Unscrambling
DeclarationsinC 3

“The name of the song is called ‘Haddocks’ Eyes.’”
“Oh, that's the name of the song, is it?” Alice said trying to feel
interested.

"No, you don’t understand,” the Knight said, looking a little vexed.
“That’s what the name is called. The name really is ‘The Aged Aged
Man.””

“Then I ought to have said ‘That's what the song is called’?” Alice
corrected herself.

"No, you oughtn’t: that’s quite another thing! The song is called ‘Ways
and Means’: but that’s only what it's called, you know!”

“Well, what is the song, then?” said Alice, who was by this time
completely bewildered.

"I was coming to that,” the Knight said. “The song really is ‘A-sitting On
A Gate’: and the tune’s my own invention.”

—Lewis Carroll, Through the Looking Glass

syntax only a compiler could love...how a declaration is formed...

a word about structs...a word about unions...a word about enums...
the precedence rule...unscrambling C declarations by diagram...
typedef can be your friend...difference between typedef and #define..
what “typedef struct foo { ... foo } foo;” means...
the piece of code that understandeth all parsing...
some light relief—software to bite the wax tadpole

There’s a story that Queen Victoria was so impressed by Alice in Wonderland that she
requested copies of other books by Lewis Carroll. The queen did not realize that Lewis
Carroll was the pen-name of Oxford mathematics professor Charles Dodgson. She was
not amused when sniggering courtiers brought her several weighty volumes including
The Condensation (Factoring) of Determinants. This story was much told in Victorian times,
and Dodgson tried hard to debunk it:

63

64 Expert C Programming

“I take this opportunity of giving what publicity I can to my contradiction of a silly story, which
has been going the round of the papers, about my having presented certain books to Her
Majesty the Queen. It is so constantly repeated, and is such absolute fiction, that I think it
worthwhile to state, once for all, that it is utterly false in every particular: nothing even
resembling it has ever occurred.”

—Charles Dodgson, Symbolic Logic, Second Edition

Therefore, on the “he doth protest too much” principle, we can be reasonably certain that
the incident did indeed happen exactly as described. In any case, Dodgson would have
got on well with C, and Queen Victoria would not. Putting the quote at the head of this
chapter into a table, we get:

is called is
name of the song “Haddocks” Eyes” “The Aged Aged Man”
the song “Ways and Means” “A-sitting On A Gate”

Yes, Dodgson would have been right at home with computer science. And he would have
especially appreciated type models in programming languages. For example, given the C
declarations:

typedef char * string;
string punchline = *I'm a frayed knot”;

we can see how the Knight's paradigm can be applied to it:

is called is

type of the variable string char *

“I'm a frayed knot”

the variable punchline

What could be more intuitive than that? Well, actually quite a lot of things, and they’ll be
clearer still after you've read this chapter.

Syntax Only a Compiler Could Love
As Kernighan and Ritchie acknowledge, “C is sometimes castigated for the syntax of its

declarations” (K&R, 2nd E.d, p. 122). C’s declaration syntax is trivial for a compiler (or
compiler-writer) to process, but hard for the average programmer. Language designers

Chapter 3 ¢ Unscrambling Declarations in C 65

are only human, and mistakes will be made. For example, the Ada language reference
manual gives an ambiguous grammar for Ada in an appendix at the back. Ambiguity is a
very undesirable property of a programming language grammar, as it significantly com-
plicates the job of a compiler-writer. But the syntax of C declarations is a truly horrible
mess that permeates the use of the entire language. It's no exaggeration to say that C is
significantly and needlessly complicated because of the awkward manner of combining

types.

There are several reasons for C’s difficult declaration model. In the late 1960s, when this
part of C was designed, “type models” were not a well understood area of programming
language theory. The BCPL language (the grandfather of C) was type-poor, having the
binary word as its only data type, so C drew on a base that was deficient. And then, there
is the C philosophy that the declaration of an object should look like its use. An array of
pointers-to-integers is declared by int * p[3]; and an integer is referenced or used in
an expression by writing *p[1i], so the declaration resembles the use. The advantage of
this is that the precedence of the various operators in a “declaration” is the same as in a
“use”. The disadvantage is that operator precedence (with 15 or more levels in the hierar-
chy, depending on how you count) is another unduly complicated part of C.
Programmers have to remember special rules to figure out whether int *p[3] is an
array of pointers-to-int, or a pointer to an array of ints.

The idea that a declaration should look like a use seems to be original with C, and it
hasn’t been adopted by any other languages. Then again, it may be that declaration looks
like use was not quite the splendid idea that it seemed at the time. What's so great about
two different things being made to look the same? The folks from Bell Labs acknowledge
the criticism, but defend this decision to the death even today. A better idea would have
been to declare a pointer as

int &p;

which at least suggests that p is the address of an integer. This syntax has now been
claimed by C++ to indicate a call by reference parameter.

The biggest problem is that you can no longer read a declaration from left to right, as
people find most natural. The situation got worse with the introduction of the volatile
and const keywords with ANSI C; since these keywords appear only in a declaration
(not in a use), there are now fewer cases in which the use of a variable mimics its declara-
tion. Anything that is styled like a declaration but doesn’t have an identifier (such as a
formal parameter declaration or a cast) looks funny. If you want to cast something to the
type of pointer-to-array, you have to express the cast as:

char (*3j)[20]; /* j is a pointer to an array of 20 char */
j = (char (*)[20]) malloc(20);

66 Expert C Prograrmming

If you leave out the apparently redundant parentheses around the asterisk, it becomes
invalid.

