—¢l@

re

%

é J2eeTutorial.book Page 47 Tuesday, March 5, 2002 11:06 AM

3

Enterprise Beans

Dale Green

ENTERPRISB:Jeans are the J2EE components that implement Enterprise Java-
Beans (EJB) technology. Enterprise beans run in the EJB container, a runtime
environment within the J2EE server (see Figure 1-5, page 10). Although trans-
parent to the application developer, the EJB container provides system-level ser-

vices such as transactions to its enterprise beans. These services enable you to

quickly build and deploy enterprise beans, which form the core of transactional
J2EE applications.

In This Chapter

What Is an Enterprise Bean? 48
Benefits of Enterprise Beans 48
When to Use Enterprise Beans 49
Types of Enterprise Beans 49
What Is a Session Bean? 49
State Management Modes 50
When to Use Session Beans 51
What Is an Entity Bean? 51
What Makes Entity Beans Different from Session Beans? 52
Container-Managed Persistence 53
When to Use Entity Beans 56
What Is a Message-Driven Bean? 56
What Makes Message-Driven Beans Different from Session and Entity
Beans? 57
When to Use Message-Driven Beans 57

%

47

¢ @

—®

ﬁ

*%



—¢l@

re

é J2eeTutorial.book Page 48 Tuesday, March 5, 2002 11:06 AM

i

48

ENTERPRISE BEANS

Defining Client Access with Interfaces 58
Remote Access 58
Local Access 59
Local Interfaces and Container-Managed Relationships 59
Deciding on Remote or Local Access 60
Performance and Access 61
Method Parameters and Access 61

The Contents of an Enterprise Bean 62

Naming Conventions for Enterprise Beans 62

The Life Cycles of Enterprise Beans 63
The Life Cycle of a Stateful Session Bean 63
The Life Cycle of a Stateless Session Bean 64
The Life Cycle of an Entity Bean 65
The Life Cycle of a Message-Driven Bean 67

What Is an Enterprise Bean?

Written in the Java programming language,eaerprise beairis a server-side
component that encapsulates the business logic of an application. The business
logic is the code that fulfills the purpose of the application. In an inventory con-
trol application, for example, the enterprise beans might implement the business
logic in methods calledheckInventorylLevel andorderProduct. By invoking

these methods, remote clients can access the inventory services provided by the
application.

Benefits of Enterprise Beans

For several reasons, enterprise beans simplify the development of large, distrib-
uted applications. First, because the EJB container provides system-level ser-
vices to enterprise beans, the bean developer can concentrate on solving business
problems. The EJB container—not the bean developer—is responsible for sys-
tem-level services such as transaction management and security authorization.

Second, because the beans—and not the clients—contain the application’s busi-
ness logic, the client developer can focus on the presentation of the client. The
client developer does not have to code the routines that implement business rules
or access databases. As a result, the clients are thinner, a benefit that is particu-
larly important for clients that run on small devices.

Third, because enterprise beans are portable components, the application assem-
bler can build new applications from existing beans. These applications can run
on any compliant J2EE server.

4= 4

¢ @

—®

*%



—¢l@

re

é J2eeTutorial.book Page 49 Tuesday, March 5, 2002 11:06 AM

i

WHAT IS A SESSIONBEAN?

When to Use Enterprise Beans
You should consider using enterprise beans if your application has any of the fol-

lowing requirements:

49

* The application must be scalable. To accommodate a growing number of
users, you may need to distribute an application’s components across mul-
tiple machines. Not only can the enterprise beans of an application run on
different machines, but their location will remain transparent to the clients.

« Transactions are required to ensure data integrity. Enterprise beans sup-
port transactions, the mechanisms that manage the concurrent access of

shared objects.

» The application will have a variety of clients. With just a few lines of code,
remote clients can easily locate enterprise beans. These clients can be thin,
various, and numerous.

Types of Enterprise Beans

Table 3—-1 summarizes the three different types of enterprise beans. The follow-
ing sections discuss each type in more detail.

Table 3—1 Summary of Enterprise Bean Types

Enterprise Bean Type

Purpose

Session

Performs a task for a client

Entity

Represents a business entity object that exists in persistent sforage

Message-Driven

Acts as a listener for the Java Message Service API, procesging

messages asynchronously

What Is a Session Bean?

