%{% é WildingMcBride.book Page 151 Monday, May 19, 2003 9:15 AM

T

CHAPTER 8

Integrating with the Enterprise Using
Web Services

What Is aWeb Service?

A Web service is a self-contained module of application logic that can be
exposed to other applications over a network, usually the Internet. A Web
service interface hides the technology used to implement the application
logic, so that an application implemented in one particular technology can be
accessed by using a Web service by another application implemented in a dif-
ferent technology, provided both adhere to the specification of the Web ser-
vice interface.

There are several competing standards for describing Web services, but
the best known is the Web Services Description Language (WSDL),! an XML
format that describes XML-based services as an abstract set of methods, a
binding of these abstract methods to a particular protocol (transport and
data format used to invoke them), and the endpoint of the service. A com-
monly used binding extension to WSDL is SOAP, an XML protocol for
invoking a service, usually (but not limited to) using HTTP.

1. For an introductory article on WSDL, refer to http: //www.ibm.com/developerworks/
webservices/1library/ws-soap/index.html?dwzone=ws. The WSDL specification
can be found at http://www.w3.org/TR/wsd1.

I51

4~ 40

%{% é WildingMcBride.book Page 152 Monday, May 19, 2003 9:15 AM

T

Chapter 8 Integrating with the Enterprise Using Web Services

SOAP? supports two interaction styles: remote procedure call (RPC) and
document literal. RPC style is similar to invoking an object’s method to per-
form some procedural functionality. RPC style is suited to synchronous inter-
actions with a published API. In document style, any XML document can be
exchanged. The document need not be limited to the SOAP body specifica-
tion, and need not be predefined. Document style is suited to asynchronous
interactions, where a contract is not necessarily published beforehand.

In this chapter, we will use Web services that are modules of application
logic invoked over the network, using SOAP in RPC style over HTTP and
described with WSDL.

The benefits of Web services include:

® Messages to and from a Web service are easy to read.

e HTTP is almost always allowed through corporate firewalls.

® Web services promise to be ubiquitous. They are based on XML and
HTTP, which are widely supported by a broad range of devices with
varying capabilities.

e Just about every vendor supports Web services. Web services are becom-
ing a common mechanism for integrating applications and systems, and
tool support for creating them are now in their second generation of
maturity.

e They are implementation-neutral. Web services can be implemented in
any language on any platform. The server and the client are happily igno-
rant of the technology or operating system used at the other end of the
interaction.

However, there are some limitations (although these will diminish over
time):

e In practice, it is not yet straightforward to find a Web service and use it
without knowing more about it than what is given in the WSDL file.
Implementations vary between servers and clients. Writing a client for a
particular Web service is still a matter of trial and error.

® Because they are based on XML, which is rather verbose and takes time
and resources to process, Web services are not well suited to extremely
constrained devices with limited processing and memory capabilities.

Web services is a vast field, and rapidly expanding. If you want to find
out more, a good starting point is IBM’s developerWorks (http://www-
106.1ibm.com/developerworks/webservices/).

2. To read the SOAP specification, refer to http://www.w3.org/TR/SOAP/.

%

40

%{% é WildingMcBride.book Page 153 Monday, May 19, 2003 9:15 AM

T

The ImageService Web Service

In this chapter, we will look at how to access functionality provided by a
Web service, both from Palm and PocketPC clients. To get an end-to-end
understanding, we will go through the process of developing the Web service,
deploying it on the server, and demonstrating several ways of accessing it
from a PDA.

The ImageService Web Service

The ImageService Web service is a simple service designed to allow clients to
retrieve binary images from the server. There are two methods a client can
invoke:

e Get the names of available images. This method returns the names of
images available on the server for retrieval.

e Get an image with a specified name. This method returns an object repre-
senting the image specified by the client by name.

Since SOAP is based on XML, a textual format, a means by which binary
information such as an image can be sent using SOAP must be used. A com-
mon mechanism is to encode the image using Base64. Base64 is a standard
originally developed for sending binary objects in emails and specified in the
Multipurpose Internet Mail Extensions (MIME) standard.? Base64 provides
a means to encode a binary object into a string, and also to decode the string
back into a binary object. This is done by treating each set of three 8-bit
bytes of binary data as a set of four 6-bit groups, and mapping each group of
six bits to a printable subset of the ASCII character set. Each 6-bit number is
used to look up the corresponding character in the Base64 alphabet. Table 8.1
shows the Base64 alphabet.

The characters thus obtained are concatenated to form the encoded
string.* The string is decoded back into the binary object by the reverse pro-
cess. If the decoder comes across a character in the string that is not in the
Base64 alphabet, the decoder must ignore the character and continue with
the next character.

The ImageService interface has two methods:

public String[] getNames(String extension);
pubTic ImageValue getImage(String name);

3. For more information on Base64, refer to the MIME specification http://

www . fags.org/rfcs/rfc2045.html, section 6.8.

4. In MIME, the encoded string is broken into lines of no more than 76 characters
each. In SOAP, this is not required and the encoded string can be continuous.

4~ 40

%{% é WildingMcBride.book Page 154 Monday, May 19, 2003 9:15 AM é

154 Chapter 8 Integrating with the Enterprise Using Web Services

Table 8.1 The Base64 Alphabet®

Value Encoding Value Encoding Value Encoding Value Encoding

0 A 17 R 34 i 51 z
1 B 18 S 35 j 52 0
2 C 19 T 36 k 53 1
3 D 20 U 37 1 54 2
4 E 21 \Y% 38 m 55 3
S F 22 W 39 n 56 4
6 G 23 X 40 0 57 S
7 H 24 Y 41 p 58 6
8 I 25 Z 42 q 59 7
9 J 26 a 43 r 60 8
10 K 27 b 44 s 61 9
11 L 28 c 45 t 62 +
12 M 29 d 46 u 63 /
13 N 30 e 47 v
14 (@) 31 f 48 w (pad) =
15 P 32 g 49 X
16 Q 33 h 50 y

a. This is Table 1 from RFC2045 at http://www.faqgs.org/rfcs/rfc2045.html.

The getImage method returns an ImageValue object. This is partly to
demonstrate how complex objects (versus primitive types) are sent across
SOAP. The object has two attributes for the sake of demonstration: a Tong,
representing the date the image was last modified, and a String, representing
the Base64 encoded image.

For the purposes of SOAP serialization, the ImageValue supports a Java
bean interface style. That is, it has a constructor with no arguments, and set-
ters and getters for its attributes.

4~ 40

%{% é WildingMcBride.book Page 155 Monday, May 19, 2003 9:15 AM

The ImageService Web Service 155

The ImageValue class is defined thus:

package com.javaonpdas.webservices;

pubTlic class ImageValue {
pubTlic long dateAslLong;
pubTlic String encodedImage;

pubTlic ImageValue() {
3

public ImageValue(long dateAsLong, String encodedImage) {
this.dateAsLong = dateAslLong;
this.encodedImage = encodedImage;

}

pubTlic long getDate() {
return this.dateAslLong;

}

pubTlic void setDate(Tong dateAsLong) {
this.dateAsLong = dateAslLong;
}

public String getEncodedImage() {
return this.encodedImage;

}

pubTlic void setEncodedImage(String encodedImage) {
this.encodedImage = encodedImage;
}
}

The getNames method returns a String array with the file names of image
files with the specified extension in a particular directory. The directory name
is hard-coded for the purposes of this example.

The ImageService class is listed in the following.

package com.javaonpdas.webservices;

import java.util.Date;

import java.io.File;

import java.io.FileInputStream;
import java.io.FilenameFilter;

- +©

%{% é WildingMcBride.book Page 156 Monday, May 19, 2003 9:15 AM

156 Chapter 8 Integrating with the Enterprise Using Web Setvices

pubTlic class ImageService {
private String directory =
"C:\\JavaOnPDAs\\Desktop\\resources";
pubTlic ImageValue getImage(String name) {
String encodedImage = null;
long timeStamp = 0;
FileInputStream fis = null;
try {
// read the file into a byte array
File imageFile = new File(directory + "\\" + name);
if (imageFile.exists()) {
timeStamp = imageFile.lastModified();
fis = new FileInputStream(imageFile);
int Tength = fis.available();
byte[] rawImage = new byte[length];
fis.read(rawImage);
// encode the byte array into a Base64 string
encodedImage = org.apache.axis.encoding.Base64.encode(
rawImage);
}
}
catch (Exception e) {
System.out.printin("Error:'
}
finally {
try { if (fis != null) fis.close(); }
catch (Exception e) {}
}
ImageValue image = new ImageValue(timeStamp, encodedImage);
return image;

}

+ e);

pubTlic String[] getNames(String extension) {

final String ext = extension;

FilenameFiTter filter = new FilenameFilter() {
public boolean accept(File dir, String name) {

return name.endsWith(ext);

}

b

File dir = new File(directory);

String[] files = dir.list(filter);

return files;

- +©

%{% é WildingMcBride.book Page 157 Monday, May 19, 2003 9:15 AM

The ImageService Web Service 157

Some important points about this code:

e Since the Web service will be deployed on Axis, we will make use
of the built-in Base64 class with a static encode method,
org.apache.axis.encoding.Base64.

e This is a “normal” Java class definition. Apart from making use of the
Axis Base64 class (which could be replaced by any Base64 encoder), there
is nothing here to suggest that this class will be deployed as a Web ser-
vice. The publication of this class’s methods as a Web service interface is
completely separate to the class definition.

Now that we have a class that will serve as our Web service, the next step
is to write a Web service deployment descriptor (WSDD). Web service
deployment descriptors conform to a standard XSD.

For our ImageService class, the WSDD is quite simple. The WSDD
describes:

e The name of the Web service.

e The class of the Web service.

e The methods of the class that are allowed to be accessed.

e That the service uses the built-in bean serializer for converting an object
to a SOAP representation, by accessing its attributes and converting
those base types to SOAP format.

e The name of the class to serialize, using the bean serializer.

