74

Instructor's Guide and Assignment Kits

for

A Discipline for Software Engineering

by

Watts S. Humphrey

copyright 1994, Watts S. Humphrey
Instructor's Guide and Assignment Kits

for

A Discipline for Software Engineering

by

Watts S. Humphrey

1 - Introduction

This guide provides suggestions and supporting materials for courses taught with the text A Discipline for Software Engineering. These suggestions are based on the experiences of several professors in teaching such courses. This guide has the following sections:

1 - Introduction - describes the guide contents

2 - General suggestions - includes a summary of the approach suggested for teaching courses from this text

3 - Assignment suggestions - describes the use of the assignment kits contained in section 7 of this guide

4 - Grading - summarizes the grading strategy and includes suggested items to look for with each assignment

5 - Lecture suggestions - describes each lecture's purpose and objectives and the data that would likely be of most value to the students

6 - Spreadsheet instructions - the instructions for using the spreadsheets that are in an instructor's diskette that can be obtained from the Addison Wesley Publishing Company.

7 - Assignment kits - copies of the forms needed by the students to complete each assignment

In addition to this material, the instructor's diskette, available from the Addison Wesley Publishing Company, contains spreadsheets for entering and analyzing student data, lecture overheads, and electronic copies of the PSP forms.

2 - General Suggestions

In teaching this course, instructors have had most success when they have focused on the process used to do the course exercises, the proper gathering of process data, and the use of these data by the students to improve the way they do their work. While the students must produce working programs, it is best to assume that they know how to write the programs and to focus primarily on process quality and process data.

In courses taught to date, the student's report that the periodic class review of data on their work was most helpful. These reviews helped them to see the benefits of using the methods taught in the course and to better appreciate the consequences of following disciplined personal practices. Suggestions on the data to present with each lecture are included in section 6 of this guide. Section 7 contains instructions on using the spreadsheets to generate the appropriate charts.

To emphasize the importance of quality work, I have found it helpful to start by insisting that the students submit correct work. If they are not sure how to do an assignment, they should find out first and then do it right. While on-time homework submission is important, the emphases should be on getting the work right, even if it must be late.

The students typically have little trouble writing the programming exercises but they are often confused about how to complete the process forms. The suggested approach is for them to do the work as best they can and then check with the professor or a teaching assistant before turning in the assignment. If it is not correct, they should not submit it until they correct it. It takes the students a week or two to appreciate this discipline and then the quality of their work is generally excellent.

The textbook also emphasizes that the students follow specifications. It specifies the programs to write, the process to use in writing these programs, the way the results are to be reported, and the order of the materials in these reports. When the students submit their assignments in a specific format and order, grading and data entry are much easier.

It is also important to analyze the students' data after each assignment. Rapid feedback is an essential part of learning this material. The assignments should thus be graded when submitted and the data entered for analysis. While it only takes a few minutes to enter the data for each student assignment, date entry can become a major chore if it is delayed for several assignments. This would also deprive the students of the opportunity to learn from what they have already done.

The spreadsheets described in section 7 of this guide automatically generate a wide variety of analyses and graphic presentations for each student and for the class as a whole. You can thus readily present overall class performance on any selected metric. This helps the students to understand how they are doing and how their performance compares to others.

The course also honors the individuals. It recognizes that each student has strengths and weaknesses and that performance will vary widely depending on tasks and skill levels. The students are thus not graded on their absolute performance. The emphasis is on improvement and the extent to which the students analyze their data and use these analyses to affect their behavior.

Finally, the course does not require that the students work alone. While they must make their own estimates, do their own designs, code their own programs, and compile and test their own work, they can get help. If they wish to check their estimates with classmates, that is acceptable. They must, however, note that they did such checks and track the time they spent. If they decide to change their estimates, they can do so but they should report both the original and the changed estimates.

The same approach applies to the design and the code. If students wish their colleagues to review their designs or code, that is acceptable. The review time and the defects found should then be reported.

To the extent practical in a class environment, this course presents a realistic view of software development. While engineers must do their own work, they can get support from associates. Such behavior should be actively encouraged. Students rarely take advantage of this opportunity until late in the course but they should understand that it is available.

3 - Assignment Guidelines

The students need copies of the PSP forms to do the course assignments. These forms are found in Appendix C of the text and at the back of this guide. Note that the form copies in this guide are in full page size so they can be directly copied and distributed to the students.

You should follow this procedure with these kits:

1 - For each assignment, make a copy of the appropriate kit for each student.

2 - Explain to the students that they should keep a master copy of all the forms for use in the assignments.

3 - Many of the forms will be used for every subsequent assignment after the one where they were introduced.

4 - The project Plan Summary forms are each used for a single process version. Since PSP0.1, PSP1.1, and PSP2 are each used for two programming exercises, the students should keep extra copies of these forms for later use.

5 - Each assignment kit includes a cover page that describes its contents and use. This page is followed by a single copy of each new form for that process version.

4 - Grading

The grading philosophy suggested for this course is summarized in Appendix C of the text. These criteria are also described in more detail in the following paragraphs. When the students submit their assignments, you might suggest that they keep a complete copy of everything they submit. I have found it convenient to make all grading comments on the first assignment sheet and then copy and return that to the students. I then keep a complete record of all the students' assignments and data.

The initial objective is for the students to turn in high quality data. If their data are not of high quality, the quality of their learning experiences will suffer. Quality data is an absolute prerequisite to an effective course.

Note that if you are consistent and thorough in your grading, the students will generally produce correct results after a single reminder. This means that you should focus your grading attention on the new items for each process version. On the Project Plan Summaries, it is easy to identify the new items because they are shown in bold italics on the form. To help the students to do correct work, you might suggest that they not submit each assignment until they have seen the grading comments for the preceding one.

In grading the homework, I have found it most helpful to do the grading in steps as follows:

1 - Check that all the forms are present and in the proper order.

2 - Check each form to ensure that the data are complete and readable.

3 - Check the data items on each form to ensure they are self consistent.

4 - Check the data dependencies among the forms to make sure they are self-consistent.

5 - Check that the data are properly used.

If the forms are not in the proper order, you must search through piles of papers to find the data you need for grading and data entry. This can waste a lot of time. With a little practice, these checks will only take a few moments per assignment. Next, you review the data items in the various forms. The following sections suggest topics to check with each process version and each form.

4.1 Grading PSP0 Assignments

PSP0 is normally used for program 1A and PSP0.1 is used for programs 2A and 3A. For the PSP0 and PSP0.1 exercises, the assignment evaluation criteria are as follows:

- the process data are complete,

- the data are neat and self-consistent,

- the process report is submitted in the proper order and format.

The items to look for in each form are described in the following paragraphs.

PSP0 Project Plan Summary:

- Have data been entered in all the spaces in the form?

- Have these entries been properly added to the totals?

- Are the ToDate and ToDate% entries properly calculated?

PSP0.1 Project Plan Summary

In addition to the PSP0 items:

- Have planned times been entered for every phase?

- Has a planned LOC value been entered?

- Have the Actual Size data been properly calculated?

- Are the ToDate size data properly calculated?

Students generally have the most trouble with the size calculations. Because of the sophistication of the size calculations, the topic should be discussed in class. While some students will occasionally calculate the ToDate and ToDate% data improperly, that is not common.

Time Recording Log:

- Check to ensure that the times in the log correspond to the actual times in the Project Plan Summary form.

The Time Recording Log is rarely a problem.

Defect Recording Log:

- Are data entered in every blank for every defect (except for the Fix Defect space)?

- Is every defect injected before or in the same phase where it is removed?

- Are most defects found in later phases than where they were injected?

- Does every defect have a fix time?

- Do all the defects injected in compile and test have fix numbers in the Fix Defect space?

- Is there an explanatory comment for every defect?

- Does this comment clearly explain the defect?

The defect recording log is a common source of problems, not because it is difficult but because students often skip parts of the data or make incomplete entries. Good defect data are required for the later parts of the course.

The PIP Form:

- With the PIP form, you seek evidence that the students are thinking about the process and how it works for them.

- The principle check is that a PIP form has been completed for each assignment and that it includes insightful comments. An occasional blank PIP is acceptable, as long as it is not the general case for that student.

4.2 Grading the R1, R2, and R3 Reports

Reports R1, R2, and R3 are also produced as part of the assignments for programs 2A and 3A. These reports are described in Appendix D and the grading approach for them is as follows:

Report R1:

This report calls for the student to develop a LOC counting standard. This standard may be patterned all or in part on the standards in the text. The students need not produce an original standard. The grading approach should thus be on the degree to which the students produce standards that are complete and that adequately cover the needs of the programming languages they use for the course.

Report R2:

Report R2, the coding standard, is used to guide the students in developing quality programs that can be counted by the LOC counters they develop with programs 2A and 3A. This standard need not be original but it should include the basic elements included in the example standard in the text (see textbook Table C29). The principal concern is that the students follow the standards they produce.

Report R3:

This report should be produced after program 3A is developed and it should include that program's data. Its intent is to give the students early experience using the data they gather on their process. Since defect data are typically the least complete and consistent, this report will demonstrate the problems and frustrations of analyzing incomplete and inconsistent data. Some items to look for in this report are the following:

- Are the numbers consistent and do the totals columns make sense?

- Are all entries completed?

- Are the defects per KLOC entries properly calculated?

4.3 Grading PSP1 Assignments

PSP1 is normally used for program 4A and PSP1.1 is used for programs 5A and 6A. For exercises done with the PSP1 and PSP1.1 processes, the evaluation criteria include those for PSP0. Also, with PSP1, the students learn the value of using historical data to make plans. In grading the PSP1 exercises, look for all the items from PSP0 and PSP0.1 plus those described here. Note, however, that if you have required the students to submit correct PSP0 data, they will generally no longer make the mistakes you checked for with PSP0. You thus need not continue with these checks except on a spot basis. In summary, the PSP0 checks are:

- the process data are complete,

- the data are neat and self-consistent,

- the process report is submitted in the proper order and format,

- the historical data are used in planning the work,

The new checks for the PSP1 Project Plan Summary are:

- Does the student include size estimate data?

- Are these data properly calculated from the size estimating template?

- Are the plan, actual, and ToDate LOC/Hour data properly calculated?

- Did the student use the historical ToDate time data to estimate the time to be spent in each project phase?

- Did the student use the LOC/Hour data to check the reasonableness of the time estimate for the new project?

These topics are typically not a problem. The principal areas of confusion are the relationship between the Size Estimating Template data and the Project Plan Summary size data. This is discussed further with the Size Estimating Template below.

The new checks for the PSP1.1 Project Plan Summary are:

- Has the CPI figure been properly calculated?

- Have the % Reuse and % New Reuse numbers been properly calculated?

These calculations are rarely problems.

Test Report Template:

- Has the student completed a test report?

- Has the student entered the planned and actual test results for all the required tests?

- Did the student conduct any tests other than those called for in the assignment?

- Were they properly reported? Note that the students should generally conduct more than the minimum number of tests called for in the exercise.

The Test Report can be a source of annoyance. A common problem is that the students do not find it convenient for their data. If they chose to invent different formats, that is acceptable as long as they submit the proper data on their test results. If you cannot easily see that their programs produced the proper results, then the test data are not properly reported.

Size Estimating Template

- Has the student properly entered the estimated Base program size?

- Has the student properly entered the estimated Deleted and Modified size?

- Has the student identified a suitable number of objects for the size estimate?

- Has the student properly used historical size data in judging the size of these objects? Note that the students' initial PSP1 estimates will likely use the object size data in the textbook.

- Did the student properly make a size estimate from historical data? Note that with PSP1, the students will not have enough data to do the regression calculations with the PROBE method.

- Note also that with PSP1, the prediction interval calculations are not required.

The size estimating template is a common source of trouble. The typical problems concern the use of historical data to obtain the size estimates. This will generally require some discussion in class since students have varying misconceptions depending on their backgrounds and experience. Another common problem is understanding the difference between base LOC and reused LOC.

Task Planning and Schedule Planning Templates:

- These templates are rarely needed before exercise 10A.

While these templates were introduced as part of PSP1.1, they are generally not needed until the students work on substantially larger projects. You might suggest that they consider using these templates with the mid-term report R4, program 10A, and the final report R5.

4.4 Grading R4, the Mid-Term Report

The R4 mid-term report calls for the students to define a process for this work. They then use this process to analyze their data for the six programs they have produced to date and to produce a report on their performance. As part of this report, the students are to perform a Pareto analysis of their defect data and produce design review and code review checklists based on these analyses. The key items to look for are the following:

- Did they define and submit a process for producing the report?

