
113

C H A P T E R 7
Customizing the Security

Architecture

The office of government is not to confer happiness,
but to give men opportunity to work out happiness for themselves.

—William Ellery Channing

This chapter demonstrates ways to augment the security architecture. We
explain how to develop custom implementations of the various security classes
that support either extensibility or substitution mechanisms. We also describe the
mechanics of implementing a custom Permission class, extending the function-
ality of the SecurityManager class, implementing a custom Policy provider,
and implementing a DomainCombiner interface.

7.1 Creating New Permission Types

Recall from Section 5.1 that J2SDK 1.2 introduced a new hierarchy of typed and
parameterized access permissions, rooted by an abstract class, java.secu-
rity.Permission. Other permissions are subclassed from either the Permis-
sion class or one of its subclasses and appear in relevant packages. For example,
the FilePermission permission representing file system access is located in the
java.io package. Other permission classes are

♦ java.net.SocketPermission for access to network resources

♦ java.lang.RuntimePermission for access to runtime system resources,
such as class loaders and threads

Chapter7.fm Page 113 Wednesday, April 30, 2003 4:29 PM

Chapter 7 Customizing the Security Architecture114

♦ java.lang.PropertyPermission for access to system properties

♦ java.awt.AWTPermission for access to windowing resources

As this list illustrates, accesses to controlled resources, including properties and
packages, are represented by the permission classes.

Applications are free to add new categories of permissions. However, it is
essential that, apart from official releases, no one extend the permissions that are
built into the SDK, either by adding new functionality or by introducing additional
keywords into a class such as java.lang.RuntimePermission. Refraining from
doing this maintains compatibility.

When creating a new permission, it is advisable also to declare the permission
to be final. The rule of thumb is that if the permission will be granted in a secu-
rity policy, it is probably best to declare it final. However, at times it may be nec-
essary to create a class hierarchy for your custom permission. If this is the case, a
couple of design heuristics are worth mentioning. First, if the abstract, or base,
class of your permission or permission collection has a concrete implementation
of the implies method, it is recommended that the implies method take the type
of the permissions into consideration. For example, the implies method of the
BasicPermission class has the following logic, which is similar to that of the
BasicPermissionCollection class:

public boolean implies(Permission permission) {

 if (! (permission instanceof BasicPermission))

 return false;

 BasicPermission bp = (BasicPermission) permission;

 if (bp.getClass() != this.getClass())

 return false;

 ...

}

Pay particular attention to the second if statement, which enforces the type
equality heuristic. Without this, the implementation may be exposed to a subtle
security hole whereby the subclass may be able to interact in malicious ways with
the superclass’s implication checking.

The second design heuristic addresses whether a custom PermissionCol-
lection class should be implemented. The general principle is that if the permis-
sion has complex processing semantics for either its name or the actions it
specifies, it is usually necessary to create a custom PermissionCollection
class. The Java security architecture specifically enables this by first delegating to
the permission collection object for processing of a requisite permission when
making a policy decision.

Chapter7.fm Page 114 Wednesday, April 30, 2003 4:29 PM

7.1 Creating New Permission Types 115

Perhaps these guidelines are best shown by an example. Suppose that you are
an application developer from company MyPVR and want to create a customized
permission to control access to the channel programming features of a personal
video recorder. Further suppose that only three actions are to be controlled for any
given channel of programming: the ability to "view", to "preview", and to
"record". The first question is, can you use an existing Permission object, such
as the BasicPermission class, or do you need a custom permission class? Given
the need to be able to control access based on the three actions, the BasicPermis-
sion class will not suffice. Therefore, a custom class needs to be designed.

Next, you must make sure that the implies method, among other methods, is
correctly implemented. If you decide to support more elaborate channel-naming
syntax for PVRPermissions, such as 1–10:13–20 or *, you may need to imple-
ment a custom permission collection class, PVRPermissionCollection. This
custom class would be responsible for parsing the names and ensuring the proper
semantics. Additionally, it may be necessary to perform the implies logic
entirely within the implementation supplied by the permission collection. An
example of when this is necessary is when the actions of a permission can be
granted separately but tested in combination. For example, you may have two sep-
arate grants of a PVRPermission specified by the security policy: one for "view"
and one for "preview", yet the resource management code tests for them in com-
bination, perhaps as an optimization. That is, in order to be able to "preview" a
channel, one must also have the permission to "view" the channel.