The WSDD for the ImageService Web service is deploy-ImageService-
AXIS.wsdd, and looks like this:

<depToyment xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

service name="ImageService" provider="java:RPC">
parameter name="className"
value="com. javaonpdas.webservices.ImageService"/>
<parameter name="allowedMethods" value="="/>
<beanMapping gname="ns:ImageValue"
xmlns:ns="urn:BeanService"
TanguageSpecificType=
"java:com.javaonpdas.webservices.ImageValue" />
</service>

</deployment>

Now we’re ready to set up Axis and Tomcat, which we will use to deploy
and test the ImageService Web service.

- +©

%{% é WildingMcBride.book Page 158 Monday, May 19, 2003 9:15 AM

158 Chapter 8 Integrating with the Enterprise Using Web Setvices

Setting Up Axis and Tomcat

Axis (http://xml.apache.org/axis/index.htm1) is an Apache XML open
source project, and is the successor to Apache SOAP, one of the earliest
SOAP implementations. Axis is a Java implementation of a SOAP server and
client. Axis operates within an application server or servlet engine, and one
of the most popular servlet engines is another Apache open source project,
Tomcat (http://jakarta.apache.org/tomcat/index.html1). Tomcat is the ref-
erence implementation of the Java Server Pages (JSP) 1.2 and Servlet 2.3
specifications. Axis can use just about any servlet engine, provided it sup-
ports version 2.2 (or greater) of the servlet specification.

Download Axis from http://xml.apache.org/axis/releases.html. The
examples in this book use Axis 1.0.

Download Tomcat from http://jakarta.apache.org/builds/jakarta-
tomcat-4.0/release/v4.1.12/. The examples in this book use Tomcat 4.1.

Tomcat Installation®

Unzip the Tomcat binary package into a convenient location. We will refer to
this location as ${tomcat-base}. Change to the directory ${tomcat-base}\bin,
and run the batch file startup.cmd to start Tomcat.

By default, Tomcat runs on port 8080. As Tomcat is starting, you should
see information similar to the following:

16/11/2002 13:36:29 org.apache.commons.modeler.Registry ToadRegistry
INFO: Loading registry information

16/11/2002 13:36:30 org.apache.commons.modeler.Registry getRegistry
INFO: Creating new Registry instance

16/11/2002 13:36:31 org.apache.commons.modeler.Registry getServer
INFO: Creating MBeanServer

16/11/2002 13:36:32 org.apache.coyote.httpll.HttpllProtocol init
INFO: Initializing Coyote HTTP/1.1 on port 8080

Starting service Tomcat-Standalone

Apache Tomcat/4.1.10

16/11/2002 13:36:43 org.apache.coyote.httpll.HttpllProtocol start
INFO: Starting Coyote HTTP/1.1 on port 8080

16/11/2002 13:36:43 org.apache.jk.common.ChannelSocket init

INFO: JK2: ajpl3 Tistening on tcp port 8009

16/11/2002 13:36:43 org.apache.jk.server.JkMain start

5. This section assumes that you have already installed JDK 1.4, and that JAVA_HOME
is pointing to it.

- +©

%% é WildingMcBride.book Page 159 Monday, May 19, 2003 9:15 AM é

Setting Up Axis and Tomcat 159

INFO: Jk running ID=0 time=10/90 config=C:\jakarta-tomcat-
4.1.10\bin\..\conf\jk2.properties

Once Tomcat has started, test that it is working by pointing your browser
to http://Tocalhost:8080/. You should see something similar to Figure 8.1.
To shut down Tomcat, run the shutdown.cmd batch file.

Axis Installation

Unzip the Axis ZIP file into a convenient location. We will refer to this location
as ${axis-base}. In the directory ${axis-base}\webapps, there is a directory
called axis. This directory contains the Axis Web application, which can be
copied over to the webapps directory of the servlet engine (Tomcat, in this
case). So, copy ${axis-base}\webapps\axis to ${tomcat-base}\webapps.

3 Apache Tomcat/4.1.10 - Microsoft Internet Explorer

=18]x|
File Edit View Favorites Tools Help i
GBack v = - D 4} | Quoearch [ijFavortes Gveda B | B\ S =1 5 O

Address [&] http: flocahost:a080/index.isp

! ' Apache Tomcat/4.1.10

If you're seeing this page via a web browser, it means you've setup Tomcat successfully.
Congratulations!

~| @ ‘ Links

-

The Jakarta Project

http://jakarta.apache.org

Tomcat Administration
Tomcat Manager

As you may have guessed by nowy, this is the default Tomcat home page. It can be found on the local
filesystem at:

SCATALINA_HOME/webapps/ROOT/index. html

Tomcat Documentation

where "$CATALINA_HOME" is the root of the Tomcat installation directory. If you're seeing this page, and
you don't think you should be, then either you're either a user who has arrived at new installation of Tomcat,
oryou're an administrator who hasn't got histher setup quite right. Providing the latter is the case, please

_ refer to the Tomcat Documentation for more detailed setup and administration information than is found in
the INSTALL file.

Home Page
Bug Database NOTE: For security reasons, using the administration webapp is restricted to users with role
Users Mailing List “admin". The manager webapp is restricted to users with role "manager". Users are defined in
l%(ec\/e|099r5 Mailing List SCATALINA_HOME/conf/tomcat-users.xml.

Included with this release are a host of sample Servlets and JSPs {with associated source code),
extensive documentation {including the Servlet 2.3 and JSP 1.2 API JavaDoc), and an introductory guide to

_ developing web applications.

JSP Examples Tomcat mailing lists are available at the Jakarta project web site:
Servlet Examples
WebDAV capabilities « tomcat-user@jakarta.apache.org for general questions related to configuring and using Tomcat

« tomcat-dev@jakarta.apache.org for developers working on Tomcat

=l
@ N T —

Figure 8.1 TheTomcat test page

+@

%% é WildingMcBride.book Page 160 Monday, May 19, 2003 9:15 AM

160 Chapter 8 Integrating with the Enterprise Using Web Setvices

=181

File Edit View Favorites Tools Help ‘i

EBack » = - Zat ‘ ‘Qsearch [Favorites & Media {,‘ - S E RG]

Address [€] http://localhost:a080/axisjindex.html ~| @ ‘Links
Apache-AXIS

Hello! Welcome to Apache-Axis.
What do you want to do today?

o Administer Axis

o View the list of deployed Web services

» Validate the local installation's configuration
o Visit the Apache-Axis Home Page

]
@ oore T e

Figure 8.2 The Axis test page

To test the installation, point your browser to http://127.0.0.1:8080/
axis/. You should see a page similar to Figure 8.2.

Check whether AXIS is properly configured and that it can find all the
components it requires by clicking on the Validate link. You should see a
page like that shown in Figure 8.3.

Note that the page should say that all the needed components can be
found.

Now we are ready to deploy the Web service.

Deploying the ImageService Web Service

In Tomcat, each Web application has a WEB-INF subdirectory, in which class
files or JAR files specific to the application are located. This is done so that each
Web application can have a set of components (classes or JAR files) indepen-
dent of other Web applications on the same instance of Tomcat. Axis will

%

+@

%}% é WildingMcBride.book Page 161 Monday, May 19, 2003 9:15 AM

Setting Up Axis and Tomcat 161
181X
File Edit View Favorites Tools Help ‘i
EBack » = - Zat ‘ ‘Qsearch [Favorites & Media 9‘ B-S=E 0
Address I@ http:fflocalhost:8080/axis{happyaxis. jsp j (? Go ‘ Links

Examining webapp configuration
Needed Components

Found SAAT APT (javax xml soap. SOAPMessage) at C\jakarta-tomeat-4. 1. 10\webappst\azis\WEB-INF\lib\saaj. jar

Found JAX-RPC API (javax xmlrpc. Service) at C'\jakarta-tomcat-4. 1. 10\webapp siaxis\WEB-INF\lib\jaxrpc. jar

Found Apache-Axis (org apache. axis. transport. http. AxisServlet) at C'yjakarta-tomcat-4. 1. 10\webappsiaxis\WEB-INF\lib\axis. jar

Found Jakarta-commons logging (org apache. commons.logging Log) at C\jakarta-tomeat-4. 1. 10Wwebappsiazis\WEB-INF\lib\commons-logging jar
Found IBM's WSDL4Tava (com.ibm wsdl factory. WSDLFactoryImpl) at C\jakarta-tomeat-4. 1. 10Wwebapps\azis\WEB-INF\lib\wsdl4] jar

Found JAXP implementation (javax zml parsers. SAX ParserFactory)

Found Activation API (javax activation DataHandler) at C'\jakarta-tomeat-4. 1. 10\common\lib\activation. jar

Optional Components

Found Mail APT (javax mail internet Mimelessage) at C\jakarta-tomcat-4. 1. 10\common\lib\mail jar

‘Warning: could not find class org apache.zml security Init from file xmlsecjar

ML Security is not supported

See http:/fzml apache. org/security/

The core uxis libravies are present. 1 optional axis library is missing

Nete: On Tomcat 4., you may need to put libraries that contain java. * or javaz. * packages into CATALINA HOME/commonsilib

Nete: Even if everything this page probes for 1s present, there is no guarantee your web service will work, because there are many configuration options that we do
not check for. These tests are »ecessary but not syfficient

Examining System Properties

(T T SIS TN 4 msin mgesins s meiso JJ:J

[@oene T —
Figure 8.3 The Axis configuration page

need to find our Web service class, so we need to bundle a JAR file and put it
in our Web application’s 1ib directory. This is done with the CompileDesktop
target in the Ant build file:

<target name="CompileDesktop" depends="Init">
<!-- Compile the Desktop source code -->
<javac
srcdir="${desktopsrc}"
destdir="${desktopdest}"
debug="off">
<classpath>
<pathelement path="${desktopdest}"/>
<path refid="axis.path"/>
</classpath>
</javac>
<jar jarfile="${desktoplib}\javaonpdas-desktop.jar"

+@

%{% é WildingMcBride.book Page 162 Monday, May 19, 2003 9:15 AM

Chapter 8 Integrating with the Enterprise Using Web Services

basedir="${desktopdest}"
includes="#x*.class"

/>

<copy file="${desktoplib}\javaonpdas-desktop.jar"
todir="${axis-webapp}" />

<copy file="${desktoplib}\javaonpdas-desktop.jar"
todir="${proxy-webapp}" />

</target>

This target compiles all the source files under the desktop directory, cre-
ates the JAR javaonpdas-desktop.jar, and copies it to the Axis webapp direc-
tory. Stop Axis and start it again to make sure it has seen the new JAR file.