A declaration involving a pointer and a const has several possible orderings:

const int * grape;
int const * grape;

int * const grape_jelly;

The last of these cases makes the pointer read-only, whereas the other two make the
object that it points at read-only; and of course, both the object and what it points at
might be constant. Either of the following equivalent declarations will accomplish this:

const int * const grape_jam;

int const * const grape_jam;

The ANSI standard implicitly acknowledges other problems when it mentions that the
typedef specifier is called a “storage-class specifier” for syntactic convenience only. It's an
area that even experienced C programmers find troublesome. If declaration syntax looks
bad for something as straightforward as an array of pointers, consider how it looks for
something even slightly complicated. What exactly, for example, does the following dec-
laration (adapted from the telnet program) declare?

char* const * (*next) ();

We'll answer the question by using this declaration as an example later in the chapter.
Over the years, programmers, students, and teachers have struggled to find simple mne-
monics and algorithms to help them make some sense of the horrible C syntax. This
chapter presents an algorithm that gives a step-by-step approach to solving the problem.
Work through it with a couple of examples, and you’ll never have to worry about C dec-
larations again!

How a Declaration Is Formed

Let’s first take a look at some C terminology, and the individual pieces that can make up
a declaration. An important building block is a declarator—the heart of any declaration;
roughly, a declarator is the identifier and any pointers, function brackets, or array indica-

Chapter 3 » Unscrambling Declarations in C 67

tions that go along with it, as shown in Figure 3-1. We also group any initializer here for
convenience.

Figure 3-1 The Declarator in C

How many Name in C How it looks in C

Zero or more pointers one of the following alternatives:
* const volatile
* volatile
*
* const
* volatile const

exactly one direct_declarator identifier
or
identifier [optional_size | ...
or
identifier (args...)
or

(declarator)

Zero or one initializer = initial_value

A declaration is made up of the parts shown in Figure 3-2 Figure 3-2(not all combinations
are valid, but this table gives us the vocabulary for further discussion). A declaration
gives the basic underlying type of the variable and any initial value.

Figure 3-2 The Declaration in C

How many Name in C How it looks in C
type-specifier void char short int long
at least one type- signed unsigned
specifier float double

struct_specifier
enum_specifier

(not all combinations union_specifier
are valid) storage-class extern static register
auto typedetf
type-qualifier const volatile
exactly one declarator see definition above
Zero or more more declarators , declarator

one semi-colon ;

68 Expert C Programming

We begin to see how complicated a declaration can become once you start combining
types together. Also, remember there are restrictions on legal declarations. You can’t have
any of these:

® a function can’t return a function, so you'll never see foo () ()
® a function can’t return an array, so you'll never see foo () [
® an array can’t hold a function, so you'll never see foo[] ()
You can have any of these:
® a function returning a pointer to a function is allowed: int (* fun()) ();
® a function returning a pointer to an array is allowed: int (* foo())[]
® an array holding pointers to functions is allowed: int (*foo[]) ()
® an array can hold other arrays, so you'll frequently see int foo[][]

Before dealing with combining types, we'll refresh our memories by reviewing how to
combine variables in structs and unions, and also look at enums.

A Word About structs

Structs are just a bunch of data items grouped together. Other languages call this a
“record”. The syntax for structs is easy to remember: the usual way to group stuff
together in C is to put it in braces: { stuff... / The keyword struct goes at the front so the
compiler can distinguish it from a block:

struct { stuff... }

The stuff in a struct can be any other data declarations: individual data items, arrays,
other structs, pointers, and so on. We can follow a struct definition by some variable
names, declaring variables of this struct type, for example:

struct { stuff... } plum, pomegranate, pear;

The only other point to watch is that we can write an optional “structure tag” after the
keyword “struct”:

struct fruit_tag { stuff... } plum, pomegranate, pear;

The words struct fruit tag can now be used as a shorthand for

struct { stuff... }

in future declarations.

Chapter 3 » Unscrambling Declarations in C 69

A struct thus has the general form:

struct optional_tag {
type_1 identifier_1;
type_2 identifier_2;

type_N identifier_N;

} optional_variable_definitions ;

So with the declarations

struct date_tag { short dd,mm,yy; } my_birthday, xmas:
struct date_tag easter, groundhog_ day;

variables my_birthday, xmas, easter, and groundhog_day all have the identical
type. Structs can also have bit fields, unnamed fields, and word-aligned fields. These are
obtained by following the field declaration with a colon and a number representing the
field length in bits.

/* process ID info */

struct pid_tag {
unsigned int inactive
unsigned int /* 1 bit of padding */

unsigned int refcount

(RO

unsigned int ; /* pad to next word boundary */
short pid_id;

struct pid_tag *link;

This is commonly used for “programming right down to the silicon,” and you'll see it in
systems programs. It can also be used for storing a Boolean flag in a bit rather than a char.
A bit field must have a type of int, unsigned int, or signed int (or a qualified version of
one of these). It’s implementation-dependent whether bit fields that are int’s can be
negative.

