.debit(100.00);

}

The

findInactive

 method returns a collection of accounts that have been
inactive since a given date. The client uses an iterator to obtain the individual
entity objects returned in

Collection

.
Note that, had the bean used a remote client view, the client must use the

Por-

tableRemoteObject.narrow

 operation to cast an object retrieved from the collec-
tion to the entity beanÕs remote interface type. The client cannot simply retrieve
the next object in

Collection

:

Account acct = (Account) it.next();

Instead, the client performs the retrieval as follows:

Account acct = (Account)PortableRemoteObject.narrow(it.next(),

Account.class);

Using

remove

 Methods

As noted earlier, all entity bean local home interfaces extend the

javax.ejb.EJBLo-

calHome

 interface, and all entity bean remote home interfaces extend the

javax.ejb.EJBHome

 interface. The

EJBLocalHome

 interface deÞnes one

remove

method, whereas the

EJBHome

 interface deÞnes two

remove

 methods. A client uses
the

EJBHome

 or

EJBLocalHome

remove

 methods to remove the entity objects speciÞed
by the methodÕs input parameter.

The

void remove(Object primaryKey)

 method is deÞned by the

EJBHome

 and

EJBLocalHome

 interfaces. This method is used to remove an entity object by a
given primary key. The

void

remove(Handle

handle)

 method, deÞned by the

EJBHome

 interface only for remote home interfaces, is used to remove an entity
object identiÞed by a given handle. The following code illustrates using a

remove

method:

matena7.fm Page 169 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS170

AccountKey pk = new AccountKey();

pk.setAccountNumber(“100-300-423”);

accountHome.remove(pk);

It is important to understand that successful execution of a remove method
results in the removal of the representation of the entity objectÕs state from the
resource manager that stores the state. In the previous example, the remove
method results in the removal of the speciÞed account record from the database.

Using Home Business Methods

The home interface may also deÞne business methods that operate across all bean
instances. Suppose that a client wants to periodically subtract a set fee from all
account records. Rather than having to write code to retrieve all Account instances
and subtract a set amount from each accountÕs balance, a client might use
AccountHomeÕs debitAcctFee method to accomplish this same operation across all
Account instances. For example:

if (monthlyUpdate) {

 accountHome.debitAcctFee(acctFee);

}

7.1.2 Component Interface

To get a reference to an existing entity objectÕs component interfaceÑeither its
remote interface or its local interfaceÑthe client can

¥ Receive the reference as a result of a create method

¥ Find the entity object by using a find method defined in the entity beanÕs home
interface

¥ Receive the reference as an input parameter or a method result in a method call

Once it obtains the reference to the entity beanÕs component interface, the
client can do a number of things with that reference:

¥ Invoke business methods on the entity object through the component interface

¥ Obtain a reference to the entity beanÕs home interface

matena7.fm Page 170 Tuesday, January 7, 2003 4:30 PM

CLIENT VIEW OF AN ENTITY BEAN 171

¥ Pass the reference in a parameter or as a result of a remote or local method call

¥ Obtain the entity objectÕs primary key

¥ Remove the entity object

Code Example 7.4 shows the deÞnition of the Account component interface,
which is a local interface:

public interface Account extends javax.ejb.EJBLocalObject {

double getBalance();

void credit(double amount);

void debit(double amount) throws InsufficientFundsException;

...

}

Code Example 7.4 Account Interface

Had the AccountEJB bean implemented a remote client view, each of the Account
component interface methods would throw java.rmi.RemoteException in addition
to its other exceptions.

Code Example 7.5 illustrates using the component interface for a bean with a
local client view:

// Somehow obtain a reference to an Account object.

Account acct = ...;

// Invoke business methods.

double balance = acct.getBalance();

acct.debit(200.00);

acct.credit(300.00);

// Obtain the primary key.

AccountKey pk = (AccountKey)acct.getPrimaryKey();

// Obtain the home interface.

AccountHome home = (AccountHome) acct.getEJBHome();

// Pass the entity object as a parameter in a method call.

matena7.fm Page 171 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS172

// (Foo is an enterprise bean’s local home or component interface.)

Foo foo = ...; // Foo

foo.someMethod(acct, ...);

// Remove the entity object.

acct.remove();

Code Example 7.5 Using the Component Interface

7.1.3 Primary Key and Object Identity

Every entity object has an identity unique within the scope of its home interface.
The primary key determines this identity. If two entity objects with the same home
interface have the same primary key, they are considered identical entity objects. If
they have a different primary key, they are considered different entity objects.

A client can test whether two entity object references refer to the same entity
object by using the isIdentical method. The following code segment illustrates
using the isIdentical method to compare two object references to determine
whether they are identical:

Account acct1 = ...;

Account acct2 = ...;

if (acct1.isIdentical(acct2)) {

 // acct1 and acct2 refer to the same entity object

} else {

 // acct1 and acct2 refer to different entity objects

}

Alternatively, if it obtains two entity object references from the same home
interface, the client can determine if these objects are identical by comparing their
primary keys:

AccountHome accountHome = ...;

Account acct1 = accountHome.findOneWay(...);

Account acct2 = accountHome.findAnotherWay(...);

if (acct1.getPrimaryKey().equals(acct2.getPrimaryKey())) {

 // acct1 and acct2 refer to the same entity object

matena7.fm Page 172 Tuesday, January 7, 2003 4:30 PM

CLIENT VIEW OF AN ENTITY BEAN 173

} else {

 // acct1 and acct2 refer to different entity objects

}

Note that comparing primary keys is valid only when comparing objects
obtained from the same home interface. When objects are obtained from different
home interfaces, the client must use the isIdentical method on one of the objects
to perform the comparison.

7.1.4 Entity Object Life Cycle

Figure 7.1 illustrates an entity objectÕs life cycle, as seen from the perspective of a
client. In the diagram, the term referenced means that the client holds an object ref-
erence for the entity object. The Þgure illustrates the following points about an
entity objectÕs life cycle:

¥ Creating an entity object

■ A client can create an entity object by invoking a create method deÞned in
the entity beanÕs home interface.

■ It is possible to create an entity object without involving the entity bean or
its container. For example, using a direct database insert can create the rep-
resentation of the entity objectÕs state in the resource managerÑthat is, in the
database.

¥ Finding an entity objectÑA client can look up an existing entity object by
using a find method defined in the home interface.

¥ Invoking business methodsÑA client that has an object reference for the en-
tity object can invoke business methods on the entity object.

¥ Understanding the life cycleÑThe life cycle of the entity object is indepen-
dent of the life cycle of the client-held object references. This means that an
entity object is not removed when it is no longer referenced by a client. Like-
wise, the existence of an object reference does not ensure the existence of the
entity object.

matena7.fm Page 173 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS174

Figure 7.1 Client View of an Entity Object Life Cycle

¥ Removing an entity object

■ A client can remove an entity object by using one of the remove methods de-
Þned in the home and component interfaces. If a client attempts to invoke a
business method on an entity object after the object has been removed, the
client receives NoSuchObjectException.

■ It is possible to remove an entity object without involving the entity bean or
its container. For example, using a direct database delete can remove the rep-
resentation of the entity objectÕs state from the resource manager: the data-
base. If a client attempts to invoke a business method on an entity object after
its state has been removed from the database, the client receives NoSuchOb-
jectLocalException (or NoSuchObjectException if a remote client).

Does not exist
and not referenced

Exists and
not referenced

Exists and
referenced

Does not exist
and referenced

Release Reference

home.create(...)

object.businessMethod(...)
throws NoSuchObjectException

object.remove()
or

home.remove(...)
or

Direct Delete

Direct delete
or

home.remove(...)

home.Þnd(...)

Direct
Insert

Release Reference

object.businessMethod(...)

create() Action initiated by client

Direct Delete Action on database from outside EJB

matena7.fm Page 174 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 175

Entity objects are considered to be, in general, persistent objects. An entity
object can be accessed concurrently through multiple JVMs. The lifetime of an
entity object is not limited by the lifetime of the JVM process in which the entity
bean instances execute.

Although the crash of the JVM may result in the rollback of current transac-
tions, it does not destroy previously created entity objects; nor does it invalidate
the references to the component and home interfaces held by clients.

An entity object remains accessible to its clients as long as the representation
of its state is maintained in the resource manager or until a reconÞguration of the
bean or container invalidates the object references and handles held by the clients.
This can happen, for example, when the entity bean is uninstalled from the con-
tainer or if the container is reconÞgured to listen on a different network address.

Multiple clients can access the same entity object concurrently. If so, the con-
tainer uses transactions to isolate the clientsÕ work from one another. This is
explained in Section 7.2.6, Concurrent Invocation of an Entity Object, on page
233.

7.2 Bean Developer View of an Entity Bean

The bean developerÕs view of an entity bean differs from that of the client. Essen-
tially, the bean developer is responsible for the implementation of the methods
deÞned in the beanÕs component and home interfaces, as well as the callback
methods of the EntityBean interface. The developer needs to know how to imple-
ment correctly the methods deÞned by the home interfaceÑthe Þnd, create, and
home methodsÑthe business methods, and the methods deÞned by the EntityBean
interface. These method implementations access the state of the entity objects main-
tained in a resource manager. As a result, the bean developer needs to understand
entity object state and persistence to implement the entity bean methods optimally.

We begin this section by describing entity object state and persistence. The
entity object state is managed by a resource manager. Management of state is sep-
arate from the containerÕs management of entity bean instances. The developer
can use either the CMP or the BMP approach to access object state. Each of these
two persistence approaches has advantages and drawbacks.

For entity beans using CMP, the developer can use the EJB QL query lan-
guage to implement the Þnd methods. EJB QL is an SQL-like query language.
The developer can also deÞne additional queries for use internal to the bean itself,
using ejbSelect methods. We discuss these concepts in this section.

matena7.fm Page 175 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS176

This section also describes various approaches to using the ejbLoad and ejb-
Store methods. The container invokes these methods on the bean implementation.
The developer can use these methods to take advantage of the containerÕs cache
management capabilities and to maximize performance. (See Section 7.2.4,
Caching Entity Bean State, on page 219.) This section ends with a discussion on
how the container manages multiple client invocations on an entity object.

7.2.1 Entity Object State and Persistence

The methods of an entity bean class access the objectÕs state in a resource manager.
Most resource managers, such as relational databases, manage entity objectsÕ state
externally to the bean instances (Figure 7.2).

Separating the state of the entity objects from the instances of the entity bean
class has the following advantages:

¥ Facilitates persistence and transactions

■ Separating an entity objectÕs state from the bean class instance allows the en-
tity objectÕs state to be persistent. Separation permits the life cycle of the en-
tity objectÕs state to be independent of the life cycle of the entity bean class
instances and of the life cycle of the JVMs in which the instances are created.

■ The resource manager, instead of the entity bean or the EJB container, can
handle the implementation of the ACID propertiesÑatomicity, consistency,
isolation, and durabilityÑwhich pertain to transactions.

¥ Promotes the implementation of the EJB server

■ Separation makes it possible to implement the entity objectÕs state to be ac-
cessible concurrently from multiple JVMs, even when the JVMs run on dif-
ferent network nodes. This is essential to a high-end implementation of an
EJB server.

Figure 7.2 Entity ObjectÕs State Managed by Resource Manager

EJB Container

Entity BeanClient

Resource Manager

Object
State

matena7.fm Page 176 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 177

■ It makes it possible to implement a highly available EJB server. Should a
node of the JVM be unavailable, another JVM can access the entity objectÕs
state.

¥ Improves accessibility between Java and non-Java applications

■ It makes it possible to externalize an entity objectÕs state in a representation
suitable for non-Java applications. For example, if a relational database
keeps the state of entity objects, the state is available to any application that
can access the database via SQL statements.

■ It makes it possible to present data residing in an enterpriseÕs databases as
entity beans. Similarly, it allows the creation of an entity bean facade on top
of the client interfaces of the enterpriseÕs non-Java application. This client-
view entity bean of the enterpriseÕs preexisting data or applications makes it
easier to develop and integrate new Java applications with the legacy data or
applications.

The entity bean architecture is ßexible about the choice of the type of resource
manager in which to store an entity objectÕs state. Examples of resource managers
in which the state of an entity bean can be stored are

¥ A relational database system

¥ An application system, such as an ERP system or mainframe application

¥ A nonrelational database, such as a hierarchical database or an object-oriented
database

¥ Some form of fast secondary-memory resource manager that may be provided
by the EJB container as an option

The state of most entity beans is typically stored in a resource manager exter-
nal to the EJB containerÑthese are the database or application systems noted in
the Þrst three examples just presented. The fast secondary memory integrated with
the EJB container is a special example. If provided, it typically is used only for
storing the state of short-lived entity objects with states that are not accessed by
other applications running outside the EJB container.

