
MULTITHREADING Praxis 54

187

A point previously made about threads, notify, and notifyAll must be stressed.
The priority of a thread does not determine whether it is notified (in the case of
using the notify method) or in what order multiple threads are notified (in the
case of using the notifyAll method). Therefore, you should never make assump-
tions about the order in which threads are awakened as a result of calls to these
methods. In addition, you should never make assumptions about the scheduling of
a thread during preemption. Thread scheduling is implementation-dependent and
varies by platform. It is unwise to make this type of assumption if your code is to
be portable.

Praxis 54: Use spin locks for wait and notifyAll

When synchronizing multiple threads that access common data, you often need to
use a notification mechanism with the wait and notifyAll methods. Using these
methods requires the application of the spin-lock pattern so that your code works
properly.

To illustrate, consider code that implements a robot controller. The RobotCon-
troller class controls the actions of various robots connected to a computer. The
controller and robots all run on separate threads. The controller provides a table of
commands that is stored in a static commands field of the Robot class. Any
robot can execute the commands. When a robot is finished executing the com-
mands, it sets the commands variable to null and waits for more commands from
the controller.

The robots wait for commands by a call to the wait method on the controller
object. When the data arrives, they perform the commands in the table and then
return to the wait state. The code for the controller and two robots might look like
this:

class Robot extends Thread
{
 private static byte[] commands;
 private RobotController controller;
 public Robot(RobotController c)
 {
 controller = c;
 }
 public static void storeCommands(byte[] b)
 {
 commands = b;
 }

Multithreading.fm Page 187 Sunday, July 16, 2000 8:38 PM

