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where, because the corresponding response is real, the poles occur in complex conjugate pairs.
There are then an infinite number of poles that occur on the j� axis and can be written
as

sn = ±j

[
(2k + 1)πc

2l

]
, k = 0, ±1, ±2, . . .

corresponding to the resonant frequencies of the uniform tube. The poles fall on the j� axis,
and thus the frequency response at resonant frequencies is infinite in amplitude, because there
is no energy loss in the simple configuration. In particular, it was assumed that friction of air
particles does not occur along the vocal tract walls, that heat is not conducted away through the
vocal tract walls, and that the walls are rigid and so energy was not lost due to their movement.
In addition, because we assumed boundaries consisting of an ideal volume velocity source and
zero pressure at the lips, no energy loss was entailed at the input or output to the uniform tube.
In practice, on the other hand, such losses do occur and will not allow a frequency response of
infinite amplitude at resonance. Consider by analogy a lumped electrical circuit with a resistor,
capacitor, and inductor in series. Without the resistor to introduce thermal loss into the network,
the amplitude of the frequency response at resonance equals infinity. We investigate these forms
of energy loss in the following two sections. Energy loss may also occur due to rotational flow,
e.g., vortices and other nonlinear effects that were discarded in the derivation of the wave equa-
tion, such as from Equation (4.3). These more complex forms of energy loss are discussed in
Chapter 11.

4.3.2 Effect of Energy Loss

Energy loss can be described by differential equations coupled to the wave equation that describes
the pressure/volume velocity relations in the lossless uniform tube. These coupled equations
are typically quite complicated and a closed-form solution is difficult to obtain. The solution
therefore is often found by a numerical simulation, requiring a discretization in time and in space
along the x variable.

Wall Vibration — Vocal tract walls are pliant and so can move under pressure induced by sound
propagation in the vocal tract. To predict the effect of wall vibration on sound propagation, we
generalize the partial differential equations of the previous section to a tube whose cross-section
is nonuniform and time-varying. Under assumptions similar to those used in the derivation of
Equation (4.7), as well as the additional assumption that the cross-section of a nonuniform tube
does not change “too rapidly” in space (i.e., the x direction) and in time, Portnoff [26] has
shown that sound propagation in a nonuniform tube with time- and space-varying cross-section
A(x, t) is given by
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which, for a uniform time-invariant cross-section, reduces to the previous Equation pair
(4.1), (4.4).