70 Expert C Programming

Our preference is not to mix a struct declaration with definitions of variables. We prefer

struct veg { int weight, price_per_lb; };

struct veg onion, radish, turnip;

to

struct veg { int weight, price_per_lb; } onion, radish, turnip;

Sure, the second version saves you typing a few characters of code, but we should be
much more concerned with how easy the code is to read, not to write. We write code
once, but it is read many times during subsequent program maintenance. It’s just a little
simpler to read a line that only does one thing. For this reason, variable declarations
should be separate from the type declaration.

Finally there are two parameter passing issues associated with structs. Some C books
make statements like “parameters are passed to a called function by pushing them on the
stack from right to left.” This is oversimplification—if you own such a book, tear out that
page and burn it. If you own such a compiler, tear out those bytes. Parameters are passed
in registers (for speed) where possible. Be aware that an int “i” may well be passed in a
completely different manner to a struct “s” whose only member is an int. Assuming an int
parameter is typically passed in a register, you may find that structs are instead passed on

the stack. The second point to note is that by putting an array inside a struct like this:

/* array inside a struct */
struct s_tag { int a[l1001; 1};

you can now treat the array as a first-class type. You can copy the entire array with an
assignment statement, pass it to a function by value, and make it the return type of a
function.

struct s_tag { int a[l1001; };

struct s_tag orange, lime, lemon;

Chapter 3 » Unscrambling Declarations in C 71

struct s_tag twofold (struct s_tag s) {
int 3;
for (j=0;3j<100;J++) s.alj] *= 2;
return s;

main () {
int i;
for (i=0;1i<100;i++) lime.al[i] = 1:
lemon = twofold(lime);

orange = lemon; /* assigns entire struct */

You typically don’t want to assign an entire array very often, but you can do it by burying
it in a struct. Let’s finish up by showing one way to make a struct contain a pointer to its
own type, as needed for lists, trees, and many dynamic data structures.

/* struct that points to the next struct */
struct node_tag { int datum;
struct node_tag *next;
}i
struct node_tag a,b;
a.next = &b; /* example link-up */
a.next->next=NULL;

A Word About unions

Unions are known as the variant part of variant records in many other languages. They
have a similar appearance to structs, but the memory layout has one crucial difference.
Instead of each member being stored after the end of the previous one, all the members
have an offset of zero. The storage for the individual members is thus overlaid: only one
member at a time can be stored there.

There’s some good news and some bad news associated with unions. The bad news is
that the good news isn’t all that good. The good news is that unions have exactly the
same general appearance as structs, but with the keyword struct replaced by union. So
if you're comfortable with all the varieties and possibilities for structs, you already know
unions too. A union has the general form:

72 Expert C Prograrmming

union optional_tag{
type_1 identifier_1;
type_2 identifier_2;

type_N identifier_N;
} optional_variable_definitions;

Unions usually occur as part of a larger struct that also has implicit or explicit informa-
tion about which type of data is actually present. There’s an obvious type insecurity here
of storing data as one type and retrieving it as another. Ada addresses this by insisting
that the discriminant field be explicitly stored in the record. C says go fish, and relies on
the programmer to remember what was put there.

Unions are typically used to save space, by not storing all possibilities for certain data
items that cannot occur together. For example, if we are storing zoological information on
certain species, our first attempt at a data record might be:

struct creature {

char has_backbone;

char has_fur;

short num_of_legs_in_excess_of_4;
}i

However, we know that all creatures are either vertebrate or invertebrate. We further
know that only vertebrate animals have fur, and that only invertebrate creatures have
more than four legs. Nothing has more than four legs and fur, so we can save space by
storing these two mutually exclusive fields as a union:

union secondary_characteristics {
char has_fur;
short num_of_legs_in_excess_of_4;
}i

Chapter 3 ® Unscrambling Declarations in C 73

struct creature {
char has_backbone;
union secondary_characteristics form;

We would typically overlay space like this to conserve backing store. If we have a datafile
of 20 million animals, we can save up to 20 Mb of disk space this way.

There is another use for unions, however. Unions can also be used, not for one interpreta-
tion of two different pieces of data, but to get two different interpretations of the same
data. Interestingly enough, this does exactly the same job as the REDEFINES clause in
COBOL. An example is:

union bits32_tag {
int whole; /* one 32-bit value */
struct {char c0,cl,c2,c3;} byte; /* four 8-bit bytes */
} value;

This union allows a programmer to extract the full 32-bit value, or the individual byte
fields value.byte.c0, and so on. There are other ways to accomplish this, but the union
does it without the need for extra assignments or type casting. Just for fun, I looked
through about 150,000 lines of machine-independent operating system source (and boy,
are my arms tired). The results showed that structs are about one hundred times more
common than unions. That’s an indication of how much more frequently you’ll encounter
structs than unions in practice.

A Word About enums

Enums (enumerated types) are simply a way of associating a series of names with a series
of integer values. In a weakly typed language like C, they provide very little that can’t be
done with a #define, so they were omitted from most early implementations of K&R C.
But they’re in most other languages, so C finally got them too. The general form of an
enum should look familiar by now:

enum optional_tag { stuff... } optional_variable definitions;

The stuff... in this case is a list of identifiers, possibly with integer values assigned to
them. An enumerated type example is:

eﬁum sizes { small=7, medium, large=10, humungous };

74 Expert C Programming

The integer values start at zero by default. If you assign a value in the list, the next value
is one greater, and so on. There is one advantage to enums: unlike #defined names which
are typically discarded during compilation, enum names usually persist through to the
debugger, and can be used while debugging your code.

