
Appendix A
Exercise Solutions

Appendix A of Essential C++ by Stanley Lippman
Copyright 2000, Addison Wesley Longman
Stanley Lippman contact information:
homepage: www.objectwrite.com
email: slippman@objectwrite.com

AWL: www.aw.com/cseng/series/indepth

Exercise 1.4

Try to extend the program: (1) Ask the user to enter both a first and last name, and
(2) modify the output to write out both names.

We need two strings for our extended program: one to hold the user’s first name and
a second to hold the user’s last name. By the end of Chapter 1, we know three ways to
support this. We can define two individual string objects:

string first_name, last_name;

We can define an array of two string objects:
string usr_name[2];

Or we can define a vector of two string objects:
vector<string> usr_name(2);

At this point in the text, arrays and vectors have not yet been introduced, so I’ve
chosen to use the two string objects:

#include <iostream>
#include <string>
using namespace std;
 205

206 Appendix A
int main()
{

 string first_name, last_name;
 cout << "Please enter your first name: ";
 cin >> first_name;

cout << "hi, " << first_name
 << " Please enter your last name: ";

 cin >> last_name;
 cout << '\n';
 << "Hello, "
 << first_name << ' ' << last_name

 << " ... and goodbye!\n";
}

When compiled and executed, this program generates the following output (my
responses are highlighted in bold):

Please enter your first name: stan
 hi, stan Please enter your last name: lippman

 Hello, stan lippman ... and goodbye!

Exercise 1.5

Write a program to ask the user his or her name. Read the response. Confirm that the
input is at least two characters in length. If the name seems valid, respond to the us-
er. Provide two implementations: one using a C-style character string, and the other
using a string class object.

The two primary differences between a string class object and a C-style character
string are that (1) the string class object grows dynamically to accommodate its char-
acter string, whereas the C-style character string must be given a fixed size that is
(hopefully) large enough to contain the assigned string, and (2) the C-style character
string does not know its size. To determine the size of the C-style character string, we
must iterate across its elements, counting each one up to but not including the termi-
nating null. The strlen() standard library routine provides this service for us:

int strlen(const char*);

To use strlen(), we must include the cstring header file.
However, before we get to that, let’s look at the string class implementation. Par-

ticularly for beginners, I recommend that the string class be used in favor of the C-style
character string.

#include <iostream>
#include <string>
using namespace std;

Exercise Solutions 207
int main()
{
 string user_name;

 cout << "Please enter your name: ";
 cin >> user_name;

 switch (user_name.size()){
 case 0:

cout << "Ah, the user with no name. "
 << "Well, ok, hi, user with no name\n";

break;

 case 1:
cout << "A 1-character name? Hmm, have you read Kafka?: "

 << "hello, " << user_name << endl;
 break;

 default:
 // any string longer than 1 character

cout << "Hello, " << user_name
 << " -- happy to make your acquaintance!\n";

break;
}
return 0;

}

The C-style character string implementation differs in two ways. First, we must de-
cide on a fixed size to declare user_name; I’ve arbitrarily chosen 128, which seems more
than adequate. Second, we use the the standard library strlen() function to discover
the size of user_name. The cstring header file holds the declaration of strlen(). If the
user enters a string longer than 127 characters, there will be no room for the terminat-
ing null character. To prevent that, I use the setw() iostream manipulator to guarantee
that we do not read in more than 127 characters. To use the setw() manipulator, we
must include the iomanip header file.

#include <iostream>
#include <iomanip>
#include <cstring>
using namespace std;

int main()
{
 // must allocate a fixed size

 const int nm_size = 128;
 char user_name[nm_size];
 cout << "Please enter your name: ";
 cin >> setw(nm_size) >> user_name;

208 Appendix A
 switch (strlen(user_name))
 {

// same case labels for 0, 1
case 127:

 // maybe string was truncated by setw()
 cout << "That is a very big name, indeed -- "

 << "we may have needed to shorten it!\n"
 << "In any case,\n";

 // no break -- we fall through ...
 default:

 // the 127 case drops through to here -- no break
 cout << "Hello, " << user_name

 << " -- happy to make your acquaintance!\n";
 break;

 }

 return 0;
}

Exercise 1.6

Write a program to read in a sequence of integers from standard input. Place the val-
ues, in turn, in a built-in array and a vector. Iterate over the containers to sum the
values. Display the sum and average of the entered values to standard output.

The built-in array and the vector class differ in primarily the same ways as the C-style
character string (which is implemented as an array of char elements) and the string
class: (1) The built-in array must be of a fixed size, whereas the vector can grow
dynamically as elements are inserted, and (2) the built-in array does not know its size.
The fixed-size nature of the built-in array means that we must be concerned with
potentially overflowing its boundary. Unlike the C-style string, the built-in array has
no sentinel value (the null) to indicate its end. Particularly for beginners, I recom-
mend that the vector class be used in favor of the built-in array. Here is the program
using the vector class:

#include <iostream>
#include <vector>
using namespace std;

int main()
{
 vector<int> ivec;
 int ival;
 while (cin >> ival)
 ivec.push_back(ival);

Exercise Solutions 209
 // we could have calculated the sum as we entered the
 // values, but the idea is to iterate over the vector ...
 for (int sum = 0, ix = 0; ix < ivec.size(); ++ix)
 sum += ivec[ix];

 int average = sum / ivec.size();
 cout << "Sum of " << ivec.size()
 << " elements: " << sum
 << ". Average: " << average << endl;
}

The primary difference in the following built-in array implementation is the need
to monitor the number of elements being read to ensure that we don’t overflow the ar-
ray boundary:

#include <iostream>
using namespace std;

int main()
{
 const int array_size = 128;

 int ia[array_size];
 int ival, icnt = 0;

 while (cin >> ival &&
 icnt < array_size)
 ia[icnt++] = ival;

 for (int sum = 0, ix = 0; ix < icnt; ++ix)
 sum += ia[ix];

 int average = sum / icnt;
 cout << "Sum of " << icnt
 << " elements: " << sum
 << ". Average: " << average << endl;
}

Exercise 1.7

Using your favorite editor, type two or more lines of text into a file. Write a program to
open the file, reading each word into a vector<string> object. Iterate over the vector, dis-
playing it to cout. That done, sort the words using the sort() generic algorithm.

#include <algorithm>
sort(container.begin(), container.end());

Then print the sorted words to an output file.

210 Appendix A
I open both the input and the output file before reading in and sorting the text. I could
wait to open the output file, but what would happen if for some reason the output file
failed to open? Then all the computations would have been for nothing. (The file
paths are hard-coded and reflect Windows conventions. The algorithm header file
contains the forward declaration of the sort() generic algorithm.)

#include <iostream>
#include <fstream>
#include <algorithm>
#include <string>
#include <vector>

using namespace std;
int main()
{
 ifstream in_file("C:\\My Documents\\text.txt");
 if (! in_file)
 { cerr << "oops! unable to open input file\n"; return -1; }

 ofstream out_file("C:\\My Documents\\text.sort");
 if (! out_file)
 { cerr << "oops! unable to open input file\n"; return -2; }

 string word;
 vector< string > text;
 while (in_file >> word)

 text.push_back(word);

 int ix;
 cout << "unsorted text: \n";

 for (ix = 0; ix < text.size(); ++ix)
 cout << text[ix] << ' ';

 cout << endl;

 sort(text.begin(), text.end());

 out_file << "sorted text: \n";
 for (ix = 0; ix < text.size(); ++ix)

 out_file << text[ix] << ' ';
 out_file << endl;

 return 0;
}

The input text file consists of the following three lines:
we were her pride of ten she named us:
Phoenix, the Prodigal, Benjamin,
and perspicacious, pacific Suzanne.

Exercise Solutions 211
When compiled and executed, the program generates the following output (I’ve
inserted line breaks to display it here on the page):

Benjamin, Phoenix, Prodigal, Suzanne.
and her named of pacific perspicacious,
pride she ten the us: we were

Exercise 1.8

The switch statement of Section 1.4 displays a different consolation message based
on the number of wrong guesses. Replace this with an array of four string messages
that can be indexed based on the number of wrong guesses.

The first step is to define the array of string messages in which to index. One strategy
is to encapsulate them in a display function that, passed the number of incorrect user
guesses, returns the appropriate consolation message. Here is a first implementation.
Unfortunately, it is not correct. Do you see the problems?

const char* msg_to_usr(int num_tries)
{

static const char* usr_msgs[] = {
 "Oops! Nice guess but not quite it.",
 "Hmm. Sorry. Wrong again.",
 "Ah, this is harder than it looks, isn’t it?",
 "It must be getting pretty frustrating by now!"
 };
 return usr_msgs[num_tries];
}

The index is off by one. If you flip back to the Section 1.4 switch statement, you’ll
see that the number of incorrect tries begins with 1 because, after all, we are respond-
ing to wrong guesses on the user’s part. Our array of responses, however, begins at po-
sition 0. So our responses are always one guess more severe than called for.