A session beamepresents a single client inside the J2EE server. To access an
application that is deployed on the server, the client invokes the session bean’s
methods. The session bean performs work for its client, shielding the client from

complexity by executing business tasks inside the server.

As its name suggests, a session bean is similar to an interactive session. A ses-
sion bean is not shared—it may have just one client, in the same way that an

%

¢ @

-t

—®

*%



—¢l@

re

é J2eeTutorial.book Page 50 Tuesday, March 5, 2002 11:06 AM

i

50

ENTERPRISE BEANS

interactive session may have just one user. Like an interactive session, a session
bean is not persistent. (That is, its data is not saved to a database.) When the cli-

ent terminates, its session bean appears to terminate and is no longer associated
with the client.

For code samples, see Chapter 4.

State Management Modes
There are two types of session beans: stateful and stateless.

Stateful Session Beans

The state of an object consists of the values of its instance variables. In a stateful
session bean, the instance variables represent the state of a unique client-bean
session. Because the client interacts (“talks”) with its bean, this state is often
called theconversational state

The state is retained for the duration of the client-bean session. If the client
removes the bean or terminates, the session ends and the state disappears. This
transient nature of the state is not a problem, however, because when the conver-
sation between the client and the bean ends there is no need to retain the state.

Stateless Session Beans

A stateless session bean does not maintain a conversational state for a particular
client. When a client invokes the method of a stateless bean, the bean’s instance
variables may contain a state, but only for the duration of the invocation. When
the method is finished, the state is no longer retained. Except during method
invocation, all instances of a stateless bean are equivalent, allowing the EJB con-
tainer to assign an instance to any client.

Because stateless session beans can support multiple clients, they can offer better
scalability for applications that require large numbers of clients. Typically, an
application requires fewer stateless session beans than stateful session beans to
support the same number of clients.

At times, the EJB container may write a stateful session bean to secondary stor-
age. However, stateless session beans are never written to secondary storage.
Therefore, stateless beans may offer better performance than stateful beans.

¢ @

—®

*%



—¢l@

re

é J2eeTutorial.book Page 51 Tuesday, March 5, 2002 11:06 AM

i

WHAT |S AN ENTITY BEAN? 51

When to Use Session Beans
In general, you should use a session bean if the following circumstances hold:

» At any given time, only one client has access to the bean instance.

« The state of the bean is not persistent, existing only for a short period of
time (perhaps a few hours).

Stateful session beans are appropriate if any of the following conditions are true:

» The bean'’s state represents the interaction between the bean and a specific
client.

+ The bean needs to hold information about the client across method invo-
cations.

* The bean mediates between the client and the other components of the
application, presenting a simplified view to the client.

» Behind the scenes, the bean manages the work flow of several enterprise
beans. For an example, see thweountControllerE]B session bean in
Chapter 18.

To improve performance, you might choose a stateless session bean if it has any
of these traits:

* The bean’s state has no data for a specific client.

« In asingle method invocation, the bean performs a generic task for all cli-

ents. For example, you might use a stateless session bean to send an e-mail
that confirms an online order.

» The bean fetches from a database a set of read-only data that is often used
by clients. Such a bean, for example, could retrieve the table rows that rep-
resent the products that are on sale this month.

What Is an Entity Bean?

An entity beanrepresents a business object in a persistent storage mechanism.

Some examples of business objects are customers, orders, and products. In the
J2EE SDK, the persistent storage mechanism is a relational database. Typically,

each entity bean has an underlying table in a relational database, and each

instance of the bean corresponds to a row in that table. For code examples of

entity beans, please refer to chapters 5 and 6.

¢ @

-t

—®

*%



—¢l@

re

é J2eeTutorial.book Page 52 Tuesday, March 5, 2002 11:06 AM

i

52

ENTERPRISE BEANS

What Makes Entity Beans Different from Session
Beans?

Entity beans differ from session beans in several ways. Entity beans are persis-
tent, allow shared access, have primary keys, and may participate in relation-
ships with other entity beans.

Persistence

Because the state of an entity bean is saved in a storage mechanism, it is persis-
tent. Persistencaneans that the entity bean’s state exists beyond the lifetime of
the application or the J2EE server process. If you've worked with databases,
you're familiar with persistent data. The data in a database is persistent because
it still exists even after you shut down the database server or the applications it
services.