Because a resource manager maintains the state of an entity object, an entity
bean instance must use an API to access the state of the associated entity object.
(Associating an instance with an entity object is called object activation, and it is
explained in Section 7.2.3, Entity Bean Instance Life Cycle, on page 196.) An

matena7.fm Page 177 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS178

entity bean instance can access the state of its associated entity object by using
two access styles: BMP and CMP. Because CMP is the preferred approach, it is
discussed Þrst.

Container-Managed Persistence

Container-managed persistence (CMP) is a resource managerÐindependent data
access API tailored for use by entity beans. CMP offers distinct advantages over
bean-managed persistence (BMP). Probably the main advantage of CMP involves
database access code. It is simpler to write database access code with CMP than to
write such code with BMP. Database access with BMP usually entails coding JDBC
calls. Using CMP, the developer need only describe what state is to be stored persis-
tently; the container takes care of how the persistence is performed. With BMP, on
the other hand, the developer is responsible for both what state to persist and how
that state is to be persisted.

Another important advantage of CMP is that it greatly enhances an entity
beanÕs portability. A developer uses the same APIÑthat is, the EJB CMP
methodsÑregardless of the underlying type of resource manager. The same entity
bean can thus be used with any type of resource manager.

CMP enables the development of entity beans with implementations that can be
used with multiple resource manager types and database schemas. The CMP archi-
tecture allows ISVs to develop entity beans that can be adapted at deployment to
work with customersÕ preexisting data. Because different customers use different
resource manager types and have different database schemas, the deployer needs to
adapt an entity bean to each customerÕs resource manager type and its database
schema. Most important, the entity bean developer does not have to write a different
implementation of the bean for each customer.

Figure 7.3 AccountBean Entity Bean Using CMP to Access Resource Managers

AccountBean

AccountBean

AccountBean

JDBC
API JDBC

Driver

RM2
Adapter

RM2-speciÞc
API

RM3-speciÞc
API RM3

Adapter
RM3

RM2

RDBMS
CMP Generated

Code for
JDBC

CMP

CMP

Generated
Code for

RM3

Generated
Code for

RM3

matena7.fm Page 178 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 179

Figure 7.3 shows how an entity bean using CMP uses the various resource
managerÐspeciÞc APIs to access data in the respective resource managers. Note
that the developer has to write only one entity bean class, regardless of the
resource manager type. Based on the mapping done by the deployer, the container
generates the appropriate data access code for the resource manager API. There-
fore, the developer does not need to know or care about the actual resource
managerÐspeciÞc code.

The performance of CMP entity beans is also likely to be signiÞcantly better
than that of BMP entity beans or session beans using JDBC. This may sound
counterintuitive, because developers assume they can code database access calls
in a way that is best for their application. However, obtaining good database
access performance requires more than correctly coding the access calls. Rather,
obtaining good performance requires such techniques as advanced knowledge of
database-speciÞc features, connection pooling, an optimized caching strategy for
reducing the number of database round-trips, and more. System-level experts who
build containers, persistence managers, and application servers know these
advanced techniques the best. With CMP, because the container has full control
over persistence management, it can optimally manage database access to achieve
the highest performance. This fact has been observed with EJB-based benchmarks
on several application server products.

The EJB 2.0 speciÞcation signiÞcantly extended the functionality of CMP.
The persistent state of an entity bean is described by JavaBeans-like properties,
which are represented in the bean class as get and set accessor methods. For
example, a persistent Þeld foo would be represented by the getFoo and setFoo
methods in the bean class. These get and set methods allow code in the bean class
to access the data items comprising the entity objectÕs state. CMP Þelds are virtual
Þelds and do not appear as instance variables in the entity beanÕs implementation
class. The implementation class instead deÞnes get and set methods, which are
declared public and abstract, for each such public variable. The bean provides
no implementation for these methods. Instead, the EJB container provides the
method implementations. The implementation class, too, is an abstract class for
entity beans that use CMP.

For example, the same AccountBean class coded using EJB 2.1 CMP would
look as shown in Code Example 7.6:

public abstract class AccountBean implements EntityBean {

 // Accessor methods for container-managed fields

matena7.fm Page 179 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS180

 public abstract String getAccountNumber(); // accountNumber

 public abstract void setAccountNumber(String v);

 public abstract double getBalance(); // balance

 public abstract void setBalance(double v);

 ...

 // Business methods

 public void debit(double amount) {

 setBalance(getBalance() - amount);

 }

}

Code Example 7.6 AccountBean Entity Bean Using EJB 2.1 CMP

Note also that entity beans using CMP can implement a local or a remote
client view. However, an entity bean is not required to have a local client view to
use CMP. Because the local interface exposes a beanÕs methods only to other
beans that reside within the same container, there can be Þne-grained access
between clients and entity beans without an undue performance overhead. Entity
beans with local interfaces not only can expose their state to clients but also can
use pass-by-reference semantics to pass state between related bean instances.

Applications migrating from an EJB 1.0 or 1.1 approach to the EJB 2.0 or 2.1
speciÞcation should keep in mind the change to parameter passing. The remote
interface approach uses pass-by-value semantics, whereas pass-by-reference
mode with local interfaces may result in unintended changes to the state of a
passed value or object. With pass-by-value semantics, the invoked methodÕs
actions affect only its local copy of a value or object. With pass-by-reference
semantics, there is only one copy of a particular value or object. All involved
methods reference and act on the state of that one value or object.

In the EJB 1.0 and 1.1 speciÞcations, the CMP API depended on mapping the
instance variables of an entity bean class to the data items representing an entity
objectÕs state in the resource manager. For example, Code Example 7.7 shows the
same AccountBean class coded using CMP:

public class AccountBean implements EntityBean {

 // container-managed fields

 public String accountNumber;

 public double balance;

matena7.fm Page 180 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 181

 ...

 public void debit(double amount) {

 balance = balance - amount;

 }

}

Code Example 7.7 AccountBean Entity Bean Using CMP

At deployment, the deployer uses tools to generate code that implements the
mapping of the instance Þelds to the data items in the resource manager. Although
the EJB 1.1 Þeld-based approach to CMP is still supported for applications imple-
mented prior to the EJB 2.0 speciÞcation, this book focuses on the EJB 2.0 CMP
approach.

Container-Managed Relationships

Along with an enhanced CMP approach, the EJB 2.1 speciÞcation supports con-
tainer-managed relationships (CMRs) as part of the CMP architecture. Multiple
entity beans are now allowed to have relationships among themselves, referred to as
CMRs.

Container-managed relationships are described by CMR Þelds in the deploy-
ment descriptor. The EJB container supports one-to-one, one-to-many, and many-
to-many relationships, automatically managing the relationships and maintaining
their referential integrity. For example, consider a many-to-many bidirectional
relationship, such as one between a Supplier entity bean and a Parts entity bean. If
a Supplier instance stops providing a particular part, the container automatically
removes that Supplier from the set of available suppliers for that Parts instance.

CMR Þelds are handled in the same way as CMP Þelds. CMR Þelds do not
appear as instance variables in the entity beanÕs implementation. Instead, the
implementation deÞnes public, abstract get and set methods for each CMR
public variable. The EJB container provides the method implementations, rather
than the bean itself. An entity bean must provide a local client view so that it can
be used as the target of a container-managed relationship.

For one-to-one and many-to-one relationships, the get and set accessors for a
CMR Þeld are deÞned using the related beanÕs local interface type. For one-to-
many and many-to-many relationships, the get and set accessors use the Java Col-
lection interface, as there are many instances of the related bean.

matena7.fm Page 181 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS182

The bean provider speciÞes the relationships between entity beans in the
deployment descriptor. At deployment, these relationship speciÞcations become
the schema deÞnition, and the relationships may be captured in a relational data-
base or other resource manager. For example, a relationship between two beans
may appear as a foreign key relationship in a relational database.

Container-managed relationships are also key to the powerful querying fea-
tures of the EJB QL query language. They allow a developer to concisely write a
query that operates over several related beans.

EJB QL Query Language

The EJB 2.0 speciÞcation introduced EJB Query Language, or EJB QL, a query lan-
guage that is intended to be portable across EJB containers. EJB QL is an SQL-like
language for expressing queries over entity beans with container-managed persis-
tence. EJB QL deÞnes queries for Þnd and select methods for entity beans with con-
tainer-managed persistence.

Prior to the EJB 2.1 speciÞcation, the manner and language for forming and
expressing queries for Þnd methods were left to each individual application server.
Many application server vendors let developers form queries using SQL. How-
ever, other vendors used their own proprietary language speciÞc to their particular
application server product.

In addition, each application server provided its own tool for expressing a
query. Because the developer must know the database table and column names to
correctly form an SQL query, application server tools that rely on SQL provided a
mapping between the database names and SQL statements to help the developer.

Under the previous versions of the EJB architecture, each application server
handled queries in its own manner. Migrating from one application server to
another often required you to use the new serverÕs tool to rewrite or reform your
existing queries. For example, you might have to use the new serverÕs tool to
rewrite the SQL for the Þnd methods used by the applicationÕs entity beans.

Application servers developed with early versions of the EJB architecture
may also support different physical representations of the query. For example, the
server may store the query in the deployment descriptor, or it may store the query
someplace else. If kept in the deployment descriptor, the query may be identiÞed
with a tag unique to that particular server. These factors combined to reduce the
portability of your enterprise bean application among various application servers.

EJB QL corrects many of these inconsistencies and shortcomings. EJB QL,
designed to be an SQL-like language, deÞnes Þnd and select query methods spe-

matena7.fm Page 182 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 183

ciÞcally for entity beans with container-managed persistence. EJB QLÕs principal
advantage over SQL is its portability across EJB containers and its ability to navi-
gate entity bean relationships.

EJB QL allows querying or navigation over entity bean relationships. A query
can begin with one entity bean and from there navigate to related beans. For
example, the query can start with an Order bean and then navigate to the OrderÕs
line items. The query can also navigate to the products referenced by the OrderÕs
individual line items. However, this navigation requires that the bean relationships
be expressed as container-managed relationships in the deployment descriptor.

With EJB QL, you can specify the query during in the application develop-
ment process, and that query is kept in the deployment descriptor. Therefore, you
have two options for writing the query: You can use the application serverÕs query-
related tools, or you can write the query by manually editing the deployment
descriptor. The container generates the query language implementation for queries
speciÞed in the deployment descriptor.

For example, suppose that CustomerBean had a one-to-many relationship
with AccountBean through the container-managed relationship Þeld accounts.
You want to form an EJB QL query to traverse from CustomerBean to Account-
Bean and return all customers with large accounts. You might write the query as
follows:

SELECT DISTINCT OBJECT(cust)

FROM Customer cust, IN(cust.accounts) acct

WHERE acct.balance > ?1

ORDER BY cust.firstName

In CustomerBeanÕs home interface, a developer might deÞne the Þnd method
associated with this query as follows:

public Collection findLargeCustomers(int minimumBalance)

throws FinderException;

As you can see, the EJB QL query looks similar to an SQL query: The query has a
SELECT clause, a FROM clause, an optional WHERE clause, and an optional ORDER BY
clause.

The EJB QL query names beans using their abstract schema names. A beanÕs
abstract schema name, which is declared in its deployment descriptor, uniquely

matena7.fm Page 183 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS184

identiÞes the bean in an EJB QL query. In the preceeding query, the abstract
schema name of the CustomerBean is Customer.

The SELECT clause speciÞes the return type of the query. If the return values
are to be uniqueÑthat is, no duplicatesÑadd the DISTINCT keyword to the clause.
You can indicate the return type by using an identiÞcation variable with the syntax
OBJECT(cust). This speciÞes that the query returns objects that are values of the
identiÞcation variable cust. The return type may also be indicated by a path
expression of the form accounts.customer, as long as the path expression ends in
a single-valued (one-to-one or many-to-one) CMR or CMP Þeld. You might use a
path expression, for example, to implement a Þnd method, findLargeAccounts,
that returns a Collection of accounts. A path expression is the construct used to
navigate from one bean to a second bean, using a CMR Þeld of the Þrst bean.

The return value for Þnd methods can be only the type of the bean on whose
home interface the Þnd method is deÞned. There are no such restrictions on the
return value for select methods deÞned in a bean class; their return values may be
Java primitive types or bean types, or they may be collections of these types.

Similar to SQL, the return type of an EJB QL query may also be the result of
an aggregate function: AVG, MAX, MIN, SUM, or COUNT. For example, SELECT
COUNT(cust) returns a count of all Customer objects in the result of the query. The
return type of the ejbSelect method whose query uses the COUNT function needs
to be the Java primitive type long. The return type of an ejbSelect method using
an AVG function needs to be double.

