
public abstract void remove(Employee e);
throws NoSuchElementException;

public abstract Enumeration subordinates();
public abstract Employee getChild(String s);
public abstract long getSalaries();
public boolean isLeaf() {

return leaf;
}

}

Our concrete Employee class stores the name and salary of each employee and

allows us to fetch them as needed.

public Employee(String _name, float _salary) {
name = _name;
salary = _salary
leaf = true;

}
//——————————————
public Employee(Employee _parent, String _name, float _salary) {

name = _name;
salary = _salary;
parent = _parent;
leaf = true;

}
//——————————————
public float getSalary() {

return salary;
}
//———————————————
public String getName() {

return name;
}

The Employee class must have concrete implementations of the add, remove,

getChild, and subordinates methods classes. Since an Employee is a leaf, all of these

will return some sort of error indication. For example, subordinates could return

null, but programming will be more consistent if it returns an empty Enumeration.

public Enumeration subordinates () {
return v.elements ();

}

The add and remove methods must generate errors, since members of the basic

Employee class cannot have subordinates.

public boolean add(Employee e) throws NoSuchElementException {
throw new NoSuchElementException("No subordinates");
}
//

94 CHAPTER 11 The Composite Pattern

Makoto