There are other problems as well. The user can potentially try more than four times
and be wrong with each try, although I capped the number of unique messages at 4. If
we unconditionally index into the array, a value of 4 or greater will overflow the array
boundary. Moreover, we must guard against other potential invalid values such as a
negative number.

Here is a second iteration. I’ve added a new first message in case the user somehow
has not yet guessed. I don’t expect we’ll actually return it, but in this way, the other
messages at least are in their “natural” position. I defined a const object to hold a count
of the number of entries in the array.

const char* msg_to_usr(int num_tries)
{
 const int rsp_cnt = 5;

static const char* usr_msgs[rsp_cnt] = {

212 Appendix A
 "Go on, make a guess. ",
 "Oops! Nice guess but not quite it.",
 "Hmm. Sorry. Wrong again.",
 "Ah, this is harder than it looks, no?",
 "It must be getting pretty frustrating by now!"
 };
 if (num_tries < 0)
 num_tries = 0;
 else
 if (num_tries >= rsp_cnt)
 num_tries = rsp_cnt-1;
 return usr_msgs[num_tries];
}

Exercise 2.1

main() [in Section 2.1] allows the user to enter only one position value and then ter-
minates. If a user wishes to ask for two or more positions, he must execute the pro-
gram two or more times. Modify main() [in Section 2.1] to allow the user to keep
entering positions until he indicates he wishes to stop.

We use a while loop to execute the “solicit position, return value” code sequence.
After each iteration, we ask the user whether he wishes to continue. The loop termi-
nates when he answers no. We’ll jump-start the first iteration by setting the bool
object more to true.

#include <iostream>
using namespace std;

extern bool fibon_elem(int, int&);
int main()
{

int pos, elem;
 char ch;
 bool more = true;

 while (more)
 {
 cout << "Please enter a position: ";
 cin >> pos;

 if (fibon_elem(pos, elem))
 cout << "element # " << pos
 << " is " << elem << endl;

 else
 cout << "Sorry. Could not calculate element # "
 << pos << endl;

Exercise Solutions 213
 cout << "would you like to try again? (y/n) ";
 cin >> ch;
 if (ch != 'y' || ch != 'Y')
 more = false;
 }
 }

When compiled and executed, the program generates the following output (my in-
put is highlighted in bold):

Please enter a position: 4
element # 4 is 3
would you like to try again? (y/n) y
Please enter a position: 8
element # 8 is 21
would you like to try again? (y/n) y
Please enter a position: 12
element # 12 is 144
would you like to try again? (y/n) n

Exercise 2.2

The formula for the Pentagonal numeric sequence is Pn=n*(3n-1)/2. This yields the
sequence 1, 5, 12, 22, 35, and so on. Define a function to fill a vector of elements
passed in to the function calculated to some user-specified position. Be sure to ver-
ify that the position specified is valid. Write a second function that, given a vector,
displays its elements. It should take a second parameter identifying the type of nu-
meric series the vector represents. Write a main() function to exercise these func-
tions.

#include <vector>
#include <string>
#include <iostream>
using namespace std;

bool calc_elements(vector<int> &vec, int pos);
void display_elems(vector<int> &vec,
 const string &title, ostream &os=cout);

int main()
{
 vector<int> pent;
 const string title("Pentagonal Numeric Series");

 if (calc_elements(pent, 0))
 display_elems(pent, title);

 if (calc_elements(pent, 8))

214 Appendix A
 display_elems(pent, title);

 if (calc_elements(pent, 14))
 display_elems(pent, title);

 if (calc_elements(pent, 138))
 display_elems(pent, title);
}

bool calc_elements(vector<int> &vec, int pos)
{
 if (pos <= 0 || pos > 64){
 cerr << "Sorry. Invalid position: " << pos << endl;
 return false;
 }
 for (int ix = vec.size()+1; ix <= pos; ++ix)
 vec.push_back((ix*(3*ix-1))/2);

 return true;
}

void display_elems(vector<int> &vec,
 const string &title, ostream &os)
{
 os << '\n' << title << "\n\t";
 for (int ix = 0; ix < vec.size(); ++ix)

 os << vec[ix] << ' ';
 os << endl;
}

When compiled and executed, this program generates the following output:
Sorry. Invalid position: 0

Pentagonal Numeric Series
 1 5 12 22 35 51 70 92

Pentagonal Numeric Series
 1 5 12 22 35 51 70 92 117 145 176 210 247 287
Sorry. Invalid position: 138

Exercise 2.3

Separate the function to calculate the Pentagonal numeric sequence implemented in
Exercise 2.2 into two functions. One function should be inline; it checks the validity
of the position. A valid position not as yet calculated causes the function to invoke
a second function that does the actual calculation.

Exercise Solutions 215
I factored calc_elements() into the inline calc_elems() that if necessary calls the sec-
ond function, really_calc_elems(). To test this reimplementation, I substituted the
call of calc_elements() in the Exercise 2.2 function with that of calc_elems().

extern void really_calc_elems(vector<int>&, int);
inline bool calc_elems(vector<int> &vec, int pos)
{
 if (pos <= 0 || pos > 64){
 cerr << "Sorry. Invalid position: " << pos << endl;
 return false;
 }

 if (vec.size() < pos)
 really_calc_elems(vec, pos);
 return true;
}
void really_calc_elems(vector<int> &vec, int pos)
{
 for (int ix = vec.size()+1; ix <= pos; ++ix)
 vec.push_back((ix*(3*ix-1))/2);
}

Exercise 2.4

Introduce a static local vector to hold the elements of your Pentagonal series. This
function returns a const pointer to the vector. It accepts a position by which to grow
the vector if the vector is not that size as yet. Implement a second function that, giv-
en a position, returns the element at that position. Write a main() function to exercise
these functions.

#include <vector>
#include <iostream>
using namespace std;

inline bool check_validity(int pos)
 { return (pos <= 0 || pos > 64) ? false : true; }

bool pentagonal_elem(int pos, int &elem)
{
 if (! check_validity(pos)){

 cout << "Sorry. Invalid position: " << pos << endl;
 elem = 0;

 return false;
 }

 const vector<int> *pent = pentagonal_series(pos);
 elem = (*pent)[pos-1];
 return true;
}

216 Appendix A
const vector<int>*
pentagonal_series(int pos)
{
 static vector<int> _elems;
 if (check_validity(pos) && (pos > _elems.size()))
 for (int ix = _elems.size()+1; ix <= pos; ++ix)
 _elems.push_back((ix*(3*ix-1))/2);
 return &_elems;
}

int main(){
 int elem;
 if (pentagonal_elem(8, elem))

 cout << "element 8 is " << elem << '\n';
 if (pentagonal_elem(88, elem))

 cout << "element 88 is " << elem << '\n';
 if (pentagonal_elem(12, elem))

 cout << "element 12 is " << elem << '\n';

 if (pentagonal_elem(64, elem))
 cout << "element 64 is " << elem << '\n';

 }

When compiled and executed, this program generates the following:
element 8 is 92
Sorry. Invalid position: 88
element 12 is 210
element 64 is 6112

Exercise 2.5

Implement an overloaded set of max() functions to accept (a) two integers, (b) two
floats, (c) two strings, (d) a vector of integers, (e) a vector of floats, (f) a vector of
strings, (g) an array of integers and an integer indicating the size of the array, (h) an
array of floats and an integer indicating the size of the array, and (i) an array of
strings and an integer indicating the size of the array. Again, write a main() function
to exercise these functions.

#include <string>
#include <vector>
#include <algorithm>

using namespace std;

inline int max(int t1, int t2)
 { return t1 > t2 ? t1 : t2; }

Exercise Solutions 217
inline float max(float t1, float t2)
 { return t1 > t2 ? t1 : t2; }

inline string max(const string& t1, const string& t2)
 { return t1 > t2 ? t1 : t2; }

inline int max(const vector<int> &vec)
 { return *max_element(vec.begin(), vec.end()); }

inline float max(const vector<float> &vec)
 { return *max_element(vec.begin(), vec.end()); }

inline string max(const vector<string> &vec)
 { return *max_element(vec.begin(), vec.end()); }

inline int max(const int *parray, int size)
 { return *max_element(parray, parray+size); }
inline float max(const float *parray, int size)
 { return *max_element(parray, parray+size); }

inline string max(const string *parray, int size)
 { return *max_element(parray, parray+size); }

int main() {
 string sarray[]={ "we", "were", "her", "pride", "of", "ten" };
 vector<string> svec(sarray, sarray+6);

 int iarray[]={ 12, 70, 2, 169, 1, 5, 29 };
 vector<int> ivec(iarray, iarray+7);

 float farray[]={ 2.5, 24.8, 18.7, 4.1, 23.9 };
 vector<float> fvec(farray, farray+5);

 int imax = max(max(ivec), max(iarray, 7));
 float fmax = max(max(fvec), max(farray, 5));
 string smax = max(max(svec), max(sarray, 6));

 cout << "imax should be 169 -- found: " << imax << '\n'
 << "fmax should be 24.8 -- found: " << fmax << '\n'

 << "smax should be were -- found: " << smax << '\n';
}

When compiled and executed, this program generates the following:
imax should be 169 -- found: 169
fmax should be 24.8 -- found: 24.8
smax should be were -- found: were

Exercise 2.6

218 Appendix A
Reimplement the functions of Exercise 2.5 using templates. Modify the main() func-
tion accordingly.

The nine nontemplate max() functions are replaced by three max() function templates.
main() does not require any changes.