Here are parts of the code for sample com.mypvr.PVRPermission and
com.mypvr.PVRPermissionCollection classes:

public final class com.mypvr.PVRPermission

 extends java.security.BasicPermission

 implements java.io.Serializable {

 /* view channel */

 private final static int VIEW = 0x1;

 /* preview a channel */

 private final static int PREVIEW = 0x2;

 /* record a channel */

 private final static int RECORD = 0x4;

 /* all actions */

 private final static int ALL = VIEW|PREVIEW|RECORD;

 /* the channel number */

 private transient String channel;

 /* the actions mask */

 private transient int actionMask;

Chapter7.fm Page 115 Wednesday, April 30, 2003 4:29 PM

Chapter 7 Customizing the Security Architecture116

 public PVRPermission(String channel, String actions) {

 super(channel, actions);

 this.channel = channel;

 this.actionMask = getMask(actions) // parse actions

 }

 ...

 /* for completeness we implement implies but given the usage

 pattern the real work will be done in the permission collection

 */

 public boolean implies(Permission p) {

 if (!(p instanceof PVRPermission))

 return false;

 PVRPermission that = (PVRPermission) p;

 if (this.channel.equals(that.channel) &&

 this.actions.equals(that.actions))

 return true;

 return false;

 }

 public PermissionCollection newPermissionCollection() {

 return new PVRPermissionCollection();

 }

}

final class PVRPermissionCollection extends PermissionCollection

 implements java.io.Serializable {

 private Vector permissions;

 public PVRPermissionCollection() {

 permissions = new Vector();

 }

 ...

 public boolean implies(Permission permission) {

 if (! (permission instanceof PVRPermission))

 return false;

 PVRPermission np = (PVRPermission) permission;

 int desired = np.getMask();

 int effective = 0;

 int needed = desired;

 Enumeration e = permissions.elements();

Chapter7.fm Page 116 Wednesday, April 30, 2003 4:29 PM

7.1 Creating New Permission Types 117

 while (e.hasMoreElements()) {

 PVRPermission x = (PVRPermission) e.nextElement();

 if (x.channel.equals(np.channel)) {

 if ((needed & x.getMask()) != 0) {

 effective |= x.getMask();

 if ((effective & desired) == desired)

 return true;

 needed = (desired ^ effective);

 }

 }

 }

 return false;

 }

}

Next, you want the application’s resource management code, when checking
whether an access should be granted, to call SecurityManager’s checkPermis-
sion method, using an instance of com.mypvr.PVRPermission as the parameter

public void previewChannel(int channel) {

 // in order to preview the channel you also need to be able

 // to view the channel

 com.mypvr.PVRPermission tvperm =

 new com.mypvr.PVRPermission(Integer.toString(channel),

 "view,preview");

 SecurityManager security = System.getSecurityManager();

 if (security != null) {

 security.checkPermission(tvperm);

 }

...

}

Finally, to grant this permission to applications and applets, you need to enter
appropriate entries into the security policy. How to configure the policy is dis-
cussed in detail in Section 12.5. Basically, you put the string representation of this
permission in the policy file so that this permission can be automatically config-
ured for each domain granted the permission. An example of the policy file entry
specifying permission for the user "Duke" to watch channel 5 is as follows, which
grants to any code considered to be executed by "Duke" the privilege to view and
preview channel 5:

Chapter7.fm Page 117 Wednesday, April 30, 2003 4:29 PM

Chapter 7 Customizing the Security Architecture118

grant principal javax.security.auth.x500.X500Principal "cn=Duke"{

 permission com.mypvr.PVRPermission "5", "view";

 permission com.mypvr.PVRPermission "5", "preview";

}

To exercise the built-in access control algorithm, our code would typically
invoke a permission check by directly calling the checkPermission method of
the SecurityManager class, as shown. Generally, it is best to start up the access
control machinery by calling the SecurityManager.checkPermission method
as demonstrated. The default implementation of SecurityManager.checkPer-
mission delegates to the AccessController. However, should a custom Secu-
rityManager class be installed, there is no guarantee that the
AccessController.checkPermission method will ever be invoked. Details of
these classes are provided in Chapter 6, and the question of when to use Access-
Controller versus SecurityManager is discussed in Section 6.4.9.

7.2 Customizing Security Policy

The security policy is first processed by the Policy object and then is enforced by
the SecurityManager or AccessController, so customizing any of these
classes would customize the behavior of the security policy. Beginning with J2SE
1.4, security policy decisions are lazily evaluated; prior to J2SE 1.4, security pol-
icy decisions were in effect statically computed in advance of enforcement. This
section provides general descriptions of the various ways the policy enforcement
and decision machinery can be augmented to supply specialized behavior. We first
describe the extension points of the SecurityManager and then give guidance in
implementing a custom Policy provider.

