
x = rect.x; y = rect.y;
w = rect.w; h = rect.h;

}
//——————————————
public void restore () {

//restore the internal state of
//the specified rectangle
rect.x = x; rect.y = y;
rect.h = h; rect.w = w;

}
}

When we create an instance of the Memento class, we pass it the visRectan-

gle instance that we want to save. It copies the size and position parameters and

saves a copy of the instance of the visRectangle itself. Later, when we want to

restore these parameters, the Memento knows which instance must be restored

and can do it directly, as shown in the restore method.

The rest of the activity takes place in the Mediator class, where we save the

previous state of the list of drawings as the Integer on the undo list.

public void createRect(int x, int y) {
unpick(); //make sure no rectangle is selected
if (startRect) { //if the Rect button is depressed

Integer count = new Integer(drawings.size());
caretaker.addElement(count); //save the previous size
visRectangle v = new visRectangle(x, y);
drawings.addElement(v); //add a new element
startRect = false; //done with a rectangle
rect.setSelected(false); //unclick the button
canvas.repaint();

}else
pickRect(x, y); //if not pressed look for the Rect

}

We also save the previous position of a rectangle before moving it into a

Memento.

public void rememberPosition() {
if (rectSelected) {

Memento m = new Memento (selectedRectangle);
caretaker.addElement(m);
repaint();

}
}

The undo method simply decides whether to reduce the drawing list by one

or to invoke the restore method of a Memento.

public void undo() {
if (undoList.size() > 0) {

206 CHAPTER 21 The Memento Pattern

Makoto

Makoto