Now that Axis can see the classes that implement the Web service, we
can deploy it.

Deploying the Web Service

In this step we make use of the deployment descriptor we prepared previously.
Axis has a deployment client that we will use, which is org.apache.axis.
client.AdminClient. The Ant build target DeployImageService performs this task:

<target name="DeployImageService" depends="CompileDesktop">

<!-- Run the ImageService web service -->

<java
classname="org.apache.axis.client.AdminClient"
dir="."
fork="true"

failonerror="true">
<classpath>
<pathelement path="${desktopdest}"/>
<path refid="axis.path"/>
</classpath>
<arg Tline="-T1${webserviceadmin} ${desktopsrc}\com\javaonpdas\«
webservices\deploy-ImageService-AXIS.wsdd" />
</java>
</target>

Running this task will tell Axis about the new Web service:

C:\JavaOnPDAs>ant DeployImageService
Buildfile: build.xml

Init:

CompiTeDesktop:

%

+@

%{% é WildingMcBride.book Page 163 Monday, May 19, 2003 9:15 AM

Setting Up Axis and Tomcat 163

DeployImageService:

[java]l - Processing file .\Desktop\src\com\javaonpdas\
webservices\deploy-ImageService-AXIS.wsdd

[java] - <Admin>Done processing</Admin>

BUILD SUCCESSFUL
Total time: 8 seconds

If you see any exceptions thrown during this step, it is likely that Axis
cannot find a class referenced in the deployment descriptor. If you do see
such an exception, check that the JAR file is in the Axis webapp Tib direc-
tory, and try restarting Axis and redeploying the Web service.

Testing

The first step is to check whether Axis thinks that the Web service has been
properly deployed. Point your browser at the main Axis page (http://
127.0.0.1:8080/axis/index.html), and click the View link. This will display
all the Web services deployed on this server, as shown in Figure 8.4.

Click on the WSDL link to display a description of the service and how
to invoke it. While the WSDL may seem a bit daunting, it describes the oper-
ations (i.e., methods) of the Web service that can be invoked (getNames and
getImage), the transport to use to invoke them (HTTP), and the location of
the service (http://127.0.0.1:8080/axis/services/ImageService).

The next step is to test the Web service from a client. To do so from the desk-
top, the command line application com.javaonpdas.client.ImageServiceClient
calls the Web service and calls both methods, displaying information about
what is returned.

Using the Axis client (as we will see later, other SOAP clients have slight
variations), the steps to calling a Web service are:

1. Set up the Cal1 object. This involves telling the Ca11 object the end point
URL, the name of the service, and the method to call.

Service service = new Service();
Call getNamesCall = (Call)service.createCall();
getNamesCall.setTargetEndpointAddress(endPointURL);
getNamesCall.setOperationName(
new QName("ImageService", "getNames"));
getNamesCall.addParameter("extension",
org.apache.axis.encoding.XMLType.XSD_STRING,
ParameterMode.IN);
getNamesCall.setReturnType(XMLType.SOAP_ARRAY);

- +©

%% é WildingMcBride.book Page 164 Monday, May 19, 2003 9:15 AM

164 Chapter 8 Integrating with the Enterprise Using Web Services

/3 http:/ /localhost:8080/ axis/servlet/AxisServlet - Microsoft Internet Explorer =& x|

File Edit View Favorites Tools Help i

EBack » = - ﬁl ‘Qsearch [Favorites & Media 5‘ - S ERE

Address |.§'] http:{flocalhost: 8080/ axis/servlet/AxisServiet j PGO ‘Links
=

And now... Some Services

o ImageService fwsdl)
o getlmage
o getNames

o AdminService fwsdl)
o AdminService

o Version fwsdi)
o getVersion

o TestService (wsdl)
o sayHello

/|
[&Done [[[BElocalinranet

Figure 8.4 \Web services deployed on Axis

2. Invoke the call. In this case, the getNames method returns an array of
String, so we need to cast the invoke method to String[].

String[] names = (String[])getNamesCall.invoke(
new Object[] { ".png" 1);

3. Process the response.
if (names == null) {
System.out.printin("The array of names is null");

}

else {
System.out.printin("Image names:");
for (int i=0; i<names.length; i++)
System.out.printin(" " + names[i]);

- +©

%{% é WildingMcBride.book Page 165 Monday, May 19, 2003 9:15 AM

Setting Up Axis and Tomcat 165

4. Catch exceptions during these calls. Axis will throw an AxisFault excep-
tion if something goes wrong, so we need to make sure we catch it. In
this case, we will just send it to System.out.

catch (AxisFault fault) {
System.err.println("Generated fault: ");

System.out.printin(" Fault Code =" +
fault.getFaultCode());
System.out.printin(" Fault String = " +

fault.getFaultString());
}

The Ant build file has a target to run this test client, called
RunImageServiceClient. It appears like this:

<target name="RunImageServiceClient" depends="CompileDesktop">
<java
classname="com.javaonpdas.client.ImageServiceClient"
dir="."
fork="true"
failonerror="true">
<classpath>
<pathelement path="${desktopdest}"/>
<path refid="axis.path"/>
</classpath>
<arg line="${testendpoint}"/>
</java>
</target>

Run the test client by typing ant RunImageServiceClient on the com-
mand line:

C:\JavaOnPDAs>ant RunImageServiceClient
Buildfile: build.xml

Init:
CompileDesktop:

RunImageServiceClient:
[java] Image names:
[javal kookaburra.png
[javal kookaburra-bw.png
[javal kangaroo-bw.png
[javal kangarool.png
[javal kangaroo2.png
[javal kangaroo3.png

- +©

%{% é WildingMcBride.book Page 166 Monday, May 19, 2003 9:15 AM

Chapter 8 Integrating with the Enterprise Using Web Services

[java] Image returned is kangarool.png
[javal image date is Mon, 04 Nov 2002 21:08:50
[java] image is 1458 bytes Tlong

BUILD SUCCESSFUL
Total time: 7 seconds

Monitoring HT TP Traffic

Axis comes with a very useful debugging tool, called TcpMon. TcpMon allows
you to view the request sent from the client and the response received from
the server. The way it works is to create a TCP/IP “tunnel” between a
dummy port to which the client is pointed, and the real port on which the
server is running. For example, we can tell TcpMon to listen on port 5555 and
to connect clients to port 8080 (where Tomcat listens), and to display all traffic
going between the two ports, such as our Web service requests and responses.

To start TcpMon, the Ant build file has a target called RunTcpMon. It starts
on the port ${test-axis-port}, which is set to 5555. The Ant target looks
like this:

<target name="RunTcpMon'>
<java
classname="org.apache.axis.utils.tcpmon"
dir="."
fork="true"
failonerror="true">
<classpath>
<path refid="axis.path"/>
</classpath>
<arg line="${test-axis-port} Tocalhost ${axis-port}"/>
</java>
</target>

To start it, type ant RunTcpMon on the command line. When it starts, TcpMon
looks like the window shown in Figure 8.5.

To tell the ImageServiceClient that we want to connect to port 5555,
make sure that the Ant build file has the following value for the testendpoint

property:

<property name="testendpoint"
value="http://localhost:${test-axis-port}/axis/serviet/AxisServiet"/>

When you run the client, you should see TcpMon display the request and
response, as shown in Figure 8.6.

%

+@

%% é WildingMcBride.book Page 167 Monday, May 19, 2003 9:15 AM

Setting Up Axis and Tomcat 167

-ipix]
Adimin
Stop I Listen Port: ISSSS Hosl:llocahod Port: ISDGU I~ Proxy.
State Time: Request Host Target Host Request...
Remoye Selected Remoye All
Waiting for Connection...

I~ XML Format ~ Save | Reserid | Switch Layout Close |
Figure 8.5 The TCPMonitor window

ol
Advin Port 5555 |

Stop I umm@s M:Fm Port {3080 I~ Proxy

| stae | Time | RequestHost | TergetHost |

POST faxiskervietifxisSarviet HTTP/.

Request from the client

nt-Type: text/xml: charset-utt-8

Jiccept: application/soapxnl, application/dime, multipart/related, text/*
User-Agent: Axis/betald

fost: localhost

Cache-Control: no-cache

il

nt-Type: text/xml: charseteutf-8
Date: Sun, 17 Nov 2002 04:07:14 GNT
fsexver: Apache Coyote/1.0

connection: close

2xnl version="1.0" encoding="UTF-3"2>

Wﬂm epenv="heep: //ach *‘"W Response from the server
Py -

M

| t ’

I~ x4 Format Save I Resand l Switch Layout] Close

Figure 8.6 The TCPMonitor window showing an example session

+@

%{% é WildingMcBride.book Page 168 Monday, May 19, 2003 9:15 AM

Chapter 8 Integrating with the Enterprise Using Web Services

The ImageServiceClient sends two separate requests to the server. The
first is to retrieve the list of image names, and it looks like this:

POST /axis/servlet/AxisServlet HTTP/1.0
Content-Type: text/xml; charset=utf-8

Accept: application/soap+xml, application/dime, multipart/related,
text/x

User-Agent: Axis/beta3
Host: Tocalhost
Cache-Control: no-cache
Pragma: no-cache
SOAPAction: ""
Content-Length: 446
<?xm1 version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>

<nsl:getNames soapenv:encodingStyle="http://schemas.xmlsoap.org/
soap/encoding/" xmlns:nsl="ImageService">

<extension xsi:type="xsd:string">.png</extension>

</nsl:getNames>
</soapenv:Body>
</soapenv:Envelope>

And the response looks like this:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Date: Sat, 07 Dec 2002 12:21:33 GMT

