

57

Chapter 3

Type Information and Reflection

Java classes preserve a wealth of information about programmer intent. Rather
than just containing a jumble of executable instructions, binary classes

1

 also
contain large amounts of

metadata

—data that describes the structure of the bi-
nary class. Most of this metadata is

type information

 enumerating the base
class, superinterfaces, fields, and methods of the class. Type information is
used to make the dynamic linking of code more reliable by verifying at runtime
that clients and servers share a common view of the classes they use to com-
municate.

The presence of type information also enables dynamic styles of program-
ming. You can

introspect

 against a binary class to discover its fields and meth-
ods at runtime. Using this information, you can write generic services to add
capabilities to classes that have not even been written yet

.

The binary class format is a simple data structure that you could parse to
perform introspection yourself. Rather than going to this trouble, you can use
the Java Reflection API instead. Reflection provides programmatic access to
most of the metadata in the binary class format. It also provides not only the
ability to introspect classes for metadata, but also the ability to dynamically ac-
cess fields and methods. Reflective invocation is critical for writing generic ob-
ject services. As of SDK version 1.3, reflection also includes the ability to
manufacture classes called dynamic proxies at runtime. This chapter introduces

1. [LY99] uses the term “class file” instead. This usage encourages the mistaken assumption that
classes

must

live in files, and it will probably be replaced in a future edition of the spec. Throughout
this book, I will use the more generic term “binary class.”

5003_03.fm Page 57 Friday, November 9, 2001 2:13 PM

58

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

the binary class format, the uses of metadata, the Reflection API, dynamic prox-
ies, and custom metadata.

3.1 The Binary Class Format

The binary class format means different things to different people. To an applica-
tion developer, the binary class is the compiled output of a Java class. Most of
the time, you can treat the class format as a black box—a detail that is thank-
fully hidden by the compiler. The binary class is also the unit of executable code
recognized by the virtual machine. Virtual machine developers see the binary
class as a data structure that can be loaded, interpreted, and manipulated by vir-
tual machines and by Java development tools. The binary class is also the unit of
granularity for dynamic class loading. Authors of custom class loaders take this
view and may use their knowledge of the binary class format to generate cus-
tom classes at runtime. But most importantly, the binary class is a well-defined
format for conveying class code and class metadata.

Most of the existing literature on the binary class format targets compiler
and virtual machine developers. For example, the virtual machine specification
provides a wealth of detail about the exact format of a binary class, plus a spe-
cific explanation of extensions that can legally be added to that format. For a
Java developer, such detail is overkill. However, hidden in that detail is informa-
tion that the virtual machine uses to provide valuable services, such as security,
versioning, type-safe runtime linkage, and runtime type information. The availabil-
ity and quality of these services is of great concern to all Java developers. The
remainder of Section 3.1 will describe the information in the binary class format,
and how that information is used by the virtual machine. Subsequent sections
show you how you can use this information from your own programs.

3.1.1 Binary Compatibility

A clear example of the power of class metadata is Java’s enforcement of binary
compatibility at runtime. Consider the

MadScientist

 class and its client
class

BMovie

, shown in Listing 3–1. If you compile the two classes and then
execute the

BMovie

 class, you will see that the

threaten

 method executes

5003_03.fm Page 58 Friday, November 9, 2001 2:13 PM

TYPE INFORMATION AND REFLECTION

59

as expected. Now, imagine that you decide to ship a modified version of

Mad-

Scientist

 with the

threaten

 method removed. What happens if an old ver-
sion of

BMovie

 tries to use this new version of

MadScientist

?
In a language that does not use metadata to link methods at runtime, the

outcome is poorly defined. In this particular case, the old version of

BMovie

probably would link to the first method in the object. Since

threaten

 is no
longer part of the class,

blowUpWorld

 is now the first method. This program
error would literally be devastating to the caller.

Listing 3–1 The MadScientist Class

public class MadScientist {

 public void threaten() {

 System.out.println("I plan to blow up the world");

 }

 public void blowUpWorld() {

 throw new Error("The world is destroyed. Bwa ha ha ha!");

 }

}

public class BMovie {

 public static void main(String [] args) {

 MadScientist ms = new MadScientist();

 ms.threaten();

 }

}

As bad as this looks, an obvious failure is actually one of the

best

possible
outcomes for version mismatches in a language without adequate metadata.
Consider what might happen in a systems programming language, such as
C++, that encodes assumptions about other modules as numeric locations or
offsets. If these assumptions turn out to be incorrect at runtime, the resulting
behavior is undefined. Instead of the desired behavior, some random method
may be called, or some random class may be loaded. If the random method
does not cause an immediate failure, the symptoms of this problem can be in-
credibly difficult to track down. Another possibility is that the code execution will
transfer to some location in memory that is not a method at all. Hackers may ex-
ploit this situation to inject their own malicious code into a process.

5003_03.fm Page 59 Friday, November 9, 2001 2:13 PM

60

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Compare all the potential problems above with the actual behavior of the
Java language. If you remove the

threaten

 method, and recompile only

the

MadScientist

 class, you will see the following result:

>java BMovie

java.lang.NoSuchMethodError

at BMovie.main(BMovie.java:4)

If a class makes a reference to a nonexistent or invalid entity in some other
class, that reference will trigger some subclass of

IncompatibleClass-

ChangeError

, such as the

NoSuchMethodError

 shown above. All of these
exception types indirectly extend

Error

, so they do not have to be checked and
may occur at any time. Java assumes fallible programmers, incomplete compile-
time knowledge, and partial installations of code that change over time. As a re-
sult, the language makes runtime metadata checks to ensure that references
are resolved correctly. Systems languages, on the other hand, tend to assume
expert programmers, complete compile-time knowledge, and full control of the
installation processes. The code that results from these may load a little faster
than Java code, but it will be unacceptably fragile in a distributed environment.

In the earlier example, the missing method

threaten

 caused the new ver-
sion of

MadScientist

 to be incompatible with the original version of

BMovie

.
This is an obvious example of incompatibility, but some other incompatibilities
are a little less obvious. The exact rules for binary class compatibility are enu-
merated in [LY99], but you will rarely need to consult the rules at this level. The
rules all support a single, common-sense objective: no mysterious failures. A ref-
erence either resolves to the exact thing the caller expects, or an error is
thrown; “exactness” is limited by what the caller is looking for. Consider these
examples:

• You cannot reference a class, method, or field that does not exist. For fields
and methods, both names and types must match.

• You cannot reference a class, method, or field that is invisible to you, for
example, a private method of some other class.

• Because private members are invisible to other classes anyway, changes
to private members will

not

cause incompatibilities with other classes. A

5003_03.fm Page 60 Friday, November 9, 2001 2:13 PM

TYPE INFORMATION AND REFLECTION

61

similar argument holds for package-private members

if

you always update
the entire package as a unit.

• You cannot instantiate an abstract class, invoke an abstract method, sub-
class a

final

 class, or override a

final

 method.

• Compatibility is in the eye of the beholder. If some class adds or removes
methods that you never call anyway, you will not perceive any incompatibility
when loading different versions of that class.

Another way to view all these rules is to remember that changes to invisible im-
plementation details will never break binary compatibility, but changes to visible
relationships between classes will.

3.1.1.1 Declared Exceptions and Binary Compatibility

One of the few oddities of binary compatibility is that you

can

refer to a method
or constructor that declares checked exceptions that you do not expect. This is
less strict than the corresponding compile-time rule, which states that the caller
must handle all checked exceptions. Consider the versions of

Rocket

 and

Cli-

ent

 shown in Listing 3–2. You can only compile

Client

 against version 1 of the

Rocket

 since the client does not handle the exception thrown by version 2. At
runtime, a

Client

 could successfully reference and use either version because
exception types are not checked for binary compatibility.

This loophole in the binary compatibility rules may be surprising, but it does
not compromise the primary objective of preventing inexplicable failures. Con-
sider what happens if your

Client

 encounters the second version of

Rocket

. If
and when the

InadequateNationalInfrastructure

 exception is thrown,
your code will not be expecting it, and the thread will probably terminate. Even
though this may be highly irritating, the behavior is clearly defined, and the stack
trace makes it easy to detect the problem and add an appropriate handler.

Listing 3–2 Checked Exceptions Are Not Enforced by the VM.

public class Client {

 Rocket r = new Rocket();

}

public class Rocket { //version 1

 public Rocket() { … }

5003_03.fm Page 61 Friday, November 9, 2001 2:13 PM

62

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

}

public class Rocket { //version 2

 public Rocket()

 throws InadequateNationalInfrastructure { … }

}

3.1.1.2 Some Incompatible Changes Cannot Be Detected

The Java compiler enforces the rules of binary compatibility at compile time, and
the virtual machine enforces them again at runtime. The runtime enforcement of
these rules goes a long way toward preventing the accidental use of the wrong
class. However, these rules do not protect you from bad decisions when you are
shipping a new version of a class. You can still find clever ways to write new ver-
sions of classes that explode when called by old clients.

Listing 3–3 shows an unsafe change to a class that Java cannot prevent. Cli-
ents of the original version of

Rocket

 expect to simply call

launch

. The sec-
ond version of

Rocket

 changes the rules by adding a mandatory

preLaunchSafetyCheck

. This does not create any structural incompatibilities
with the version 1 clients, who can still find all the methods that they expect to
call. As a result, old versions of the client might launch new rockets without the
necessary safety check. If you want to rely on the virtual machine to protect the
new version of

Rocket

from old clients, then you must deliberately introduce
an incompatibility that will break the linkage. For example, your new version
could implement a new and different

Rocket2

 interface.

