
MULTITHREADING Praxis 54

189

 notifyAll(); //Notify all threads.
 }
}

Notice that the run method of the Robot class first acquires the lock for the
RobotController object at //1. This is done so the Robot objects can operate on
the table of commands without the RobotController object changing it. Note
that the loadCommands method of the RobotController class, at //4, acquires
the same object lock. Synchronizing this method ensures the robot command table
is not altered when it is in use.

After the lock is acquired at //1, the Robot code then checks to see if there is a
table of robot commands to process at //2. If such a table does not exist, the code
executes a call to wait on the RobotController object at //3. This call releases
the lock acquired at //1 and goes into a wait state. When the loadCommands
method of the RobotController class is called, a notifyAll is issued, thereby
waking up all of the Robot threads. To run, each thread must first reacquire the
RobotController object lock. Only one thread acquires this lock at a time; the
others must wait. The Robot thread that gets the lock can now access the table of
commands and move the robot accordingly.

This code has a bug that causes it to fail in certain situations. Consider the follow-
ing sequence of events:

1. An object of the RobotController class is created along with two objects of
the Robot class. Each object runs on its own thread.

2. The first Robot thread checks to see whether the commands variable is null
at //2.

3. The commands variable is null, so the first Robot thread blocks at //3 with a
call to wait.

4. The second Robot thread checks to see whether the commands variable is
null at //2.

5. The commands variable is null, so the second Robot thread blocks at //3 with
a call to wait.

6. The loadCommands method of the RobotController class is called with a
table of commands.

Multithreading.fm Page 189 Sunday, July 16, 2000 8:37 PM