#include <string>
#include <vector>
#include <algorithm>
using namespace std;

template <typename Type>
inline Type max(Type t1, Type t2){ return t1 > t2 ? t1 : t2; }

template <typename elemType>
inline elemType max(const vector<elemType> &vec)
 { return *max_element(vec.begin(), vec.end()); }
template <typename arrayType>
inline arrayType max(const arrayType *parray, int size)
 { return *max_element(parray, parray+size); }

// note: no changes required of main()!
int main() {
 // same as in exercise 2.4
}

When compiled and executed, this program generates the same output as the pro-
gram in Exercise 2.5.

Exercise 3.1

Write a program to read a text file. Store each word in a map. The key value of the map
is the count of the number of times the word appears in the text. Define a word exclusion
set containing words such as a, an, or, the, and, and but. Before entering a word in the map,
make sure it is not present in the word exclusion set. Display the list of words and their
associated count when the reading of the text is complete. As an extension, before display-
ing the text, allow the user to query the text for the presence of a word.

#include <map>
#include <set>
#include <string>
#include <iostream>
#include <fstream>
using namespace std;

void initialize_exclusion_set(set<string>&);
void process_file(map<string,int>&, const set<string>&, ifstream&);
void user_query(const map<string,int>&);
void display_word_count(const map<string,int>&, ofstream&);

Exercise Solutions 219
int main()
{
 ifstream ifile("C:\\My Documents\\column.txt");

 ofstream ofile("C:\\My Documents\\column.map");
 if (! ifile || ! ofile){
 cerr << "Unable to open file -- bailing out!\n";
 return -1;
 }

 set<string> exclude_set;
 initialize_exclusion_set(exclude_set);

 map<string,int> word_count;
 process_file(word_count, exclude_set, ifile);
 user_query(word_count);
 display_word_count(word_count, ofile);
}
void initialize_exclusion_set(set<string> &exs){
 static string _excluded_words[25] = {
 "the","and","but","that","then","are","been",
 "can","a","could","did","for", "of",
 "had","have","him","his","her","its","is",
 "were","which","when","with","would"
 };

 exs.insert(_excluded_words, _excluded_words+25);
}

void process_file(map<string,int> &word_count,
 const set<string> &exclude_set, ifstream &ifile)
{
 string word;
 while (ifile >> word)
 {
 if (exclude_set.count(word))
 continue;
 word_count[word]++;
 }
}

void user_query(const map<string,int> &word_map)
{
 string search_word;
 cout << "Please enter a word to search: q to quit";
 cin >> search_word;
 while (search_word.size() && search_word != "q")
 {
 map<string,int>::const_iterator it;

220 Appendix A
 if ((it = word_map.find(search_word))
 != word_map.end())

 cout << "Found! " << it->first
 << " occurs " << it->second
 << " times.\n";
 else cout << search_word
 << " was not found in text.\n";
 cout << "\nAnother search? (q to quit) ";
 cin >> search_word;
 }
}

void
display_word_count(const map<string,int> &word_map, ofstream &os)
{

 map<string,int>::const_iterator
 iter = word_map.begin(),
 end_it = word_map.end();
 while (iter != end_it){
 os << iter->first << " ("
 << iter->second << ")" << endl;

 ++iter;
 }

 os << endl;
}

Here is a small piece of text processed by the program. I removed the punctuation
from the text because our program does not handle punctuation:

MooCat is a long-haired white kitten with large
black patches Like a cow looks only he is a kitty
poor kitty Alice says cradling MooCat in her arms
pretending he is not struggling to break free

Here is a snapshot of the interactive session initiated by user_query(). Notice that
although a occurs two times the text, it is an entry in the excluded word set and is not
entered in the map of words found in the text.

Please enter a word to search: q to quit Alice
Found! Alice occurs 1 times.

Another search? (q to quit) MooCat
Found! MooCat occurs 2 times.

Another search? (q to quit) a
a was not found in text.

Another search? (q to quit) q

Exercise 3.2

Exercise Solutions 221
Read in a text file — it can be the same one as in Exercise 3.1 — storing it in a vector.
Sort the vector by the length of the string. Define a function object to pass to sort();
it should accept two strings and return true if the first string is shorter than the sec-
ond. Print the sorted vector.

Let’s begin by defining the function object to pass to sort():
class LessThan {
public:

bool operator()(const string & s1,
 const string & s2)

 { return s1.size() < s2.size(); }
};

The call to sort looks like this:
sort(text.begin(), text.end(), LessThan());

The main program looks like this:
int main()
{
 ifstream ifile("C:\\My Documents\\MooCat.txt");

 ofstream ofile("C:\\My Documents\\MooCat.sort");

 if (! ifile || ! ofile){
 cerr << "Unable to open file -- bailing out!\n";
 return -1;
 }

 vector<string> text;
 string word;

 while (ifile >> word)
 text.push_back(word);

 sort(text.begin(), text.end(), LessThan());
 display_vector(text, ofile);
}

display_vector() is a function template parameterized on the element type of the
vector passed to it to display:

template <typename elemType>
void display_vector(const vector<elemType> &vec,
 ostream &os=cout, int len= 8)
{

 vector<elemType>::const_iterator
 iter = vec.begin(),
 end_it = vec.end();

222 Appendix A
 int elem_cnt = 1;
 while (iter != end_it)

 os << *iter++
 << (!(elem_cnt++ % len) ? '\n' : ' ');
 os << endl;
}

The input file is the same text used in Exercise 3.1. The output of this program
looks like this:

a a a is to in is he
is he not cow her says poor only
Like arms with free break Alice kitty kitty
looks black large white MooCat kitten MooCat patches
cradling pretending struggling long-haired

If we want to sort the words within each length alphabetically, we would first in-
voke sort() with the default less-than operator and then invoke stable_sort(), pass-
ing it the LessThan function object. stable_sort() maintains the relative order of
elements meeting the same sorting criteria.

Exercise 3.3

Define a map for which the index is the family surname and the key is a vector of
the children’s names. Populate the map with at least six entries. Test it by support-
ing user queries based on a surname and printing all the map entries.

The map uses a string as an index and a vector of strings for the children’s names.
This is declared as follows:

map< string, vector<string> > families;

 To simplify the declaration of the map, I’ve defined a typedef to alias vstring as
an alternative name for a vector that contains string elements. (You likely wouldn’t
have thought of this because the typedef mechanism is not introduced until Section
4.6. The typedef mechanism allows us to provide an alternative name for a type. It is
generally used to simplify the declaration of a complex type.)

#include <map>
typedef vector<string> vstring;
map< string, vstring > families;

We get our family information from a file. Each line of the file stores the family
name and the name of each child:

surname child1 child2 child3 ... childN

Reading the file and populating the map are accomplished in populate_map():
void populate_map(ifstream &nameFile, map<string,vstring> &families)
{

Exercise Solutions 223
string textline;
while (getline(nameFile, textline))

 {
 string fam_name;

 vector<string> child;
 string::size_type

 pos = 0, prev_pos = 0,
 text_size = textline.size();

 // ok: find each word separated by a space
 while ((pos = textline.find_first_of(' ', pos))
 != string::npos)

 {
 // figure out end points of the substring

 string::size_type end_pos = pos - prev_pos;

 // if prev_pos not set, this is the family name
 // otherwise, we are reading the children ...

 if (! prev_pos)
 fam_name = textline.substr(prev_pos, end_pos);

 else child.push_back(textline.substr(prev_pos,end_pos));
 prev_pos = ++pos;

 }

 // now handle last child
 if (prev_pos < text_size)

 child.push_back(textline.substr(prev_pos,pos-prev_pos));

 if (! families.count(fam_name))
 families[fam_name] = child;

 else cerr << "Oops! We already have a "
 << fam_name << " family in our map!\n";

 }
}

getline() is a standard library function. It reads a line of the file up to the delimiter
specified by its third parameter. The default delimiter is the newline character, which
is what we use. The line is placed in the ssecond parameter string.

The next portion of the function pulls out, in turn, the family surname and the
name of each child. substr() is a string class operation that returns a new string object
from the substring delimited by the two position arguments. Finally, the family is en-
tered into the map if one is not already present.

