
Figure 10.1 Two displays of the same information using a Bridge pattern.

Now, we want to define a single, simple interface that remains the same

regardless of the type and complexity of the actual implementation classes.

We’ll start by defining an abstract Bridger class.

public abstract class Bridger extends JPanel {
public abstract void addData(Vector v);

}

This class is so simple that it receives only a Vector of data and passes it on to

the display classes.

On the other side of the bridge are the implementation classes, which usu-

ally have a more elaborate and somewhat lower-level interface. Here we’ll have

them add the data lines to the display one at a time.

public interface visList {
public void addLine(String s);
public void removeLine(int num);

}

Implicit in the definition of these classes is some mechanism for determining

which part of each string is the name of the product and which part is the quan-

tity shipped. In this simple example, we separate the quantity from the name

with two dashes and parse these apart within the list classes.

The Bridge between the interface on the left and the implementation on

the right is the listBridge class, which instantiates one or the other of the list

display classes. Note that it extends the Bridger class for the use of the applica-

tion program.

public class listBridge extends Bridger {
protected visList list;

public listBridge(visList jlist) {
setLayout(new BorderLayout());
list = jlist;
add("Center", (JComponent)list);

}
public void addData(Vector v) {

for (int i = 0; i < v.size(); i++) {
String s = (String)v.elementAt (i);

84 CHAPTER 10 The Bridge Pattern

Makoto

Makoto


