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4.20

4.21

Equation (2.14) from Chapter 2, i.e.,

[ (da(®) g > rdet)  _\* ,
- [w< dr ) dt+[w< di _“’> @ (n)di (454)

(with @ the mean frequency) Cohen [5] proposed a definition of instantaneous bandwidth
that is dependent only on the amplitude of x () and not its frequency, i.e.,

BW() — 1 [(d @)
= g(a(,))

Show in the special case of a decaying exponential, i.e.,
a(t) = e ™,

that Cohen’s definition of instantaneous bandwidth becomes

o
BW() = Py (4.55)

A more standard definition of bandwidth is the frequency distance between spectrum samples
that are 3 dB lower than at the spectral peak. Show that the expression in Equation (4.55) is one-
half of this standard definition. Likewise, again motivated in part by the bandwidth definition in
Equation (4.54), as described in Chapter 2, Cohen defined % as the instantaneous frequency
of x(¢). Describe qualitatively how the bandwidth and frequency multiplier factors in part (d)
of this problem affect the bandwidth defined in Equation (4.54). In your description, consider
how a rapid truncation corresponds to a larger instantaneous bandwidth BW (¢) and assume

that % roughly follows the time-varying frequency €2 ().

(MATLAB) The bilinear transformation used in mapping a Laplace transform to a z-transform is
given by the s-plane to z-plane mapping of s = %[;_}] and has the property that the imaginary
axis in the s-plane maps to the unit circle in the z-plane [22]. The constant T is the sampling
interval. Use the bilinear transformation to obtain the z-transform representation of the continuous-
time radiation load of Equation (4.24). Specifically, with 7' = 10_4, ¢ =350 m/s, R, = 1.4, and
L, = (31.5)107%, argue that Z,(z) ~ 1 — z~! where any fixed scaling is ignored. Use MATLAB
to plot the magnitude of Z, (z) on the unit circle and show that Z, (z) introduces about a 6 dB/octave

highpass effect. Argue from both a time- and frequency-domain viewpoint that the impulse response
associated with Z, (z) acts as a differentiator.

(MATLAB)20 In his work on nonlinear modeling of speech production, Teager [30] used the fol-
lowing “energy operator” on speech-related signals x[n]:

Y(x[n]) = x2n] = x[n — 1x[n + 1. (4.56)

Kaiser [11] analyzed Y and showed that it yields the energy of simple oscillators that generated the
signal x[n]; this energy measure is a function of the frequency as well as the amplitude composition
of a signal. Kaiser also showed that 1 can track the instantaneous frequency in single sinusoids and
chirp signals, possibly exponentially damped. Teager applied v to signals resulting from bandpass
filtering of speech vowels in the vicinity of their formants. The output from the energy operator fre-

20 s problem can be considered a preview to Section 11.5.