2

Listing 3–3 Some Legal Changes to a Class May Still Be Dangerous.

public interface Rocket { //version 1

 public void launch();

}

public interface Rocket { //version 2

 public void mandatoryPreLaunchSafetyCheck();

 public void launch();

}

2. Package reflection, discussed later in this chapter, provides another approach to preventing this
problem.

5003_03.fm Page 62 Friday, November 9, 2001 2:13 PM

TYPE INFORMATION AND REFLECTION 63

3.1.2 Binary Class Metadata
[LY99] documents the exact format of a binary class. My purpose here is not to
reproduce this information but to show what kinds of metadata the binary class
includes. Figure 3–1 shows the relevant data structures that you can traverse in
the binary class format. The constant pool is a shared data structure that con-
tains elements, such as class constants, method names, and field names, that
are referenced by index elsewhere in the class file. The other structures in the
class file do not hold their own data; instead, they hold indexes into the constant
pool. This keeps the overall size of the class file small by avoiding the repetition
of similar data structures.

The -superclass and -interfaces references contain indices into the
constant pool. After a few levels of indirection, these indices eventually lead to
the actual string names of the class’s base class and superinterfaces. The use
of actual string names makes it possible to verify at runtime that the class
meets the contractual expectations of its clients.

Note that the class name format used by the virtual machine is different from
the dotted notation used in Java code. The VM uses the “/” character as a pack-
age delimiter. Also, it often uses the “L” and “;” characters to delimit class names
if the class name appears inside a stream where other types of data might also

Figure 3–1 Metadata in the binary class format

Class

ByteCodes

MethodField

ClassClass

1

1 1 1 1

1

1
1-superclass -interfaces

Constant pool
entry

*

* *

*

5003_03.fm Page 63 Friday, November 9, 2001 2:13 PM

64 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

appear. So, the class java.lang.String will appear as either java/lang/
String or Ljava/lang/String; in the class file’s constant pool.

The fields and methods arrays also contain indices into the constant pool.
Again, these constant pool entries lead to the actual string names of the refer-
enced types, plus the string names of the methods and fields. If the referenced
type is a primitive, the VM uses a special single-character string encoding for the
type, as shown in Table 3–1. A method also contains a reference to the Java
bytecodes that implement the method. Whenever these bytecodes refer to an-
other class, they do so through a constant pool index that resolves to the string
name of the referenced class. Throughout the virtual machine, types are re-
ferred to by their full, package qualified string names. Fields and methods are
also referenced by their string names.

3.1.2.1 Analyzing Classes with javap
The details of binary class data structures are of interest to VM writers, and they
are covered in detail in the virtual machine specification [LY99]. Fortunately,
there are a large number of tools that will display information from the binary

Table 3–1 Virtual Machine Type Names

Java Type Virtual Machine Name

int I

float F

long J

double D

byte B

boolean Z

short S

char C

type[] [type

package.SomeClass Lpackage.SomeClass;

5003_03.fm Page 64 Friday, November 9, 2001 2:13 PM

TYPE INFORMATION AND REFLECTION 65

class format in a human-friendly form. The javap tool that ships with the SDK is
a simple class decompiler. Consider the simple Echo1 class:

public class Echo1 {

 private static final String prefix = "You said: ";

 public static void main(String [] args) {

 System.out.println(prefix + args[0]);

 }

}

If you run javap on the compiled Echo1 class, you will see output similar to
Listing 3–4. As you can see, the class format contains the class names, the
method names, and the parameter type names. The javap utility has a variety
of more verbose options as well, including the –c flag to display the actual byte-
codes that implement each method, shown in Listing 3–5. Without worrying
about what specific bytecodes do, you can easily see that the bytecode instruc-
tions refer to classes, fields, and members by name. The #10, #5, #1, and #8 in
the output are the indices into the constant pool; javap helpfully resolves these
indices so that you can see the actual strings being referenced.

Listing 3–4 Standard javap Output

>javap Echo

Compiled from Echo1.java

public class Echo1 extends java.lang.Object {

 public Echo1();

 public static void main(java.lang.String[]);

}

Listing 3–5 Javap Output with Bytecodes Included

>javap -c Echo1

 {output clipped for brevity}

Method void main(java.lang.String[])

0 getstatic #10 <Field java.io.PrintStream out>

3 new #5 <Class java.lang.StringBuffer>

6 dup

7 ldc #1 <String "You said: ">

9 invokespecial #8 <Method

java.lang.StringBuffer(java.lang.String)>

etc…

5003_03.fm Page 65 Friday, November 9, 2001 2:13 PM

66 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

3.1.3 From Binary Classes to Reflection
Java class binaries always contain metadata, including the string names for
classes, fields, field types, methods, and method parameter types. This meta-
data is used implicitly to verify that cross-class references are compatible. Both
metadata and the notion of class compatibility are built into the bones of the Java
language, so there is no subterranean level where you can avoid their presence.
By themselves, the binary compatibility checks provided by the virtual machine
would be sufficient to justify the cost of creating, storing, and processing class
metadata. In reality, these uses only scratch the surface. You can access the
same metadata directly from within your Java programs using the Reflection API.

3.2 Reflection
The Java Reflection API presents a Java interface to the metadata contained in
the binary class format. You can use reflection to dynamically discover the char-
acteristics of a Java class: its base class, superinterfaces, method signatures,
and field types. Better yet, you can use reflection to dynamically instantiate ob-
jects, invoke methods, and mutate fields. These features make it possible to
write generic object services that do not rely on, or even have advance knowl-
edge of, the specific classes they will be working on.

Reflection makes it straightforward to serialize an instance to a stream, gen-
erate relational database tables that correspond to a class’s fields, or create a
user interface that can manipulate instances of any arbitrary class. Reflection
can also be used to automatically generate source or compiled code that for-
wards method calls for a set of interfaces to a generic handler. This feature is in-
valuable for adding layers of code for logging, auditing, or security. Reflection
allows you to write service layers that do not require compile-time knowledge of
the specific systems they will support.

Some examples of reflection in the core API include serialization and Java-
Beans. Java can serialize class instances by writing their state into an opaque
stream to be reloaded in some other time or place. Java serialization works
even for classes that have not been written yet, because the serialization API
uses reflection to access class fields.

5003_03.fm Page 66 Friday, November 9, 2001 2:13 PM

TYPE INFORMATION AND REFLECTION 67

At the bare minimum, a JavaBean is a serializable class with a default con-
structor. However, bean-aware tools can use reflection to discover the proper-
ties and events associated with a bean. This means that tools can deal with
classes that they have never seen simply by reflecting against them.

Serialization and JavaBeans are powerful idioms, but they are still just idi-
oms. Their underlying architecture is reflection. If you understand reflection you
can develop your own idioms, more suited to your particular problem domain.

Most of the Reflection API lives in the java.lang.reflect package, but
the central class in reflection is the java.lang.Class class. A Class repre-
sents a single binary class, loaded by a particular class loader, within the virtual
machine. By using a Class instance as a starting point, you can discover all type
information about a class. For example, you might want to know all of a class’s su-
perclasses and superinterfaces. The ListBaseTypes class shown in Listing 3–6
uses the Class methods getInterfaces and getSuperclass to return a
class’s superinterfaces and superclass, and then it follows these recursively back
to the beginning, which is defined to be java.lang.Object for classes and
null for interfaces. Sample output for ListBaseTypes is shown in Listing 3–7.

Listing 3–6 The ListBaseTypes Class

public class ListBaseTypes {

 public static void main(String [] args) throws Exception

 {

 Class cls = Class.forName(args[0]);

 System.out.println("Base types for " + args[0]);

 listBaseTypes(cls, "");

 }

 public static void listBaseTypes(Class cls, String pref) {

 if (cls == Object.class) return;

 Class[] itfs = cls.getInterfaces();

 for (int n=0; n<itfs.length; n++) {

 System.out.println(pref + "implements " + itfs[n]);

 listBaseTypes(itfs[n], pref+"\t");

 }

 Class base = cls.getSuperclass();

 if (base == null) return;

 System.out.println(pref + "extends " + base);

 listBaseTypes(base, pref+"\t");

 }

}

5003_03.fm Page 67 Friday, November 9, 2001 2:13 PM

68 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Listing 3–7 Sample Output from ListBaseTypes

Base types for java.io.ObjectOutputStream

implements interface java.io.ObjectOutput

implements interface java.io.DataOutput

implements interface java.io.ObjectStreamConstants

extends class java.io.OutputStream

extends class java.lang.Object

3.2.1 Reflecting on Fields
A more interesting use of reflection is to discover the fields of a class. Fields are
represented by the java.lang.reflect.Field class. As Listing 3–8 shows,
the Field class contains all of the information from the original source code
declaration of a field: the field’s name, type, and modifiers. The Class class pro-
vides several methods for retrieving a class’s fields, shown in Listing 3–9.