The FROM clause declares identiÞcation variables used in the SELECT and WHERE
clauses. There are two ways to declare identiÞcation variables:

1. Declare an identification variable to be of a particular bean typeÑfor example,
Customer cust.

2. Use a path expression that ends in a collection-valued CMR fieldÑthat is, a
one-to-many or many-to-many relationship, such as IN(cust.accounts) acct.

The FROM clause in EJB QL is similar in behavior to the FROM clause in SQL.
With both FROM clauses, the effect of declaring multiple identiÞcation variables is
a Cartesian product of the values of each of the identiÞcation variables. This
means that if any of the clauseÕs identiÞcation variables refers to a bean that has
zero instances, the return values of the query will be empty.

The WHERE clause deÞnes conditions that restrict the set of values returned
from the query. The WHERE clause can use operators similar to SQL, including

matena7.fm Page 184 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 185

arithmetic (+, -, *, /), comparison (=, >, <, >=, <=, <>), and logical (NOT, AND, OR)
operators. Like SQL, EJB QL deÞnes additional constructs for use in the WHERE
clause, including

¥ BETWEENÑFor example, WHERE acct.balance BETWEEN 10000 AND 20000

¥ LIKEÑFor example, WHERE cust.name LIKE ‘a%’

¥ NULL, EMPTY comparisonsÑFor example, WHERE cust.name IS NULL AND
cust.accounts IS EMPTY

¥ IN comparisonsÑFor example, WHERE cust.country IN (‘US’, ‘UK,
‘France’)

¥ MEMBER OF comparisonsÑFor example, WHERE acct MEMBER OF cust.ac-
counts

¥ Built-in string functionsÑCONCAT(string, string), SUBSTRING(string,
start, length), LOCATE(string, string), and LENGTH(string)

¥ Built-in arithmetic functionsÑABS(number), MOD(int, int), and SQRT(dou-
ble)

The WHERE clause can also use input parameters, using the syntax ?1, ?2, and
so forth. Parameters are numbered starting with 1 and are used in the order in
which they appear in the Þnd or select method signature. For example, consider
the clause WHERE acct.balance > ?1. At runtime, the query processor substitutes
the values of the parameters provided to the Þnd or select method into the query.

The ORDER BY clause tells the query processor to order the results in a Collec-
tion by a particular CMP Þeld or set of CMP Þelds. If the return type of the query
is a bean typeÑthat is, the SELECT clause has OBJECT(cust)Ñsuch as for Þnd
methods, the CMP Þelds used for ordering must be valid Þelds of the returned
bean type. If the return type of the query is a CMP Þeld type, the ORDER BY clause
must use the same CMP Þeld. Ordering can be in ascending or descending order.
For example, consider the following clause:

ORDER BY cust.firstName ASC, cust.lastName DESC

This clause returns a Collection of customers in ascending order by their Þrst
names. Those customers within the Collection having the same Þrst name are in
descending order by their last names. Ascending order is the default if the ORDER BY

matena7.fm Page 185 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS186

clause speciÞes neither ASC nor DESC. In addition, all null values in the returned Col-
lection either precede or follow all non-null values.

We present more EJB QL queries when we look at the entity bean example
application in Chapter 8.

Although EJB QL offers certain advantages, the language itself is not quite as
rich as SQL. In particular, EJB QL cannot form some of the sophisticated queries
of which SQL is capable, such as nested queries. However, it is likely that applica-
tion server query tools will handle these differences between the languages.
Future versions of the EJB speciÞcation will enhance the richness of EJB QL.

Bean-Managed Persistence

When it uses BMP, an entity bean uses a resource managerÐspeciÞc interface (API)
to access state. (In the BMP approach to managing entity object state persistence,
the entity bean itself manages the access to the underlying state in a resource man-
ager.)

Figure 7.4 shows three entity bean classes (AccountBean, AccountBean2, and
AccountBean3). Each class accesses a different resource manager type. For exam-
ple, a bean uses JDBC to access state stored in a relational database. In Figure 7.4,
AccountBean uses the JDBC API to access state stored in the relational database
management system (RDBMS). If the state is stored in a different type of data-
base, the bean uses a different API to access the state, and the API is speciÞc to the
resource manager. Thus, AccountBean2 uses an API speciÞc to the RM2 adapter
for its RM2-type database. This means that if an entity bean uses BMP, the bean
code is, in general, dependent on the type of the resource manager.

For example, the AccountBean entity bean class may use JDBC to access the
state of the Account entity objects in a relational database, as Code Example 7.8
illustrates.

In the example, the implementation of the debit method obtains the primary
key of the Account entity object currently associated with the instance. The
method uses the JDBC API to update the account balance. Note that in a real-life
application development, the bean developer would likely use some data access
tools, such as command beans, on top of JDBC rather than coding JDBC directly
in the entity bean class.

matena7.fm Page 186 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 187

Figure 7.4 Entity Beans Using BMP to Access Different Resource Managers

public class AccountBean implements EntityBean {

 ...

 public void debit(double amount) {

 Connection con = ...;

 PreparedStatement pstmt = con.prepareStatement(

 “UPDATE Account SET acct_balance = acct_balance - ? “ +

 “WHERE acct_number = ?”

);

 pstmt.setDouble(1, amount);

 pstmt.setString(2, (String)ctx.getPrimaryKey());

 pstmt.execute();

 con.close();

 }

 }

Code Example 7.8 Using the JDBC API to Access State

AccountBean

AccountBean2

AccountBean3

JDBC
API JDBC

Driver

RM2
Adapter

RM2-speciÞc
API

RM3-speciÞc
API RM3

Adapter
RM3

RM2

RDBMS

Resource
Manager

Types

Entity Bean
Classes

Resource
ManagerÐ

SpeciÞc APIs

matena7.fm Page 187 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS188

BMPÕs main advantage is that it simpliÞes deploying the entity bean. When an
entity bean uses BMP, no deployment tasks are necessary to adapt the bean to the
resource manager type or to the database schema used within the resource man-
ager. At the same time, this is also the main disadvantage of BMP, because an
entity bean using BMP is, in general, dependent on the resource manager type and
the database schema. This dependency makes the entity bean less reusable across
different operational environments and also means that the developer has to write
much more code to do the resource manager access.

However, an entity bean using BMP can achieve some degree of indepen-
dence of the entity bean code from the resource manager type and the database
schema. This can be accomplished, for example, by using portable data access
components when developing the BMP entity bean. Essentially, the entity bean
class uses the data access components to access the entity objectÕs state. The data
access components would provide deployment interfaces for customizing the data
access logic to different database schemas or even to a different resource manager
type, without requiring changes to the entity beanÕs code.

Figure 7.5 shows the AccountBean entity bean using three APIs to access
three resource manager types. This example is very much like Figure 7.4, with one
signiÞcant difference. Note that instead of three separate entity beans classes
(AccountBean, AccountBean2, and AccountBean3) implementing access to the
resource manager APIs, a single entity bean class, AccountBean, using data access
components, can access the different resource managerÐspeciÞc APIs. The data
access components support all three resource manager types.

Figure 7.5 Entity Beans Using Data Access Components to Access Resource
Managers

AccountBean JDBC
API JDBC

Driver

RM2
Adapter

RM2-speciÞc
API

RM3-speciÞc
API RM3

Adapter
RM3

RM2

RDBMS
Data Access
Components

AccountBean
Data Access
Components

AccountBean
Data Access
Components

matena7.fm Page 188 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 189

On the surface, this is similar to CMP. There is, however, a signiÞcant differ-
ence between CMP and the data access component approach. The CMP approach
allows the EJB container to provide a sophisticated persistence manager that can
cache the entity objectÕs state in the container. The caching strategy implemented
by the persistence manager can be tuned without making modiÞcations to the
entity beanÕs code. It is important to note that the CMP cache may be shared by
multiple instances of the same entity bean or even by instances of different entity
beans. This contrasts with the data access components approach, in which it is not
possible, in general, to build a cache that can be shared by multiple instances.

7.2.2 Entity Bean Class Methods

The bean developerÕs primary focus is the development of the entity bean class. The
bean developer is responsible for writing the implementation of the following meth-
ods:

¥ Business methods from the component interface

¥ Create methods from the home interface

¥ For BMP entity beans, find methods from the home interface

¥ Business methods from the home interface

¥ The container callback methods defined in the javax.ejb.EntityBean inter-
face

In addition, for entity beans with CMP, the bean developer needs to write
abstract get and set accessor methods for container-managed Þelds and relation-
ships. The developer may also deÞne abstract ejbSelect methods in the CMP
bean implementation class for executing EJB QL queries internal to the bean.

The following subsections describe these methods in more detail. Section
7.2.3, Entity Bean Instance Life Cycle, on page 196 explains when and in what
context the EJB container invokes these methods.

The implementation class for entity beans that use EJB 2.0 or 2.1 container-
managed persistence must be an abstract class. The implementation class for
entity beans that use bean-managed persistence is a concrete class.

matena7.fm Page 189 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS190

Entity Bean Accessor Methods

Entity beans using CMP use accessor methods for the container-managed persistent
Þelds. These accessor methods take the place of instance Þeld declarations in the
bean class. The get and set accessor methods are declared public and abstract.
The bean class does not provide an implementation for these methods, because the
EJB container does so. Accessor methods must be declared for both CMP and CMR
Þelds.

WeÕve already shown AccountBeanÕs get and set methods for its container-
managed Þelds accountNumber and balance. In addition, AccountBean might
maintain a many-to-one relationship between accounts and customers. An account
might also be involved in a one-to-many relationship, such as when a single
account has a set of detail lines associated to it. If these relationships were imple-
mented as container-managed relationships, AccountBean would include accessor
methods for these CMR Þelds, too (Code Example 7.9):

public abstract class AccountBean implements EntityBean {

 // Accessor methods for container-managed fields

 public abstract String getAccountNumber(); // accountNumber

 public abstract void setAccountNumber(String v);

 public abstract double getBalance(); // balance

 public abstract void setBalance(double v);

 ...

 // Accessor methods for container-managed relationship fields

 public abstract Customer getCustomer(); // Customer

 public abstract void setCustomer(Customer customer);

 public abstract Collection getAcctDetails(); // Detail lines

 public abstract void setAcctDetails(Collection acctDetails);

}

Code Example 7.9 AccountBean Entity Bean

Note that the getCustomer accessor method returns the local entity object type Cus-
tomer, whereas getAcctDetails returns a Collection of Detail objects.

matena7.fm Page 190 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 191

Entity Bean Business Methods

The bean developer implements in the entity bean class the business methods
declared by the entity beanÕs component interface. The rules for the business
method implementations of an entity bean are similar to those for a session bean
implementation. The number and types of parameters and the return value type for
these business methods must match those deÞned in the component interface. In
addition, the throws clause for the entity bean class business methods must not
include more checked exceptions than the throws clause of the corresponding com-
ponent interface methods. (Note that the methods in the entity bean class can deÞne
fewer exceptions than the methods in the remote interface.) Note too that the busi-
ness methods must be declared public. They must not be declared final or static.

Recall that the Account component interface deÞnes the following business
methods:

double getBalance();

void credit(double amount);

void debit(double amount) throws InsufficientFundsException;

The bean developer implements these same business methods in the AccountBean
class, as follows:

public double getBalance() { ... }

public void credit(double amount) { ... }

public void debit(double amount)

throws InsufficientFundsException { ... }

Entity Bean Create Methods

The entity bean class deÞnes ejbCreate and ejbPostCreate methods that corre-
spond to the create methods deÞned in the home interface. For each create method
in the home interface, the bean developer implements an ejbCreate and an ejb-
PostCreate method in the entity bean class. Remember that an entity bean may
choose not to expose the create functionality to clients, in which case the entity bean
home interface deÞnes no create methods, and, of course, the bean developer does
not implement ejbCreate or ejbPostCreate methods in the bean class.

The ejbCreate and ejbPostCreate methods have the same number of param-
eters, each of which must be of the same type as those deÞned in the home inter-
faceÕs corresponding create method. However, the ejbCreate methods differ from

matena7.fm Page 191 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS192

the create methods, deÞning the beanÕs primary key type as their return value type.
The ejbPostCreate deÞnes the return type as void. The throws clause for each
ejbCreate and ejbPostCreate method must not include more checked exceptions
than the throws clause of the corresponding create method. However, the ejbCre-
ate method throws clause can have fewer exceptions than the corresponding
create method.

Like the business methods, the ejbCreate methods must be declared public.
They must not be declared final or static. For example, the Account home inter-
face declares the following create methods:

Account create(String lastName, String firstName)

throws CreateException, BadNameException;

Account create(String lastName)

throws CreateException;

Account createBusinessAcct(String businessName)

throws CreateException;

Note that if AccountÕs home interface had implemented a remote view, each of its
create methods would have thrown a RemoteException in addition to the other
exceptions.