7.2.1 Customizing Security Policy Enforcement

As a first example, suppose that you want to allow file access only during office
hours: 9 A.M. to 5 P.M. That is, during office hours, the security policy decides
who can access what files. Outside of office hours, no one can access any file, no
matter what the security policy says. To achieve this, you can implement a Time-
OfDaySecurityManager class, as follows:

public class TimeOfDaySecurityManager extends SecurityManager {

 public void checkPermission(Permission perm) {

 if (perm instanceof FilePermission) {

 Date d = new Date();

 int i = d.getHours();

Chapter7.fm Page 118 Wednesday, April 30, 2003 4:29 PM

7.2 Customizing Security Policy 119

 if ((i >= 9) && (i < 17))

 super.checkPermission(perm);

 else

 throw new SecurityException("Outside of office hours");

 } else super.checkPermission(perm);

 }

}

The TimeOfDaySecurityManager checkPermission method checks whether
the permission to be checked is a FilePermission. If it is, checkPermission
computes the current time. If the time is within office hours, checkPermission
invokes the checkPermission method from TimeOfDaySecurityManager’s
SecurityManager superclass to check the security policy. Otherwise, check-
Permission throws a security exception. An application that wishes to enforce
the given office hour restriction should install this TimeOfDaySecurityManager
in place of the built-in SecurityManager. A SecurityManager is installed by
calling the java.lang.System.setSecurityManager method, as described in
Section 6.1.2.

The next example concerns the need to keep a record of resource accesses that
were granted or denied, for audit purposes later. Suppose that you design a simple
AuditSecurityManager class as follows:

public class AuditSecurityManager extends SecurityManager {

 private static java.util.logging.Logger logger =

 java.util.logging.Logger.getLogger("AuditSecurityManager");

 public void checkPermission(Permission perm) {

 logger.log(java.util.logging.Level.INFO, perm.toString());

 super.checkPermission(perm);

 }

}

This class assumes that you also have an instance of the java.util.log-
ging.Logger class, whose log method records permission checks in a safe
place. In this example, the log method simply records the fact that a particular
permission was checked. A variation would be to enter the audit record after
checkPermission and specify a different logging level, contingent on the result
of the access control decision. If the checkPermission call succeeds, the log
method is called right after the super.checkPermission call, with a level of
INFO. If the call fails, a SecurityException is thrown, and the AuditSecur-
ityManager checkPermission catches the SecurityException, calls the

Chapter7.fm Page 119 Wednesday, April 30, 2003 4:29 PM

Chapter 7 Customizing the Security Architecture120

log method with a level of WARNING to indicate the failure, and then rethrows the
exception, as follows:

public class AuditSecurityManager extends SecurityManager {

 . . .

 public void checkPermission(Permission perm) {

 try {

 super.checkPermission(perm);

 logger.log(java.util.logging.Level.INFO, perm.toString());

 } catch (SecurityException e) {

 logger.log(java.util.logging.Level.WARNING,

 perm.toString());

 throw e;

 }

 }

}

To implement complex security policies, you potentially need to spend more
effort in the design. For example, if you wanted to enforce a multilevel security
policy, you would first have to create sensitivity labels for each object.1 The JVM
would also have to keep track of the interaction between objects and might have to
change object labels dynamically, as in a High-Watermark model. Then the Secu-
rityManager’s checkPermission method would need to base its decision on the
labels of the objects involved in the current thread of execution. As another exam-
ple, to implement a Chinese Wall, or separation-of-duty, model, the JVM would
need not only to monitor object interaction but also to keep a history of it. Much
research and experimentation is needed in this area.

7.2.2 Customizing Security Policy Decisions

The wide variety of reasons for designing and implementing a custom Policy
provider run the gamut from the need to support a specialized policy expression
language to the need to support a custom policy store. An example might be a
Policy provider that specifies policy according to the syntax and processing
rules of KeyNote [14]. We introduced the role and structure of the Policy class
in Section 5.4. In this section, we illustrate quintessential and sometimes subtle
design details necessary to implement a Policy provider correctly.

1 This could be done perhaps most conveniently by adding a security level attribute to the
base class, the Object class, but that would be a very significant change.