There are two types of persistence for entity beans: bean-managed and con-
tainer-managed. Witbean-managed persistendbe entity bean code that you

write contains the calls that access the database. If your bean has container-man-
aged persistence, the EJB container automatically generates the necessary data-
base access calls. The code that you write for the entity bean does not include
these calls. For additional information, see the section Container-Managed
Persistence (page 53).

Shared Access

Entity beans may be shared by multiple clients. Because the clients might want
to change the same data, it's important that entity beans work within transac-

tions. Typically, the EJB container provides transaction management. In this

case, you specify the transaction attributes in the bean’s deployment descriptor.
You do not have to code the transaction boundaries in the bean—the container
marks the boundaries for you. See Chapter 14 for more information.

Primary Key

Each entity bean has a unique object identifier. A customer entity bean, for
example, might be identified by a customer number. The unique identifien-or
mary keyenables the client to locate a particular entity bean. For more informa-
tion see the section Primary Keys for Bean-Managed Persistence (page 113).

¢ @

—®

*%



—¢l@

re

é J2eeTutorial.book Page 53 Tuesday, March 5, 2002 11:06 AM

i

WHAT |S AN ENTITY BEAN? 53

Relationships

Like a table in a relational database, an entity bean may be related to other entity
beans. For example, in a college enroliment applicaaadentEJB andCour-
seEJB would be related because students enroll in classes.

You implement relationships differently for entity beans with bean-managed per-
sistence and those with container-managed persistence. With bean-managed per-
sistence, the code that you write implements the relationships. But with
container-managed persistence, the EJB container takes care of the relationships
for you. For this reason, relationships in entity beans with container-managed
persistence are often referred tacantainer-managed relationships

Container-Managed Persistence

The termcontainer-managed persistenogans that the EJB container handles

all database access required by the entity bean. The bean’s code contains no
database access (SQL) calls. As a result, the bean’s code is not tied to a specific
persistent storage mechanism (database). Because of this flexibility, even if you
redeploy the same entity bean on different J2EE servers that use different data-
bases, you won't need to modify or recompile the bean’s code. In short, your
entity beans are more portable.

In order to generate the data access calls, the container needs information that
you provide in the entity bean’s abstract schema.

Abstract Schema

Part of an entity bean’s deployment descriptor, dbstract schemalefines the
bean’s persistent fields and relationships. The tabstractdistinguishes this
schema from the physical schema of the underlying data store. In a relational
database, for example, the physical schema is made up of structures such as
tables and columns.

You specify the name of an abstract schema in the deployment descriptor. This
name is referenced by queries written in the Enterprise JavaBeans Query Lan-
guage (“EJB QL"). For an entity bean with container-managed persistence, you
must define an EJB QL query for every finder method (exd¢eptiByPrima-
ryKey). The EJB QL query determines the query that is executed by the EJB
container when the finder method is invoked. To learn more about EJB QL, see
Chapter 8.

¢ @

-t

—®

*%



—¢l@

re

é J2eeTutorial.book Page 54 Tuesday, March 5, 2002 11:06 AM

i

54

ENTERPRISE BEANS

You'll probably find it helpful to sketch the abstract schema before writing any
code. Figure 3-1 represents a simple abstract schema that describes the
relationships between three entity beans. These relationships are discussed
further in the sections that follow.

ustomerEJB

-
ProductEJB

Figure 3—1 A High-Level View of an Abstract Schema

Persistent Fields

The persistent fields of an entity bean are stored in the underlying data store.
Collectively, these fields constitute the state of the bean. At runtime, the EJB

container automatically synchronizes this state with the database. During

deployment, the container typically maps the entity bean to a database table and
maps the persistent fields to the table’s columns.

A CustomerEJB entity bean, for example, might have persistent fields such as
firstName, TastName, phone, andemailAddress. In container-managed persis-
tence, these fields are virtual. You declare them in the abstract schema, but you
do not code them as instance variables in the entity bean class. Instead, the per-
sistent fields are identified in the code by access methods (getters and setters).

