
Cloning in Java

You can make a copy of any Java object using the clone method.

JObj j1 = (JObj)j0.clone();

The clone method always returns an object declared to have a return type of

Object. Thus you must cast it to the actual type of the object that you are

cloning. Three other significant restrictions apply to this method:

1. It is a protected method and can be called only from within the same class

or a subclass.

2. You can clone only objects that are declared to implement the Cloneable

interface. All arrays are considered to implement the Cloneable interface.

3. Any object whose class is Object does not implement Cloneable and throws

the CloneNotSupported Exception.

Since the clone method is protected, this suggests packaging the public, visible

clone method inside of the class, where it can access that protected clone method.

public abstract class SwimData implements Cloneable {

public Object cloneMe() throws CloneNotSupportedException {
return super.clone();

}

You can also create special cloning procedures that change the data or process-

ing methods in the cloned class, based on arguments that you pass to the clone
method. In this case, method names such as make are probably more descriptive

and suitable.

Using the Prototype

Now let’s write a simple program that reads data from a database and then

clones the resulting object. In our example program, SwimInfo, we just read

these data from a file, but the original data were derived from a large database

as we mentioned previously.

Then we create a class called Swimmer that holds one swimmer’s name, age,

sex, club, and time.

public class Swimmer {
String name; //name of swimmer
int age; //age of swimmer
String club; //name of club
float time; //result of time
boolean female; //sex

58 CHAPTER 8 The Prototype Pattern

Makoto