- Did this process include planning and postmortem phases?

- Did they follow their process in producing the report?

- Did the report include all the items specified in Appendix D?

- Did their design review checklist address the high priority design defects from their Pareto distribution?

- Did their code review checklist address the high priority code defects from their Pareto distribution?

The quality of the students' reports will vary widely. Some do a superficial job while others demonstrate an interest in their data. While there are no fixed criteria for evaluating these reports, they should be complete and accurate. You should also judge the quality of their analyses. These should demonstrate an understanding of the data and what these data tell them about their performance and their opportunities for improvement.

4.5 Grading PSP2 Assignments

PSP2 is normally used for programs 7A and 8A and PSP2.1 is used for program 9A. The PSP2 and PSP2.1 process evaluation criteria include those used for PSP1. Also, in grading the PSP2 exercises, look for all the items from PSP1 and PSP1.1 plus those described here. Note, however, that if you demand that the students get their PSP1 data correct, they will generally stop making mistakes of the types you check for with PSP1. You then need not spend more time on these checks except on a spot check basis. In summary, the items to review are:

- the process data are complete,

- the data are neat and self-consistent,

- the process report is submitted in the proper order and format,

- the historical data are used in planning the work,

- historical data are consistently used to improve the process,

The new checks for the PSP2 Project Plan Summary are:

- Are the summary calculations for defect rates and yield properly made?

- Do the UPI and LPI values for size and time appear proper?

- Are the defect removal efficiencies properly calculated?

- Were estimates made for the defects injected and removed?

- Were historical data used to make these estimates?

- For the defect removal and development time entries, were the ToDate and ToDate % time and defect data started over with PSP2? This is generally a good idea.

- Were design and code reviews conducted?

- Were defects found during these reviews?

- Check to see that the time spent in code reviews has generated approximately 5 or more defects per hour. If not, and the defect data show that several defects were missed, suggest that the student examine his or her review methods to see how to more consistently find the defects that were missed.

- Check the design review rates. While they may be as low as 2 to 3 per hour, make similar checks and comments to those made for the code reviews.

- Were the design review and code review checklists completely checked off?

The principal issues with PSP2 concern estimating those parts of the process where there are no historical data. The students will generally be able to estimate time by phase and defects injected and removed by phase based on these prior data. Any thoughtful attempt to estimate review times is acceptable. Typically, however, students will enter zeros for the defects found in the reviews until they have some historical data. This is acceptable and probably demonstrates their understanding of the need for data to make sound plans.

Students occasionally make mistakes calculating the yield values. While this is not a common problem, it occurs often enough to be checked with PSP2. If the calculations are initially correct, they need not be checked again.

The new checks for the PSP2.1 Project Plan Summary are:

- Were the cost of quality data properly calculated?

These calculations are rarely a problem

Design and Code Review Checklists:

- Did the students produce these checklists from the data on their previously developed programs? They should not merely copy them from the textbook.

- Were the checklists properly used in reviewing the design and code?

- Did the student check off every entry? If not, ask them why not.

These checklists are often misused. Since the students will not generally realize the value of checking every space on the checklist, they will often tend to be sloppy with their reviews. Look for the degree to which the students are thinking about review quality and the degree to which these thoughts are noted on the PIP forms.

The specification templates:

- The use of these templates is optional. While you should encourage their use on larger projects, the students should not be marked down if they chose not to use them for the class exercises.

- When the templates are used, check to see that their use is proper.

Note that the design specification templates are used to help the students manage their design defects. The principal issue is the degree to which the students have design problems and the steps they are taking to improve the quality of their designs. Students who continue to make many design errors and do not try various methods to control them should be criticized for not using their process data to adjust their behavior.

4.6 Grading PSP3 Assignments

PSP3 is normally used for program 10A. The PSP3 process evaluation criteria include all those for PSP2 and PSP2.1. In summary, these are

- the process data are complete,

- the data are neat and self-consistent,

- the process report is submitted in the proper order and format,

- the historical data are used in planning the work,

- historical data are consistently used to improve the process,

- historical data are used to establish goals for future process improvement

- process actions are defined to meet these goals.

Short term derivatives of these process goals should be used to establish objectives for each project. The students must also identify process actions to meet these goals. These goals will generally be addressed in the final report rather than with the PSP3 programming assignment.

The new checks for the PSP3 Project Plan Summary are:

- Were the high-level design and high-level design review phases conducted?

- If not, was the program of sufficient size so that these phases should have been used? Generally, if a program is much more than about 150 to 300 LOC, students will have trouble producing a quality design without dividing the development into steps.

- If the development was done in cycles, are the data from the Cycle Summary properly reported in the Project Plan Summary?

PSP3 Cycle Summary

- Was a separate Cycle Summary prepared for the plan and actual data?

- Were the size calculations properly handled through the cycles?

The most common problem with the PSP3 summaries is that students attempt to develop too much code in a single cycle. They then often find their review and test phases complicated by the need to search through a large amount of design and code material.

Issue Tracking Log:

- Did the students use the Issue Tracking Log?

The Issue Tracking Log is typically not needed unless the students developed program 10A in several cycles. With a multiple-cycle development, the students should be encouraged to use such an aide. It is not required.

4.7 Grading R5, the Final Report

In the final report the students examine their data and decide on their future plans. The principal concern is whether they have learned the value of using their data and whether they have established personal standards and goals for the future. In grading the final report you should thus focus on the following:

- Were reasonable analyses presented on both size and time estimating accuracy and trends through the course?

- Were reasonable analyses presented on the quality trends during the course?

- Did the student graphically portray the A/FR, yield, and productivity measures of process quality?

- Did the student outline future goals for personal process improvement?

- Were these goals reasonably challenging based on the student's accomplishments during the course?

- Did the student present a reasonable approach to achieving these goals?

- Did the student present a reasonable schedule for accomplishing these objectives?

5 - Lecture Suggestions

This section discusses lecture content and suggests a teaching approach for the overall course and for each lecture. The discussion for each section contains the following elements:

a) Lecture purpose

b) Student's objective

c) Preparation assumptions

d) Data presentation

5.1 - Overall Course Suggestions

Course objectives: The course objective is to introduce the students to disciplined methods for managing and planning their work and to demonstrate, with their own data, the value of these practices.

Student's objectives: To learn how to define, measure, analyze, and improve their processes for doing many kinds of work and to thereby improve the quality and productivity of their work.

Preparation assumptions:

- The students must know and be reasonably fluent in at least one programming language.

- They should use the language with which they are most fluent for doing the course exercises.

- The students must have a computing facility available with language and spreadsheet support.

- It is helpful but not required that the students be familiar with basic statistics and simple formal notations.

General guidelines: Since this course is about using data to do high quality personal work it is important that the course use data and insist on quality work. The suggested guidelines are:

- Initially, explain to the students that quality work is expected.

- Poorly done work will be rejected and must be redone.

- When the students do not know how to do something, they should get help. They should strive to turn in only correct work.

- While it is important to turn in work on time, it is more important that it be correct.

- Follow a grading strategy that initially insists on quality data and then progresses to the use, interpretation, and internalization of the lessons of these data.

- Respect the students' individuality. Every student is different so comparisons among students are counterproductive. The objective is to help each student maximize his or her potential to do quality work.

- Respect the students' data. Data is private. No student's data should be shown to anyone else under any conditions. You should not even hint that any particular student has done unusually good or poor work.

- Treat each student as if he or she has a hidden talent that needs to be revealed. The course and the data will help to do this.

- While you may never recognize their unique talents, try to help the students recognize them for themselves.

Data presentation: At every class, it is important to present to the students available data on their performance. These paragraphs suggest the kinds of data that are most appropriate for each lecture. Show additional items if you wish. Note that the students will want copies of the class data you show. At the end of the course, you should thus provide them with copies of the final overview data on class performance.

Lecture data: The course, as described here, consists of 15 lectures. The students may wish a final 16th session for general discussion and questions. The numbers of lecture overheads for each of the 15 prepared lectures are as follows:

- Lecture 1: 44 overheads

- Lecture 2: 39 overheads

- Lecture 3: 56 overheads

- Lecture 4: 41 overheads

- Lecture 5: 48 overheads

- Lecture 6: 40 overheads

- Lecture 7: 38 overheads

- Lecture 8: 54 overheads

- Lecture 9: 62 overheads

- Lecture 10: 45 overheads

- Lecture 11: 61 overheads

- Lecture 12: 41 overheads

- Lecture 13: 51 overheads

- Lecture 14: 47 overheads

- Lecture 15: 33 overheads

- Total: 700 overheads

All the lectures are planned for 90 to 120 minutes.

5.2 Lecture 1 Suggestions

Lecture purpose: The first lecture has the following objectives:

- To introduce the principles of personal process management.

- To provide a context for the personal software process.

- To explain the PSP0 process.

Students' objective: The lessons the students should take from lecture 1 are:

- The PSP is a defined way to help them do better work.

- The PSP is their property which they can modify and extend for their later work.

- During this course, they should use the PSP versions as provided.

- They must gather and report complete and accurate data.

- Poor quality or sloppy work will not be accepted.

Preparation assumptions: It is assumed that the students have met the course prerequisites. Emphasize that the students will get the most benefit from the course if they use the programming language with which they are most familiar and if they complete the work on time.

Data presentation: The students will appreciate data on the times other classes have taken to do the assignments. Three such charts are shown in Figures 1, 2, and 3. These are from classes that consisted of 4, 12, and 18 students respectively. The students in the 4-student class had considerable experience as practicing software engineers. Students in the 12-student class had about 3 to 5 years of industrial experience. The students in the 18-student class generally had little or no industrial experience.

5.3 Lecture 2 Suggestions

Lecture purpose: The objectives of this lecture are:

- To introduce the concept of software size measurement

- To describe the principles of size measurement

- To show the students how they can develop their own size counting standards

- To describe how the students can develop an LOC counter for their own programs.

Students' objectives: The messages the students should take from lecture 2 are:

- To effectively plan and manage their work, they must measure the sizes of the products they produce.

- While there are many possible ways to measure program size, this course uses lines of code (LOC).

- The principal criteria for any size measure is that it correlate with the time taken to develop the product.

- Size measures should be precisely defined and automatically countable.

Preparation assumptions: It is assumed that the students have read the textbook up to chapter 3 and have written program 1A.

Data presentation: Since the students will just have turned in assignment 1, you will have no student data to present to the class on their own work. It is thus suggested that you review data on the sizes of the programs other classes have developed. Figures 4, 5, and 6 give size data on the programs the 4, 12, and 18 student classes produced. These charts show a wide variation in the sizes of the programs produced to the identical specification. Stress that program goodness is not measured by program size. Also note that the students need not produce large and sophisticated programs to obtain full benefit from the course. They should write reasonably simple programs for each assignment. They will learn about as much from writing a 50 to 75 LOC program as they will from a 150 to 250 LOC program and they will spend a lot less time.

5.4 Lecture 3 Suggestions

Lecture purpose: This lecture exposes the students to the problems and methods of estimating program size. This is the first of two lectures on size estimating. The objectives of this lecture are:

- To describe why size estimation is important

- To provide background on size estimating

- To describe the principles of size estimating

- To describe several estimating methods that are in general use

- To introduce the topic of estimating proxies

Students' objective: The messages for the students from this lecture are:

- Accurate size estimating can help them to make better development plans.

- Size estimating is a skill that can be learned and improved.

- A defined and measured process will help them to make better size estimates.

- There are several ways to make size estimates, none of which has been proven best.

- They should be familiar with these various methods and select the ones that work best for them.

Preparation assumptions: It is assumed that the students have read the textbook through chapter 4, completed program 2A, and completed reports R1 and R2.

Data presentation: You now have data on program 1A that you can present to the class. You should, however, only show composite data for the class average, maximum, and minimum performance for the following items:

- The time taken to develop program 1A

- Time estimating accuracy with program 1A

You will likely see wide variations in these data. Some students have taken over 20 hours to develop program 1A while others completed the program in about 50 minutes. Emphasize that neither extreme is good or bad. The key is the quality of the process used and the quality of the data produced and submitted on that process. For time estimating accuracy, note that these estimates generally were made without the help of a defined estimating process or historical data. Note also, that the composite class estimate shown in the figure takes the sum of the students estimates and compares it to the sum of the students' actual total development times. This composite is generally quite accurate even though the individual estimates are often seriously in error. Note that this is why effective estimating practices can help development teams to produce accurate composite estimates even when their individual estimates are seriously in error.