4~ 4

¢ @

—®

%%



—¢l@

re

é J2eeTutorial.book Page 55 Tuesday, March 5, 2002 11:06 AM

i

WHAT |S AN ENTITY BEAN? 55

Relationship Fields

A relationship fieldis like a foreign key in a database table—it identifies a
related bean. Like a persistent field, a relationship field is virtual and is defined
in the enterprise bean class with access methods. But unlike a persistent field, a
relationship field does not represent the bean’s state. Relationship fields are dis-
cussed further in Direction in Container-Managed Relationships (page 55).

Multiplicity in Container-Managed Relationships
There are four types of multiplicities:

One-to-one Each entity bean instance is related to a single instance of another
entity bean. For example, to model a physical warehouse in which each storage
bin contains a single widgettorageBinE]B andwidgetE]B would have a one-
to-one relationship.

One-to-many. An entity bean instance may be related to multiple instances of
the other entity bean. A sales order, for example, can have multiple line items. In
the order applicationgrderEJB would have a one-to-many relationship with
LineItemEJB.

Many-to-one: Multiple instances of an entity bean may be related to a single

instance of the other entity bean. This multiplicity is the opposite of a one-to-
many relationship. In the example mentioned in the previous item, from the per-
spective of_ineItemE]B the relationship tOrderEJ]B is many-to-one.

Many-to-many: The entity bean instances may be related to multiple instances
of each other. For example, in college each course has many students, and every
student may take several courses. Therefore, in an enrollment applicatien,

seEJB andStudentEJB would have a many-to-many relationship.

Direction in Container-Managed Relationships

The direction of a relationship may be either bidirectional or unidirectional. In a
bidirectionalrelationship, each entity bean has a relationship field that refers to
the other bean. Through the relationship field, an entity bean’s code can access
its related object. If an entity bean has a relative field, then we often say that it
“knows” about its related object. For example, dtderEJB knows what
LineItemEJB instances it has and ifineItemEJB knows whatOrderEJB it
belongs to, then they have a bidirectional relationship.

In aunidirectionalrelationship, only one entity bean has a relationship field that
refers to the other. For exampleineItemEJB would have a relationship field
that identifiesProductEJB, but ProductEJB would not have a relationship field

%

¢ @

-t

—®

*%



—¢l@

re

é J2eeTutorial.book Page 56 Tuesday, March 5, 2002 11:06 AM

i

56

ENTERPRISE BEANS

for LineItemEJB. In other wordsLineItemEJB knows aboutProductEJB, but
ProductEJB doesn’t know which.ineItemE]B instances refer to it.

EJB QL queries often navigate across relationships. The direction of a relation-
ship determines whether a query can navigate from one bean to another. For
example, a query can navigate framneItemEJB t0 ProductEJB, but cannot
navigate in the opposite direction. FOrderEJB and LineItemEJB, a query

could navigate in both directions, since these two beans have a bidirectional rela-
tionship.

When to Use Entity Beans
You should probably use an entity bean under the following conditions:

» The bean represents a business entity, not a procedure. For example,
itCardEJB would be an entity bean, bateditCardverifierEJB would
be a session bean.

* The bean’s state must be persistent. If the bean instance terminates or if
the J2EE server is shut down, the bean'’s state still exists in persistent stor-
age (a database).

What Is a Message-Driven Bean?

Note: This section contains text froithe Java Message Service Tutoridecause
message-driven beans rely on Java Message Service (JMS) technology, to fully
understand how these beans work you should consult the tutorial at this URL:

http://java.sun.com/products/jms/tutorial/index.html

A message-driven bedn an enterprise bean that allows J2EE applications to
process messages asynchronously. It acts as a JMS message listener, which is
similar to an event listener except that it receives messages instead of events. The
messages may be sent by any J2EE component—an application client, another
enterprise bean, or a Web component—or by a JMS application or system that
does not use J2EE technology.

Message-driven beans currently process only JMS messages, but in the future
they may be used to process other kinds of messages.

For a code sample, see Chapter 7.

4= 4

¢ @

—®

.



—¢l@

re

é J2eeTutorial.book Page 57 Tuesday, March 5, 2002 11:06 AM

i

WHAT |S AMESSAGEDRIVEN BEAN? 57

What Makes Message-Driven Beans Different from
Session and Entity Beans?

The most visible difference between message-driven beans and session and
entity beans is that clients do not access message-driven beans through inter-
faces. Interfaces are described in the section Defining Client Access with
Interfaces (page 58). Unlike a session or entity bean, a message-driven bean has
only a bean class.