Chapter7.fm Page 120 Wednesday, April 30, 2003 4:29 PM

7.2 Customizing Security Policy 121

Locating Security Policy

When we designed the Java security policy interface, we recognized that it
would be nearly impossible to specify adequately the storage and access require-
ments of security policy or the language by which security policy was expressed.
Therefore, we incorporated two key abstractions in our design. The first is the
notion of a pluggable provider, which is a standardized mechanism fully docu-
mented in Section 12.3.3. The second, location independence of the policy store,
is not part of the Java platform specification, yet most platform vendors have
adopted Sun’s model. Our approach to referencing the policy store is to leverage
the inherent generality and location independence Uniform Resource Locators
(URLs) provide.

Usually, the deployment of the Java runtime is managed by a system adminis-
trator. At deployment time, the administrator has the latitude of changing the con-
figuration of the Java runtime to point to the location of the security policy data.
This change can be statically reflected in the security properties file, or it can be
specified when the runtime is started, by specifying a URL value for the
java.security.policy system property. This is described in much greater
detail in Section 12.5. For purposes of this discussion, the salient point is that it is
imperative for a Policy provider implementation to follow the directions of the
deployer when locating and accessing the policy data. That is, a proper implemen-
tation will follow the hints given by the values for the policy.url.n properties in
the security properties file, as well as the mechanism to override or augment secu-
rity policy via the system property java.security.policy.

The first thing to consider is whether the deployment permits the override of
the security policy location via the java.security.policy system property.
This is captured in the policy.allowSystemProperty security property:

if ("true".equalsIgnoreCase

 (Security.getProperty("policy.allowSystemProperty"))) {

 // process the override URL.

 ...

} else {

 ...

}

Next, assuming that the location can be overridden by the java.secu-
rity.policy system property, determine whether the supplied URL is to be used
in conjunction with the statically configured URLs or whether it is to be consid-
ered as the sole source of policy data. The former is indicated by preceding the
specified location with an = sign, whereas the latter is indicated by preceding the
specified location with a double equals (==). For example, specifying the following

Chapter7.fm Page 121 Wednesday, April 30, 2003 4:29 PM

Chapter 7 Customizing the Security Architecture122

system property as a subpart of the command line invoking the Java runtime indi-
cates that the policy at the given URL should be the only source of policy data:

-Djava.security.policy==https://policy.example.com/security.policy

Bootstrapping Security Policy

When we designed the Policy provider architecture, one of our design goals was
to enable the installation of third-party security policy implementations. We also
wanted to give deployers flexibility in installing and configuring the Java runtime
environment. Section 12.4 details configuring and installing provider packages.
As described in Chapter 12, the security Policy provider class can be statically
configured to be the default provider. One advantage of statically configuring the
default security provider is to avoid having to implement application code that
dynamically installs the Policy provider by invoking the setPolicy method of
the Policy class.

Generally, system or infrastructure software of this caliber is installed as an
optional package [101]. However, by installing the Policy provider as an
installed extension, the implementation of the Policy provider is faced with a
chicken-and-egg problem. And by statically configuring the systemwide security
policy class, the Java runtime is confronted with a chicken-and-egg problem of its
own. Let’s consider the runtime’s problem first.

The Java runtime must be able to install a security Policy provider that is not
part of the system domain. However, code that is outside the system domain is
subject to security checks by the SecurityManager or AccessController.
Therefore, how can the runtime enforce policy while in the process of installing
the Policy provider? It is possible for the Java runtime to detect this conundrum
by being selective as to which class loader is used to install the Policy provider.
Once this recursion is detected, it is possible to bootstrap the installation of the
configured Policy provider by relying on the Java platform vendor’s default Pol-
icy implementation class. Once the configured provider is loaded, it can be
installed as the systemwide Policy provider. The deployer may need to realize
that the platform vendor’s default policy must be configured to grant the third-
party Policy provider sufficient permissions to be bootstrapped in this manner.
This approach is by no means foolproof, given that the third-party implementation
may trigger class loads and subsequent security checks of utility classes outside
the system domain or its own protection domain.

The second circularity problem exists regardless of whether the security Pol-
icy provider is configured statically or installed dynamically. Again because the
Policy provider is not part of the system domain, it is subject to security checks.
Because access control decisions are passing through the Policy implementation

Chapter7.fm Page 122 Wednesday, April 30, 2003 4:29 PM

7.2 Customizing Security Policy 123

via either the getPermissions method or the implies method, the Policy
class’s protection domain will be under scrutiny whenever it triggers a security
check.