The bean developer implements these corresponding ejbCreate and ejbPost-
Create methods in the AccountBean class:

public AccountKey ejbCreate(String lastName, String firstName)

throws BadNameException { }

public void ejbPostCreate(String lastName, String firstName)

throws BadNameException { }

public AccountKey ejbCreate(String lastName) { }

public void ejbPostCreate(String lastName) { }

public AccountKey ejbCreate(String businessName) { }

public void ejbPostCreate(String businessName) { }

When creating a new entity instance, the EJB container Þrst invokes the ejbCreate
method and then invokes the matching ejbPostCreate method (see the section
Invocation of Create Methods on page 199).

The ejbPostCreate method can be used for any initialization work that
requires the identity of the newly created entity bean in the form of its EJBObject
or EJBLocalObject reference. If it needs to pass a reference of the entity object
that is being created to another enterprise bean, an instance must do so in the ejb-

matena7.fm Page 192 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 193

PostCreate method, not in the ejbCreate method. For example, the ejbPostCre-
ate method may pass the created Account object to the Customer object as an
argument in the addAccount method:

public class AccountBean implements EntityBean {

EntityContext ctx;

public ejbCreate(Customer cust) {

// This would be an ERROR because it is illegal to

// invoke ctx.getEJBLocalObject from an ejbCreate method.

cust.addAccount((Account)ctx.getEJBLocalObject());

...

}

public ejbPostCreate(Customer cust) {

// This is correct.

cust.addAccount((Account)ctx.getEJBLocalObject());

}

...

}

Entity Bean Find Methods

For entity beans with bean-managed persistence, the bean developer must also
implement in the entity bean class ejbFind methods that correspond to the Þnd
methods deÞned in the home interface. Recall that an entity beanÕs home interface
deÞnes one or more Þnd methods, which a client uses to locate entity objects. For
CMP entity beans, the ejbFind methods are generated by the container using the
EJB QL query provided by the bean developer, so the bean developer does not need
to write the implementations of ejbFind methods for CMP entity beans.

At a minimum, the developer of a BMP entity bean implements an ejbFind-
ByPrimaryKey method corresponding to the findByPrimaryKey method, which is
deÞned by all entity bean home interfaces. This method looks up a single entity
object, using the objectÕs primary key. The developer also implements ejbFind
methods that correspond to any additional Þnd methods, such as those that return
multiple objects, deÞned by the home interface. Each Þnd method implementation
has the same number of parameters, and each parameter is of the same type as the
corresponding home interface Þnd method.

The entity bean class implementations of the Þnd methods differ in some
respects from the home interface deÞnition. In the home interface, the result type

matena7.fm Page 193 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS194

of Þnd methods that return single objects, whether the findByPrimaryKey or
another Þnd method, is the entity beanÕs component interface. The result type of
the corresponding ejbFind methods is the entity beanÕs primary key type. Simi-
larly, in the home interface, the result type of Þnd methods returning multiple
objects is a collection (java.util.Collection) of objects implementing the com-
ponent interface. In the implementation class, the result type of the corresponding
ejbFind methods that return multiple objects is a collection
(java.util.Collection) of objects of the beanÕs primary key type.

Finally, similar to the create methods, the throws clause for each ejbFind
method must not include more checked exceptions than the throws clause of the
corresponding Þnd method. However, the ejbFind method throws clause can have
fewer exceptions than the corresponding Þnd method. The ejbFind methods must
be declared public. They must not be declared final or static.

For example, the AccountHome interface deÞnes the findByPrimaryKey

method and an additional method, findInactive, which returns multiple objects:

import java.util.Collection;

Account findByPrimaryKey(AccountKey primaryKey)

throws FinderException;

Collection findInactive(Date sinceWhen)

throws FinderException, BadDateException;

If the AccountEJB bean is a BMP entity bean, the bean developer implements
these methods in the entity bean class as follows:

public AccountPrimaryKey ejbFindByPrimaryKey

(AccountPrimaryKey primkey) throws FinderException { ... };

public Collection ejbFindInactive(Date sinceWhen)

throws BadDateException { ... };

Entity Bean Home Methods

Entity bean classes must also provide an implementation for each home method
listed in the home interface. The bean developer implements these home methods
with corresponding ejbHome methods. For example, the AccountHome interface
includes one home method:

public void debitAcctFee (float fee_amt) throws OutOfRangeException;

The bean developer implements this method in the entity bean class as fol-
lows:

matena7.fm Page 194 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 195

public void ejbHomeDebitAcctFee (float fee_amt)

throws OutOfRangeException { ... };

Home methods are similar to static methods in Java classes in that they do not
operate on a speciÞc entity bean instance that has an identity. Home methods are
executed by a bean instance that has not been assigned an identity. As a result,
home methods cannot access the identity of the bean by using the getPrimaryKey,
getEJBObject, and getEJBLocalObject methods of the EntityContext interface.
This also means that home methods cannot call the get or set accessor methods for
CMP and CMR Þelds. However, home methods can call the ejbSelect methods
deÞned in the bean class. This allows home methods to execute queries and to
process the results of the queries.

Select Methods

Select methods, available only for CMP entity beans, are similar to Þnd methods in
that the bean developer provides the method deÞnitions, but the methods themselves
are implemented using EJB QL queries. The bean developer deÞnes select methods
as abstract methods in the bean implementation class with a name of the form ejb-
Select<METHOD>. The developer also provides an EJB QL query for the ejbSelect
method in the beanÕs deployment descriptor. At deployment, the containerÕs tools
generate the implementation code for the ejbSelect method, using the EJB QL
query provided by the developer.

Keep in mind that ejbSelect methods are not exposed through the home or
component interfaces. Hence the client cannot invoke ejbSelect methods directly.
The developer may deÞne a home method on the home interface that delegates to
the ejbSelect method, and then the client can invoke that home method.

However, unlike for a Þnd method, the return value of an ejbSelect method is
not restricted to the beanÕs component interface. In fact, ejbSelect methods can
return any type, including the types of the CMP Þelds in the bean and the local
objects of related beans. The return value may also be a single value or a Collec-
tion of values.

For example, an example of an ejbSelect method deÞnition for the Account-
Bean follows:

public abstract Collection ejbSelectInactiveCustomers

(Date sinceWhen);

matena7.fm Page 195 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS196

This ejbSelectInactiveCustomers method returns a java.util.Collection

object containing the local entity objects for customers whose accounts have been
inactive since the date provided in the parameter to the method.

EntityBean Interface Methods

An entity bean class is required to implement the methods deÞned by the
javax.ejb.EntityBean interface. The EJB container invokes these methods on the
bean instance at speciÞc points in an entity bean instanceÕs life cycle. Code Example
7.10 shows the deÞnition of the EntityBean interface methods:

public interface EntityBean extends EnterpriseBean {

 public void setEntityContext(EntityContext ctx)

 throws EJBException, RemoteException;

 public void unsetEntityContext()

 throws EJBException, RemoteException;

 public void ejbRemove()

 throws RemoveException, EJBException, RemoteException;

 public void ejbActivate() throws EJBException, RemoteException;

 public void ejbPassivate() throws EJBException, RemoteException;

 public void ejbLoad() throws EJBException, RemoteException;

 public void ejbStore() throws EJBException, RemoteException;

}

Code Example 7.10 EntityBean Interface

Note that although the EntityBean interface methods throw RemoteException, the
EJB 2.1 speciÞcation mandates that implementations of these methods must not
throw RemoteException.

7.2.3 Entity Bean Instance Life Cycle

Every entity bean instance has a life cycle that starts from its time of creation and
continues through its removal. The EJB container manages the life cycle for every
instance of an entity bean class.

Bean developers who manually code the entity bean class need to know what
happens during an entity beanÕs life cycle and how that life cycle is managed by
the container. On the other hand, bean developers who use an EJB-aware applica-
tion development tool do not need to know most of this information, because the
application development tool may provide a simpler abstraction.

matena7.fm Page 196 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 197

Figure 7.6 Life Cycle of an Entity Bean Instance

This section describes the various stages in the life cycle of entity bean
instances, as well as the persistence and transaction management interaction
details between the container and entity bean instances. These details are useful
for advanced developers trying to tune the performance of their entity beans.

Figure 7.6 illustrates the life cycle of an entity bean instance. The diagram
shows that an entity bean instance is in one of the following three states:

1. Does not existÑThe container has not yet created an instance, or the container
has discarded the instance.

Pooled

Business Method

Ready ejbStore()ejbLoad()

ejbActivate()

ejbCreate<METHOD>
 (args)
ejbPostCreate
 <METHOD>(args)

ejbRemove()

ejbFind<METHOD>()
ejbHome<METHOD>()
ejbSelect<METHOD>()

1. unsetEntityContext()1. newInstance()
2. setEntityContext(ec)

Does not exist
Instance throws
system exception
from any method

ejbPassivate()

ejbSelect<METHOD>()

matena7.fm Page 197 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS198

2. PooledÑAn instance is in the pooled state when it is not associated with a par-
ticular entity object identity.

3. ReadyÑAn instance is in the ready state when the instance is associated with
an entity object identity.

Each entity instance state has deÞned characteristics. In addition, transitions
between states happen as a result of certain actions. The EJB container drives the
state transition in response to client-invoked methods from the home and remote
interfaces and in response to container-internal events, such as transaction
commit, exceptions, or resource management.

¥ An instanceÕs life begins when the container creates the instance by using
newInstance or the new operator. The container then invokes the setEntity-
Context method to pass the instance a reference to its EntityContext object.
At this point, the instance transitions to the pooled state.

¥ While in the pooled state, the instance is not associated with an entity object
identity. As a result, all instances in the pooled state are considered equivalent.
The container can perform the following actions with an instance in the pooled
state:

■ Execute an ejbFind<METHOD>, ejbSelect<METHOD>, or ejbHome<METHOD>
method in response to a client-invoked Þnd or home method through the
home interface. Note that the instance does not move to the ready state during
the execution of the ejbFind<METHOD>, ejbSelect<METHOD>, or ejb-
Home<METHOD> method.

■ Associate the instance with an existing entity object by invoking the
ejbActivate method on the instance. A successful execution of the
ejbActivate method transitions the instance to the ready state.

■ Use the instance to create a new entity object by invoking the ejbCreate and
ejbPostCreate methods on the instance. Successfully executing the ejb-
Create and ejbPostCreate methods transitions the instance to the ready
state.

■ Discard the instance by invoking the unsetEntityContext method on the in-
stance. By doing so, the container notiÞes the instance that it will invoke no
other methods on the instance.

¥ When the instance is in the ready state, it has an identityÑthat is, a primary
keyÑand is associated with an entity object. The container can perform the

matena7.fm Page 198 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 199

following actions on an instance in the ready state:

■ Invoke the ejbLoad method on the instance. The ejbLoad method instructs
the instance to synchronize any cached representation it maintains of the en-
tity objectÕs state from the entity objectÕs state in the resource manager. The
instance remains in the ready state.

■ Invoke the ejbStore method on the instance. The ejbStore method instructs
the instance to synchronize the entity objectÕs state in the resource manager
with updates to the state that may have been cached in the instance. The in-
stance remains in the ready state.

■ Invoke a business method in response to a client-invoked method in the com-
ponent interface. The instance remains in the ready state.

■ Invoke the ejbPassivate method on the instance and move it to the pooled
state.

■ Invoke the ejbRemove method on the instance in response to a client-invoked
remove method. The ejbRemove method transitions the instance to the pooled
state.

¥ If an instance throws and does not catch a system exceptionÑthat is, an excep-
tion that is a subclass of java.lang.RuntimeExceptionÑthe container catches
the exception and transitions the instance to the does-not-exist state, regardless
of the beanÕs original state.

Invocation of Create Methods

This section uses object interaction diagrams (OIDs) to illustrate what happens
when an entity object is created with BMP or CMP. Figure 7.7 illustrates creating an
entity object with BMP.

1. The client starts a transaction, using the begin method of the UserTransaction
interface.

2. The client invokes a create method on the home object, which is implemented
by the container. Keep in mind that the EJB container performs the diagramed
operations attributed to the home object.

3. The home object invokes the matching ejbCreate method on the entity bean
instance.

4. The bean instance creates a representation of the entity object state in the da-
tabase.

matena7.fm Page 199 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS200

Figure 7.7 OID of Creation of Entity Object with BMP

Client Instance

1: javax.transaction.UserTransaction.begin()

Home
Object

Entity
Object Synchronization Transaction Service

Database

2: create(args)

3: ejbCreate(args)

4: Create representation
in database

5: Register resource
manager

6: new

7: ejbPostCreate(args)

8: new

9: registerSynchronization(synchronization)

10: Business method
11: Business method

Container-Provided Classes

matena7.fm Page 200 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 201

5. The database system registers itself with the transaction service, which is a
synonym for transaction manager.

6. The home object creates the entity object, which may be a distributed object
that implements the entity beanÕs remote interface or a local object that imple-
ments the entity beanÕs local interface.