To display the map, we define a display_map() function. It prints entries in this
general format:

The lippman family has 2 children: danny anna

Here is the display_map() implementation:

224 Appendix A
void display_map(const map<string,vstring> &families, ostream &os)
{

map<string,vstring>::const_iterator
 it = families.begin(),

 end_it = families.end();

while (it != end_it)
 {

 os << "The " << it->first << " family ";
if (it->second.empty())
 os << "has no children\n";

 else
{ // print out vector of children

 os << "has " << it->second.size() << " children: ";
 vector<string>::const_iterator

 iter = it->second.begin(),
 end_iter = it->second.end();

 while (iter != end_iter)
 { os << *iter << " "; ++iter; }
os << endl;

}
++it;

 }
}

We must also allow users to query the map as to the presence of a family. If the
family is present, we display the family name and number of children in the same way
that display_map() does for the entire map. (As an exercise, you might factor out the
common code between the two functions.) I’ve named this function query_map().

void query_map(const string &family,
 const map<string,vstring> &families)
{

 map<string,vstring>::const_iterator
 it = families.find(family);

 if (it == families.end()){
 cout << "Sorry. The " << family

 << " is not currently entered.\n";
 return;

 }

 cout << "The " << family;
 if (! it->second.size())

 cout << " has no children\n";
 else { // print out vector of children

 cout << " has " << it->second.size() << " children: ";
 vector<string>::const_iterator

 iter = it->second.begin(),
 end_iter = it->second.end();

Exercise Solutions 225
 while (iter != end_iter)
 { cout << *iter << " "; ++iter; }

 cout << endl;
 }

}

The main() program is implemented as follows:
int main()
{
 map< string, vstring > families;

ifstream nameFile("C:\\My Documents\\families.txt");

if (! nameFile) {
cerr << "Unable to find families.txt file. Bailing Out!\n";
return;

}
 populate_map(nameFile, families);

 string family_name;
 while (1){ //!! loop until user says to quit ...

cout << "Please enter a family name or q to quit ";
cin >> family_name;
if (family_name == "q")

 break;
 query_map(family_name, families);

}
display_map(families);

}

The families.txt file contains the following six entries:
lippman danny anna
smith john henry frieda
mailer tommy june
franz
orlen orley
ranier alphonse lou robert brodie

When compiled and executed, the program generates the following results. My re-
sponses are highlighted in bold.

Please enter a family name or q to quit ranier
The ranier family has 4 children: alphonse lou robert brodie
Please enter a family name or q to quit franz
The franz family has no children
Please enter a family name or q to quit kafka
Sorry. The kafka family is not currently entered.
Please enter a family name or q to quit q
The franz family has no children
The lippman family has 2 children: danny anna
The mailer family has 2 children: tommy june

226 Appendix A
The orlen family has 1 children: orley
The ranier family has 4 children: alphonse lou robert brodie
The smith family has 3 children: john henry frieda

Exercise 3.4

Write a program to read a sequence of integer numbers from standard input using
an istream_iterator. Write the odd numbers into one file using an ostream_iterator.
Each value should be separated by a space. Write the even numbers into a second
file, also using an ostream_iterator. Each of these values should be placed on a sep-
arate line.

To read a sequence of integers from standard input, we define two istream_iterators:
one bound to cin, and the second representing end-of-file.

istream_iterator<int> in(cin), eos;

Next, we define a vector to hold the elements read:
vector< int > input;

To perform the reading, we use the copy() generic algorithm:
#include <iterator>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;

int main()
 {

vector< int > input;
istream_iterator in(cin), eos;

copy(in, eos, back_inserter(input));

// ...
}

The back_inserter() is necessary because copy() uses the assignment operator to
copy each element. Because input is empty, the first element assignment would cause
an overflow error. back_inserter() overrides the assignment operator. The elements
are now inserted using push_back().

We partition the elements into even and odd using the partition() generic algo-
rithm and an even_elem function object that evaluates to true if the value is even:

class even_elem {
public:

bool operator()(int elem)
 { return elem%2 ? false : true; }

Exercise Solutions 227
};

vector<int>::iterator division =
 partition(input.begin(), input.end(), even_elem());

We need two ostream_iterators: one for the even number file and one for the odd
number file. We first open two files for output using the ofstream class:

#include <fstream>
ofstream even_file("C:\\My Documents\\even_file"),

 odd_file("C:\\My Documents\\odd_file");

if (! even_file || ! odd_file)
{

 cerr << "arghh!! unable to open the output files. bailing out!";
 return –1;
}

We bind our two ostream_iterators to the respective ofstream objects. The second
string argument indicates the delimiter to output following the output of each element.

ostream_iterator<int> even_iter(even_file, "\n"),
 odd_iter(odd_file, " ");

Finally, we use the copy() generic algorithm to output the partitioned elements:
copy(input.begin(), division, even_iter);
copy(division, input.end(), odd_iter);

For example, I entered the following sequence of numbers:
2 4 5 3 9 5 2 6 8 1 8 4 5 7 3

At that point, even_file contained the following values: 2 4 4 8 8 6 2, whereas
odd_file contained these values: 5 9 1 3 5 5 7 3. The partition() algorithm does not
preserve the order of the values. If preserving the order of the values is important, we
would instead use the stable_partition() generic algorithm. Both the stable_sort()
and stable_partition() algorithms maintain the elements’ relative order.

Exercise 4.1

Create a Stack.h and a Stack.suffix, where suffix is whatever convention your compil-
er or project follows. Write a main() function to exercise the full public interface, and
compile and execute it. Both the program text file and main() must include Stack.h:

#include "Stack.h"

The header file for our Stack class contains the necessary header file inclusions and
the actual class declaration:

#include <string>
#include <vector>
using namespace std;

228 Appendix A
class Stack {
public:

bool push(const string&);
 bool pop (string &elem);

bool peek(string &elem);
bool empty() const { return _stack.empty(); }
bool full() const { return _stack.size() == _stack.max_size(); }
int size() const { return _stack.size(); }

private:
vector<string> _stack;

};

The Stack program text file contains the definition of the push(), pop(), and peek()
member functions. Under Visual C++, the file is named Stack.cpp. It must include the
Stack class header file.

#include "Stack.h"
bool Stack::pop(string &elem){
 if (empty()) return false;
 elem = _stack.back();
 _stack.pop_back();
 return true;
}

bool Stack::peek(string &elem){
 if (empty()) return false;
 elem = _stack.back();
 return true;
}

bool Stack::push(const string &elem){
 if (full()) return false;
 _stack.push_back(elem);
 return true;
}

Here is a small program to exercise the Stack class interface. It reads in a sequence
of strings from standard input, pushing each one onto the stack until either end-of-file
occurs or the stack is full:

int main() {
 Stack st;
 string str;

 while (cin >> str && ! st.full())
 st.push(str);

 if (st.empty()) {

Exercise Solutions 229
 cout << '\n' << "Oops: no strings were read -- bailing out\n ";
 return 0;

 }
 st.peek(str);
 if (st.size() == 1 && str.empty()) {
 cout << '\n' << "Oops: no strings were read -- bailing out\n ";
 return 0;

 }
 cout << '\n' << "Read in " << st.size() << " strings!\n"

 << "The strings, in reverse order: \n";

 while (st.size())
 if (st.pop(str))

 cout << str << ' ';

cout << '\n' << "There are now " << st.size()
 << " elements in the stack!\n";

}

To test the program, I typed in the last sentence of the James Joyce novel, Finnegans
Wake. The following is the output generated by the program (my input is in bold):

 A way a lone a last a loved a long the
 Read in 11 strings!
 The strings, in reverse order:
 the long a loved a last a lone a way A
 There are now 0 elements in the stack!

Exercise 4.2

Extend the Stack class to support both a find() and a count() operation. find() re-
turns true or false depending on whether the value is found. count() returns the
number of occurrences of the string. Reimplement the main() of Exercise 4.1 to in-
voke both functions.

We implement these two functions simply by using the corresponding generic algo-
rithms of the same names:

#include <algorithm>
bool Stack::find(const string &elem) const {

vector<string>::const_iterator end_it = _stack.end();
return ::find(_stack.begin(), end_it, elem) != end_it;

}

int Stack::count(const string &elem) const
 { return ::count(_stack.begin(), _stack.end(), elem); }

The global scope operator is necessary for the invocation of the two generic algo-
rithms. Without the global scope operator, for example, the unqualified invocation of

230 Appendix A
find() within find() recursively invokes the member instance of find()! The Stack
class declaration is extended to include the declarations of these two functions:

class Stack {
public:

bool find(const string &elem) const;
int count(const string &elem) const;

 // ... everything else the same ...
};

The program now inquires of the user which word she would like to search for and
reports whether it is within the stack and, if so, how many times it occurs:

int main()
{

 Stack st;
 string str;
 while (cin >> str && ! st.full())
 st.push(str);
 // check for empty stack as before ...

 cout << '\n' << "Read in " << st.size() << " strings!\n";
 cin.clear(); // clear end-of-file set ...

 cout << "what word to search for? ";
 cin >> str;

 bool found = st.find(str);
 int count = found ? st.count(str) : 0;

 cout << str << (found ? " is " : " isn\'t ") << "in the stack. ";
 if (found)

 cout << "It occurs " << count << " times\n";
}

Here is an interactive execution of the program. The items highlighted in bold are
what I entered:

A way a lone a last a loved a long the
Read in 11 strings!
what word to search for? a
a is in the stack. It occurs 4 times

Exercise 4.3

Consider the following global data:
string program_name;
string version_stamp;
int version_number;
int tests_run;

Exercise Solutions 231
int tests_passed;

Write a class to wrap around this data.