The Precedence Rule

We have now reviewed the building blocks of declarations. This section describes one
method for breaking them down into an English explanation. The precedence rule for
understanding C declarations is the one that the language lawyers like best. It’s high on
brevity, but very low on intuition.

The Precedence Rule for Understanding C Declarations

A Declarations are read by starting with the name and then reading in precedence order.
B The precedence, from high to low, is:

B.1 parentheses grouping together parts of a declaration
B.2 the postfix operators:
parentheses () indicating a function, and
square brackets [] indicating an array.
B.3 the prefix operator: the asterisk denoting “pointer to”.

C If a const and/or volatile keyword is next to a type specifier (e.g. int, long, etc.) it
applies to the type specifier. Otherwise the const and/or volatile keyword applies to
the pointer asterisk on its immediate left.

Chapter 3 » Unscrambling Declarations in C 75

An example of solving a declaration using the Precedence Rule:

char* const *(*next) ();

Table 3-1 Solving a Declaration Using the Precedence Rule

Rule to apply Explanation
A First, go to the variable name, “next”, and note that it is directly enclosed by
parentheses.
B.1 So we group it with what else is in the parentheses, to get “next is a pointer
to...”.
B Then we go outside the parentheses, and have a choice of a prefix asterisk, or

a postfix pair of parentheses.

B.2 Rule B.2 tells us the highest precedence thing is the function parentheses
at the right, so we have “next is a pointer to a function returning...”

oy 11

B.3 Then process the prefix to get “pointer to”.

C Finally, take the “char * const”, as a constant pointer to a character.

Then put it all together to read:
“next is a pointer to a function returning a pointer to a const pointer-to-char”

and we’re done. The precedence rule is what all the rules boil down to, but if you prefer
something a little more intuitive, use Figure 3-3.

Unscrambling C Declarations by Diagram

In this section we present a diagram with numbered steps (see Figure 3-3). If you proceed
in steps, starting at one and following the guide arrows, a C declaration of arbitrary com-
plexity can quickly be translated into English (also of arbitrary complexity). We'll
simplify declarations by ignoring typedefs in the diagram. To read a typedef, translate the
declaration ignoring the word “typedef”. If it translates to “p is a...”, you can now use

"o

the name “p” whenever you want to declare something of the type to which it translates.

Magic Decoder Ring for C Declarations

Declarations in C are read boustrophedonically,i.e. alternating right-to-left with left-to right. And who'd have thought
there would be a special word to describe that! Start at the first identifier you find when reading from the left. When
we match a token in our declaration against the diagram, we erase it from further consideration. At each point we
look first at the token to the right, then to the left. When everything has been erased, the job is done.

Step number

1. Go to the leftmost identifier

4. if the token to the left
is an opening parenthesis

5. if the token to the
left is any of
const

volatile
*

ﬂ
M

6. The tokens that
remain form the
basic type of
the declaration

Token to match

Identifier

2. Look at the next token to the right
if it is a square bracket
3. or if it is an opening parenthesis

[possible-size] ...

(possible-parameters)

stuff-already-dealt-with)

Il

Y

Figure 3-3 How to Parse a C Declaration

76

How to read

say “identifier is”

for each pair, say "array of"

Read up to the closing
parenthesis say "function returning

"

this is the opening parenthesis,

grouping together part of the

declaration we have already dealt with.
read up to the balancing parenthesis
start again at step 2

keep reading tokens to the left,
until it's not one of these three
for const say "read-only”
for volatile say "volatile”
for * say "pointer to"
start again at step 4

read off the tokens that remain, e.g.
static unsigned int

Chapter 3 Unscrambling Declarations in C 77

Let’s try a couple of examples of unscrambling a declaration using the diagram. Say we
want to figure out what our first example of code means:

char* const *(*next) ();

As we unscramble this declaration, we gradually “white out” the pieces of it that we have
already dealt with, so that we can see exactly how much remains. Again, remember
const means “read-only”. Just because it says constant, it doesn’t necessarily mean
constant.

The process is represented in Table 3-2. In each step, the portion of the declaration we are
dealing with is printed in bold type. Starting at step one, we will proceed through these steps.

Table 3-2 Steps in Unscrambling a C Declaration

Declaration Remaining Next Step to Apply Result
(start at leftmost identifier)
char * const *(*next) (); step 1 say “next is a...”
char * const *(*) O step 2,3 doesn’t match, go to next

step, say “next is a...”

char * const *(*) O step 4 doesn’t match, go to next
step
char * const *(* Yy (); step 5 asterisk matches, say

“pointer to ...”, go to step 4

char * const *{() () step 4 “(* matches up to “)”, go to
step 2

char * const * O; step 2 doesn’t match, go to next
step

char * const * O; step 3 say “function returning...”

char * const * ; step 4 doesn’t match, go to next
step

char * const * ; step 5 say “pointer to...”

char * const ; step 5 say “read-only...”

char * : step 5 say “pointer to...”

char ; step 6 say “char”

Then put it all together to read:

“next is a pointer to a function returning a pointer to a read-only pointer-to-char”

and we’re done.

78 Expert C Programming

Now let’s try a more complicated example.

char *(*c[10]) (int **p);

Try working through the steps in the same way as the last example. The steps are given at
the end of this chapter, to give you a chance to try it for yourself and compare your
answer.

typedef Can Be Your Friend

Typedefs are a funny kind of declaration: they introduce a new name for a type rather
than reserving space for a variable. In some ways, a typedef is similar to macro text
replacement—it doesn’t introduce a new type, just a new name for a type, but there is a
key difference explained later.

