
We also create a class called SwimData that maintains a Vector of the Swimmers

we read in from the database.

public class TimeSwimData extends SwimData
implements Cloneable , Serializable {

protected Vector swimmers;

public TimeSwimData(String filename) {
String s = "";
swimmers = new Vector();
InputFile f = new InputFile(filename);
s= f.readLine();
while (s != null) {

swimmers.addElement(new Swimmer(s));
s= f.readLine();

}
f.close();

}

We also provide a getSwimmer method in SwimData and getName, getAge, and

getTime methods in the Swimmer class. Once we’ve read the data into Swim-

Info, we can display it in a list box.

Then, when the user clicks on the Clone button, we’ll clone this class and

sort the data differently in the new class. Again, we clone the data because cre-

ating a new class instance would be much slower, and we want to keep the data

in both forms.

public class SwimInfo extends Frame
implements ActionListener {
SwimData sdata;
List swList, cloneList;
Button Clone, Refresh, Quit;
Swimmer sw;

//_______________________________
private void cloneAndLoad() {

SwimData sxdata = null;
try{

sxdata = (SwimData)sdata.cloneMe();
sxdata.sort();

}
catch(CloneNotSupportedException e){}

cloneList.removeAll();
//now print out sorted values from clone
for (int i = 0; i < sxdata.size(); i++) {

sw = sxdata.getSwimmer(i);
cloneList.add(sw.getName()+" "+sw.getTime());

}
}

Using the Prototype 59

Makoto

Makoto

Makoto

Makoto