In several respects, a message-driven bean resembles a stateless session bean.

* A message-driven bean’s instances retain no data or conversational state
for a specific client.

« All instances of a message-driven bean are equivalent, allowing the EJB
container to assign a message to any message-driven bean instance. The
container can pool these instances to allow streams of messages to be pro-
cessed concurrently.

» Asingle message-driven bean can process messages from multiple clients.

The instance variables of the message-driven bean instance can contain some
state across the handling of client messages—for example, a JMS API connec-

tion, an open database connection, or an object reference to an enterprise bean
object.

When a message arrives, the container calls the message-driven dhe@s’s

sage method to process the message. dhigessage method normally casts the
message to one of the five JMS message types and handles it in accordance with
the application’s business logic. TlheMessage method may call helper meth-

ods, or it may invoke a session or entity bean to process the information in the
message or to store it in a database.

A message may be delivered to a message-driven bean within a transaction con-
text, so that all operations within thenMessage method are part of a single
transaction. If message processing is rolled back, the message will be redeliv-
ered. For more information, see Chapter 7.

When to Use Message-Driven Beans

Session beans and entity beans allow you to send JMS messages and to receive
them synchronously, but not asynchronously. To avoid tying up server resources,
you may prefer not to use blocking synchronous receives in a server-side compo-
nent. To receive messages asynchronously, use a message-driven bean.

%

¢ @

-t

—®

*%



—¢l@

re

é J2eeTutorial.book Page 58 Tuesday, March 5, 2002 11:06 AM

i

ENTERPRISE BEANS

Defining Client Access with Interfaces

Note: The material in this section applies only to session and entity beans, not to
message-driven beans. Because they have a different programming model, mes-
sage-driven beans do not have interfaces that define client access.

A client may access a session or an entity bean only through the methods defined
in the bean’s interfaces. These interfaces define the client’s view of a bean. All

other aspects of the bean—method implementations, deployment descriptor set-
tings, abstract schemas, and database access calls—are hidden from the client.

Well-designed interfaces simplify the development and maintenance of J2EE
applications. Not only do clean interfaces shield the clients from any complexi-
ties in the EJB tier, but they also allow the beans to change internally without
affecting the clients. For example, even if you change your entity beans from
bean-managed to container-managed persistence, you won't have to alter the cli-
ent code. But if you were to change the method definitions in the interfaces, then
you might have to modify the client code as well. Therefore, to isolate your cli-
ents from possible changes in the beans, it is important that you design the inter-
faces carefully.

When you design a J2EE application, one of the first decisions you make is the
type of client access allowed by the enterprise beans: remote or local.

Remote Access
A remote client of an enterprise bean has the following traits:

e It may run on a different machine and a different Java virtual machine
(JVM) than the enterprise bean it accesses. (It is not required to run on a
different JVM.)

e It can be a Web component, a J2EE application client, or another enter-
prise bean.

» To aremote client, the location of the enterprise bean is transparent.

To create an enterprise bean with remote access, you must code a remote inter-
face and a home interface. Themote interfacedefines the business methods
that are specific to the bean. For example, the remote interface of a bean named
BankAccountEJB might have business methods namiedit andcredit. The

home interfacalefines the bean’s life cycle methodsreate andremove. For

entity beans, the home interface also defines finder methods and home methods.

4= 4

¢ @

—®

*%



—¢l@

é J2eeTutorial.book Page 59 Tuesday, March 5, 2002 11:06 AM

DEFINING CLIENT ACCESS WITHINTERFACES

59

¢ @

—®

re

Finder methods are used to locate entity beans. Home methods are business
methods that are invoked on all instances of an entity bean class. Figure 3-2
shows how the interfaces control the client’s view of an enterprise bean.

Remote Interface

deposit()
credit()

BankAccountEJB

Remote
Client

Home Interface

create()
remove()
findByPrimaryKey()

Figure 3-2 Interfaces for an Enterprise Bean With Remote Access

Local Access
A local client has these characteristics:

e It must run in the same JVM as the enterprise bean it accesses.

* It may be a Web component or another enterprise bean.

« To the local client, the location of the enterprise bean it accesses is not
transparent.