If you refer back to the section on how a declaration is formed, you’ll see that the type-
def keyword can be part of a regular declaration, occurring somewhere near the
beginning. In fact, a typedef has exactly the same format as a variable declaration, only
with this extra keyword to tip you off.

Since a typedef looks exactly like a variable declaration, it is read exactly like one. The
techniques given in the previous sections apply. Instead of the declaration saying “this
name refers to a variable of the stated type,” the typedef keyword doesn’t create a vari-
able, but causes the declaration to say “this name is a synonym for the stated type.”

Typically, this is used for tricky cases involving pointers to stuff. The classic example is
the declaration of the signal () prototype. Signal is a system call that tells the runtime
system to call a particular routine whenever a specified “software interrupt” arrives. It
should really be called “Call_that_routine_when_this_interrupt_comes_in". You call sig-
nal () and pass it arguments to say which interrupt you are talking about, and which
routine should be invoked to handle it. The ANSI Standard shows that signal is declared
as:

void (*signal{int sig, void (*func) {int))) (int);
Practicing our new-found skills at reading declarations, we can tell that this means:
void (*signal()) (int);

signal is a function (with some funky arguments) returning a pointer to a function (tak-
ing an int argument and returning void). One of the funky arguments is itself:

void (*func) (int) ;

Chapter 3 » Unscrambling Declarations in C 79

a pointer to a function taking an int argument and returning void. Here’s how it can be
simplified by a typedef that “factors out” the common part.

typedef void (*ptr_to_func) (int);

/* this says that ptr_to_func is a pointer to a function
* that takes an int argument, and returns void

*/

ptr_to_func signal(int, ptr_to_func);

/* this says that signal is a function that takes
* two arguments, an int and a ptr_to_func, and
* returns a ptr_to_func
*/

Typedef is not without its drawbacks, however. It has the same confusing syntax of other
declarations, and the same ability to cram several declarators into one declaration. It pro-
vides essentially nothing for structs, except the unhelpful ability to omit the struct
keyword. And in any typedef, you don't even have to put the typedef at the start of
the declaration!

Handy Heuristic

Tips for Working with Declarators

Don'’t put several declarators together in one typedef, like this:
typedef int *ptr, (*fun) (), arr[5];
/* ptr is the type “pointer to int”
* fun is the type “pointer to a function returning int”
* arr 1s the type “array of 5 ints”
*/
And never, ever, bury the typedef in the middle of a declaration, like this:

unsigned const long typedef int volatile *kumguat;

80 Expert C Programming

Typedef creates aliases for data types rather than new data types. You can typedef any
type.

typedef int (*array_ptr)[100];

Just write a declaration for a variable with the type you desire. Have the name of the vari-
able be the name you want for the alias. Write the keyword ‘typedef’ at the start, as
shown above. A typedef name cannot be the same as another identifier in the same block.

Difference Between typedef int x[10] and
#define x int[10]

As mentioned above, there is a key difference between a typedef and macro text replace-
ment. The right way to think about this is to view a typedef as being a complete
“encapsulated” type—you can’t add to it after you have declared it. The difference
between this and macros shows up in two ways.

You can extend a macro typename with other type specifiers, but not a typedef’d type-
name. That is,

#define peach int
unsigned peach i; /* works fine */

typedef int banana;

unsigned banana i; /* Bzzzt! illegal */

Second, a typedef’d name provides the type for every declarator in a declaration.

#define int_ptr int *
int_ptr chalk, cheese;

After macro expansion, the second line effectively becomes:

int * chalk, cheese;

Chapter 3 » Unscrambling Declarations in C 81

This makes chalk and cheese as different as chutney and chives: chalk is a pointer-to-an-
integer, while cheese is an integer. In contrast, a typedef like this:

typedef char * char_ptr;
char_ptr Bentley, Rolls_Royce;

declares both Bentley and Rolls_Royce to be the same. The name on the front is different,
but they are both a pointer to a char.

What typedef struct foo { ... foo; } foo; Means

There are multiple namespaces in C:

* label names

* tags (one namespace for all structs, enums and unions)

* member names (each struct or union has its own namespace)
* everyting else

Everything within a namespace must be unique, but an identical name can be applied to
things in different namespaces. Since each struct or union has its own namespace, the
same member names can be reused in many different structs. This was not true for very
old compilers, and is one reason people prefixed field names with a unique initial in the
BSD 4.2 kernel code, like this:

struct vnode {

long v_flag;
long v_usecount;
struct vnode *v_freetf;
struct vnodeops *V_op;

Y

Because it is legal to use the same name in different namespaces, you sometimes see code
like this.

struct foo {int foo;} foo;

This is absolutely guaranteed to confuse and dismay future programmers who have to
maintain your code. And what would sizeof(foo); refer to?

