
public void actionPerformed(ActionEvent e) {
CommandHolder cmdh = (CommandHolder)e.getSource ();
Command cmd = cmdg.getCommand ();
u_cmd.add (cmd); //add to list
cmd.Execute (); //and execute

}

Further, the list that we add the Command objects to is maintained inside the

Undo Command object so that it can access that list conveniently.

public class undoCommand implements Command {
Vector undoList;

public undoCommand () {
undoList = new Vector(); //list of commands to undo

}
//——————————————
public void add(Command cmd) {

if(! (cmd instanceof undoCommand))
undoList.add(cmd); //add commands to list

}
//——————————————
public void Execute() {

int index = undoList.size () -1;

if (index > = 0) {
//get last command executed
Command cmd = (Command)undoList.elementAt (index);
cmd.unDo (); //undo it
undoList.remove (index); //and remove from list

}
}
//——————————————
public void unDo() { //does nothing
}

}

The undoCommand object keeps a list of Commands and not a list of

actual data. Each Command object has its unDo method called to execute the

actual undo operation. Note that since the undoCommand object implements

the Command interface, it too must have an unDo method. However, the idea

of undoing successive unDo operations is a little complex for this simple exam-

ple program. Consequently, you should note that the add method adds all Com-

mands to the list except the undoCommand itself, since we have just decided

that undoing an unDo command is meaningless.

The Command objects that draw the red and blue lines are derived from the

parent drawCommand class. The derived redCommand and blueCommand

classes use different colors and start at opposite sides of the window. Each class

Providing Undo 165

Makoto