« It is often an entity bean that has a container-managed relationship with
another entity bean.

To build an enterprise bean that allows local access, you must code the local
interface and the local home interface. Tlbeal interfacedefines the bean’s
business methods, and tleeal homeinterface defines its life cycle and finder
methods.

Local Interfaces and Container-Managed
Relationships

If an entity bean is the target of a container-managed relationship, then it must
have local interfaces. The direction of the relationship determines whether or not

- 4~

%%



—¢l@

re

é J2eeTutorial.book Page 60 Tuesday, March 5, 2002 11:06 AM

i

60

ENTERPRISE BEANS

a bean is the target. In Figure 3-1, for exampleoductEIB is the target of a
unidirectional relationship withineItemE]B. Because.ineltemE]B accesses
ProductEJB locally, ProductEJB must have the local interfacelsineItemE]B
also needs local interfaces—not because of its relationshipPwiitiuctEJB—
but because it is the target of a relationship wittiereJB. And because the
relationship betweemnineItemEJB andOrderE]B is bidirectional, both beans
must have local interfaces.

Because they require local access, entity beans that participate in a container-
managed relationship must reside in the same EJB JAR file. The primary benefit
of this locality is increased performance—Ilocal calls are usually faster than
remote calls.

Deciding on Remote or Local Access

The decision regarding whether to allow local or remote access depends on the
following factors.

Container-managed relationships If an entity bean is the target of a container-
managed relationship, it must use local access.

Tight or loose coupling of related beansTightly coupled beans depend on one
another. For example, a completed sales order must have one or more line items,
which cannot exist without the order to which they belong. OheerelB and
LineItemEJB entity beans that model this relationship are tightly coupled.
Tightly coupled beans are good candidates for local access. Since they fit
together as a logical unit, they probably call each other often and would benefit
from the increased performance that is possible with local access.

Type of client: If an enterprise bean is accessed by J2EE application clients,
then it should allow remote access. In a production environment, these clients
almost always run on different machines than the J2EE server. If an enterprise
bean’s clients are Web components or other enterprise beans, then the type of
access depends on how you want to distribute your components.

Component distribution: J2EE applications are scalable because their server-
side components can be distributed across multiple machines. In a distributed
application, for example, the Web components may run on a different server than
the enterprise beans they access. In this distributed scenario, the enterprise beans
should allow remote access.

If you aren’t sure which type of access an enterprise bean should have, then
choose remote access. This decision gives you more flexibility—in the future

4= 4

¢ @

—®

.



—¢l@

re

é J2eeTutorial.book Page 61 Tuesday, March 5, 2002 11:06 AM

i

DEFINING CLIENT ACCESS WITHINTERFACES 61

you can distribute your components to accommodate growing demands on your
application.

Although uncommon, it is possible for an enterprise bean to allow both remote
and local access. Such a bean would require both remote and local interfaces.

Performance and Access

Because of factors such as network latency, remote calls may be slower than
local calls. On the other hand, if you distribute components among different
servers, you might improve the application’s overall performance. Both of these
statements are generalizations; actual performance can vary in different opera-
tional environments. Nevertheless, you should keep in mind how your applica-
tion design might affect performance.

Method Parameters and Access

The type of access affects the parameters of the bean methods that are called by
clients. The following topics apply not only to method parameters, but also to
method return values.

Isolation

An argument in a remote call is passed by value; it is a copy of an object. But an
argument in a local call is passed by reference, just like a normal method call in
the Java programming language.

The parameters of remote calls are more isolated than those of local calls. With
remote calls, the client and bean operate on different copies of a parameter
object. If the client changes the value of the object, the value of the copy in the

bean does not change. This layer of isolation can help protect the bean if the cli-
ent accidentally modifies the data.

In a local call, both the client and the bean may modify the same object. In gen-
eral, you should not rely on this side effect of local calls. Perhaps someday you
will want to distribute your components, replacing the local calls with remote
ones.

Granularity of Accessed Data

Because remote calls are likely to be slower than local calls, the parameters in
remote methods should be relatively coarse-grained. Since a coarse-grained
object contains more data than a fine-grained one, fewer access calls are
required.

