
//——————————————
public void Execute() {

context.setPenColor(Color.red); //set the color of the
plot

context.setLinePlot(); //set the kind of the
plot

context.readData("data.txt"); //read the data
context.plot(); //plot the data

}
}

The Line and Bar Graph Strategies

The two Strategy classes are pretty much the same: They set up the window size

for plotting and call a plot method specific for that display panel. Here is the

Line graph Strategy:

public class LinePlotStrategy extends PlotStrategy {
private LinePlotPanel lp;

public LinePlotStrategy() {
super("Line plot");
lp = new LinePlotPanel();
getContentPane().add(lp);

}
//——————————————

public void plot(float[] xp, float[] yp) {
x = xp; y = yp; //copy in data
findBounds(); //sets maxes and mins
setSize(width, height);
setVisible(true);
setBackground(Color.white);
lp.setBounds(minX, minY, maxX, maxY);
lp.plot(xp, yp, color); //set up the plot data
repaint(); //call paint to plot

}
}

Drawing Plots in Java

The Java GUI is event-driven, so we don’t actually write a routine that draws

lines on the screen in the direct response to the plot command event. Instead, we

provide a panel whose paint event carries out the plotting when that event is

called. The previous repaint method ensures that it will be called right away.

We create a PlotPanel class based on JPanel and derive two classes from it

for the actual line and bar plots (Figure 24.3).

Drawing Plots in Java 233