5.5 Lecture 4 Suggestions

Lecture purpose: This lecture introduces the PROBE estimating method. Its purpose is to explain the use of proxies in size estimating, to show how statistical methods can be used to make accurate estimates, and to judge the accuracy of those estimates.

Student's objective: The messages the students should take from this lecture are:

- The PROBE method provides a structured way to make software size estimates.

- This method uses the student's personal data to make size estimates for his or her work.

- By using personal data, the students are likely to produce estimates that better represent the work they plan to do.

- The PROBE method provides a statistically sound way to make size estimates.

Preparation assumptions: It is assumed that the students have read the textbook through chapter 5, completed program 3A, and completed report R3.

Data presentation: You now have data on programs 1A and 2A. With these data, you can present the following material to the class:

- Total development time

- Program size

- Size estimating accuracy

- Percent of time spent in compile

- Percent of time spent in test

The messages to convey from these data are:

- Size estimating accuracy fluctuates widely.

- Improved estimating accuracy is desired.

- The objective should be to achieved balanced estimates; that is about as many over as under estimates.

- The percent of time spent in compile and test is an early indicator of process quality.

- Reduced compile and test time is desired.

- Each student should focus on improvement and not on comparison to others.

5.6 Lecture 5 Suggestions

Lecture purpose: This lecture extends the PROBE estimating method to time estimating. It also introduces the concepts and methods for making and tracking project schedules.

Students' objectives: The messages the students should take from this lecture are:

- You can use the PROBE method to estimate the time required to develop a program.

- By doing so, you can also judge the likely errors of these estimates.

- Accurate time estimates are an important prerequisite to making accurate schedules.

- Good planning facilitates effective project tracking and management.

Preparation assumptions: It is assumed that the students have read the textbook through chapter 5 and completed program 4A.

Data presentation: You now have data on programs 1A through 3A. With these data, you can present the following material to the class:

- Total development time

- Time estimating accuracy

- Program size

- Size estimating accuracy

- Percent of time spent in compile

- Percent of time spent in test

With these data, you reinforce the messages from the previous lecture:

- Size and time estimating accuracy fluctuates widely

- The objective should be to achieved balanced estimates; that is about as many over as under estimates.

- The percent of time spent in compile and test is an early indicator of process quality.

- Each student should focus on improvement and not on comparison to others.

5.7 Lecture 6 Suggestions

Lecture purpose: This lecture covers the principles of process measurement. It purpose is to acquaint the student with the principles, objectives, and methods of process measurement.

Students' objectives: The messages the students should take from this lecture are:

- To be useful, measures should relate to defined goals, address specific questions, and be precisely defined.

- The PSP includes examples of many useful process measures.

- After they have used the PSP, they will be better able to define process measures that address their own needs.

Preparation assumptions: It is assumed that the students have read the textbook through chapter 6 and completed program 5A.

Data presentation: You now have data on programs 1A through 4A. With these data, you can now show some early trends. You should present the following material to the class:

- Total development time

- Program size

- Total defects

- Defects found in compile

- Defects found in test

- Percent of time spent in compile

- Percent of time spent in test

The messages to convey from these data are:

- Everybody injects a lot of defects.

- Defects take a substantial amount of time to find and fix

- This development time can be substantial

- Process data will help the engineers to understand why they make defects, where they find them, and what it costs to find them.

- As they become more aware of their defects, they will take more care with their work.

- This increased care will reduce the numbers of defects they inject.

Because students' abilities will vary, the total number of defects injected will also fluctuate widely. You will also likely see an initial decline in the numbers of coding defects and in the amount of time spent in compile. This is a natural consequence of the students increased awareness of the defects they inject and the increased care they take with their processes. There will likely be a much smaller improvement in the numbers of design defects and in testing time. Improvements in this area generally come more slowly and require increased attention to design. This topic is discussed in lectures 9 and 10.

5.8 Lecture 7 Suggestions

Lecture purpose: This lecture covers design and code reviews. Its purpose is to show the students the benefits of carefully reviewing their programs before they compile and test them. The lecture also describes the principles, objectives, and methods of design and code reviews.

Students' objectives: The messages the students should take from this lecture are:

- Design and code reviews can help them improve the quality of their programs.

- By using design and code reviews, they can also save substantial development time.

- To do high quality reviews, they should establish goals, a defined process, and review measures.

Preparation assumptions: It is assumed that the students have read the textbook through chapter 7 and completed program 6A.

Data presentation: You now have data on programs 1A through 5A. With these data, early trends should be clear. It is thus suggested that you present the following material to the class:

- Total defects

- Defects injected in coding

- Defects injected in design

- Defects found in compile

- Defects found in test

- Percent of time spent in compile

- Percent of time spent in test

With these data, you can again emphasize the messages from the previous lecture:

- Everybody injects a lot of defects.

- Defects take a substantial amount of time to find and fix

- This development time can be substantial

- Process data will help the engineers to understand why they make defects, where they find them, and what it costs to find them.

- As they become more aware of their defects, they will take more care with their work.

- This increased care reduces the numbers of defects they inject.

The principal point to emphasize is that even experienced software engineers inject large numbers of defects, not because they are bad engineers but because they are human. One of the students' important objectives should be to devise processes that remove these defects so effectively that they can consistently produce quality products in reasonable time. Design and code reviews will help them to do this.

5.9 Lecture 8 Suggestions

Lecture purpose: This lecture defines software quality, describes ways to measure process quality, and presents a quality strategy. The purpose of the lecture is to get the students to think about their processes and to realize that the quality of their personal process can be measured, managed, and improved.

Students' objectives: The messages the students should take from this lecture are:

- The first priority in improving software quality must be to reduce the numbers of software defects.

- While defects are not generally an important customer concern, they must be managed before other more important quality issues can be adequately addressed.

- Managing defects must be the responsibility of the individual software engineer. That is where most defects are injected and that is where they can be most economically and effectively removed.

- If the engineers don't eliminate their own defects, these defects will be much more expensive to find and fix later in the process.

- The cost of finding defects late in the process is so great that it is economical to take extraordinary care to produce high quality PSP-level programs.

Preparation assumptions: This lecture assumes the students have read the textbook through chapter 8, have completed program 6A, and have written the midterm report R4.

Data presentation: You now have data on programs 1A through 6A. With these data, you should update the material you presented in the previous lectures:

- Total defects

- Defects injected in coding

- Defects injected in design

- Defects found in compile

- Defects found in test

- Percent of time spent in compile

- Percent of time spent in test

With these data you can show continuing improvement trends and reemphasize the messages from the previous lecture:

- Everybody injects a lot of defects.

- Defects take a substantial amount of time to find and fix

- This development time can be substantial

- Process data will help the engineers to understand why they make defects, where they find them, and what it costs to find them.

- As they become more aware of their defects, they will take more care with their work.

- This increased care reduces the numbers of defects they inject.

To reinforce the quality message from the lecture, you might discuss the implications of the filter view of defect removal: every removal stage removes only a fraction of the defects in the product. Thus, to get a high quality product out of test, you must put a high quality product into test. A second point to emphasize is that there is some correlation between the numbers of defects found in compile and the numbers found in test. While composite class data will generally not demonstrate this, individual student data often will. Since you cannot show individual data, you might suggest that they examine their own data for such a relationship. Students will generally accept the premise that if they have a clean compile they are more likely to have a clean test. The logical conclusion is that they should attempt to remove defects before the first compile. This is a tough point to sell so it needs to be reinforced throughout the rest of the course. If students disagree, point out that the PSP requires that they do their reviews before the first compile. While they may not wish to continue this practice after the course, urge them to gather review data both ways and see for themselves. They should let these data drive their decision.

5.10 Lecture 9 Suggestions

Lecture purpose: This lecture introduces design notations. Since many students are not familiar with the standard notations for representing designs, this lecture describes some basic mathematical notations and shows how they can be used.

Students' objectives: The messages the students should take from this lecture are:

- A poor design notation is a potential source of error.

- By using a defined and rigorous notation they can improve the quality of their designs.

- This will help them to eliminate defects.

- There is no one best notation for all purposes. They should thus examine and experiment with the various available notations and select those that work best for them.

- They should use their PSP data to guide their selection of a notation that helps them produce quality designs.

- They should consider using formal design methods in their work.

Preparation assumptions: This lecture assumes that the students have read the textbook through chapter 9 and have completed program 7A.

Data presentation: You now have data on programs 1A through 6A. Since these are the same data you had for the last lecture, you should start to expose them to their quality measures:

- Total cost of quality

- Appraisal costs as a percent of total development time

- Failure costs as a percent of total development time

- The A/FR ratio

- Yield

- Defect removal leverage

Here, the points to stress are:

- Their total cost of quality is probably fairly high and stable

- As they do reviews, their cost of quality components will shift but the total will not likely change very much up or down.

- The composite class A/FR ratio is probably at or near zero because very few students have been doing reviews prior to program 7A.

- Yield numbers are typically also low.

- The defect removal leverage data will probably show only about two to four defects removed per hour in test. This is a common rate for all classes. Compile will typically be between 10 and 20.

- If any students have done design or code reviews, their defect removal rates will generally be significantly higher than those for test.

The key point is that the students need to start thinking about removing lots of defects. They thus need to seek a process that will find the most defects per hour while ensuring that the fewest defects escape to later phases.

5.11 Lecture 10 Suggestions

Lecture purpose: This lecture addresses the subject of design. The intent is not to tell the students how to do design but to describe principles and give some suggested methods that will help them to produce quality designs regardless of the design methods they use.

Students' objectives: The messages the students should take from this lecture are:

- Even though design is a creative process, it can be structured and improved.

- The use of established formats can help to improve the quality of their designs.

- They should experiment with the PSP templates and adapt those they find helpful.

Preparation assumptions: This lecture assumes that the students have read the textbook through chapter 10 and have completed program 8A.

Data presentation: You now have data on programs 1A through 7A and can discuss in more detail the same analyses presented in lecture 9:

- Total cost of quality

- Appraisal costs as a percent of total development time

- Failure costs as a percent of total development time

- The A/FR ratio

- Yield

- Defect removal rates

Here, with the data from program 7A, you should be able to make the following points:

- The total cost of quality has probably not appreciably changed with the introduction of reviews.

- The time they spend in reviews is generally recovered in compile and test.

- The students will likely see some higher values of the A/FR ratio.

- Some students will likely see improving values for yield.

- The defect removal rate data should now show the results from the first reviews.

Here, you could usefully discuss the relative effectiveness of reviews versus compile and test. Have them examine their data and consider why code reviews are more efficient for them than finding defects in test.

5.12 Lecture 11 Suggestions

Lecture purpose: This lecture addresses the issues of developing larger-scale programs. With assignment 10A, the students can apply scaling principles, practice their review techniques, and apply the schedule and task planning methods that were introduced in lecture 5.

Students' objectives: The messages the students should take from this lecture are:

- A scalable process can provide important productivity and planning benefits.

- To be scalable, PSP-level processes must produce high quality small programs.

- By striving for high yield, they are much more likely to have a scalable process.

- Various design and reuse approaches will also help to achieve a scalable process.

Preparation assumptions: This lecture assumes that the students have read the textbook through chapter 10 and have completed program 9A.

Data presentation: You now have data on programs 1A through 8A. In reviewing this material, you will now likely see pronounced improvement trends. Again, you should show the same data on process quality as before, plus one addition:

- Total cost of quality

- Appraisal costs as a percent of total development time

- Failure costs as a percent of total development time

- The A/FR ratio

- Yield

- Defect removal rates

- A/FR versus test defects

Here, with programs 7A and 8A, you should again emphasize the following points:

- The total cost of quality has probably not appreciably changed with the introduction of reviews.

- As they do reviews, their cost of quality components have likely shifted.

- They will begin to see some higher values of the A/FR ratio.

- They will begin to see higher yield values.

- The defect removal rate data should now show that the rates achieved in code reviews are significantly higher than in test. Design review rates will likely be comparable to or better than test rates.

- The A/FR ratio versus test defects should begin to show the advantages of a high A/FR ratio.

Here, the persuasiveness of the data depends entirely on whether any students have achieved high A/FR ratios and high yields. If they have, their data will likely support these conclusions. The A/FR versus test defect chart will likely be a surprise to the students. They will begin to see that spending time in reviews is good. If their data do not show this, you should focus on how they are doing reviews. The key point is that the time they spend in reviews should be productive. This can normally be achieved through using custom-designed checklists. When they do, students invariably show much higher defect removal rates in code reviews than in test. Design review rates are generally lower and are much more variable.

