
GENERAL TECHNIQUES Praxis 2

3

fyPoint are not reflected in main because there are two different objects. Right?
Wrong.

Actually, modifyPoint is working with a copy of a reference to the Point object,
not a copy of the Point object. Remember that p is an object reference and that
Java passes parameters by value. More specifically, Java passes object references
by value. When p is passed from main to modifyPoint, a copy of the value of p,
the reference, is passed. Therefore, the modifyPoint method is working with the
same object but through the alias, pt. After entering modifyPoint, but before the
execution of the code at //1, the object looks like this:

Therefore, after the code at //1 is executed, the Point object has changed to (5,
5). What if you want to disallow changes to the Point object in methods such as
modifyPoint? There are two solutions for this:

• Pass a clone of the Point object to the modifyPoint method. See Praxes 64
and 66 for more details on cloning.

• Make the Point object immutable. See Praxis 65 for a discussion of immu-
table object techniques.

Praxis 2: Use final for constant data and constant
object references

Many languages offer a notion of constant data, which is data that does not
change and cannot be changed. Java provides the keyword final to specify con-
stant data. For example:

class Test
{
 static final int someInt = 10;
 //...
}

This code declares a static class variable named someInt and sets its value to
10.

p

pt

Point
x = 0
y = 0

GeneralTechniques.fm Page 3 Sunday, July 16, 2000 8:28 PM