Listing 3–8 Type Information in the Field Class

package java.lang.reflect;

public class Field {

 public String getName();

 public int getModifiers();

 public Class getType();

}//remainder omitted for clarity

Listing 3–9 Class Methods for Accessing Fields

package java.lang;

public class Class {

 public Field[] getDeclaredFields();

 public Field[] getFields();

 public Field getDeclaredField(String name)

 throws NoSuchFieldException;

 public Field getField(String name)

 throws NoSuchFieldException;

 //remainder omitted for clarity

}

3.2.2 The Difference between get and getDeclared
The Field methods of Class exhibit a pattern that occurs throughout the Re-
flection API: an accessor method named getXXX, plus a similar accessor
named getDeclaredXXX. These method forms differ in two ways. The

5003_03.fm Page 68 Friday, November 9, 2001 2:13 PM

TYPE INFORMATION AND REFLECTION 69

getXXX methods return only public members of a class, but they will return
members from a class and all of its base classes. The getDeclaredXXX meth-
ods will return all members of a class, regardless of protection modifier; how-
ever, they will not recurse to base classes. There is no compelling reason for or
against this convention; you simply must memorize it. The combination of get-
Fields and getDeclaredFields is not sufficient to access nonpublic base
class fields. As shown in Figure 3–2, in order to list all fields of a class and its
base classes, you need to use the getDeclaredField form and then also re-
curse to base classes using getSuperclass.

If you run ListMostFields (Listing 3–10) against String, you will see a
list of nine fields (on the Java 2 SDK1.3, anyway). This surprisingly large list is
due to the fact that the field APIs return static fields as well as instance fields. In
order to distinguish static from instance fields, or to discover any other field
modifiers, you must call getModifiers.

Listing 3–10 ListMostFields

import java.lang.reflect.*;

/**

 * lists all fields except superinterface fields

 * and fields from Object

 */

Figure 3–2 The difference between get and getDeclared

getFields getDeclaredFields

public class SuperHuman {
 public String name;
 private String secretIdentity;
}

public class SuperVillain
 extends SuperHuman {
 public Plan [] nefariousSchemes;
 private Plan ultimatePurpose;
}

5003_03.fm Page 69 Friday, November 9, 2001 2:13 PM

70 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

public class ListMostFields {

 public static void main(String [] args) throws Exception

 {

 Class cls = Class.forName(args[0]);

 System.out.println("Fields for " + args[0]);

 listMostFields(cls);

 }

 public static void listMostFields(Class cls) {

 if (cls == Object.class) return;

 Field[] fields = cls.getDeclaredFields();

 for (int n=0; n<fields.length; n++) {

 System.out.println(fields[n]);

 }

 Class base = cls.getSuperclass();

 if (base == null) return;

 System.out.println("extends " + base);

 listMostFields(base);

 }

}

The getModifiers call is one of the few places where Java thoroughly
shows its nuts-and-bolts C language heritage. Instead of returning a Modifiers
object, getModifiers returns an int that is a collection of bit flags. There ac-
tually is a java.lang.reflect.Modifiers class, but all it does is provide
constants and static methods to interpret the bit flags. So, you can determine
whether a Field is static by calling a static method on the Modifiers class
but not through an instance of Field itself, as shown here:

//this is correct

Modifiers.isStatic(f.getModifiers());

//These are intuitive possibilities, but will not compile!

f.isStatic();

f.getModifiers().hasStatic();

3.2.3 Type Errors Occur at Runtime
The getField and getDeclaredFields of Class request a particular
Field by name. These APIs introduce another wrinkle that recurs throughout re-
flection—the possibility that any call may fail at runtime. With “normal” nonreflec-
tive code, you get substantial feedback at compile time. If you reference a field

5003_03.fm Page 70 Friday, November 9, 2001 2:13 PM

TYPE INFORMATION AND REFLECTION 71

that does not exist, the compiler will simply refuse to compile the class. With re-
flection, you are querying for the existence of a field at runtime, and you must be
prepared for the possibility of failure at runtime. The getField and getDe-
claredField methods remind you of this possibility by throwing the checked
exception NoSuchFieldException. This is the blessing and curse of reflec-
tive programming. You can use reflection to refer to classes that do not even ex-
ist at compile time, but you must remember that the compiler is powerless to
protect you from misusing such classes.

Listing 3–11 Type Information in the Method and Constructor Classes

//these methods appear in both

//java.lang.reflect.Method and

//java.lang.reflect.Constructor

public String getName();

public int getModifiers();

public Class getReturnType();

public Class[] getParameterTypes();

public Class[] getExceptionTypes();

3.2.4 Reflecting on Methods
You can use reflection to access methods in a fashion very similar to accessing
fields. Methods are represented by the java.lang.reflect.Method class,
which preserves the information from the method signature in the original Java
source code file, as shown in Listing 3–11. Finding Method objects is slightly
more complex than finding Field objects because Method names can be over-
loaded. The Class APIs for Methods, shown in Listing 3–12, require that you
specify argument types in addition to the method name. In addition to argument
types, the Method class also lets you access the return type and checked ex-
ceptions thrown by a method.

Listing 3–12 Class Methods for Accessing Methods and Constructors

//java.lang.Class methods for accessing Methods

//versions that take a name throw NoSuchMethodException

public Method getDeclaredMethod(String name, Class[]

 parameterTypes);

public Method getMethod(String name,

 Class[] parameterTypes);

5003_03.fm Page 71 Friday, November 9, 2001 2:13 PM

72 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

public Method[] getDeclaredMethods();

public Method[] getMethods();

//methods for accessing Constructors

public Constructor getDeclaredConstructor(Class[]

 parameterTypes);

public Constructor getMethod(Class[] parameterTypes);

public Constructor[] getDeclaredConstructors();

public Constructor[] getConstructors();

The rules for Methods are exactly the same as for Fields—the getDeclared
versions of the APIs ignore protection modifiers, while the get versions return
public members for the class and its base classes. The Constructor APIs work
almost exactly like the Method APIs, but since the name of a constructor is im-
plicit, the name parameter is absent from the Constructor-related methods.

3.3 Reflective Invocation
The Reflection API’s ability to report the fields, methods, and constructors of a
class is a very useful feature for the authors of Java development environments.
For example, Java IDE wizards can automatically generate empty implementa-
tions of an interface for you to fill in. Java reflection makes this simple, whereas
with many other languages, the development environment must build its own
custom metadata representation to provide these services. While reflective re-
porting is a nifty parlor trick, the real power of reflection lies elsewhere, in the in-
vocation APIs. With reflective invocation, you can access or change the value of
a field and you can even invoke a method without any compile-time knowledge of
the classes involved.

The invocation portion of the Reflection API uses the Field, Method, and
Constructor classes to query and modify the state of Java classes and in-
stances at runtime. This ability can be used to emulate function pointers, which
do not exist in Java. Invocation can also be used as a substitute for inheritance.
Instead of casting an object to a known interface type, you simply reflect against
the class to see if it implements a particular method. Reflective invocation is
also critical in crossing class loader boundaries. If you have a reference to a
type that is not visible to your class loader delegation, you can use reflection to
access that type’s fields, constructors, and methods.

5003_03.fm Page 72 Friday, November 9, 2001 2:13 PM

TYPE INFORMATION AND REFLECTION 73

The reflective invocation APIs share several common elements. Because
they are invoked on instances of Field, Method, or Constructor, they do
not have an implicit this reference to the actual type being modified, and they
must specify the this reference as an explicit parameter. Because reflective in-
vocation APIs do not know the parameter types in advance, parameters are
specified as Object or arrays of Object. Similarly, return types are always of
type Object. Finally, reflective invocation cannot know in advance what
checked exceptions might be thrown by a method, so all exceptions are caught
by the APIs and rethrown as some wrapper type. The key reflective invocation
APIs are summarized in Listing 3–13.

Listing 3–13 Key Reflective Invocation APIs

//all invocation APIs may throw

//IllegalArgumentException, IllegalAccessException

//from java.lang.reflect.Field

public Object get(Object this);

public void set(Object this, Object value);

//from java.lang.reflect.Method

public Object invoke(Object this, Object[] args)

 throws InvocationTargetException

//from java.lang.reflect.Constructor

public Object newInstance(Object[] args)

 throws InstantiationException,

 InvocationTargetException

3.3.1 A Reflective Launcher
As an example of a situation in which the Reflection API is essential, consider
the RunFromURL class shown in Listing 3–14. RunFromURL is very similar to
the Java launcher except that it loads a class from a URL passed on the com-
mand line instead of from the classpath. The meat of the code is the run
method, which uses getMethod to find a method with the signature
main(String[] args) and then invokes that method with a null reference

5003_03.fm Page 73 Friday, November 9, 2001 2:13 PM

74 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

for this (since the method is assumed to be static)3 and an array of argu-
ments from the command line. RunFromURL can execute the main method of
any arbitrary class. Moreover, reflection is the only way this can be accom-
plished. RunFromURL cannot directly reference the class to be loaded. If Run-
FromURL referenced the class directly, implicit class loading would cause the
class to be loaded from the classpath, which would defeat RunFromURL’s abil-
ity to dynamically load classes from a location chosen at runtime.

