
Note that other than calling its parent classes through the super method,

this new exception type doesn’t do anything in particular. However, it is conve-

nient to have our own named exception type so that the compiler will warn us

of the type of exception we must catch when we attempt to create an instance of

PrintSpooler.

Throwing an Exception

Let’s write the skeleton of our Spooler class—we’ll omit all of the printing meth-

ods and just concentrate on correctly implementing the Singleton pattern:

public class Spooler {
//this is a prototype for a printer-spooler class
//such that only one instance can ever exist
static boolean instance_flag = false; //true if one instance

public Spooler() throws SingletonException
{

if(instance_flag)
throw new SingletonException("Only one printer
allowed");

else
instance_flag = true; //set flag for one instance

System.out.println("printer opened");
}

}

Creating an Instance of the Class

Now that we’ve created our simple Singleton pattern in the PrintSpooler class,

let’s see how we use it. Remember that we must enclose every method that may

throw an exception in a try-catch block.

public class singleSpooler
{

static public void main(String argv[])
{

Spooler pr1, pr2;
//open one printer--should always work
System.out.println("Opening one spooler");
try {
pr1 = new Spooler();
}
catch (SingletonException e)
(System.out.println(e.getMessage());}
//try to open another printer--should fail
System.out.println("Opening two spoolers");
try {

Creating an Instance of the Class 41

Makoto

Makoto

Makoto

Makoto