Server: Apache Coyote/1.0

Connection: close

%

+@

%{% é WildingMcBride.book Page 169 Monday, May 19, 2003 9:15 AM

Setting Up Axis and Tomcat 169

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<nsl:getNamesResponse soapenv:encodingStyle="http://
schemas.xmlsoap.org/soap/encoding/" xmlns:nsl="ImageService">
<getNamesReturn xsi:type="soapenc:Array"
soapenc:arrayType="xsd:string[4]" xmlns:soapenc="http://
schemas.xmlsoap.org/soap/encoding/">
<item>kookaburra.png</item>
<item>kookaburra-bw.png</item>
<item>kangaroo-bw.png</item>
<item>kangarool.png</item>
</getNamesReturn>
</nsl:getNamesResponse>
</soapenv:Body>
</soapenv:Envelope>

Undeploying the Web Service

To undeploy the Web service, we again use the Axis administration client.
The Ant build file defines a target to undeploy the image service, called Unde-
ployImageService. The target is defined as follows:

<target name="UndeployImageService">

<!-- Undeploy the ImageService web service -->

<java
classname="org.apache.axis.client.AdminClient"
dir="."

fork="true"
failonerror="true">
<classpath>
<pathelement path="${desktopdest}"/>
<path refid="axis.path"/>
</classpath>
<arg line="-T1${webserviceadmin}«
${desktopsrc}\com\javaonpdas\webservices\undeploy-ImageService-«
AXIS.wsdd" />
</java>
</target>

- +©

%{% é WildingMcBride.book Page 170 Monday, May 19, 2003 9:15 AM

t i

170 Chapter 8 Integrating with the Enterprise Using Web Services

Typing the command ant UndeployImageService should get the follow-
ing response:

C:\JavaOnPDAs>ant UndeployImageService
Buildfile: build.xml

UndepToyImageService:

[java] - Processing file
.\Desktop\src\com\javaonpdas\webservices\undeploy-
ImageService-AXIS.wsdd

[java] - <Admin>Done processing</Admin>

BUILD SUCCESSFUL
Total time: 14 seconds

To verify that Axis has indeed removed the service, point your browser
back to the main Axis page at http://127.0.0.1:8080/axis/index.htm] and
click on the View link. The ImageService should not be listed as a service that
Axis knows about. Note that the undeploy command merely removes the
Web service definition from Axis—it does not remove the JAR file we put in
the webapp 1ib directory.

The ImageViewer Client Application

Now that we have tested the ImageService with a desktop client, we will
write a PDA client. We will start with a Palm version, and then move on to a
PocketPC version. In each case the client will allow the user to

e View a list of names of images available on the server.
e View a list of names of images available on the client.
e Select an image name and view the image.

e Store a remote image on the client.

Before we start writing the Palm version of the ImageViewer application,
we will explore some options for accessing a Web service from the Palm.

Web Service Access from a Palm Device

Calling aWeb Service Directly

In this option, the Palm calls the Web service directly as shown in Figure 8.7.
We will need a SOAP client for J2ME. There are several popular clients
available, such as kSOAP (http://www.ksoap.org) and Wingfoot (http://

4~ 40

%{% é WildingMcBride.book Page 171 Monday, May 19, 2003 9:15 AM

Web Service Access from a Palm Device 171

» | ImageService

AXIS

Tomcat

SOAP Client

SOAPCIient

Figure 8.7 Accessing a Web service directly from the Palm device

www .wingfoot.com). For this client, we will choose the Wingfoot SOAP client.
It also has a J2SE version, which we will use for the PocketPC client.

Download the latest Wingfoot SOAP client from http: //ww.wingfoot.com/.
Note that you will need to register by providing your email address and your
name. The examples in this book use Wingfoot 1.03.

Unzip the downloaded ZIP file into a convenient location. The ZIP will
contain two JAR files: one for J2ME named kvmwsoap_1.03.jar and the
other for J2SE named j2sewsoap_1.03.jar. Copy the J2ME JAR to the
${palm-base}\1ib directory.

In the example application, com.javaonpdas.webservices.clients.wingfoot.
SOAPClient, the application has two buttons: one to retrieve the names and
the other to retrieve the image, specified by a hard-coded name.

When the “Get Names” button is pressed, we create an Envelope object
and use it to create a Call object. The Cal1 object represents the service invo-
cation we want to make, so we need to specify the name of the service to
invoke and the service’s method name.

Envelope requestEnvelope = new Envelope();
requestEnvelope.setBody("extension", ".png");
Call call = new Call(requestEnvelope);
call.setMethodName("getNames");
call.setTargetObjectURI("ImageService");

Next we set up the transport by telling it the SOAP endpoint. Note that the
hostname in the URL is not Tocalhost, as the Palm will interpret that as mean-
ing the Palm device rather than the machine where the Web service resides.

- +©

%{% é WildingMcBride.book Page 172 Monday, May 19, 2003 9:15 AM

Chapter 8 Integrating with the Enterprise Using Web Services

HTTPTransport transport =

new HTTPTransport("http://192.168.0.1:8080/axis/serviet/|«
AxisServiet", null);
transport.getResponse(true);

The transport object is used to invoke the call, and the result is assigned
to an Envelope object.

Envelope responseEnvelope = call.invoke(transport);

Then the envelope is queried to process its contents. If an error occurred,
isFaultGenerated will return true. In this case we need to retrieve the fault
from the envelope and, in this case, display it on the screen. Otherwise, the
response to the Web service invocation is in the Oth parameter, represented as
an array of Object. These are the names of the images available on the server,
so we insert them at the end of the text field and add a new line character.

if (responseEnvelope != null) {
if (responseEnvelope.isFaultGenerated()) {
Fault f = responseEnvelope.getFault();
textField.insert("Error: " + f.getFaultString(),
textField.size());

}

else {
textField.setString(null);
Object[] parameter =

(Object[])responseEnvelope.getParameter(0);
for (int i=0; i<parameter.length; i++)
textField.insert(parameter[i] + "\n",
textField.size());
3

The code to handle the “Get Image” button press is similar but there are
some important extensions. The first difference is in the set up of the enve-
lope, where we set the parameter for the method we want to call.

Envelope requestEnvelope = new Envelope();
requestEnvelope.setBody(""name", "kangarool.png");

When we set up the Call object, there are some other differences com-
pared to the “Get Names” case above. In this case, the Web service method
we want to invoke returns an object we defined, rather than a standard object
(i.e., String) as was the case in “Get Names.” The ImageService’s getImage
method returns an ImageValue, so we need to specify that in setting up the Call

%

+@

%{% é WildingMcBride.book Page 173 Monday, May 19, 2003 9:15 AM é

Web Service Access from a Palm Device 173

object using a TypeMappingRegistry. The TypeMappingRegistry tells the SOAP
client how to deal with the Imagevalue type returned by the getImage method.

Call call = new Call(requestEnvelope);
call.setMethodName("getImage");
call.setTargetObjectURI("ImageService");
TypeMappingRegistry registry =

new TypeMappingRegistry();
registry.mapTypes("urn:BeanService", "ImageValue",

new ImageValue().getClass(),

new BeanSerializer().getClass(),

new BeanSerializer().getClass());
call.setMappingRegistry(registry);

The registry.mapTypes method creates a new entry in the registry that
maps between the custom SOAP type ImageValue in the namespace
urn:BeanService and the bean serializer and deserializer class Imagevalue.
The client then knows that the ImageValue class is used to serialize and dese-
rialize the type Imagevalue.

The transport is set up as before.

HTTPTransport transport = new HTTPTransport("http://«
192.168.0.1:8080/axis/servlet/AxisServiet", null);
transport.getResponse(true);

And the service is invoked.
Envelope responseEnvelope = call.invoke(transport);

Next we process the response in a similar way to the “Get Names” case,
except this time we are expecting an ImageValue instance.

ImageValue imageValue = (ImageValue)responseEnvelope.getParameter(0);

Now that we have the instance of Imagevalue, containing the image in
encoded form as received from the server, we need to decode the Base64-
encoded string back into an image. The Wingfoot SOAP client JAR includes
a Base64 encoder and decoder, so we will use that.

To decode the encoded string, we use the String constructor of the class
Base64, and then the getBytes method to retrieve the byte array. The Image
class has a static method createImage that takes a byte array, which we use
to create an immutable image for the ImageItem on the main screen.

Base64 encodedImage =
new Base64(imageValue.getEncodedImage());

- +©

%% é WildingMcBride.book Page 174 Monday, May 19, 2003 9:15 AM

T

Chapter 8 Integrating with the Enterprise Using Web Services

imageItem.setImage(Image.createImage(
encodedImage.getBytes(), O,
encodedImage.getBytes().length));

To run the application, type ant SOAPClient. The emulator will start and
the screen will look like the screen in Figure 8.8.

Pressing the “Get Names” button will result in the invocation of the
ImageService Web service, and the Palm will display on the screen the names
of images on the server, as shown in Figure 8.9.

Pressing the “Get Image” button will cause the getImage method of the
ImageService service to be invoked, and the image kangarool.png is dis-
played on the screen, similar to Figure 8.10.

Using a Proxy with HTTP to Access the Web Service

Having a SOAP client on the Palm device means that there is less space for
your application, and valuable processing resources are used to generate the
SOAP request and parse the response. Often in constrained environments, we
need to find a way to off-load processing from the device if at all possible. In
this section, we look at one such alternative. Off-loading processing from the

Figure 8.8 The SOAPClient window

%

é WildingMcBride.book Page 175 Monday, May 19, 2003 9:15 AM

Web Service Access from a Palm Device

Figure 8.9 Image names returned by the Web service

Figure 8.10 An image returned from the Web service

%

%{% é WildingMcBride.book Page 176 Monday, May 19, 2003 9:15 AM

Chapter 8 Integrating with the Enterprise Using Web Services

device means that we need to do some more processing on the server side.
The server side is relatively unconstrained in processing resources, so it
makes sense to do more there than on the constrained mobile device. We
need some processing to be done on the server on behalf of the Palm device.
The processing interacts with the Web service, and the Web service is
unchanged. The results of this processing are sent to the device in a form that
it can process with a minimum of effort. The logic to perform this processing
is called a proxy.

One approach to building a proxy to interact with the ImageService on
the Palm’s behalf is to use a servlet. A servlet provides classes that make it very
easy to create server-side logic accessed with HTTP as shown in Figure 8.11.

