é ExceptionHandling.fm Page 68 Sunday, July 16, 2000 8:32 PM

68

PRAXIS 18 EXCEPTION HANDLING

catch (FileNotFoundException fnfe)
{
System.out.println(fnfe + caught in method ml1");
fnfe.printStackTrace(System.err);
}
}

Remember when using this technique to redirect the standard error stream output
to a file. This enables the file to be parsed to determine if any exceptions were
generated. On Windows NT and UNIX, this is done by directing standard error
and standard output to the same file as follows:

java Test > out.dat 2>&1

The best approach, however, is not to put off the dirty work of exception and error
handling, but rather to deal with it as they arise.

PRAXIS 18: Never hide an exception

Exceptions are hidden when one is thrown from a catch or finally block during
the processing of a previously thrown exception. Only the last exception generated
is propagated to the calling method. If you are interested only in the fact that a
method failed due to one or more exceptions, you might not care if a previously
thrown exception is hidden. However, you want to avoid hiding exceptions when
you want to know the original cause of a method’s failure.

Often during catch or finally block processing, you call methods that can
throw exceptions. How do you handle this so that previously thrown exceptions
are not hidden? You need a mechanism to transfer all generated exceptions of a
method to the calling method. Here is an example of the problem:

class Hidden

{
public static void main (String args[])
{
Hidden h = new Hidden();
try {
h.foo();
}
catch (Exception e) {
System.out.println("In main, caught exception: " +
e.getMessage());
}
}

ﬁ%




