144

CHAPTER 16 Chain of Responsibility Pattern

If we type in anything that is neither a filename nor a color, that text is displayed
in the right-hand list box.
This sequence of steps is shown in Figure 16.4.

Image .| Color -

Figure 16.4 The command chain for the program in Figure 16.3.

To write this simple chain of responsibility program, we start with an
abstract Chain class.

public interface Chain {
public abstract void addChain(Chain c):
public abstract void sendToChain(Strina mesq):
public abstract Chain getChain();

The addChain method adds another class to the chain of classes. The
getChain method returns the current class to which messages are being for-
warded. These two methods allow us to modify the chain dynamically and add
additional classes in the middle of an existing chain. The sendToChain method
forwards a message to the next object in the chain.

The Imager class is derived from JPanel and implements the Chain inter-
face. It takes the message and looks for .jpg files with that root name. If it finds
one, it displays it.
public class Imager extends JPanel implements Chain {

private Chain nextChain;

private Image img;
private boolean loaded;

public Imager(){
super();
loaded = false;
setBorder(new BevelBorder(BevelBorder.RAISED));

}
/)=
public void addChain(Chain c) {
nextChain = c; //next in chain of resp
}
/)

public void sendToChain(String mesg) {
//if there is a JPEG file with this root name
//load it and display it.
if (findImage(mesg))
ToadImage(mesg+".jpg");

Makoto

Makoto

