
hierarchy and implements the methods of another. In most cases, this is quite a

powerful solution. Thus, by using the implements keyword, we can have the

class take on the methods and appearance of being a class of either type.

The Object Adapter

In the object adapter approach, shown in Figure 9.2, we create a class that con-
tains a JList class but which implements the methods of the previous awtList

interface. Since the outer container for a JList is not the list element at all but the

JScrollPane that encloses it, we are really adding methods to a subclass of

JScrollPane that emulate the methods of the List class. These methods are in the

interface awtList.

Figure 9.2 An object adapter approach to the list adapter.

So, our basic JawtList class looks as follows:

public class JawtList extends JScrollPane
implements ListSelectionListener, awtList {

private JList listWindow;
private JListData listContents;

public JawtList (int rows) {
listContents = new JListData();
listWindow = new JList(listContents);
listWindow.setPrototypeCellValue("Abcdefg Hijkmnop");
getViewport().add(listWindow);

}
public class JawtList extends JScrollPane

JListData
(from default)

+JListData
+addElement
+getElementAt
+getSize
+removeElement

<<interface>>
awtList

(from default)

+add
+getSelectedItems
+remove

JTwoList
(from default)

JawtList
(from default)

–listWindow
+JawtList
+add
+getSelectedItems
+remove
+valueChanged

0..1
–rightList

0..1
–leftList

0..1
–listContents

AbstractListModel
(from javax.swing)

JScrollPane
(from javax.swing)

+JTwoList
+actionPerformed
–addName
+main
+moveNameLeft
–moveNameRight

74 CHAPTER 9 The Adapter Pattern

Makoto

Makoto

Makoto

Makoto

Makoto

Makoto

Makoto

Makoto

Makoto

Makoto

Makoto

Makoto