Why might we wish to do this? By wrapping these global objects within a class, we
encapsulate their direct access within a small set of functions. Moreover, the names of
the objects are now hidden behind the scope of the class and cannot clash with other
global entities. Because we wish only a single instance of each global object, we
declare each one to be a static class member as well as the member functions that
access them.

#include <string>
using std::string;

class globalWrapper {
public:
 static int tests_passed() { return _tests_passed; }
 static int tests_run() { return _tests_run; }
 static int version_number() { return _version_number; }
 static string version_stamp() { return _version_stamp; }
 static string program_name() { return _program_name; }

 static void tests_passed(int nval) { _tests_passed = nval; }
 static void tests_run(int nval) { _tests_run = nval; }

 static void version_number(int nval)
 { _version_number = nval; }

 static void version_stamp(const string& nstamp)
 { _version_stamp = nstamp; }

 static void program_name(const string& npn)
 { _program_name = npn; }

private:
static string _program_name;

 static string _version_stamp;
 static int _version_number;
 static int _tests_run;
 static int _tests_passed;
};

string globalWrapper::_program_name;
string globalWrapper::_version_stamp;
int globalWrapper::_version_number;
int globalWrapper::_tests_run;
int globalWrapper::_tests_passed;

232 Appendix A
Exercise 4.4

A user profile consists of a login, the actual user name, the number of times logged
on, the number of guesses made, the number of correct guesses, the current level —
one of beginner, intermediate, advanced, guru — and the percentage correct (this
latter may be computed or stored). Provide a UserProfile class. Support input and
output, equality and inequality. The constructors should allow for a default user
level and default login name of “guest.” How might you guarantee that each guest
login for a particular session is unique?

class UserProfile {
public:

 enum uLevel { Beginner, Intermediate, Advanced, Guru };

 UserProfile(string login, uLevel = Beginner);
 UserProfile();

 // default memberwise initialization and copy sufficient
 // no explicit copy constructor or copy assignment operator
 // no destructor necessary ...

 bool operator==(const UserProfile&);
 bool operator!=(const UserProfile &rhs);

 // read access functions
 string login() const { return _login; }
 string user_name() const { return _user_name; }
 int login_count() const { return _times_logged; }
 int guess_count() const { return _guesses; }
 int guess_correct() const { return _correct_guesses; }
 double guess_average() const;
 string level() const;

 // write access functions
 void reset_login(const string &val){ _login = val; }
 void user_name(const string &val){ _user_name = val; }

 void reset_level(const string&);
 void reset_level(uLevel newlevel) { _user_level = newlevel; }

 void reset_login_count(int val){ _times_logged = val; }
 void reset_guess_count(int val){ _guesses = val; }
 void reset_guess_correct(int val){ _correct_guesses = val; }

 void bump_login_count(int cnt=1){ _times_logged += cnt; }
 void bump_guess_count(int cnt=1){ _guesses += cnt; }
 void bump_guess_correct(int cnt=1){ _correct_guesses += cnt;}

Exercise Solutions 233
 private:
 string _login;
 string _user_name;
 int _times_logged;
 int _guesses;
 int _correct_guesses;
 uLevel _user_level;

 static map<string,uLevel> _level_map;
 static void init_level_map();
 static string guest_login();
};

inline double UserProfile::guess_average() const
{

return _guesses
 ? double(_correct_guesses) / double(_guesses) * 100
 : 0.0;

}
inline UserProfile::UserProfile(string login, uLevel level)
 : _login(login), _user_level(level),
 _times_logged(1), _guesses(0), _correct_guesses(0){}

#include <cstdlib>

inline UserProfile::UserProfile()
 : _login("guest"), _user_level(Beginner),
 _times_logged(1), _guesses(0), _correct_guesses(0)
{
 static int id = 0;
 char buffer[16];

 // _itoa() is a Standard C library function
 // turns an integer into an ascii representation
 _itoa(id++, buffer, 10);

 // add a unique id during session to guest login
 _login += buffer;
}

inline bool UserProfile::
operator==(const UserProfile &rhs)
{
 if (_login == rhs._login &&
 _user_name == rhs._user_name)
 return true;

 return false;
}

234 Appendix A
inline bool UserProfile::
operator !=(const UserProfile &rhs){ return ! (*this == rhs); }

inline string UserProfile::level() const {
 static string _level_table[] = {
 "Beginner", "Intermediate", "Advanced", "Guru" };
 return _level_table[_user_level];
}

ostream& operator<<(ostream &os, const UserProfile &rhs)
{ // output of the form: stanl Beginner 12 100 10 10%
 os << rhs.login() << ' '
 << rhs.level() << ' '
 << rhs.login_count() << ' '
 << rhs.guess_count() << ' '
 << rhs.guess_correct() << ' '
 << rhs.guess_average() << endl;
 return os;
}
// overkill ... but it allows a demonstration ...
map<string,UserProfile::uLevel> UserProfile::_level_map;

void UserProfile::init_level_map(){
 _level_map["Beginner"] = Beginner;
 _level_map["Intermediate"] = Intermediate;
 _level_map["Advanced"] = Advanced;
 _level_map["Guru"] = Guru;
}

inline void UserProfile::reset_level(const string &level){
 map<string,uLevel>::iterator it;
 if (_level_map.empty())

 init_level_map();

 // confirm level is a recognized user level ...
 _user_level =
 ((it = _level_map.find(level)) != _level_map.end())
 ? it->second : Beginner;
}

istream& operator>>(istream &is, UserProfile &rhs)
{ // yes, this assumes the input is valid ...
 string login, level;
 is >> login >> level;

 int lcount, gcount, gcorrect;
 is >> lcount >> gcount >> gcorrect;
 rhs.reset_login(login);

Exercise Solutions 235
 rhs.reset_level(level);

 rhs.reset_login_count(lcount);
 rhs.reset_guess_count(gcount);
 rhs.reset_guess_correct(gcorrect);

 return is;
}

Here is a small program to exercise our UserProfile class:
int main()
{

UserProfile anon;
cout << anon; // test out output operator

UserProfile anon_too; // to see if we get unique id
cout << anon_too;

UserProfile anna("AnnaL", UserProfile::Guru);
cout << anna;

 anna.bump_guess_count(27);
anna.bump_guess_correct(25);
anna.bump_login_count();
cout << anna;

cin >> anon; // test out input operator
cout << anon;

}

When compiled and executed, this program generates the following output (my
responses are highlighted in bold):

guest0 Beginner 1 0 0 0
guest1 Beginner 1 0 0 0
AnnaL Guru 1 0 0 0
AnnaL Guru 2 27 25 92.5926
robin Intermediate 1 8 3
robin Intermediate 1 8 3 37.5

Exercise 4.5

Implement a 4x4 Matrix class supporting at least the following general interface: addition
and multiplication of two Matrix objects, a print() member function, a compound += op-
erator, and subscripting supported through a pair of overloaded function call operators,
as follows:

float& operator()(int row, int column);
 float operator()(int row, int column) const;

Provide a default constructor taking an optional 16 data values and a constructor taking

236 Appendix A
an array of 16 elements. You do not need a copy constructor, copy assignment operator,
or destructor for this class (these are required in Chapter 6 when we reimplement the Ma-
trix class to support arbitrary rows and columns).