5.13 Lecture 12 Suggestions

Lecture purpose: This lecture is the first of two on design verification. It exposes the students to several verification methods and shows why and when they should be used.

Students' objectives: The messages the students should take from this lecture are:

- Defined verification methods can help to improve the yield and productivity of design reviews.

- It takes time to learn design verification and it takes practice to do it well.

- The students should practice these and other verification methods and see what their PSP data tell them about their effectiveness.

- They should decide what verification methods to use based on these data analyses.

Preparation assumptions: This lecture assumes that the students have read the textbook through chapter 11 and have completed program 9A.

Data presentation: You now have data on programs 1A through 9A. You should again show the process quality material that was shown in the previous lectures:

- Total cost of quality

- Appraisal costs as a percent of total development time

- Failure costs as a percent of total development time

- The A/FR ratio

- Yield

- Defect removal rates

- A/FR versus test defects

You can reemphasize the same points made in the previous lectures:

- The total cost of quality has probably not changed with the introduction of reviews.

- As they do reviews, their cost of quality components likely have shifted.

- They will begin to see some higher values of the A/FR ratio.

- They will begin to see higher yield values.

- The defect removal rate data should now show that the rates achieved in reviews are significantly higher than in test. Design review rates will likely be comparable to or better than test rates.

- The A/FR ratio versus test defects should begin to show the advantages of a high A/FR ratio.

The course data are now almost complete and should generally show the significant improvements that the students have achieved in their defect levels and process quality. The key is to focus on what the students have accomplished and to congratulate them on their achievements to date. You should also motivate them to achieve high yields with program 10A. Most students should be able to achieve yields of above 50% and a few should reach 100%. Class averages above 50 to 60% are normal.

5.14 Lecture 13 Suggestions

Lecture purpose: This lecture completes the discussion of design verification. It gives the students practice with several verification methods and shows where they can be most effective.

Students' objectives: The messages the students should take from this lecture are:

- Even though verification is time consuming, it is an essential part of producing defect free programs.

- There is no best verification method.

- It takes time to learn design verification and practice to do it well.

- The students should use these and other verification methods on every program they develop.

- They should measure their verification work and see what their PSP data tell them about their effectiveness.

- They should decide what verification methods to use based on these data analyses.

Preparation assumptions: This lecture assumes that the students have read the textbook through chapter 12 and have completed program 10A.

Data presentation: You have the same data that you had for the last lecture: programs 1A through 9A. It is thus suggested that you review the following:

- The A/FR ratio

- Yield

- Defect removal rates

- A/FR versus test defects

- Productivity trends

- Productivity versus the A/FR ratio

- Productivity versus yield

Here, you should emphasize the following:

- At the small program level, their productivity will often not be significantly affected by their development practices.

- Their objective, however, is not to develop small programs productively but to build the practices that will be productive with large program development.

- Productivity is generally impacted most by the students' fluency with the programming languages they use.

- While some classes have shown substantial productivity improvements, they have generally started with relatively low rates.

- Class productivities generally converge to between 25 and 50 LOC per hour, almost regardless of where they start.

- Since productivity is not substantially impacted by process changes, it would seem logical to use a process that produces the highest quality products.

- Higher quality PSP-level products will improve the productivity and quality of every subsequent part of the development process.

The productivity argument is an interesting one. It appears from PSP data that when students' processes stabilize they converge on a reasonably narrow productivity range. It is much like running the mile. World champions and competent runners all run the mile within a few seconds of 4:00 minutes. The rate for competent runners is largely determined by human physiology. When some beginning runners start with much lower rates, they can show very high improvement percentages. Better runners will improve less but they will all converge on about 4:00 minutes per mile.

While some students may have much higher software development productivities for very small programs, these can be viewed as more like sprinting. With a stable process, sustained rates appear to be limited to about 25 to 50 LOC per hour for everyone. Improved language and support technology might, of course, change these rates.

Average organizational productivities are typically much lower at a few hundred LOC per programmer month. The difference between the organization and the PSP rates is caused by all the problems of incorporating small-scale programs into larger systems. High quality PSP practices can thus significantly improve organizational productivity by producing programs that can be economically incorporated into larger systems.

5.15 Lecture 14 Suggestions

Lecture purpose: This lecture discusses process development. Its purpose is to give the students an appreciation of how they can develop processes to address their personal needs. While this lecture concentrates on personal process development, many of the principles apply to team and project process development.

Students' objectives: The messages the students should take from this lecture are:

- Process development is a process just like program development.

- Many of the same definition and measurement principles apply to process development.

- The students' process needs will change with their projects and with their experiences.

- They should thus regularly reevaluate their processes and seek ways to improve them.

- They should also define the process they use to develop processes.

Preparation assumptions: This lecture assumes that the students have read the textbook through chapter 12 and have completed program 10A.

Data presentation: You now have the data for all of the 10 PSP A series programs. You should thus give an overview of the students' data showing total defect and process quality trends. The principal topics to discuss are:

- Total cost of quality

- Appraisal costs as a percent of total development time

- Failure costs as a percent of total development time

- The A/FR ratio

- Yield

- Defect removal rates

- A/FR versus test defects

- Productivity trends

Here, emphasize the course messages on quality and productivity:

- Productivity may be helped but is not hurt by a quality focus at the PSP level.

- Improved quality, at the PSP level, will benefit every later process phase.

- Defects are an important consideration at the PSP level. This is where they are injected and this is where they should be removed.

- If defects are not competently handled at this point, every later process phase will suffer.

While the students' data will likely show impressive improvement, there is always the possibility of surprise. I have seen average class productivity triple and I have seen it stay nearly flat. In no case, however, have I seen average compile or test defect levels improve by less than two times. Since individual student's data vary widely, however, there is always the chance that the data for some group will show significantly different results. Thus, you should not get committed to specific results before you see them. It is wisest to interpret the data and not to predict it.

5.16 Lecture 15 Suggestions

Lecture purpose: This lecture completes the course with a discussion of the implications of the PSP for the students' future work. Its purpose is to give them an appreciation of the problems and opportunities they will face in applying the PSP on the job.

Students' objectives: The messages the students should take from this lecture are:

- While the PSP has most likely been effective for them, they should be cautious about persuading others to use it.

- PSP introduction takes time and a lot of work to learn and to use.

- While they should freely describe what the PSP has done for them, they should not make claims for what it will do for others.

- They should also be careful about how and where they present their data. Personal data are sensitive and they should not give it to anyone who might misuse it.

- The PSP, however, does present a powerful methodology for individual process improvement.

- PSP introduction could thus help organizations to achieve higher quality development processes.

Preparation assumptions: This lecture assumes that the students have read the textbook through chapter 13 and have completed the final report.

Data presentation: In completing the course, I suggest that you review with the students all the charts in the summary section of the data spreadsheets. Since they will typically want copies of these data to show their associates, you should provide them with full-sized copies of these charts.

6 - Spreadsheet Instructions

This section describes the purpose, contents, and instructions for the instructor's diskette spreadsheets. This diskette can be obtained from Addison Wesley Publishing Company by instructors who use the text A Discipline for Software Engineering.

The instructor's diskette contains a set of spreadsheets for entering and analyzing student data from the homework assignments. The spreadsheets are in Microsoft EXCEL 4.0 (Windows). These spreadsheets calculate key statistics and provide 22 different graphical displays for the class as a whole and for each student. They also provide two sets of summary graphs. This provides a total of 467 charts you can use for class and student data analysis. The spreadsheets and displays automatically produce these results when you enter the student homework data. The EXCEL spreadsheets include space for 20 students' data and 10 programs. If your course has more students or uses more programs, you can extend the formulas on these diskettes or use two or more sets of spreadsheets.

Students are invariably interested in their personal results and in how their work compares with the rest of the class. The student displays thus show individual data plotted together with maximum, minimum, and class average data.

CAUTION: DO NOT DISCUSS, REVEAL, OR EVEN HINT AT ANY ONE STUDENT'S DATA VALUES OR DATA QUALITY TO ANYONE BUT THAT STUDENT. IF THEY WISH TO REVEAL THEIR OWN PERSONAL DATA, THEY MAY DO SO BUT YOU MUST NOT.

Note:

1 - To use these spreadsheets, you merely enter the data, the analyses and charts are generated automatically. For PSP3, enter the high-level design and high-level design review data with the design and design review data.

2 - If you have entered data for previous versions of these spreadsheets, the StuData and Stu1 to Stu20 spreadsheets in these spreadsheets can be replaced directly by the ones containing your data. You do not need to reenter the data.

3 - To send copies of the data, you will find it most convenient to send copies of the StuData and Stu1 to Stu20 spreadsheets. The rest are not necessary since they are unchanged from one set of data to the next.

4 - If you wish to display data for a selected subset of the students' programs, enter 0 in the total actual time for that student's program in the stuN file. For example, if student 6 spent 1873 minutes developing program 6A and you wished to exclude this large value from the data, enter 0 instead of 1873 in cell E19 of the Stu6 file. To later include these data in the analyses, copy the formulas back into that space and the data will be automatically included in all the spreadsheets. A 0 or blank in the actual time column for any student's program excludes that program's data from all the spreadsheet analyses.

6.1 - Instructions

	To start:
	

	
	1
	Read the entire instructions.

	
	2
	Uncompress and copy the diskette to your C or D drive.

	
	3
	Copy the spreadsheet MASTER directory to a new file directory and label it with the name and year for your university, CMU94 for example.

	
	4
	Store the original diskette in a safe place.

	To set up the spread sheets:
	

	
	1
	Ensure that you have completed questionnaires for all the students.

	
	2
	Open the StuData spreadsheet.

	
	3
	Enter the university name and course year in cell C1.

	
	4
	Enter the data on each student in the appropriate cells.

	
	5
	When entering the student data, assign a number to each student. Displays for student #1, for example, will then be labeled "Student 1."

	To enter student assignment data:
	
	

	
	1
	Find the student number from the StuData spreadsheet.

	
	2
	Open the StuN spreadsheet, where N is the student number, as given in StuData.

	
	3
	Enter the available program data for that student.

	
	4
	For PSP3, enter the high-level design and high-level design review data with the design and design review data.

	To use a calculation spreadsheet:
	
	

	
	1
	Open the desired spreadsheet - SizeRnge, for example.

	
	2
	Examine the data and the spreadsheets as you wish. No additional actions are required on your part.

	
	3
	The graphs are always at the top of the spreadsheet, with the class composite graph first and the students to the right in numerical order.

	
	4
	Note that generally the average, maximum, and minimum calculations only include those programs for which actual development times are shown. In the case of the SizeError and TimeError plots, the average, maximum, and minimum calculations only include those programs for which the students made size or time estimates respectively.

	To use the summary or quality spreadsheets
	

	
	1
	Enter the student data as above.

	
	2
	Open each of the other spreadsheets to examine the overall data or to review any student data.

	
	3
	Next, open the quality spreadsheet. It will now show the proper data.

	
	4
	When next opened, the summary spreadsheet will now also properly reflect the student data.

	
	5
	Note that the summary and quality spreadsheets will not properly reflect the other spreadsheets if they have not been reopened after the last data entry.

6.2 - Spreadsheet Data and Calculations

StuData - This spreadsheet contains the data on all the students in the class. It has space for 20 students. By entering these data in this spreadsheet, they are automatically copied to the students' spreadsheets.

Stu1 to Stu20 - These 20 spreadsheets hold the data for each student on each of 10 assignment programs. They include actual and estimated data on program size, time spent per phase, and defects injected and found. As these data are entered, they are used by the analysis spreadsheets to calculate the appropriate factors and generate the graphical displays. Note, these data are automatically picked up by the other spreadsheets and will generate the displays without any further action on your part. All you need do is enter the raw data.

CdrDef - This spreadsheet computes the numbers of defects found in code reviews, per KLOC (thousand lines of code) of new and changed code, and displays the class average, minimum, maximum, and the values for each student for each program. One course objective is to maximize the percentage of defects found in code review.

CodeDef - This spreadsheet computes the numbers of defects injected in the coding phase, per KLOC of new and changed code and displays the class average, minimum, maximum, and the values for each student for each program. Students are often surprised at how many code defects they make. They also find that with modest attention and care they can significantly reduce these numbers.

CompDef - This spreadsheet computes the numbers of defects found in compilation per KLOC of new and changed code and displays the class average, minimum, maximum, and the values for each student for each program. One course objective is to motivate students to strive for clean compilations on the first try. This generally indicates a higher quality program.