Listing 3–14 RunFromURL

//imports, error checking removed for brevity

public class RunFromURL {

 public static void run(String url, String clsName,

 String[] args) throws Exception

 {

 URLClassLoader ucl = new URLClassLoader(new URL[]

 {new URL(url)});

 Class cls = ucl.loadClass(clsName);

 Class argClass = String[].class;

 Method mainMeth = cls.getMethod("main",

 new Class[]{argClass});

 mainMeth.invoke(null, new Object[]{args});

 }

 public static void main(String [] args) throws Exception

 {

 int argCount = args.length-2;

 String[] newArgs = new String[args.length-2];

 for (int n=0; n<argCount; n++) {

 newArgs[n] = args[n+2];

 }

 run(args[0], args[1], newArgs);

 }

}

3.3.2 Wrapping Primitive Types
The syntax shown so far works fine for object types, but what about methods
and fields that utilize primitive types? Java includes a set of primitive types
(short, long, byte, boolean, double, float, int, and char) that can be

3. A production version should use the Modifiers class to make sure the method actually is static.

5003_03.fm Page 74 Friday, November 9, 2001 2:13 PM

TYPE INFORMATION AND REFLECTION 75

represented directly in memory without the overhead of extending Object.
These types pose a problem for reflection because the invocation APIs have ge-
neric signatures based on Object and Object[]. To enable the use of primi-
tive types in reflective invocation, each primitive type in Java has a
corresponding immutable class in the java.lang package. If you want to use
reflection to call a method that takes a primitive type, you must use an instance
of one of the wrapper classes instead. So for a hypothetical method

int add(int n1, int n2);

you would use the following reflective syntax:

//to reflectively add ints n1 and n2

Object[] args = new Object[]{new Integer(n1),

 new Integer(n2)};

Integer temp = (Integer) addMethod.invoke(args);

int result = temp.intValue();

Before calling add, you must “box” the int parameters as Integers. Then,
you must take the result of the call, cast it to Integer, and then “unbox” it to an
int. This is inconvenient but necessary given the dual nature of numeric types
in Java.

A related issue is the process of requesting a method with primitive types in
its signature. Given that reflective invocation must use Integer wherever int
was originally specified, how can getMethod distinguish between the two signa-
tures shown in Listing 3–15? Even though both of these methods would be reflec-
tively invoked with the same argument types, there is a way to distinguish
between them to getMethod and related methods. Integer, like any other
Java class, can be represented by its corresponding pseudo-literal, in this case
Integer.class. For reflection purposes, the primitive types, such as int,
have a special Class representation that is the static TYPE constant of the cor-
responding wrapper class. So, you should use Integer.class to request an
Integer but Integer.TYPE to request an int, as Listing 3–15 demonstrates.

Listing 3–15 Finding Methods That Use Primitive Types

//two methods differing only in wrapper vs. primitive

public Integer add(Integer n1, Integer n2);

public int add(int n1, int n2);

5003_03.fm Page 75 Friday, November 9, 2001 2:13 PM

76 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

//to access the wrapper version

Class[] wcls = new Class[]{Integer.class,Integer.class};

Method methWrapper = cls.getMethod("add", wcls);

//to access the primitive version

Class[] pcls = new Class[]{Integer.TYPE,Integer.TYPE};

Method primitiveWrapper = cls.getMethod("add", pcls);

3.3.3 Bypassing Language Access Rules
The rules for dealing with primitive types are arbitrary but raise no interesting de-
sign questions. A more challenging design issue is deciding how to enforce lan-
guage access rules during reflective invocation. In normal Java programming,
member access is controlled by the public, private, and protected key-
words, plus the implied package-private setting if no keyword is specified. If you
attempt to access a member whose access is restricted, compilation will fail.
With reflective invocation, there is no way to know the protection modifier of a
method at compile time. At runtime, the virtual machine can use class metadata
to determine the protection modifier, and it can possibly prevent the operation
being attempted.

If a piece of code attempts to use reflection to access a member that it
would not have been allowed to access from compiled Java code, should the op-
eration be allowed to proceed? The initial intuition is “no!” There are at least two
good reasons to enforce the language protection rules during reflective invoca-
tion. First, reflection should not act as a back door to compromise encapsula-
tion. It is both a design flaw and a security risk to open private members to code
outside of a class. Second, reflection should obey the common-sense rule of
least surprise. If the language works a certain way during normal method invoca-
tion, reflective invocation should mimic that behavior to the extent possible.

3.3.3.1 Using setAccessible
Despite these arguments in favor of limiting reflection, reflective code some-
times needs to bypass Java’s protection modifiers in order to implement low-
level subsystems that provide services for arbitrary Java classes. For example,
one use of the Reflection API is for generic persistence services for instances. A

5003_03.fm Page 76 Friday, November 9, 2001 2:13 PM

TYPE INFORMATION AND REFLECTION 77

generic persistence layer that did not persist the entire state of an object, includ-
ing private members, would not be very generic. However, the design of the Re-
flection API also addresses the concerns raised previously about blithely
accessing private data. The rules for language-level access checks provide
something for everybody:

1. By default, reflective invocation does not bypass language access checks. If
you attempt to access a private, package-private, or protected member that
you could not access normally, reflection will fail with an IllegalAc-
cessException. This preserves the rule of least surprise.

2. If you want to bypass language-level access checks, you can request this
ability by calling setAccessible(true) on an AccessibleObject
(see Listing 3–16). The reflection classes Field, Method, and Con-
structor all extend AccessibleObject. This allows a service like an
XML serializer to gain access to all of an object’s state.

Listing 3–16 AccessibleObject

// from java.lang.reflect.AccessibleObject

package java.lang.reflect;

public class AccessibleObject {

 //request permission to bypass access checks

 public void setAccessible(boolean flag)

 throws SecurityException;

 //bypass access checks for several items in one shot

 public static void setAccessible(AccessibleObject[]

 arr, boolean flag);

 //remainder omitted for clarity

}

You can control which code is allowed to call setAccessible by installing a
SecurityManager for a process.4 The setAccessible method provides a
convenient chokepoint for a security check, and the default security implementa-
tion will prevent application code from calling setAccessible, while allowing
system code to do so.

To see these rules in action, consider a Reporter’s attempts to discover a
Superhero’s secret identity, shown in Listing 3–17. The Reporter wants to

4. See [Gon99] for a detailed treatment of Java 2 Platform Security.

5003_03.fm Page 77 Friday, November 9, 2001 2:13 PM

78 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

retrieve the Superhero’s secretIdentity field via reflection, thus bypassing
the fact that the field is private. If you execute this code as is, it will fail with an Il-
legalAccessException. In order to bypass the language check, add a call to
secret.setAccessible(true) before the call to secret.get(s). With this
call in place, reflection will bypass the language access check and return the pri-
vate field. However, if you turn security on with the java.security.manager
flag, the call to setAccessible will fail with an AccessControlException as
it does here:

>java –cp classes –Djava.security.manager Reporter

java.security.AccessControlException: access denied

(java.lang.reflect.ReflectPermission suppressAccessChecks)

Listing 3–17 Misusing Reflection to Access a Private Field

public class Superhero {

public class Superhero {

 public final String name;

 private final String secretIdentity;

 public Superhero(String name, String secretIdentity) {

 this.name = name;

 this.secretIdentity = secretIdentity;

 }

}

public class Reporter {

 public static void main(String [] args)

 throws Exception {

 Superhero s = new Superhero("ReflectionMan",

 "Brian Maso");

 hackIdentity(s);

 }

 public static void hackIdentity(Superhero s)

 throws Exception {

 Field secret = Superhero.class.

 getDeclaredField("secretIdentity");

 System.out.println("Identity is " + secret.get(s));

 }

}

To call setAccessible when security is enabled, you must have the sup-
pressAccessChecks permission. By default, code that is in the core API or

5003_03.fm Page 78 Friday, November 9, 2001 2:13 PM

TYPE INFORMATION AND REFLECTION 79

the extensions directory will have the suppressAccessChecks permission
and be able to perform services such as serializing an object’s private state. Ap-
plication code loaded from the classpath or via a URLClassLoader will not
have this permission, and therefore, it will be unable to inadvertently manipulate
an object’s implementation details.

3.3.3.2 Reflective Modification of Final Fields
Given that reflection sometimes has a legitimate reason to modify private
fields, it is also logical to consider whether reflection might need to modify fi-
nal fields. Before you look at how Java actually handles this today, consider the
problem. Imagine a Person class that wanted to have some immutable fields:

public class Person {

 private final String name;

 private final String socialSecurityNo;

 //etc...

}

Now consider what would happen if you wanted to write a generic mechanism to
instantiate Person from a row in a database. There are three approaches that
might work:

1. You could use reflection to instantiate a Person and then assign its fields.
However, since some of the fields are final, this would require that the reflec-
tion APIs be designed with the ability to modify final fields. Many people
argue that this ability is counter to the very definition of final.

2. You could use a native method to instantiate a Person and then assign its
fields. The Java Native Interface (JNI) includes APIs to do all sorts of things
that would be illegal in Java, including instantiating objects without running
their constructors and modifying final fields. The major downside to this
approach is that you have to develop and deploy native code.

3. You could require that the Person class provide an “all-fields constructor”
that would simply pass through an initial value for every single field in the
object. Generic services, such as the hypothetical database code, would use
reflection to invoke this special constructor. The constructor probably would
not be used during normal operation, and in fact, you could mark it pri-
vate to guarantee this. This approach has neither of the disadvantages of

5003_03.fm Page 79 Friday, November 9, 2001 2:13 PM

80 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

the first two. Because constructors are allowed to set final fields, reflection
does not need the ability to subvert final semantics. Also, no native code is
required. The problem with this approach is that it requires the author of a
class to explicitly write a special constructor in order to use serialization. The
first two approaches simply leverage metadata and require no assistance
from the classes that want generic services.

None of these solutions is ideal, and the Java language is still evolving in this
area. Prior to SDK version 1.3, the first approach was used. The setAccessi-
ble method gave permission to modify final fields, and APIs such as serializa-
tion leveraged reflection. This led to some very confusing situations, as
demonstrated in Listing 3–18.