The Palm will invoke the servlet using HTTP GET and a URL, and retrieve
the information as text in a Web page. The URL will embed some parameters
that form the protocol between the Palm and the proxy. The first parameter
is the service endpoint (the name is “service-end-point™), the value of which
is a URL that tells the proxy where to find the ImageService Web service.
The second parameter named “action” tells the proxy which ImageService
method to invoke. The values will be “getNames” and “getImage.” If the
action is “getImage,” another parameter named “name” has the value of the
image to retrieve.

The first thing is to create a class that extends HttpServiet:

pubTlic class ImageServiceProxy extends HttpServlet {

}

: SOAP .
ImageSerV|ceProxy| E—
A

AXIS

Tomcat

Server

HTTP Client
Plain Text

HTTPTextClient

Figure 8.11 Accessing the Web service via a server-side proxy

%

+@

%{% é WildingMcBride.book Page 177 Monday, May 19, 2003 9:15 AM

Web Service Access from a Palm Device 177

Next we will implement the doGet method. This method gets the values
of the parameters and invokes the ImageService methods accordingly. It then
writes the response to the servlet’s output stream.

public void doGet(HttpServletRequest request,
HttpServiletResponse response) throws IOException,
ServletException {
URL endPointURL = new URL(request.getParameter("service-end-point"));
String action = request.getParameter("action");
if (action.equalsIgnoreCase("getNames")) {
String[] names = getNames(endPointURL);
response.setContentType("text/plain");
PrintWriter out = response.getWriter();
if (names != null) {
for (int i=0; i<names.length; i++)
out.printin(names[i]);
3
3
else if (action.equalsIgnoreCase("getImage")) {
String name = request.getParameter("name");
ImageValue imageValue = getImage(endPointURL, name);
if (imageValue == null) {
System.out.printIn("imageValue is null");
3
else {
response.setContentType("text/plain");
StringBuffer buffer = new StringBuffer();
buffer.append(""+imageValue.getDate()+"\n");
buffer.append(imageValue.getEncodedImage()+"\n");
response.setContentLength(buffer.length());
PrintWriter out = response.getWriter();
out.printin(buffer.toString());

}
}
else {

// action not recognised
}

The doGet method makes use of some helper methods, for accessing the
ImageService Web service. The purpose of these methods is to separate the
Web service access from the main servlet logic, as they are logically distinct.

private String[] getNames(URL endPointURL) {
String[] names = null;
try {

- +©

%{% é WildingMcBride.book Page 178 Monday, May 19, 2003 9:15 AM

178 Chapter 8 Integrating with the Enterprise Using Web Services

Service service = new Service();
Call call = (Call)service.createCall();
call.setTargetEndpointAddress(endPointURL);
call.setOperationName(new QName("ImageService", "getNames"));
names = (String[])call.invoke(new Object[] {});
}
catch (AxisFault fault) {
System.err.printin("Generated fault: ");
System.out.printin(" Fault Code = " + fault.getFaultCode());
System.out.printin(" Fault String = " + fault.getFaultString());
}
catch (Exception e) {
System.out.println(e.toString());
}
return names;

}

private ImageValue getImage(URL endPointURL, String name) {
ImageValue imageValue = null;
try {
// Set up the SOAP Service Object
Service service = new Service();
Call call = (Call)service.createCall();
call.setTargetEndpointAddress(endPointURL);
call.setOperationName(new QName("ImageService", "getImage"));
call.addParameter("name",
org.apache.axis.encoding.XMLType.XSD_STRING,
ParameterMode.IN);
QName gn = new QName("urn:BeanService", "ImageValue");
call.registerTypeMapping(ImageValue.class, qn,
new BeanSerializerFactory(ImageValue.class, gn),
new BeanDeserializerFactory(ImageValue.class, qn));
call.setReturnType(qgn);

imageValue = (ImageValue)call.invoke(new Object[] { name });
3
catch (AxisFault fault) {
System.err.printin("Generated fault: ");
System.out.printin(" Fault Code =" + fault.getFaultCode());
System.out.printin(" Fault String = " + fault.getFaultString());
3
catch (Exception e) {
System.out.printin(e.toString());
3

return imageValue;

- +©

%{% é WildingMcBride.book Page 179 Monday, May 19, 2003 9:15 AM

Web Service Access from a Palm Device 179

To deploy the servlet to run on Tomcat, we will need to set up a new Web
application. We will call the Web application “javaonpdas,” and so we need
to create a new directory under ${tomcat-base}\webapps called javaonpdas.
In the javaonpdas directory, we need a WEB-INF directory, which in turn
should contain a Tib directory for the JAR files for the Web application.

In the directory ${tomcat-base}\webapps\javaonpdas\WEB-INF we need
to put a web.xm1 file that describes the new Web application. The web.xm1 file
describes the servlet class that implements the Web application, as well as the
URL pattern to be used to access the servlet. The servlet section describes
this. Normally we do not want the servlet accessed with a long-winded URL
that includes the fully qualified class name—we can use a shorthand name
instead. The servlet-mapping section sets this up.

<?xm1 version="1.0" encoding="IS0-8859-1"7>

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>

<serviet>
<servlet-name>ImageServiceProxy</servlet-name>
<display-name>ImageServiceProxy</display-name>
<servlet-class>

com. javaonpdas.proxy.ImageServiceProxy

</serviet-class>

</serviet>

<servilet-mapping>
<servlet-name>ImageServiceProxy</servlet-name>
<url-pattern>/servlet/ImageServiceProxy</url-pattern>
</serviet-mapping>

</web-app>

With these mappings in place, we can access the new servlet with the fol-
lowing URL:

http://192.168.0.1:8080/javaonpdas/serviet/ImageServiceProxy

Because our Web application is an Axis SOAP client, we will copy the
Axis client JARs into the ${tomcat-base}\webapps\javaonpdas\WEB-INF\1ib
directory. The JARs are

- +©

%{% é WildingMcBride.book Page 180 Monday, May 19, 2003 9:15 AM

Chapter 8 Integrating with the Enterprise Using Web Services

axis.jar

jaxrpc.jar
axis-ant.jar
commons-discovery.jar
commons-Tlogging.jar
Tog4j-1.2.4.jar
saaj.jar

wsd14j.jar

The ImageServiceProxy class is compiled and deployed as part of the
CompileDesktop target in the Ant build file. The resultant JAR javaonpdas-
desktop.jar is also Copied to the ${tomcat-base}\webapps\javaonpdas\WEB-
INF\1ib directory.

Once the set up of the new Web application is complete, we can test it.
Restart Tomcat and use a browser to access the following URL:

http://192.168.0.1:8080/javaonpdas/serviet/«
ImageServiceProxy?service-end-point=http://Tocalhost:8080/axis/«
serviet/AxisServilet&action=getNames

This URL is invoking the new ImageServiceProxy servlet, telling it the Web
service endpoint to use (http://localhost:8080/axis/serviet/AxisServiet),
and the action to perform (action=getNames).

Because the proxy accepts a URL and writes the result in plain text, we
can see the result in the Web page in Figure 8.12.

Similarly, we can use the following URL to retrieve the Base64-encoded
image kookaburra.png:

http://192.168.0.1:8080/javaonpdas/serviet/«
ImageServiceProxy?service-end-point=http://Tocalhost:8080/axis/«
serviet/AxisServilet&action=getImage&name=kookaburra.png

The first line in Figure 8.13 is the long integer corresponding to the
image’s last modified date, and the second line in the Base64-encoded string
of the image itself.

To create a Palm client that accesses the proxy rather than the Web ser-
vice directly, we will modify SOAPCTient and create a new MIDlet called
HTTPTextClient. This MIDlet is similar except for the way the getNames and
getImage commands are handled.

The first step is to set up the HTTP connection by opening the input
stream.

%

+@

%{% é WildingMcBride.book Page 181 Monday, May 19, 2003 9:15 AM é

Web Service Access from a Palm Device

/3 http://192.168.0.3:8080, javaonpdas/servlet/ImageServiceProxy?service-end-point=http://localhost - Microsoft Internet Explorer =181 x|
File Edit View Favorites Tools Help ‘i
EBack » = - Zat ‘ ‘Qsearch [iFavorites Media (4 ‘ B-S=E 0
Address I@ http:f{192.168.0.3:8080/javaonpdas/servlet/ImageServiceProxy?service-end-point=http: flocalhost: 8080/ axi: let/axisServietaction= j (? Go ‘ Links
kookaburra.png

kookaburra-bw. png

kangaroo-bw.png

kangarool.png

|@ Done

[[emene
Figure 8.12 Using a browser to return image names from the Web service via the proxy

HttpConnection connection = null;
InputStream is = null;

String url = "http://192.168.0.1:8080/javaonpdas/serviet/«

ImageServiceProxy?service-end-point=http://Tocalhost:8080/axis/«
servlet/AxisServlet&action=getNames";
try {

connection = (HttpConnection)Connector.open(url);

connection.setRequestMethod(HttpConnection.GET);
is = connection.openInputStream();
int contentlLength = (int)connection.getlLength();

Assuming the content length is not zero, we create a byte array to accom-
modate the content, and read from the input stream.

byte[] byteArray = new byte[contentlLength];
is.read(byteArray);

- +©

%}% é WildingMcBride.book Page 182 Monday, May 19, 2003 9:15 AM

182 Chapter 8 Integrating with the Enterprise Using Web Services

; http://192.168.0.3:8080,javaonpdas/servlet /ImageServiceProxy?service-end-point=http://localhost - Microsoft Internet Explorer |- 5]
File Edit View Favorites Tools Help ‘i
EBack » = - Zat ‘ ‘Qsearch [Favorites & Media 9‘ B-S=E 0

Address |@ http:f{192.168.0.3:8080/javaonpdas/servlet/ImageServiceProxy?service-end-point=http: flocalhost: 8080/ axi: let/axisServietaction=get] kookaburra.png j PGD ‘Links
1035889790000

1VBORWOKGUOAAAANSUhEUGAAADSAAABNCATAAABCYFidAALABGABTUEAANKDQL ZPoQAALLLWSF 1ZAAALEWAACKX MEATqeGAAAACFORVhOUZ SradHdhemUAUXVp Y2 £ Uk

g o

|&] pone [@ meemet
Figure 8.13 Using a browser to retrieve the Baseé4 representation of an image

Next we parse the byte array looking for ‘\n’ characters, indicating the end
of an image file name. For each file name, we add the string to the text field.