CompTest - This spreadsheet displays the numbers of compile and test defects on an x-y plot for the entire class and for each student. This plot indicates the relationship between compile and test defects. The suggestion is that to reduce the number of test defects, they should, among other things, strive to reduce their numbers of compile defects.

CompTime - This spreadsheet shows the percent of total development time that is spent in compilation. Higher quality processes have smaller percents of compile time.

DefPerHr - This spreadsheet computes the rate of defect discovery in defects per hour for design review, code review, compile, and test. It displays the class average for each of these rates and the data for each student for each program. These data demonstrate to the students that testing is an inefficient way to spend their time. Until they are truly convinced, they generally feel they are wasting their time reviewing their code. These data will help to convince them otherwise. Defects per hour are calculated in each case by dividing the numbers of defects found in a phase by the time in hours spent in that phase. This is done for design review, code review, compile, and test.

DesDef - This spreadsheet computes the numbers of defects injected in design per KLOC of new and changed code and displays the class average, minimum, maximum, and the values for each student for each program. For the programs in this text, the numbers of design defects are generally fairly small compared to the coding defects.

DLDRDef - This spreadsheet computes the numbers of defects found in design reviews per KLOC of new and changed code and displays the class average, minimum, maximum, and the values for each student for each program. An objective of the course is to maximize the percentage of defects found in design and code reviews.

PdvtyAfr - This spreadsheet compares the productivity and A/FR for each student and program on an x-y plot. Its intent is to show the degree to which higher values of A/FR impact development productivity. Many students are surprised to find that their productivity does not decrease and in fact often increases with increased A/FR.

Prodivty - This spreadsheet computes the productivity in lines of code per hour and displays the class average, minimum, maximum, and the values for each student for each program. While a student objective should be to strive for high productivity, students may not see significant productivity increases. On average, class productivity is often fairly flat. This means that on average the students are introducing the disciplined engineering methods in this course at little or no net cost in productivity. Productivity is calculated by dividing the numbers of new and changed LOC by the total development time in hours.

Quality - This spreadsheet displays class average cost of quality trends for the 10 programs: yield versus COQ, A/FR, test defects versus A/FR, COQ, and Appraisal COQ.

SizePdvt - This spreadsheet displays development productivity versus program size on an x-y plot. It generally shows productivity increases with program size. Because of the small size of most PSP exercise programs, the normal productivity decline with large size may not be apparent. The increase with small-sized programs is generally due to the relatively fixed PSP planning and PM overhead.

SizeRnge - This spreadsheet computes the sizes of the programs in LOC of new and changed code and displays the class average, minimum, maximum, and the values for each student for each program. Even with these simple programs, the students have considerable flexibility in how they choose to design the programs. Size ranges of three or more to one are not uncommon.

SizError - This spreadsheet computes the error in the size estimates for the new and changed code as a percent of the estimate and displays the class minimum, maximum, and the percent error of the total of the class estimates and actuals. That is, with data on four students' programs, for example, the spreadsheet sums the estimates for the sizes of the four programs and compares this to the total of the actual LOC for the same four programs. The values for each student for each program are also shown compared to the class total error. The principal message is that the class composite is generally much more accurate than the students' separate estimates.

SizeTime - This spreadsheet plots the size in LOC for the new and changed code and the time in hours for each program for the total class and for each student individually. These plots indicate the degree to which development time relates to program size. As will be clear, the more experienced students will show a close relationship but the less experienced students and the class as a whole will generally not.

Summary - This spreadsheet holds the class displays for all the other spreadsheets. This is convenient when reviewing class data or constructing class presentations. Note that the summary displays will not be properly updated until each of the other spreadsheets has been opened after new data are entered.

TestDef - This spreadsheet computes the numbers of defects found in test, per KLOC of new and changed code, and displays the class average, minimum, maximum, and the values for each student for each program. Perhaps the most important single message of the course is that the numbers of test defects are a good indicator of the numbers of defects remaining in the program. This is because test processes generally miss some percentage of the defects in the program. The objective is thus to strive for as low a test defect number as possible. This will then likely result in the lowest numbers of defects in the finished product.

TestTime - This spreadsheet shows the percent of development time that is spent in test. An early and simple indicator of process quality is the percent of time spent in test. The objective is thus to strive for a low value.

TimeRnge - This spreadsheet computes the times spent developing the programs in hours and displays the class average, minimum, maximum, and the values for each student for each program. This range will likely be very large because of the wide range of program sizes and because of the wide ranges of students' abilities. This range should be of general interest but is not useful as an indicator of student performance.

TimError - This spreadsheet computes the error in the time estimates as a percent of the estimate and displays the class minimum, maximum, and the percent error of the total of the class estimates and actuals. That is, with data on four students' programs, for example, the spreadsheet sums the estimates for the development time for the four programs and compares the result to the total of the actual time spent developing the same four programs. The values for each student for each program are also shown compared to the class total error. Again, the students are generally surprised at the accuracy of the composite time estimate data for the total class.

TotalDef - This spreadsheet computes the total numbers of defects found during program development per KLOC of new and changed code and displays the class average, minimum, maximum, and the values for each student for each program. An objective of the course is to increase the students' sensitivity to defects and induce them to be more careful in their work. This number should thus gradually decline.

Yield - This spreadsheet plots the percentage of the defects that are removed before the first compile for the class as a whole and for each student. Getting the students to focus on increasing their personal process yield is the single most important objective of the course. Yield is calculate as:

Yield=100*(defects removed prior to compile)/(defects injected prior to compile)

YldAfr - This spreadsheet computes the yield and the ratio of the appraisal to the failure costs of quality for the class and for each student for each program. It displays the yield versus the A/FR in an x-y plot. While the numbers may not correlate too well for the entire class, the more experienced engineers generally find that higher yields accompany higher values of A/FR. A/FR is calculated as:

A/FR=(time in code reviews + time in design reviews)/(time in compile + time in test)

YldPdvty - This spreadsheet computes the yield and the development productivity for the class and for each student for each program. It displays the yield versus the productivity in an x-y plot. Again, productivity is an elusive and long term objective. The objective of this course is to improve basic engineering practices without seriously impacting productivity.

7 - Assignment Kits

The assignment kits included in this section consist of sets of forms for each process version. The guidelines for using these kits are as follows:

- Make full page copies of the kit pages for each assignment and give a copy to each student.

- Review the instructions on the front page of the kit to ensure that the students understand them.

- Review the assignments that are to be done with that kit. For the standard assignment sequence, this is one or two of the exercise programs.

7.1 Assignment Kit Overview

There is an assignment kit for each process version. These are used as follows:

	Kit Number
	Process Version
	Lectures
	Exercise Programs

	1
	PSP0
	1
	1A

	2
	PSP0.1
	2, 3
	2A, 3A

	3
	PSP1
	4
	4A

	4
	PSP1.1
	5, 6
	5A, 6A

	5
	PSP2
	8, 9
	7A, 8A

	6
	PSP2.1
	10
	9A

	7
	PSP3
	11
	10A

Assignment Kit # 1

Process version: PSP0

Lecture Numbers: 1

Program Exercises: 1A

This kit contains forms for use in the programming assignments. The numbers to the left of the form name are the table numbers of the form in Appendix C of the textbook, A Discipline for Software Engineering. In general, the next higher numbered table in the textbook contains the instructions for the form.

Process Unique Forms:

This kit contains the following unique process forms that are used only for the exercises noted above:

C14 - PSP0 Project Plan Summary

In the event you make mistakes in completing this form, you should keep a master set and use copies for the program exercises.

General Process Forms:

This kit contains the following process forms that are used for the exercises listed above and for all subsequent assignments. You should make and keep master copies of these forms for use with all subsequent assignments.

C16 - Time Recording Log

C18 - Defect Recording Log

Table C14 PSP0 Project Plan Summary

	Student
	
	Date
	

	Program
	
	Program #
	

	Instructor
	
	Language
	

	Time in Phase (min.)
	Plan
	
	Actual
	
	To Date
	
	To Date %

	 Planning
	
	
	
	
	
	
	

	 Design
	
	
	
	
	
	
	

	 Code
	
	
	
	
	
	
	

	 Compile
	
	
	
	
	
	
	

	 Test
	
	
	
	
	
	
	

	 Postmortem
	
	
	
	
	
	
	

	 Total
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Defects Injected
	
	
	Actual
	
	To Date
	
	To Date %

	 Planning
	
	
	
	
	
	
	

	 Design
	
	
	
	
	
	
	

	 Code
	
	
	
	
	
	
	

	 Compile
	
	
	
	
	
	
	

	 Test
	
	
	
	
	
	
	

	 Total Development
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Defects Removed
	
	
	Actual
	
	To Date
	
	To Date %

	 Planning
	
	
	
	
	
	
	

	 Design
	
	
	
	
	
	
	

	 Code
	
	
	
	
	
	
	

	 Compile
	
	
	
	
	
	
	

	 Test
	
	
	
	
	
	
	

	 Total Development
	
	
	
	
	
	
	

	 After Development
	
	
	
	
	
	
	

Table C16 Time Recording Log
	Student
	
	Date
	

	Instructor
	
	Program #
	

	
	
	
	

	Date
	Start
	Stop
	Interruption

Time
	Delta

Time
	Phase
	Comments

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

Table C18 Defect Recording Log

Defect Types

10 Documentation
60 Checking

20 Syntax

70 Data

30 Build, Package
80 Function

40 Assignment
90 System

50 Interface
 100 Environment

	Student
	
	Date
	

	Instructor
	
	Program #
	

	Date
	
	Number
	
	Type
	
	Inject
	
	Remove
	
	Fix Time
	
	Fix Defect

	
	
	
	
	
	
	
	
	
	
	
	
	

	Description:
	

	

	

	Date
	
	Number
	
	Type
	
	Inject
	
	Remove
	
	Fix Time
	
	Fix Defect

	
	
	
	
	
	
	
	
	
	
	
	
	

	Description:
	

	

	

	Date
	
	Number
	
	Type
	
	Inject
	
	Remove
	
	Fix Time
	
	Fix Defect

	
	
	
	
	
	
	
	
	
	
	
	
	

	Description:
	

	

	

	Date
	
	Number
	
	Type
	
	Inject
	
	Remove
	
	Fix Time
	
	Fix Defect

	
	
	
	
	
	
	
	
	
	
	
	
	

	Description:
	

	

	

	Date
	
	Number
	
	Type
	
	Inject
	
	Remove
	
	Fix Time
	
	Fix Defect

	
	
	
	
	
	
	
	
	
	
	
	
	

	Description:
	

	

	

	Date
	
	Number
	
	Type
	
	Inject
	
	Remove
	
	Fix Time
	
	Fix Defect

	
	
	
	
	
	
	
	
	
	
	
	
	

	Description:
	

	

	

	Date
	
	Number
	
	Type
	
	Inject
	
	Remove
	
	Fix Time
	
	Fix Defect

	
	
	
	
	
	
	
	
	
	
	
	
	

	Description:
	

	

	

	Date
	
	Number
	
	Type
	
	Inject
	
	Remove
	
	Fix Time
	
	Fix Defect

	
	
	
	
	
	
	
	
	
	
	
	
	

	Description:
	

	

	

	Date
	
	Number
	
	Type
	
	Inject
	
	Remove
	
	Fix Time
	
	Fix Defect

	
	
	
	
	
	
	
	
	
	
	
	
	

	Description:
	

	

	

Assignment Kit # 2

Process version: PSP0.1

Lecture Numbers: 2, 3

Program Exercises: 2A, 3A

This kit contains forms for use in the programming assignments. The numbers to the left of the form name are the table numbers of the form in Appendix C of the textbook, A Discipline for Software Engineering. In general, the next higher numbered table in the textbook contains the instructions for the form.

Process Unique Forms:

This kit contains the following unique process forms that are used only for the exercises noted above:

C25 - PSP0.1 Project Plan Summary

In the event you make mistakes in completing this form, you should keep a master set and use copies for the program exercises.

General Process Forms:

This kit contains the following process forms that are used for the exercises listed above and for all subsequent assignments. You should make and keep master copies of these forms for use with all subsequent assignments.