Things get even scarier. Declarations like these are quite legal:

typedef struct baz {int baz;} baz;
struct baz variable_1;

baz variable_ 2;

82 Expert C Programming

That’s too many “baz”s! Let’s try that again, with more enlightening names, to see what's
going on:

typedef struct my_tag {int 1i;} my_type;
struct my_tag variable_1;
my_type variable_2;

The typedef introduces the name my_type as a shorthand for “struct my_tag
{int 1}”, but it also introduces the structure tag my_tag that can equally be used with
the keyword struct. If you use the same identifier for the type and the tag in a typedef,
it has the effect of making the keyword “struct” optional, which provides completely
the wrong mental model for what is going on. Unhappily, the syntax for this kind of
struct typedef exactly mirrors the syntax of a combined struct type and variable declara-
tion. So although these two declarations have a similar form,

typedef struct fruit {int weight, price_per_1lb } fruit; /* statement 1 */
struct veg {int weight, price_per_1lb } veg; /* statement 2 */

very different things are happening. Statement 1 declares a structure tag “fruit” and a
structure typedef “fruit” which can be used like this:

struct fruit mandarin; /* uses structure tag “fruit” */

fruit tangerine; /* uses structure type “fruit” */

Statement 2 declares a structure tag “veg” and a variable veg. Only the structure tag can
be used in further declarations, like this:

struct veg potato;

It would be an error to attempt a declaration of veg cabbage. That would be like
writing:

int i;

i3

Chapter 3 » Unscrambling Declarations in C 83

Handy Heuristic

Tips for Working with Typedefs

Don’t bother with typedefs for structs.

All they do is save you writing the word “struct”, which is a clue that you probably shouldn’t be
hiding anyway.

Use typedefs for:

® types that combine arrays, structs, pointers, or functions.

® portable types. When you need a type that’s at least (say) 20-bits, make it a typedef. Then
when you port the code to different platforms, select the right type, short, int, long,
making the change in just the typedef, rather than in every declaration.

® casts. A typedef can provide a simple name for a complicated type cast. E.g.
typedef int (*ptr_to_int_fun) (void});
char * p;
= (ptr_to_int_fun) p;

Always use a tag in a structure definition, even if it's not needed. It will be later.

A pretty good principle in computer science, when you have two different things, is to
use two different names to refer to them. It reduces the opportunities for confusion
(always a good policy in software). If you're stuck for a name for a structure tag, just give
it a name that ends in “_tag”. This makes it simpler to detect what a particular name is.
Future generations will then bless your name instead of reviling your works.

The Piece of Code that Understandeth All Parsing

You can easily write a program that parses C declarations and translates them into
English. In fact, why don’t you? The basic form of a C declaration has already been
described. All we need to do is write a piece of code which understands that form and
unscrambles it the same way as Figure 3-4. To keep it simple, we’ll pretty much ignore
error handling, and we’ll deal with structs, enums, and unions by compressing them

down to just the single word “struct”, “enum” or “union”. Finally, this program expects
functions to have empty parentheses (i.e., no argument lists).

84 Expert C Programming

=

Programming Challenge

1]

Write a Program to Translate C Declarations into English

Here’s the design. The main data structure is a stack, on which we store tokens that we have
read, while we are reading forward to the identifier. Then we can look at the next token to the
right by reading it, and the next token to the left by popping it off the stack. The data structure
looks like:

struct token { char type;
char string[MAXTOKENLEN]; };

/* holds tokens we read before reaching first identifier */

struct token stack[MAXTOKENS];

/* holds the token just read */

struct token this;

The pseudo-code is:

utility routines----------

classify string

loock at the current token and

return a value of “type” “qualifier” or “identifier” in this.type
gettoken

read the next token into this.string

if it is alphanumeric, classify_string

else it must be a single character token

this.type = the token itself; terminate this.string with a nul.
read_to_first_identifier

gettoken and push it onto the stack until the first identifier is read.

Print “identifier is”, this.string

gettoken

Chapter 3 » Unscrambling Declarations in C 85

Write a Program to Translate C Declarations into English (Continued)

parsing routines--------—-

deal_with_function_args

read past closing ‘')’ print out “function returning”
deal_with_arrays

while you’ve got “[sizel” print it out and read past it
deal_with_any_ pointers

while you’ve got “*” on the stack print “pointer to” and pop it
deal_with_declarator

if this.type is ‘'[‘' deal_with_arrays

if this.type is ‘(' deal_with_function_args

deal_with_any_pointers

while there’s stuff on the stack

if it's a *(°

pop it and gettoken; it should be the closing ‘)’

deal_with_declarator

else pop it and print it
main routine----------
main

read_to_first_identifier

deal_with_declarator

This is a small program that has been written numerous times over the years, often under
the name “cdecl”.! An incomplete version of cdecl appears in The C Programming Lan-
guage. The cdecl specified here is more complete; it supports the type qualifiers “const”
and “volatile”. It also knows about structs, enums, and unions though not in full general-
ity; it is easy to extend this version to handle argument declarations in functions. This
program can be implemented with about 150 lines of C. Adding error handling, and the
full generality of declarations, would make it much larger. In any event, when you pro-
gram this parser, you are implementing one of the major subsystems in a compiler—that’s
a substantial programming achievement, and one that will really help you to gain a deep
understanding of this area.

1. Don’t confuse this with the cdecl modifier used in Turbo C on PC’s to indicate that the generated code
should not use the Turbo Pascal default convention for calling functions. The cdecl modifier allows Bor-
land C code to be linked with otlier Turbo languages that were implemented with different calling conven-
tions.

86 Expert C Programming

Further Reading

Now that you have mastered the way to build data structures in C, you may be interested
in reading a good general-purpose book on data structures. One such book is Data Struc-
tures with Abstract Data Types by Daniel F. Stubbs and Neil W. Webre, 2nd Ed., Pacific
Grove, CA, Brooks/Cole, 1989.

