
The program consists of the File Menu object with the mnuOpen and

mnuExit MenuItems added to it. It also contains one button called btnRed.

Clicking any of these causes an ActionEvent, which generates a call to the

actionPerformed method such as the following:

public void actionPerformed(ActionEvent e) {
Object obj = e.getSource();
if(obj == mnuOpen)

fileOpen(); //open file
if (obj == mnuExit)

exitClicked(); //exit from program
if (obj == btnRed)

redClicked(); //turn red
}

Here are the three private methods that we call from the actionPerformed
method:

private void exitClicked() {
System.exit(0);

}
//——————————————
private void fileOpen() {

FileDialog fDlg = new FileDialog(this, "Open a file",
FileDialog.LOAD);

fDlg.show();
}
//——————————————
private void redClicked() {

p.setBackground(Color.red);
}

Now, as long as there are only a few menu items and buttons, this approach

works fine, but when there are dozens of menu items and several buttons, the

actionPerformed code can get pretty unwieldy. This also seems a little inelegant,

since, when using an OO language such as Java, we want to avoid a long series

of if statements to identify the selected object. Instead, we want to find a way to

have each object receive its commands directly.

Command Objects

One way to ensure that every object receives its own commands directly is to

use the Command pattern and create individual Command objects. A Com-

mand object always has an Execute method that is called when an action occurs

on that object. Most simply, a Command object implements at least the follow-

ing interface:

156 CHAPTER 17 The Command Pattern

Makoto