StringBuffer buffer = new StringBuffer();
textField.setString(null);
for (int i=0; i<byteArray.length; i++) {
if (byteArray[i] == (byte)'\n') {
textField.insert(buffer.toString() + "\n", textField.size());
buffer.setLength(0);

3

else if (byteArray[i] == (byte)'\r') {

3

else {
buffer.append((char)byteArray[i]);

3

- +©

%% é WildingMcBride.book Page 183 Monday, May 19, 2003 9:15 AM

Web Service Access from a Palm Device 183

Figure 8.14 Accessing the Web service via the HT TP text proxy

Running ant HTTPTextClient compiles the application and starts the
emulator. Pressing the “Get Names” button will result in the image file
names being displayed as before and as shown in Figure 8.14, except that
this time the Palm is communicating with the Web service proxy, rather than
the Web service itself.

Using a Proxy with Data Streams to Access the Web Service

An alternative to using HTTP and plain text is to open a stream over the
HTTP socket connection between the client and the proxy. A proxy that dem-
onstrates this approach is ImageServiceStreamProxy, as shown in Figure 8.15.

The code in ImageServiceStreamProxy differs from ImageServiceProxy
mainly in the way that the information is sent back to the client; the same
protocol as that used in ImageServiceProxy is used for embedding the
request in the URL.

The doGet method in ImageServiceStreamProxy calls the helper methods
to access the Web service as before, but instead of writing the response to a
PrintWriter, it opens a DataOutputStream and writes the response to it.

- +©

%% é WildingMcBride.book Page 184 Monday, May 19, 2003 9:15 AM

Chapter 8 Integrating with the Enterprise Using Web Services

ImageServiceStreamProxy| ﬂ»

A

AXIS
Tomcat
Server
HTTP Client
DataOutputStream
DatalnputStream

HTTPStreamClient

Figure 8.15 Accessing the Web service using a data stream proxy

if (action.equalsIgnoreCase('"getNames")) {
String[] names = getNames(endPointURL);
DataOutputStream dos = null;

try {
dos = new DataQutputStream(response.getOutputStream());
if (names != null) {

dos.writeInt(names.length);
for (int i=0; i<names.length; i++)
dos.writeUTF(names[i]);
}
else
dos.writeInt(0);
}
catch (Exception e) {
System.out.printin(e.toString());

}
finally {

try { if (dos != null) dos.close(); } catch (Exception e) {}
}

In the “getNames” case, the helper method getNames() is called to
retrieve the file names as before. Then a DataOutputStream is opened on the
response’s output stream. The first thing to write to the DataOutputStream is

- +©

%{% é WildingMcBride.book Page 185 Monday, May 19, 2003 9:15 AM

Web Service Access from a Palm Device 185

the number of names in the list, so that the client knows how many to
expect. Then we write the file names using writeUTF().

In the “getImage” case, we can decode the image from the Base64 string
into an array of bytes and write the byte array to the DataOutputStream. This
saves the client from decoding the string, which is consistent with our objec-
tive of doing as much work as possible on the server.

else if (action.equalsIgnoreCase("getImage")) {
String name = request.getParameter('"name");
ImageValue imageValue = getImage(endPointURL, name);
if (imageValue == null) {
System.out.printIn("imageValue is null");
}
else {
byte[] byteArray = org.apache.axis.encoding.Base64.decode(
imageValue.getEncodedImage());
System.out.printin("image length="+byteArray.length);
response.setContentLength(byteArray.length);
DataOutputStream dos = null;
try {
dos = new DataQutputStream(response.getOutputStream());
dos.write(byteArray, @, byteArray.length);
}
catch (Exception e) {
System.out.printin(e.toString());
}
finally {
try { if (dos != null) dos.close(); } catch (Exception e) {}
}

To use this new proxy based on streams, we need to modify the client to
use streams as well. The client is called HTTPStreamClient. The client makes
the request in the same way as before but retrieves the result by opening a
DataInputStream on the HTTP connection.

if (c == getNamesCommand) {

HttpConnection connection = null;

DataInputStream dis = null;

String url = "http://192.168.0.1:8080/javaonpdas/serviet/«
ImageServiceStreamProxy?service-end-point=http://localhost:8080/«
axis/serviet/AxisServlet&action=getNames";

try {

connection = (HttpConnection)Connector.open(url);
connection.setRequestMethod(HttpConnection.GET);

- +©

%{% é WildingMcBride.book Page 186 Monday, May 19, 2003 9:15 AM

186 Chapter 8 Integrating with the Enterprise Using Web Setvices

dis = connection.openDataInputStream();
int numberOfNames = dis.readInt();
textField.setString(null);
for (int i=0; i<numberOfNames; i++) {
String name = dis.readUTF();
textField.insert(name + "\n", textField.size());
}
}
catch (Exception e) {
textField.insert("Error:" + e.toString() + "\n", textField.size());

3
finally {
try {
if (connection != null) connection.close();
if (dis != null) dis.close();
} catch (Exception e) {}
3

The first thing to read from the DataInputStream is the number of file
names sent by the proxy. Then we loop that number of times, reading the
strings from the input stream and displaying them on the text field.

In the case of “Get Image,” again we set up a DataInputStream on the
HTTP connection, read the array of bytes from the stream, and create an
image from the array. Recall that the Base64 string was decoded on the
server by the proxy.

else if (c == getImageCommand) {

HttpConnection connection = null;

DataInputStream dis = null;

String url = "http://192.168.0.1:8080/javaonpdas/serviet/«
ImageServiceStreamProxy?service-end-point=http://Tocalhost:8080/«
axis/serviet/AxisServlet&action=getImage&name=Kangaroo.png";

try {

connection = (HttpConnection)Connector.open(url);
connection.setRequestMethod(HttpConnection.GET);
int contentlLength = (int)connection.getlLength();
if (contentLength>0) {
dis = connection.openDataInputStream();
byte[] imageByteArray = new byte[contentlLength];
int ch = 0;
for (int i=0; i<contentlLength; i++) {
if ((ch = dis.read()) != -1) {
imageByteArray[i] = (byte)ch;
3

else {

- +©

%{% é WildingMcBride.book Page 187 Monday, May 19, 2003 9:15 AM

T

Web Service Access from a Palm Device

textField.insert("Error: encountered EOF\n",
textField.size());
}
}

imageItem.setImage(Image.createImage(imageByteArray,
0, imageByteArray.length));
3

3
catch (Throwable t) {

textField.insert("Error:" + t.toString() + "\n",

textField.size());
t.printStackTrace();

3
finally {
try {
if (dis != null) dis.close();
if (connection != null) connection.close();
} catch (Exception e) {}
3

Comparing Performance

The three access methods were tested on a Palm IIIx with a direct serial con-
nection to a PC, and their performance is compared in Table 8.2.
In the next section, we will compare these access methods.

Summary of Web Service Access Options

The following comparison describes the advantages of each option over the
other options. The disadvantages are of each option are compared to the other
options. The reason for using a particular option is also given.

Table 8.2 Comparing Performance of Web Service Access Methods

SOAP HTTPText HTTPStream

Size of PRC (bytes) 80,800 12,925 9,509
Free memory at runtime (bytes) 61,864 62,576 62,576
Memory used (bytes) 288 2,752 2,444
Time to request and retrieve image (ms) 28,090 9,010 7,420

4~ 40

%{% é WildingMcBride.book Page 188 Monday, May 19, 2003 9:15 AM

188 Chapter 8 Integrating with the Enterprise Using Web Setvices

SOAP
Advantages

* No client-specific proxy is required on the server.
Disadvantages

e SOAP on the client uses precious memory and processing power.
e Slower and uses more memory compared to the proxy methods.

HTTP Text
Advantages

e Simple protocol to exchange information with the client.
e The server handles the overhead of the SOAP connection.

Disadvantages

e Requires a client-specific proxy on the server.

HTTPStream
Advantages

¢ Simple protocol to exchange information with the client.

e Can decode the Base64 string on the server, thus making less work for
the client.

e The server handles the overhead of the SOAP connection.

e Uses a binary connection, meaning there is no need to detect string
boundaries.

o The fastest of the three access methods compared, and uses the least memory.

Disadvantages

e Requires a client-specific proxy on the server.

Palm ImageViewer

Because the HTTP stream method uses the least memory and is the fastest
end-to-end, we will use this method for the Palm version of ImageViewer.

The ImageViewer constructor sets up the application display. We will use
a ChoiceGroup for selecting the image to display, another ChoiceGroup for
selecting locally or remotely stored images, an ImageItem to display the
image, a Command for saving remote images to local storage, and a Command for
exiting the application.

4~ 40

%{% é WildingMcBride.book Page 189 Monday, May 19, 2003 9:15 AM

Palm ImageViewer

Here is the constructor code:

public ImageViewer() {
// populate the Tist with local names

String[]

names = getNames(true);

if (names == null)
nameChoice =
new ChoiceGroup("Names", ChoiceGroup.EXCLUSIVE, NAMES, null);

else

nameChoice =
new ChoiceGroup("Names", ChoiceGroup.EXCLUSIVE, names, null);
// add the items to the form

mainForm

mainForm

.append(nameChoice);
mainForm.
.append(imageItem);
mainForm.
mainForm.
mainForm.
mainForm.

append(TocationChoice);

addCommand (saveCommand) ;
addCommand (exitCommand) ;
setCommandListener(this);
setItemStatelListener(this);

Note that the ImageViewer class implements two interfaces: the Com-

mandListener interface and the ItemStatelistener interface.

public class ImageViewer extends MIDlet
implements CommandListener, ItemStatelistener

This is because we need to listen for Command selections, and state changes
and name selections in the ChoiceGroups.

The screen looks like Figure 8.16 on starting the application.