#include <iostream>
typedef float elemType; // for transition into a template

class Matrix
{
 // friends are not affected by the access level they are
 // declared in. I like to place them at class beginning
 friend Matrix operator+(const Matrix&, const Matrix&);
 friend Matrix operator*(const Matrix&, const Matrix&);

public:
 Matrix(const elemType*);
 Matrix(elemType=0.,elemType=0.,elemType=0.,elemType=0.,
 elemType=0.,elemType=0.,elemType=0.,elemType=0.,
 elemType=0.,elemType=0.,elemType=0.,elemType=0.,
 elemType=0.,elemType=0.,elemType=0.,elemType=0.);
 // don't need copy constructor, destructor,
 // or copy assignment operator for the Matrix class

 // simplifies transition to general matrix
 int rows() const { return 4; }
 int cols() const { return 4; }

 ostream& print(ostream&) const;
 void operator+=(const Matrix&);

 elemType operator()(int row, int column) const
 { return _matrix[row][column]; }

 elemType& operator()(int row, int column)
 { return _matrix[row][column]; }
private:
 elemType _matrix[4][4];
};

inline ostream& operator<<(ostream& os, const Matrix &m)
 { return m.print(os); }

Matrix operator+(const Matrix &m1, const Matrix &m2){
 Matrix result(m1);
 result += m2;
 return result;
}
Matrix operator*(const Matrix &m1, const Matrix &m2){
 Matrix result;

Exercise Solutions 237
 for (int ix = 0; ix < m1.rows(); ix++)
 for (int jx = 0; jx < m1.cols(); jx++){

 result(ix, jx) = 0;
 for (int kx = 0; kx < m1.cols(); kx++)

 result(ix, jx) += m1(ix, kx) * m2(kx, jx);
 }

 return result;
}

void Matrix::operator+=(const Matrix &m){
 for (int ix = 0; ix < 4; ++ix)
 for (int jx = 0; jx < 4; ++jx)
 _matrix[ix][jx] += m._matrix[ix][jx];
}

ostream& Matrix::print(ostream &os) const {
 int cnt = 0;
 for (int ix = 0; ix < 4; ++ix)
 for (int jx = 0; jx < 4; ++jx, ++cnt){
 if (cnt && !(cnt % 8)) os << endl;
 os << _matrix[ix][jx] << ' ';
 }

 os << endl;
 return os;
}

Matrix::Matrix(const elemType *array){
 int array_index = 0;
 for (int ix = 0; ix < 4; ++ix)
 for (int jx = 0; jx < 4; ++jx)
 _matrix[ix][jx] = array[array_index++];
}

Matrix::Matrix(
 elemType a11, elemType a12, elemType a13, elemType a14,
 elemType a21, elemType a22, elemType a23, elemType a24,
 elemType a31, elemType a32, elemType a33, elemType a34,
 elemType a41, elemType a42, elemType a43, elemType a44)
{
 _matrix[0][0] = a11; _matrix[0][1] = a12;
 _matrix[0][2] = a13; _matrix[0][3] = a14;
 _matrix[1][0] = a21; _matrix[1][1] = a22;
 _matrix[1][2] = a23; _matrix[1][3] = a24;
 _matrix[2][0] = a31; _matrix[2][1] = a32;
 _matrix[2][2] = a33; _matrix[2][3] = a34;
 _matrix[3][0] = a41; _matrix[3][1] = a42;
 _matrix[3][2] = a43; _matrix[3][3] = a44;
}

Here is a small program that exercises a portion of the Matrix class interface:

238 Appendix A
int main()
{

Matrix m;
 cout << m << endl;

elemType ar[16]={
1., 0., 0., 0., 0., 1., 0., 0.,
0., 0., 1., 0., 0., 0., 0., 1. };

Matrix identity(ar);
 cout << identity << endl;

Matrix m2(identity);
m = identity;
cout << m2 << endl; cout << m << endl;

elemType ar2[16] = {
1.3, 0.4, 2.6, 8.2, 6.2, 1.7, 1.3, 8.3,
4.2, 7.4, 2.7, 1.9, 6.3, 8.1, 5.6, 6.6 };

 Matrix m3(ar2); cout << m3 << endl;
 Matrix m4 = m3 * identity; cout << m4 << endl;
 Matrix m5 = m3 + m4; cout << m5 << endl;
 m3 += m4; cout << m3 << endl;
}

When compiled and executed, this program generates the following output:
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1

1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1

1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1

1.3 0.4 2.6 8.2 6.2 1.7 1.3 8.3
4.2 7.4 2.7 1.9 6.3 8.1 5.6 6.6
1.3 0.4 2.6 8.2 6.2 1.7 1.3 8.3
4.2 7.4 2.7 1.9 6.3 8.1 5.6 6.6

2.6 0.8 5.2 16.4 12.4 3.4 2.6 16.6
8.4 14.8 5.4 3.8 12.6 16.2 11.2 13.2

2.6 0.8 5.2 16.4 12.4 3.4 2.6 16.6
8.4 14.8 5.4 3.8 12.6 16.2 11.2 13.2

Exercise Solutions 239
Exercise 5.1

Implement a two-level stack hierarchy. The base class is a pure abstract Stack class
that minimally supports the following interface: pop(), push(), size(), empty(),
full(), peek(), and print(). The derived classes are LIFO_Stack and
Peekback_Stack. The Peekback_Stack allows the user to retrieve the value of any el-
ement in the stack without modifying the stack itself.

The two derived classes implement the actual element container using a vector. To
display the vector, I use a const_reverse_iterator. This supports traversing the vec-
tor from the back to the front.

#include <string>
#include <iostream>
#include <vector>
using namespace std;

typedef string elemType;
class Stack {
public:
 virtual ~Stack(){}
 virtual bool pop(elemType&) = 0;
 virtual bool push(const elemType&) = 0;
 virtual bool peek(int index, elemType&) = 0;

 virtual int top() const = 0;
 virtual int size() const = 0;

 virtual bool empty() const = 0;
 virtual bool full() const = 0;
 virtual void print(ostream& =cout) const = 0;
};

ostream& operator<<(ostream &os, const Stack &rhs)
{ rhs.print(); return os; }

class LIFO_Stack : public Stack {
public:

LIFO_Stack(int capacity = 0) : _top(0)
 { if (capacity) _stack.reserve(capacity); }
 int size() const { return _stack.size(); }
 bool empty() const { return ! _top; }
 bool full() const { return size() >= _stack.max_size(); }
 int top() const { return _top; }
 void print(ostream &os=cout) const;

 bool pop(elemType &elem);
 bool push(const elemType &elem);

240 Appendix A
 bool peek(int, elemType&){ return false; }
private:
 vector< elemType > _stack;
 int _top;
};

bool LIFO_Stack::pop(elemType &elem){
 if (empty()) return false;
 elem = _stack[--_top];
 _stack.pop_back();
 return true;
}

bool LIFO_Stack::push(const elemType &elem){
 if (full()) return false;
 _stack.push_back(elem);
 ++_top;
 return true;
}
void LIFO_Stack::print(ostream &os=cout) const {

 vector<elemType>::const_reverse_iterator
 rit = _stack.rbegin(),

 rend = _stack.rend();

 os << "\n\t";
 while (rit != rend)

 os << *rit++ << "\n\t";

 os << endl;
}

The implementation of the Peekback_Stack duplicates that of LIFO_Stack except
for the implementation of peek():

bool Peekback_Stack::
peek(int index, elemType &elem)
{
 if (empty())
 return false;

 if (index < 0 || index >= size())
 return false;

 elem = _stack[index];
 return true;
}

Here is a small program that exercises the inheritance hierarchy. The nonmember
peek() instance accepts an abstract Stack reference and invokes the virtual peek()
member function, which is unique to each derived class.

Exercise Solutions 241
void peek(Stack &st, int index)
{

cout << endl;
string t;
if (st.peek(index, t))
 cout << "peek: " << t;
else cout << "peek failed!";
cout << endl;

}

int main()
{

LIFO_Stack st;
string str;
while (cin >> str && ! st.full())

 st.push(str);

cout << '\n' << "About to call peek() with LIFO_Stack" << endl;
peek(st, st.top()-1);
cout << st;

 Peekback_Stack pst;

 while (! st.empty()){
string t;
if (st.pop(t))
 pst.push(t);

}

cout << "About to call peek() with Peekback_Stack" << endl;
peek(pst, pst.top()-1);
cout << pst;

}

When compiled and executed, this program generates the following output :
once upon a time
About to call peek() with LIFO_Stack

 peek failed!

 time
 a
 upon
 once

 About to call peek() with Peekback_Stack
 peek: once

 once
 upon

242 Appendix A
 a
 time

Exercise 5.2

Reimplement the class hierarchy of Exercise 5.1 so that the base Stack class imple-
ments the shared, type-independent members.

The reimplementation of the class hierarchy illustrates a concrete class hierarchy; that
is, we replace our pure abstract Stack class with our implementation of LIFO_Stack,
renaming it Stack. Although Stack serves as a base class, it also represents actual
objects within our applications. Thus it is termed a concrete base class.
Peekback_Stack is derived from Stack. In this implementation, it inherits all the mem-
bers of Stack except peek(), which it overrides. Only the peek() member function and
the destructor of Stack are virtual. The definitions of the member functions are the
same and are not shown.

class Stack {
public:
 Stack(int capacity = 0): _top(0)
 {
 if (capacity)
 _stack.reserve(capacity);
 }
 virtual ~Stack(){}

 bool pop(elemType&);
 bool push(const elemType&);
 virtual bool peek(int, elemType&)
 { return false; }

 int size() const { return _stack.size(); }
 int top() const { return _top; }

 bool empty() const { return ! _top; }
 bool full() const { return size() >= _stack.max_size(); }
 void print(ostream&=cout);

protected:
 vector<elemType> _stack;
 int _top;
};

class Peekback_Stack : public Stack {
public:

Peekback_Stack(int capacity = 0)
 : Stack(capacity) {}

Exercise Solutions 243
 bool peek(int index, elemType &elem);
};

Exercise 5.3

A type/subtype inheritance relationship in general reflects an is-a relationship: A
range-checking ArrayRC is a kind of Array, a Book is a kind of LibraryRentalMate-
rial, an AudioBook is a kind of Book, and so on. Which of the following pairs re-
flects an is-a relationship?