They cover a wide variety of data structures, including strings, lists, stacks, queues, trees,
heaps, sets, and graphs. Recommended.

Some Light Relief—
Software to Bite the Wax Tadpole...

One of the great joys of computer programming is writing software that controls some-
thing physical (like a robot arm or a disk head). There’s an enormous feeling of
satisfaction when you run a program and something moves in the real world. The gradu-
ate students in MIT’s Artificial Intelligence Laboratory were motivated by this when they
wired up the departmental computer to the elevator call button on the ninth floor. This
enabled you to call the elevator by typing a command from your LISP machine! The pro-
gram checked to make sure your terminal was actually located inside the laboratory
before it called the elevator, to prevent rival hackers using the dark side of the force to tie
up the elevators.

The other great joy of computer programming is chowing down on junk food while hack-
ing. So what could be more natural than to combine the two thrills? Some computer
science graduate students at Carnegie-Mellon University developed a junk-food/com-
puter interface to solve a long-standing problem: the computer science department Coke®
machine was on the third floor, far from the offices of the graduate students. Students
were fed up with travelling the long distance only to find the Coke machine empty or,
even worse, so recently filled that it was dispensing warm bottles. John Zsarney and
Lawrence Butcher noticed that the Coke machine stored its product in six refrigerated col-
umns, each with an “empty” light that flashed as it delivered a bottle, and stayed on
when the column was sold out. It was a simple matter to wire up these lights to a serial
interface and thus transmit the “bottle dispensed” data to the PDP10 department main-
frame computer. From the PDP10, the Coke machine interface looked just like a telnet
connection! Mike Kazar and Dave Nichols wrote the software that responded to enquiries
and kept track of which column contained the most refrigerated bottles.

Naturally, Mike and Dave didn’t stop there. They also designed a network protocol that
enabled the mainframe to respond to Coke machine status enquiries from any machine on
the local ethernet, and eventually from the Internet itself. Ivor Durham implemented the
software to do this and to check the Coke machine status from other machines. With
admirable economy of effort Ivor reused the standard “finger” facility—normally used to
check from one machine whether a specified user is logged onto another machine. He
modified the “finger” server to run the Coke status program whenever someone fingered

Chapter 3 » Unscrambling Declarations in C 87

the nonexistent user “coke”. Since finger requests are part of standard Internet protocols,
people could check the Coke machine from any CMU computer. In fact, by running the
command

finger cokelg.gp.cs.cmu.edu

you could discover the Coke machine’s status from any machine anywhere on the Inter-
net, even thousands of miles away!

Others who worked on the project include Steve Berman, Eddie Caplan, Mark Wilkins,
and Mark Zaremsky?. The Coke machine programs were used for over a decade, and
were even rewritten for UNIX Vaxen when the PDP-10 was retired in the early 1980s. The
end came a few years ago, when the local Coke bottler discontinued the returnable, Coke-
bottle-shaped bottles. The old machine couldn’t handle the new shape bottles, so it was
replaced by a new vending machine that required a new interface. For a while nobody
bothered, but the lure of caffeine eventually motivated Greg Nelson to reengineer the new
machine. The CMU graduate students also wired up the candy machine, and similar
projects have been completed in other schools, too.

The computer club at the University of Western Australia has a Coke machine connected
to a 68000 CPU, with 80K of memory and an ethernet interface (more power than most
PC’s had a decade ago). The Computer Science House at Rochester Institute of Technol-
ogy, Rochester, NY, also has a Coke machine on the Internet, and has extended it to
providing drinks on credit and computerized account billing. One student enjoyed
remote logging in from home hundreds of miles away over the summer, and randomly
dispensing a few free drinks for whoever next passed. It's getting to the point where
“Coke machine” will soon be the most common type of hardware on the Internet.

Why stop with cola? Last Christmas, programmers at Cygnus Support connected their
office Christmas tree decorations to their ethernet. They could amuse themselves by tog-
gling various lights from their workstations. And people worry that Japan is pulling
ahead of America in technology! Inside Sun Microsystems, there’s an e-mail address gate-
wayed to a fax modem. When you send e-mail there, it’s parsed for phone number details
and sent on as a fax transmission. Ace programmer Don Hopkins wrote pizzatool to put it
to good use. Pizzatool let you custom-select toppings for a pizza using a GUI interface
(most users specified extra GUI cheese), and sent the fax order to nearby Tony & Alba’s
Pizza restaurant, which accepted fax orders and delivered.

I don’t think I'll be divulging a trade secret if I mention that extensive use was made of
this service during the late-night lab sessions developing Sun’s SPARCserver 600MP
series machines. Bon appetit!

2. Craig Everhart, Eddie Caplan, and Robert Frederking, “Serious Coke Addiction,” 25th Anniversary Sym-
posium, Computer Science at CMU: A Commemorative Review, 1990, p. 70. Reed and Witting Company.