7. The home object invokes the matching ejbPostCreate method on the bean in-
stance.

8. The home object creates a transaction synchronization object.

9. The home object registers the transaction synchronization object with the
transaction service.

10. The client invokes a business method on the newly created entity object in the
same transaction context as the create method.

11. The entity object delegates the invocation to the bean instance.

When the client eventually attempts to commit the transaction, the transaction
service orchestrates the commit protocol, as described in the section Transaction-
Commit OID on page 210.

Note that creation of the entity object is considered part of the transaction. If
the transaction fails, the representation of the objectÕs state in the database is auto-
matically deleted, and the entity object does not exist.

Figure 7.8 shows the OID for the creation of an entity object with CMP.

1. The client starts a transaction by using the begin method of the UserTransac-
tion interface.

2. The client invokes a create method on the home object. As noted earlier, the
EJB container performs the diagramed operations attributed to the home ob-
ject.

3. The home object invokes the matching ejbCreate method on the entity bean
instance. The bean instance initializes itself, using the data passed in the argu-
ments of the ejbCreate method.

4. The home object uses the CMP state to create the representation of the entity
object state in the database.

5. The database system registers itself with the transaction service.

matena7.fm Page 201 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS202

Figure 7.8 OID of Creation of Entity Object with CMP

Client Instance

1: javax.transaction.UserTransaction.begin()

Home
Object

Entity
Object Synchronization Transaction Service

Database

2: create(args)

3: ejbCreate(args)

5: Register resource
manager

6: new

7: ejbPostCreate(args)

8: new

9: registerSynchronization(synchronization)

10: Business method
11: Business method

Container-Provided Classes

4: Create entity representation in database

matena7.fm Page 202 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 203

6. The home object creates the entity object. The entity object implements the en-
tity beanÕs component interface.

7. The home object invokes the matching ejbPostCreate method on the bean in-
stance.

8. The home object creates a transaction synchronization object.

9. The home object registers the transaction synchronization object with the
transaction service.

10. The client invokes a business method on the newly created entity object in the
same transaction context as the create method.

11. The entity object delegates the invocation to the bean instance.

Invocation of the remove Method

The next two Þgures illustrate removing entity objects. Figure 7.9 shows the steps
that take place when removing an entity object with BMP, and Figure 7.10 shows
the equivalent steps for removing an entity object with CMP.

1. In Figure 7.9, the client invokes the remove method on the entity object.

2. The entity object invokes the ejbRemove method on the bean instance.

3. The instance removes the representation of the entity object state from the
database.

Figure 7.9 OID of Removal of an Entity Object with BMP

Client Instance

Home
Object

Entity
Object

Database

Container-Provided Classes

1: remove()

2: ejbRemove()
3: Remove

representation
in database

matena7.fm Page 203 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS204

Figure 7.10 OID of Removal of Entity Object with CMP

Note that the diagram does not illustrate the transaction-related interactions
among the container, transaction service, and database. The removal of the
objectÕs state representation from the databaseÑstep 3 in the diagramÑis
included as part of the transaction in which the remove method is executed. If the
transaction fails, the objectÕs state is not removed from the database, and the entity
object continues to exist.

1. In Figure 7.10, the client invokes the remove method on the entity object.

2. The entity object invokes the ejbRemove method on the bean instance.

3. The entity object removes the representation of its state from the database.

Invocation of Find Methods

This section illustrates Þnd method invocations on entity beans. Figure 7.11 shows
the OID for a Þnd method invocation on an entity bean instance with BMP. In con-
trast, Figure 7.12 shows the execution of a Þnd method on an entity instance with
CMP.

Client Instance

Home
Object

Entity
Object

Database

Container-Provided Classes

1: remove()

2: ejbRemove()

3: Remove representation in database

matena7.fm Page 204 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 205

Figure 7.11 OID of Find Method Execution on a Bean-Managed Entity Instance

1. The client invokes a find method on the home object (Figure 7.11). As noted,
the EJB container performs the diagramed operations attributed to the home
object.

2. The home object invokes the matching ejbFind method on a bean instance.

3. The bean instance searches the database to find the object(s) that matches the
find methodÕs criteria. The instance returns the primary keyÑor collection of
keysÑfrom the ejbFind method.

4. The home object converts the returned primary key to an entity object refer-
enceÑor collection of entity object referencesÑand returns it to the client.

Note that the diagram does not illustrate the transaction-related interactions
among the container, transaction service, and database. The database searchÑstep
3 in the diagramÑis included as part of the transaction in which the Þnd method
executes. Depending on the isolation level, the found objects may be protected
from deletion by other transactions.

Client Instance

Home
Object

Entity
Object

Database

Container-Provided Classes

2: ejbFind<METHOD>(args)

1: Þnd<METHOD>(args)

4: Return entity object

3: Search database

matena7.fm Page 205 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS206

Figure 7.12 OID of Find Method Execution on a Container-Managed Entity Instance

1. The client invokes a find method on the home object (Figure 7.12). As noted,
the EJB container performs the diagramed operations attributed to the home
object.

2. The home object searches the database to find the object(s) that matches the
find methodÕs criteria.

3. The home object converts the primary key of the found object to an entity ob-
ject reference and returns it to the client. If the Þnd method Þnds more than one
object, a collection of entity object references is returned to the client.

Passivation and Activation OID

The EJB architecture allows the EJB container to passivate an entity instance during
a transaction. Figures 7.13 and 7.14 show the sequence of object interactions that
occur for entity bean passivation and activation. Figure 7.13 is the OID for passiv-
ation and reactivation of an entity instance with BMP.

Client Instance

Home
Object

Entity
Object

Database

Container-Provided Classes

2: Search database

1: Þnd<METHOD>(args)

3: Return entity object

matena7.fm Page 206 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 207

Figure 7.13 OID of Passivation and Reactivation of a Bean-Managed Entity Instance

Client Instance

Home
Object

Entity
Object

Database

Container-Provided Classes

1: Business method

3: ejbStore()

5: ejbPassivate()

4: Write state to
database

8: ejbLoad()

9: Read state from
database

6: Business method

11: Business method

Container

2: Business method

7: ejbActivate()

10: Business method

12: Business method

matena7.fm Page 207 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS208

1. The client invokes the last business method before passivation occurs.

2. The entity object delegates the business method to the bean instance.

3. The container decides to passivate the instance while it is associated with a
transaction. (The reason for passivation may be, for example, that the container
needs to reclaim the resources held by the instance.) The container invokes the
ejbStore method on the instance.

4. The instance writes any cached updates made to the entity object state to the
database.

5. The container invokes the ejbPassivate method in the instance. The instance
should release into the pooled state any resources that it does not need. The in-
stance is now in the pooled state. The container may use the instance to run find
methods, activate the instance for another object identity, or release the in-
stance through the unsetEntityContext method.

6. The client invokes another business method on the entity object.

7. The entity object allocates an instance from the pool. (The allocated instance
could be the same instance or an instance different from the one that was asso-
ciated with the object identity prior to passivation.) The container invokes the
ejbActivate method in the instance.

8. The container invokes the ejbLoad method in the instance. Note that the con-
tainer implements the entity object. Therefore, the ejbActivate and ejbLoad
calls invoked in steps 7 and 8 are in fact invoked by the container.

9. The instance uses the ejbLoad method to read the object state, or parts of the
object state, from the database.

10. The entity object delegates the business method to the instance.

11. The client invokes the next business method on the entity object.

12. Because the instance is in the ready state, the entity object can delegate the
business method to the instance.

Figure 7.14 represents the same operations for an entity instance with CMP.

1. The client invokes the last business method before passivation occurs.

2. The entity object delegates the business method to the bean instance.

matena7.fm Page 208 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 209

Figure 7.14 OID of Passivation and Reactivation of an Entity Instance with CMP

Client Instance

Home
Object

Entity
Object

Database

Container-Provided Classes

1: Business method

3: ejbStore()

5: ejbPassivate()

9: ejbLoad()

6: Business method

11: Business method

Container

2: Business method

7: ejbActivate()

10: Business method

12: Business method

4: Update entity state in database

8: Read entity state from database

matena7.fm Page 209 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS210

3. The container decides to passivate the instance while it is associated with a
transaction. (The reason for passivation may be, for example, that the container
needs to reclaim the resources held by the instance.) The container invokes the
ejbStore method on the instance. The instance can use the ejbStore method
to update its state. (See Section 7.2.4, Caching Entity Bean State, on page 219.)

4. The container updates the object state in the database with the extracted values
of the CMP and CMR fields.

5. The container invokes the ejbPassivate method in the instance. The instance
should release into the pooled state any resources that it does not need. The in-
stance is now in the pooled state. The container may use the instance to run find
methods, activate the instance for another object identity, or release the in-
stance through the unsetEntityContext method.

6. The client invokes another business method on the entity object.

7. The entity object allocates an instance from the pool. (The instance could be
the same instance or an instance different from the one that was associated with
the object identity prior to passivation.) The container invokes the ejbActi-
vate method in the instance.

8. The container reads the object state from the database.

9. The container invokes the ejbLoad method in the instance. Note that the con-
tainer implements the entity object. Therefore, the ejbActivate and ejbLoad
calls invoked in steps 7 and 9 (and the work in step 8) are in fact invoked by
the container.

10. The entity object delegates the business method to the instance.

11. The client invokes the next business method on the entity object.

12. Because the instance is in the ready state, the entity object can delegate the
business method to the instance.

Transaction-Commit OID

This section describes the operations that occur during transaction commit. Figure
7.15 shows the object interactions of the transaction-commit protocol for an entity
instance with BMP.

1. After invoking methods on an entity bean, the client attempts to commit the
transaction by invoking the commit method on the UserTransaction interface.

matena7.fm Page 210 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 211

Figure 7.15 OID of Transaction Commit Protocol for a Bean-Managed Entity Instance

2. The transaction service invokes the beforeCompletion method on a transaction
synchronization object implemented by the container.

Option A:

Option B:

Transaction Service

Client Instance

Home
Object

Entity
Object Synchronization

Database

Container-Provided Classes

1: javax.transaction.UserTransaction.commit()

3: ejbStore()

6: commit

5: prepare

7: afterCompletion(status)

4: Write state to
database

2: beforeCompletion()

Option C:

Mark Òinvalid stateÓ

Mark Ònot registered
with transaction serviceÓ

8: ejbPassivate()

matena7.fm Page 211 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS212

3. The container invokes the ejbStore method on the bean instance used by the
transaction.

4. The instance writes any cached updates made to the entity object state to the
database.

5. The transaction service performs the prepare phase of the two-phase commit
protocol. This step is skipped if the database is the only resource manager en-
listed with the transaction and the transaction service implements the one-
phase commit optimization.

6. The transaction service performs the commit phase of the two-phase commit
protocol.

7. The transaction service invokes the afterCompletion method on the synchro-
nization object.

8. If the container chooses commit option CÑsee the section Commit Options on
page 217Ñthe container invokes the ejbPassivate method in the instance.

Figure 7.16 shows the equivalent interactions of the transaction-commit pro-
tocol for an entity instance with CMP.

1. After invoking methods on an entity bean, the client attempts to commit the
transaction by invoking the commit method on the UserTransaction interface.

2. The transaction service invokes the beforeCompletion method on a transaction
synchronization object implemented by the container.

3. The container invokes the ejbStore method on the bean instance used by the
transaction.

4. The container updates the object state in the database with the extracted values
of the CMP and CMR fields.

5. The transaction service performs the prepare phase of the two-phase commit
protocol. This step is skipped if the database is the only resource manager en-
listed with the transaction and the transaction service implements the one-
phase commit optimization.

6. The transaction service performs the commit phase of the two-phase commit
protocol.

7. The transaction service invokes the afterCompletion method on the synchro-
nization object.

8. If the container chooses commit option C, the container invokes the ejbPassi-
vate method in the instance.

matena7.fm Page 212 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 213

Figure 7.16 OID of Transaction Commit Protocol for CMP Entity Instance

Option A:

Option B:

Transaction Service

Client Instance

Home
Object

Entity
Object Synchronization

Database

Container-Provided Classes

1: javax.transaction.UserTransaction.commit()

3: ejbStore()

5: prepare

8: ejbPassivate()

7: afterCompletion(status)

2: beforeCompletion()

Option C:

6: commit

Mark Ònot registered
with transaction serviceÓ

Mark Òinvalid stateÓ

4: Update entity state in database

matena7.fm Page 213 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS214

Start of Next Transaction OID

This section describes the operations that occur at the start of the next transaction.
Figure 7.17 shows the object interactions at the start of the next transaction for an
entity instance with BMP.