(a) member function isA_kindOf function

This reflects an is-a relationship. A member function is a specialized instance of a
function. Both have a return type, a name, a parameter list, and a definition. In addi-
tion, a member function belongs to a particular class, may or may not be a virtual,
const, or static member function, and so on. Inheritance correctly models the relation-
ship.

(b) member function isA_kindOf class

This does not reflect an is-a relationship. A member function has a class that it is a
member of, but it is not a specialized instance of a class. Inheritance incorrectly mod-
els the relationship.

 (c) constructor isA_kindOf member function

This reflects an is-a relationship. A constructor is a specialized instance of a member
function. A constructor must be a member function; however, it has specialized char-
acteristics. Inheritance correctly models the relationship.

 (d) airplane isA_kindOf vehicle

This reflects an is-a relationship. An airplane is a kind of vehicle. A vehicle is an
abstract class. Airplane is also an abstract class and subsequently is likely to be inher-
ited from. Inheritance correctly models the relationship.

 (e) motor isA_kindOf truck

This does not reflect an is-a relationship. A motor is part of a truck. A truck has a
motor. Inheritance incorrectly models the relationship.

 (f) circle isA_kindOf geometry

This reflects an is-a relationship. A circle is a specialized instance of geometry — of 2D
geometry. Geometry is an abstract base class. Circle is a concrete specialization of
geometry. Inheritance correctly models the relationship.

 (g) square isA_kindOf rectangle

This reflects an is-a relationship. Like a circle, a rectangle is a specialized instance of
geometry. A square is a further specialization — a rectangle in which each side is
equal. Inheritance correctly models the relationship.

244 Appendix A
 (h) automobile isA_kindOf airplane

This is neither a has-a nor an is-a relationship. Both an automobile and an airplane are
kinds of vehicles. Inheritance incorrectly models the relationship.

 (i) borrower isA_kindOf library

This does not reflect an is-a relationship. A borrower is an object (or component) of a
library. A library has one or more borrowers. A borrower is a member of a library but
is not a kind of library! Inheritance incorrectly models the relationship.

Exercise 5.4

A library supports the following categories of lending materials, each with its own
check-out and check-in policy. Organize these into an inheritance hierarchy:

book audio book
record children's puppet
video Sega video game
rental book Sony Playstation video game
CD-ROM book Nintendo video game

An inheritance hierarchy moves from the most abstract to the most specific. In this
example, we are given concrete instances of materials loaned by a library. Our task is
twofold. First, we must group common abstractions: the four book abstractions and
the three video game abstractions. Second, we must provide additional classes that
can serve as an abstract interface for the concrete instances. This must be done at two
levels: at the level of each family of concrete classes, such as our books, and at the
level of the entire library lending hierarchy.

For example, Sega, Sony Playstation, and Nintendo video games are specific in-
stances of video games. To tie them together, I’ve introduced an abstract video game
class. I’ve designated the book class as a concrete base class with the three other kinds
of books as specialized instances. Finally, we need a root base class of our library lend-
ing materials.

In the following hierarchy, each tab represents an inheritance relationship. For ex-
ample, audio, rental, and CD-ROM are inherited from book, which in turn is inherited
from the abstract library_lending_material.

library_lending_material
book

audio book
rental book
CD-ROM book

children's puppet
record
video
video game

Exercise Solutions 245
Sega
Sony Playstation
Nintendo

Exercise 6.1

Rewrite the following class definition to make it a class template:
class example {
public:

example(double min, double max);
example(const double *array, int size);

double& operator[](int index);
bool operator==(const example1&) const;

bool insert(const double*, int);
bool insert(double);

double min() const { return _min; }
double max() const { return _max; }

void min(double);
void max(double);

int count(double value) const;
private:

int _size;
double *_parray;
double _min;
double _max;

};

To transform the example class into a template, we must identify and factor out each
dependent data type. _size, for example, is of type int. Might that vary with different
user-specified instances of example? No. _size is an invariant data member that holds
a count of the elements addressed by _parray. _parray, however, may address ele-
ments of varying types: int, double, float, string, and so on. We want to parameterize
the data type of the members _parray, _min, and _max, as well as the return type and
signature of some of the member functions.

template <typename elemType>
class example {
public:

example(const elemType &min, const elemType &max);
example(const elemType *array, int size);

elemType& operator[](int index);
bool operator==(const example1&) const;

246 Appendix A
bool insert(const elemType*, int);
bool insert(const elemType&);

elemType min() const { return _min; };
elemType max() const { return _max; };

void min(const elemType&);
void max(const elemType&);

int count(const elemType &value) const;
private:

int _size;
elemType *_parray;
elemType _min;
elemType _max;

};

Because elemType now potentially represents any built-in or user-defined class, I
declare the formal parameters as const references rather than pass them by value.

Exercise 6.2

Reimplement the Matrix class of Exercise 5.3 as a template. In addition, extend it to sup-
port arbitrary row and column size using heap memory. Allocate the memory in the con-
structor and deallocate it in the destructor.

The primary work of this exercise is to add general row and column support. We
introduce a constructor that takes a row and a column size as arguments. The body of
the constructor allocates the necessary memory from the program’s free store:

Matrix(int rows, int columns)
 : _rows(rows), _cols(columns)
{
 int size = _rows * _cols;
 _matrix = new elemType[size];
 for (int ix = 0; ix < size; ++ix)
 _matrix[ix] = elemType();
}

elemType is the template parameter. _matrix is now an elemType pointer that ad-
dresses the heap memory allocated through the new expression.

template <typename elemType>
class Matrix {
public:
 // ...
private:
 int _rows;
 int _cols;

Exercise Solutions 247
 elemType *_matrix;
};

It is not possible to specify an explicit initial value for which to set each element of
the Matrix. The potential actual types that might be specified for elemType are simply
too diverse. The language allows us, rather, to specify a default constructor:

 _matrix[ix] = elemType();

For an int, this becomes int() and resolves to 0. For a float, this becomes float()
and resolves to 0.0f. For a string, this becomes string() and invokes the default string
constructor, and so on.

We must add a destructor to delete the heap memory acquired during the class ob-
ject’s construction:

~Matrix(){ delete [] _matrix; }

We also must provide a copy constructor and a copy assignment operator now.
Default memberwise initialization and copy are no longer sufficient when we allocate
memory in a constructor and deallocate it in a destructor. Under the default behavior,
the _matrix pointer member of both class objects now addresses the same heap mem-
ory. This becomes particularly nasty if one object is destroyed while the other object
continues to be active within the program: Its underlying matrix has been deleted! One
solution is to deep copy the underlying matrix so that each class object addresses a sep-
arate instance:

template <typename elemType>
Matrix<elemType>::Matrix(const Matrix & rhs)
{

_rows = rhs._rows; _cols = rhs._cols;
int mat_size = _rows * _cols;

 _matrix = new elemType[mat_size];
for (int ix = 0; ix < mat_size; ++ix)

 _matrix[ix] = rhs._matrix[ix];
}

template <typename elemType>
Matrix<elemType>& Matrix<elemType>::operator=(const Matrix &rhs)
{

if (this != &rhs){
 _rows = rhs._rows; _cols = rhs._cols;

 int mat_size = _rows * _cols;
 delete [] _matrix;
 _matrix = new elemType[mat_size];
 for (int ix = 0; ix < mat_size; ++ix)

 _matrix[ix] = rhs._matrix[ix];
 }

 return *this;

248 Appendix A
}

Here is the full class declaration and the remaining member functions:
#include <iostream>
template <typename elemType>
class Matrix
{
 friend Matrix<elemType>
 operator+(const Matrix<elemType>&, const Matrix<elemType>&);

 friend Matrix< elemType >
 operator*(const Matrix<elemType>&, const Matrix<elemType>&);

public:
 Matrix(int rows, int columns);
 Matrix(const Matrix&);
 ~Matrix();
 Matrix& operator=(const Matrix&);

 void operator+=(const Matrix&);
 elemType& operator()(int row, int column)
 { return _matrix[row * cols() + column]; }

 const elemType& operator()(int row, int column) const
 { return _matrix[row * cols() + column]; }

 int rows() const { return _rows; }
 int cols() const { return _cols; }

 bool same_size(const Matrix &m) const
 { return rows() == m.rows() && cols() == m.cols(); }

 bool comfortable(const Matrix &m) const
 { return (cols() == m.rows()); }

 ostream& print(ostream&) const;

protected:
 int _rows;
 int _cols;
 elemType *_matrix;
};

template <typename elemType>
inline ostream&
operator<<(ostream& os, const Matrix<elemType> &m)
 { return m.print(os); }