C27 - Process Improvement Proposal (PIP)

Table C25 PSP0.1 Project Plan Summary

	Student
	
	Date
	

	Program
	
	Program #
	

	Instructor
	
	Language
	

	Program Size (LOC)
	Plan
	
	Actual
	
	To Date

	Base(B)
	
	
	
	
	

	
	
	
	(Measured)
	
	

	 Deleted (D)
	
	
	
	
	

	
	
	
	(Counted)
	
	

	 Modified (M)
	
	
	
	
	

	
	
	
	(Counted)
	
	

	 Added (A)
	
	
	
	
	

	
	
	
	(T-B+D-R)
	
	

	 Reused (R)
	
	
	
	
	

	
	
	
	(Counted)
	
	

	Total New & Changed (N)
	
	
	
	
	

	
	
	
	(A+M)
	
	

	Total LOC (T)
	
	
	
	
	

	
	
	
	(Measured)
	
	

	Total New Reused
	
	
	
	
	

	
	
	
	
	
	

	Time in Phase (min.)
	Plan
	
	Actual
	
	To Date
	
	To Date %

	 Planning
	
	
	
	
	
	
	

	 Design
	
	
	
	
	
	
	

	 Code
	
	
	
	
	
	
	

	 Compile
	
	
	
	
	
	
	

	 Test
	
	
	
	
	
	
	

	 Postmortem
	
	
	
	
	
	
	

	 Total
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Defects Injected
	
	
	Actual
	
	To Date
	
	To Date %

	 Planning
	
	
	
	
	
	
	

	 Design
	
	
	
	
	
	
	

	 Code
	
	
	
	
	
	
	

	 Compile
	
	
	
	
	
	
	

	 Test
	
	
	
	
	
	
	

	 Total Development
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Defects Removed
	
	
	Actual
	
	To Date
	
	To Date %

	 Planning
	
	
	
	
	
	
	

	 Design
	
	
	
	
	
	
	

	 Code
	
	
	
	
	
	
	

	 Compile
	
	
	
	
	
	
	

	 Test
	
	
	
	
	
	
	

	 Total Development
	
	
	
	
	
	
	

	 After Development
	
	
	
	
	
	
	

Table C27 Process Improvement Proposal (PIP)

	Student
	
	Date
	

	Instructor
	
	Program #
	

	Process
	
	Elements
	

	PIP Number

	
	
	Problem Description:

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	

	PROPOSAL

	PIP #
	
	Proposal Description

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	Notes and Comments:

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Assignment Kit # 3

Process version: PSP1

Lecture Numbers: 4

Program Exercises: 4A

This kit contains forms for use in the programming assignments. The numbers to the left of the form name are the table numbers of the form in Appendix C of the textbook, A Discipline for Software Engineering. In general, the next higher numbered table in the textbook contains the instructions for the form.

Process Unique Forms:

This kit contains the following unique process forms that are used only for the exercises noted above:

C34 - PSP1 Project Plan Summary

In the event you make mistakes in completing this form, you should keep a master set and use copies for the program exercises.

General Process Forms:

This kit contains the following process forms that are used for the exercises listed above and for all subsequent assignments. You should make and keep master copies of these forms for use with all subsequent assignments.

C37 - Test Report Template

C39 - Size Estimating Template

Table C34 PSP1 Project Plan Summary

	Student
	
	Date
	

	Program
	
	Program #
	

	Instructor
	
	Language
	

	Summary
	Plan
	
	Actual
	
	To Date

	LOC/Hour
	
	
	
	
	

	
	
	
	
	
	

	Program Size (LOC):
	Plan
	
	Actual
	
	To Date

	Base(B)
	
	
	
	
	

	
	(Measured)
	
	(Measured)
	
	

	 Deleted (D)
	
	
	
	
	

	
	(Estimated)
	
	(Counted)
	
	

	 Modified (M)
	
	
	
	
	

	
	(Estimated)
	
	(Counted)
	
	

	 Added (A)
	
	
	
	
	

	
	(N-M)
	
	(T-B+D-R)
	
	

	 Reused (R)
	
	
	
	
	

	
	(Estimated)
	
	(Counted)
	
	

	Total New & Changed (N)
	
	
	
	
	

	
	(Estimated)
	
	(A+M)
	
	

	Total LOC (T)
	
	
	
	
	

	
	(N+B-M-D+R)
	
	(Measured)
	
	

	Total New Reused
	
	
	
	
	

	
	
	
	
	
	

	Time in Phase (min.)
	Plan
	
	Actual
	
	To Date
	
	To Date %

	 Planning
	
	
	
	
	
	
	

	 Design
	
	
	
	
	
	
	

	 Code
	
	
	
	
	
	
	

	 Compile
	
	
	
	
	
	
	

	 Test
	
	
	
	
	
	
	

	 Postmortem
	
	
	
	
	
	
	

	 Total
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Defects Injected
	
	
	Actual
	
	To Date
	
	To Date %

	 Planning
	
	
	
	
	
	
	

	 Design
	
	
	
	
	
	
	

	 Code
	
	
	
	
	
	
	

	 Compile
	
	
	
	
	
	
	

	 Test
	
	
	
	
	
	
	

	 Total Development
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Defects Removed
	
	
	Actual
	
	To Date
	
	To Date %

	 Planning
	
	
	
	
	
	
	

	 Design
	
	
	
	
	
	
	

	 Code
	
	
	
	
	
	
	

	 Compile
	
	
	
	
	
	
	

	 Test
	
	
	
	
	
	
	

	 Total Development
	
	
	
	
	
	
	

	 After Development
	
	
	
	
	
	
	

Table C37 Test Report Template

	Student
	
	Date
	

	Instructor
	
	Program #
	

	Test Name/Number
	

	Test Objective
	

	Test Description
	

	
	

	
	

	
	

	Test Conditions
	

	
	

	
	

	
	

	Expected Results
	

	
	

	
	

	Actual Results
	

	
	

	
	

	
	

	
	

	Test Name/Number
	

	Test Objective
	

	Test Description
	

	
	

	
	

	
	

	Test Conditions
	

	
	

	
	

	
	

	Expected Results
	

	
	

	
	

	Actual Results
	

	
	

	
	

	
	

	
	

Table C39 Size Estimating Template

	Student
	
	Date
	

	Instructor
	
	Program #
	

	BASE PROGRAM LOC
	ESTIMATE
	ACTUAL

	 BASE SIZE (B) => => => => => => => => => =>
	
	
	
	

	 LOC DELETED (D) => => => => => => => => =>
	
	
	
	

	 LOC MODIFIED (M) => => => => => => => => =>
	
	
	
	

	OBJECT LOC
	
	
	
	
	

	 BASE ADDITIONS
	TYPE1
	METHODS
	REL. SIZE
	LOC
	LOC

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	 TOTAL BASE ADDITIONS (BA) => => => => => => =>
	
	
	
	

	 NEW OBJECTS
	TYPE
	METHODS
	REL. SIZE
	LOC (New Reused*)

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	 TOTAL NEW OBJECTS (NO) => => => => => => =>
	
	
	
	

	REUSED OBJECTS
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	 REUSED TOTAL (R) => => => => => => => => =>
	
	
	
	

	
	
	SIZE
	
	TIME

	Estimated Object LOC (E): E = BA + NO + M
	
	
	
	

	Regression Parameters: [image: image1.wmf]b

0

 (size and time)
	
	
	
	

	Regression Parameters: [image: image2.wmf]b

1

 (size and time)
	
	
	
	

	Estimated New and Changed LOC (N): N = [image: image3.wmf]b

0

 + [image: image4.wmf]b

1

 * E
	
	
	
	

	Estimated Total LOC: T = N + B (D (M + R
	
	
	
	

	Estimated Total New Reuse (sum of * LOC):
	
	
	
	

	Estimated Total Development Time: Time = [image: image5.wmf]b

0

 + [image: image6.wmf]b

1

*E
	
	
	
	

	Prediction Range: Range
	
	
	
	

	Upper Prediction Interval: UPI = N + Range
	
	
	
	

	Lower Prediction Interval: LPI = N (Range
	
	
	
	

	Prediction Interval Percent:
	
	
	
	

 Assignment Kit # 4

Process version: PSP1.1

Lecture Numbers: 5, 6

Program Exercises: 5A, 6A

This kit contains forms for use in the programming assignments. The numbers to the left of the form name are the table numbers of the form in Appendix C of the textbook, A Discipline for Software Engineering. In general, the next higher numbered table in the textbook contains the instructions for the form.

Process Unique Forms:

This kit contains the following unique process forms that are used only for the exercises noted above:

C45 - PSP1.1 Project Plan Summary

In the event you make mistakes in completing this form, you should keep a master set and use copies for the program exercises.

General Process Forms:

This kit contains the following process forms that are used for the exercises listed above and for all subsequent assignments. You should make and keep master copies of these forms for use with all subsequent assignments.

C47 - Task Planning Template

C49 - Schedule Planning Template

Table C45 PSP1.1 Project Plan Summary

	Student
	
	Date
	

	Program
	
	Program #
	

	Instructor
	
	Language
	

	Summary
	Plan
	
	Actual
	
	To Date

	LOC/Hour
	
	
	
	
	

	Actual Time
	
	
	
	
	

	Planned Time
	
	
	
	
	

	CPI(Cost-Performance Index)
	
	
	
	
	

	
	
	
	
	
	(Actual/Planned)

	% Reused
	
	
	
	
	

	% New Reused
	
	
	
	
	

	
	
	
	
	
	

	Program Size (LOC):
	Plan
	
	Actual
	
	To Date

	Base(B)
	
	
	
	
	

	
	(Measured)
	
	(Measured)
	
	

	 Deleted (D)
	
	
	
	
	

	
	(Estimated)
	
	(Counted)
	
	

	 Modified (M)
	
	
	
	
	

	
	(Estimated)
	
	(Counted)
	
	

	 Added (A)
	
	
	
	
	

	
	(N-M)
	
	(T-B+D-R)
	
	

	 Reused (R)
	
	
	
	
	

	
	(Estimated)
	
	(Counted)
	
	

	Total New & Changed (N)
	
	
	
	
	

	
	(Estimated)
	
	(A+M)
	
	

	Total LOC (T)
	
	
	
	
	

	
	(N+B-M-D+R)
	
	(Measured)
	
	

	Total New Reused
	
	
	
	
	

	
	
	
	
	
	

	Time in Phase (min.)
	Plan
	
	Actual
	
	To Date
	
	To Date %

	 Planning
	
	
	
	
	
	
	

	 Design
	
	
	
	
	
	
	

	 Code
	
	
	
	
	
	
	

	 Compile
	
	
	
	
	
	
	

	 Test
	
	
	
	
	
	
	

	 Postmortem
	
	
	
	
	
	
	

	 Total
	
	
	
	
	
	
	

 (continued)

Table C45 PSP1.1 Project Plan Summary (continued)

	Student
	
	Date
	

	Program
	
	Program #
	

	Instructor
	
	Language
	

	Defects Injected
	
	
	Actual
	
	To Date
	
	To Date %

	 Planning
	
	
	
	
	
	
	

	 Design
	
	
	
	
	
	
	

	 Code
	
	
	
	
	
	
	

	 Compile
	
	
	
	
	
	
	

	 Test
	
	
	
	
	
	
	

	 Total Development
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Defects Removed
	
	
	Actual
	
	To Date
	
	To Date %

	 Planning
	
	
	
	
	
	
	

	 Design
	
	
	
	
	
	
	

	 Code
	
	
	
	
	
	
	

	 Compile
	
	
	
	
	
	
	

	 Test
	
	
	
	
	
	
	

	 Total Development
	
	
	
	
	
	
	

	 After Development
	
	
	
	
	
	
	

Table C47 Task Planning Template

	Student
	
	Date
	

	Project
	
	Instructor
	

	Task
	Plan
	Actual

	#
	Name
	Hours
	Planned Value
	Cumulative

Hours
	Cumulative Planned

Value
	Date

Monday
	Date
	Earned Value
	Cumulative Earned Value

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	Totals
	
	

Table C49 Schedule Planning Template

	Student
	
	Date
	

	Project
	
	Instructor
	

	
	
	Plan
	Actual

	Week
	Date
	Direct
	Cumulative
	Cumulative
	Direct
	Cumulative
	Cumulative
	Adjusted

	No.
	Monday
	Hours
	Hours
	Planned Value
	Hours
	Hours
	Earned Value
	Earned Value

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

Assignment Kit # 5

Process version: PSP2

Lecture Numbers: 8, 9

Program Exercises: 7A, 8A

This kit contains forms for use in the programming assignments. The numbers to the left of the form name are the table numbers of the form in Appendix C of the textbook, A Discipline for Software Engineering. In general, the next higher numbered table in the textbook contains the instructions for the form.