1. The client starts the next transaction by invoking the begin method on the
UserTransaction interface.

2. The client then invokes a business method on the entity object that implements
the remote interface.

3. If it uses commit option C, the container allocates an instance from the pool
and invokes the ejbActivate method on it.

4. If it uses commit option B or C, the container invokes the ejbLoad method on
the instance.

5. The instance uses the ejbLoad method to read the object state, or parts of the
object state, from the database. (This happens only if the container uses com-
mit option B or C.)

6. The database system registers itself with the transaction service. (This happens
only if the container uses commit option B or C.)

7. The entity object creates a Synchronization object.

8. The entity object registers the Synchronization object with the transaction ser-
vice.

9. The entity object delegates the invocation of the business method to the in-
stance.

10. The client invokes the next business method in the same transaction.

11. The entity object delegates the invocation to the instance.

Figure 7.18 shows the object interactions at the start of the next transaction for
an entity instance with CMP.

1. The client starts the next transaction by invoking the begin method on the
UserTransaction interface.

2. The client then invokes a business method on the entity object that implements
the remote interface.

matena7.fm Page 214 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 215

Figure 7.17 OID of Next Transaction for a Bean-Managed Entity Instance

Transaction Service

Client Instance

Home
Object

Entity
Object Synchronization

Database

Container-Provided Classes

2: Business method

7: new

9: Business method

10: Business method

5: Read state from
database

Option A:

Option B:

Option C:

1: javax.transaction.UserTransaction.begin()

Do nothing

6: Register resource
manager

5: Read state from
database

6: Register resource
manager

8: registerSynchronization(synchronization)

11: Business method

4: ejbLoad()

3: ejbActivate()

4: ejbLoad()

matena7.fm Page 215 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS216

Figure 7.18 OID of Next Transaction for a Container-Managed Entity Instance

Transaction Service

Client Instance

Home
Object

Entity
Object Synchronization

Database

Container-Provided Classes

2: Business method

3: ejbActivate()

7: new

10: Business method

Option A:

Option B:

Option C:

1: javax.transaction.UserTransaction.begin()

Do nothing

6: ejbLoad()

6: ejbLoad()

5: Register resource manager

4: Read state from database

5: Register resource manager

9: Business method

11: Business method

4: Read entity state from database

8: registerSynchronization(synchronization)

matena7.fm Page 216 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 217

3. If it uses commit option C, the container allocates an instance from the pool
and invokes the ejbActivate method on it.

4. If it uses commit option B or C, the container reads the values of the container-
managed fields from the database.

5. The database system registers itself with the transaction service. (This happens
only if the container uses commit option B or C.)

6. The container invokes the ejbLoad method on the instance. The implementa-
tion of the ejbLoad method is typically empty for instances with CMP. (This
happens only if the container uses commit option B or C.)

7. The entity object creates a Synchronization object.

8. The entity object registers the Synchronization object with the transaction
service.

9. The entity object delegates the invocation of the business method to the
instance.

10. The client invokes the next business method in the same transaction.

11. The entity object delegates the invocation to the instance.

Commit Options

The entity bean protocol gives the container the ßexibility to select the disposition of
the instance state at transaction commit. This ßexibility allows the container to
manage optimally the caching of the entity objectÕs state and the association of an
entity object identity with the enterprise bean instances.

The container selects from the following commit options:

¥ Option AÑThe container caches a ÒreadyÓ instance between transactions.
The container ensures that the instance has exclusive access to the state of the
object in the persistent storage. Because of this exclusive access, the container
does not need to synchronize the instanceÕs state from the persistent storage at
the beginning of the next transaction.

¥ Option BÑThe container caches a ÒreadyÓ instance between transactions. Un-
like in option A, the container does not ensure that the instance has exclusive
access to the state of the object in the persistent storage. Therefore, the
container must synchronize the instanceÕs state from the persistent storage at

matena7.fm Page 217 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS218

the beginning of the next transaction by invoking the ejbLoad method on the
instance.

¥ Option CÑThe container does not cache a ÒreadyÓ instance between transac-
tions. The container returns the instance to the pool of available instances after
a transaction has completed. When the entity object is reinvoked in the next
transaction, the container must activate an instance from the pool to handle the
invocation.

Table 7.1 summarizes the commit options. As you can see, for all three
options, the container synchronizes the instanceÕs state with the persistent storage
at transaction commit.

A container can implement some or all of the three commit options. If the
container implements more than one option, the deployer can typically specify
which option will be used for each entity bean. The optimal option depends on the
expected workload.

¥ Given a low probability that a client will access an entity object again, using
option C will result in returning the instance to the pooled state as quickly as
possible. The container can immediately reuse the instance for other object
identities rather than allocating new instances.

¥ Given a high probability that a client may access an entity object again, using
option B will result in retaining the instance associated with an object identity
in the ready state. Retaining the instance in the ready state saves the ejbPas-
sivate and ejbActivate transitions on each client transaction to the same en-
tity object.

¥ Option A can be used instead of option B to improve performance further by
skipping the ejbLoad synchronization call on the next transaction. Note that
option A can be used only if it can be guaranteed that no other program can
modify the underlying state in the database.

Table 7.1 Summary of Commit Options

Option
Write Instance

State to Database
Instance Stays Ready

Instance State
Remains Valid

A Yes Yes Yes

B Yes Yes No

C Yes No No

matena7.fm Page 218 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 219

The selection of the commit option is transparent to the entity bean implemen-
tation. The entity bean works correctly regardless of the commit option chosen by
the container. The bean developer writes the entity bean in the same way.

The object interaction in Transaction-Commit OID on page 210 and Start of
Next Transaction OID on page 214 illustrate the commit options in detail.

7.2.4 Caching Entity Bean State

In this section, we explain how an entity bean can best use the ejbLoad and ejb-
Store methods in the entity bean class implementation. The container invokes the
ejbLoad and ejbStore methods on the instances of both BMP and CMP entity
beans. However, using the ejbLoad and ejbStore methods differs between BMP
and CMP entity beans.

Caching State with BMP

Recall from earlier in this chapter that the state of an entity object is kept in a
resource manager. Typically, the resource manager resides on a network node differ-
ent from the EJB container in which the entity bean accessing the state is deployed.
Because the implementation of a business method typically accesses the entity
objectÕs state, each invocation of a business method normally results in a network
trip to the resource manager. If a transaction includes multiple business method
invocations, the resulting multiple calls to the resource manager over the network
may increase the transaction overhead.

Figure 7.19 shows the OID for a transaction with three calls to entity bean
business methods. The business methods either read or update the entity objectÕs
state stored in the resource manager. Together with the data commit at the end of
the transaction, this one transaction includes a total of four network calls to the
resource manager.

1. The client starts a transaction by invoking the begin method, which initiates
the appropriate actions from the transaction manager to create a new transac-
tion.

2. The client, working within the transaction context, invokes the getBalance
business method on the Account remote interface.

3. AccountObject, which implements the Account remote interface, in turn in-
vokes the ejbLoad method on the AccountBean instance. In our example, the
instance does no work in the ejbLoad method.

matena7.fm Page 219 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS220

Figure 7.19 Multiple Invocations to the Resource Manager

4. AccountObject invokes the getBalance method on the AccountBean instance
that corresponds to the getBalance method invoked by the client through the
Account remote interface.

5. The getBalance method must access the entity objectÕs state stored in the re-
source managerÑthat is, it must read in the account balance information stored
in the database. As a result, AccountBean initiates a network call to access these

Client :AccountObject

TransactionManager:AccountBean

:Synchronization ResourceManager

2: getBalance
3: ejbLoad

4: getBalance

1: begin

5: Read balance

7: debit
8: Update balance

6: debit

9: debit
10: debit

12: commit

11: Update balance

14: ejbStore

13: beforeCompletion

15: commit

matena7.fm Page 220 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 221

values from the resource manager.

6. The client invokes the debit method on the Account remote interface.

7. The AccountObject invokes the debit method on the entity bean instance.

8. The debit method performs the debit operation by updating the account bal-
ance in the resource manager. This is the second network call to the resource
manager.

9. The client invokes the debit method a second time.

10. The previous process (steps 6 and 7) repeats: AccountObject invokes the debit
method on the entity bean instance.

11. The debit method performs the debit operation by updating the account bal-
ance in the resource manager. This is the third network call to the resource
manager.

12. The work of the transaction is now complete, and the client invokes the commit
method on the transaction manager.

13. The clientÕs invocation causes the transaction manager first to call the before-
Completion method in the Synchronization object implemented by the
container.

14. The container invokes the ejbStore method on the instance. In our example,
the instance does no work in the ejbStore method.

15. The transaction manager completes the transaction by committing the results
in the resource manager. This constitutes the fourth network call.

Many bean developers will want to reduce the overhead of accessing the
resource manager multiple times in a transaction. To accomplish this, the EJB
architecture allows the entity bean instance to cache the entity objectÕs state, or
part of its state, within a transaction. (Some containers may allow the instance to
cache the entity objectÕs state even between transactions. Such a container would
use commit option A described in the section Commit Options on page 217.)
Rather than making repeated calls to the resource manager to access the objectÕs
state, the instance loads the objectÕs state from the resource manager at the begin-
ning of a transaction and caches it in its instance variables.

To facilitate caching, the EJB container invokes the ejbLoad method on the
instance prior to the Þrst business method invocation in a transaction. The instance
can use the ejbLoad method to load the entity objectÕs state, or part of its state,
into the instanceÕs variables. Then, subsequently invoked business methods in the

matena7.fm Page 221 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS222

instance can read and update the cached state instead of making calls to the
resource manager. When the transaction ends, the EJB container invokes the ejb-
Store method on the instance. If the previously invoked business methods updated
the state cached in the instance variables, the instance uses the ejbStore method
to synchronize the entity objectÕs state in the resource manager with the cached
state. Note that AccountBean in Figure 7.19 did not take advantage of the ejbLoad
and ejbStore methods, although the methods were called by the container.

Figure 7.20 shows the OID diagram illustrating the use of cached state for the
same account balance and debit transactions in Figure 7.19.

1. The client starts a transaction by invoking the begin method. This initiates the
appropriate actions from the transaction manager to create a new transaction.

2. The client, working within the transaction context, invokes the getBalance
business method on the Account remote interface.

3. Before any business methods execute, AccountObject invokes the ejbLoad
method on the AccountBean instance. Recall that the AccountObject class was
generated by the container tools.

4. From the ejbLoad method, AccountBean accesses the resource manager and
reads the objectÕs state into its instanceÕs variables.

5. AccountObject then invokes the corresponding getBalance method on the Ac-
countBean instance.

6. The client does the first invocation of the debit method on the Account remote
interface.

7. AccountObject invokes the debit method on the AccountBean instance.

8. The client does the second invocation of the debit method on the Account re-
mote interface.

9. AccountObject invokes the debit method on the AccountBean class.

10. The work of the transaction completes, and the client invokes the commit meth-
od on the transaction manager.

11. The transaction manager invokes the beforeCompletion method to signal the
container (via the Synchronization interface) that the transaction is starting its
commit process.

12. The container invokes the ejbStore method on the AccountBean instance so
that it properly synchronizes the objectÕs state in the resource manager with the
updated state cached in the instance variables.

matena7.fm Page 222 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 223

Figure 7.20 Caching State in BMP Entity BeanÕs Instance Variables

13. AccountBean sends changed state cached in its instance variables to the
resource manager, which updates its copy of the entity objectÕs state.

Client :AccountObject

TransactionManager:AccountBean

:Synchronization ResourceManager

2: getBalance 3: ejbLoad

1: begin

7: debit
6: debit

8: debit
9: debit

10: commit

12: ejbStore

11: beforeCompletion

14: commit

5: getBalance

4: Read account record

13: Update account record

matena7.fm Page 223 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS224

14. The transaction manager invokes the commit method on the resource manager
to save all state changes and to end the transaction.

The container invokes the ejbLoad and ejbStore methodsÑas well as the
business methods between the ejbLoad and ejbStore methodsÑin the same trans-
action context. When, from these methods, the entity bean instance accesses the
entity objectÕs state in the resource manager, the resource manager properly asso-
ciates all the multiple resource manager accesses with the transaction; see steps 4
and 13.

Note that the container also invokes the ejbStore and ejbLoad methods
during instance passivation and activation. The OIDs in the section Passivation
and Activation OID on page 206 illustrate this. Because the container needs a
transaction context to drive the ejbLoad and ejbStore methods on an entity bean
instance, caching of the entity objectÕs state in the instance variable works reliably
only if the entity bean methods execute in a transaction context.