// end of Matrix.h

Exercise Solutions 249
template <typename elemType>
Matrix< elemType >
operator+(const Matrix<elemType> &m1, const Matrix<elemType> &m2)
{
 // make sure m1 & m2 are same size
 Matrix<elemType> result(m1);
 result += m2;
 return result;
}

template <typename elemType>
Matrix<elemType>
operator*(const Matrix<elemType> &m1, const Matrix<elemType> &m2)
{
 // m1’s columns must equal m2’s rows ...
 Matrix<elemType> result(m1.rows(), m2.cols());
 for (int ix = 0; ix < m1.rows(); ix++) {

 for (int jx = 0; jx < m1.cols(); jx++) {
 result(ix, jx) = 0;
 for (int kx = 0; kx < m1.cols(); kx++)

 result(ix, jx) += m1(ix, kx) * m2(kx, jx);
 }

 }
 return result;
}

template <typename elemType>
void Matrix<elemType>::operator+=(const Matrix &m){
 // make sure m1 & m2 are same size
 int matrix_size = cols() * rows();
 for (int ix = 0; ix < matrix_size; ++ix)
 (*(_matrix + ix)) += (*(m._matrix + ix));
}

template <typename elemType>
ostream& Matrix<elemType>::print(ostream &os) const {
 int col = cols();
 int matrix_size = col * rows();
 for (int ix = 0; ix < matrix_size; ++ix){

 if (ix % col == 0) os << endl;
 os << (*(_matrix + ix)) << ' ';

 }
 os << endl;
 return os;
}

Here is a small program to exercise our Matrix class template:
int main()

250 Appendix A
{
ofstream log("C:\\My Documents\\log.txt");
if (! log)

{ cerr << "can't open log file!\n"; return; }

Matrix<float> identity(4, 4);
 log << "identity: " << identity << endl;

float ar[16]={ 1., 0., 0., 0., 0., 1., 0., 0.,
 0., 0., 1., 0., 0., 0., 0., 1. };

for (int i = 0, k = 0; i < 4; ++i)
 for (int j = 0; j < 4; ++j)

 identity(i, j) = ar[k++];
log << "identity after set: " << identity << endl;

Matrix<float> m(identity);
log << "m: memberwise initialized: " << m << endl;

Matrix<float> m2(8, 12);
log << "m2: 8x12: " << m2 << endl;

m2 = m;
log << "m2 after memberwise assigned to m: "

 << m2 << endl;

float ar2[16]={ 1.3, 0.4, 2.6, 8.2, 6.2, 1.7, 1.3, 8.3,
 4.2, 7.4, 2.7, 1.9, 6.3, 8.1, 5.6, 6.6 };

Matrix<float> m3(4, 4);
for (int ix = 0, kx = 0; ix < 4; ++ix)

 for (int j = 0; j < 4; ++j)
 m3(ix, j) = ar2[kx++];

log << "m3: assigned random values: " << m3 << endl;

Matrix<float> m4 = m3 * identity; log << m4 << endl;
Matrix<float> m5 = m3 + m4; log << m5 << endl;

m3 += m4; log << m3 << endl;
}

When compiled and executed, the program generates the following output:
identity:
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

identity after set:

Exercise Solutions 251
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

m: memberwise initialized:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

m2: 8x12:
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
m2 after memberwise assigned to m:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

m3: assigned random values:
1.3 0.4 2.6 8.2
6.2 1.7 1.3 8.3
4.2 7.4 2.7 1.9
6.3 8.1 5.6 6.6

1.3 0.4 2.6 8.2
6.2 1.7 1.3 8.3
4.2 7.4 2.7 1.9
6.3 8.1 5.6 6.6

2.6 0.8 5.2 16.4
12.4 3.4 2.6 16.6
8.4 14.8 5.4 3.8
12.6 16.2 11.2 13.2

2.6 0.8 5.2 16.4
12.4 3.4 2.6 16.6
8.4 14.8 5.4 3.8
12.6 16.2 11.2 13.2

Exercise 7.1

252 Appendix A
The following function provides absolutely no checking of either possible bad data
or the possible failure of an operation. Identify all the things that might possibly go
wrong within the function (in this exercise, we don’t yet worry about possible ex-
ceptions raised).

int *alloc_and_init(string file_name)
{

ifstream infile(file_name);
int elem_cnt;
infile >> elem_cnt;
int *pi = allocate_array(elem_cnt);

int elem;
int index = 0;
while (infile >> elem)
 pi[index++] = elem;

sort_array(pi, elem_cnt);
register_data(pi);

return pi;
}

The first error is a type violation: The ifstream constructor requires a const char* and
not a string. To retrieve the C-style character string representation, we invoke the
c_str() string member function:

ifstream infile(file_name.c_str());

Following the definition of infile, we should check that it opened successfully:
if (! infile) // open failed ...

If infile did open successfully, the third statement executes but may not succeed.
For example, if the file contained text, the attempt to place an element in elem_cnt fails.
Alternatively, it is possible for the file to be empty.

if (! infile) // gosh, the read failed

Whenever we deal with pointers, we must be concerned as to whether they actu-
ally address an object. If allocate_array() was unable actually to allocate the array, pi
is initialized to 0. We must test that:

 if (! pi) // geesh, allocate_array() didn’t really

The assumption of the program is that elem_cnt represents a count of the elements
contained within the file. index is unlikely to overflow the array. However, we cannot
guarantee that index is never greater than elem_cnt unless we check.

Exercise 7.2

Exercise Solutions 253
The following functions invoked in alloc_and_init() raise the following exception types
if they should fail:

allocate_array() noMem
sort_array() int
register_data() string

Insert one or more try blocks and associated catch clauses where appropriate to han-
dle these exceptions. Simply print the occurrence of the error within the catch
clause.

Rather than surround each individual function invocation with a separate try block, I
have chosen to surround the entire set of calls with a single try block that contains
three associated catch clauses:

int *alloc_and_init(string file_name)
{

ifstream infile(file_name.c_str());
 if (! infile)return 0;

int elem_cnt;
infile >> elem_cnt;

 if (! infile) return 0;

try {
int *pi = allocate_array(elem_cnt);
int elem;
int index = 0;
while (infile >> elem && index < elem_cnt)

 pi[index++] = elem;

sort_array(pi, elem_cnt);
register_data(pi);

}
catch(const noMem &memFail) {

cerr << "alloc_and_init(): allocate_array failure!\n"
 << memFail.what() << endl;

return 0;
}
catch(int &sortFail) {

cerr << "alloc_and_init(): sort_array failure!\n"
 << "thrown integer value: " << sortFail << endl;

return 0;
}
catch(string ®isterFail) {

cerr << "alloc_and_init(): register_data failure!\n"
 << "thrown string value: "

 << registerFail << endl;
return 0;

}

254 Appendix A
 return pi; // reach here only if no throw occurred ...
}

Exercise 7.3

Add a pair of exceptions to the Stack class hierarchy of Exercise 6.2 to handle the cas-
es of attempting to pop a stack that is empty and attempting to push a stack that is
full. Show the modified pop() and push() member functions.

We’ll define a PopOnEmpty and a PushOnFull pair of exception classes to be thrown,
respectively, in the pop() and push() Stack member functions. These classes no longer
need to return a success or failure value:

void pop(elemType &elem)
{
 if (empty())
 throw PopOnEmpty();
 elem = _stack[--_top];
 _stack.pop_back();
}
void push(const elemType &elem){
 if (! full()){
 _stack.push_back(elem);
 ++_top;
 return;

}
 throw PushOnFull();
}

To allow these two Stack class exceptions to be caught in components that do not
explicitly know about PopOnEmpty and PushOnFull exception classes, the class ex-
ceptions are made part of a StackException hierarchy that is derived from the standard
library logic_error class.

The logic_error class is derived from exception, which is the root abstract base class
of the standard library exception class hierarchy. This hierarchy declares a virtual
function what() that returns a const char* identifying the exception that has been
caught.

class StackException : public logic_error {
public:
 StackException(const char *what) : _what(what){}
 const char *what() const { return _what.c_str(); }
protected:
 string _what;
};

class PopOnEmpty : public StackException {
public:

Exercise Solutions 255
PopOnEmpty() : StackException("Pop on Empty Stack"){}
};

class PushOnFull : public StackException {
public:
 PushOnFull() : StackException("Push on Full Stack"){}
};

Each of the following catch clauses handles an exception of type PushOnFull:
catch(const PushOnFull &pof)
 { log(pof.what()); return; }

catch(const StackException &stke)
 { log(stke.what()); return; }

catch(const logic_error &lge)
 { log(lge.what()); return; }

catch(const exception &ex)
 { log(ex.what()); return; }

256 Appendix A

	Appendix A
	Exercise Solutions

