é Multithreading.fm Page 168 Sunday, July 16, 2000 8:39 PM

168

PRAXIS 47 MULTITHREADING

Because these methods are invoked on separate threads, they attempt to execute
concurrently. You might think that because both methods are declared synch-
ronized, the execution of the two threads cannot interleave between the two
methods. You might also think that the output of this code is either the string
printM1 or printM2, depending on which thread enters its synchronized
method first and obtains the lock. After all, both methods are declared with the
synchronized keyword.

Despite both methods’ being declared synchronized, they are not thread safe.
This is because one is a synchronized static method and the other is a synch-
ronized instance method. Thus, they obtain two different locks. The instance
method printMl obtains the lock for the Foo object. The static method
printM2 obtains the lock for the Class object of class Foo. These two locks are
different and do not affect one another. When this code is executed, both strings
are printed to the screen. In other words, execution interleaves between the two
methods.

What if this code needs to be synchronized? For example, both methods might
share a common resource. To protect the resource, the code must be properly syn-
chronized in order to avoid a conflict. There are two options to solve this problem:

1. Synchronize on the common resource.

2. Synchronize on a special instance variable.

Option 1 involves simply adding synchronized statements in the methods in
order to synchronize on the shared resource. For example, if these two methods
were updating the same object, they would synchronize on it. The code might look
like this:

class Foo implements Runnable
{
private SomeObj someobj;
public void printM1()
{
synchronized(someobj) {
//The code to protect.
}
}

public static void printM2(Foo f)
{

synchronized(f.someobj) {
//The code to protect.

ﬁ%




