
Exercises 169

time sampling interval is T = 2τ ′ = l/c. Sketch the discrete-time frequency response from
the source to the lips. Deduce the discrete-time transfer function. How many resonances are
now represented over the frequency interval [0, π ]?

(d) Find a continuous-time impulse response with bandwidth π/T , that, when sampled with
sampling interval T of part (c), gives the discrete-time frequency response [of part (c)] over
the discrete-frequency interval [−π, π ]. How does this continuous-time impulse response
differ from the true continuous-time impulse response of the tube? How does it differ from
the true impulse response at the time samples nT = n2τ ′? How many equal-length tubes
(same cross-section) of a concatenated tube model do you need as a basis for the resulting
discrete-time model to represent the true impulse response for all time?

(e) Suppose now that energy loss takes place in a spatially-varying tube, and its frequency re-
sponse, given in Figure 4.36, is bandlimited to 24000 Hz. Suppose all energy loss occurs at
the output radiation load, and suppose that the spatially-varying tract is approximated by a
concatenated-tube model. How many equal-length tubes are required in a discrete-time model
to represent the frequency response over only the first 12000 Hz?
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Figure 4.36 Lossy tube frequency response.

4.19 In this problem you will fill in some of the missing steps in Section 4.5 on vocal fold/vocal tract
interaction and the “truncation” effect. We saw in Figure 4.22 an electrical analog of a simple model
for airflow through the glottis. Psg at the left is the subglottal pressure in the lungs that is the power
source for speech, p(t) is the sound pressure corresponding to a single first formant, and Zg(t) is
the time-varying impedance of the glottis, defined as the ratio of transglottal pressure across the
glottis, ptg(t), to the glottal volume velocity through the glottis, ug(t).

(a) Writing the current nodal equation of the circuit in Figure 4.22, and using Equation (4.43),
show that
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(b) Differentiate Equation (4.45) with respect to time and show that
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p(t) = u̇sc(t). (4.51)

Then argue from Equation (4.51) that Figure 4.24 gives the Norton equivalent circuit to the
original circuit of Figure 4.22, where the equivalent time-varying resistance and inductance