88

Expert C Prograrmming

Programming Solution

The Piece of Code that Understandeth All Parsing

© ~a U W NP

W W W NN NNNNDNNERRR--B B B B B oo
W N R OWO®-NOoUu WNPR O WO®-Lo Ul & W Rk o

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#define MAXTOKENS 100
#define MAXTOKENLEN 64

enum type tag { IDENTIFIER, QUALIFIER, TYPE };

struct token {

char type;

char string[MAXTOKENLEN] ;
Y

int top=-1;
struct token stack[MAXTOKENS];

struct token this;

#define pop stack[top--1
#define push(s) stack[++topl=s

enum type_tag classify_string(void)
/* figure out the identifier type */
{
char *s = this.string;
if (!strcmp(s,”“const”)) {
strcpy (s, “read-only”) ;
return QUALIFIER;

if (!strcmp(s, ”"volatile”)) return QUALIFIER;
if (!strcmp(s,“void”)) return TYPE;
if (!strcmp(s, "char”)) return TYPE;

if (!strcmp(s,”signed”)) return TYPE;

90 Expert C Programming

The Piece of Code that Understandeth All Parsing (Continued)
71 /* The piece of code that understandeth all parsing. */
72 read_to_first_identifier() {

73 gettoken() ;

74 while (this.type!=IDENTIFIER) {

75 push{this) ;

76 gettoken() ;

77 }

78 printf(*%s is *, this.string);

79 gettoken () ;

80 }

81

82 deal_with_arrays() {

83 while (this.type=='[") {

84 printf(“array “);

85 gettoken(); /* a number or ‘]’ */
86 if (isdigit(this.string[0])) {

87 printf(*0..%d “,atoi(this.string)-1);
88 gettoken(); /* read the ‘]’ */
89 }

90 gettoken(); /* read next past the ']’ */
91 printf(“of v);

92 }

93 1}

94

95 deal_with_function_args() {

96 while (this.typel=")") {

97 gettoken() ;

98 }

99 gettoken() ;

100 printf (*function returning “);

101 1}

102

103 deal_with_pointers() {

104 while (stack[top].type== ‘*’) {

105 printf(“%s %, pop.string);

106 }

107 }

108

90 Expert C Programming

The Piece of Code that Understandeth All Parsing (Continued)
71 /* The piece of code that understandeth all parsing. */
72 read_to_first_identifier() {

73 gettoken() ;

74 while (this.type!=IDENTIFIER) {

75 push{this) ;

76 gettoken() ;

77 }

78 printf(*%s is *, this.string);

79 gettoken () ;

80 }

81

82 deal_with_arrays() {

83 while (this.type=='[") {

84 printf(“array “);

85 gettoken(); /* a number or ‘]’ */
86 if (isdigit(this.string[0])) {

87 printf(*0..%d “,atoi(this.string)-1);
88 gettoken(); /* read the ‘]’ */
89 }

90 gettoken(); /* read next past the ']’ */
91 printf(“of v);

92 }

93 1}

94

95 deal_with_function_args() {

96 while (this.typel=")") {

97 gettoken() ;

98 }

99 gettoken() ;

100 printf (*function returning “);

101 1}

102

103 deal_with_pointers() {

104 while (stack[top].type== ‘*’) {

105 printf(“%s %, pop.string);

106 }

107 }

108

Chapter 3 « Unscrambling Declarations in C 91

The Piece of Code that Understandeth All Parsing (Continued)

109 deal_with_declarator () {

110 /* deal with possible array/function following the identifier */
111 switch (this.type) {

112 case ‘[' : deal_with_arrays(); break;

113 case ‘(' : deal_with_function_args();

114 }

115

116 deal_with_pointers();

117

118 /* process tokens that we stacked while reading to identifier */
119 while (top>=0) {

120 if (stackl[topl.type == ‘(') {

121 pop;

122 gettoken(); /* read past ')’ */

123 deal_with declarator();

124 } else {

125 printf(*%$s “,pop.string);

126 }

127 }

128 }

129

130 main{()

131 {

132 /* put tokens on stack until we reach identifier */
133 read_to_first_identifier();

134 deal_with_declarator();

135 printf(*\n”);

136 return 0;

137}

92 Expert C Programming

Handy Heuristic

Make String Comparison Look More Natural

One of the problems with the strcmp () routine to compare two strings is that it returns zero
if the strings are identical. This leads to convoluted code when the comparison is part of a
conditional statement:

if (!strcmp(s, “volatile”)}) return QUALIFIER;

a zero result indicates false, so we have to negate it to get what we want.
Here’s a better way. Set up the definition:

#define STRCMP(a,R,b) (strcmp(a,b) R 0)
Now you can write a string in the natural style
if (STRCMP(s, ==, “volatile”))

Using this definition, the code expresses what is happening in a more natural style. Try rewriting
the cdecl program to use this style of string comparison, and see if you prefer it.

Programming Solution

Unscrambling a C Declaration (One More Time)

Here is the solution to “What is this declaration?” on page 78. In each step, the portion of the
declaration we are dealing with is printed in bold type. Starting at step one, we will proceed
through these steps:

Declaration Remaining Next Step to Apply Result

start at the leftmost identifier

char *(*e[10]) (int **p); step 1 say “c is a...”

char *(* [10]) (int **p); step 2 say “array[0..9] of...”

Chapter 3 * Unscrambling Declarations in C 93

Unscrambling a C Declaration (One More Time)

char *(*) (int **p); step 5 say “pointer to...”
go to step 4

char *() (int **p); step 4 delete the parens, go to
step 2, fall through step 2 to
step 3

char * (int **p); step 3 say “function returning...”

char * ; step 5 say “pointer to...”

char H step 6 say “char;”

Then put it all together to read:
“c is an array[0..9] of pointer to a function returning a pointer-to-char”

and we're done. Note: the fuctions pointed to in the array take a pointer to a pointer as their one
and only parameter.