Listing 3–18 Reflectively Modifying final Fields Is a Bad Idea.

import java.lang.reflect.*;

public class LimitedInt {

 public static void main(String[] args) throws Exception

 {

 System.out.println("Integer.MAX_VALUE=" +

 Integer.MAX_VALUE);

 Field mv = Integer.class.getField("MAX_VALUE");

 mv.setAccessible(true);

 mv.set(null, new Integer(42));

 System.out.println("Retest: MAX_VALUE=" +

 Integer.MAX_VALUE);

 System.out.println("Reflective: MAX_VALUE=" +

 mv.get(null));

 }

}

Prior to SDK 1.3, setAccessible worked for final fields, and it was ac-
tually possible to change Integer.MAX_VALUE! This was made doubly confus-
ing because Java compilers typically optimize static final primitive type
declarations by inlining any access. So, even though you could change the value
of MAX_VALUE seen by reflection, you could not change the value of
MAX_VALUE where that constant was referenced in a class. On SDK 1.2, the
code in Listing 3–18 prints the following:

5003_03.fm Page 80 Friday, November 9, 2001 2:13 PM

TYPE INFORMATION AND REFLECTION 81

Integer.MAX_VALUE=2147483647

Retest: MAX_VALUE=2147483647

Reflective: MAX_VALUE=42

SDK 1.3 removed reflection’s ability to change final fields. In the case of
static final fields, this was definitely a step in the right direction. However,
this also broke the approach to serialization that leveraged reflection to populate
instance fields for classes like Person. In order to get around this new limita-
tion, services like serialization switched to the second approach detailed earlier,
using native methods to populate fields. This is not likely to be the final word on
the subject. The proposed changes to Java’s memory model would remove even
the ability of native code to modify final fields (see [JMM] for details). If the
new model is adopted, then the third approach might become necessary; this
would require class authors to provide a special constructor for serializable
classes that have final fields.

3.3.4 Exceptions Caused by Reflective Invocation
As mentioned above, attempts to bypass language restrictions without calling
setAccessible(true) will generate an IllegalAccessException. Il-
legalAccessException is one of several exceptions that reflective invoca-
tion throws to indicate a problem that normal code would catch at compile time.
Another example is IllegalArgumentException, used to indicate that a
method argument is invalid. This will occur if one of the Objects in the array
passed to invoke cannot be converted to the correct type for the underlying
method. If you try to use reflection to instantiate an abstract class, Class will
throw an InstantiationException.

Taken together, these three exception types are the reflection equivalent of
the compiler’s enforcement of language rules. While setAccessible can by-
pass the access rules, there is no way to get around the situations that cause
an IllegalArgumentException or an InstantiationException. You
must always pass arguments of the correct type, and you can never instantiate
abstract classes.

5003_03.fm Page 81 Friday, November 9, 2001 2:13 PM

82 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Another situation where reflection may throw an exception is if the underlying
method or constructor throws an exception. If this occurs, one of three things
will happen:

1. If a method throws an unchecked exception, such as an Error or Run-
timeException, then this exception will be passed unmodified through
the reflection layer to the caller. This behavior is no different from ordinary
method invocation, where unchecked exceptions do not require an explicit
catch block.

2. A method may throw a declared checked exception. This is a problem for
reflection because checked exceptions must be declared in a method signa-
ture, and reflection does not know a method’s signature at compile time.
The reflection APIs catch checked exceptions and convert them into a
checked type InvocationTargetException that is declared in the
signature of Method.invoke. This situation occurs frequently and leads
to a special idiom on the part of the caller, as shown in Listing 3–19. Invo-
cationTargetException is a reflection-provided wrapper class that
can access the original exception via getTargetException. A client is
typically more interested in the original exception, which indicates what went
wrong, than it is in the InvocationTargetException, which only indi-
cates that reflection was involved. As the sample shows, reflective clients
will frequently catch InvocationTargetException, extract the origi-
nal exception, cast it to some type expected by the caller, and rethrow.

3. A method may throw a checked type that it did not declare. If this happens,
invoke will convert the exception into the unchecked type Unde-
claredThrowableException. This situation is extremely rare since the
compiler will prevent a class from compiling if it tries to throw a checked
exception that it did not declare. UndeclaredThrowableException
indicates either a version mismatch caused by a partial recompile, or a cor-
rupted binary class.

Listing 3–19 Extracting the “Real” Exception

//invokes some I/O method unknown at compile time

public void reflectiveIO(Method m, Object this,

 String fileName) throws IOException

{

 try {

 m.invoke(this, new Object[]{filename});

5003_03.fm Page 82 Friday, November 9, 2001 2:13 PM

TYPE INFORMATION AND REFLECTION 83

 }

 catch (InvocationTargetException ite) {

 throw (IOException) ite.getTargetException();

 }

}

3.4 Dynamic Proxies
Dynamic proxies, available since SDK 1.3, are the exact opposite of reflective in-
vocation. With reflective invocation, a client uses a generic API to call methods
(on a server class) that are not known at compile time. With dynamic proxies, a
server uses a generic API to implement methods on a server class that is manu-
factured at runtime to meet a client’s specification. Dynamic proxies are chame-
leons that take the shape of any set of interfaces desired by the client. When
combined with reflective invocation, dynamic proxies can implement generic in-
terceptors. An interceptor is a piece of code that sits between a client and a
server and adds an additional service, such as transaction enlistment, auditing,
security checking, or parameter marshalling. A generic interceptor requires no
compile-time knowledge of the client or server APIs being intercepted.

3.4.1 Delegation instead of Implementation Inheritance
Generic interception makes it possible to use an object-oriented style based not
just on inheritance, but also on delegation. Consider an entity class that ac-
cesses employee information from a database. If you wanted to use inheritance
to layer in transaction enlistment, auditing, and security checks, you would need
to use multiple inheritance. After pointing out that multiple implementation inher-
itance does not exist in Java, you might also object to the fact that this design
would require eight different concrete subclasses of Employee, one each for
every possible service being turned on or off, as shown in Figure 3–3. In gen-
eral, adding another service doubles the number of concrete subclasses you
need.

With delegation, each new service adds only one class, and classes are sim-
ply chained together to provide the exact mix of services needed, as shown in
Figure 3–4.

5003_03.fm Page 83 Friday, November 9, 2001 2:13 PM

84 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

3.4.2 Dynamic Proxies Make Delegation Generic
Historically, the problem with the delegation model was how to make each ser-
vice generic. For example, an Audit class would need to implement Employ-
eeItf when it was dealing with an Employee entity, but it would need to

Figure 3–3 Implementation inheritance causes class proliferation.

Figure 3–4 Delegation requires only one class per service.

Transactable Auditable Securable

Audited
employee

Employee
Transacted
employee

Transacted,
audited

employee

Transacted,
audited,
secured

employee

Secured,
audited

employee

Transacted,
secured

employee

Secured
employee

Mixin classes

Concrete classes

Audit
service

Security
service

Transaction
service

Employee

Client
Security
service

Employee

Classes needed when implementing services by delegation

One example runtime combination: a secured employee

5003_03.fm Page 84 Friday, November 9, 2001 2:13 PM

TYPE INFORMATION AND REFLECTION 85

implement InventoryItf when it was dealing with the Inventory entity.
Also, the service classes would need to implement interfaces that had not even
been designed yet. Dynamic proxies neatly solve this problem by allowing the
transaction class to manufacture an implementation of whatever interface the
client expects at runtime.

To manufacture a dynamic proxy, you need only call Proxy.newProxyIn-
stance, passing in an implementation of the InvocationHandler interface.
Summaries of these classes appear in Listing 3–20. The newProxyInstance
method manufactures a new binary class in memory. This special class imple-
ments all the interfaces passed in the itfs array by forwarding every single
method to an instance of InvocationHandler. Then, the new class is loaded
into the virtual machine by the class loader specified by ldr, and it is used to
construct a proxy instance that forwards to handler.

Listing 3–20 Key Elements of Proxy and InvocationHandler

package java.lang.reflect;

public class Proxy {

 static Object newProxyInstance(ClassLoader ldr,

Class[] itfs, InvocationHandler handler)

 throws IllegalArgumentException;

 //remainder omitted for clarity

}

public interface InvocationHandler {

 public Object invoke(Object proxy, Method method,

 Object[] args) throws Throwable;

}

3.4.3 Implementing InvocationHandler
Dynamic proxies allow you to implement a single invoke method on the invoca-
tion handler and then use it to service any interface you choose at runtime. For
example, consider an InvocationHandler that logs method calls, shown in
Listing 3–21. This LoggingHandler class provides a trivial implementation of
any interface that simply logs method calls as they are made. DemoLogging
demonstrates using the LoggingHandler to log calls to DataOutput. One
possible use for LoggingHandler is during development, when you need to
stub out an interface that you have not yet implemented.

5003_03.fm Page 85 Friday, November 9, 2001 2:13 PM

86 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Notice that the toString method is treated specially. In addition to any in-
terface methods, dynamic proxies always forward the Object methods
toString, hashCode, and equals to the handler. In this case, the proxy’s
toString method is invoked by the handler’s call to System.out.println.
If the toString method were not special-cased, the call to toString would
trigger the invoke method of LoggingHandler, which triggers another call to
toString, and so on, recursing until the stack overflowed.