The ejbLoad and ejbStore methods must be used with great caution for entity
beans with methods that do not execute with a deÞned transaction context. (These
would be entity beans with methods that use the transaction attributes NotSup-
ported, Never, and Supports.) If the business methods can execute without a
deÞned transaction context, the instance should cache only the state of immutable
entity objects. For these entity beans, an instance can use the ejbLoad method to
cache the entity objectÕs state, but the ejbStore method should always be a noop.

Caching State with CMP

Caching of an entity objectÕs state works differently with CMP. An entity bean with
CMP typically does not manage the caching of the entity objectÕs state. Instead, the
entity bean relies on the container. The container performs suitable cache manage-
ment when it maps the CMP and CMR Þelds to the data items comprising the state
representation in the resource manager.

Essentially, the EJB container makes it appear that the entity objectÕs state and
relationships load into the CMP and CMR Þelds at the beginning of a transaction
and that changes to values of the CMP and CMR Þelds automatically propagate to
the entity objectÕs state in the resource manager at the end of the transaction. The
business methods simply access the CMP and CMR Þelds as if the entity objectÕs
state were maintained directly by the class rather than in the resource manager.

matena7.fm Page 224 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 225

The container performs the loading and saving of the state transparently to the
entity beanÕs code. The container decides the following, typically using informa-
tion provided by the deployer:

¥ The parts of the state that it ÒeagerlyÓ loads at the beginning of a transactionÑ
just before the container invokes the ejbLoad call on the instance

¥ The parts of the state that it ÒlazilyÓ reads from the resource manager, accord-
ing to when the business methods need these parts

The container propagates the updates made to the container-managed state to
the resource manager immediately after invoking the ejbStore method (Figure
7.21).

1. The client starts a transaction by invoking the begin method. This initiates the
appropriate actions from the transaction manager to create a new transaction.

2. The client, working within the transaction context, invokes the getBalance
business method on the Account component interface.

3. Before any business methods execute, AccountObject reads the entity object
state for the resource manager. Recall that the container tools generated the Ac-
countObject class.

4. AccountObject invokes the ejbLoad method on the AccountBean instance.

5. AccountObject then invokes the corresponding getBalance method on the Ac-
countBean instance.

6. The client does the first invocation of the debit method on the Account remote
interface.

7. AccountObject invokes the debit method on the AccountBean instance.

8. The client does the second invocation of the debit method on the Account re-
mote interface.

9. AccountObject invokes the debit method on the AccountBean instance.

10. The work of the transaction completes, and the client invokes the commit meth-
od on the transaction manager.

11. The transaction manager invokes the beforeCompletion method to signal the
containerÑvia the Synchronization interfaceÑthat the transaction is starting
its commit process.

matena7.fm Page 225 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS226

Figure 7.21 Caching with CMP Entity Beans

12. The container invokes the ejbStore method on the AccountBean instance.

13. The container updates the representation of the account state in the resource

Client :AccountObject

TransactionManager:AccountBean

:Synchronization ResourceManager

2: getBalance

1: begin

5: getBalance

8: debit

6: debit
7: debit

12: ejbStore

14: commit

4: ejbLoad

3: Read account record

9: debit

10: commit

11: beforeCompletion

13: Update account record

matena7.fm Page 226 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 227

manager with the extracted values from the CMP fields.

14. The transaction manager invokes the commit method on the resource manager
to save all state changes and to end the transaction.

As noted at the start of this section, an entity bean with CMP typically does
not use ejbLoad and ejbStore to manage caching of state. (This means that the
method implementations in the entity bean class are left empty.)

When and how would an entity bean with CMP use the ejbLoad and ejbStore
methods? An entity bean with CMP could use the ejbLoad method to compute
values derived from the CMP and CMR Þelds. It would then use the ejbStore
method to update the CMP and CMR Þelds with the updated derived values. The
entity beanÕs business methods could then directly use the derived values. In
effect, the bean instance would be caching an alternate representation of the per-
sistent state.

Code Example 7.11 illustrates using ejbLoad and ejbStore in CMP entity
beans:

public abstract class AccountBean implements EntityBean {

 // container-managed fields

public abstract String getAccountNumber(); // accountNumber

 public abstract void setAccountNumber(String v);

 public abstract double getBalance(); // balance in native

// currency

 public abstract void setBalance(double v);

 // fields containing values derived from CMP fields

 double balanceInEuros;

 ...

 public double getBalance() {

 return balanceInEuros;

 }

 public void debit(double amountInEuros) {

 balanceInEuros = balanceInEuros - amountInEuros;

 }

 public void credit(double amountInEuros) {

matena7.fm Page 227 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS228

 balanceInEuros = balanceInEuros + amountInEuros;

 }

 public void ejbLoad() {

 balanceInEuros = balance * conversionFactor;

 }

 public ejbStore() {

 setBalance(balanceInEuros / conversionFactor);

 }

 }

}

Code Example 7.11 Using ejbLoad and ejbStore in CMP Entity Beans

AccountBean in Code Example 7.11 is designed for new applications that use
the euro as the common currency for all currency calculations. Therefore, the
methods of the Account component interface expect currency amounts in euros.
However, the legacy account information stored in the resource manager uses the
countryÕs native currency. The CMP AccountBean implements the ejbLoad and
ejbStore methods to perform the conversions from the native currency to euros,
and vice versa.

7.2.5 Designing the Entity Bean Component Interface

The entity bean developer is responsible for the design of the beanÕs component
interface. The entity bean developer needs to consider carefully how the beanÕs
clients might use the methods of the component interface.

Generally, itÕs best to implement an entity bean with a local client view. A
local client view ensures that the entity bean performs maximally and gives the
bean developer the greatest latitude in designing its accessor methods. Because an
entity bean with a local client view does not have the remote method invocation
performance overhead, the bean developer can include individual accessor
methods for each persistent attribute, regardless of the number of attributes.

If the application requires a remote view, the bean developer can use a session
bean with a remote client view as a facade to entity beans with local views. This
approach allows the entity bean to have the advantages of a local client view while

matena7.fm Page 228 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 229

at the same time exposing its functionality to remote clients. An entity bean can
also be implemented with both a local and a remote client view.

Entity Beans with Remote and Local Client Views

A bean developer can implement an entity bean with both a local and a remote client
view. Often, such a dual-purpose entity bean has one or more entity beans with local
interfaces behind it. The remote entity bean interface provides a coarse-grained view
of the persistent data modeled by the network of entity beans related through their
local interfaces.

Clients may directly access the entity beanÕs remote client view. Or, the bean
developer may implement a session bean with a remote interface as a facade to the
entity bean with both the local and the remote view. A client may access an entity
bean method exposed through both the beanÕs local and remote interfaces. If this
occurs, the method is called with pass-by-reference semantics in the local caseÑ
when the client is located on the same JVM as the entity beanÑand with pass-by-
value semantics in the remote case. To avoid unintended side effects, the bean
developer should keep the parameter-passing semantic differences in mind when
writing the method.

Session Bean As Facade to an Entity Bean

A bean developer can implement a session bean with a remote client view and have
that session bean serve as a facade to entity beans with local views. Clients use the
methods of the remote session bean, which in turn accesses the functionality of the
local entity beans. The session bean implements a remote view, making the func-
tionality of the local entity beans available to its remote clients and thus freeing its
clients from being restricted to the same Java virtual machine as the session bean.

By using session beans in this way, developers can manage the interaction of
clients with various entity beans. In addition, the client is exposed to a single
interface, which serves as a central entry point to multiple entity beans. The client
interacts exclusively with the session bean and may not even be aware of the
underlying entity beans in the system. This approach is useful when an application
relies on multiple entity beans, as when these beans model complex business data.
For particularly complex applications, the bean developer can deÞne different
session beans to serve as facades to different functional areas of the application.
Generally, however, the developer should not have a session facade for each entity
bean, because such an approach is not an efÞcient use of server resources.

matena7.fm Page 229 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS230

Designing Accessor Methods for Entity Beans with Remote Views

Entity beans should be designed with local views, but some situations require entity
beans to use a remote client view. For these situations, we describe three different
approaches to the design of the entity beanÕs remote interface, and discuss the trade-
offs with each approach.

Accessor Methods for Individual Attributes

The entity bean developer can choose to deÞne the remote interface methods to
promote individual access to each persistent attribute. With this style, the entity bean
developer deÞnes separate accessor methods in the remote interface for each indi-
vidual attribute, as shown in Code Example 7.12:

public interface Selection extends EJBObject {

 Employee getEmployee() throws RemoteException;

 int getCoverage() throws RemoteException;

 Plan getMedicalPlan() throws RemoteException;

 Plan getDentalPlan() throws RemoteException;

 boolean getSmokerStatus() throws RemoteException;

 void setEmployee(Employee v) throws RemoteException;

 void setCoverage(int v) throws RemoteException;

 void setMedicalPlan(Plan v) throws RemoteException;

 void setDentalPlan(Plan v) throws RemoteException;

 void setSmokerStatus(boolean v) throws RemoteException;

}

Code Example 7.12 Accessor Methods for Individual Attributes

This style may be useful when the entity bean may have many attributes and
most clients need access to only a few attributes but the set of attributes used by
each client is not known beforehand. The client retrieves only the attributes
needed. However, there are drawbacks to this style:

¥ Each client invocation of an accessor method results in a network call, reduc-
ing the performance of the application.

¥ If several attributes need to be updated in a transaction, the client must use cli-
ent-side transaction demarcation to make the invocation of the individual set

matena7.fm Page 230 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 231

methods atomic. The transaction is also open across several network calls, fur-
ther reducing overall performance by increasing lock contention on the under-
lying data and by adding the overhead of additional network trips for the
transaction demarcation.

Unless the application requires the use of individual access methods, we recom-
mend that the bean developer use one of the two other styles described next for the
design of an entity beanÕs remote interface.

Accessing All Attributes in One Value Object

As an alternative to accessing attributes individually, the developer can deÞne the
remote interface methods to access all attributes in one call. This is a good approach
when client applications typically need to access most or all of the attributes of the
entity bean. The client makes one method call, which transfers all individual
attributes in a single value object.

Accessing Separate Value Objects

In some cases, the developer may choose to apportion the individual attributes into
subsetsÑthe subsets can overlapÑand then deÞne methods that access each subset.
This design approach is particularly useful when the entity bean has a large number
of individual attributes but the typical client programs need to access only small
subsets of these attributes. The entity bean developer deÞnes multiple value objects,
one for each subset of attributes. Each value object meets the needs of a client use
case; each value object contains the attributes required by a clientÕs use of that entity
bean.

DeÞning the appropriate value objects and suitable business methods for the
individual use case has two beneÞts. First, because the business method typically
suggests the intended use case, it makes it easier for the client programmer to
learn how to use the entity bean. Second, it optimizes the network trafÞc because
the client is sent only the data that it needs, and the data is transferred in a single
call. The BankAccount remote interface in Code Example 7.13 illustrates this
style:

public interface BankAccount extends EJBObject {

 // Use case one

 Address getAddress()

 throws RemoteException, BankAccountException;

matena7.fm Page 231 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS232

 void updateAddress(Address changedAddress)

 throws RemoteException, BankAccountException;

 // Use case two

 Summary getSummary()

 throws RemoteException, BankAccountException;

 // Use case three

 Collection getTransactionHistory(Date start, Date end)

 throws RemoteException, BankAccountException;

 void modifyTransaction(Transaction tran)

throws RemoteException, BankAccountException;

 // Use case four

 void credit(double amount)

 throws RemoteException;

 void debit(double amount)

 throws RemoteException, InsufficientFundsException;

}

Code Example 7.13 Using Multiple Value Objects

The developer of this entity bean recognized three different client use cases
for the bean, for which the bean deÞnes the following value objects:

¥ One type of client uses the bean to obtain and update the address information.

¥ Another client type uses the entity bean for account summary information.

¥ A third client type uses the entity bean to view and possibly edit transaction
history.

The design of the entity bean reßects this usage, deÞning the value objects
Address, Summary, and Transaction for the three different client use cases. The
developer has tailored the BankAccount remote methods for the three client use
cases.

A fourth client type uses the entity bean to perform debit and credit transac-
tions on the account. The fourth use case does not deÞne any value objects.

matena7.fm Page 232 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 233

7.2.6 Concurrent Invocation of an Entity Object

Recall that an entity object differs from a session object in terms of its client invoca-
tion. Only a single client can use a session object, and the client must ensure that it
invokes the methods on the object serially. In contrast, multiple clients can concur-
rently invoke an entity object. However, each client must invoke the methods of the
entity object serially.

Although the entity object appears as a shared object that the clients can
invoke concurrently, the bean developer does not have to design the entity bean
class to be multithreading safe. The EJB container synchronizes multiple threadsÕ
access to the entity object. The bean developer depends on the EJB container for
appropriate synchronization to an entity object when multiple clients concurrently
access the object.