Process Unique Forms:

This kit contains the following unique process forms that are used only for the exercises noted above:

C55 - PSP2 Project Plan Summary

C57 - PSP2 Design Review Checklist

In the event you make mistakes in completing this form, you should keep a master set and use copies for the program exercises.

General Process Forms:

This kit contains the following process forms that are used for the exercises listed above and for all subsequent assignments. You should make and keep master copies of these forms for use with all subsequent assignments.

C58 - Code Review Checklist

Table C55 PSP2 Project Plan Summary

	Student
	
	Date
	

	Program
	
	Program #
	

	Instructor
	
	Language
	

	Summary
	Plan
	
	Actual
	
	To Date

	LOC/Hour
	
	
	
	
	

	Actual Time
	
	
	
	
	

	Planned Time
	
	
	
	
	

	CPI(Cost-Performance Index)
	
	
	
	
	

	
	
	
	
	
	(Actual/Planned)

	% Reused
	
	
	
	
	

	% New Reused
	
	
	
	
	

	Test Defects/KLOC
	
	
	
	
	

	Total Defects/KLOC
	
	
	
	
	

	Yield %
	
	
	
	
	

	
	
	
	
	
	

	Program Size (LOC):
	Plan
	
	Actual
	
	To Date

	Base(B)
	
	
	
	
	

	
	(Measured)
	
	(Measured)
	
	

	 Deleted (D)
	
	
	
	
	

	
	(Estimated)
	
	(Counted)
	
	

	 Modified (M)
	
	
	
	
	

	
	(Estimated)
	
	(Counted)
	
	

	 Added (A)
	
	
	
	
	

	
	(N-M)
	
	(T-B+D-R)
	
	

	 Reused (R)
	
	
	
	
	

	
	(Estimated)
	
	(Counted)
	
	

	Total New & Changed (N)
	
	
	
	
	

	
	(Estimated)
	
	(A+M)
	
	

	Total LOC (T)
	
	
	
	
	

	
	(N+B-M-D+R)
	
	(Measured)
	
	

	Total New Reused
	
	
	
	
	

	Upper Prediction Interval (70%)
	
	
	
	
	

	Lower Prediction Interval (70%)
	
	
	
	
	

	
	
	
	
	
	
	
	

	Time in Phase (min.)
	Plan
	
	Actual
	
	To Date
	
	To Date %

	 Planning
	
	
	
	
	
	
	

	 Design
	
	
	
	
	
	
	

	 Design review
	
	
	
	
	
	
	

	 Code
	
	
	
	
	
	
	

	 Code review
	
	
	
	
	
	
	

	 Compile
	
	
	
	
	
	
	

	 Test
	
	
	
	
	
	
	

	 Postmortem
	
	
	
	
	
	
	

	 Total
	
	
	
	
	
	
	

	Total Time UPI (70%)
	
	
	
	
	
	
	

	Total Time LPI (70%)
	
	
	
	
	
	
	

 (continued)

Table C55 PSP2 Project Plan Summary (continued)

	Student
	
	Date
	

	Program
	
	Program #
	

	Instructor
	
	Language
	

	Defects Injected
	Plan
	
	Actual
	
	To Date
	
	To Date %

	 Planning
	
	
	
	
	
	
	

	 Design
	
	
	
	
	
	
	

	 Design review
	
	
	
	
	
	
	

	 Code
	
	
	
	
	
	
	

	 Code review
	
	
	
	
	
	
	

	 Compile
	
	
	
	
	
	
	

	 Test
	
	
	
	
	
	
	

	 Total Development
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Defects Removed
	Plan
	
	Actual
	
	To Date
	
	To Date %

	 Planning
	
	
	
	
	
	
	

	 Design
	
	
	
	
	
	
	

	 Design review
	
	
	
	
	
	
	

	 Code
	
	
	
	
	
	
	

	 Code review
	
	
	
	
	
	
	

	 Compile
	
	
	
	
	
	
	

	 Test
	
	
	
	
	
	
	

	 Total Development
	
	
	
	
	
	
	

	 After Development
	
	
	
	
	
	
	

	
	
	
	
	
	

	Defect Removal Efficiency
	Plan
	
	Actual
	
	To Date

	Defects/Hour - Design review
	
	
	
	
	

	Defects/Hour - Code review
	
	
	
	
	

	Defects/Hour - Compile
	
	
	
	
	

	Defects/Hour - Test
	
	
	
	
	

	DRL(DLDR/UT)
	
	
	
	
	

	DRL(CodeReview/UT)
	
	
	
	
	

	DRL(Compile/UT)
	
	
	
	
	

Table C57 C++ PSP2 Design Review Checklist

PROGRAM NAME AND #:

	Purpose
	To guide you in conducting an effective design review
	
	
	
	

	General
	As you complete each review step, check that item in the box to the right.

Complete the checklist for one program unit before you start to review the next.
	
	
	
	

	Complete
	Ensure that the requirements, specifications, and high-level design are completely covered by the design:

- all specified outputs are produced

- all needed inputs are furnished

- all required includes are stated
	
	
	
	

	Logic
	Verify that program sequencing is proper:

- that stacks, lists, etc. are in the proper order

- that recursion unwinds properly

Verify that all loops are properly initiated, incremented, and terminated
	
	
	
	

	Special Cases
	Check all special cases:

- empty, full, minimum, maximum, negative, zero

- out of limits, overflow, underflow

- ensure "impossible" conditions are absolutely impossible

- handle all incorrect input conditions
	
	
	
	

	Functional use
	Verify that all functions, procedures, or objects are fully understood and properly used

Verify that all externally referenced abstractions are precisely defined
	
	
	
	

	Names
	Verify that:

- all special names and types are clear or specifically defined

- the scopes of all variables and parameters are self-evident or defined

- all named objects are used within their declared scopes
	
	
	
	

	Standards
	Review the design for conformance to all applicable design standards
	
	
	
	

Table C58 C++ Code Review Checklist

PROGRAM NAME AND #:

	Purpose
	To guide you in conducting an effective code review.
	
	
	
	

	General
	As you complete each review step, check that item in the box to the right.

Complete the checklist for one program unit before you start to review the next.
	
	
	
	

	Complete
	Verify that the code covers all the design.
	
	
	
	

	Includes
	Verify that includes are complete
	
	
	
	

	Initialization
	Check variable and parameter initialization:

- at program initiation

- at start of every loop

- at function/procedure entry
	
	
	
	

	Calls
	Check function call formats:

- pointers

- parameters

- use of '&'
	
	
	
	

	Names
	Check name spelling and use:

- is it consistent?

- is it within declared scope?

- do all structures and classes use '.' reference?
	
	
	
	

	Strings
	Check that all strings are

- identified by pointers and

- terminated in NULL.
	
	
	
	

	Pointers
	Check that

- pointers are initialized NULL

- pointers are deleted only after new, and

- new pointers are always deleted after use.
	
	
	
	

	Output Format
	Check the output format:

- line stepping is proper

- spacing is proper
	
	
	
	

	{} Pairs
	Insure that the {} are proper and matched
	
	
	
	

	Logic Operators
	Verify the proper use of ==, =, ||, and so on.

Check every logic function for proper ().
	
	
	
	

	Line by Line Check
	Check every LOC for

- instruction syntax and

- proper punctuation.
	
	
	
	

	Standards
	Ensure that the code conforms to the coding standards.
	
	
	
	

	File Open and Close
	Verify that all files are

- properly declared,

- opened, and

- closed.
	
	
	
	

Assignment Kit # 6

Process version: PSP2.1

Lecture Numbers: 10

Program Exercises: 9A

This kit contains forms for use in the programming assignments. The numbers to the left of the form name are the table numbers of the form in Appendix C of the textbook, A Discipline for Software Engineering. In general, the next higher numbered table in the textbook contains the instructions for the form.

Process Unique Forms:

This kit contains the following unique process forms that are used only for the exercises noted above:

C63 - PSP2.1 Project Plan Summary

C65 - PSP2.1 Design Review Checklist

In the event you make mistakes in completing this form, you should keep a master set and use copies for the program exercises.

General Process Forms:

This kit contains the following process forms that are used for the exercises listed above and for all subsequent assignments. You should make and keep master copies of these forms for use with all subsequent assignments.

C66 - Operational Scenario Template

C68 - Function Specification Template

C70 - State Specification Template

C72 - Logic Specification Template

Table C63 PSP2.1 Project Plan Summary

	Student
	
	Date
	

	Program
	
	Program #
	

	Instructor
	
	Language
	

	Summary
	Plan
	
	Actual
	
	To Date

	LOC/Hour
	
	
	
	
	

	Actual Time
	
	
	
	
	

	Planned Time
	
	
	
	
	

	CPI(Cost-Performance Index)
	
	
	
	
	

	
	
	
	
	
	(Actual/Planned)

	% Reused
	
	
	
	
	

	% New Reused
	
	
	
	
	

	Test Defects/KLOC
	
	
	
	
	

	Total Defects/KLOC
	
	
	
	
	

	Yield %
	
	
	
	
	

	% Appraisal COQ
	
	
	
	
	

	% Failure COQ
	
	
	
	
	

	COQ A/F Ratio
	
	
	
	
	

	
	
	
	
	
	

	Program Size (LOC):
	Plan
	
	Actual
	
	To Date

	Base(B)
	
	
	
	
	

	
	(Measured)
	
	(Measured)
	
	

	 Deleted (D)
	
	
	
	
	

	
	(Estimated)
	
	(Counted)
	
	

	 Modified (M)
	
	
	
	
	

	
	(Estimated)
	
	(Counted)
	
	

	 Added (A)
	
	
	
	
	

	
	(N-M)
	
	(T-B+D-R)
	
	

	 Reused (R)
	
	
	
	
	

	
	(Estimated)
	
	(Counted)
	
	

	Total New & Changed (N)
	
	
	
	
	

	
	(Estimated)
	
	(A+M)
	
	

	Total LOC (T)
	
	
	
	
	

	
	(N+B-M-D+R)
	
	(Measured)
	
	

	Total New Reused
	
	
	
	
	

	Upper Prediction Interval (70%)
	
	
	
	
	

	Lower Prediction Interval (70%)
	
	
	
	
	

	
	
	
	
	
	
	
	

	Time in Phase (min.)
	Plan
	
	Actual
	
	To Date
	
	To Date %

	 Planning
	
	
	
	
	
	
	

	 Design
	
	
	
	
	
	
	

	 Design review
	
	
	
	
	
	
	

	 Code
	
	
	
	
	
	
	

	 Code review
	
	
	
	
	
	
	

	 Compile
	
	
	
	
	
	
	

	 Test
	
	
	
	
	
	
	

	 Postmortem
	
	
	
	
	
	
	

	 Total
	
	
	
	
	
	
	

	Total Time UPI (70%)
	
	
	
	
	
	
	

	Total Time LPI (70%)
	
	
	
	
	
	
	

 (continued)

Table C63 PSP2.1 Project Plan Summary (continued)

	Student
	
	Date
	

	Program
	
	Program #
	

	Instructor
	
	Language
	

	Defects Injected
	Plan
	
	Actual
	
	To Date
	
	To Date %

	 Planning
	
	
	
	
	
	
	

	 Design
	
	
	
	
	
	
	

	 Design review
	
	
	
	
	
	
	

	 Code
	
	
	
	
	
	
	

	 Code review
	
	
	
	
	
	
	

	 Compile
	
	
	
	
	
	
	

	 Test
	
	
	
	
	
	
	

	 Total Development
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Defects Removed
	Plan
	
	Actual
	
	To Date
	
	To Date %

	 Planning
	
	
	
	
	
	
	

	 Design
	
	
	
	
	
	
	

	 Design review
	
	
	
	
	
	
	

	 Code
	
	
	
	
	
	
	

	 Code review
	
	
	
	
	
	
	

	 Compile
	
	
	
	
	
	
	

	 Test
	
	
	
	
	
	
	

	 Total Development
	
	
	
	
	
	
	

	 After Development
	
	
	
	
	
	
	

	
	
	
	
	
	

	Defect Removal Efficiency
	Plan
	
	Actual
	
	To Date

	Defects/Hour - Design review
	
	
	
	
	

	Defects/Hour - Code review
	
	
	
	
	

	Defects/Hour - Compile
	
	
	
	
	

	Defects/Hour - Test
	
	
	
	
	

	DRL(DLDR/UT)
	
	
	
	
	

	DRL(CodeReview/UT)
	
	
	
	
	

	DRL(Compile/UT)
	
	
	
	
	

Table C65 C++ PSP2.1 Design Review Checklist

PROGRAM NAME AND #:

	Purpose
	To guide you in conducting an effective design review
	
	
	
	

	General
	As you complete each review step, check that item in the box to the right.