Selecting the Location ChoiceGroup causes the itemStateChanged method
to be called. Making a choice of location results in the Names list being popu-
lated with image names according to the Location selection. Selecting an

image name results in the image being displayed on the screen.

public void

itemStateChanged(Item 1item) {

Runtime.getRuntime().gc();

try {

String Tocation = locationChoice.getString(

TocationChoice.getSelectedIndex());
System.out.printin("Tocation:

n

+ location);

imageIltem.setlLabel("Please wait...");
if (item == locationChoice) {

String[] names = getNames(location.equals("Local"));
System.out.printin("there are "

int namesInList = nameChoice.size();

%

+ names.length + '

names");

+@

%% é WildingMcBride.book Page 190 Monday, May 19, 2003 9:15 AM

Chapter 8 Integrating with the Enterprise Using Web Services

Figure 8.16 The Palm OS version of ImageViewer

for (int i=0; i<namesInList; i++)
nameChoice.delete(0);
for (int i=0; i<names.length; i++)
nameChoice.append(names[i], null);
imageItem.setImage(Image.createImage(
Image.createImage(10,10)));
}
else if (item == nameChoice) {
String name =
nameChoice.getString(nameChoice.getSelectedIndex());
imageItem.setImage(Image.createImage(
Image.createImage(10,10)));
Image image = getImage(name, location.equals("Local"));
imageItem.setImage(image);
}
imageItem.setlLabel("Image");
}
catch (Exception e) {

System.out.printin("Error: " + e.toString());
}

- +©

%{% é WildingMcBride.book Page 191 Monday, May 19, 2003 9:15 AM é

Palm ImageViewer 191

Images are stored on the client in a RecordStore. The image names are
retrieved from the RecordStore as follows:

store = RecordStore.openRecordStore(recordStoreName, true);
RecordEnumeration re = store.enumerateRecords(null, null, false);
names = new String[re.numRecords()];
int 1=0;
whiTe(re.hasNextElement()) {
ByteArrayInputStream bis = new ByteArrayInputStream(re.nextRecord());
dis = new DataInputStream(bis);
names[i++] = dis.readUTF();

}

store.closeRecordStore();

When a local image name is selected, the image is retrieved from the
RecordStore as follows:

RecordStore store = null;
try {
store = RecordStore.openRecordStore(recordStoreName, true);
RecordEnumeration re =
store.enumerateRecords(null, null, false);
whiTle(re.hasNextElement()) {
ByteArrayInputStream bis =
new ByteArrayInputStream(re.nextRecord());
dis = new DataInputStream(bis);
if (dis.readUTF().equals(name)) {
int imageSize = dis.readInt();
imageByteArray = new byte[imageSize];
dis.readFully(imageByteArray);
image = Image.createImage(imageByteArray,
0, imageByteArray.length);
}
}
store.closeRecordStore();
}
catch (Exception e) {
System.out.println("Error:'

+ e.toString());

3
finally {
try {
if (store != null) store.closeRecordStore();
if (dis !'= null) dis.close();
} catch (Exception e) {}
3

- +©

%{% é WildingMcBride.book Page 192 Monday, May 19, 2003 9:15 AM

Chapter 8 Integrating with the Enterprise Using Web Services

To retrieve the image names from the server, the following code should
look familiar from the previous examples:

String url = "http://192.168.0.1:8080/javaonpdas/serviet/«
ImageServiceStreamProxy?service-end-point=http://localhost:8080/«
axis/servilet/AxisServlet&action=getNames";
connection = (HttpConnection)Connector.open(url);
connection.setRequestMethod(HttpConnection.GET);
dis = connection.openDatalInputStream();
int numberOfNames = dis.readInt();
names = new String[numberOfNames];
for (int i=0; i<numberOfNames; i++) {

names[i] = dis.readUTF();

}

Retrieving the image from the server is the same technique we used in the
HTTPStreamClient:

HttpConnection connection = null;
String url = "http://192.168.0.1:8080/javaonpdas/serviet/«
ImageServiceStreamProxy?service-end-point=http://localhost:8080/«
axis/servilet/AxisServlet&action=getImage&name="+name;
try {
connection = (HttpConnection)Connector.open(url);
connection.setRequestMethod(HttpConnection.GET);
int contentlLength = (int)connection.getlLength();
if (contentLength>0) {
dis = connection.openDataInputStream();
imageByteArray = new byte[contentlLength];
int ch = 0;
for (int i=0; i<contentlLength; i++) {
if ((ch = dis.read()) != -1) {
imageByteArray[i] = (byte)ch;
}
else {
System.out.printin("Error: encountered EOF");
}
}
image = Image.createImage(imageByteArray, 0,
imageByteArray.length);
}
}
catch (Throwable t) {
System.out.printin("Error:" + t.toString());
t.printStackTrace();

%

+@

%{% é WildingMcBride.book Page 193 Monday, May 19, 2003 9:15 AM

Palm ImageViewer 193
finally {
try {
if (dis !'= null) dis.close();
if (connection != null) connection.close();

} catch (Exception e) {}

Saving an image is only possible if it is remote. In this case, we take the
image array already retrieved to display the image and store it in the record store.
If the image name already exists in the record store, the stored image is replaced.

First, we open the record store and create a byte array that stores the
record store element:

store = RecordStore.openRecordStore(recordStoreName, true);
System.out.printin("size in bytes (before): "+store.getSize());
// create the new record byte array

ByteArrayOutputStream bos = new ByteArrayOutputStream();

dos = new DataOutputStream(bos);

String name = nameChoice.getString(nameChoice.getSelectedIndex());
dos.writeUTF(name);

dos.writeInt(imageByteArray.length);

dos.write(imageByteArray, 0, imageByteArray.length);

byte[] ba = bos.toByteArray();

Then we look for the name in the record store, and update the stored
image if the name is already there.

RecordEnumeration re = store.enumerateRecords(null, null, false);
System.out.printin("looking for " + name + " in " +
re.numRecords() + " records");
boolean found = false;
int recordID = 1;
whiTe(re.hasNextElement()) {
ByteArrayInputStream bis =
new ByteArrayInputStream(re.nextRecord());
System.out.printin("Tooking at record "+recordID);
dis = new DataInputStream(bis);
if (dis.readUTF().equals(name)) {
System.out.printin(name + " found match - updating");
store.setRecord(recordID, ba, @, ba.length);
found = true;

break;

3

else
System.out.println("no match");
recordID++;

- +©

%{% é WildingMcBride.book Page 194 Monday, May 19, 2003 9:15 AM

194 Chapter 8 Integrating with the Enterprise Using Web Services

If the image name is not found, the image is added and the record store is
closed:

if (!found) {
System.out.print(name + " not found - adding " + ba.length);
int addedID = store.addRecord(ba, 0, ba.length);
System.out.printin(" ID = " + addedID);

}
System.out.printin("size in bytes (after): "+store.getSize());
store.closeRecordStore();

The full source code for the Palm version of ImageViewer is located in
C:\JavaOnPDAs\Palm\src\com\javaonpdas\webservices\clients\custom\
ImageViewer.java.

PocketPC Version

Because the PocketPC is far less constrained in terms of memory and process-
ing capability, a direct SOAP connection to the Web service makes more
sense than using the proxy that proved best for a Palm OS implementation.
The PocketPC application com.javaonpdas.webservices.clients.wingfoot.
ImageViewer takes this approach.

The constructor sets up the Frame. As before, we have a way to select
between local and remote, a selection of image names, a button for saving
remote images locally, and a component to display the selected image. In the
PocketPC case, we will use a radio button for the local/remote selection, and
a list box for the image names.

public ImageViewer(String title) {
super(title);
// handle frame closing events
addWindowListener(new WindowAdapter() {
pubTic void windowClosing(WindowEvent e) {
System.exit(0);
3
});
// add components
setLayout(new GridLayout(2,1));
Panel topPanel = new Panel();
CheckboxGroup checkBoxGroup = new CheckboxGroup();
TocalCheckbox = new Checkbox("Local", checkBoxGroup, true);
remoteCheckbox = new Checkbox("Remote", checkBoxGroup, false);
localCheckbox.addItemListener(this);
remoteCheckbox.addItemListener(this);

- +©

%{% é WildingMcBride.book Page 195 Monday, May 19, 2003 9:15 AM

PocketPC Version 195

topPanel.add(localCheckbox);

topPanel.add(remoteCheckbox);

saveButton = new Button('"Save");

saveButton.setEnabled(false);

topPanel.add(saveButton);

saveButton.addActionListener(this);

Tist = new List(4);

Tist.addItemListener(this);

topPanel.add(1ist);

add(topPanel);

imageCanvas = new ImageCanvas();

add(imageCanvas);

String[] names = getNames(true);

if (names != null)

for (int i=0; i<names.length; i++)

Tist.add(names[i]);

Note that the Save button is disabled when the Local radio button is
selected, as it is only possible to save remote images.

The component used for displaying the image is a separate class called
ImageCanvas. ImageCanvas is a subclass of Canvas, and separates the job of
setting the image and repainting away from the ImageViewer class.

package com.javaonpdas.webservices.clients.wingfoot;

import java.awt.Canvas;
import java.awt.Image;
import java.awt.Graphics;
import java.awt.Dimension;

public class ImageCanvas extends Canvas {
private Image image = null;

public ImageCanvas() {
super();

}

pubTlic void setImage(Image image) {
this.image = image;

}

pubTlic Image getImage() {
return this.image;

}

- +©

%{% é WildingMcBride.book Page 196 Monday, May 19, 2003 9:15 AM

196 Chapter 8 Integrating with the Enterprise Using Web Services

pubTlic void update(Graphics g) {
paint(g);
}

pubTlic void paint(Graphics g) {
if (image != null) {
Dimension size = getSize();
g.clearRect(@, 0, size.width, size.height);
g.drawImage(image, @, 0, this);

There are three events in which we are interested: when the Save button
is pressed (triggering an ActionEvent), when the user makes a change in
selection between Local and Remote, and when an image name is selected
(both of which trigger an ItemEvent).