A rather rudimentary solution a Policy implementation can use is to cache a
reference to its own protection domain within its constructor. Then whenever its
getPermissions or implies method is invoked, the Policy implementation can
treat its protection domain specially and assume it to have sufficient permission to
access the resource. In other words, it is probably fair to assume that the Policy
implementation has been granted AllPermission. Here is some sample code
from the Policy implementation class:

// Domain of this provider

private ProtectionDomain providerDomain;

public CustomPolicy() {

 ...

 final Object p = this;

 providerDomain = (ProtectionDomain)

 AccessController.doPrivileged(

 new java.security.PrivilegedAction() {

 public Object run() {

 return p.getClass().getProtectionDomain();

 }

 });

}

...

public boolean implies(ProtectionDomain pd, Permission p) {

 ...

 if (providerDomain == pd) {

 return true;

 }

 ...

}

public PermissionCollection getPermissions(ProtectionDomain domain)

{

 Permissions perms = new Permissions();

 ...

Chapter7.fm Page 123 Wednesday, April 30, 2003 4:29 PM

Chapter 7 Customizing the Security Architecture124

 if (providerDomain == domain) {

 perms.add(new java.security.AllPermission());

 }

 ...

}

Some words of caution: If the Policy implementation is packaged with less
trusted code and both are in the same protection domain, the less trusted code will
be accorded the same permissions as the Policy implementation. Also, a call to
the refresh method should be careful not to drop the cached protection domain.

Spanning Permissions

In Section 5.6, we introduced the merits of dynamic policy and alluded to the
spanning permission problem. We also described this issue in Section 7.1. Essen-
tially, the issue can be stated as follows: A Policy provider must be able to
accommodate a policy decision query through its implies interface to determine
whether a requisite permission is implied by the given protection domain. This
must be derived even when the actions of the requisite permission span the per-
mission collection encapsulated by the ProtectionDomain and Policy objects.

In our sample PVRPermissionCollection implementation, we made special
provisions for the advent of this when the actions of the requisite permission were
specified in separate grant statements. The same problem exists for the Policy
provider, as the class loader may assign permissions to the ProtectionDomain of
a class, and the provisioning of the security policy may also specify permissions
of the same type and target but for different actions. The simplest approach is for
the Policy provider to merge the permissions from the protection domain with
the permissions it deems are granted by the policy for the given ProtectionDo-
main into a single PermissionCollection. The obvious place to implement this
merge is in the getPermissions method of the Policy class.

7.3 Customizing the Access Control Context

When we first introduced the DomainCombiner in Section 6.3, we described the
API and the relationship of a DomainCombiner to the access control machinery.
The remainder of this chapter describes possible uses for a DomainCombiner and
implementation strategies. We may use the term combiner as a shorthand for
DomainCombiner.

Two steps must be taken to insert a combiner into the access control machin-
ery of the Java runtime environment. The first is to construct an AccessControl-
Context with an instance of a DomainCombiner. The second step is to bind the

Chapter7.fm Page 124 Wednesday, April 30, 2003 4:29 PM

7.3 Customizing the Access Control Context 125

security context with the execution context. This is accomplished by supplying the
AccessControlContext to the appropriate AccessController doPrivileged
method.

A real-world application of a DomainCombiner is the javax.secu-
rity.auth.SubjectDomainCombiner. This particular implementation encapsu-
lates an instance of a javax.security.auth.Subject. As described in Section
8.4.1, a Subject encapsulates a set of (ostensibly authenticated) principals. The
role of the SubjectDomainCombiner is to augment the ProtectionDomains of
the current execution context with the principal information so that security policy
can be based on who is running the code.

The combine method of a bound DomainCombiner is invoked as a result of a
call to either the checkPermission or the getContext AccessController
method. In the absence of a DomainCombiner, the AccessController optimizes
the AccessControlContext object. When a DomainCombiner is present, it is up
to the implementation of the installed combiner to perform any optimizations on
the AccessControlContext returned from the combine method. That said,
another possible application for a DomainCombiner is one that implements special
optimizations. For example, suppose that the DomainCombiner encapsulated prin-
cipal information analogous to the SubjectDomainCombiner. Additionally, the
custom combiner makes special provisions for the administrative principal such
that it is accorded AllPermission. Such a combiner can make a significant opti-
mization to the AccessControlContext when it detects that it is executing as the
administrative principal. One possibility is for the combiner to return an Access-
ControlContext with a single ProtectionDomain; in that case, the Permis-
sionCollection encapsulated within the ProtectionDomain would include an
instance of the AllPermission permission.

Chapter7.fm Page 125 Wednesday, April 30, 2003 4:29 PM

Chapter7.fm Page 126 Wednesday, April 30, 2003 4:29 PM