This section explains how the EJB container dispatches methods invoked by
multiple clients through the entity objectÕs component interface to the entity bean
instances so that the potentially concurrent execution of multiple client requests
does not lead to the loss of the entity objectÕs state integrity. If you are an
advanced EJB developer interested in tuning your application server, you might
Þnd this section useful.

An EJB container may use one of two typical implementation strategies to
synchronize concurrent access from multiple clients to an entity object. It is
important to note that, from the bean developerÕs perspective, it makes no differ-
ence which strategy the container uses. The bean developer implements the same
code for the entity object, regardless of the container synchronization strategy.

One implementation strategy essentially delegates the synchronization of
multiple clients to the resource manager. It works as follows:

1. When a client-invoked method call reaches the container, the container first
determines the target transaction context in which to invoke the business meth-
od. Chapter 10, Understanding Transactions, describes the rules for determin-
ing the transaction context for the invoked business method (see Section 10.1,
Declarative Transaction Demarcation, on page 325).

2. The container attempts to locate an entity object instance that is in the ready
state and already associated with the target entity object identity and the target
transaction context. If such an instance exists, the container dispatches the
business method on the instance.

3. If bean instances in the ready state are associated with the target entity object
identity but none are in the target transaction context, the container can take an

matena7.fm Page 233 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS234

instance not currently associated with a transaction context, invoke the ejb-
Load method on the instance, and then dispatch the business method on it. The
instance stays associated with the transaction context until the end of the trans-
action. Ending the transaction causes the container to invoke ejbStore on the
instance; note that ejbStore executes in the transaction context.

4. If no bean instances in the ready state are suitable for dispatching the business
method, the container activates an instance in the pooled state by invoking the
ejbActivate and ejbLoad methods and then dispatches the business method on
the instance. The instance remains associated with the transaction context, as
described in the previous step.

Note that when it uses this implementation strategy, the container may con-
currently dispatch multiple invocations to the same entity object by using a differ-
ent instance of the entity bean class for each invocation (see Figure 7.22). In
Figure 7.22, the two Account 100 instances are associated with the same Account
100 entity object, but each instance is in a different transaction context. Because
the transaction context is associated with an instanceÕs access to the resource man-
ager, the resource manager performs the synchronization of the updates from the
multiple bean instances to the entity objectÕs state based on the transaction con-
text. An EJB container using this implementation strategy uses commit option B
or C described in the section Commit Options on page 217.

The second implementation strategy places a greater burden for the synchro-
nization of client calls on the container. With this strategy, the EJB container
acquires exclusive access to the entity objectÕs state in the database. The container
activates a single instance and serializes the access from multiple transactions to
this instance (see Figure 7.23). The container can use any of the commit options
A, B, or C if it uses this single-instance strategy.

Figure 7.22 Multiple Clients Using Multiple Instances to Access an Entity Object

Enterprise Bean Instances

Account 100
in TX 1

Client 1

Account 100
in TX 2

Entity Object
Account 100

Client 2
TX 2

TX 1

Container

Account
100

matena7.fm Page 234 Tuesday, January 7, 2003 4:30 PM

BEAN DEVELOPER VIEW OF AN ENTITY BEAN 235

Figure 7.23 Multiple Clients Using Single Instance to Access an Entity Object

7.2.7 Using Entity Beans with Preexisting Data

It is important to understand that the representation of an entity object in the
resource manager may preexist the deployment of an entity bean. For example, a
bank might have been using non-object-based applications that stored account
records in a database system. The bank then later developed or purchased an EJB
application that included the AccountEJB entity bean, which provided the object-
oriented EJB client view of the same account database records (see Figure 7.24).

The new EJB application seamlessly coexists with the legacy non-object-
based application, as follows:

¥ An account record created by a legacy application is visible to the EJB appli-
cation as an Account object. From the perspective of the EJB application, an
Account object exists even if a create method of the entity bean home interface
did not create it.

¥ Similarly, if the EJB application creates a new Account object, the legacy ap-
plication can access the state of the entity object because it is a record in the
database.

¥ If the EJB application changes the Account object by invoking methods of the
Account remote interface, these changes are visible to a legacy application as
changes to the account record in the database.

Enterprise Bean Instance

Account 100
in TX 1

Client 1

Entity Object
Account 100

Client 2
TX 2

TX 1

Container

Container blocks Client 2
until Client 1 Þnishes

Account
100

matena7.fm Page 235 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS236

Figure 7.24 Access to Preexisting Data Shared with Legacy Applications

¥ Similarly, if the legacy application changes the account record in the database,
the changes are visible to the EJB application as changes to the state of the Ac-
count object.

¥ If the legacy application deletes an account record from the database, the EJB
application is no longer able to access the corresponding Account object.

¥ If the EJB application removes an Account object, the object-removal opera-
tion causes the deletion of the corresponding account record from the database.
The legacy application is no longer able to access the record.

¥ The resource managerÕsÑdatabase systemÑtransaction mechanism allows
the EJB application to be used concurrently with the legacy application.

7.3 Timer Service

The EJB timer service is a new feature added to the EJB architecture in the EJB 2.1
speciÞcation. This feature can be used with both BMP and CMP entity beans, as
well as with stateless session beans and message-driven beans. In Section 8.2, Parts
Developed by Wombat, on page 249, we provide an example that illustrates use of
the timer service with entity beans.

Client

Database

EJB Container

AccountEJB

Legacy
Applications

Account
100

matena7.fm Page 236 Tuesday, January 7, 2003 4:30 PM

TIMER SERVICE 237

Business applications generally need a way to perform actions at speciÞc
timesÑfor example, preparing a summary report of each dayÕs transactions at the
end of every business dayÑor after a certain interval of timeÑfor example, if an
acknowledgment for a business operation is not received in a certain time frame,
alert an administrator. The EJB timer service can be used to provide such notiÞca-
tions to enterprise beans at a speciÞc time or after speciÞc time intervals. NotiÞca-
tions can be provided either once or on a recurring basis after a speciÞed interval.

The EJB timer service is intended to be used for coarse-grainedÑhours, days,
or longerÑnotiÞcations that are usually needed for business processes. It is not
designed to be accurate for Þne-grainedÑmilliseconds, secondsÑtime periods or
for any kind of real-time processing.

7.3.1 Timer Interfaces

To set up a timer notiÞcation, an enterprise bean uses the EJB containerÕs timer
service to create a Timer object. The timer service is accessed using the EJBCon-
text.getTimerService method. Code Example 7.14 shows the timer-related inter-
faces TimerService, Timer, TimerHandle, and TimedObject:

public interface TimerService {

public Timer createTimer(long duration, Serializable info)

throws java.lang.IllegalArgumentException,

java.lang.IllegalStateException, javax.ejb.EJBException;

public Timer createTimer(long initialDuration,

long intervalDuration, Serializable info) throws

java.lang.IllegalArgumentException,

java.lang.IllegalStateException, javax.ejb.EJBException;

public Timer createTimer(Date expiration, Serializable info)

throws java.lang.IllegalArgumentException,

java.lang.IllegalStateException, javax.ejb.EJBException;

public Timer createTimer(Date initialExpiration,

long intervalDuration, Serializable info) throws

java.lang.IllegalArgumentException,

java.lang.IllegalStateException, javax.ejb.EJBException;

matena7.fm Page 237 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS238

public Collection getTimers() throws

java.lang.IllegalStateException, javax.ejb.EJBException;

}

public interface Timer {

public void cancel() throws java.lang.IllegalStateException,

javax.ejb.NoSuchObjectLocalException,

javax.ejb.EJBException;

public long getTimeRemaining() throws

java.lang.IllegalStateException,

javax.ejb.NoSuchObjectLocalException,

javax.ejb.EJBException;

public Date getNextTimeout() throws

java.lang.IllegalStateException,

javax.ejb.NoSuchObjectLocalException,

javax.ejb.EJBException;

public Serializable getInfo() throws

java.lang.IllegalStateException,

javax.ejb.NoSuchObjectLocalException,

javax.ejb.EJBException;

public TimerHandle getHandle() throws

java.lang.IllegalStateException,

javax.ejb.NoSuchObjectLocalException,

javax.ejb.EJBException;

}

public interface TimerHandle extends Serializable {

public Timer getTimer() throws java.lang.IllegalStateException,

javax.ejb.NoSuchObjectLocalException,

javax.ejb.EJBException;

}

public interface TimedObject {

matena7.fm Page 238 Tuesday, January 7, 2003 4:30 PM

TIMER SERVICE 239

public void ejbTimeout(Timer timer);

}

Code Example 7.14 Timer Interfaces

EJB application code uses the createTimer methods of TimerService to
create Timer objects. There are four such methods:

¥ Two methods create timers that expire after a specified duration. This can be a
one-time timer or a recurring timer with a specified interval between notifica-
tions.

¥ Two methods create timers that expire at a specified time. This, too, can be a
one-time timer or a recurring timer.

A bean can create multiple timer objects. The bean can associate an information
object with each timer object to help the bean differentiate between multiple timer
objects.

When a timer expires, the container sends a notiÞcation to the bean that
created the timer, by calling the timerÕs ejbTimeout method and providing the
timer as an argument. This requires that all beans that create timers must imple-
ment the TimedObject interface.

Timer objects implement the Timer interface; which provides methods to
cancelÑdeleteÑthe timer; get the time remaining before the timer expires; get
the time when the timer will expire; get the information object associated with the
timer; and get the timerÕs TimerHandle object. A bean can get a reference to a
Timer object in one of three ways:

1. As a return value of the createTimer methods on the TimerService interface

2. As the parameter of the ejbTimeout method implemented by the bean class

3. From the TimerHandle object for a previously created timer

The TimerHandle object provides a serializable handle to a Timer object. A
bean can store this handle in a database or other persistent storage and later
retrieve it. Entity beans using container-managed persistence may store the Timer-
Handle object in a CMP Þeld.

matena7.fm Page 239 Tuesday, January 7, 2003 4:30 PM

CHAPTER 7 UNDERSTANDING ENTITY BEANS240

7.3.2 Timers, Persistence, and Transactions

Timer objects are persistent objects managed by the container. This means that a
timer object survives crashes of the container or process in which the enterprise
bean created the timer. Typically, a container implementation would store timer
objects in a database or other persistent storage, so the timerÕs notiÞcations could be
delivered and so the timer object could be accessed even after a container restart.

For entity beans, a timer object is associated with the bean instanceÑidenti-
Þed by a primary keyÑthat created the timer. Thus, when a container process
restarts after a crash, the container Þrst activates an instance of that entity bean
with the primary key and then, if there are any outstanding expired timer notiÞca-
tions for the bean, delivers these timer notiÞcations to the bean by calling its ejb-
Timeout method. If an entity bean instance is removed, all timers associated with
that bean instance are also removed.

Because there is no identity associated with instances of stateless session
beans and message-driven beans, to deliver the timer notiÞcation, the container
uses any bean instance of the same type as the stateless session or message-driven
bean that created the timer.

Timer objects are also transactional objects. This means that timer creation,
removal, and expiration typically happen within the context of a transaction. If
that transaction rolls back, the timer operation is also rolled back. This results in
the following semantics of timers and transactions:

¥ If a timer is created within a transaction and the transaction rolls back, the timer
creation is rolled backÑas if the timer were never created.

¥ If a previously created timer is deleted in a transaction and the transaction rolls
back, the timer deletion is rolled backÑas if the timer were never deleted.
Timer notifications continue to be delivered.

¥ If a beanÕs ejbTimeout method has the transaction attribute RequiresNew, the
container starts a transaction before delivering a timer notification. If that new
transaction rolls back, the timer notification is also rolled back, and the con-
tainer will redeliver the timer notification. Note that the ejbTimeout methodÕs
transaction attribute is restricted to either RequiresNew or NotSupported.

matena7.fm Page 240 Tuesday, January 7, 2003 4:30 PM

CONCLUSION 241

7.4 Conclusion

This chapter presented the fundamental concepts of entity beans. In particular, it
described the two views of entity beans: the client viewÑboth remote and local
viewsÑand the bean developer view. The chapter described the techniques for man-
aging the persistent state of entity beans: container-managed persistence and the
EJB QL language, and bean-managed persistence. The chapter also described how
the container manages the life cycle of an entity bean instance and how the bean
developer can make optimal use of the containerÕs management of object state and
persistence. Finally, it described the EJB timer service and how to use it with entity
beans.

The next chapter presents the same BeneÞts Enrollment example that was
used earlier to illustrate session beans but this time is used as an application that
uses entity beans. The example application illustrates all the concepts discussed in
this chapter with Òreal-worldÓ code. The application illustrates many of the tech-
niques for using entity beans to develop and integrate applications for different
customers with different environments.

matena7.fm Page 241 Tuesday, January 7, 2003 4:30 PM

matena7.fm Page 242 Tuesday, January 7, 2003 4:30 PM