Complete the checklist for one program unit before you start to review the next.
	
	
	
	

	Complete
	Ensure that the requirements, specifications, and high-level design are completely covered by the design:

- all specified outputs are produced

- all needed inputs are furnished

- all required includes are stated
	
	
	
	

	State machine
	Verify the state machine design:

- The structure has no hidden traps or loops.

- It is complete - that is, all possible states have been identified.

- It is orthogonal - that is, for every set of conditions there is one and only one possible next state.

- The transitions from each state are complete and orthogonal. That is, from every state, a unique next state is defined for every possible combination of state machine input values.
	
	
	
	

	Logic
	Verify that program sequencing is proper:

- that stacks, lists, etc. are in the proper order

- that recursion unwinds properly

Verify that all loops are properly initiated, incremented, and terminated
	
	
	
	

	Special Cases
	Check all special cases:

- empty, full, minimum, maximum, negative, zero

- out of limits, overflow, underflow

- ensure "impossible" conditions are absolutely impossible

- handle all incorrect input conditions
	
	
	
	

	Functional use
	Verify that all functions, procedures, or objects are fully understood and properly used

Verify that all externally referenced abstractions are precisely defined
	
	
	
	

	Names
	Verify that:

- all special names and types are clear or specifically defined

- the scopes of all variables and parameters are self-evident or defined

- all named objects are used within their declared scopes
	
	
	
	

	Standards
	Review the design for conformance to all applicable design standards
	
	
	
	

Table C66 Operational Scenario Template

	Student
	
	Date
	

	Program
	
	Program #
	

	Instructor
	
	Language
	

Construct operational scenarios to cover the normal and abnormal program uses, including user errors:

	Scenario #
	User Objective:

	Scenario Objective:

	Source:
	Step
	Action:
	Comments

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table C68 Functional Specification Template

	Student
	
	Date
	

	Program
	
	Program #
	

	Instructor
	
	Language
	

	Object/class name
	Parent Classes
	Attributes

	
	Method declaration
	Method external specification

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Table C70 State Specification Template

	Student
	
	Date
	

	Program
	
	Program #
	

	Instructor
	
	Language
	

	Object
	
	Routine
	

	State #1

	description
	attributes

	
	next state #1
	transition conditions

	
	next state #2
	

	
	. . .
	

	
	. . .
	

	
	next state # n
	

	State #2

	description
	attributes

	
	next state #1
	transition conditions

	
	next state #2
	

	
	. . .
	

	
	. . .
	

	
	next state # n
	

...

	State #n

	description
	attributes

	
	next state #1
	transition conditions

	
	next state #2
	

	
	. . .
	

	
	. . .
	

	
	next state # n
	

Table C72 Logic Specification Template

	Student
	
	Date
	

	Program
	
	Program #
	

	Instructor
	
	Language
	

	Object
	
	Function
	

INCLUDES:

TYPE DEFINITIONS:

	Declaration:
	

	Reference:
	

	
	

	logic reference numbers
	Program logic, in pseudocode

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

Assignment Kit # 7

Process version: PSP3

Lecture Numbers: 11

Program Exercises: 10A

This kit contains forms for use in the programming assignments. The numbers to the left of the form name are the table numbers of the form in Appendix C of the textbook, A Discipline for Software Engineering. In general, the next higher numbered table in the textbook contains the instructions for the form.

Process Unique Forms:

This kit contains the following unique process forms that are used only for the exercises noted above:

C80 - PSP3 Project Plan Summary

C82 - Cycle Summary

C84 - PSP3 Design Review Checklist

In the event you make mistakes in completing this form, you should keep a master set and use copies for the program exercises.

General Process Forms:

This kit contains the following process forms that are used for the exercises listed above. You should make and keep master copies of these forms for use in your work.

C85 - Issue Tracking Log

Table C80 PSP3 Project Plan Summary

	Student
	
	Date
	

	Program
	
	Program #
	

	Instructor
	
	Language
	

	Summary
	Plan
	
	Actual
	
	To Date

	LOC/Hour
	
	
	
	
	

	Actual Time
	
	
	
	
	

	Planned Time
	
	
	
	
	

	CPI(Cost-Performance Index)
	
	
	
	
	

	
	
	
	
	
	(Actual/Planned)

	% Reused
	
	
	
	
	

	% New Reused
	
	
	
	
	

	Test Defects/KLOC
	
	
	
	
	

	Total Defects/KLOC
	
	
	
	
	

	Yield
	
	
	
	
	

	% Appraisal COQ
	
	
	
	
	

	% Failure COQ
	
	
	
	
	

	COQ A/F Ratio
	
	
	
	
	

	Program Size (LOC):
	Plan
	
	Actual
	
	To Date

	Base(B)
	
	
	
	
	

	
	(Measured)
	
	(Measured)
	
	

	 Deleted (D)
	
	
	
	
	

	
	(Estimated)
	
	(Counted)
	
	

	 Modified (M)
	
	
	
	
	

	
	(Estimated)
	
	(Counted)
	
	

	 Added (A)
	
	
	
	
	

	
	(N-M)
	
	(T-B+D-R)
	
	

	 Reused (R)
	
	
	
	
	

	
	(Estimated)
	
	(Counted)
	
	

	Total New & Changed (N)
	
	
	
	
	

	
	(Estimated)
	
	(A+M)
	
	

	Total LOC (T)
	
	
	
	
	

	
	(N+B-M-D+R)
	
	(Measured)
	
	

	Total New Reused
	
	
	
	
	

	Upper Prediction Interval (70%)
	
	
	
	
	

	Lower Prediction Interval (70%)
	
	
	
	
	

	Time in Phase (min.)
	Plan
	
	Actual
	
	To Date
	
	To Date %

	 Planning
	
	
	
	
	
	
	

	 High-level design
	
	
	
	
	
	
	

	 High-level design review
	
	
	
	
	
	
	

	 Detailed design
	
	
	
	
	
	
	

	 Detailed design review
	
	
	
	
	
	
	

	 Code
	
	
	
	
	
	
	

	 Code review
	
	
	
	
	
	
	

	 Compile
	
	
	
	
	
	
	

	 Test
	
	
	
	
	
	
	

	 Postmortem
	
	
	
	
	
	
	

	 Total
	
	
	
	
	
	
	

	Total Time UPI (70%)
	
	
	
	
	
	
	

	Total Time LPI (70%)
	
	
	
	
	
	
	

 (continued)

Table C80 PSP3 Project Plan Summary (continued)

	Student
	
	Date
	

	Program
	
	Program #
	

	Instructor
	
	Language
	

	Defects Injected
	Plan
	
	Actual
	
	To Date
	
	To Date %

	 Planning
	
	
	
	
	
	
	

	 High-level design
	
	
	
	
	
	
	

	 High-level design review
	
	
	
	
	
	
	

	 Detailed design
	
	
	
	
	
	
	

	 Detailed design review
	
	
	
	
	
	
	

	 Code
	
	
	
	
	
	
	

	 Code review
	
	
	
	
	
	
	

	 Compile
	
	
	
	
	
	
	

	 Test
	
	
	
	
	
	
	

	 Total Development
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Defects Removed
	Plan
	
	Actual
	
	To Date
	
	To Date %

	 Planning
	
	
	
	
	
	
	

	 High-level design
	
	
	
	
	
	
	

	 High-level design review
	
	
	
	
	
	
	

	 Detailed design
	
	
	
	
	
	
	

	 Detailed design review
	
	
	
	
	
	
	

	 Code
	
	
	
	
	
	
	

	 Code review
	
	
	
	
	
	
	

	 Compile
	
	
	
	
	
	
	

	 Test
	
	
	
	
	
	
	

	 Total Development
	
	
	
	
	
	
	

	 After Development
	
	
	
	
	
	
	

	
	
	
	
	
	

	Defect Removal Efficiency
	Plan
	
	Actual
	
	To Date

	Defects/Hour - Design review
	
	
	
	
	

	Defects/Hour - Code review
	
	
	
	
	

	Defects/Hour - Compile
	
	
	
	
	

	Defects/Hour - Test
	
	
	
	
	

	DRL(DLDR/UT)
	
	
	
	
	

	DRL(CodeReview/UT)
	
	
	
	
	

	DRL(Compile/UT)
	
	
	
	
	

Table C82 Cycle Summary

Plan ___ Actual ___
	Student
	
	Date
	

	Program
	
	Program #
	

	Instructor
	
	Language
	

	
	
	
	
	
	
	
	
	
	
	
	

	Cycles
	To Date
	1
	
	2
	
	3
	
	4
	
	5
	Total

	Program Size (LOC):
	
	
	
	
	
	
	
	
	
	
	
	
	

	Base(B)
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Deleted (D)
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Modified (M)
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Added (A)
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Reused (R)
	
	
	
	
	
	
	
	
	
	
	
	
	

	Total New & Changed (N)
	
	
	
	
	
	
	
	
	
	
	
	
	

	Total LOC (T)
	
	
	
	
	
	
	
	
	
	
	
	
	

	Total New Reused
	
	
	
	
	
	
	
	
	
	
	
	
	

	Time in Phase (min.)
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Design
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Design Review
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Code
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Code Review
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Compile
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Test
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Total
	
	
	
	
	
	
	
	
	
	
	
	
	

	Defects Injected
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Design
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Design Review
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Code
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Code Review
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Compile
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Test
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Total
	
	
	
	
	
	
	
	
	
	
	
	
	

	Defects Removed
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Design
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Design Review
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Code
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Code Review
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Compile
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Test
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Total
	
	
	
	
	
	
	
	
	
	
	
	
	

Table C84 C++ PSP3 Design Review Checklist

PROGRAM NAME AND #:

	Purpose
	To guide you in conducting an effective design review
	
	
	
	

	General
	As you complete each review step, check that item in the box to the right.

Complete the checklist for one program unit before you start to review the next.

As you encounter issues that must be deferred, record them in the issue tracking log.
	
	
	
	

	Complete
	Ensure that the requirements, specifications, and high-level design are completely covered by the design:

- all specified outputs are produced

- all needed inputs are furnished

- all required includes are stated
	
	
	
	

	State machine
	Verify the state machine design:

- The structure has no hidden traps or loops.

- It is complete - that is, all possible states have been identified.

- It is orthogonal - that is, for every set of conditions there is one and only one possible next state.

- The transitions from each state are complete and orthogonal. That is, from every state, a unique next state is defined for every possible combination of state machine input values.
	
	
	
	

	Logic
	Verify that program sequencing is proper:

- that stacks, lists, etc. are in the proper order

- that recursion unwinds properly

Verify that all loops are properly initiated, incremented, and terminated

Use defined methods such as: execution tables, trace tables, or mathematical verification
	
	
	
	

	Special Cases
	Check all special cases:

- empty, full, minimum, maximum, negative, zero

- out of limits, overflow, underflow

- ensure "impossible" conditions are absolutely impossible

- handle all incorrect input conditions
	
	
	
	

	Functional use
	Verify that all functions, procedures, or objects are fully understood and properly used

Verify that all externally referenced abstractions are precisely defined
	
	
	
	

	Names
	Verify that:

- all special names and types are clear or specifically defined

- the scopes of all variables and parameters are self-evident or defined

- all named objects are used within their declared scopes
	
	
	
	

	Standards
	Review the design for conformance to all applicable design standards
	
	
	
	

Table C85 PSP Issue Tracking Log

	Student
	
	Date
	

	Program
	
	Program #
	

	Instructor
	
	Language
	

	Issue #:
	
	Date:
	
	Phase:
	

	Description:
	

	

	

	Resolution:
	

	Date:
	
	
	

	Issue #:
	
	Date:
	
	Phase:
	

	Description:
	

	

	

	Resolution:
	

	Date:
	
	
	

	Issue #:
	
	Date:
	
	Phase:
	

	Description:
	

	

	

	Resolution:
	

	Date:
	
	
	

	Issue #:
	
	Date:
	
	Phase:
	

	Description:
	

	

	

	Resolution:
	

	Date:
	
	
	

	Issue #:
	
	Date:
	
	Phase:
	

	Description:
	

	

	

	Resolution:
	

	Date:
	
	
	

	Issue #:
	
	Date:
	
	Phase:
	

	Description:
	

	

	

	Resolution:
	

	Date:
	
	
	

1 L=Logic, I=I/O, C=Calculation, T=Text, D=Data, S=Set-up

Copyright 1994, Watts S. Humphrey

