
This is in fact an interval Java implementation of the Chain of Responsibil-

ity, in which the request is the keyPressed event. So in constructing the event lis-

tener in this program’s user interface, we need only to define a subclass of

KeyAdapter that traps the F1 key

// inner class for key strokes
class k_adapter extends KeyAdapter {

public void keyPressed(KeyEvent e) {
if(e.getKeyCode () == KeyEvent.VK_F1) {

sendToChain((JComponent)getFocusOwner());
}

}
}

and add a key event listener to the Frame

helpKey = new key_adapter();
addKeyListener(helpKey);

Note that we obtain the component that has the current focus by using

getFocusOwner and then send that component along the chain to obtain the

most specific help message that the system provides. Each help object has a test

to check whether the object is the one described by that help message. Either the

message is displayed or the object is forwarded to the next chain element. For

the File button, the class looks like the following:

public class FileHelp extends HelpWindow {
String message, title;
int icon;
JFrame frame;

public FileHelp(JFrame f) {
mesg = "Select to open a file";
title ="File button help";
icon = JOptionPane.DEFAULT_OPTION;
frame = f;

}
public void sendToChain(JComponent c) {

if (c instanceof JButton) {
JButton b = (JButton)c;
if(b.getText().equals("File"))

JOptionPane.showMessageDialog(frame, mesg,
title, icon);

else
sendChain(c);

}
}

}

150 CHAPTER 16 Chain of Responsibility Pattern

Makoto

