
catch (Exception e)
{System.out.println(e.getMessage());}

Then we use the Connection class to connect to a database. We also obtain the

database metadata to find out more about the database.

try {
con = DriverManager.getConnection(url);
dma = con.getMetaData(); //get the meta data

}catch (Exception e) {
System.out.println(e.getMessage());

}

If we want to list the names of the tables in the database, we then need to

call the getTables method on the database metadata class, which returns a

ResultSet object. Finally, to get the list of names, we must iterate through that

object, making sure that we obtain only user table names, and exclude internal

system tables.

public String[] get TableNames() {
String[] tbnames = null;
Vector tname = new Vector();

//add the table names to a Vector
//since we don’t know how many there are

try {
results = new Results(dma.getTables(catalog,

null, "%", types));
} catch (Exception e) {

System.out.println(e);
}

while (results.hasMoreElements())
tname.addElement(results.getColumnValue

("TABLE_NAME"));

//copy the table names into a String array
tbnames = new String[tname.size()];
for (int i=0; i< tname.size(); i++)

tbnames[i] = (String)tname.elementAt(i);
return tbnames;

}

This quickly becomes quite complex to manage, and we haven’t even issued any

queries.

We can make one simplifying assumption: The exceptions that all of these

database class methods throw do not need complex handling. For the most

part, the methods will work without error unless the network connection to the

database fails. Thus we can wrap all of these methods in classes in which we

simply print out the infrequent errors and take no further action.

Building the Façade Classes 117

Makoto

Makoto