Listing 3–21 LoggingHandler

import java.lang.reflect.*;

public class LoggingHandler implements InvocationHandler {

 public Object invoke(Object proxy, Method method,

 Object[] args) throws Throwable

{

 if (method.getName().equals("toString")) {

 return super.toString();

 }

 System.out.println("Method " + method +

 " called on " + proxy);

 return null;

 }

}

import java.lang.reflect.*;

import java.io.*;

public class DemoLogging {

 public static void main(String [] args)

 throws IOException

 {

 ClassLoader cl = DemoLogging.class.getClassLoader();

 DataOutput d = (DataOutput) Proxy.newProxyInstance(cl,

 new Class[] {DataOutput.class},

 new LoggingHandler());

 d.writeChar('a');

 d.writeUTF("stitch in time");

 }

}

3.4.4 Implementing a Forwarding Handler
Although “standalone” dynamic proxies such as LoggingHandler are useful,
they suffer from a major limitation in dealing with return values. Because they

5003_03.fm Page 86 Friday, November 9, 2001 2:13 PM

TYPE INFORMATION AND REFLECTION 87

are totally generic, InvocationHandlers have no idea how to generate a le-
gitimate return value for a method call. LoggingHandler finesses this issue by
always returning null, which the generated proxy class will coerce to the return
type of the interface method. In Listing 3–21, the DataOutput methods hap-
pen to return void, so the generated proxy simply ignores the return from Log-
gingHandler’s invoke method. This coincidence will not hold up in more
complex cases, those in which methods might return any type, and the compile-
time type might need to be further constrained at runtime in accordance with the
documented semantics of the method. In order to reasonably mimic any arbi-
trary interface, a dynamic proxy will either need to know the semantics of the in-
terface, or it will need to forward the method call to some other object that
does. Since the raison d’être of a proxy is to be generic, knowing the specifics
on an interface is not an option. Instead, most dynamic proxies are used to for-
ward calls to other objects.

The strength of dynamic proxies is method call forwarding. A dynamic proxy
can intercept a method call, examine or modify the parameters, pass the call to
some other object, examine or modify the result, and return that result to the
caller. When correctly configured, dynamic proxies work transparently without
the knowledge of either the client or server code.

Figure 3–5 shows how a dynamic proxy enables generic services. A generic
service implements only one method, InvocationHandler.invoke, and for-
wards the call using only one method, Method.invoke. Without changing, or
even reading, any existing implementation code, you can insert a dynamic proxy
between two objects to inject some additional service.

3.4.5 The InvocationHandler as Generic Service
To appreciate the power and simplicity of this model for reuse, imagine the fol-
lowing scenario: A large server application has been ported to Java and con-
tinues to access legacy code through a bridge that presents the legacy code
as a set of Java interfaces. Unfortunately, the legacy code was written in a
pointer-based language and experiences occasional memory corruption. The
specific symptom is that methods sometimes return the java.util.Date

5003_03.fm Page 87 Friday, November 9, 2001 2:13 PM

88 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

“Thu Dec 25 07:42:41 EST 1969.”5 Your task is to guarantee that this bug
does not introduce corrupt data into the application.

With dynamic proxies, you can add an interceptor that traps all attempts to
return the offending value, as is shown in Listing 3–22. Here, a TrappingHan-
dler forwards all method calls to its delegate. If the delegate functions un-
exceptionally and returns an object, the handler checks to see if it is a Date
instance indicative of the memory corruption bug. If it is, then the handler might
throw an error, as the example shows, or it might take whatever other action
may be necessary.

Listing 3–22 TrappingHandler

import java.lang.reflect.*;

import java.util.*;

public class TrappingHandler implements InvocationHandler {

 //BAD_DATE is "Thu Dec 25 07:42:41 EST 1969"

 //This value corresponds to an error code on some systems

 public static final Date BAD_DATE = new Date(-559038737);

 private Object delegate;

 public TrappingHandler(Object delegate) {

 this.delegate = delegate;

 }

Figure 3–5 Dynamic proxies enable generic services.

5. Bonus points will be awarded for figuring out why this particular date value is likely to indicate
memory corruption.

Client
object

Generic
service

Server
object

invoke invoke

method3

method2

method1

method3

method2

method1

Generated
proxy

5003_03.fm Page 88 Friday, November 9, 2001 2:13 PM

TYPE INFORMATION AND REFLECTION 89

 public Object invoke(Object proxy, Method method,

 Object[] args) throws Throwable {

 Object result = null;

 try {

 result = method.invoke(delegate, args);

 } catch (InvocationTargetException e) {

 throw e.getTargetException();

 }

 if (result instanceof Date) {

 Date d = (Date) result;

 if (d.equals(BAD_DATE)) {

 throw new Error("Corrupted date " + d);

 }

 }

 return result;

 }

}

3.4.6 Handling Exceptions in an InvocationHandler
It is important to code carefully against the possibility that the delegate will it-
self throw an exception. Because the handler is generic, you have no compile-
time knowledge of what particular exceptions the delegate might throw. How-
ever, since the delegate’s methods are invoked via reflection, any exception
will be wrapped by an InvocationTargetException. You should not let this
exception percolate out of the dynamic proxy code.

The dynamic proxy provides some help here. Since a proxy wants to be
transparent to the client, it will only permit exceptions that the client expects. To
enforce this, a proxy compares any thrown exception to the list of checked ex-
ceptions for the current method. If an exception is not in the list, a proxy will
wrap it in an UndeclaredThrowableException, which is a RuntimeEx-
ception subclass that signals a programmer error.

To complete the illusion of transparency, your InvocationHandler must
not give the proxy any reason to throw an UndeclaredThrowable Excep-
tion. Therefore, the canonical implementation of a forwarding proxy includes a
try/catch block that catches the InvocationTargetException and then ex-
tracts and throws the underlying exception, which is the one the client expects.
Refer back to Listing 3–22, which demonstrates this.

5003_03.fm Page 89 Friday, November 9, 2001 2:13 PM

90 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

3.4.7 Either Client or Server Can Install a Proxy
Either the client or the server code can wrap suspicious objects with the Trap-
pingHandler before using them. In the TestTrappingHandler example
(Listing 3–23), the client wraps an instance of the Test interface. If either get-
GoodDateValue or getBadDateValue of the Test interface return a bad
date, the handler will protect the client by throwing an exception. More impor-
tantly, the same TrappingHandler can be used throughout a system to pro-
tect any number of different interfaces and implementation classes.

You could make the proxy code transparent to both client and server by us-
ing an object factory to hide the details of connecting client and server code.

Listing 3–23 Testing a TrappingHandler

//Test.java

import java.util.*;

interface Test {

 Date getGoodDateValue();

 Date getBadDateValue();

}

//TestTrappingHandler.java

import java.lang.reflect.*;

import java.util.*;

public class TestTrappingHandler implements Test {

 public static void main(String [] args) {

 TestTrappingHandler t = new TestTrappingHandler();

 System.out.println("Testing unwrapped object.\n" +

 "This should permit date value " +

 TrappingHandler.BAD_DATE);

 executeTests(t);

 Test wrap = (Test)Proxy.newProxyInstance(

 TestTrappingHandler.class.getClassLoader(),

 new Class[]{Test.class}, new TrappingHandler(t));

 System.out.println("Testing wrapped object.\n" +

 "This should reject date value " +

 TrappingHandler.BAD_DATE);

 executeTests(wrap);

 }

5003_03.fm Page 90 Friday, November 9, 2001 2:13 PM

TYPE INFORMATION AND REFLECTION 91

 public Date getGoodDateValue() {

 return new Date();

 }

 public Date getBadDateValue() {

 return TrappingHandler.BAD_DATE;

 }

 public static void executeTests(Test t) {

 System.out.println(t.getGoodDateValue());

 System.out.println(t.getBadDateValue());

 }

}

3.4.8 Advantages of Dynamic Proxies
Dynamic proxies do not provide any service that you could not provide yourself
by hand-coding a custom delegator class for every different interface. The ad-
vantage of dynamic proxies over hand-rolled delegators is twofold. First, you do
not have to write dynamic proxies. Second, they can be generated on-the-fly at
runtime to handle new interfaces as they appear. Because dynamic proxies are
generic, they tend to be used for services that do not rely on any specific knowl-
edge of the interface or method being forwarded:

• Parameter validation or modification, where a parameter value is of interest
regardless of where it appears, as in the example above

• Security checks, some of which can be made based on the identity of the
user or the source of the code, not the particular method being called

• Propagation of “implicit” or “context” parameters, such as the transaction
ID, which is automatically handled by an EJB container and does not appear
in any interface declaration

• Auditing, tracing, or debugging of method calls

• Marshalling a Java method call to some other process, machine, or lan-
guage

Like any generic tool, dynamic proxies may be inefficient compared to a solution
hand-tuned to a particular problem. Situations in which performance consider-
ations may rule out the use of dynamic proxies are discussed in §3.5.

5003_03.fm Page 91 Friday, November 9, 2001 2:13 PM

92 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

3.5 Reflection Performance
Reflective invocation is slower than direct method invocation. Similarly, using dy-
namic proxies as a generic forwarding device results in slower code than manu-
ally crafting interface-specific delegation code does. When is the performance
penalty acceptable? Programmers who are used to dynamic, interpreted runtime
environments are already accustomed to dynamic programming styles and see
uses for reflection everywhere. On the other hand, programmers who are used
to the performance of a strongly typed, compiled language often laugh at the
slow speed of reflection and reject it outright.

