
Figure 8.5 The UML diagram for the various SwimData classes.

You should also note that you are not limited to the few subclasses

demonstrated here. You could easily create additional concrete classes and reg-

ister them with whatever code selects the appropriate concrete class. In our

previous example program, the user is the deciding point or factory, because he

simply clicks on one of several buttons. In a more elaborate case, each concrete

class could have an array of characteristics, and the decision point could be a

class registry or prototype manager, which examines these characteristics and

selects the most suitable class. In Java, you can load additional classes dynami-

cally at runtime and make them available through this registry.

You could also combine the Factory Method pattern with the Prototype

pattern to have each of several concrete classes use a concrete class different

from those available.

Prototype Managers

A prototype manager class can be used to decide which of several concrete

classes to return to the client. It can also manage several sets of prototypes at

once. For example, in addition to returning one of several classes of swimmers,

Swimmer
(from default)

(local to package)

+Swimmer
+getAge
+getClub
+getName
+getTime
+isFemale

SexSwimData
(from default)

SwimInfo
(from default)

+SwimInfo
+actionPerformed
+main

0..1 sw

0..1
sxdata
0..1
sdata

AgeSwimData
(from default)

+AgeSwimData
+getName
+setFemale
+size
+sort

TimeSwimData
(from default)

+TimeSwimData
+getName
+getSwimmer
+setFemale
+size
+sort

SwimData
(from default)

<<uses>>
swimdata

<<creates>>

<<creates>>

<<creates>>

<<uses>>
 swimdata 0..1

+SexSwimData
+getName
+getSwimmer
+setFemale
+size
+sort
+swapSex

+deepClone
+getName
+getSwimmer
+setFemale
+size
+sort

64 CHAPTER 8 The Prototype Pattern