%

¢ @

-t

*

*%



—¢l@

re

é J2eeTutorial.book Page 62 Tuesday, March 5, 2002 11:06 AM

62

i

ENTERPRISE BEANS

For example, suppose thatastomerE]B entity bean is accessed remotely. This
bean would have a single getter method that retutiss@omerDetails object,

which encapsulates all of the customer’s information. BulutomerEJB is to

be accessed locally, it could have a getter method for each instance variable:
getFirstName, getLastName, getPhoneNumber, and so forth. Because local
calls are fast, the multiple calls to these finer-grained getter methods would not
significantly degrade performance.

The Contents of an Enterprise Bean

To develop an enterprise bean, you must provide the following files:

» Deployment descriptor. An XML file that specifies information about
the bean such as its persistence type and transaction attributes. The
deploytool utility creates the deployment descriptor when you step
through the New Enterprise Bean wizard.

» Enterprise bean classImplements the methods defined in the following
interfaces.

» Interfaces. The remote and home interfaces are required for remote
access. For local access, the local and local home interfaces are required.
See the section Defining Client Access with Interfaces (page 58). (Please
note that these interfaces are not used by message-driven beans.)

» Helper classesOther classes needed by the enterprise bean class, such as
exception and utility classes.

You package the files in the preceding list into an EJB JAR file, the module that
stores the enterprise bean. An EJB JAR file is portable and may be used for dif-
ferent applications. To assemble a J2EE application, you package one or more
modules—such as EJB JAR files—into an EAR file, the archive file that holds
the application. When you deploy the EAR file that contains the bean’s EJB JAR
file, you also deploy the enterprise bean onto the J2EE server.

Naming Conventions for Enterprise Beans

Because enterprise beans are composed of multiple parts, it's useful to follow a
naming convention for your applications. Table 3—2 summarizes the conventions
for the example beans of this tutorial.

4= 4

¢ @

—®

*%



—¢l@

é J2eeTutorial.book Page 63 Tuesday, March 5, 2002 11:06 AM

THE LIFE CYCLES OF ENTERPRISE BEANS

Table 3—2 Naming Conventions for Enterprise Beans

63

¢ @

—®

re

Item Syntax Example
Enterprise bean name (DD) <name>EJB AccountEJB

EJB JAR display nhame (DD) <name>J]AR AccountJAR
Enterprise bean class <name>Bean AccountBean
Home interface <name>Home AccountHome
Remote interface <name> Account

Local home interface Local<name>Home LocalAccountHome
Local interface Local<name> LocalAccount
Abstract schema (DD) rame> Account

DD means that the item is an element in the bean’s deployment descriptor.

The Life Cycles of Enterprise Beans

An enterprise bean goes through various stages during its lifetime, or life cycle.
Each type of enterprise bean—session, entity, or message-driven—has a differ-
ent life cycle.

The descriptions that follow refer to methods that are explained along with the
code examples in the next two chapters. If you are new to enterprise beans, you
should skip this section and try out the code examples first.

The Life Cycle of a Stateful Session Bean

Figure 3-3 illustrates the stages that a session bean passes through during its
lifetime. The client initiates the life cycle by invoking theeate method. The

EJB container instantiates the bean and then invokesdh&essionContext
andejbCreate methods in the session bean. The bean is now ready to have its
business methods invoked.

i

*%



—¢l@

re

é J2eeTutorial.book Page 64 Tuesday, March 5, 2002 11:06 AM

i

64

ENTERPRISE BEANS

1. create
2. setSessionContext 1. remove
3. ejbCreate 2. ejbRemove

ejbPassivate (4
Passive

ejbActivate

Figure 3-3 Life Cycle of a Stateful Session Bean

While in the ready stage, the EJB container may decide to deactivgpassr-

vate the bean by moving it from memory to secondary storage. (Typically, the
EJB container uses a least-recently-used algorithm to select a bean for passiva-
tion.) The EJB container invokes the beamj®Passivate method immediately
before passivating it. If a client invokes a business method on the bean while it is
in the passive stage, the EJB container activates the bean, moving it back to the
ready stage, and then calls the beafits\ctivate method.

At the end of the life cycle, the client invokes themove method and the EJB
container calls the beanéjbRemove method. The bean’s instance is ready for
garbage collection.

