
The Command Pattern

Now, while it is advantageous to encapsulate the action in a Command object,

binding that object into the element that causes the action (such as the

menu item or button) is not exactly what the Command pattern is about.

Instead, the Command object should be separate from the invoking client

so that we can vary the invoking program and the details of the command

action separately. Rather than having the command be part of the menu or

button, we make the Menu and Button classes containers for a Command

object that exists separately. We thus make UI elements that implement a

CommandHolder interface.

public interface CommandHolder (
public void setCommand(Command comd);
public Command getCommand();

}

This interface indicates that there is a method to put a Command object into

the invoking object and a method to fetch that Command object and call its

Execute method.

Then we create the cmdMenu class, which implements this interface.

public class cmdMenu extends JMenuItem
implements CommandHolder {

protected Command menuCommand; //internal copies
protected JFrame frame;

public cmdMenu(String name, JFrame frm) {
super(name); //menu string
frame = frm; //containing frame

}
public void setCommand(Command comd) {

menuCommand = comd; //save the command
}
public Command getCommand() {

return menuCommand; //return the command
}

}

This actually simplifies our program—we don’t have to create a separate menu

class for each action that we want to carry out. We just create instances of the

menu and pass them different Command objects.

mnuOpen = new cmdMenu("Open...", this);
mnuFile.add(mnuOpen);
mnuOpen.setCommand (new fileCommand(this));

The Command Pattern 159

Makoto

