
pr2 = new Spooler();
}
catch (SingletonException e)
{System.out.println(e.getMessage());}

}
}

If we execute this program, we get the following results:

Opening one spooler
printer opened
Opening two spoolers
Only one spooler allowed

The last line indicates that an exception was thrown as expected. The complete

source of this program is on the example CD-ROM as singleSpooler.java.

Providing a Global Point of Access to a Singleton Pattern

Since a Singleton pattern is used to provide a single point of global access to a

class, your program design must provide for a way to reference the Singleton

throughout the program, even though Java has no global variables.

One solution is to create such Singletons at the beginning of the program

and pass them as arguments to the major classes that might need to use them.

pr1 = new Spooler();
Customers cust = new Customers (pri);

The disadvantage is that you might not need all of the Singletons that you

create for a given program execution. This could have performance implica-

tions. A more elaborate solution is to create a registry of all of the program’s

Singleton classes and make the registry generally available. Each time a Single-

ton is instantiated, it notes that in the registry. Then any part of the program can

ask for the instance of any Singleton using an identifying string and get back

that instance variable.

The disadvantage of the registry approach is that type checking might be

reduced, since the table of Singletons in the registry probably keeps all of the

Singletons as objects, for example in a Hashtable object. And, of course, the reg-

istry itself is probably a Singleton and must be passed to all parts of the program

using the constructor of various set functions.

Probably the most common way to provide a global point of access is by

using static methods of a class. The class name is always available, and the static

methods can be called only from the class and not from its instances, so there is

never more than one such instance no matter how many places in your program

42 CHAPTER 6 The Singleton Pattern

Makoto