The truth lies somewhere in between. Reflection is best suited for writing
“glue”—code that sits at the boundaries between disparate classes, packages,
and subsystems. If your task description includes words such as “adapter” or
“decorator,” then reflection may be a good fit. But reflection is not well suited for
code on the critical path in an application. If your task vocabulary tends more to-
ward “inner loop” or “heavy recursion,” avoid reflection. This section presents
some order-of-magnitude estimates of reflection performance, and then it gives
some specific examples of where it should and should not be used.

Before directing your attention to some performance numbers, I must begin
with some major caveats about their use. Evaluating a system’s performance is
a tricky task. Many factors impact the execution speed of even a simple Java ap-
plication: virtual machine, processor speed, available memory, memory speed,
OS, OS version, and other applications that are also running.

Because of these complexities, measurement is essential. Do not rely on in-
tuition. Programmers’ intuitions about performance are reliable only to within
about six orders of magnitude. If you need better precision than that, you must
measure. In Java, even measurement can be tricky. The virtual machine intro-
duces yet another layer of indirection between you and the Platonic ones and ze-
roes. As of SDK version 1.3, the virtual machine (HotSpot) is adaptive over time,
so short-run tests can grossly misrepresent long-run behaviors.

Fortunately, there is some value even in very rough measurements. For the
purpose of deciding where reflection might fit into a program design, it is suffi-
cient to have some order-of-magnitude, relative measurements. The test har-
ness used to make the following measurements is the Timer class from the

5003_03.fm Page 92 Friday, November 9, 2001 2:13 PM

TYPE INFORMATION AND REFLECTION 93

com.develop.benchmark package, which is included in the sample code for
this book [Hal01].

Table 3–2 lists order-of-magnitude comparisons for reflective and nonreflec-
tive tasks. These tests were made on the HotSpot 1.3 client virtual machine,
with JIT enabled, on a Pentium2-450 running Windows NT 4.0 server. However,
the conclusions I plan to draw are very limited, and they should hold for a wide
variety of virtual machines and hardware. First, notice that direct access to a
field and direct invocation of a virtual method are very fast, in the ones and tens
of nanoseconds respectively. This is getting reasonably close to a single opera-
tion per processor tick since the P450’s clock ticks in a little over two nanosec-
onds. When you switch to reflective field access, reflective method invocation,
or invocation through a dynamic proxy, you will notice that they all impose a stiff
penalty, taking in the tens of microseconds to execute. This is the statistic that
causes systems programmers to scoff and abandon reflection.

Table 3–2 Rough Estimate of Reflection Performance

Operation Tested Time (Nearest Power of 10 nsec)

Increment integer field 100

Invoke a virtual method 101

Invoke through a manual delegate 101–102

Reflective method invocation*

*Reflective method invocation actually involves three steps: getting a Method object with a call to get-
Method, boxing the arguments into an array of Object, and calling invoke. Many reflection-based systems
make only a single call to getMethod followed by many calls to invoke, so it may not always be appropriate
to include the getMethod overhead in the per-call timings. In my tests, the costs with getMethod included
were closer to 105 nsec, and the costs just for boxing the arguments and calling the method were closer to
104 nsec.

104-–105

Invoke through a proxy delegate 104–105

Reflectively increment integer field 104–105

RMI call on a local machine 105

Open, write, close a file 106

Light travels 3000km 107

5003_03.fm Page 93 Friday, November 9, 2001 2:13 PM

94 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

When you look a little further down the table, you will see some reasons for
a more optimistic assessment. Though reflection may be slow compared to di-
rect access to class members, it is quite fast compared to many other common
programming tasks. A simple, cross-process method invocation on a local ma-
chine is an order of magnitude slower than a reflective invocation. Opening, writ-
ing, and closing a file is another order of magnitude slower than that. Hundreds
of reflective operations could transpire in the time it takes light to travel
3,000km, which in turn, is likely faster than the time in which network packets
can travel between your computer and some location on the Internet. A single
online transaction involves several of these expensive operations: invoking meth-
ods cross-process, reading and writing files, and routing packets around the In-
ternet. A single reflective method call would have a negligible impact on an
Internet-based transaction.

The performance numbers could vary wildly on different virtual machines,
and they are not intended to guide optimization decisions other than at the
broadest level. What they do show, however, is that reflective access is not oner-
ous if it is used sparingly in an application that is also doing interesting work.
Moreover, reflection performance should improve substantially in the 1.4 SDK
release. If you can easily make your design work without resorting to reflection,
then do so. But do not be alarmed about performance if reflection appears to be
the most convenient glue between subsystems in your application.

3.6 Package Reflection
Most of the Reflection API deals with class-level metadata. However, version in-
formation is another form of metadata, and it plays a critical role as code
evolves; it makes sure that client code accesses only compatible versions of
needed classes. Version metadata is also useful when you need to know the ex-
act version of software that caused a problem. In Java, version information is
typically tracked at the level of a package, and it is stored at the level of the JAR
file. This is reasonable because the next smaller unit, the class file, is typically
too small to be the standard unit of versioning or deployment. Version informa-
tion is embedded in JAR files, added to the virtual machine by a class loader,
and accessed programmatically via the java.lang.Package class.

5003_03.fm Page 94 Friday, November 9, 2001 2:13 PM

TYPE INFORMATION AND REFLECTION 95

3.6.1 Setting Package Metadata
In order to use the version metadata currently provided by Java, you must de-
ploy your code as a JAR file instead of as separate class files. Adding version in-
formation to a JAR file is a simple matter of adding name/value pairs to the
manifest file. For example, Listing 3–24 specifies all the possible version fields
for a hypothetical com.develop.hello package.

Listing 3–24 Manifest Entries for Package Versioning

Manifest-version: 1.0

Name: com/develop/hello/

Specification-Title: Hello World

Specification-Version: 1.0.0

Specification-Vendor: DevelopMentor

Implementation-Title: com.develop.hello

Implementation-Version: build1

Implementation-Vendor: DevelopMentor

The manifest information is added to the JAR file with the –m switch. Assuming
the file above is named hellov1.mf, you might create a JAR file with the com-
mand

jar -cmf hellov1.mf hellov1.jar com/develop/hello/Main.class

When a URLClassLoader loads classes from a JAR file that includes version in-
formation, it registers the version information with the virtual machine by calling
the definePackage method defined by the ClassLoader class, shown in
Listing 3–25. This method takes the name of the package, the six well-known
version information strings, and the sealBase (more on sealing in §3.6.3).

Listing 3–25 The definePackage Method

package java.lang;

public class ClassLoader {

protected Package definePackage(

 String name, String specTitle,

 String specVersion, String specVendor,

 String implTitle, String implVersion,

 String implVendor, URL sealBase);

//other methods omitted for clarity

}

5003_03.fm Page 95 Friday, November 9, 2001 2:13 PM

96 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

3.6.2 Accessing Package Metadata
The virtual machine makes package metadata available to code at runtime
through the Package class. Included in the Package class are accessor meth-
ods for the six version info strings, plus two methods for looking up the pack-
ages known to the virtual machine, as shown in Listing 3–26.

Listing 3–26 Querying Package Metadata

package java.lang;

public class Package {

 public String getSpecificationTitle();

 public String getSpecificationVersion();

 public String getSpecificationVendor();

 public String getImplementationTitle();

 public String getImplementationVersion();

 public String getImplementationVendor();

 public static Package getPackage(String packageName);

 public static Package[] getPackages();

 public Boolean isCompatibleWith(String desired);

 //additional methods omitted for clarity

}

The version strings provide a minimal infrastructure you can use as a starting
point when you are developing versioning semantics for your applications. All six
well-known version strings can be set to any arbitrary String value; none has any
semantics that are enforced by the current version of the SDK.

One of the six version strings provides a documented semantic. If you set
the specVersion value to a dotted string, such as 1.0.2, you can use the is-
CompatibleWith API to see if a package is compatible with a particular ver-
sion number. The specification version should be a dotted number such as
1.0.5, and the compatibility check uses a simple definition of compatibility, in
which higher-numbered versions are always compatible with lower numbered
ones. Although this usage of specVersion is documented, it is not enforced
by the platform. For the other version strings, no semantics are even docu-
mented, and you can define any semantic that is convenient for you.

5003_03.fm Page 96 Friday, November 9, 2001 2:13 PM

TYPE INFORMATION AND REFLECTION 97

3.6.3 Sealing Packages
JAR files also support the process of sealing a package. When you seal a pack-
age, you guarantee that all the code from that package must come from the
same location. This is valuable for versioning and security because it allows you
to guarantee that your packages are not polluted by invalid or malicious versions
of any classes. To seal a package, you add a Sealed: true pair to the meta-
data, somewhere after a package’s Name field and before the next blank line,
like so:

Name: com/develop/hello/

Sealed: true

You can also seal all packages in a JAR file by adding the Sealed entry to the
main section of the manifest. For package sealing to take effect, you must use a
class loader that honors the metadata in the JAR file, such as your good friend
URLClassLoader.

Sealing all of your packages is a very good idea. Consider the following, all-
too-common scenario. Version 2.0 of an application modifies several classes
from version 1.0 while it also adds some new classes. Unfortunately, JAR files
for both version 1.0 and version 2.0 are on the classpath. As a result, the virtual
machine loads a mix of version 1.0 and version 2.0 classes, a sure recipe for
trouble and confusion. If either version had sealed its packages, this configura-
tion problem would have triggered an easily diagnosed error. Unless you specifi-
cally want to load package code from more than one JAR, always seal all
application packages.