The ItemEvent is handled by the itemStateChanged method:

public void itemStateChanged(ItemEvent evt) {
if (evt.getItemSelectable().getClass() ==
new Checkbox().getClass()) {
Tocal = TocalCheckbox.getState();
if (local) saveButton.setEnabled(false);
else saveButton.setEnabled(true);
String[] names = getNames(local);
Tist.removeAl1();
if (names !'= null)
for (int i=0; i<names.length; i++)
Tist.add(names[i]);
3
else {
String name = list.getSelectedItem();
Image image = getImage(name, local);
imageCanvas.setImage(image);
imageCanvas.update(imageCanvas.getGraphics());

If the ItemEvent corresponds to the Local/Remote radio button, we get
the image names either stored locally or remotely, depending on the state of
the Local button. If the button is set to Local, the Save button is disabled.

If the ItemEvent corresponds to the list of image names, we find the current
selection and get the image of that name, and display it on the ImageCanvas.

The ActionEvent is handled by the actionPerformed method:

- +©

%{% é WildingMcBride.book Page 197 Monday, May 19, 2003 9:15 AM

PocketPC Version 197

pubTic void actionPerformed(ActionEvent evt) {
String cmd = evt.getActionCommand();
if (cmd.startsWith("Save")) {
Image image = imageCanvas.getImage();
String name = list.getSelectedItem();
FileOutputStream ostream = null;
try {
ostream = new FileOutputStream(LOCAL_DIRECTORY + "\\" + name);
ostream.write(imageByteArray);
ostream.close();
}
catch (Exception e) {
System.out.println("Error:" + e);

3
finally {
try {
if (ostream != null) ostream.close();
} catch (Exception e) {}
3

If the Save button is pressed, the current image byte array is written to a
file in the local image directory using FileOutputStream.

The names are retrieved by the getNames method, which takes a Boolean
parameter to indicate whether to retrieve the names from the local or remote
repository. In the local case:

FilenameFilter filter = new FilenameFilter() {
pubTlic boolean accept(File dir, String name) {
return name.endsWith(".jpeg");
3
3
File dir = new FiTle(LOCAL_DIRECTORY);
files = dir.list(filter);

Note that we are only interested in JPEG images, where in the Palm Image-
Viewer we used PNG image files. This is because PersonalJava 1.2 is only required
to support a minimum set of image types (GIF, XBM, and JPEG). J2ME
MIDP, on the other hand, is required at a minimum to support PNG images.

In the remote case, we use the J2SE version of the Wingfoot SOAP client.
This version of the SOAP client has the same APIs, except for the transport
used. Recall that in the Palm SOAPClient we used HTTPTransport, which
underneath uses MIDP’s GCF. PersonalJava is J2SE, and so it does not have

- +©

%{% é WildingMcBride.book Page 198 Monday, May 19, 2003 9:15 AM

198 Chapter 8 Integrating with the Enterprise Using Web Services

GCE Wingfoot gets around this difference by providing a different transport
class: J2SEHTTPTransport.

try {
// Prepare the Envelope
Envelope requestEnvelope = new Envelope();
requestEnvelope.setBody("extension", ".jpeg");

// Prepare the call

Call call = new Call(requestEnvelope);
call.setMethodName("getNames");
call.setTargetObjectURI("ImageService");

// Prepare the transport
J2SEHTTPTransport transport =

new J2SEHTTPTransport(SOAP_ENDPOINT, null);
transport.getResponse(true);

// Make the call
Envelope responseEnvelope = call.invoke(transport);

// Parse the response
if (responseEnvelope != null) {
if (responseEnvelope.isFaultGenerated()) {
Fault f = responseEnvelope.getFault();
System.out.printin("Error: " + f.getFaultString());

}
else {
Object[] parameter =
(Object[])responseEnvelope.getParameter(0);
String[] temp = new String[parameter.length];
for (int i=0; i<parameter.length; i++)
temp[i] = (String)parameter[i];
files = temp;
}
}
}
catch (java.net.ConnectException e) {
(new ImageDialog(this, "Error", "Could not connect to " +
SOAP_ENDPOINT)).show();
}

catch (Exception e) {
(new ImageDialog(this, "Error", e.toString())).show();
3

- +©

%{% é WildingMcBride.book Page 199 Monday, May 19, 2003 9:15 AM

PocketPC Version 199

Note that the code is very similar to the Palm SOAPC1ient, except for the
different transport class.

To retrieve a local image, we load a byte array from a file with the image
name, and create an image:

FileInputStream fis = null;
try {
// read the file into a byte array
File imageFile = new FiTe(LOCAL_DIRECTORY + "\\" + name);
if (imageFile.exists()) {
fis = new FileInputStream(imageFile);
int Tength = fis.available();
imageByteArray = new byte[length];
fis.read(imageByteArray);
imageCanvasDimension = imageCanvas.getSize();
image = Toolkit.getDefaultToolkit().createImage(«
imageByteArray).getScaledInstance(«

-1, imageCanvasDimension.height, Image.SCALE_FAST);
MediaTracker tracker = new MediaTracker(this);
tracker.addImage(image,0);
try {tracker.waitForID(Q);} catch (InterruptedException e){};

}
}
catch (Exception e) {
(new ImageDialog(this, "Error", e.toString())).show();

3
finally {

try { if (fis != null) fis.close(); } catch (Exception e) {}
3

Note the use of MediaTracker. Because createImage can spawn a separate
thread to do its work, as it can take a long time to do some image tasks, we
want to make sure that the task is finished before we go to the next step. This
is done by using a MediaTracker that waits for a task with a given identifier
(in this case, 0) to complete.

Again the code that retrieves an image from the ImageService Web ser-
vice is quite familiar, except for the use of J2SEHTTPTransport:

try {
// Prepare the Envelope
Envelope requestEnvelope = new Envelope();
requestEnvelope.setBody("name", name);

// Prepare the call
Call call = new Call(requestEnvelope);
call.setMethodName("getImage");

- +©

%{% é WildingMcBride.book Page 200 Monday, May 19, 2003 9:15 AM

200 Chapter 8 Integrating with the Enterprise Using Web Setvices

call.setTargetObjectURI("ImageService");
TypeMappingRegistry registry = new TypeMappingRegistry();
registry.mapTypes("urn:BeanService", "ImageValue",

new ImageValue().getClass(),

new BeanSerializer().getClass(),

new BeanSerializer().getClass());
call.setMappingRegistry(registry);

// Prepare the transport
J2SEHTTPTransport transport =

new J2SEHTTPTransport(SOAP_ENDPOINT, null);
transport.getResponse(true);

// Make the call
Envelope responseEnvelope = call.invoke(transport);

// Parse the response
if (responseEnvelope != null) {
if (responseEnvelope.isFaultGenerated()) {
Fault f = responseEnvelope.getFault();
System.out.printin("Error: " + f.getFaultString());
}
else {
ImageValue imageValue =
(ImageValue)responseEnvelope.getParameter(0);
Date date =
new Date(imageValue.getDateAsLong().longValue());
Base64 encodedImage =
new Base64(imageValue.getEncodedImage());
imageByteArray = encodedImage.getBytes();
imageCanvasDimension = imageCanvas.getSize();
image =
Toolkit.getDefaultToolkit().createImage(
imageByteArray).getScaledInstance(-1,
imageCanvasDimension.height, Image.SCALE_FAST);
MediaTracker tracker = new MediaTracker(this);
tracker.addImage(image,0);
try {tracker.waitForID(0Q);}
catch (InterruptedException e){};

3
}
catch (Exception e) {
(new ImageDialog(this, "Error", e.toString())).show();

}

- +©

%{% é WildingMcBride.book Page 201 Monday, May 19, 2003 9:15 AM

PocketPC Version 201

We can test the ImageViewer application on the desktop prior to deploy-
ing it to a PocketPC device. The Ant build target TestImageViewer performs
this task:

<target name="TestImageViewer" depends="CompilePocketPC">
<java
classname="com.javaonpdas.webservices.clients.wingfoot.«
ImageViewer"
dir="."
fork="true"
failonerror="true">
<classpath>
<pathelement location="${pocketpclib}\$«
{pocketpcsoaplib}"/>
<pathelement location="${pocketpcdestination}«
\pocketpc.jar"/>

</classpath>

<arg Tine=""/>
</java>
</target>

To deploy the application to the PocketPC, we use the Ant target Deploy-
PocketPC, which copies the pocketpc.jar to the PC’s PocketPC synchroniza-
tion folder.

<target name="DeployPocketPC" depends="CompilePocketPC">
<copy file="${pocketpcdestination}\pocketpc.jar"
todir="${pocketpcdeploy}" />
<copy todir="${pocketpcdeploy}">
<fileset dir="${pocketpclib}"/>
</copy>
</target>

On starting the application, we see the frame as shown in Figure 8.17.

Selecting an image name retrieves the image from local storage and dis-
plays it on the screen, as shown in Figure 8.18.

Selecting the Remote button and selecting an image name retrieves that
image from the ImageService Web service, and displays it on the screen, as
shown in Figure 8.19.

- +©

%{% é WildingMcBride.book Page 202 Monday, May 19, 2003 9:15 AM

202 Chapter 8 Integrating with the Enterprise Using Web Services

ImageViewer

fLocall (O Remate

Kangaroo.jpeq
Liarn looking at a plane.jpeg

H ImageViewer [BE] - 4% 8:49

Figure 8.17 The PocketPC version of ImageViewer, showing image names

ImageViewer

® Local () Remote

Liamn looking at a plane.jpeg

H ImageViewer [E] - «£ 8:50

Figure 8.18 The PocketPC version of ImageViewer, showing an image from local
storage

- +©

%% é WildingMcBride.book Page 203 Monday, May 19, 2003 9:15 AM

T

Summary 203

O Local @ Remote

Liarn looking at a plane.jpeg
Kangaroo, jpe

{ﬁ? ImageYiewer E] - +% 8:50

Figure 8.19 The PocketPC version of ImageViewer, showing an image from
remote storage

Summary

In this chapter we have explored using Web services to integrate a PDA appli-
cation with the enterprise. For PDAs with more limited memory and process-
ing capacity, we have seen that Web services are possible, but a preferable
technique is to use a proxy on the server. The proxy does as much of the
work as possible on the PDA’s behalf, and exchanges information with the
PDA using a very simple protocol.

For more powerful PDAs, such as the PocketPC, we can use SOAP
directly to access server-side functionality.

4~ 40

%{% é WildingMcBride.book Page 204 Monday, May 19, 2003 9:15 AM

- +©

