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Equation (2.14) from Chapter 2, i.e.,
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(with ω̄ the mean frequency) Cohen [5] proposed a definition of instantaneous bandwidth
that is dependent only on the amplitude of x(t) and not its frequency, i.e.,

BW(t) = 1

2π

(
a′(t)
a(t)

)
.

Show in the special case of a decaying exponential, i.e.,

a(t) = e−αt ,

that Cohen’s definition of instantaneous bandwidth becomes

BW(t) = α

2π
. (4.55)

A more standard definition of bandwidth is the frequency distance between spectrum samples
that are 3 dB lower than at the spectral peak. Show that the expression in Equation (4.55) is one-
half of this standard definition. Likewise, again motivated in part by the bandwidth definition in
Equation (4.54), as described in Chapter 2, Cohen defined dφ(t)

dt
as the instantaneous frequency

of x(t). Describe qualitatively how the bandwidth and frequency multiplier factors in part (d)
of this problem affect the bandwidth defined in Equation (4.54). In your description, consider
how a rapid truncation corresponds to a larger instantaneous bandwidth BW(t) and assume
that dφ(t)

dt
roughly follows the time-varying frequency �1(t).

4.20 (MATLAB) The bilinear transformation used in mapping a Laplace transform to a z-transform is
given by the s -plane to z-plane mapping of s = 2

T
[ z+1
z−1 ] and has the property that the imaginary

axis in the s -plane maps to the unit circle in the z-plane [22]. The constant T is the sampling
interval. Use the bilinear transformation to obtain the z-transform representation of the continuous-
time radiation load of Equation (4.24). Specifically, with T = 10−4 , c = 350 m/s, Rr = 1.4, and
Lr = (31.5)10−6 , argue that Zr(z) ≈ 1 − z−1 where any fixed scaling is ignored. Use MATLAB
to plot the magnitude of Zr(z) on the unit circle and show that Zr(z) introduces about a 6 dB/octave
highpass effect. Argue from both a time- and frequency-domain viewpoint that the impulse response
associated with Zr(z) acts as a differentiator.

4.21 (MATLAB)20 In his work on nonlinear modeling of speech production, Teager [30] used the fol-
lowing “energy operator” on speech-related signals x[n]:

ψ(x[n]) = x2[n] − x[n − 1]x[n + 1]. (4.56)

Kaiser [11] analyzed ψ and showed that it yields the energy of simple oscillators that generated the
signal x[n]; this energy measure is a function of the frequency as well as the amplitude composition
of a signal. Kaiser also showed that ψ can track the instantaneous frequency in single sinusoids and
chirp signals, possibly exponentially damped. Teager applied ψ to signals resulting from bandpass
filtering of speech vowels in the vicinity of their formants. The output from the energy operator fre-

20 This problem can be considered a preview to Section 11.5.