3.6.4 Weaknesses of the Versioning Mechanism
There are several problems with the versioning mechanism as it exists today.
First, though the class loaders provided with the core API correctly propagate
version information as described above, they do not automatically reject incom-
patible versions of a package, nor do they seek out compatible ones. Second,
the URLClassLoader and subclasses do not load package information until af-
ter the first class in a particular package is loaded, so you have to load at least

5003_03.fm Page 97 Friday, November 9, 2001 2:13 PM

98 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

one class in a package before you can find out whether the package version ac-
tually meets your needs. Third, the text format for the manifest is not adequately
validated; so for example, a spelling error in the name of a version field silently
obliterates that field’s information. The 1.4 version of Java is slated to have a
built-in XML parser, which would permit a more structured manifest format. For
the other problems, you will have to wait a while longer or address them in your
own code. (§5.5.1 presents a more robust approach to versioning based on cus-
tom class loaders.)

3.7 Custom Metadata
The type information stored in a Java class file is very thorough, as far as it
goes. When you first move to Java from a nonreflective programming environ-
ment, the new possibilities seem limitless. Knowing the names and types of all
methods and fields makes it easy to implement all sorts of runtime services for
your Java objects: XML views, object/relational mappings, generic user inter-
faces, and on and on. Nevertheless, it is possible to imagine wanting even more
metadata.

Consider the hypothetical LaunchVehicle interface shown in Listing 3–27.
As a human reader, you can infer several important details about how to use this
interface. For example, you know to use liters when you addFuel. From your
knowledge of the problem domain, you know that you should always count-
down before you launch. These are important, contractual elements of the in-
terface, but they do not have a standard language representation and are not
part of the class metadata. You cannot count on clients always getting these de-
tails correct. Even if you could, some other important details of the design are
not obvious to the reader. What units are to be used when calling thrust? Is it
acceptable to addFuel during the countdown? This example illustrates the
need for two kinds of metadata not available to the Java language: the correct
units for numeric arguments, and tables of state transitions allowed by an inter-
face. If these metadata elements were added to Java, the virtual machine could
enforce the rules for you, eliminating two more sources of program errors.

5003_03.fm Page 98 Friday, November 9, 2001 2:13 PM

TYPE INFORMATION AND REFLECTION 99

Listing 3–27 The LaunchVehicle Interface

public interface LaunchVehicle {

 public void addFuel(int liters);

 public void countdown(int seconds);

 public void launch(int thrust);

 //etc.

}

It would be unreasonable to expect a Java virtual machine to support every pos-
sible flavor of useful class metadata. Virtual machines would need to be far
more complex than they are today, and classes would carry around enormous
amounts of metadata not useful to their problem domain. It was good design to
limit the scope of the virtual machine’s responsibilities; the line had to be drawn
somewhere.

Fortunately, the virtual machine specification offers a hook for customization
by permitting the addition of custom attributes to the class file format. Attributes
can be any binary data, and they are housed in a data structure called an
attribute_info. The attribute_info structure, shown in Listing 3–28,
contains a constant pool index to a string that names the attribute, plus an
opaque array of bytes containing the attribute’s data. You can attach attributes
to classes, methods, fields, or even to the bytecodes that implement a method.

Listing 3–28 The attribute_info Structure

//pseudocode from the JVM spec

attribute_info {

 u2 attribute_name_index; //reference to constant pool

 u4 attribute_length;

 u1 info[attribute_length]; //custom data

}

Figure 3–6 is an expanded view of the binary class format diagram, origi-
nally presented in Figure 3–1, with custom attributes shown below the solid line.
The virtual machine spec already defines some standard attributes for its own
use. The bytecodes that implement a method are stored as an attribute, which
can in turn have custom subattributes. The standard attributes defined by the
specification are listed in Table 3–3.

5003_03.fm Page 99 Friday, November 9, 2001 2:13 PM

100 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Figure 3–6 Custom metadata in the binary class format

Table 3–3 Attributes Defined by the Virtual Machine Specification

Attribute Name Attibute Purpose

Code Holds bytecodes that implement a method

ConstantValue Holds value used to initialize a constant field

Exceptions Lists checked exceptions a method may throw

InnerClasses Links nested classes and outer classes

Synthetic Marks methods not present in original source file

SourceFile Holds name of original source file

LineNumberTable Maps bytecode offsets to source line numbers

LocalVariableTable Maps variables to source variable names

Deprecated Marks deprecated class, field, or method

Class

ByteCodes

MethodField

Class Class

1

1 11 1 1

1

111
1

-superclass

-interfaces

1

Constant pool
entry

*

* * * *

* *

*

Attributes Attributes Attributes Attributes

5003_03.fm Page 100 Friday, November 9, 2001 2:13 PM

TYPE INFORMATION AND REFLECTION 101

The Code, ConstantValue, and Exceptions attributes contribute to the docu-
mented semantics of class files and must be understood by conformant virtual
machine implementations. The InnerClass and Synthetic attributes contribute to
the semantics of the core API libraries and will therefore also be understood by
compliant virtual machines.

The remaining standard attributes provide useful information, but they are
not essential for the correct functioning of the language. For example, the
SourceFile, LineNumberTable, and LocalVariableTable attributes enable source-
level debuggers. Because these attributes are optional, they can be silently ig-
nored by virtual machines that do not understand them. Any custom attributes
that you develop must also be optional.

If a custom attribute were necessary for a class to function correctly, then a
standard virtual machine would be unable to load a class that relied on the cus-
tom attribute. Such a custom attribute would encourage developers to write non-
portable Java classes, defeating the write-once, run-anywhere nature of the
language. It is legal to write custom tools that manipulate or even mandate cus-
tom attributes, but virtual machine implementations must silently ignore at-
tributes that they do not recognize. The rules limit custom attributes to optional
data that adds value when it is recognized by the virtual machine but does not
break functionality when it is not. Even when they are operating within this con-
straint, custom attributes have many uses. They can store domain-specific meta-
data, debugging information, profiling information, documentation, and JIT
optimization hints or hints that support interoperation with other programming
environments.

Standard Java compilers will not emit your custom attributes, and the Reflec-
tion API provides no support for accessing them. If you want to define and use
custom attributes, you will need to develop a development tool that injects at-
tributes, a custom class loader that tracks attributes as classes are loaded, and
extensions to reflection that can access these attributes at runtime.

Custom attributes are not in wide use today because they receive only lim-
ited support from the standard Java tools. Java compilers typically do not emit

5003_03.fm Page 101 Friday, November 9, 2001 2:13 PM

102 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

custom attributes, which is not surprising since there is no Java syntax for defin-
ing them. Programmers who want to add custom attributes must write their own
tools to crack the class file format and inject attributes. Such tools are easy to
write, and many are freely available, but none have the blessing of being stan-
dardized.

You are also on your own for extracting custom attributes. The Reflection
API currently does not define methods for extracting custom attributes, although
such methods are easy to design and add. Listing 3–29 shows part of the Java
Class File Editor (JCFE). JCFE is an open source library developed by the author
for manipulating custom attributes; see [JCFE] for details. The ClassEx aug-
ments the standard java.lang.Class class to include access to custom at-
tributes, and the Attribute base class (not shown here) can be used as a
subclass for different custom attributes that you design.

Listing 3–29 JCFE Methods for Custom Attributes

package com.develop.reflect;

public class ClassEx {

 public void addAttribute(Attribute ca);

 public Attribute[] getAttributes(String name);

 public Attribute[] getAttributes();

}

In order to access custom attributes at runtime, you need a custom class loader
to extract them. A class loader sees the class file as a byte array during find-
Class, which provides a hook for manually parsing the class file and remember-
ing any custom metadata. §5.5 develops a full example of this technique, using
custom attributes and a custom class loader to automatically locate the correct
version of a Java class.

Because the virtual machine must already parse the binary class format,
parsing the class file a second time in a custom loader is inefficient. In an ideal
world, access to custom attributes belongs in the platform, not in custom load-
ers. Hopefully a future version of Java will move custom attribute support into
the core API.

5003_03.fm Page 102 Friday, November 9, 2001 2:13 PM

TYPE INFORMATION AND REFLECTION 103

3.8 Onward
Java reflection preserves name and type information in the compiled class for-
mat. This is an evolution from many pointer-based programming languages,
which make compile-time assumptions about name and type that might fail to be
true at runtime. The availability of class metadata makes the dynamic linking of
code more reliable.

Most of the metadata in the class file is also exposed programmatically, via
the Reflection API. Reflection includes both discovery and invocation. Reflective
invocation can be used to write generic services that adapt themselves to the
types they discover at runtime. Dynamic proxies extend the notion of a generic
service further by allowing service classes to be manufactured at runtime. While
reflective access is noticeably slower than direct access, it is fast enough to be
used as the glue code between component, process, or network boundaries.

3.9 Resources
For more information on the binary class format, you should go straight to the
source, and read the most recent version of the Java Virtual Machine Specifica-
tion, which is [LY99] at the time of this writing. Although the virtual machine
spec is most valuable for virtual machine developers, it is an invaluable read for
all Java programmers.

To the author’s knowledge, there are no books providing a treatment of the
Reflection API that is complementary to the material presented here. There are,
however, several tools that read and manipulate the binary class format, includ-
ing [JCFE] and [CFParse].

5003_03.fm Page 103 Friday, November 9, 2001 2:13 PM

5003_03.fm Page 104 Friday, November 9, 2001 2:13 PM