Your code controls the invocation of only two life-cycle methods—¢heate

and remove methods in the client. All other methods in Figure 3—3 are invoked
by the EJB container. ThejbCreate method, for example, is inside the bean
class, allowing you to perform certain operations right after the bean is instanti-
ated. For instance, you may wish to connect to a database iajtf@eate
method. See Chapter 16 for more information.

The Life Cycle of a Stateless Session Bean

Because a stateless session bean is never passivated, its life cycle has just two
stages: nonexistent and ready for the invocation of business methods. Figure 3—4
illustrates the stages of a stateless session bean.

4~ 4

¢ @

—®

.



—¢l@

re

é J2eeTutorial.book Page 65 Tuesday, March 5, 2002 11:06 AM

i

THE LIFE CYCLES OF ENTERPRISE BEANS 65

Does Not
Exist

1. setSessionContext

2. ejbCreate ejbRemove

Figure 3—4 Life Cycle of a Stateless Session Bean

The Life Cycle of an Entity Bean

Figure 3-5 shows the stages that an entity bean passes through during its life-
time. After the EJB container creates the instance, it calls#t€ntityCon-

text method of the entity bean class. TéetEntityContext method passes the
entity context to the bean.

After instantiation, the entity bean moves to a pool of available instances. While
in the pooled stage, the instance is not associated with any particular EJB object
identity. All instances in the pool are identical. The EJB container assigns an
identity to an instance when moving it to the ready stage.

There are two paths from the pooled stage to the ready stage. On the first path,
the client invokes thereate method, causing the EJB container to call éhe-

Create andejbPostCreate methods. On the second path, the EJB container
invokes theejbActivate method. While in the ready stage, an entity bean’s
business methods may be invoked.

There are also two paths from the ready stage to the pooled stage. First, a client
may invoke theremove method, which causes the EJB container to call the
ejbRemove method. Second, the EJB container may invokedfigPassivate
method.

%

¢ @

-t

—®

%%



>
SINg

@

re

é J2eeTutorial.book Page 66 Tuesday, March 5, 2002 11:06 AM

i

66

ENTERPRISE BEANS

Does Not
Exist

setEntityContext unsetEntityContext

e
Pooled

ejbActivate

ejbPassivate

1. create
2. ejbCreate
3. ejbPostCreate

1.remove
2. ejbRemove

Figure 3-5 Life Cycle of an Entity Bean

At the end of the life cycle, the EJB container removes the instance from the
pool and invokes thensetEntityContext method.

In the pooled state, an instance is not associated with any particular EJB object
identity. With bean-managed persistence, when the EJB container moves an
instance from the pooled state to the ready state, it does not automatically set the
primary key. Therefore, thejbCreate andejbActivate methods must assign a
value to the primary key. If the primary key is incorrect, thipLoad andejb-

Store methods cannot synchronize the instance variables with the database. In
the section The SavingsAccountEJB Example (page 84%jbereate method

4~ 4

—®

%

A2
2



—¢l@

re

é J2eeTutorial.book Page 67 Tuesday, March 5, 2002 11:06 AM

i

THE LIFE CYCLES OF ENTERPRISE BEANS 67

assigns the primary key from one of the input parameters. éfbactivate
method sets the primary keid] as follows:

id = (String)context.getPrimaryKey(Q);

In the pooled state, the values of the instance variables are not needed. You can
make these instance variables eligible for garbage collection by setting them to
null in theejbPasssivate method.

The Life Cycle of a Message-Driven Bean
Figure 3—6 illustrates the stages in the life cycle of a message-driven bean.

The EJB container usually creates a pool of message-driven bean instances. For

each instance, the EJB container instantiates the bean and performs these tasks:

1. It calls thesetMessageDrivenContext method to pass the context object
to the instance.

2. It calls the instancesjbCreate method.

Does Not
Exist

1. setMessageDrivenContext

2. ejbCreate ejbRemove

onMessage

Figure 3-6 Life Cycle of a Message-Driven Bean

¢ @

-t

—®

%%



—¢l@

re

é J2eeTutorial.book Page 68 Tuesday, March 5, 2002 11:06 AM é @
68 ENTERPRISE BEANS

Like a stateless session bean, a message-driven bean is never passivated, and it
has only two states: nonexistent and ready to receive messages.

At the end of the life cycle, the container calls thgbRemove method. The
bean’s instance is then ready for garbage collection.

*%



