
Figure 17.2 A class structure for three different objects that implement the Command
interface and two that implement the CommandHolder interface.

Here you see that cmdButton and cmdMenu implement the Command-

Holder interface and that there are two instances of cmdMenu in the UI class

fullCommand. The diagram also shows the classes ExitCommand, RedCom-

mand, and fileCommand, which implement the Command interface and are

instantiated in the fullCommand UI class. This is, finally, the complete imple-

mentation of the Command pattern that we have been inching toward.

The Command Pattern in the Java Language

But there are still a couple of more ways to approach this. If you give every con-

trol its own ActionListener class, you are in effect creating individual command

objects for each of them. And, in fact, this is really what the designers of the

Java 1.1 event model had in mind. We have become accustomed to using these

multiple if test routines because they occur in most simple example texts, even if

they are not the best way to catch these events.

0..1
–btnCommand

#menu-
Command
0..1

mnuExit  0..1
mnuOpen
  0..1

btnRed  0..1 flc  0..1

redc  0..1

<<interface>>
Command

(from default)

+Execute

extc  0..1

<<interface>>
CommandHolder

(from default)

+getCommand
+setCommand

cmdButton
(from default)

cmdMenu
(from default)

ExitCommand
(from default)

fileCommand
(from default)

RedCommand
(from default)

fullCommand
(from default)

The Command Pattern in the Java Language 161


